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PREFACE 
TO THE TENrH EDITION 

The book has been revised keeping in mind the comments and 
suggestions received from the readers. An attempt is made to eliminate 
the misprints/errors in the last edition. Further suggestions and criticism 
for the improvement of ~he book will be' most welcome and thankfully 
acknowledged. \ 
August 2000 S.c. GUPTA 

V.K. KAPOOR 

TO THE NINTH EDITION 
The book originally written twenty-four years ago has, during the 

intervening period, been revised and reprinted seve'ral times. The 
authors have, however, been thinking, for the last f({w years that the 
book needed not only a thorough revision but rather a complete 
rewriting. They now take great pleilsure in presenting to the readers the 
ninth completely revised and enlarged edition of the book. The subject­
matter in the whole book has been rewritten in the light of numerous 
criticisms and suggestions received from the users of the previous 
editions in-lndia and abroad. 

Some salient features of the new edition are: 
• The entire text, especially Chapter 5 (Random Variables), Chapter 

6 (Mathematical Expectation), Chapters 7 and 8 (Theoretical Discrete 
and Continuous Distributions), Chapter 10 (Correlation and 
Regression), Chapter 15 (Theory of Estimation), has been restructured, 
rewritten and updated to cater to the revised syllabi of Indian 
universities, Indian Civil Services and various other competitive 
examinations. 

• During the course of rewriting, it has been specially borne in 
mind to retain all the basic features of the previous editions especially 
the simplicity of presentation, lucidity of style and analytical approach 
which have been appreciated by teachers and students all over India 
and abroad. 

• A number of typical problems have been added as solved 
examples in each chapter. These will enable 'the reader to have a better 
and thoughtful understanding of the basic. concepts of the theor.y and 
its various applications. 

• Several new topics have been added at appropriate places to 
make the treatment more comprehensive and complete. Some of the 
obvious ADDITIONS are: 

§ 8·1.5 Triangular Distribution p. 8· i 0 to 8·12 
§ 8·8.3 Logistic Distribution p. 8·92 to 8·95 
§ 8·10 Rem¥ks 2, Convergence in Distributipn of Law p. 8·106 
§ 8·10.3. Remark 3, Relation between Central ~imit Theorem al?d 

Weak Law of Large Numbers p. 8·110 
§ 8·10.4 C;ramer's Theorem p . 8·111-8.112, 8·114-8·115 -

Example 8.46 



§ 8· 74 to J Order Statistics - Theory, Illustrations and 
§ 8· 74·6, Exercise Set p. 8· 736 to 8· 751 
§ 8· 75 'Truncated Distributions-with Illustrations 

p. 8·757 to 8·756 ~ 
§ 70·6· 7 Derivation of Rank Correlation Formula for Tied Ranks 

p. 70·40-70·47 . 
§ 70-7· 7 Lines of Rt:;gression-Derivation (Aliter) 

p. 70·50-70·57. Example 70·27 p. 70·55 
§ 7 O· 70·2 Remark to § 10· 7 0·2 - Marginal Distributions of 

Bivariate Normal Distribution p. 70·88-70·90 
Tlieorem 70·5, p. 70·86. and Theorem 70·6, p. 70."(37 on 
Bivariate Normal Distribution. 
Solved Examples 70·37, 70·32, PClges 70·96·70·97 on 
BVN Distribution. 
Theorem 73·5 Alternative Proof of Distribution of (X, S2) 

using m.g.f. p. 73· 79 to 73·27 
§ 73· 77 X2- Test for pooling of Probabilities (PJ. Test) p. 73·69 
§ 75·4· 7 Invariance property of Consistent Estimators-TheQrem 

75·7, pp 75·3 
§ 75·4·2 Sufficient Conditions for C;on~istency-Theorem 75·2, 

p. 75·3 
§ 15·5·5 MVUE: Theorem 75·4, p. 75·72-73·73 
§ 75·7 Remark 7. Minimum Variance Bound (MVB), Estimator, 

p.75·24 
§ 75·7· 7 Conditions for the equality sign in Cramer·Rao (CR) 

Inequality, p. 75·25 to 75·27 
§ 75·8 CQmplete family of Distributions (with illustrations), 

p. 75·37 to 75·34 
Theorem 75·10 (Blackwellisation), p .. 15·36. 
Theorems 75·76 and 75·77 on MLE, p. 75·55. 

§ 76·5· 7 Unbiased Test and Unbiased Critical Region. 
Theorem 76·2·pages 76·9-76· 70 

§ 76·5·2 Optimum Regions and Sufficient Statistics, 
p.76·70-76·77 
Remark to Example 76·6, p. 76· 7 7· 7 6· 78 and Remarks 
7, 2 ,to Example 76·7, p. 76·20 to 76·22; GrqphicaI 
Representation of Critical Regions. 

• Exercise sets at the end of each chapter are substantially 
reorganised. Many new problems are included in the exercise sets. 
Repetition of questions of the same type (more than what is necessary) 
has been avoided. Further in the set of exercises, the problems have 
been carefully arranged and properly graded. More difficult problems 
are put in the miscellaneous exercise at the end of each chapter. 

• Solved examples and unsolved problems in the exercise sets 
11Cfve been drav.:n from the latest examination papers of various Indian 
Universities, Indian' Civil Services, etc. 
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• An attempt has been made to rectify the errors in ·the previous 
editions . 

• The present edition Incorporates modern viewpoints. In fact 
with the addition of new topics, rewriting and revision of many 
others and restructuring of exercise sets, altogether a new book, 
covering the revised syllabi of almost all the Indian urilversities, 
is being presfJnted to the reader. It Is earnestly hoped that, In -the 
new form, the book will prove of much greater utility to the students 
as well as teachers of the subject. 

We express our deep sense of gratitude to our Publishers Mis 
sultan Chand & Sons and printers DRO Phototypesetter for their untiring 
efforts, unfailing courtesy, and co-operation in bringing out the book, 
in suchan elegant form. We are· also thankful to ou; several colleagues, 
friends and students for their suggestions and encouragement during 
the preparing of this revised edition; 

Suggestions and criticism for further improvement of the' book as 
weJl ~s intimation of errors and misprints will be most gratefully received 
and duly acknowledged. 

, 
S C. GUPTA & V.K. KAPOOR 

TO THE FIRST EDITION 
Although there are a iarge number of books available covering 

various aspects in the field of Mathematical Statistics, there is no 
comprehensive book dealing with the various topics on Mathematical 
Statistics for the students. The present book is a modest though 
detarmined bid to meet the requirf3ments of the students of Mathematical 
Statistics at Degree, Honours· and Post-graduate levels. The book will 
also be found' of use DY the students preparing for various competitive 
examinations. While writing this book our goal has been to present a 
clear, interesting, systematic and thoroughly teachable treatment of 
Mathematical Stalistics and to provide a textbook which should not 
only serve as an introduction to the study of Mathematical StatIstics 
but also carry the student on to 'such a level that he can read' with 
profit the numercus special monographs which are available on the 
subject. In any branch of Mathematics, it is certainly the teacher who 
holds the key to successful learning, Our aim in writing this book has 
been simply to assisf the teacher in conveying to th~ stude,nts .more 
effectively a thorough understanding of Mathematical Stat;st(cs. 

The book contains sixteen chapters (equally divided between two 
volumes). the first chapter is devoted to a concise and logical 
development of the subject. i'he second and third chapters deal with 
the frequency distributions, and measures of average, ~nd dispersion. 
Mathematical treatment has been given to .the proofs of various articles 
included in these chapters in a very logi9aland simple manner. The 
theory of probability which has been developed by the application of 
the set theory has been discussed quite in detail. A ,large number of 
theorems have been deduced using the simple tools of set theory. The 
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simple applications of probability are also given. The chapters on 
mathematical expectation and theoretical distributions (discrete as well 
as continuous) have been written keeping the'latest ideas in mind. A 
new treatment has been given to the chapters on correlation, regress~on 
and bivariate normal distribution using the concepts of mathematical 
expectation. The thirteenth and fourteenth chapters deal mainly with 
the various sampling distributions and the various tests of significance 
which can be derived from them. In chapter 15, we have discussed 
concisely statistical inference (estimation and testing of hypothesis). 
Abundant material is given in the chapter on finite differences and 
numerical integration. The whole of the relevant theory is arranged in 
the form of serialised articles which are concise and to the. point 
without being insufficient. The more difficult sections will, in general, 
,be found towards the end of each chapter. We have tried our best to 
present the subject so as to be within the easy grasp of students with 
vary~ng degrees of intellectual attainment. 

Due care has been taken of the examination r.eeds of the students 
and, wherever possible, indication of the year, when the' articles and 
problems were S!3t in the examination as been given. While writing this 
text, we have gone through the syllabi and examination papfJrs O,f 
almC'st all Inc;lian universities where the subject is taught sQ as to 
make it as comprehensive as possible. Each chapte( contains a large 
number of carefully graded worked problems mostly drawn from 
university papers with a view to acquainting the student with the typical 
questions pertaining to each topiC. Furthermore, to assist the student 
to gain proficiency iii the subject, a large number of properly graded 
problems maif)ly drawn from examination papers of various. universities 
are given at the end of each chapter. The questions and pro.blems 
given at the end of each chapter usually require for (heir solution a 
thoughtful use of concepts. During the preparation of the text we have 
gone through a vast body of liter9ture available on the subject, a list 
of which is given at the end of the book. It is expected that the 
bibliography given at the end of the book ,will considerably help those 
who want to make a detailed study of the subject • 

The lucidity of style and simplicity of expression have been our 
twin objects to remove the awe which is usually associated with most 
mathematical and statistical textbooks. 

While every effort has been made to avoid printing and other 
mistakes, we crave for the indulgence of the readers fot the errors that 
might have inadvertently crept in. We shall consider our efforts amplY 
rewarded if those for whom the book is intended are benefited by it. 
Suggestions for the improvement of the book will be hIghly appreciated 
and will be duly incorporated. 

SEPTEMBER 10, 1970 S.C. GUPTA & V.K. KAPOOR 



contents 

~rt 

Chapter 1 
Introduction -- Meaning and Scope 

1 '1 Origin and Development of Statistics 1-1 
1'2 Definition of Statistics 1'2 
1'3 Importance and Scope of Statistics 1-4 
1'4 Limitations of Statistics 1-5 
1·5 Distrust of Statistics 1-6 

Chapter 2 

Frequency Distributions and Measures of 
central Tendency 

2'1 Frequency Distribution$ 2·1 
2·1'1 Continuous Frequency ,Distribution 2-4 

Pages 

1-1 - 1'8 

.2-1 - 2·44 

2-2 Graphic Representation of a Frequency Distribution 2-4 
2-2-1 Histogram 2-4 
2'2'2 Frequency Polygon 2·5 

2'3 Averages or Measures of Central Tendency or 
Measures of Location 2'6 

2'4 Requisites for an Ideal Measure of Central Tendency 2-6 
2·5 Arithmetic Mean 2-6 

2·5'1 Properties of Arithmetic Mean 2·8 
2·5'2 Merits and Demerits of Arithmetic Mean 2'10 
2-5'3 Weighted Mean 2-11 

2'6 Median 2'13 
2·6'1 Derivation of Median Formula 2'19 
2-6'2 Merits and Demerits of Median 2·16 

2-7 Mode 2'17 
2-7-1 Derivation of Mode Formula 2'19 
2·7'2 Merits and Demerits of Mode 2-22 

2'8 Geometric Mean 2'22 
2'8-1 Merits and Demerits of Geometric Mean 2'23 

2'9 Harmonic Mean 2-25 
2'9'1 Merits and Demerits of Harmonic Mean 2'25 
2~1 0 Selection of an Average 2'26 
2'11 Partition Values 2'26 / 

2'11'1 Graphicai Location of the Partition Values 2'27 



(x) 

Chapter-3 
Measures of Dispersion, Skewness and Kurtosis 3'1 - 3·40 

3·1 
3-2 
3·3 
3·4 
3:~ 
3'6 
3·7 

3·7·1 
3·7·2 
3·7'3 

3-8 
3'8·1 

3-9 
3'9'1 

3'9-2 
3'9·3' 
3-9-4 
3'10' 
3'11 
3'12 
3'13 
3'14 

Dispersion 3'1 
Characteristics for an Ideal Measure of DisperSion 3-1 
Measures of Dispersion 3-1 
Range 3-1 
Quartile Deviation 3-1 
Mean Deviation 3-2 
Standard Deviation (0) and,Root Mean Square 
Deviation (5) 3'2 
Relation between 0 and s' 3'3 
Different Formulae for Calculating Variance. 3'3 
Variance of the Combined Series 3'10 
Coefficient of Dispersion 3'12 
Coefficient of Variation 3'12 
Moments 3'21 
Relation Between Moments About Mean in Terms of 
Moments About Any Point and Vice Versa 3'22 
Effect of Cllange of Origin and Scale on Moments 3-23 
Sheppard's Correction for Moments 3-23 
Charlier's Checks 3'24 
Pearson's ~ and y Coefficients 3'24 
Factorial Moments 3-24 
Absolute Moments • 3-25 
Skewness 3-32 
Kurtosis 3-35 

Chapter- 4 
Theory of Probability 4-1 - 4·116 

4'1 Introduction 4-1 
4·2 S~ort History 4-1 
4·3 Definitions of Various Terms 4-2 

4'3-1 Mathematical or Classical Probability 4-3 
4-3-2 Statistical or Empirical Probability 4-4 

4-4 Mathematicallools : Preliminary Notions of Sets 4-14 
4-4-1 Sets and Elements of Sets 4'14 

.4-4-2 Operations on Sets 4-15 
4;4-3 Albebra of Sets 4-15 
4-4-4 Umn of. Sequence of Sets 4-16 
4'4·5 Classes of S~ts 4-17 

4-5 Axiomatic ApP,roach to Probability 4'17 



(x~ 

4-5-1 Random Experiment (Sample space) 4-18 

4-5-2 Event 4-19 

4-5-3 Some Illustrations 4-19 

4-5-4 Algebra of Events 4-21 

4-6 Probability - Mathematical Notion 4-25 

4-6-1 Probability Function 4-25 

4-6-2 Law of Addition of Probabilities 4-30-

4-6-3 Extension of General Law of Addition of 
Probabilities 4-31 

4-7 Multiplication Law of Probability and Conditiooal 
Probability 4-35 

4-7-1 Extension of Multiplication Law of Probability 4-36 
4-7-2 Probability of Occurrence of At Least One of .the n 

Independent Events 4-37 
4-7-3 Independent Events 4-39 
4-7-4 Pairwise Independent Events 4-39 
4-7-5 Conditions for Mutual Independence of n Events 4-40 

4-8 Bayes Theorem 4-69 
4-9 Geometric Probability 4-80 

Chapter 5 
Random Variables and Distribution -Functions 5-1 - 5-82 

5 -1 Random Variable 5-1 
5-2 Distribution Function 5-4 

5-2-1 Properties of Distribution Function 5-6 
5-3 Discrete Random Variable 5-6 

5-3-1 Probability Mass Function 5-~ 

5-3-2 Discrete Distribution Function 5 -7 
5-4 Continuous RandomVariable 5-13 

5-4-1 Probability Density Function 5-13-
5-4-2 Various Measures of Central Tend~ncy, Dispersion, 

Skewness and Kurtosis for Continuous Distribution 
5-4-3 Continuous Distribution Function 5-32 

5-5 Joint Probability Law 5-41 
5-5-1 JOint Probability Mass Function 5-41 
5-5-2 Joint Probability Distribl,ltion Function 5-42 
5-5-3 Marginal Distribution Function 5-43 
5-5-4 Joint Density Function 5-44 
5-5-5 The Conditional Distribution Function 5-46 
5-5-6 Stochastic Independence 5-47 

5-6 Transformation of One-dimensional Random-Variable 
5-7 Tran&formation of Two-dimensional Random Variable 

5-15 

5-70 
5-73 



Chapter-6 
Mathematical Expectation and Generating 
Functions 6-1 - 6-138 

6-1 Mathematical Expectation 6-1 
6-2 Expectation of a Function of a Random Variable 6-3 
6-3 Addition Theorem of Expectation 6-4 
6-4 Multiplication Theorem of Expectation 6-6 
6-5 Expectation 1f a Linear Combination of Random 

Variables 6-8 
4 

6-6 Covariance 6-17 
6-7 Variance of a Linear Combination of Random 

Variables 6-11 
6-8 Moments of Bivariate Probability Distributions 6-54 
6-9 Conditional Expectation and Conditional Variance 6-54 

6'10 Moment Generating Function 6'67 
6-10'1 Some Limitations of Moment Generating 

Functions 6'68 
6'10'2 Theorems 011 Moment Generating Functions 611 
6-10-3 Uniqueness Theorem of Moment Generating 

Function 6- 72 
6-11 Cumulants 6-72 

6-11-1 Additive Property of Cumulants 6-73 
6-11-2 Effect of Change of Origin and Scale on Cumulants 6-73 

6-12 Characteristic Function 617 
6-12-1 Properties of Char~cteristic Function 6-78 
6-12-2 Theorems on Characteristic Functions 619 
6-12-3 Necessary and Sufficient Conditions for a Function 

cIl(t) to be a Characteristic Function 6-83 
6-12-4 Multivariate Characteristic Function 6-84 

6-13 Chebychev's Inequality 6-97 
6-13-1 Generalised Form of Bienayme-Chebychev Inequality 6-98 

6·1 4 Convergence in- Probability 6 -100 
6·15 Weak Law of Large Numbers 6-101 

6-15-1 Bernoulli's Law of Large Numbers 6-103 
6'15-2 Markoff's Theorem 6-104 
6-15-3 Khintchin's Theorem 6'104 

6-16 BorelCantelliLemma 6·115 
6'17 Probability Generating Function. 6'123 

6-17'1 Convolutions I 6·126 
I 



Chapter- 7 
Theoretical Discrete Distributions 7'1 - 7'114 

7'0 
7·1 

7'1'1 
7'2 

7'2'1 
7'2'2 

7'2'3 
7·2·4 
7'2·5 
7·2'6 

7'2·7 
7·2·8 
7'2·9 

7·2·10 

7·2·11 

7'2·12 
7'3 

7·3·1 
7·3'2 
7·3·3 
7·3'4 

7·3·5 
7·3·6 
7'3·7 
7·3·8 

7·3·9 

7·3'10 
7·4 

7·4·1 

7·4·2 
7·4·3 

Introduction 7·1 
Bernoulli Distribution 7·1 
Moments of Bernoulli Distribution 7·1 
Binomial Distribution 7·1 
Moments 7·6 
Recurrence Relation for the Moments of Binomial 
Distribution 7'9 
Factorial Moments of Binomial Distribution 7'11 
Mean Deviation about Mean of Binomial Distribution 7'11 
Mode of Binomial Distnbution 7·12 
Moment Gen~rating Function of Binom.ial 
Distribution 7·14 
Additive Property of Binomial Distributio.n 7·15 
Characteristic Function of Binomial Distribution 7·16 
Cumulants of Binomial Distribution 7·16 
Recurrence Relation for Cumulants of Binomial 
Distribution 7·17 
Probability Generating Function of Binomial 

Distribution 7·18 
Fitting of Binomial Distribution 7·19 
Poisson Distribu~ion 7·40 
The Poisson Process 7·42 
Moments of Poisson Distribution 
Mode of Pois~n Distribution 

7·44 
7·45 

Recurrence Relation for the Moments of Poisson 
Distribution 7·46 
Moment Generaiing Function of Poisson Distribution 7-47 
Characteristic Function of POissQn Distribution 7·47 
Cumulants of POisson Distribution 7·47 
Additive or Reproductive Property of Independent 
Poisson Variates 7·47 
Probability Generating Function of Poisson 
Distribution 7;49 
Fitting of Poisson Distribution 7·61 
Negative Binomial Distribution 7· 72 
Moment Generating Function of Negative Binomial 
Distribution 714 
Cumulants of Negative Birfo'mial Distribution 7·74 
POisson Distribution as limiting Case of Negative 
Binomial Di.stribution 7· 75 



7-4-4 Probability Generating Function of Negative Binomial 
Distribution 7- 76 

7-4-5 Deduction of Moments of Negative Binomial 
Distribution From Binomial Distribution 7-79 

7-5 Geometric Distribution 7-83 
7-5-1 Lack of Memory 7-84 
7-5-2 Moments of Geometric Distribution 7-84 
7-5-3 Moment Generating Function of Geometric 

Distribution 7-85 
7-6. 'Hypergeomeiric Distribution 7-88 

7-6-1 Mean and Variance of Hypergeometric Distribution 7-89 
7-6-2 Factorial Moments of Hypergeometric Distribution 7-90 
7-6-3 Approximation to the Binomial Distribution 7-91 
7-6-4 Recurrence Relation for Hypergeometric Distribution 7-91 

7-7 Multinomial Distribution 7-95 
7-7-1 Moments of Multinomial Distribution 7-96 

7-8 Discrete Uniform Distribution 7-101 
7-9 Power Series Distribution 7-101 

7-9-1 Moment Generating Function of p-s-d 7-102 
7-9-2 Recurrence Relation for Cumulants of p-s-d 7-102 
7-9-3 Particular Cases of gop-sod 7'103 

Chapter-8 
Theoretical Continuous Distributions 8-1 8-166 

8 -1 Rectangular or Uniform Distribution 8-1 
8-1-1 Moments of Rectangular DiS\ribution 8-2 
8-1-2 M-G'F- of Rectangular Distribution 8-2 
8-1-3 Characteristic Function 8-2 
8-1-4 Mean Deviation about Me~n 8-2 
8-1-5 Triangular Distribution 8-10 

8-2 Normal Distribution 8-17 
8 -2 -1 Normal Distribution as a Limiting form of Binomial 

Distribution 8-18 
8-2-2 Chief Characteristics of the Normal Distribution.and 

Normal Probability Curve 8-20 
8-2-3 Mode of Normal distribution 8-22 
8-2-4 Median of Normal Distribution 8-23 
8-2-5 M-G-F- of Normal'Distribution 8-23 
8-2-6 Cumulant Generating Functio.n (c-g-f-) of Normal 

Distribution 8-24 
8-2-7 Moments of Normal Distribution 8-24 



8'2'8 A Linear Combination of Independent NQnn,1 Variates 
i~ also a Nonnal'Variate 8'26 

8'2'9 Points of Inflexion of Normal, Curve 8'28 
8'2'10 Mean Deviation from the Mean for Normal-Distribu.tion 8'28 
8.2.11 Area Property: Normal Probability Integral' -8'29 
8·2·12 Error Function 8'30 
8'2·13 Importance of Normal Distribution 8·31 
8,2:14 Fitting of Normal Distribution 8'32 ' 
8·2·f5 Log-Normal Distribution 8'65 

8·3 Gamma Distribution 8'68 
8~3'1 M·G·F· of Gamma Distribution 8'68 
8'3'2 Cumulant Generating F.unction of Gamma Distribution 8'68 
8'3'3 Additive Property of Gamma Distribution 8'70 

8'4 B~ta Distribution of First Kind 8·70 
8'4'1 

8'5 
8'5'1 

8·6 
8'6'1 

8·7 
8·8 

8'8'1 
8'8'2 
8'8'3 

8'9 
8'9'1 
8'9'2 
8'10 

8'10'1 
8'10'2 
8'10'3 
8'10'4 

8'11 
8'11'1 
8'11'2 
'lH2 

8'12'1 

13'12'2 
8'12'3 
8'12'4 
8'12'5 
8'12'6 

Constants of Beta Distribution of First Kind 8' 71 
Beta Distribution of Second Kind 8.72 
Constants of Beta Distribution of Second Kind 8-72 
The Exponential Distribution 8·lt5 
M·G·F· of Exponential Distribution 
Laplace Double Exponential Distribution 

8'86 
8'89 

Weibul Distribution 8'90 
Moments of Standard Weibul Distribution 
Characterisation of Weibul Distribution 

8'91 
8'91 

Logistic Distribution 8'92 
Cauchy Distribution 8'98 
Characteristic Function of Cauchy Distribution 8'99 
Moments of Cauchy Distribution 8-100 
Central Limit Theorem 8-105 
Lindeberg-Levy Theorem 8-107 
Applications of Central Limit Theorem 8-'108 
Liapounoff's Central' Limit Theorem 8-109 
Cram~r's Theorem 8-11'1 
Compound Distributions 8-11 Q 
Compound Binomial Distribution 8-116 
Compound Poisson distribution 8-117 
Pearson\s Distributions 8 '120 
Detennination of the ConStants of the Equation in 
Terms of Moments 8 '121 
Pearson Measure of Skewness 
Criterion 'K' 8 '121 

8'121 

Pearson's Main Type I 8-·12Z 
Pearson Type IV 8-124 
Pearson Type VI 8-125 



8'12'7- lype III 8'125 
8'1"2'8 Type V 8'126 
8'12'9 Typell 8'126' 

_8'12'10 T...vpeVIII 8'127 
'8'12'11 Zero Type (Nonnal Curve) 8'127 
8" 2'12 Type VIII to XII 8'127 

8'1"3 Variate Transformations 8'132 
8 '13'1 Uses of Variate Transfonnations 8 ·132 
8'13'2 Square Root Transformation 8'133 
8'13-3 Sine Inverse <?r siil-1 Transformation 8·133 
8'13'4 LOgarithmic Transformation 8'134 
8'13-5 Fisher's Z-Transfonnation 8'135 

8'14 Order Statistics 8'136 
8'14'1 Cumulative Distribution Function of a Single 

Order Statistic 8'136 
8'14-2 Probability Density Function (p.d.f.) of a Single 

Order Statistic 8'137 
8'14'3 Joint p.d.f. of two Order Statistics 8'138 
8'14'4 Joint p.d.f. of k-Order Statistics 8·139 
8'14'5 Joint p.d.f. of all n-order Statistics 8·140 
8'14'6 Distribution of Range and Other Systematic Statistics 8'140 

8·15 Truncated Distributions 8·151 

Chapter-9 
Cunle Fitting and Principle of Least Squares 9'1 - 9·24 

9'1 Curve Fitting 9'1 
9'1'1 Fitting of a Straight.Line 9'1 
9'1'2 Fitting of a Second Degree Parabola 9'2 
9'1'3 Fitting of a Polynomial of Jdh Degree 9'3 
9'1'4 Change of Origin 9·5 

9', Most Plausible Solution of a System of linear Equations 9'8 
9'3 Conversion of Data to Linear Form 9'9 
9'4 Selection of Type of Curve to be Fitted 9 '13 
9·5 Curve Fitting by Orthogonal Polynomials 9'15 

9·5'1 Orthogoal Polynomials 9'17 
9'5'2 Fitijng of OrthogonarPolynomials 9'18 
9·5'3 Finding the Orthogonal Polynomial Pp 9'18 
9·5·4 Qetermination of Coefficients 9·21 

Chapter-10 
Correlation and Regression 10'1 - 10'128 

1 0'1 Bivariate Distribution, Correlation 10'1 
1 0'2 Scatter Diagram 10-1 



10-3 
10-3-1 
10-3-2 

10-4 

10-5 
10-6 

10-6-1 
10-6-2 
10·6·3 

10Q 
10·7·1 
10·7·2 

'10·7·3 
10·7·4 
10·7·5 
10·7·6 
10·7·7 

10·8 
10·8·1 

10·9 
10·10 

10·10·1 

10·10·2 
10·10·3 

10·11 
10·11·1 

10·12 
10·12·1 

10·13 
10·13·1 

10·14 
10·14·1 

10·15 
10·15·1 

10·16 

10·17 

10·18 

Karl Pearson Coefficient of Correlation 10·7 
Limits for Correlation Coefficient 10 -2 
Assumptions Unqerlying Karl Pearson's 
Correlation Coefficient 10·5 
Calculation of the Correlation Coefficient for a 
Bivariate Frequency Distribution 10·32 
Probable Error of Correlation Coefficient 
Rank Correlation 10-39 
Tied Ranks 1.0·40 
Repeated Ranks (Continued) 10-43 

10-38 

Limits for Rank Corcelation Coefficient 
Regression 10·49 

10·44 

Lines of Regression 10·49 
Regression Curves 10-52 
Regression Coefficients 10-58 
Properties of Regression Coefficients 
Angle Between Two Lines of Regression 
Standard Error of ~stimate 10-60 

10·58 
.10-59 

Correlation Coefficient Between Observed and 
Estimated Value 10·61 

Correlation Ratio 10· 76 
Measures of Correlation Ratio 10-76 • 
Intra-class Correlation 10·81 
Bivariate Normal Distribution 10-84 
Moment Generating Function of Bivariate Normal 
Distribution 10-86 
Marginal Distributions of Biv~riate Normal Distribution 10·88 
Conditional Distributions 10·90 
Multiple and Partial Correlation 10-103 
Yule's Notation 10· 104 
Plane of Regression 10·105 
Generalisation 10·106 
Properties of Residuals, 10·109 
Variance of the Residuals 10-11,0 
Coefficient of Multiple Correlation 10·111 
Properties of Multiple Correlation 'Coefficient 70-113 
Coefficient of Partial Correlation 10-11'4 
Generalisation 10-116 
MlAltiple Correlation in Terms of Total and 
Partial Correlations :10-116 
Expression for Regression Coefficient in Terms 
pf Regression Coefficients of Lower Order 10·118 
Expression for Partial Correl::ltion Coefficient in 
Terms of Correlation Coefficients of Lower Order 10·118 



(xviii) 

Chapter - 11 :r 

Theory of Attributes 11-1 - 11-22 

11-1 Introduction 11-1 
11-2 Notations 11-1 
11:3 Dichotomy 11-1 
11-4 Classes and Class Frequencies. 11-1 

1'1"-4-1 Order of Classes and Class Frequencies 11-1 
11-4-2 Relation between Class Frequencies 11-2 

11-5 Class Symbols as Operators 11-3 
11-6 Consistency of Data 11-8 

11-6-' Condjtions for Consistency of Data 11-8 
11-7 Independence of Attributes 11-12 

11-7-1 Criterion of Independence 11-12 
11-7-2 Symbols (AB)o and 0 11-14 

11 -8 Association of Attributes 11 -15 
11-8 -1 Yule's Coefficient of Association 11-16 
11 -S -2 Coefficient of Colligation 11 -16 

Chapter-12 
Sampling and Large Sample Tests 12-1 - 12-50 

12-1 Sampling -Introduction 12-1 
12-2 Types of Sampling 12-1 

12-2-1 Purposive Sampling 12-2 
12-2-2 RandomSampling 12~ 
12-2-3 Simple Sampling· 12-2 
12-2-4 Stratified Sampling 12-3 

12-3 Parameter and Statistic 12-3 
12-3-1 Sampling Distribution 12-3 
12<~~2 Standard Error 12-4 

12 -4 Tests of Significance 12-6 
12-5 Null Hypothesis 12-6 

12-5-1 Alternative Hypothesis 12-6 
12-6 ErrorsinSampling 12-7 
12-7 Critical Region and Level of Significance 12-7 

12-7-1 One Tailed and Two Tailed Tests 12-7 
12-7-2 Critical or Significant Values 12-8 
12-7-3 Procedure for Testing of Hypothesis 1"2-10 

12-8 Test of Significance for Large Samples 12-10 
12-9 Sampling of Attributes 12-11 

12-9-1 Test for Sin~le Proportion 12-12 



(xix) 

12'9'2 Test of Significance for Difference of Proportions 12-15 
12-10 Sampling of Variables 12'28 
12 '11 Unbiased Estimates for Population Mean (~) and 

Variance (~) 12-29 
12'12 Standard Err9rof Sample Mean 12'31 
12'13 Test of Si91"!ificance for Single Mean 12-31 
12'14 Test of Significance for Difference of Means 12-37 
12'15' Test of Significance for Difference of Standard 

Deviations 12'42 

Chapter-13 
Exact Sampling Distributions (Chi-Square Distribution) 

13-1 
13'2 

13'3 
13'3'1 
13'3'2 
13'3'3 
13-3'4 
13'3'5 

13·4 
13'5 
13'6 
13·7 

13·7'1 
13·7'2 
13·7'3 

13·8 
13'9 

13·9'1 

13'10 

13'11 
13'12 

13'12'1 

13'1 - 13'72 
Chi-square Variate 13-1 
Derivation of the Chi-square Distribution-
First Method - Metho.d of M·G·F- 13-1 
SecoRd Method - Method of Induction 13'2 
M-G'F' of X2-Distribution 13-5 
Cumulant Generating Function of X2 Distribution 13·5 
Limiting Form of X2 DistributiOn 13·6 
Characteristic Function of X2 Distribution 
Mode and Skewness of X2 Distribution 

13'7 
13·7 

Additive Property of Chi-square Variates 13-7 
Chi-Square Probability Curve 13-9 
Conditions for the Validity of X2 test 13'15 
Linear Transformation 13 -1.6 
Applications of Chi-Square Distribution 13'37 
Chi-square Test for Population Variance 13'38' 
Chi-square Test of Goodness of Fit 13·39 
Independence of Attributes 13 '49 
Yates Correction 13·57' 
Brandt and Snedecor Formula for 2 x k Contingency 
Table 13-57 
Chi-square Test of Homogeneity of Correlation, 
Coefficients 13'66 
Bartlett's Test fOF Homogeneity of Severallndependent 
Estimates of the same Population Variance 13'68 
X2 Test for Pooling the Probabilities (P4 Test.) 1~'69 
Non-central X2 Distribution 13'69 
Non-central X2 Distribution with Nqn-Cel'!trality 

Parameter). 13' 70 
13'12'2 Moment Generating Function of Non-central 

X2 Distribution 13'70 



(xx) 

13·12·3 Additive Property of Non-central Chi-square 
Distribution 13: 72 

13 ·12·4 Cumul:mts of Non~entral Chi-square Distribution 13·72 

Chapter-14 
Exact Sampling Distributions (Continued) 
(t, F an~ z distributions) , 14·1 - 14·74 

14·1 Introduction 14·1 
14·2 Studenfs"t" 14·1 

14·2·1 Derivation of Student's t-distribution 
14·2·2 Fisher's "t" 14·3 

14·4 

14·2 

14·2·3 Distribution of Fisher's "t" 
14·2·4 Constants of t-distribution 
14·2·5 Limiting ferm of t-distribution 

14·5 
14·014 

14·2·6 Graph of t-distribution 14·15 
14·2·7 Critical Values of 't' 14'·15 

Applications of t-distribution 14·16 
't-Test for Single Mean 14·16 
Hest for Difference of Means 14·24 

14·2·8 
14·2·9 

14·2·10 
14·2·11 t-te~t for Testing Significance of an Observed Sample 

14·2·12 

14·2·13 

14·3 

14·4 
14·5 

14·5'1 
14·5·2 
14·5·3 
14·5·4 
14·5·5 
14·5·6 
14·5·7 
14·5·8 

14·5·9 

14·5·10 

Correlation Coefficient 14·37 
t-test for Testing Significance of an Observed 
Regression Coefficient 14·39 
t-testlor Testing Significance of an Observed 
Partial Correlation Coefficient 14·39 
Distribution of Sample Correlation Coefficient when 
Population Correlation Coefficient p = 0 14·39 
Non-central t-distribution 14·43 
F-statistic (Definition) 14·44 
Derivation of Snedecor's F-Distribution 14·45 
Constants of F-c:listributlon 14·46 
Mode and POints of Inflexion of F-distribution 
Applications of F-c:listribution 14·57 

14·48 

F-test for Equality, of Population Variances 
Relation Between t and F-di$lributions 

14·57 
14·64 

Relation ~~tween F and X2 14·65 
F-test for Testing the Significance of an Observed 
Multiple Correlation Coefficient 14·66 
F-test for Testing the Significance of an Observed 
Sample Correlation Ratio 14·66 
F-test ior Te$ting the linearity of Regression 14·66 



(xxi) 

14·5'11 F-test for Equality of Several Means 14'67 
14·6 Non-Central'P-Distribution 14'67 
14·7 Fisher's Z - Distribution 14·69 

14'7-1 M-G-F- of Z- Distribution 14-70 
14-8 Fisher's Z- Transformation 14-71 

Chapter-15 
Statistical Inference - I 
(Theory of Estimation) 15-1 - 15-92 

15'1 Introduction 15-1 
15'2 Characteristics of Estimators 15'1 
15'3 Consistency 15'2 
15'4 Unbiasedness 15'2 

15'4'1 Invariance Property of Consistent Estimators 15-3 
15'4'2 Sufficient Condjtions for Consistency 15-3 

15'5 Efficient Estimators 15'7 
15·5'1 Most Efficient Estimator 15-8 

15'6 Sufficiency 15'18 
15·7 Cfamer-Rao Inequality -15'22 

15'7'1 Conditions for the Equality Sign in Cramer-Rao 
(C'R') Inequality 15:25 

15-8 Complete Family of Distributions 15-31 
15'9 MVUE and Btackwellisation 15'34 

15'10 Methods of Estimation 15·52 
15'11 Method of Maximum Likelihood Estimation 15-52 
15'12 Method of Minimum Variance 15-69 
15'13 Method of Moments 15-69 
15'14 Method of Least Squares 15-73 
15'15 Confidence Intervals and Confidence Limits 15'82 

15'15'1 Confidence Intervals for Large Samples 15'87 

Chapter-16 
Statistical Inference - \I 
Testing of Hypothesis, Non-parametric Methods 
and Sequential Analysis 16'1 - 1 6-' 80 

16'1 Introduction 16'1 
16'2 Statistical Hypothesis (Simple and-Composite) 16'1 

16'2,'1 Test of a Statistical Hypothesis 16-2 
16'2'2 Null Hypothesis 16-2 
16-2-3 Alternative Hypothesis 16-2 
16-2-4 Critical Region 16-3 



(xxii) 

16·2'5 Two Types of Errors 16·4 
16:2'6 level of Significance 16·5 
16·2'7 Power of the Test 16·5, 

16'3 Steps in Solving Testing of Hypothesis Problem 16'6 
16'4 Optimum Tests Under Different Situations 16·6 

16'4'1 Most Powerful Test (MP Test.) 16'6 
16·4'2 Uniformly Most Powerful Test 16·7 

16'5 Neyman-Pearson lemma 16' 7 
16·5'1 Unbiased Test and Unbiased Critical Region 
16·5'2 Optimum Regions and Sufficient Statistics 

16'6 likelihood Ratio Test 16'34 

16'9 
16·10 

16'6',1 Prope'rties of Likelihood Ratio Test 16-37 
16-37 16-7-1 . Test for the Mean of a Normal Population 

16'7-2 Test for the Equality of Means of Two Normal 
Populations 16·42 

16' 7'3 Test for the Equality of -Means of Several Normal 
Populations 16'47 

16'7-4 Test for the Variance of a Normal Population 
16'7-5 Test for Equality of Variances of two Normal 

Populations 16·53 
16-7'6 Test forthe Equality of Variances of several 

Normal Populations 16·55 
16'8 Non-parametric Methods 16-59 

16-50 

16-8'1 Advantages and Disadvantages of N'P' Methods over 

16'8'2 
16'8'3 
16'8'4 
16'8·5 
16-8'6 
16'8'7 

Parametric Methods 16·59 
Basic Distribution 16'60 
Wald-Wolfowitz Run Test 16,61 
Test for Randomness 16'63 
Median Test 16·64 
Sign Test 16'65 
Mann-Whitney-Wilcoxon U-test 16'66 
Sequential Analysis 16'69 16'9 

16'9'1 
16'9'2 

Sequential Probability Ratio Test (SPRT) 16'69 
Operating Characteristic (O.C.) Function 
of S.P.R.T 16-71 

16'9'3 Average Sample Number (A.S.N.) 

APPENDIX 

Numerical Tables (I to VIII) 
Index 

,16·71 

1'1 - 1'11 

1-5 



Fundamentals of Mathematical Statistics 
s.c. GUPTA V.K. KAPOOR 
Hindu College, Shri Ram College of Commerce 

University of Delhi, Delhi Un!~e~!ty of Delhi, Delhi 

Tenth Edition 206~1 Pages xx+ 1284 22 x 14 cm ISBN 81-7014-791-3 Rs 210.00 

Special Features 

• comprehensive and analytical treatment is given of all the topics. 
• Difficult mathematical deductions have been treated logically and in a very simple manner. 
• It conforms to the latest syllabi of the Degree and post ,graduate examinations in 

Mathematics, Statistics and Economics. 

Contents 
IntrOduction • Frequency Dislribution and Measures 01 Central Tendency • Measures of Dispersion, Skewness and KurtoSIs 
• Theory 01 Probabilily • Random Vanab/es-Dislribution Function • Malhemalical Expectalion, Generating Func:lons and 
Law of Large Numbers • Theorelical Discrele Dislributions • Theoretical Continuous Distnbulion~ • CUM HUng and 
prinCiple 01' Leasl Squares • Correlation, Regression. Bivariale Normal Distribution and Partial & Multiple Correfation • 
TheOry 01 Attribules •• ' Sampling and Large Sample TeslS 01 Mean and Proportion • Sampling Dislribution Exact (Ch~sQuare 
Distribution) • focI Sampling Dislribulions (I, F and Z Distribullons) • Theort of Estimation • Tesll'lg 01 HypoIhesis. 
~~ and Non-parametric Melhods. 

Elements of Mathematical Statistics 
s.c. GUPTA V.K. KAPOOR 

Third Edition'2001 Pages xiv + 489 ISBN 81-7014-29'" Rs70.00 

Ii Prepared specially for B.Sc. students, studying Statistics as subsidiary or ancillary subject. 

Contents 
Introduction-Meaning and Scope • Frequency Dislributions and Measures 01 Cenlral Tendency • Measures 01 Dispersion, 
SkewnessandKurtosis • TheoryolProbabitity • RandomVariable~istributionFunctions • MalhemalicalExpec\lIlon. 
Generalon Functions and Law 01 Large Numbers • Theoretic;al Discrete Dislributions • Theorelic;al Continuous Dislrllutions 
• Curve Filling and Principle 01 Least Squares • Correlation a!1d Regression • Theory 01 Annbules • Sampling and Large 
Sample Tests· Chlsquare Dislnbulion • Exact. Sampling Dislribulion • Theory 01 Estimalion • :resting of Hypothesis • 
Analysis 01 Variance • Design 01 Experiments • Design 01 Sample Surveys • Tables. 

Fundamentals of Applied 'Statistics 
s.c. GUPTA V.K. KAPOOR 

Third Edition 2001 Pages xvi + 628 ISBN 81·7014-151·6 Rs 110.00 

Special Foatures 

• The book provides comprehensive and exhaustive theoretical discussion. 
• All basic concepts have been explained in an easy and understandable manner. 
• 125 stimulating problems selected from various university examinations have been solved. 
• It conforms to the latest syllabi of B.Sc. (Hons.) and post'graduate examination in Statistics, 

Agriculture and Economics. 

Contents 
Stalisli<.aJ Qualily ConlrOl' Analysis of Time Senes (Mathematical Treatm~ntl' Index Number. Demand Analysis. Price 
and Income Elasticity. Analysis 01 Variance 
Design 01 Experiments. Completely Randomised Design' Randomised Block Design. Latin Square Design. Factorial 
Designs and Conlouncflllg. 
Design 01 Sample Surveys (Mathematical Treatment)· Sample Random Sampling. Slrdlifoed Sampling. Syslematlc 
5ampting. M~u.slage Sampling • Educational and Psychological Sta.stics • Vital Stallctlcal MethodS. 



Operation~ Research 
for Managerial Decision-making 

V. K. KAPOOR 
Co-author of Fundamentals of Mathematical Statistics 

Sixth Revised Edition 2~ Pages xviii + 904 ISBN 81-7014-130-3 Rs225.00 

This well-organised and profusely illustrated book presents updated account of the 
Operations Research Techniques. 

Special Features 

• It is lucid and practical in approach. 
• Wide variety of carefully selected. adapted and specially designed problems with complete 

solutions and detailed workings. 
• 221 Worked example~ l:Ire expertly woven into the text. 
• Useful sets of 740 problems as exercises are given. 
, The book completely covers the syllabi of M.B.A.. M.M.S. and M.Com. courses of all Indian 

Universities. 

Contents 

Introduction to Operations Research • Linear Programming : Graphic Method • Linear 
'Programming : SimPlex Method· Linear Programming. DUality • Transportation 
Problems • Assignment Problems· Sequencing Problems • Replacement 
Dacisions • Queuing Theory • Decision Theory • Game Theory • Inventory Management 
• Statistical Quality Control • Investment Analysis • PERT & CPM • Simulation • 
Work Study Value Analysis • Markov Analysis • Goal. Integer and Dynamic Programming 

Problems and Solutions in 
Operations Research 

V.K. KAPOOR 

Fourth Rev. Edition .200~ Pages xii + 835 ISBN 81-7014-605-4 

Salient Features 

Rs235.00 

• The book fully meets the course requirements of management and commerce students. It 
would also be extremely useful for students ot:professional courses like ICA. ICWA. 

• Working rules. aid to memory. short-cuts. altemative methods are special attractions of the 
book. 

• Ideal book for the students involved in independent study. 

Contents 

Meaning & Scope • Linear Programming: Graphic Method • Linear Programming : Simplex 
Method • Linear Programming: Duality • Transportation Problems • Assignment Problems • 
Replacement Decisions • Queuing Theory • Decision Theory • Inventory Management • 
Sequencing Problems • Pert & CPM • Cost Consideration in Pert • Game Theory • Statistical 
Quality Control • Investment DeCision Analysis • Simulation. 

Sultan Chand & Sons 
Providing books - the never failing friends 

23. Oaryaganj. New Oelhi-110 002 
Phones: 3266105. 3277843. 3281876. 3286788; Fax: 011-326-6357 



CHAPTER ONE 

Introduction - Meaning and Scope 

1·1. Origin and Development of Statistics', Statistics, in a sense, is as old 
as the human society itself. .Its origin can be traced to the old days when it 'was 
regarded as the 'science of State-craft' and,was the by-product of the administrative 
activity of the State. The word 'Statistics' seems to have been'derived from the 
Latin word' status' or the Italian word' statista' orthe German word' statistik' each 
of which means a 'political state'. In ancient times, the government used to collect 
.the information regarding the population and 'property or wealth' of the country­
the fo~er enabling the government to have an idea of the manpower of the country 
(to safeguard itself against external aggression, if any), and the latter providing it 
a basis for introducing news taxes and levies'. 

In India, an efficient system of collecting official and administrative statistics 
existed even more than 2,000 years ago, in particular, during the reign of Chandra 
Gupta Maurya ( 324 -300 B.C.). From Kautilya's Arthshastra it is known that 
even before 300 B.C. a very good system of collecting 'Vital Statistics' and 
registration of births and deaths was in vogue. During Akbar's reign ( 1556 - 1605 
A.D.), Raja Todarmal, the then. land and revenue ministeI, maintair.ed good 
records of land and agricultural statistics. In Aina,e-Akbari written by Abul Fazl 
(in 1596 - 97 ), one of the nine gems of Akbar, we find detailed accounts of the 
administrative and statistical surveys conducted during Akbar's reign. 

In Germany, the systematic c(\llection of official statistics originated towards 
the end of the 18th'century when, in order to' have an idea of the relative strength 
of different Gennan States: information regarding population and- output - in­
dustrial and agricultural - was collected. In England, statistics were the outcome 
of Napoleonic Wars. The Wars necessilated the systematic collection of numerical 
data to enable the government to assess the revenues and expenditure with greater 
precision and then to levy new taxes in order to 1)1CCt the cost ~f war. 

Seventeenth century saw the.,origin of the 'Vital Statistics.' Captain John 
Grant of London (1620 - 1674) ,known as the 'father' of Vital Statistics, was the 
first man to study the statistics of births and deaths. Computauon of mortality tables 
and the calculation of expectation of life at different ages by a number of persons, 
viz., Casper Newman,.Sir WiJliallt Petty (1623 " 1687 ), James Dodson: Dr. Price, 
to mention only a few, led to the idea of 'life insurance' and the first life insurance 
institution was founded in London in 1698. 

The theoretical deveiopment of the so-called modem statistics came during 
the mid~sevemecnth century with the introduction of 'Theory of Probability' and 
'Theory of Games and Chance', the chief contributors being mathematiCians and 
gamblers of France, Germany and England. The French mathematician Pascal 
(1623 - 1662 ), after lengthy correspondence with another French mathematician 
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P. Fermat (1601 - 1665 ) solved the famous 'Problem of Points' posed by the 
gambler Chevalier de - Mere. His study of the problem laid the foundation of the 
theory of probability which is the backbone of the modern theory of statistics. 
Pascal also investigated the properties of the co-effipients of binomml expansions 
and also invented mechanical computation machine. Other notable contributors in 
this field are : James Bemouli ( 1654 - 1705 ), who wrote the fIrst treatise on the 
'Theory of Probability'; De-Moivre (1667· - 1754) who also worked on prob­
abilities an,d annuities arid published his important work "The Doctrine of Chances" 
in 1718, Laplac~ (1749 -, 1827) who published in l782 his monumental work on 
the theory of'Rrobability, and Gauss (1777 - 1855), perhaps the most original!Qf 
all ~riters po statistical subjects, who gave .the principle.of deast squares and the 
normal law of errors. Later on, most of the prominent mathematicians of 18th, 19th 
and 20th centuries, viz., Euler, Lagrange, Bayes, A. Markoff, Khintchin, Kol· 

J 

mogoroff, to mention only a few, added to. the contributions in. the field of 
probability. 
. Modem veterans in the developlJlent of the subject are Englishmen. Francis 
<;Hilton (1822-1921 ~, with his works on 'regression' , pioneered the use of statistical 
methods in the fiel(J of Biometry. Karl Pearson (1857-1936), the founder of the 
greatest statistical laooratory in England (1911), is the pioneer in. correlational 
analysis. His discqvel y of the 'chi square test', the first and the most important of 
modem tests of significance, won for Statistics a place as a science, In 1908 the 
discovery of Student's 't' distribution by W.S. Gosset who' wrote under the. 
pseudonym of 'Student' ushered in an era of exact sample tests (small samples)., 

Sir Ronald A Fisher (1890 - 1962), known as the 'Father of Statistics' , placed 
Statistics on a very sound footing by applying it to various diversified fields, such 
as genetics~ piometry, education; agricltlture, etc. Apart from enlarging the existing 
theory, he is the pioneer in introducing the concepts.of 'PoilU Estimation! (efficien­
cy, sufficiency, principl~ of maximum likelihood"etc.), 'Fiducial Inference' and 
'Exact Sampling! Distributions.' He afso pioneered the study of 'Analysis. of 
Variance' and 'Desi'gn of Experiments.' His contributions WQn for Statistics avery 
responsible position among sciences. 

1·2. Definition of, Statistics. Statistics has been defined differently by 
different authors from time to time. The reasons for a variety of definitions are 
primarily two. First, in modem times the fIeld of utility of Statistics has widened 
considerably. In ancient times Statistics was confined only to the affairs of State 
but now it embraces almost every sphere of human activity. Hence a number of 
old definitions which'were confined to a very narrow field of eQquiry, were replaced 
by new definitions which are much more cOl1)prehensive and exhaustive. Secondly, 
Statistics has been defined in two ways. Some writers define it as' statistical data', 
i.e., numerical statement of facts,while others define itas 'statistical methods', i.e., 
complete body of the principles and techniques used inrcollecting and analysing 
such data. Some of the i~portant definitions are given below. . ~ 
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Statistics as 'Statistical Data' 
Webster defines Statistics ali "classified facts represt;nting the conditions of 

the people in a State ... especially those facts which can be stated in numbers or in 
any other tabular or classified arrangement." This definition, since it confines 
Statistics only to the data pertaining to State; is inadequate as the domain of 
.Statistics is much wider. 

Bowley defines Statistics as " numerical statements of facts in any department 
of enquiry placed in· relation to each other." 

A more exhaustive definition is given by Prof. Horace Secrist as follows: 
" By Statistics we mean aggregates of facts affected to a marked extent by 

multiplicity of causes numerically expressed, enumerated or estimated according 
to reasonable standards of accuracy, collected in a systematic manner for a 
pre"lletermined purpose and placed in relation tv each other." 

Statistics as Statistical,Methods 

Bowley himselr d.efines Statistics in. the rollQwing three different ways: 
(i) Statis4c~ may be called the ~i~ce of cou~ting. 

(ii) Statistics may rightly be called the science of.averages. 
(iii) Statistics is the science of the meac;urement of social organism, .reg~ded 

ali a whole in all its manifestations. 
But none of the above definitions is adequate. The first because1tatisticsJis 

not merely confined to the collection of data as other aspects like presentation, 
analysis and interpretation, etc., are also covered by it. The second, because 
averages are onl y a part ofthe statistical tools used in the analysis of the data, others' 
being dispersion, skewness, kurtosi'S, correlation, regression, etc. J'he third, be=­
cause it restricts the application of StatistiCS'fO sociology alone while in modem 
days Statistics is used in almost all sciences - social as well as physical. 

According to Boddington, " Statistits is the.. science of estimates and prob­
abilities." This also is an inadequate definition smce probabilities'and estimates] 
constitute only a part of the statistical methods. . 

Some other definitions are : 
"The science of Statistics is the method of judging colleotive, natural or soc.,idl 

phenomenon from the results obtained· from the analysis or enUin.eration or 
collectio~ of estimates. "- King. 

" Statistics is the science which deals with collection, classification and 
tabulation of nume.rical facts as the basis for explanation, 'description and com-' 
parison of phenomenon." ...: Lovitt. 

Perha~s the best definition-seems to be one given by' Croxton and Cowden, 
according to whom.Statistics may be defined as " the science which deals w(th.the 
collection, analysis and interpretation of numerical data." 
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1·3. Importance and Scope of Statistics. In modern times, Statistics is 
viewed not as a mere device for collecting numerical data but as a means of 
developing sound techniques for their handl!ng and analysis and drawing valid 
inferences from them. As such it is not confined to the affairs of the State but is 
intruding constantly into various diversified spheres of life - social, economic and 
political. It is now finding wide applications in almost all sciences - social as well 
as physical- such as biology, psychology, education, econom ics, business manage­
ment, etc. It is hardly possible to enumerate even a single department of human 
activity where statistics does not creep in. It has rather become indispensable in 
all phases of human endeavour. 

Statistics a •• d Planning. Statistics is indispensable to planning. In the 
modem age which is termed as 'the age of planning', almost allover the world, 
goemments, particularly of the budding economies, are resorting to planning for 
the economic development. In order that planning is successful, it must be based 
soundly on the correct analysis of complex statistical data. • 

Statistics and Economi~s. Statistical data and technique of sta~istical analysis 
have' proved immensely usefulin solving a variety of economic problems, such as 
wages, prices, analysis of time series and demand analysis. It has also facilitated 
the development of economic theory. Wide applications of mathematics a~d 
statistics in the study of economics have led to the development of new disciplines 
called Economic Statistics and Econometrics. 

Statistics and Bl!.siness. Statistics is an indispensable tool of production 
control also. Business executives are relying more and more on statistical techni­
ques for studying the needs and the desires of the consumers and for many other 
purposes. The success of a businessman more or less depends upon the accuracy 
and precision of his statistical forecasting. Wrong expectations, which may be the 
resUlt ,of faulty and inaccurate analysis of. various causes affecting a particular 
phenomenon, might lead to his, disaster. Suppose a businessman wants to manu fac­
ture readymade gannents. Before starting with the production process he must 
have an, overall idea as to 'how man y ,garments are to be manufactured', 'how much 
raw material and labour is needed for that' ,-and 'what is the quality, shape, coloQl', 
size, etc., of the garments to be manufactured'. Thus the fonnulation of a produc­
tion plan in advance is a must which cannot be done without having q4alltitative 
facts about the details mentioned above. As such most of the large industrial and 
commercial enterprises are employing trailled and efficient statisticians. 

Statistics and Industry. In indu~try,Statistics is very widely used in 'Quality 
Control'. in production engineering, to find whether the product is confonning to 
specifications or not, statistical tools, vi~" inspection plans, control charts, etc., are 
of e~treme importance. In inspection p~ns we have to resort to some kind of 
sampling - a very impOrtant aspect of Statistics. 
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Statistics and Mathematics. Statistics and mathematics arc very intimately 
related. Recent advancements in statistical techniques arc the outcome of \yide. 
applications of advanced mathematic.s. Main contributors to statistics, namely,­
Bemouli, Pascal, Laplace, De-Moivre, Gauss, R. A. Fisher, to mention only a few, 
were primarily talented and skilled mathematicians. Statistics may be regarded as 
that branch of mathematics which provided us with systematic methods of analys­
ing a large I)umber of related numerical facts. According to Connor, " Statistics is 
a branch of Applied Mathematics which specialises in data." Increac;ing role of 
mathematics in statistical ~alysis has resulted in a new branch of Statistics called 
Mathematical Statistics. 

Statistics and Biology, Astronomy and Medical Science. The association 
between statistical methods and biological theories was first studied by Francis 
Galton in his work in 'Regressior:t'. According to Prof. Karl Pearson, the whole 
'theory of heredity' rests on statistical basis. He says, " The whole problem of 
evolution is a problem of vital statistics, a problerrz of longevity, of fertility, of 
health, of disease and it is impossible for the Registrar General to discuss the 
national mortality without an enumeration of the popUlation, a classification of 
deaths and knowledge of statistical theory." 

In astronomy, the theory of Gaussian 'Normal Law of Errors' for the study. 
of the movement of stars and planets is developed by using the 'Principle of Least 
Squares'. 

In medical science also, the statistical tools for the collection, presen,tation 
and analysis of observed facts relating to the causes and incidence bf diseases and 
the results obtained from the use of various drugs and medicines, are of great 
importance. Moreover, thtf efficacy of a manufacutured drug or injection or 
medicine is tested by l!sing the 'tests of sigJ'lificance' - (t-test). 

Statistics and Psychology and Education. In education and psychology, too, 
Statistics has found wide applications, e.g., to determine the reliability and validity 
of a test, 'Factor Analysis', etc., so much so that a new subject called 'Psychometry' 
has come into existence. 

Statistics and War. In war, the theory of 'Decision Functions' can beof great 
assistance to military and technical personnel to plan 'maximum destruction with 
minimum effort'. 

Thus, we see that the science of Siatistics is. associated with almost a1.1 the 
sciences - social as well as physical. Bowley has rightJy said, " A knowledge of 
Statistics is like a knowledge o/foreign language or 0/ algebra; it may prove o/use 
at any time under any circumstance:" 

1·4. Limitations of StatistiCs. Statistics, with its wide applications in almost 
every sphere of hUman ac!iv,ity; is not without limitations. The following are some 
of its important limitations: 
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(i) Statistics is not suited·to the study of qualitative phenomenon. Statistics, 
being a science dealing with a set of numerical data, is applicable to the study of 
only those subjects of enquiry which are capable of quantitative measurement. As 
such; qualitative phenomena like honesty, poverty, culture, etc., which cannot be 
expressed numerically, are not capable of direct statistical analysis. However, 
statistical techniques may be applied indirectly by first reducing the qualitative 
expressions to precise quantitative tenns. For example, the intelligenc.e.of.a group 
of candidates can be studied on the basis of their scores in a certain test. 

(ii) Statistics does not study individuals. Statistics deals with an aggregate of 
objects and does not give any specific recognition to the individual items of a series. 
Individual items, taken separately, do:not constitute statistical data and are mean­
ingless for any statistical enquiry. For example, the individual figures of agricul­
tural production, industrial output or national income of ~y. country for a particular 
year are meaningless unless, to facilitate comparison, similar figures of other 
countries or of the same country for different years are given. Hence, statistical 
analysis is suitod to only those problems where group characteristics are to be 
studied 

(iii) Statistical laws are not eXilct. Unlike the laws of physical and natural 
sciences, statistica1laws are only approximations and not exact. On the basis of 
statistical analysis we can tallc only in tenns of probability and chance and not in 
terms of certainty. Statistical conclusicns are not universally true - they are true 
only on an average. For example, let us consider the statement:" It has been found 
that 20 % of-a certain surgical operations by a particular doctor are successful." 

'!' The statement does not imply that if the doctor is to operate on 5 persons on any 
day and four of the operations have proved fatal, the fifth must bea success. It may 
happen that fifth man also dies of the operation or it may also happen that of the 
.fi~e operations 9n any day, 2 or 3 or even more may be successful. By the statement 
'lje mean that as number of operations becomes larger and larger we should expect, 
on the average, 20 % operations to be successful. 

(iv) Statistics is liable to be misused. Perhaps the most important limitation 
of Statistics is that it must be uSed by experts. As the saying goes, " Statistical 
methods are the most dangerous tools in the hands of the inexperts. Statistics is 
one of those sciences whose adepts must exercise the self-restraint of an artist." 
The use of statistical tools by inexperienced and mtttained persons might lead to 
very fallacious conclusions. One of the greatest shoncomings of Statistics is that 
they do not bear on their face the'label of their quality and as such carl be moulded 
and manipulated in any manner to suppon one's way of argument and reasoning. 
As King says, " Statistics are like clay of which one can niake a god or devil as one 
pleases." The requirement of experience and skin for judicious use of statistical 
methods restricts their use to experts only and limits the chances of the mass 
popularity of this useful ~d important science. 
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1·5. Distrust of Statistics. WlYoften hear the following interesting comments 
on Statistics: 

(i) 'AI) ounce of truth will produce tons of Statistics', 
(ii) 'Statistics can prove anything', 
(iii) 'Figures do not lie. Liars figure', 
(iv) 'If figures say so it can't be otherwise', 
(v) 'There are three type of lies - lies, demand lies, and Statistics - wicked in 

the order ofotheirnaming, and so on. 
Some of the reasons for the existence of such divergent views regarding the 

nature and function of Statistics are as follows: 
(i) Figures are innocent, easily believable and more convincing. The facts 

supported by figures are psychologically more appealing. 
(ii) Figures put forward for arguments may be inaccurate or incomplete and 

thus mighUead to wrong inferences. 
(iii) Figures. though accurate. might be moulded and manipulated by selfish 

persons to conceal the truth and present a distorted picture of facts to the public to 
meet their selfish motives. When the skilled talkers. writers or politicians through 
their forceful..writings &rid speeches or the business and commercial enterprises 
through aavertisements in the press mislead the public or belie their expectations 
by quoting wrong statistical statements or manipulating statistsical data for per­
sonal motives. the ·public loses its faith ,and belief in the science of Statistics and 
starts condemning it. We cannot blame t~e layman for his distrust of Statistics. as 
he. unlike statistician. is not in a position to distinguish between valid and invalid 
conclusions from statistical statements and analysis. 

It may be pointed out that Statistics neither proves anything nor disproves 
anything. It is only a tool which if rightly used may prove extremely useful and if 
misused. might be disastrous. Accord'ing to Bowley. "Statistics only furnishes a 
tool. necessary though imperfect, which is dangerous in the hands of those who do 
not know its use and its deficiencies." It is not the subject of Statistics that is to be 
blamed but those people who twist the numerical data and misuse them either due 
to ignorance or deliberately for personal selfish motives. As King points out. 
"Science of Statistics is the most useful servant but only of great value to those who 
understand its proper ~e." 

We discuss below a few interesting examples of misrepresentation of statistical 
data. 

(i) A statistical report: "The number of accidents taking place in the middle 
of the road is much less than the number of accidents taking place on 'its side. Hence 
it is safer to walk in the middle of the road." This conclusion is obviously wrong 
since we are not given the proportion of the number of accidents to the number of 
persons walking in the two cases. . 
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(ii) "The number ohtudents laking up Mathematics Honours in a University 
has increased 5 times during the last 3 years. Thus, Mathematics ·is gaining 

'popularity among the students of the university." Again, the conclusion is faulty 
since we are not given any such details about the other subjects and hence 
comparative study is not possible. 

(iii) "99% of the JJe9ple who drink alcohol die before atlainjng the age of 100 
years. Hence drinking)s harmful for longevity of life." This statement, too, is 
incorrect since nothing is mentioned about the number of per:sons who do not <Vink 
alcohol and die before attaining the age of 100 years. 

Thus, statistical arguments based on incomplete dala often lead to fallacious 
~nclusions .. 



FREQUENCY DISTRlBUfIONS AND 
MEASURES OF CENTRAL TENDENCY 

2.1. Frequency Distributions. When observations, discrete or contin~ous, 
are available on a single characteristic of a large number of individuals, often it 
beComes necessary to condense the data as far as possible without losing any 
information of interest Lei ~ consider the mw:ks in Statistics obtained by 250 
candidates selected at random from among those appearing in a certain examina-
tion·. 

TABLE 1: MARKS IN STATISTICS OF 250 CANDIDATES 
, ' , 

32 47 41 51 41 30 39 18 48 53 
54 32 31 46 .5 37 32 56 42 48 
38 26 50 40 38 42 35 22 62 51 
44 21 45 31 37 41 44 18 37 47 
68 41 30 52 52 60 42 38 38 34 
41 53 48 21 28 49 42 36 41 29 
30 33 31 35 29 37 38 40 32 49 
43 32 24 38 38 22 41 50 17 46 
46 50 26 15 23 42 25 52 38 46 
41 38 40 37 40 48 45 30 28 31 
40 33 42 36 51 42 56 44 35 38 
31 51 45 41 50 53 50 32 45 48 
40 43 40 34 '34 44 38 58 49 28 
40 45 19 24 34 47 37 33 37 36 
36 32 61 30 44 43 50 31 38 45 
46 40 32 34 44 54 35 39 31 48 
48 50 43 55 43 39 41 48 53 34 
32 31 42 34 34 32 33 24 43 39 
40 50 27 47 34 44 34 33 47 42 
17 42 57 35 38 17 33 46 36 23 

48 50 31 58 33 .cf4 26 29 3t 37 
47 55 57 37 41 54 42 45 47 43 
37 52 47 46 44 50 44 38 42 19 
52 45 23 41 47 33 42 24 48 39 
48 44 60 38 38 44 38 43 40 48 

This representation of, the data dQes not furnish any useful information and is 
rather confusing to mind. A better way may be to express the figures in an 
ascending or descending order of magnitude, commonly termed as array. But this 
does not reduce the bulk of the data. A much better representation is given on the 
next page. 

A bar ( I ) called tally mark is put against the'number when it occurs. Having 
occurred four times. the fifth occurrence is represented by puttfug a cross tally (j) 
on the first four. tallies. This technique faciliiates the counting of the tally marks 
at the end. 
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The representation of the data as above is known as frequency distribution. 
Marks are called the variable (x) and the 'number of students' against the marks 
is known as the frequency (f) of the variable. The word 'frequency' is derived 
from 'how frequently' a variable occurs. For example, in the above case the 
frequency of 31 is 10 as there are ten students getting 31 marks. This repre­
sentation, though beuer than an array' ,does not condense the data much and it is 
quite cumbersome to go through this huge mass of iIata. 

TABLE 2 
Marks 

15 
17 
18 
19 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 " 
33 
34 
35 
36 
37 
J8 
39 

No.o Students Total 
Tal yMarks Frequency 

II =2 
III =3 
II =2 
II =2 
/I =2 
II =2 
III =3 
1111 =4 
I =1 
III =3 
I =1 
III =3 
/I =2 
un =5 
un un = 10 
un un =10 
un III =8 
un l1li1 =11 
l1li =5 
l1li =5 
l1li l1li11 = 12 
un l1li un II = 17 
l1li1 =6 

Marks NO.ofStudelits Tota 
Tally Marks Frequency 

40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
60 
·61 
·62 
68 

l1lil1li1 
l1lil1li 
un l1li Iii 
un III 
un l1li II 
un II 
un II 
l1li111 I un l1li I 
III ' 
IIII .. Uft 
1111 
un 
1111 

=11 
=10 
=13 
=8 
=12 
=7 
=7 
=8 
= 12 
=3 = 10 
=4 
=5 
=4 
=3 
=2 
=2 
=2 
=2 
=3 
=1 
=1 
=1 

If the identity of the ihdividuals about whom a particular i.QfonnatiQn is taken 
is not relevant, nor the order in which the ooservations arise, then the first real step 
of condensation is to divide the observed range of variable into a suitable number 
of class-intervals and to recooI the number of o~rvations in each class. FQr 
example, in the above case, the data may be expressed as shown in Table 3. 

Such a table showing the distribu- TABLE 3 ': FREQUENCY TABLE 
tion of ~e' frequend~ in the different.;' • Marks No. of students. 
classes IS called a frequency table and ( x ) (f) 
~ manner in which the class frequen- 15,-,19 9 
des are distributed over the class batel- 20 - 24 11 
vals is called the grouped jreq.uency ~ =~: ~ 
distribution of the variable. 35 - 39 45 

~emark. The classes of che type :g = ~ ~~ 
15-19,20-24,25-29 etc., in which 50 -54 26 
both the upper and lower limits are 55 - 59 8 
included are called 'inclusive classes' . ~ = ~ 1 
For example the class 20-24, includes 

Total 250 
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all the values from:20 10 24, both inclusive 'and tlie classification is termed as 
inclusive type classification. 

In spite of great importance of classification in statistical analysis, no hard and 
fast rules can be laid down for it The following points may be kep~ in mind for 
classification' : 

(i) Th~ classes should be clearl5' defmedand should not lead 10 aliy ambiguity. 
(ii) The classes should be exhaustive, i.e., each of the given values should be 

included in one of the classes. 
(iii) The classes shoul<i'be mutually exclusive and non-overlapping. 
(iv) The classes should be of equal width. The principle, however, cannot be 

rigidly followed. If the classes are of var:yin~ width, the different class frequencies 
will not be comparable. Comparable figures can be obtained by dividing the value 
of the frequencieS by the 'corresponding widths of the class intervals. The ratios 
thus obtained are called 'frequency densities' . 

(v) Indeterminate classes, e.g •• the open-end classes. less than 'a' or greater 
than 'b' should be avoided as far as possible since they create difficulty in analysis 
and interpretation. 

(vi) The number of classes should neither be too large nor too small. It should 
preferably lie between 5 and 15. However. the number of classes may be more" 
than 15 depending upon the IOtaI frequency and the details required. but it is 
d~irable that it is not less than 5 since in.that case the classification may not reveal 
the essential characteristics of the population. The following fQrmula due to 
SlrUges may be ~ to determine an approximate ~umber k of classes : 

k = 1 + 3·322log10 N. 
where N is the total frequency. 

The Magni~de or u.e (::Iass IDle"al 

Having'faxed the number of classe$.'divide the range (the difference. bet}Yeen 
the greateSt and the smallest observation) by it and the nearest integer to this. value 
giv<;.s the magnitude of the c~ interval. Broad class intervals ( i;e .• ICS$ n"mber 
of classes) will yield -only rough estimates while for high degree of accuracy small 
class intervals ( i.e .• large number of classes) are desirable. 

CIauLimits 

1;be class limits should be cOOsen in such a way that the mid-vaI~'of~ class 
intezval and.actual average of the observations in that claSs interval are as near'to 
each other as possible. If this is not the case then the classification gives a distorted 
picCUre of the characteristics of the dala. Jf possible. class limitS stiould tie locaied 
at the points which are multiple of 0, 2. s. 10 •••• etC •• sO that the midpoints of the 
classes are the Common figures, viz .• O. 2. 5. 10 .•.• ele .• the figures capable of easy 
and simple analysis. 
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2·1·1. Continuous Frequency Distribution. If we deal with a continuous 
variable, it is not possible to arrange the data in the class intervals of above type. 
Let us consider the distribution of age in years. If class intervals are 15-19, 
20-24 then the persons with ages between 19 and 20 years are not taken into 
consideration. In such a case we form the class intervals as shown below. 

Age in years 
Below 5 

5 or more but less than 10 
10 or more but less than 15 
15 or more but less than 20 
20 or more but less than 25 
and soon. 

Here all the persons with ~y fraction of age are included in one group or the 
other. For practical purpose we re-writethe above clasSes as 

0-5 
5-10 

10-15 
15-20 
20-25 

This form of frequency distribution is known as continuousj:-equency distribu­
tion. 

It should be clearly understood that in. the above classes, the upper limits of 
each class are excluded from the respective classes. Such classes in which the upper 
limits are excluded from the respective classes and are included in Ihe immediate 
next class are known as 'exclusive classes' and Ihe classification is termed as 
'exclusive type classi/icadon'. 

2·2. Graphic RepreseDtatioD of a FrequeDty DistributioD. It is often useful 
to represent a frequency distribution by means of a diagram which makes the 
unwieldy data intelligible and conveys to the eye the general run of the observa­
tions. Diagrammatic representation also facilitates the cOmparison of two or more 
frequency distributions. We consider below some important types of graphic 
representation. 

2·2·1. H~iogram. In drawing the histogram of a given continuous frequency 
distribution we flCSt mark off along the x-axis all the class interval~ on a suitable 
scale. On each class interval erect rectangles with ~eights proponi~ to the 
frequency of the corresponding class interval so that the area of the rectangle is 
prq>ortional to th~ frequency of the class. If. however, the classes are of Wlequal 
width then die height of the rectangle wili be proponional to the ratio of the 
frequencies to the width of the classes. 7be diagram of continuous rectaDgleS so 
obtained is called histrogram. 
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Remarks. 1. To draw the histogram for an ungrouped frequency distribution 
of a variable we shall have to assume that the frequency correspon~ing to ~e variate 
value x is spread. over the interval x - hl2 to x + hl2, where h IS the Jump from 
one value to the next. 

2. If the grouped' frequency distribution is not continuous, fIrst it is to be 
converted into continuous disiribution and then the histrogam is drawn. 

3. Although the height of each rectangle is proportional to the frequency of 
the corresponding class, the height of a fraction of the rectangle is not proportional 
to the frequency of the correspOnding fraction of the class, so that histogram cannot 
be directly used to read frequency over a fraction of a class interval. 

4. The histogram of the distribution of marks of250 students in Table 3 (page 
2·2) is obtained as follows. 

Since the grouped frequency distribution is not continuous, we frrst convert it 
into a continuous distribution as follows: HISTOGRAM FOR FREQ. DISTRIBUTION 

Maries 
14·~19·5 
19·5-24·5 
24·5-29·5 
29·~34·5 
34·5-39·5 
39·5r44·5 
44·5-49·5 
49·5-54·5 
54·5-59·5 
59·~·5 
64·~9·5 

No.ofStudmls 
9 

n 
10 
44 
45 
54 
37 
26 
8 
5 
1 

56 

III 40 . 
LLI 

~ 32 
LLI 
:;:, 24 
~ 
1&.1 e: 16 

8:' 

O~L-~~±-±-~~~~~~~_ 
.nw:'I11,!,":''':'w:' 
;!~~~~~:J 

MARKS 
Remark. The upper and lower class limits of the new aclusive type classes 

are known as class boundaries. 
If d is the gap between the upper limit of any class and the lower limit of the 

Succeeding class, the class bOundaries for any class are then given by : 

Upper class boundary = Upper class limit + ~ 

Lower class boundary = Lower class limit - ~ 

2·2·2. Frequency Polygon. For an ungrouped distribution, the frequency 
polygon is obtai~ by,plotting points with abscissa as.the variate,valu¢s and the 
ordinate as the correspon~ng frequencies and joining the plotted points by means 
of straight lines. For a gtVuped frequency distribution, the abscissa'of points are 
mid-values of the class intervals. For eqUal class intervals th~ f~uel)cy polygon 
can be obtained by joining the middle Points of the upper sides of tJle adjacent 
rectangles of the histogram by m~s of straight lines. If the class intervals are of 
small width the polygon can be approximated by a smooth curve. The frequency 
curve can be obtained by drawing a smooth freehand curve through the vertices of 
the fre<;uency polygon. 

prakash
Rectangle
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2·3. Averages or Measures of Central Tendency or Measures of Location. 
According to Professor Bowley. averages are "statistical constants which enable 
us to comprehend in a· single effort the significance of the whole." They give.us 
an idea about the concentration of the values in the central part of the distribution. 
Plainly speaking. ap ,;:lver:age of a statistical series is the r.-wue of the variable Which 
is representative of the entire distribution. The following are the five measures of 
central tendency that are in common use: 

(i) Arithmetic Mean.or $.imp/y Mean, (ii) Media,!, 
(iii) Mode, (iv) Geometric Mean, and (v) Harmonic Mean. 

2·4. Requisites lor'an Ideal Measure ol'Central Tendency. According to 
Professor Yule •. the following are the characteristics to be satisfied by-an ideal 
measure of central tendency : 

.(i) It should be rigidly dermed. 
(ii) It should be readily comprel)ensible and easy to calculate. 
(iii) It shoul~ be based on all the observations. 
(iv) It should be suitable for further mathematical treatment. By this we mean 

that if we are given the averages and sizes of a nwnber of series. we should be.able 
to calculate the average of the composite series obtained on combining the given 
series. 

(v) It should be affected as little as possible by fluctuations of sampling. 
In addition to t,he above criteria. we m~y add the following (which is not due 

to Prof.Yule) : 
(vi) It should not be affected much by extreme values. 
2·S. Arithmetic Mean. Arithmetic mean of a set of observastions is their sum 

divided by the number of observations. e.g •• the arithmetic mean x of n observa­
tions Xl • Xl ••••• X. is given by 

1 1 II 

X = - ( Xl + Xl + '" + x,. ) = - 1:' Xi 
n n i= 1 

In case offrequencydistribution.x; If;. i = 1.2 •...• n. where/; is the freq~encyof 
the variable Xi ; 

x = h Xl + h Xl + •.. + f,. x,. 
h+ h+ ... /. 

II 

1:f;.x; 
; = 1 ---

II 

1:f; 
;= 1 

1 II [" ] N· 1:f;Xi. 1:f;=N 
{= l' i = 1 

... (2·1) 

--
In case of grouped or continuous frequency distributioo. X is taken as the mid. value 
of the corresponding class. 

Remark. The symbol 1: is the leUer capital sigma of the Greek alphabet and 
is used in mathematics to denote the sum of values. 
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Example 2·1. (a) Find the aritlunetic mean of th~ following frequency dis-
tribution: 

x: 1 2 3 4 5 6 7 
f: 5 9 12 17 14 10 6 

(b) Calculate the arithmetic mean of the ",arks.from thefollowing table: 
Marks : 0-10 10-20 20-30 30-40 40-50 50-60 

No. of students : 12 18 27 20 17 6 
Solution .. (a) 

x f fx 

1 5 5 
2 9 18 
3 12 36 
4 17 68 
5 14 70 
6 10 60 
7 6 42 

73 299 

1 299 .. x= - r. [X=f 73 =; 4·09 N 
(b) 

Marks No. of students Mid - paint fx 
(f) (x) 

~1O 12 5 .60 
1~20 18 15 270 
2~30 27 25 675· 
3~0 20 35 700 
4~50 17 45 765 
50-60 6 55 330 
Total 100 2,800 

Arithmetic mean or x= ! r. fx= _1_ x 2800= 28 
N 100' 

It may be noted that if the values of x or (and) f are large, the calculation of 
mean by formula (2·1) is q9ite timtKonsumiJig and tediOus. The arithmetic is 
reduced to a great extent, by taking the ~eviations of the given values from any 
arbitrary point 'A', as explained below. 

Let dj = Xj - A , then .j;,di = j; (Xi - A) =. j; X,4'- At ) 
Summing both sides over i from 1 to n, we get 

" " " " r. J'.d·= r. ~x·- A r. ~. = r. J'.XI- A .N· Jj I )1 , ~,Ji Ji 
i=1 ~=1 ;=1 -'j=1 
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1 n 1''11 
~ N r.fidi= N r.fiXi- .4= x- A, 

i= 1 i= 1 

where x is the arithmetic mean of the distribution. 

~= A+ 1. i ftdi 
N i= 1 

... (2·2) 

This fonnuIa is much more convenient to apply than formula (2·1). 
Any number can serve the purpose of arbitrary point 'A' but. usually, the 

value of x corresponding to the middJe part of the distribution will be much more 
convenient. 

In case of grouped- or continuous frequency distribution, the arithmetic is 
reduced to a still greater extent by taking 

Xi - A 
di= -h-' 

where A is an arbitrary point and h is the common magnitude of dass interval. In 
this case, we have 

hdi=xi-A, 
and proceeding exactly similarly as above, we get 

h n 
x= A+ N r.. fidi ... (2·3) 

i= 1 

Example 2·2. Calculate the meanfor thehllowingfrequency distribution. 
Class-interval: 0-8 8-16 1~24 24-32 32~O 40-48 
Frequency 8 7 16 24 15 7 
Solution. 

Class-i1Jlerval mid-value Frequency d=(x-A)lh fd 
(x) (f) 

0-8 4 8 -3 -24 
8-16 12 7 ..:2 -14 

16-24 20 16 -I, -16 
24-32 28 24 0 0 
32-40 36 1'5 1 15 
40-48 44 7 2 14 

77 -2) 

tIere we take A = 28 and h ='8. 

.. x = A + h ~f d = 28 + 8 x \~. 25) = 28 - ~~ = 25.404 

2·5·1. Properties or Arithmetic Mean 
Property 1. Algebraic suw of the deviations of a set of values from 

their arithmetic mean is zero. If Xi It, i = 1, 2, ... , n is the frequency distribu­
tion, then 
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n 
r f; (Xi - X) = 0, X being the mean of distribution. 
i-I 

Proof. r f; (Xi - X) = r f; Xi - X r fi = r fi Xi - X • N 

Also 

Hence 

r f,Xi 

X= _,_- ~ r f;Xi= N X' 
N 

n 

~ Ii (Xi -'- X) = N . X - X . N = 0 
i- I 

2·9 

I'ropel"ty 2. rhe sum of the squares of the deviations of a set of values is 
minimum when taken about mean. 

I'roof. For the frequency distribution Xi I Ii, i = '1,2, ... , n, let 

" z = r Ii (Xi - A )~ , 
i-I 

be the sum of the squares orthe deviations of given values from any arbitrary point 
'A '. We have to prove that Z is miitimuiil when A = X. 

Applying the principle. of maxima and minima from 'differential calculus, Z 
will be minimum for variations in A if 

Now 

~=o aA 
iiz 

and --, > 0 aA-
az aA = - 2 ~ f; ( Xi - A ) = 0 

1 

~ r f; ( Xi - A ) = 0 
1 

r Ii Xi - A r f; = 0 or A = r Ii Xi = X 
N 

. ~Z . 
Agalll -, = - 2 r f, (- 1) = 2 r f; = 2N> 0 

aA- i i . . 

Hence Z is minimum at the point A = x. This establishes the result. 
I'roperty 3. (Mean of the composite series). If Xi, (i = 1, 2, ... , k) ar(! 

the means of k-component series of sizes ni. ( i = 1, 2, ... , k) respectively, then the 
mean X of thi? composite series opt(lin~d qn combining the c~mponent series '.5 

given. by the formula: 

.'roof. Let XI I , XI~ , •• _\:I~I be nl luembers of the first serits- ; X:i, X~~ • •••• 

X2n2 be ~2 members of the second series, Xli , Xt~ , ••• , x.~. be nk members of the 
kth series. Then, by def., 
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._ 1 
XI - - (xu + Xu + .•• + Xlftl ) 

nl 

~- ..!..(XlI+ X'22+ ... + X2n2) 
n2 

Xk Y ..!.. (Xkl + Xk2 + ... + Xbt.) 
nk 

The mea n x of composite series of sjze nl + n2 + ... + nk is given -by 
_ (xu + Xl2 + '" + Xlftl) + (X21 + X22 + ... + X2ft2) + ... + (X;I + Xk2 + ... + Xbtt) 
X= 

= 
nl XI + "2X2 + ... + nkxk 

"I + n2 + ." nk 

Thus, x = l: n; X; / (l:n;) 

(From (*)} 

Example 2·3. Tile average salary of male employees in a fum was Rs.520 
qnd tllal off~males was Rs.420. The mean salary of a/l tile employees was Rs.500. 
Find tile percentage of male ,and femdle employees. 

Solution. Let nl and n2 ~enote ~spe~tively the nu~ber o~ plale and female 
employees in the concern and XI and X2 denote respectively their average salary 
(in rupees). Let X denote the avarage salary of all the workers in the firm. 

We are giv,en that: 
XI = 520, X2 = 420 and x = 500 

Also we know 

nl + n'2 
~ 500 (nl + n2) = 520 nl + 420'n2 
~ (520 - 5(0) nt = (500 - 420)"2 
::;. 20 nl = 80 n2 

nl 4 
~ -=-

,n2 .1 

Hence the percentage of male employees in the~fiml 

= _4_ )( 100.. 80 
4+1 

and percentage of female employees in the firm 

= _1_ )( 100 = 20 
4+1 

2·5·2. Merits and Demerits of Arithmetic. Mean 
Merits. (i) It is rigidly defined. 
(ii) It is easy to understand and easy to' calculate. 

(iii) It is based upon all the observations. 
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(iv) It is amenable to algebraic treatment. The mean of the composite series 
in terms of the means and sizes of the component series is given by 

k k 

x= 1: niX;! (1: nil 
i= I 

(v) Of all the averages, arithmetic mean is affected least by fluctuations of 
samp~ng. This property is sometiwes described by saying that ari\hmetic mean is, 
a stable averdge. 

Thus, we see that arithmetic mean satisfies all the properties laid down by Prof. 
Yule for an ideal average. 

Demerits. (i) IL cannot be determined by inspection nor it can be located 
graphically. 

(ii) Arithmetic mean cannot be used if we are dealing with qualitative charac­
teristics which cannot be measured quantitively; such as, intelligence, honesty, 
beauty, etc. In such cases median (discussed later) is the only average to be used. 

(iii) Arithmetic mean cannot be obtained if a single observation is missing or 
lost or is illegible unless we drop it out and compute the arithmetic mean of the 
remaining values. , 

(iv) Arithmetic mean is affected very much by extreme values. In case of 
extreme items, arithmetic mean gives a distorted picture of the distribution and no 
longer remains representative of the distribution. 

(v) Arithmetic mean may lead to wrong conclusions if the details of the ~ql 
from which it is computed are not given. ~t us consider the following J:Ilarks 
obtained by two students A and B in three tests, viz., terminal test, half-yearly 
examination and annual examination respectively. 

Marks in : ~ I Tes( 1/ Test 11/ Test 
A 50% 60% 70% 
B 70% 60% 50% 

Average marks 
60% 
60% 

Thus average marks obtained by each of the two students at the end of the year 
are 60%. If we are given the average marks alone we conclude that the level of 
intelligence of both the students at the end of the year is same. This is a fallacious 
conclusion since we find from the data that student A has improved consistently 
while student B has deteriorated consistently. 

(vi) Arithmetic mean cannot 'be calculated if the extreme class is open, e.g., 
below IOor above90.Morever, even if a single observation is missing mean cannot 
be calculated. 

(vii) In extremely asymmertrical (skewed) distribution, usually arithmetic 
mean is not a suitable measure of location. 

2·5·3. Weighted Mean. In calculating arithmetic' mean we suppose that all 
the items in the distribution have equal importance. But in practice this may not 
be so. If some items in a distribution are more important than others, then this 
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point must be borne in mind, in order that average computed is representative of 
the distribution. In such cases, proper weightage is to be given to various items 
- the weights attached to each item being proportional to the importance of the 
item in the distribution. For example, if we want to have an idea of the change 
in cost of living of a certain group of people, then the simple mean of the prices 
of the commodities consumed by them will not do, since all the commodities are 
not equally important, e.g., wheat, rice and pulses are more important than 
cigarettes, tea, confectionery, etc. 

Let IV; be the weight attached to the item X;. i = I, 2, ... , 11. Then we define: 

Weighted arithmetic mean or weighted mean = L W; X; I L W; ... (2·5) 
; ; 

It may be observed that the formula for weighted mean is the same as tlie 
I'ormula for simple mean with f;, (i = I, 2, ... , II), tile freqllellcies replaced by 
II';, (i = I, 2, ... , II), the weights. 

Weighted mean gives the result equal to the simple mean if the weights 
assigned to each of the variate values arc equal. It results in higher value than the 
simple mean if snuiller weights arc given to smaller items and larger weights to 
larger items. If the weights attached to larger items are smaller and those attached 
to smaller items arc larger, then the weighted mean results in smaller value than 
the simple mean. 

Example 2·4. Filld the simple alld weighted arithmetic meall of the first II 
l/atllrailllll11bers, the weights being the correspollding Illimbers. 

Solution. The first natural numbers arc I, 2 

,3, ... ,11. 

We know that 

1 +2+3+ ... +Il 

Simple A.M. is 

X=LX=I+2+3+ 
11 11 

Weighted A.M. is 

11 (11 + I) 
2 

II (II + 1) (211 + I) 
6 

+11 11+1 
=-2-

X . = L w X = 12 + 22 + ... + n2 

1\ LW 1+2+ ... +11 

= " (II + I) (2" + I) 2 
6 . Il (11+ 1) 

x 
I 
2 
3 

II 

w 

I 

2 

3 

II 

wX 
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2.6. Median. Median of Ii 4fstribution is the value of the variable which 
divides it into two equal pans. Itlis the v'a1ue w~ich exceeds and is exceeded by 
the same number of observations, i.e., it ,is the value such that the nUl1lber of 
observations above it is equal to the nomber of observations below it The median 
is thus a positional average. 

In case of ungrouped data, if the rumber of observations is odd then median 
is the middle value after the values haye been arranged in ascending or descending 
order of magnitude. In case of even number of observations, there are two middle 
terms and median is obtained by taki~g the arithmetic mean of the middle tenns. 
For example, the median of the valueh5, 20,15,35,18, i.e., 15, 18, 20, 25:~5 is 
20 and the median of 8, 20, 50, 25, 15, 30, i.e., of 8, 15, 20, 25, 30, 50' is 
! ( 20 -t ~5 ) = 22·5 . 
2 

Remark. In case of even number of observations, in fact any value lying 
between the two middle values can be taken as m~ian but «onventionally we take 
it to be the mean of the middle tenns. 

In case of discrete frequency distribution median is obtained by considering 
the cumulative freqoencies. The steps for calculating median are ~iven below: 

(i) Find NI2, wheteN = t fi. 

(ii) See the (less than) cumulative frequency (cf.) just' greater thail N12. 
(iii) The corresponding value of x is median. 
Example 2·5'. Obtain the median/or the/ollowing/requency distribution: 
x: 1 2 3 4 5 6 7 8 9 
/ : 8 10 11 16 20 -25 15 9 6 
Solution. 

x / c.f 
i ' 8 8 
2 10 18 
3 11 29 
4 16 45 
5 20 65/ 
6 25 90' 
7 15 lOS 
S 9 114 
9 6 120 

120 

Hence N = 120 => NI2 = 60 
Cumulative frequency (cf.) just greater than Nn, is 65 and the value of x 

corresponding to 65 is 5. Therefore, median is 5. ' 
In the case of continuous frequency distribution, the class corresponding to the 

cf. just greater than NI2 is called the median class and.the value of median is 
obtained by the following fonnula : . 
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Median::: 1+ 7 (~ - c ) ... (2·6) 

where I -is the lower. limit of the median class, 
/ is the frequency of the median class, 
h is the magnitude of the median class, 

'c' is the cf. of the class preceding the median class, 
andN= 1:./. 

Derivation or the Median Formula (2·6). Let us consider the following 
continuous frequency distribution, ( XI < Xl < ... < x. + I ) : 

Class interval: XI - Xl, Xl - X3, •••••••• Xi - Xl + I, •••••••• x.. - x.. + I 

Frequency : fi /1 fi /. 
The cumulaltive frequency distribution is givC?" by : 
Class interval: XI - Xl, Xl - X3, •••••••• x.. - Xi + I, •••••••• x.. - x.. + I 

Frequency: .FI Fl........ Fi F. 
where Fi = fi + fz + ...... + f;. The class x.. - Xl + I is the median class if and only 
if F1- I < NI2 S Fl. 

Now, if we assume that the variate values are unifonnly distributed over the 
median-class which implies that the ogive 
is a straight line in the median-class, tl!en 
we get from the Fig. 1, 

i.e. 

ar 

RS· AC 
tancl»=-=-

BS BC 
RT-TS _ AQ-CQ 

BS - BC 
RT-BP _ AQ-BP 

BS - PQ 

NI2-Fl_1 Fl-F1 - I 

or BS = 'PQ 

B ~~-H---C...t 

Fk-1 

_h 0 P Q 
-h ~h---~~ 

T 

where fi is the frequency and h the magnitude of the median class. 

. • BS = 7. (~ - Fl- I ) 

Hence 
Median= OT = OP + PT = OP + BS 

= 1+ 7. ( ~ - F1- I ) 

which is the required fonnula. 
Remark. 100 median formula (2·6) can be used only for continuous classes 

without any gaps, i.e., for' exclusive type' classification. If we are given a frequency 
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distribution in which classes are of 'in.elusive type' with gaps, then it must be 
converted into a continuous 'exclusive type' frequency distribution without any 
gaps before applying (2·6). This will affect the value of I in (2·6). As an 
illustration see Example 2·7. 

Example 2·6. Find the median wage of the following distribution: 
Wages (in Rs.) : 20-30 30-40 40-50 50--60 60-70 

No. of labour~rs . : 3 5 20 10 5 
[Gorakhpur Univ. B. Sc. 1989] 

Solution. 
Wages (in Rs.) 

20-30 
30-40 
40-50 
50--60 
60-70 

No. of labourers 
3 
5 

20 
10 
-5 

cf. 
3 
8 

28 
38 
43 

HereN/2= 43/2= 21·5 . Cumulative frequency just greater than 21·5 is 28 
and the corresponding class is 40-50. Thus median class is 40-50 .. Hence using 
(2·6), we get 

Median = 40+ ~~(21.5- 8)= 40+ 6·75=,46·75 

Thus median wage is Rs. 46·75. 
Example 2·7. In afactory employing 3,000 persons, 5 per cent earn less than 

Rs. 3 per hour, 580 earnfro"-, Rs. 3·01 to Rs. 4·50 per hour, 30 percent earn from 
Rs.4·51 toRs. 6·00per hour, 500 earnfromRs. 6·01 toRs. 7·50per hour, 20 percent 
earnfrom Rs. 7·51 to Rs. 9·00 per hour, and the rest earn Rs. 9·01 or more per 
hour. What is the median wage? [Utkal Univ. B.Sc.1992] 

Solution. The' given infonnation can be expressed in tabular fonn as follows. 

CALCULATIONS FoR MEDIAN. WAGE 

Earnings Percentage No. of Less than Class 
(in Rs.) of workers -workers (f) c·f boundaries 

leIS than 3 5% 
5 

- x 3000 = ISO 150 Below 3·005 
-100 

3·01-1·50 580 73() 3·995-1-505 

4·51~00 30~ 1Q. x 3000 = 900 
100 

1630 4,505~005 

6-01-7·50 500 2130 6-005-7·505 

7·51--9-00 20% 1Q.. x 3000 = 600 
100 

2730. 7·505--9·005 

9-01 and above 3000 - 2730 = 270 3000=N 9·005 and above 
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N 12 = 1500. 1 ne c f. just greater than 1500 is 1630. The corresponding class 
4· 51-6·00, whOse class boundaries are 4·505-6·005, is the median class. Using the 
median formula, we get: 

Median = 1+ 7 ( ~ - C }= 4·505 + ~~ (1500,.., 730) 

= 4·505 + 1·283"" 5·79 
Hence median wage is Rs. 5·79. 
Example 2·8. An incomplete/requency distribution is given as/ollows' 

Variable Frequency Variable Frequency 
1~20 12 50-60 ? 
2~30 30 ~70 25 
30-40 ? 70-80 18 
4~50 Total 229 

Given that the median v{flue is 46, determine the missingfrequencies using the 
median/ormula. [Delhi Univ. B. Sc., Oct. 1992] 

SolutiOn. Let the frequency of the class 30---40 be /1 and that of 50-60 
bef,.. 

1Mn fi-+ b= 229 - (12 + 30 + 65 + 25 + 18)= 79. 
Since median is given to be 46, the c~ 40-50 is the median class. 
Hence using median formula (2·6), y!e get 

46=40+ 114·5- (~;+aO+fi) x 10 

46 40 - 72.5-fi 10 6- 12·5 -fi 
- - ~ x or - 6:5 

II =12·5- 39= 33·5 .. 34 

11==,79-34=45 

2·6·1. Merits,and Demerits of MediaD 
Merits. (i) It is rigidly defmed. 

[Since frequency is never fractional] 
[Since!1 + b = 79 ~ 

(ii) It is easily understood and is easy to calculate. In some cases it can be 
located merely by inspection. 

(iii) It is not at all affected by extreme Yalues. 
(iv) It can be calculated for distributions with open-end classes. 
Demerits. (i) In case of even number of observations median cannot be 

determined exactly. We ,nerely esu,JIlate it by taking the mean of two middle terms. 
(ii) It is not based on all the observations. For example, the median of 10, 25, 

50,60 and' 65 is 50. We can rq>tace the observations 10 and 2S by any two values 
which are smaller than 50 and lheobservations 60 and 65 by any two valueS gre8ter 
than 50 without affecting the value of median. This property is sometimes described 
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by saying that median is insensitive. 
(iii) It is not amenable to algebraic treatment. 
(iv) As compared with mean, it is affected much by fluctuations of sampling. 
Uses. (i) Median is ~ only average to be used while dealing with qualitative 

data which cannot be measured quantitatively but still can be arranged in ascending 
or descending order of magnitude, e.g., to fmd the average iI}telligence or average 
honesty among a group of people. 

(ii) It is 10 be·used for determining the typical value in problems concerning 
wages, distribution of wealth, etc. 

2·7. Mode. Let us cosider the followi~g statements: 
(i) The average height of an Indian (male) is 5'-6". 
(ii) The average size of tile shoes sold in a shop is 7. 
(iii) An average student in a hostel spends Rs.l50 p.m. 

In all the above cases, the average referred to is mode. Mode is the value which 
occurs most frequently in a set of observastions and around which the otller items 
of the set clustez densely. Iq other words, mode is the value of the variable which 
is predominant in the series. Thtis in the case of discrete frequency distribution 
mode is the value oh corresponding 10 maximum frequency. For e.xampl~, in the 
following frequency distribution: 

oX': I 2 3 4 5 6 7 8 
f : 4 9 16 25 22 15 7 3 

the value of oX corresponding 10 the maximum frequency, viz., 25 is 4. Hence mode~ 
is 4. 

But in anyone (or-more) of the following cases : 
(i) if the maximum frequency is repeated, 
(ii) if the maximum frequency occurs in the very beginning or at the end of 

the distribution, and ' 
(iii) if there are irregulariti~ in the distribution, 

the value of mode is detennined by the metfwd of grouping. which is illustrated 
below by an example. 

Example 2·9. Find the mode of the following frequency distribution: 
Size ( oX) : 1 2 3 4 5 6 7 8 9 10 II 12 

Frequency (f-): 3 8 15 23 35 40 32 28 20 45 14 6 
Solution. Here we see that the distribution is not regular since the frequencies 

are increasing steadily up 10 40 and men decrease but the ~uency 45 _after 20 
does not seem 10 be consistent with the distribution. Here we cannot $8y,that since 
maximum frequency is 45, mode is 10. Here we shall locate mode by the method 
of grouping as explained below: 

The frequencies in column (i) are the original frequencies. Column (ii) is 
obtained by combining the frequencies two by two. If we leave the fust freqUency 
and combine the remaining frequencies two by two we get column (iii). Combining 
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Size Frequency ~ 
(x) (i) (ii) (iii) (ivi (v) (vi) 

." 
1 3 } 11 } } 2 8 } 26 } 3 15 } 

23 
46 73 . 

4 23 38 
J } 5 35 } 

58 98 } } 6 40 7S } 72 107 100 
7 32 } } 8 28 60 } 80 } 9 20 } 

48 
93 } 10 45 65 } } 

79 
11 14 } 

59 65. 
12 6 20 

-the frequencies two by two after leaving the flfSt two frequencies results in a 
repetition of column (U). Hence. we proceed to combine the frequencies three by 
three. thus getting column (;v). The combination of frequencies three by three after 
leaving the flfSt frequency results in column (v) and after leaving the flfSt two 
fr~quencies results in column (vi). ' 

The maximum frequency in each column is given in b1ack type. To fmd mode 
we form the following table: 

Column Number 
(1) 

, (;) 

(ii) 
(iii) 
(iv) 
(v) 
(vi) 

ANAL Y~IS TABLE 

Value or combinatiOn of 
Maximur.a Frequency . values 0/ x giving max. 

(2) frequency in (2) 
(3) 

45 10 
75 5.6 
72 ............................... f>. '7 
98 4.5.6. 

107 5.6.7 
100 6.7.8 

On examIning the values in column (3) above. we find that the value 6 is 
repeated..ahe maximum number of times and hence the value of mode is 6 and not 
10 which is an irregular item. 

In case of continuous frequency distribution. mode is given by the formula : 

Mode = 1+ h(fl - /o} = ," + hift ~ /o} (21) 
(Ii - /o) - (/2 - fi) 1ft -/0 -/2 ... . 
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here I is the lower limit, h the magnitude and/l the frequency of the modal class, 
fo and /2 are the frequencies of the cJasses preceding and succeeding the modal 
class respectively. 

Derivation of the Mod~ Formula (2·7). Let us consider the continuous 
frequency disttibution : 

Class: XI- X2, X2-X" •• , ••• , XI-X4+1, '" .T. , X~ -XUl 
r 

Frequency: It /1 It _ f,. . 
If It is the maximum of all the frequencies, then the modal class is 

(x.- X.t+ 1). 

Let us further consider a portion of the histogram, namely, the rectangles 
erected on the modal class and the two adjacent classes. The mode is the value of 
x for which the frequency curve has a maxima Let the modal point be Q. 

l 

, , 

fico' 

0 P Q 

~ xko' Xk 
l -, 

From the figure, we have 

and 

tane= W = NC 
LM MN 

tan.= !M = MN 
AL NB 

\ , 
N\ . 
c .-, 

f k+1 fk+2 

R 

.2:k+1 %k-+2 

:= ~.= ~= ~:~= :c. 
LM PD- AP = LN-LM BR- CR 

i.e., 

Or ~ - It - fi -1 where' h' is the magnitude of the 
h-LM- fi- fi+l • 

modal~lass. Thus solving for LM • we get 
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LM= h(f.- /.-1) = h(fi-fi-I) 
(fi - fi+d + (fi - fi-I) 2fi-/.-1 - fi+1 

Hence Mode = OQ = OP + PQ = OP + LM 
=1+ hlfi-fi-I) 

2fi- fi-I - /"+1 
EXample 2·10. Find the mode/or the following distribution: 

Class - interval: 0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80 
Frequency 5 8 7 12 28 20 10 10 

Solution. Here maximum frequency is 28. Thus the class 40-50 is the modal 
class. Using (2·7), the value of mode is given.by 

10(28-12) 
Mode :: 40 + ( 2 x 28 _ 12 _ 20) = 40 + 6·666 = 46·67 (approx.) 

Example 2·11. The Median and Mode 0/ the following wage distribution are 
known to be Rs. 33·50 and Rs. 34 respectively. Find the val~s 0//3 ,}4 and /s . 

Wages: 0-10 10-20 20-30 30-40 40-50 
(in Rs.) 
Frequency: 

Wages: 
Frequency: 

4 

50-60 
6 

16 
60-70 

4 
Total 
230 

Solution. I 

/s 

[Gujarat Univ. B.Sc., 1991] 

CALCULATIONS FOR MODE AND MEDIAN 
Wages Frequency Less than 
(in Rs.) (j) cl. 
0--10 4 4 

10--20 16 20 
20--30 f, 20+/3 
30-40 /4 20+/3+/4 
40--50 f, 20+f,+f,,+/s 
50--60 6 26 +/3 +/4 +/s 
00-70 4 30 +/,+}4+/S 
Total 230= 30 + f,+ /4+ /s .-

From the above table, we get 
I./:: 30+ f, + /4+/s = 2,30 

~ h +fi +/s ='230-30= 200 ... (i) 

Since median is 33·5, w!>ich lies in the class 30-40,30-40 is the median class. 
Using the median formula, we get 

h (N ) 
Md= 1+ 7lz- C 
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10 . 
33·5= 30+ 14 [115- (20+ /3)] 

33·5- 30 _ 95- 13 
10 - j;-
0·35/.= 95- /3 ~ /3= 95- '0·3514 ... (ii) 

Mode being 34, the modal class is also 30-40. Using mode formula we get: 

34 = 30 + 10 (/. - /3) 
214- 13-1s 

34- 30 _ 14+ 0·35 [.- 95 
10 - j 2,J4 - (200 - 14) 

. _ 1·35[.-95 
04 - 3}4- 200 

1·2.14 - 80 = 1·35/.':" 95 

.14= 95- 80 = ~= 100 
1·35- 1·20 0·15 

Substituting in (ii) we get : 
/3 = 95- 0·35 x 100= 60 

Substituting the values of /3 and}4 in (i) we get: 
Is= 200-/3-/.= 200-60-100= 40 

Hence /3 = 60,/. = 100 and /, = 40. 

[Using (i) and (U) ] 

... (iii) 

Remarks. 1. In case of irregularities in the distribution, or th~ maximum 
frequency being repeated or the maximum frequency occUJTibg in the very begin­
ning or at the end of the distribution, the modal class is determined by the method 
of grouping and the mode is obtained by using (2·7). 

Sometimes mode is estimated from the mean and the median. For a symmetri­
cal distribution, mean, median and mode coincide. If the distribution is moderately 
asymmetrical, the mean, median and mode obey the following empirical relation­
ship (due to Karl Pearson) : 

Mean - Median =! (Mean - Mode) 
3 

~ Mode = 3 Median - 2 Mean •.. (2·8) 

2. If the method of grouping gives the modal class which does not correspood 
to the maximum frequency, i.e., the frequency of modal class is not the maximum 
frequency, then in fiOmesituations we may get, 21t..:. It-I - It+ 1 = O. In such cases, 
the value of mode can be obtained by the formula: . 

Mode- 1+ hif.,- fi-I) 
- lfi-fi-II + IJi-fi+II 
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2·7 ·1. Merits and Demerits or Mode 
Merits. (i) Mode is readily comprehensible and easy to calculate. Like 

median, mode can be located in some cases merely by inspection. 
(ii) Mode is not at all affected by extreme values. 
(iii) Mode can be conveniently located even if the frequency distribution has 

class-intervals of unequal magnitude provided the modal class and the classes 
preceding and succeeding it are of the same magnitude. Open~ild classes also do 
not pose any problem in the location of mode. 

Demerits. (i) Mode is ill-defined. It is not always possible to find a clearly 
defined mode. In SOlD" cases, we may come across distributions with two modes. 
Such distributions are called bi-modal. If a distribution has more than two modes, 
it is said to be multimodal. 

(ii) It is not based upon all the observations. 
(iii) It is not capable of further mathematical ~tment. 
(iv) As compared with mean, mode is affected to a greater extent by fluctua· 

tions of sampling. 
Uses. Mode is the average to be used to find the ideal size, e.g •• in business 

forecasting. in the manufacture of ready-~e garments. shoes. etc. 
2·8. Geometric Mean. Geometric mean of a set of n observations is the 

nth root of their product Thus the geometric mean G/ of n observations 
xi.i=1.2 •...• n is 

G = (.xl. Xl ..... x.)1IJ1 ... (2·9) 

The computation is facilitated by the use of logarithms. Taking log~thm of 
both sides. we get 

" lIlt 
log G = - (log Xl + log Xl + ... + log x .. ) = - 1: log Xi 

n n i= 1 

G =' Iontilog' [! i log Xi]· 
n i= 1 ... (2·90) 

In case of frequency distribution Xi IF. (i = 1. 2 •...• n ) geometric me4ll, G is 
given by 

I It 

'G- [ "h i.]N where N= ~ r.,' - XI·..c1- ...... X.., oW Jj 
i= 1 

Taking logarithms of both sides, we get 
1 

log G = N (/1 log XI + fz log Xl + ... + I .. log x..) 

1 It 

= 1.1 1: f; log Xi 
I." i= 1 

.. :(2·10) 

... (2·100) 
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Thus we see that logarithm of G is the arithmetic mean of the logarithms of 
the given values~ From (2'10a), we get 

- (1 n ) G = Antilog - l: fi log Xi 
N i-I 

... (2·10b) 

In the case of grouped or continuous frequency distribution, X is taken to be 
the value corresponding to the mid-point of the class-intervals. 

Z.g·!. Merits and Demerits of Geometric Mean 
Merits. (i) It is ~gidly defined. 
(U) It is based upon all the-observations. 

(iii) It is suitable f,?r further mathematical treatment. If nt and n2 are the 
sizes, Gt and G2 the g¢ometric means of two series respectively, the geometric 
mean G, of the combined series is given by 

I G nt 10gGt +.n210gG2 
og - . 

nt + n2 ... (2'11) 

Proof. Let Xli (i = 1,2, ... , nt) and X2j (j = 1,2, ... , n2) be nt and n2 

items of two series respectivelyr Then by def., 

I nt 
G ( ) tI", I G 't' I t = Xtt .Xt2 ... Xt"t => og t = - ~ OgXti 

.~t i-I 

. . I n2 
I G2 = (X2t. X22 ... X2N2) tI"2 => log G2 = - l: 

n2 j-l 

The geometric mean G of the combined series is given by 

G = (Xtt. X\2 ... Xt"t . X2t . X22 ... X2N2) t/(", +If,) 

1 [nt n2] 
log G = --- l: log Xli + l: log X2j 

nt + n2 ;._ 1 i -1 

= _1_ [nl log Gt + n2 log G2'] 
nl + n2 

10gX2; 

The result can be easily generalised to more than two series. 

(iv) It is not affected much by fluctuations of sampling. 
(v) It gives comparatively more weight to small items. 

Demerits. (i) Because of its abstract mathematical character, geometric mean 
is not easy to understand and to calculate for a non-mathematics. person. 

(ii) If anyone of the observations is zero, geometric mean becomes zero and 
if anyone of the observations is negati~e, geometric mean becomes imaginary 
regardless of the magnitude of the other items. 

Uses. C-eometric mean is used -
Ci) To fiild 'the rate of populati6il growth and the rate Of interest. 

(ii) In the constructioI! of -index numbers. 
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Example 2·12. Show that in finding the arithmetic mean of a set of readings 
on thermometer it doe .. not matter whether we measure telJlperaturc in Centigrade 
or Fahrenheit, but that in finding the geometric mean it do~ matter which scale 
we use. [Patna Univ. B.Se., 1991] 

Solution. l..etCI , C2 , ••• , Cn be the n readin~ onthe Centigrade thermometer. 
Then their arithmetic mean C is given by: 

- 1 
C = - (CI + Cl + ... + en) 

n 
If F and C be the readings in Fah~el)heit and Centigrade respectively then We 

have the relation: 
F- 32 C 
180= 100 => 

9 
F= 32+ SC, 

Thu~ the Fahrenheit equivalents of C j , C2 , ••• , Cn are 

32 + ~ CI , 32 + ~ C2 , ••• , 32 + ~ Cn , 

respectively. 
Hence the arithmetic mean of the readings in Fahrenheit is 

F = ~ { (32 + ~ CI) + (32 + ~ C2) + ... + (32 + ~ C. ) } 

= ~ { 32n + ~ (CI + Cl + ... + Cn)} 

= 32 + ~ (CI + Cl: '" -t; Cn) 

. 9 
= 32+ SC. 

which is the Fahrenheit equivalent ofC . 

Hence in finding the arithmetic mean of a set of n readings on a thermometer, 
it is immaterial whether we measure temperatcre in Centigrade or Fahrenheit. 

Geometric mean G, of n readin~ in Centigrade is 

G = (CI • C2 ••• Cn )Vn 

Geometric mean GJ, (say), of Fahrenheit equivalents of Clo C2, ••• , Cn is 

GI = {(32+ ~CI)(32+ ~C2) ... (32+ ~Cn )} lin 

which is not equal (0 Fahrenheit equivalent ofG, viz., 

{ ~ (CI • C2 ••• Cn) lin + 32 } 

Hence. in finding the geometric nlean of the n readiugs on,a thermometer, the 
scalc,(Centrigrade or Fahrenheit) is important. 
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Z.,. Harmonic Mean. Hannonic meiln of aJ)umber of observations is the 
reciprocal of the arithmetiC me~n of the: reciprocals o~ the gi:-en values. Thus, 
harmonic mean H, of n observations Xi, r = 1, 2, ... , n IS 

H = _--,1,--_ 
l' n 
- l: (l!x;) 
n i-I 

Incase of frequency distribution X; I/; , (i = 1,2, ... , n), 

1 [n] H= ----, N= l: /; 
1 i: (/;I Xi ') i-I 

~f N i-I 
Z.'·I. Merits and Demerits of Harmonic Mean 

... (2'12) 

... (2'120) 

Merits. Hannonic mean is rigidly defined, based upon all the observations 
and is suitable for funher mathematical treatment. Like geometric mean, it is not 
affected much by fluctuations of sampling. It gives greater importance to small 
items and is useful only when small items have to be given a greater weightage. 

Demerits. Harmonic mean is not easily understood and is diffjcult to compu~. 
Example 2·13. A cyclist pedals from Iris.house·to his college at a speed of 10 

m.p.lr. and backfrom the college to Iris Irouse at 15 m.p.lr. Fi~ tire average spef!d. 
Solution. Let the distance from the house to the college be X mil~. In going 

from house to college, the distance (x miles) is covered in to hauls, '~I;1!le in 

coming from college to house, the distance is covered .in 1~. hours. Thus a totar 

distance of 2x miles is covered in ( to + ts) hours. 

Total distance travelled Hence average speed = ....:....::~--...:...:..:...;.:~...:.....---...:....-:...:~ 
Total time taken 

= (..!... ).)= 12m.p.Ir. 
10 + .15 

2 

.2x 

Remark. 1. In this case. the average speed is g'iven by the hamlonic mean of 
10 and 15 and not by tbe ainhmetic mean. 

Rather, we have the 'following general result: 

If equal distances are covered (travelled) per unit of time wjth speeds equal to 
V .. V2, "', V., say, tben the average speed is given by the harnionic mean of . 
V .. V2, "', V., i.e., 

n n 
Average speed = (1 1 . 1 ) ='-( 1 ) 

V-+Y+'''+v. l: V • I! It 

Proof is left as an exercise to the reader. 

prakash
Rectangle
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Hint. Speed .. Distance 
Time 

Time c 

A S d Total distance travelled 
verage pee '"' Total time taken 

Distance 
Speed 

2. Weighted Harmonic Mean. Instead of tixed (comtant) distance being 
trave"e~ with varying speed, let us now suppose tbat different distances, say, 
S., 51, ... , S., are travelled witb different speeds, say, V., V2, ... , V. respectively. In 
that case, the average speed is given by tbe weigbted harmonic mean oftbe speeds, 
the weights heing tbe corresponding distances tr-welle(l, i.e., 

SI + S, + ." + S. IS Average speed = • = ---

( ~ + ~: + ... + ~: ) I (~ ) 
. Example 2·14. YOII can take a trip which entails travelling 900 km. by train 

llt an aw:rage speed of 60 km. per "ollr, 3000 km. by boat at an average of 25 km. 
p."., 400 km. by plane at 350 km. per IIollr and finally L'i km. by taxi at 25 km. 
per hOllr. Wllat is YOt" average speed for tire entire distance? 

Solution. Since different distances are covered with varying speeds, tbe 
required avcrag~ speed for the entire distance is given by tbe weighted harmonic 
lUcan of the speeds (in km.p.b.), tbe weights being tbe corresponding distances 
covered (in kms.). 

COMPUTATION OF WEIGHTED H. M. 
Speee' Distance 

(km./llr.) (inkm.) lV/X 
. x· lV 

60 900 15·00 
2S 3000 120·00 

3:l() 400 1·43 
2S 15 0·60 

Total 1: W = 4315 .1: (W/X) = 137·03 

Average speed 
IW 

I (WIX) 
4315 

= 137·d3 

'"' 31·489 Ian.p.". 

2·10. Selection of an Average. From tbe preceding discussion it is evident 
that no single average is suitab~e for aU practical purposes. Ea(:b one ortbe average 
has its own merit~ and demerits and' thus its own partic'ular lield ~f importance and 
utility. Wt: cannot use tbe averages indiscriminately. A jUdicious selection· of the 
ave!age depending on the nature of th~ data and the purpose of the enquiry is 
essenlial 'for sound statistical analysis. Since arithmetic mean satisfies all tbe 
properties of an ideal average as laid -down by Prof. Yule, is familiar to a layman 
and furtber bas wide applic;ttions in statistical theory at large, it may be regarded 
as tlie best of all tbe averages. I 

2·11. Partition Values. These arc tbe values wbicb divide tbe series into a 
numocr of equal parts. 
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The three points which divide b'le series into four eqqal parts are called 
quortiles. The farst, second and third points are known as the r:1t'St. second and third 
quartiles respectively. The farst quartile, Q10 is the value which exceed 25% of the 
observations and is exceeded by 75% of the observations. The second quartile, 
Ql, coincides with median. The third quartile, Q3 , is the point which has 75% 
observations before it and 25% observations afref-il. 

1be nine points which divide the series into ten equal parts are called deciles 
whereas percentiles are the ninety-nine points which divide the series into hundred 
equal parts. FQr example, D1, the seventh decile, has 70% observations before it 
and PQ, the forty-seventh percentile, is the point which exceed 47% of the 
observations. The methods of computing the partition values are the same as those 
of locating the median in the case of both discrete and continuous distributions. 

EX8Dlple 1·15. Eight coins were tossed together and the number f:j heads 
resulting was noted. The operation was repeated 256 times and tlae/reqlM!ncies (f) 
that were obtained/or different values o/x. the number ofheads, are shown in lhe 
/ollowing lable. Calculate median. quartiles. 4th decile and 27th precentiJe. 

x: 0 1 2 3 4 5 6 7 8 
/ : 1 9 26 59 72 52 29 7 1 
Solution. 

x: 0 1 2 3 4 "5 6 7 8 
/ : 1 9 26 59 72 52 29 7 1 

cf. : 1 10 36 95 167 219 248 255 256 
Median: HereN/2 = 25612 = 128. Cumulative frequency (cf.fjustgreater 

than 128 is 167. Thus, median = 4. 
Ql : Here N/4 = 64. cf. just greater than 64 is 95. Hence. Ql = 3. 
Q3 : Here 3NI4 = 192 and cf. just greater than 1921s 21,9. Thus Q3 = 5. 

D.: ~~ = 4 x 25,6 = 102·4 and cf. just greater than 102· 4 is 167. Hence 

D.=4. 

P'ZI : ~~ = 27 x 2·56 = 69·12 and cf. just greater than 69·12 is 95. Hence 

P'Zl=3. 
Z·11·1. Graphical Location of the Partition Values. The partition values, 

viz., quartiles, deciles and percentiles, can be conveniently located with the help of 
a curve called the 'cumulative frequency curve' or 'Ogive'. The procedur~ is 
iUustrared below. 

First fonn the cumulative frequency table. Take the class intervals (or the 
variate values) along the x-axis and plot the corresponding cumulative freqIJencies 
aJong the y-axis against the upper limit of the class inrerval (or against the variare 
value in the case of discrete frequency distribution). The curve obtained on joining 
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the points so obtained by means of free hand drawing is called the cumulative 
frequency curve or ogive. The graphicallucation of partition values from .this 
curve is explained below by means of an example. 

Example 2·16. Draw the cumulative frequency curve for the follOWing 
distribution showing the number of marks of 59 students in Statistics. 
Marks-group 0-10 10-20 20-30 30-40 40-50 50-60 60-70 
No. of Students: 4 8 11 15 12 6 3 

Solution. 

Marks-group No. of Students Less than More than 
cf. c/. 

0-10 4 4 59 
10-20 8 12 55 
20-30 11 23 47 
30-40 15 38 36 
40-50 12 50 21 
50-60 6 56 9 
60-70' 3 59 3 

Taking the marks-group along .:t-axis and c/. along ,-axis, we plot the 
cumulative frequencies, l?iz., 4, 12, 23, ... , 59 against the upper limits of the 
correspondingcta.~, viz., 10,20; ... , 70 respectively. The smooth curve obtained 
on joining these points is called ogive or more particularly 'less than' ogive. 

10 

\I) ... 
z .., 
Q 

::J ... 
\I) 

.... 
0 

0 z 

1f we plot the 'more than' cumulative frequencies, viz., 59, 55, ... , 3 against the 
lower lbllits of the cOrresponding classes, viz., 0, 10, ... ; 60 and join the pOints'"by 
'a smooth curve, we get cumulative frequency curVe which is also known as ogive 
or more particularly"more thiln'·ogive. 
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To locate graphi~Uy the value of median, mark' a point corresPQnding to , 
NI2 ~long y-axis. At this point draw a line parallel to x-axis ~eeting the ogive at 
the point. 'A' (say). From 'A' draw a line p,rependicular to x-axis meeting irin 'M' 
(say). Then abscissa of 'M' gives the value of median. 

To locate the values of QI (or Q3), we mark the points along y-axis correspon<;J-
ing toNI4 (or3NI4) and proceedexacdy similarly. 

In the above example, we get from ogive 
Median= 34·33, QI-= 22·50, -and Q3'= 45·21. 
Remarks. 1. The median can also be located as follows: 
From the point of intersection of 'less than' ogive and 'more than' ogive, draw 

perpendicular to OX. The abscissa of the point so obt,ained gives median. 
2. Other partition values, viz., deciles and percentiles, can be simil~ly located 

from 'ogive'. 
EXERCISE 

1. (a) What are grouped and ungrouped frequency distributions? What are 
their uses? What are the consideration~ that one has to bear in mind while forming 
the frequency distribution? 

(b) Explain the method o( constructing Histogram and Frequency Polygon. 
Which" out of these t~o, is better representative of frequencies of m a particular 
group:and (ii) whole group. 

2. What are the principles governing the choice o( : 
(i) Number of class intervals, 
(ii) The length of the class interval, 
(iii) The mid-point of the class interval. 

3. Write short notes on : 
(i) Frequency distribution, 
(ii) Histogram, frequency. polygon and frequency curve, 
(iii) Ogive. 

4. (0) What are the properties of a good average? Examine these properties 
with reference to the Arithmetic Mean, the Geometric Mean and the Harmonic 
Mean, and give an example of situations in which each of them can be the 
appropriate measure for the ave~ge. 

(b) Compare mean, media,n· and mode as measureS of location of a distribu" 
tion. 

(c) The mean is the most common measure of central tendency of ~ data. It 
satisfies 8Imost all the requirements of a good average. The median is also an 
average, but it does not statisfy all the requirements of a good average. However, 
it carries certain merits and hence is useful in particular fields. Critically examine 
both the averages. 

(d) Describe the different measures of central tendency of a frequency distribu­
tion, mentioning their merits and demerits. 



2·30 Fundamentals or Mathimatlcal Statistics 

5. Defme (;) arithmetic mean, (ii) geometric mean and (iii) hannonic mean of 
grouped and ungrouped data. Compare and contrast the merits and demerits of 
them. Show that the geometric mean is capable of funher mathematical treatment. 

6. (a) When is an average a meaningful statistics? What are the requisites of 
a statisfactory average? In this light compare the relative merits and demerits of 
three well-mown averages. 

(b) What are the chief measures of central tendency? Discuss their merits. 
7. Show that (i) Sum of deviations about arithmetic mean is zero. 

(;;) Sum of absolute deviations aboGt median is'least 
(iii) Sum of the squares of deviations about arithmetic mean is least 

8. The following numbers give the weights of 55 sbJdents of a class. Prepare 
a suitable frequency table. 

42 74 40 60 82 115 41 61 75 83 63 
53 110 76 84 50 67 65 78 77 56 95 
68 69 104 80 79 79 54 73 59 81 100 
~ ~ 77 ~ 84 M tl ~ @ m W 
72 ,50' 79 52 103 96 51 86 78 94 71 

(i) Draw the histogram and frequency polygon of the above data. 
(;;) For the above weights, ~ a cumulative frequency table and draw 

the less than ogive. 
9. (a) What are the points toDe borne in mind in the formation of frequency 

table? 
Choosing appropriate class-intervals, fonn a frequency table for the following data: 

lo.2 o.5 \ 5·2 & 1 3·1 6-7 8·9 7·2' 8·9 
5·4 3·6 9·2 &1 7·3 2·0 1·3 &4 8·0 
4·3 4·7 12·4 8·6 13·1 3·2 9·5 7·6 4·0 
5·1 8·1 1-1 11·5 3·1 6-8 7·0 8·2 2·0 
3·1 &5 11-2 12·0 5·1 lo.9 11-2 8·5 2·3 

·3·4 5·2 lo. 7 4·9 &2 
(b) What are the considerationS one has.to bear in mind while fonning a 

frequency disttibuti.on? 
A sam.,Je consists of 34 observations recorded correct to the nearest integer, 

ranging in value from 2ql to 331. lfit-is deCided to use seven classes of width 20 
integers and to begin the first clals at 199·5, find the class limits and class marks 
of the seven classes. 

(c) The class marlcs in a frequency table (ofwbole numbers) are given to be 
5, 10, 15,20, 25, 30~ 35,40,45 and 50. Fmd out the following: 

(i) the ttue classes. 
(ii) the ttue class limits. 
(iii) the ttue upper class limits. 
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10. (a) The following table shows the distribution of the nU,mber of students 
per teacher in 750 colleges :-
Students : 1 4 7 to 13 16 19 22 25 28 
Frequency: 7 46 165 195 189 89 28 19 9 3 

Draw the histogram for the data and superimpose on it the frequency polygon, 
(b) Draw the histogram and "frequency curve for the following data, 

Monthly wages 
in Rs. 10-13 13-15 15-17 17-19 19-21 21-23 23-25 

No. of workers 6 53 85 56 21 16 8 
(c) Draw a histogram for the following data: 

Age (in years) : 2-5 5-11 11-12 12-14 14-15 15-16 
No. of boys: 6 6 2 5 1 3 
11. (a) Three people A, B, C were given the job of rmding the average of 

5000 numbers. Each one did his own simplification. A's method: Divide the sets 
into sets of 1000 each, calculate the average in each set and then calculate the 
average of these averages. B's method: Divide the set into 2,000 and 3,000 
numbers, take average in each set and then take the average of the averages. C's 
method :500 numbers were unities. He averaged all other nwnbers and then added 
one. Are these 'methods correct? 

Ans. Correct, not correct, not correcL 
(b) The total sale (in '000 rupees) of a particular item in a shop, on to 

consecutive days, is reported by a clerk as, 35·00, 29·60, 38·00, 30·00, 4().OO, 41·00, 
42·00,45·00, 3·60, 3·80. Calculate the average. Later it was found that there was 
a nwnber 10·00 in the machine and the reports of 4th to 8th days were 10·00 more 
than the true values and in the last 2 days he put a decimal in the wrong place thus 
for example 3·60 was really 36·0. Calculate the true mean value. 

ADS. 30·S, 32·46. 
12. (a) Given below is the distribution of 140'candidates obtaining marks X 

or higher in it certain examination (all marks are given in whole numbers) : 
X: 10 20 30 40 50 60 70 80 90 100' 

c.f. : 140 133 118 100 75 45 15 9· 2 0 
Calculate the mean, median and mode of the distribution. 

Hint. 
Frequency Class Mid c.f. 

Class (/) b.oundaries value (iess!fJan) 
10-19 140-133 = 7 '9·5-19·5 14,5 7 
20-29 133 -118 = 15 19·5-29"·5 f 24·5 22 
30-39 118 -100= 18 29·5-39·5 34,S 40 
40-49 100-75 = 25 39·5-49·5 44·5 65 
50-59 75-45=30 49·5-59·5 54,S 95 
60-69 45-25=20 59·5-69·5 64·5 115 
70-79 25-9= 16 69·5-79·5 74-5 131 
80-89 9-2= 7 79·5-89·5 84·5 138 
90-99 2-0= 2 89·5--99·5 94·5 140 
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Mean = 54.5 + 10 x (- 53) = 50.714 
140 

Median = 49·5 + 10 ( 140 - 65 J = 51-167 
30 2 

(b) The four parts of a distribution are as follows: 
Part Frequency Mean 

1 50 61 
2 100 W 
3 1M M 

~4 ~ ~ 

Find the mean of the disttibution. (Madurai Univ. B.Se., 1988) 

13. (a) Define a 'weighted mean'. If several sets of observations are combined 
into a single set, show that the mean of the combined set is the weighted mean of 
several sets. 

(bj The weighted geomettic mean of three numbers 229. 275 and 125 is 203 
The weights for the flfSt and second numbers are 2 and 4 respectively. Find the 
we~ght of third. Ans. 3. 

14. Defme the weighted arithmetic l,l1ean of a set of numbers. Show that it is 
unaffeci.ed if all weights are multiplied by some common factor. 

The following table shows some data collected for the regiQlls of a country: 

Region Number of inhabitants Percentage of Average aMual 
(million) literates inco~per 

person (Rs.) 
A 10 52 850 
B 5 68 620 
C 18 39 730 

Obtain the overa1l figures for the three regions taken together. Prove the 
formulae you use. [Calcutta Univ. B.A.(Hons.), 1991] 

15. Draw the Ogives and hence estimate the median. 

Class 0-9 10-19 20-29 30-39 40-49 50-59 60-69 70-79 

Frequency 8 32 142 216 240 206 143 13 

16. The following data relate to the ages of a group of workers in a factory. 

Ages No. of workers Ages No. of workers 
20-25 35 40---45 90 
25-30 45 45-50 74 
30-35 70 50-55 51 
35-40 105 55---(j() 30 

Draw the percentage cumulative curve and fmd from the graph the number of 
workers between the ages 28--48. 
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17. (a) The mean of marks obtained in an examination by a group of 100 
students was found to be 49·96. The mean of the marks obtained in the same 
examination by another group of 200 students was 52·32. Find the mean of the 
marks obtained by both the groups of studel)ts taken together. 

(b) A distribution corlSists of three components with frequencies 300, 200 and 
600 having their means 16,8 and 4 respectively. Find the mean of the combined 
distribution. 

(c) The mean marks got by 300 students in the subject of Statistics are 45. 
The mean of the top 100 of them was found ~o be 70 and the mean of the last 100 
was kDown to be 20. What is the mean of the remaining 100 students? 

(d) The mean weight of 150 students in a certain class is 60 kilograms. The 
mean weight of boys in the class is 70 kilograms and that of the girls is 55 kilograms. 

Find the number of boys and number of girls in the class. 
ADS. (a) 51·53, (b) 8, (c) 45, (d) Boys = 50, Girls = 100. 
18. From the following data, calculate the percentage of workers getting 

wages 
(a) more than Rs. 44, (b) between Rs. 22 and Rs. 58, (c) Find Ql and Q,. 

Wages (Rs.) 0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80 
No.ofworlcers 20 45 85 160 70 55 35 30 

Hint. Assuming that frequencies are uniformly distributed over the entire 
interval, 

(a) Number of persons with wages more than Rs. 44 is 

(50~44 x 70 )+ 55 + 35 + 30= 162 

Hence the percentage of workers getting over Rs. 44 is 

= 162 x 100 = 32-4% 
500 

(~) Percentage of workers getting wages between Rs. 22 Uld Rs. 58 is 

[( 30~22 x 85- )+ 160+ 70+( 58 ~ 50 x 55 ]x 100+500=684% 

19. For the two frequency disttibutions give below the mean calculated from 
the first was 254 and that from the second was 32·5. Find the values of x and y. 

Class Distribution I Distributiu1a II 

10-20 
20-30 
30-40 
40-50 
50-60 

ADS. JC = 3, y = 2 

Frequency Frequency 

20 4 
15 8 
.0 4 
x 2x 
y y 
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20. A number of particular articles has been classified according to their 
weights. After drying for two weeks the same articles have again ·been weighted 
and similarly classified. It is known that the median weight in the frrst weighing 
was 20·83 oz. while in the second weighing it was 17·35 OL. Some frequencies a 
and b in the first weighing and x and y in the second are missing. It is known that 
a = ~ x 'and b = ~ y. Find out the values of the missing frequencies. 

Class Frequencies Class Frequencies 
1 Sf weighing lInd weighing 1 Sf weighing lind weighing 

0-5 a x 15-20 52 50 
5-10 b Y 20-25 75 30 
10-15 11 40 25-30 22 28 

Hint. We have x = 30, y = 2b, 
Nl = Total frequency in 1st weighing = 160 + a + b. 
Nz = Total frequency in 2nd weighing = 148 + x + y = 148 + 3a + 2b. 

Using Median fonnula, we shall get 

20.83 =20+~[ Nl - (63+a+b)] 
• 75 2 

160+a+b 
~ 15 (20·83-20) =--2--(63 +a+b) 

1245= 17- a+b 
2 

a+b=2(17-1245)=9·10 ... 9 ... (.) 
Since a and b, being frequencies are integral valued, a + b is also integral 

valued. Now the median of 2nd weighing gives: 

17.35= 15+ ~[ 148+~a+2b -(40+X+ Y)] 

• 3a+2b 
~ .Ox2·35=74+ 2 -40-30-21-

3o+2b 
~ 2' = 34 - 23·5 = 10·5 

3a+2b=21 

Multiplying (.) by 3, we get 
3a+3b=27 ... ( ••• ) 

Subtracting ( •• ) from ( ••• ), we get b=6. Substituting in (.), we get 
a=9-6=3. 

a=3, b=6; x=3a=9, y=2b= 12. 
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21. From the following ·table showing the wage distribution in a certain 
factory, determine: 

(a) the mean wage, 
(b) the median wage, 
(c) the modal wage, 
(d) the wage limits for the middle 50% of the wage earners, 
(e) the percentages of workers who earned between Rs.75 and Rs.l25. 
if) the percentage who earned more than Rs.l50 per week, and 
(g) the percentage who earned less than Rs.l00 per week., 

- Weekly wages No. of employees Weekly wages No. of employees 
(Rs.) (Rs.) 

-20-40 8 120-140 35 
40-60 12 140-160 18 
60-80 20 160-180 1> 
80-100 30 180-200 5 

100-120 40 

Ans. (a) X = 108·5, (b) Med. = 108·75, (c) Mo = 118·3, (d) 81·25,129·3 
(e) 48, if) 12, (g) 40. 

22. (a) Explain how the ogives are drawn for any frequency distribution. Point 
out the method of finding out the values o( median, mode, quartiles, deciles and 
percentiles graphically. Also, write down the fonnula for the computation of each 
of them for any frequency distribution. 

( b) The following table gives the frequency distribution of marks in a class of 
65 students. 

Marks 
0-4 
4-8 
8-12 
12-14 
Total 

No. of Students 
10 
12 
18 
7 

Marks 
14-18 
18-20 
20-25 

25 andover 

Calculate: (;) Upper and lower quartiles. 
(ii) No. of students who secured marks more than 17. 

No. of students 
5. 
3 
4 
6 

65 

(iii) No. of students who secured marks between 10 and 15. 
(c) The {ollowing table shows the age distribution of heads of families in a 

ct'rtain country dwing the year 1957. Find the median, the third quartile and the 
second decile of the distribution. Check your results by the graphical method. 
Age of head of family . 
years Under 25 25-29 30-34 3544 45-54 55~ 65-74 above 74 

Number 
(million) 2·3 4·1 5·3 10·6 9·7 6·8 

Ans. Md = 45·2 )'IS.; Q, = 57·5 yrs.; Cz = 32·5 yrs. 

4·4 1·8 
Total 45 
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23. The followiflg data represent travel expenses (other than transportation) 
for 7 trips made during November by a salesman for a small fmn : 

Trip Days Expense Expense per day 
(Rs.) (Rs.) 

1 0·5 13·50 27 
2 2·0 12,00 6 
3 3·5 17·50 5 
4 1·0 9·00 9 
5 9·0 27·00 3 
6 0·5 9·00 18 
7 8·5 17·00 i 

Total 25·0 105·00 70 ... 
"'An auditor cnticlsed these expenses as excessive, asserung that the average 

expense per day is Rs. 10 (Rs. 70 divided by 7). The salesman replied that the 
average is only Rs. 4·20 (Rs. 105 divided by 25) and that in any event the median 
is 'the appropriate measure and is only Rs. 3. The auditorrejoined that the arithmetic 
·mean is the appropriate measure, but that the median is Rs. 6. 

You are required to : 
(a) Explain the proper interpretation of each of the four averages mentioned. 
(b) WhiCh average seems appropriate to you? 
24. (a) Define Geometric and Harmonic means and explain their uses in 

statistical analysis. 
You take a trip which entails travelling 900 miles by train at an average speed 

of 60 m.p.h., 300 miles by boat at an average of 25 m.p.h., 400 miles by plane at 
350 m.p.h. and finally 15 miles by taxi at 25 m.p.h. What is your speed for the 
entire distance? 

(b) A train runs 25 miles at a speed of 30 m.p.h., another 50 miles at a speed 
of 40 m.p.h., then due to repairs of the track travels for 6 minutes at a speed of 10 
m.p.h. aJld finally covers the remaining distance of 24 miles at a speed of 24 m.p.h. 
What is the average speed in m.p.h.? 

(c) A man motors from A to B. A large part of the distance is uphill and he 
gets a mileage of only 10 per gallon of gasoline. On the return trip he makes 15 
miles per gallon. Find the harmonic mean of his mileage. Verify the fact that this 
is the'proper average to be used by assuming that the distance f{om A to B is 60 
miles. 

(d) Calculate the average speed of a car running at the rate of 15 km.p.h. during 
the fIrst 30 kms., at 20 km.p.h. during the second 30 kms. and at 25 kmp.h. during 
the third 30 kms. 

25. The following table shows the distribution of 100 families according to 
their expenditure per week. Number ot families corresponding to expenditure 
groups Rs. (10-20) and Rs.(30-40) are wissing from the table. The median and 
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mode are given to be RS.25 and 24 Calculate the missing frequencies and then 
arithmetic mean of the data: . 
Expenditure 0-10 10-20 2Q-30 30-40 40---50 
No.o/families : 14 ? 27 ? 15 

Hint. 

Expenditure No. 01 Families Cumulativefrequencies 

0-10 14 14 
10-20 II 14+/1 
20-30 27 41 +/1 
30-40 /z 41+/l+/z 
40-50 15 56+Ji +/z 

56+Ji +/z - (14 +Ji) 
2. 

., 25=20+ 
27 

x 10 

_ 27-Ji . 
and 24- 20+ 2x 27 -Ji -Iz x 10 

Simplying these equations, we get 
Ji-/z=1 

and 3Ji-2/z=27. 
Ans. 25,24 
26. (a) The numbers 3·2,5·8, 7·9 and 4·5 have frequencies x, (x + 2), (x - 3) 

and (x + 6) ~espectively. If their arithmetic mean is 4·876, find the value of x. 
(b) H M,.z is the geometric mean of N x's amd M,., is the geometric mean of 

Ny's, then the geometric mean M, of the '1N values is given by 
M,z = M,.z M,., • (Nagpur Univ. B.Se., 1990) 

(c) The weighted geomebic mean of the three numbers 229, 275 and 125 is 
203. The weights for the fll"st and the second numbers are 2 and 4 respectively. 
Find the weight of the third. Ans. 3. 

27. The geomebic mean of 10 observations on a certain variable was calcu­
lated as 16·2. It was later discovered that one of the observations was wrongly 
recorded as 12·9; fn fact it was 21·9. Apply appropriate correction and calculate 
the correct geometric mean. 

Hint. Correct value of the geometic mean, G' is given by 

G,=((16.2iOX21.9 Jl/10 = 17.68 
12·9 

28. A variate takes the 'values a, ar, a?, ... , ar"- 1 each with frequency imity. 
If A, G and H are respectively the arithmetic mean, geometric mean and harmonic 
mean, show that '. 
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A=a(I-r'l) G=ar"- I )12 H= all(l-r)r"- lI 

11 (I - r)' , (I - rn) 

Prove that G2 = AH. Prove also that A > G '> H unless r = I, when all the 
three means coincide . 

. _ 1 n _ 1'1+1 _ 1"+2 
29.Ifxl=- I Xj,X2=- I X; and x~=- I x; 

1l;=1 II.j=2 • 11 ;=3 

then show that 

- - 1 - - 1 
(a) X2= xI +-(xn + l-xl),and(b) x~= X2+-(x'I+2-X2) 

Il . 11 

30. A distribution XI> X2, ... , XII with frequencies Il>h ... ,111 transformed 
into the distribution XI> X2, ... , XII with the same corresponding frequencies by 
the relation Xr = ax, + b, w~ere a and b are constants. Show that the mean, 
median and mode of the new distribution are given in terms of those of the first 
distribution by the same transformation. [Kanpur Univ. B.Sc., 1992] 

Use the method indicated above to find the mean of the following 
distribution: X (duration of telephone conversation in seconds) 

49·5, 149·5,249·5, 349·5, 449·5, 549·5, 649·5,749·5, 849·5, 949·5 
I(respective frequency) 

6 28 88 180 247 260 132 48 II 5 

31. If XIV is the weighted mean of x;'s with weights Wi, prove that 

(Allahabad Univ. B.Sc., 1992)-! 

32. Tn a frequency table, the upper boundary of each class interval has a 
constant ratio to the lower boundary. Show that the geometric .mean G may be 
expressed by the formula: 

log G = x" + ~ '2;./; (i - I) , 
where Xii is the logarithm of the mid-value of the first interval and c· is the 
logarith,m of the ratio between upper and lower boundaries. 

[Delhi Univ. B.Sc. (Stat. Hons.), 1990, 1986] 
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33. Find the minimum value of: 

(i) / (x) = (x - 6)2 + (x + 3)2 + (x - 8)2 + (x + 4)2 + (x _ 3)2 

(ii) g (x) = 1 x - 61 + 1 x + 31 + 1 x - 81 + 1 x + 41 + 1 x - 31 . 
.. [Delhi Univ. B.Sc.(Stat. Hons.), 1"1] 

Hint. The sum of squares of deviations is minimum when taken from 
arithmetic mean and the sum of absolute deviations is minimum when taken from 
median. 

34. If A, G and H be the arithmetic mean, geometric mean and harmonic 
mean respectively of two positive numbers a and b, then prove that: 

{i)A ~G~H. 
When does the equality sign hold? 

(ii) G 2 =AH. 
35 Calculate simple and weighted arithmetic averages from the following 

data and comment on them: 
Designation Monthly salary (in Rs.) 

Class I Officers 1,500 
Strength 0/ the cadre 

10 
Class II Officers 800 
Subordinate staff 500 

Clerical staff 250 
Lower staff 100 

20 
70 

100 
150 

Ans. X = Rs. 630, Xw = Rs. 302·86. Latter is more representative. 

36. Treating the number of letters in each word in the follow:ag passage liS 

the variable x, prepare the frequency distribution table and .obtain its mean, 
median, mode. 

"The reliability of data must always be examined before any attempt is made 
to base conclusions upon tltem. This is true of all data, but particularly so of 
numeri~1 data, which do not carry their quality written large on them. It is a waste 
of time to apply the refined theoretical methods of Statistics to data which are 
suspect from the beginning." 

Ans. Mean = 4·565, Median = 4, Mode = 3. 

OBJECTIVE TYPE QUESTIONS 
I. Match the correct parts to make a valid statement: , 

(a) Arithmetic Mean (i) 1+ rt2/(fj + /2)J x i 

(b) Geometric Mean (ii) (XI. X2 ••••• x,,)lln 

(c) i:J:armonicMean (iii) I/X/I/ __ -~-

(d) Median (iv) 1+ N/2; c.f x i 
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(e) Mode 
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( .) I f. - fo . 
VI = 2fl _ fll _ h x I 

II. Which measure of location win be, suitable to COl)lpare: 
(i) heights of students in two classes; 

(ii) size of agricultuml holdings; 
(iii) average sales for various years; 
(iv) intelligence of students; 
(v) per capita income in several countries; 

(vi) sale of shirts with collar size; 16". 1St. IS". 14". 13". IS"; 

'(vii) marks obtained 10.8. 12.4.7. 11. and X (X < 5). 
ADS. (i) Mean. (ii) Mode. (iii) Mean. (iv) Median. (v) Mean. (vi) Mode. 

(vii) Median. 
III. Which of the following are true for all sets of data'? 

(i) Arithmetic Mean ~ median ~ mode. 
(ii) Arithmetic mean ~ median ~ mode. 

(iii) Arithmetic mean = median = mode 
(iv) None of these. 

IV. Which of the foltowing are true in respect of any distribution'? 
(i) The percentile points are in the ascending order. 

(ii) The percentile points are equispaced. 
(iii) The median is the mid-point of the range and the distribution. 
(iv) A unique median value exists for each and every distribution. 
V. Find out the missing figures: 
(a) Mean = ? (3 Median - Mode). 
(b) Mean - Mode = ? (Mean - Median). 
(c) Median = Mode +? (Mean - Mode), 
(d) Mode = Mean - ? (Mean - Median). 
A,DS. (a) 112. (b) 3. (c) 2/3. (d) 3. 

VI. Fill in blanks: 
(i) Hannonic mean of a number of observations is ..... . 

(ii) The geometric mean of 2. 4. 16. and 32 is ..... . 
(iii) The strength of7 colleges in a city are 385; 1.748; 1.343; 1.935; 786; 

2.874 and 2.108. Then the median strength is ..... . 
(iv) The geometric mean of a set of values lies between arithmetic mean 

and... ' 

(I') The mean and median of 100 items are 50 and 52 respectively. The 
value of the largest item is 100. It was later found that it is actually 110. 
Therefore. the true mean is ... and the true median is ...... 
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(vi) The algebraic sum of the deviations of 20 observations measured from 

30 is 2. Therefore, mean of these observations is ..... 
(vii) The relationship between A.M., G.M. and H.M. is ..•.• 
(viii) The mean of 20 observations is 15. On checki~g it·was found that two 

bServations were wrongly copied as 3 and 6. If wrong observations are replaced: 
0 8 . 
by correct values and 4, then the correct mean IS ••••• 

(ix) Median = ..... Quartile. 
(x) Median is the average suited for .. , .. classes. 

(xi) A distribution with two modes is caned ..••• and with more than two 

modes is caJled ..... 
(xii) .•... is not affected by extreme observations. 
Ans. (ii) 8; (iii) l,748; (iv) H.M.; .(v) 50·1, 52; (vi) 30·1 ; 

(vii) A.M. ~ G.M. ~ H.M. ; (viii) 15·15; (ix) Second; (x) Open end; (xi) Bimodal, 
multimodal; (xii) Median or mode. =.'. 

VII. For the questions given below, give Correct answers. . 
(i) The algebraic sum of tbe deviations oCa set of n values from their 

arithmetic mean is 
(a) n, (b) 0, (c) 1, (d) none of these. 

(ii) The most stable measure of central tendency is 
(a) the mean, (b) the median, (c)·the mode, (d) none of these. 

(iii) 10 is the mean of a set of? observations and 5 is the mean ofa sei of 3 
observations. The mean of a combined set is given by '" 

(a) 15, (b) 10, (c) 8·5, (d) 7·5, (e) n~lle of these. 
(iv) The mean of the distribution, in which the value ~f x are 1, 2, ... , n, the 

frequency of each being unity is: 
(a) n (n + 1)/2, (b) n/2, (c) (n + 1)/2, (d) 1I0ne of these. 

(v) The arithmetic mean of the numbers 1, 2, 3, ... , n is 

( ) n (n + 1) (2n + 1) 'b) n (n + 1)2 () n VIT 1) 'dl f h a 6 ' \' 4 ,c 2 ,\, I none 0 t ese. 

(ii) The most stable measure of cj!ntral tendency 
(vi) The point of intersection oCthe 'less than' and the 'greater thim' ogive 

corre$ponds to , 

(a) the mean, (b) the median, (c) the geometric mean, (d) none oftbese. 
(Vii) Whenxi and Yi are two variab:y$ (i = 1,2, ... , n) with G.M.'s G I and (b 

respectively then the geometric mean of ( ;;) is 

GI · • ( G1 ) • '" (a) G2 ' (b) antilog, Gi ' (c) n (JogG\ - logG2); 
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(d) Antilog ( IOgGI;"logGi) 

Ans. (i) (b); (ii) (a); (iii) (c) ; .(iv) (c) ; .(v) (d); (vi) (b); (vii) (3). 
VIII. St~te which of the following statements are True and which·are False. 

In case.of false statements give the correct stateme~t .. 
(I) The harmonic mean of n numbers is the reciprocal of the Arithmetic 

mean of the reCiprocals of the numbers. 
(U) For the wholesale manufactUrers interested in the type which is usually 

in demand, median is the most suitable average. 
(iii) The algebraic sum of the deviations of a senes of individual observat­

ions from,tbeir mean is always zero . 
.(iv) Geometric mean is the appropriate average when e.mphasis in on the 

rate of cbange rather-than the amount of change. 
(v) Harmonic mean becomes zero when one of the items is zero. 
(vi) Mean lies between median and mode. 

(vii) Cumulative frequency is nOl-$lecreasing. 
(viii) Geometric mean is the arithmetic mean of harmonic mean and arith:... 

metic mean. 
(ix) Mean, median mode have the same unit. 
(x) One quintal of wheat was purchased' at 0·8 kg. per rupee and another 

quintal at 1·2 kg. per rupee. The average rate 'per rupee is lkg. 
(xi) One limitation of the median is tllat it cannot be calculated from a fre­

quency distribution with open'end classes. 
(xii) The arithmetic mean of a frequency distribution is always located in the 

class which has tlle greatest number of frequencies. 
(xiii) In a moderately asymmetrical distribution, the mean, median and mode 

are the same. 
(xiv) It is really immaterial in which class an item faIling at the boundary 

between two classes is listed. 
(xv) The median is not affected by extreme items. 

(xvi) The medilln is the point about which t~e sum of squared deviations is 
minj~tlJm. 

(xvii) In construction of the frequency distribution, the selection of the class 

interval is arbitrdry. 
(xviii) Usual attendance of B.Sc. class is 35 pet day. So for 100 working days 

total attendance is 3,500. 
(xix) A car travels 100 miles at a speed of 49 m.p.h. and another 400 miles at 

a speed 000 m.p.h. So the average speed for the whole journey is either 35 m.p.b. 
or 33 m.p.b. 
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(XX) In calculating the mean for grouped data, the assumption is made that 
tbe mean ofthe items in each class is equal to the mid-value of the class. 

(xxi) The geometric mean of a group of numbers is less tllan the arithmetic 
mean in all cases, except in the special case in which the numbers a~ all the same. 

(xxii) The geometric mean equals tbe antilog oftbe arithmetic mean of the 

logs of the values. 
(xxiii) The median may be considered more typical than the mean because the 

median is not affected ~y the size of the extremes. 
(xxiv) The Hannonic Mean of a series of fractions is the same as the reciprocal 

of the arithmetic mean of the series. 
(xxv) In a frequency distribution the tt;Ue value of mode cannot be calculated 

exactly. 
IX. in each of the following cases, explain whether the description applies to 

mean, median or both. 
(i) it can be calculated from a frequency distribution with open-end Classes. 

(ii) the values of all iterqs are taken into consideration in the Cl!lculation. 
(iii) the values of extreme items do not inllqence the average. 
(iv) In a distribution with a single peak all4 mQderate skewness to the right" 

it is closer to the concentration of the distribution. 
ADs. (i) median, (ii) mean, (iiii median, (iv) ~edian, 
X. Be brief in your answer: 

(0) The production in an industrial unit w~s 10,000 units~unng 1981 and 
ID 1980 the production was 25,000 units. Hence the production has ",eclined by 
150 percent. Comment .. 

(b) A man travels by a car for ~ days. He travelled f~r 10 hours each day .. 
He drove on the first day at the rate ofA5 Ion per hour, second day at 40 km. per 
bour, third day at the rate of 38 km. per hour and the fourth day at the rate of 
37 km. per hour. 

Which average, hannonic mean or arithmetic mean or median will give us his 
average speed? Why? 

(c) It is seen from records that a country does not export more tban 5 % of 
its total.production. Hence export trade is not vital to the economy of that country. 
Is the conclusion right? 

(d) A survey revealed that the cbildren of engineers, doctors and lawyers 
have high intelligence quotients. It further revealed that the grandfathers of these 
children were also highly intelligent. Hence the inference is that intelligence is 
bere\litary. Do you agree? 
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Xl. Do you agree with the following interpretations made on the basis of the 
facts ~iven. 'Explain briefly your answer. 

(a) The number of deaths i,n mil,ltary in the recent war was 10 out of 1,000 

while the number of deaths in Hyderabad i,n the same period was 18 per 1,000. 
Hence it i's safe to join military serviC'e than to live in the city of Hyderabad. 

(b) The examination result in a collegeX' was 70% in the year 1991. In the 

same year and at the same examination only 500 out of750 students were successful 
in college Y. Hence the teaching standard in college X was hener. 

(e) The average daily production in a small-scale factory in January 1991 
was 4,000 C1hdles and 3,800 candles in February 1981. So the workers were more 
efficient in January, 

(d) The increase in the price of a commodity was 25%. Then the price dec­
\ reased by 20% and again increased by 10%. So the resultant increase in the price 
was 25'-20 + 10 = 15 %-

(e) The rllte of tomato in the first week of January was 2 kg. for a rupee and 
in the 2nd week was 4 kg. for a rupee. Hence the average price of tomato is 
~ (2 + 4) = 3 kg. for a rupee. 

XU. (a) The mean:juark of 100 students was given to be 40. It was found 
later th?t a mark 53 was read as 83. What is the corrected mean mar~? 

(bi The mean salary pllid to 1,000 employees of an establishment was 
\"nund t(1 be Rs. 108·40. Later on, after disbursement of salary it was discovered 
that the salary of two employees was wrongly entered as Rs. 297 and RS. 165. Their 
correct salaries were Rs: 197 and 'Rs. 185. Find the correct arithmetic mean. 

(e) Twelve persons gambled on a certain night. -Seven of them lost at an 
average rate of Rs. 10·50 while the remaining five gained at an average of 
Rs. 13-00. Is the infonnation given above'correct? If not, why? 



CHAPTER TH REE, 

Measures of Dispersion, 
Skewness and Kurtosis 

3,1. Dispersion. Averages or the measures of centl'lll tendency give us an 
idea of tile concentration of the ob~tr\'ations aboul' the centr;tl part of the dis­
tribution. If we know the average alone we cannot forlll a complete idea about 
tbe distribution as will be cear from the following example. 

Consider the scries (i) 7. 8, 10, 11, (ii) 3, 6; 9, 12, 15, (iii) I, 5, 9, 13, 17. 
In all tbcse cases we sce that n, tbe number of obscrvations is 5 and tbe lIIean 
is 9. If we arc givcn that the mea n of 5 observations is 9, we ('annot for)\\ an 
idea as to whether it is tbe average of first series or se('ond series or third series 
Qr of any other series (If 5 observations whose sum is 45. Thus we see tbat the 
Jl\easures of central tendency are inadequate to give us a complete idea of the 
distribution. TheY:Jllust be supported and supplemented by some other measures, 
One such measure is Dispersion. 

Literal meaning of dispersion is ·scatteredness'. We study dispersion to 
bave aJl idea ahout the bQlllpgeneit),: or heterogeneity of the distribution. In the 
above case we say that series (i) is more homogeneous (less dispersed) tban the 
series (ii) Qr (iii) or we say that series (iii) is 1,IIore heterogeneous (Illore s('anert"d) 
thall the series (i) or (ii), 

],2. Char'dcteristies for 'dn Ideall\leasure of Dispersion .. The dcsiderdta, 
for an ideal measure of dispersion arc the same as those for all ideal ·measure 
of ccnlral tendcllcy, viz., 

(i) It should he rigidly defincd. 
(ii) It should be easy to calculate and easy to understand. 

(iii) It should be b~sed 011 aU thc observations. 
(h') It should be amenable to further mathematical trealment. 
(v) It should be affected as little as possible by fluctuations of sampling. 

3'3. Measures 'of Dispersion. The fol\owing are the measures of dis-, 
persion: 

(i) Range, 
(iij Quarlile devimion or Semi-inlerquarlile range, 

(iii) Mean deviation, and 
(i\» Slandard devilllion. 

3'4. Range. Tbe range is the. differcnce betwcen two extreme. ohscrtlitiollS, 
or the distribution. If A alld B arc the grcatest and smallest obscrvations rcspcc­
lively in a distribut~on, then·its range is A-B. 

Range is tbe simples I but a crude lIIeasure of dispersion. Sill(,c it is based 
on two extreme observations which themselves are subject to ('hanee Ilul'tuations, 
it is not at all a n:Jiablc mcasure of. dispersion. 

3·5. Quartile »el'iation. Quartile deviation or semi-inlcrqulIrtile rangl' 
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Q is given by 

~ = 1 (Q3 - Ql), ... (3'1) 

where QI and Ql are the first and third quartiles of the distribution respectively. 

Quartile deviation is definitely a better measure than the range as it makes 
use of 50% of the data. But since it ignores the other 5()~t{ of the data, it cannot 
be rega rded as a reliable measure. 

3·6. ~lean Dniation. If x, If" i = 1,2, "', n is .the frequency distributIOn, 
then mean deviation from the average A, (usually mean, median or mode), is 
given by 

Mean deviation = ~ ! [;Ixi -A I, !f; = N 
I 

... (3'2) 

where I Xi - A I r~presents the modulus or the absolute v{tlue of .the deviation 
(Xi '- A), when the -ive sign is ignored. 

Since mean devilltion is based on all the observations. it is a better measure 
of dispersion than range or quartile deviation. But the step of ignoring the signs 
of the deviations tr, - A) creates artificiality and ,rendcrs it useless for -further 
mathematical treatment. 

It may be pointed out here that mean deviation is least when taket} fmlll 
median. (The proof is given for continuous variable in Chapter 5) 

3·7. Standard Deviation and Root Mean Square De\'iation. Standard 
devi~tion, usually denoted by the Greek letter s1l1all sigma (0), is the 
positive square root of the arithmetic mean of the squares of the deviations 
of the given values from their arithmetic nlean. For the frequency distribution 
Xi If;, i = 1,2, ... , n, 

o =V~ ~f;(Xi-X'P 
I 

... (3'3) 

where x is the arithmetic mean of tbe distribution and! f, = N. , 
The step of squaring the deviations (Xi - X) overcomes the drawback of 

ignoring the signs in mean deviation. Standard deviation is also s~itabk for 
further mathematical treatment (§ 3·7·3). Moreover of all the measures, standard 
deviation is affected least by fluctuations of sampling. 

Thus we see that standard deviation satisfies almost all the properties laid 
down for an ideal measure of dispersion except for the general ~ature of extracting 
the square root which is not readily comprehensible for a non-mathematical 
persoll. It lIlay also be pointed out that standard deviittion gives greater weight 
to extreme values and as such has not found favour with economists or 
businessmen who are more interested in Hie results of the modal class'. Taking 
into COnSideration the pros and cons and also the wide applications of standard 
deviation in statistical theory, we may regard standard deviation as the best and 
the most powerful measure of dispersion! 

The square of standard deviation is called the variance and is given by 
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, 1 r ( -)2 
0-= N 7J; Xi-X 

Root nlean square deviation, denoted by's' is given by 

s =V ~ 7[;(x .. -A)2 

wbereA is any arbitrary number. s: is called mean,square.deviation. 

3·7·1. Relation between 0 and s. By definition, we have 

, 1 r )2 I '<:"( ( - - )2 s-=- kJ;(x;-A =- "Ji x;-x+x-A 
Ni Ni 

= ~ 7 fd (x; - xi + (x - A)2 + 2 (x -A )(x; - X) 1 

... (3·3a) 

.. :(3'4) 

=-N1 ~j;(Xi-X)2+(X-A)2Nl ~j;+2(x-A)~f;(x;-X). 
, I' 

(X -A), being constant is taken outside. the summation sign. But 'J(.f; (Xi -X) = 0, 
I 

being the algebraic sum of the deviations of the given values from their mean. Thus 

s; = 0: + (x - A)2 = 0: + d: , where·d = x - A' 

Obviously s: \\rill be least when d = 0, i.e., x =A. Hence mean squ~_re devia­
lion and consequently root mean square deviation is least when the deviations 
arc taken from A =x, i.e., standard deviation is the least value of root mean 
square deviation. 

The same result could be obtained altematively as follows: 
Mean square deviation is given by 

, 1 2 
s- = N ~f; (Xi -A) 

II has been shown in § 2·5·1 Property 2 that I;f;(x;-A)2 is minimum when , 
A = x. Thus mean square deviation is minimum When A = x and its minimum 
value is 

, . 1 -,., 
( s - ) nun = N 7 f; (Xi - X >- = 0-

Hence variance is ti,e minimum value of mean square deviation or standard 
deviation is tlte minimum \'Q fue of root mean square deviation. 

3"'2. Different J'ormulae For Calculating Variance. By definition, 
We have 

,,1 -)2 
0' = - k f; (Xi - X 

Ni 

More precisely we write it as o} , i.e., variance of x: Thus 
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2 1 - , 
Ox = N ~ f; (x; - x >- ... (3'5) . , 

If X is not a whole number but conl(!S out to be in fractions, the calculation 

of 0/ by using (3·5) is very cumbersome and time consuming. In order to 
overcome this difficulty, we shall develop different fonns of the formula (3'5) 
which reduce the arithmetic to a great extent and are very useful for com· 
putational work. In the following sequence ·the summation is extended over '; 
from 1 to n. 

2 1 - ~ 1 ,_2 -
Ox = N '7f;(x;-xt='N 'ff;(x(+x -2x;x) 

i ,-~ 1 - 1. 
'"-N' ~f;xt +. -N ~f.r-2x·N ~f;x; , " , 

1 "'I _2 _2 1 "'1"'1 

=.- r. f; x( + x - 2 x =.- r. {; t·" - ).'-N j N (,., ... (3'6) 

, 

Ox - = - r. f; X; - - r. f; X; 
, . 1 2 (1 )-

N i N i 
... (3·6a) 

If the values ofx and f are larg.: the cakulation of f"',f\'~ is quite tedious. 
In that (.'ase we take the devill.tions [rom any arbitrary point 'A '. Generally the 
poin, in the middle of the distribution is much convenient tbough tbe formula 
is true in general. We have 

2 1 f; - 2 1 f; - )~ 
QJx - N '7 ;.(x; - x) = 'N '7 ; (x; - A + A - x 

1 - 2' 
= N '7f;(d;+A -x) , wbere d;=x;-A. 

Ox 2 =: Nl ~ f; [ d/ + (A - x )2 + 2 (A - X ) d; ) ., 

= ! '7 f; dl + (A - x )2 + 2 (A - x ) . ! '7 f; d; 

- 1 
We know that ifd;=x;-A then x=A+ N'ff;d; 

.. A - x = _1. r. f; d; 
N i' 

... (3·7) 

2 2 
Ox 0: Od [On compaqson with (3·60)1 
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Hence variance and consequently standard deviation is independent of change 
of origin. 

If we take d; = (x; -A)/" so that (x; -A) = lui;, then 

0/ = ~ ~ f; (x; - X )2 = ~ ~ f; (x; - A + A - X )2 
I • I 

1-' 
= N ~ f; (lid; + A - x >-

I 

'I ' -' - I = II - ~ If; dt + (A - x r + 2 (A - x ) . " . N ~ f; d; 
J .l - ~ 

_ Lf;d; 
Using x=A +11 ~,we get 

, ,[ I '( 1 )~l" ox-=II- X '7f;dr - N 'ff;d; =II-od-, ... (3·8) 

wbich shows that mriance is not independent of cllange of scale. 

Aliter. If d; = ~;~ ~, tben 

Xi = A + lid; and x = A + " . -'II If; d; = A + " d 
J -; 

Obviously Xi - X = h (di - d) 

Hence variance i~ IOdependent of change of origin but not of scale. 
Example 3·1. C(/Iclliate tile mean and standard deviation for tile following 

table gil'ing tile age'distriblllion of 542 member$. 
Age in years: 20-30 30--40 40-50 50-60 60-70 70-80 80-90-
No. oj memb(frs : 3 61 132 153 140 51 2 

Solution. Hen: we lake d = x - A = ~ - S~ 
h 10 

Age grollp Mid-mille Freqllncv : d= x- 55 fd fd~ 
(x) (f)' . 10 

20 - 30 25 3 -3 -9 27 
30 - 40 35 61 -2 -122 244 
40 - 50 45 132 -1 -132 132 
50 - 60 55 153 0 0 0 
60 -70 65 140 1 140 140 
70 - 80 75 51 2 102 204 
80 - 90 85 2 3 6 18 

N = If= 542 Ifd = -15 Ifd'1 = 765 

x =A + II ¥!- = 55 + 10 ~~; 15) = 55 - 0·28 = 54·72 years. 

, 'f I '( I ) 2 ] [ 76" "J 0- =,,~ N Ifd- - N Ifd = 100 5 .. 2 - (0,28)" 
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= 100 x 1·333 = 133·3 
. . 0 (standard deviation) = 11·55 years 

Example 3·2. Prove that for any discrete distribution standard deviation 
is not less than mean deviation from mean. 

[Delhi Univ. B.Sc. (S~t. Hons.), 1989] 

Solution. Let Xi If;, i = 1, 2, 3, ... , n be any discrete distribution. Then We 
have to prove that 

S.O. 1 Mean deviation from mean 

~ (S.0.)2 1 (Mean deviation from mean)2 

~ (s.oi ~ (M. O. from mean)2 

~ ~ . i f; (Xi - x)2 ~ (~ . i f; I Xi _ X I ) 2 
,.1 ,.1 

If we put I Xi - X I = Zi, then we have to prove that 

~ . i f; z/ ~ (~ . i f; Zi )2 
,.1 ,.1 

1" (1")2 ,. e - '<"' f,. z·2 - - '<"' f, z· 2: 0 .. , N ~ " N ~ " 
i· 1 i· 1 

i.e., 
1 " - 1: f; (Zi - z)2 2: 0 
N ,.1 

i.e., 

which is always true. Hence the result. 

Example 3·3. Find the mean deviation from tire mean ant! stand(lrddeviation 
of A.P. a, a + d, a + 2d, ... , a + 2nd and verify that tire latter is greater than tire 
former. [Delhi Unh·. B.Sc. (Stat. Hons.), 1990) 

Solution. We know that the mean of a series in A.P. is the mean of its 
first and last tenn. Hence the mean of the given series is 

x = i (a + a + 2nd) ;: a + nd 

J.' -Ix-xl (x-x )2 

a nd n2d2 

a+d (n -1) d (n_l)2d 2 
a +2d (n -2)d (n _2)2 d 2 

: : 

.1 + (n - 2)d 2d 22.d 2 
a+(n - l)d d" 12. d 2 

a+nd 0 0 
a + (n + l)d d 12. d 2 

a + (n + 2)d 'aI 2~ . d 2 
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a + (2n - 2) d 
a + (2n - 2) d 

a + 2nd 

(n - 2)d 
(n - 1) d 

nd 

(n - 2) 2d 2 

(n - 2) 2d 2 

n2d 2 

Meandevialion from mean = 2n1+ 1 Ilx-il 
1 

--2 1 2.d (1+2+3+ ... +n) n+ . 
n (n + 1)d 

= 
(2n + 1) 

... 1 - 2 1 , 2 2'" 2) 
a"' = 2n + 1 I (x - x) = 2n + 1 2.d- (1 + 2 + 3"' + ... + n 

__ 1_ 2d 2 n (n + 1) (2n + 1) = n (n + 1)d2 
-2n+1' 6 3 

Hence standard deviation 

Veritication. 

if 

i.e., if 

or if 

or if 

or·if 

S.D. > M.D. from mean 
2' 2 (S.D.) > (M.D. from mean) 

n (n + 1)d2 > (n (n + f)d)2 
3 2n + 1 

(2n + 1)2 > 3n (n + 1) 

n2 + n + 1 > 0 

(n + 1)2 + 1 > 0 

wbicb is always ture. 

3·7 

Example 3·4. Show llral in a discrele series if devilliions are small 
compared wilh mean M so lhat (X/M)3 and higher powers of (x/M) are 
neglecled, we have 

(i) G = M [ 1 - ~ . ;: ) , 
(ii)M:-G 2 =a:, and (iii) H=' M[ 1_;22)' 

where M is lhe arillremelic mean, G, lhe gromelric mean, H, lire harmonic mean 
and a is lire slandard devialion of lhe disiriblllion. 

Solution. Let Xi If;, i .. 1, 2, ... , n be tbe given frequency distribution. 
Then we are given tbat Xi = Xi - M, i.e., Xi = Xi + M wbere M is the mean of 
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tbe distribution. We bave 
l;f;Xj = l;f; (Xj-M) =0, ... (1) 
I I 

being tbe algebraic sum of tbe deviations of tbe given values from their 
mean. Also 

l: f; x? = l: f; (Xi - M)2 = 0 2 •.. (2) 
i i 

(i) By definition, we bave 

G = (X/i . Xi! ... X/- )1/ .... , wbereN = 'i.li 
1 1 

log G = - l: f; log X; = - l: f; log (Xi + M) 
N i N i 

1 (x. ) ~ log M + N 7 f; log 1 + ~ 

1 [Xi 1 x,~ 1 ( Xi )3 1 
= log M + N 7 f; M - 2. M ~ +"3 M +... , 

the expansion of log (.1 + Z) in ascending powers of (x;lM) being va lid since 

I x;/ M 1< 1. Neglecting (x;lM)3 and.higber powers of (x;lM) , we get 
1 1 1 ' 

log G = log M + NM l: Ii Xi - --, • N l: Ii X( 
i 2M- i 

0 2 
=logM---

2M 2 ' 
IOn using (1) and (2») 

= log ( M e - a'/2~' ) 

,. [ 2 ) G M -a/2~' M 1 0 = e = -~, 
?M-

neglecting higher powers. 

( 1 ( 2 ) Hence G =Mll-- .-, 
\ 2 M" -

(ii) Squaring botb sides in (3), we get 

... (3) 

( , '12 
[ 2 ) 

,,10- , 0 '2 
G-=M- 1--.-, =M~ 1-- =M~-o, 

2 M~ . . M2 , 
I 

neglecting (0/M)4. 
.. M2_6 2 =cr:! ... (4) 
(iii) By definition, harmonic mean H is given by 
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1 1 1 
- = - I (~/X) = - I rr.;(x· + M)J H N i VI 'N; UI I 

- 1 
1 /; 1 ( X; ) 

= MN 7 n + {x;1 M») = MN 7 /; 1 + M 

Since I z I < 1, tbe expansion of ( 1 + Z r 1 ,in ascending powers of 

(x;lM) is valid. Neglecting (x;IM)3 and bigber powers of (x;lM), we get 

~ = ~N 7 f; ( 1 - Z + ;22) 
1 (1 1 1 1 2) 

= M N 7/;- MN 7/;x;+ M2 N 'T/;x; 

= ~ ( 1 + ;22 ) [On using (1) and (2») 

- 1 

:. H = M ( 1 + ;22) = M ( 1 _ ;22 ) , 

bighe~:':'ffl hoi: :'=F~;2, ) 
... (5) 

Example 3·5. For a group of 200 candidates, the mean arid standard 
deviation of scores were found to be 40 and 15 ;-espectively. Later on it was 
discovered that the scores 43 and 35 were misre~d as 34 and 53 respectively. 
Find the corrected mean and standard deviation corresponding to tlte corrected 
figures. 

Solution. lei x be tbe given variable. We are given n = 200, ; :z 40 and 0 = 15 

Now 

Also 

- 1 1/ 
X=- I X; ~ 

n· • 
1-1 

~ x;=n'x=200x40=8oo0 , 

Ix? = n (02 +;2) = 200 (225 + 1600) = 365000 
i 

Corrected ~ Xi = 8000 - 34 - 53 + 43 + 35 .. 7991 
I 

and Corrected ~ x/ = 365000 - (34): - (53)2 + (43): + (35): = 364109 
I 

Hence, Corrected mean = 72~; = 39·955 
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2 364109 2 
Corrected 0 = 200 - (39·955) = 1820·54 - 1596·40.:;0 224·14 

Corrected standard deviation", 14·97 

3·'·3. Theorem. (Variance of the combined series). If n., nl are the 
sizes; XI , X2 the means, and 01 ,02 the standard deviations of two series, then 
the standard deviation 0 of the combined ..series of size n. + n2 is gIven by 

0 2 = ~ [nl (012 + d I2).+.n2 (ol + dl)·] ... (3·9) 
nl+m 

wherelb =XI -x, d2 =X2-X 
- -

d - nIXI+n2X2 . 1 "I b' d . an x = , IS t Ie mean oJ t Ie com me series. 
nl + n2 

Proof. Let XI i; i = 1,2, ... , m and X2j; j = 1.2, ... , n2, be the two series 
then 

1 "1 1 "l 
XI =- I Xli 012 =_ I (XLi-xt}2 

mi_1 mi_1 
... (*) and 

_ 1 liZ 2 1"~ - 2 
X2=- I X2j 02 =- I (X2j-X2) m j_ I n2 j _ I 

... (**) 

The meanx of the combined series is given by 

- 1 [~ ~ 1 nlxlt n2x2 x = -- .. XI i + .. X2j = 
nl + m i-I j _ I nl' + n2 

[From (*)] 

The variance 0 2 of the combin.:d series is given by 

2 1 [nl - 2 nz - 2] o = -- I (Xli - x) + I (X2j - X ) 
nl+n2 i-I j_1 

... (3·tci) 

Now 
III III 

I (Xli - x)2 = I (Xli - XI'+ XI _ X )2 
I-I 

~ ~ 

=I (Xli-XL):! +ndXI-x)2+2(XI-X) I (xli-x~).(3·10a) 
i .. 1 i .. 1 

"1 
But I (XI i-Xl) = 0, being the a Igebraic sum of the deviations the values 

1- 1 

of tirst series from their mean. Hence from (3·100). on using (**). we get 
"1 

- .. "'I - ':" 2 "'I 

I (Xli-xt=nlot+nt('\'I-xt=nlol +nldl- ... (3·10b) 
i Q I 

where 41 = XI - X . 
Similarly. we get 
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nz -2 nz -.;....-2 
I (x2i - x) = I (x2i - X2 + X2 - X ) 

j",l j~l 
nz 

= I (x2i - X2)2 + m (X2 - x)2 = m al + n2 di 
j -1 

where d2 =X2 -x. 
Substituting from (3' lOb) and (3'10c) in (3'10). we get 

formula 

a~ = _1_ [nl (012 + d12) + n2 (al + db ] 
nl +n2 . 

This forlllula. can be simplified still further. We have 

Hence 

0 2 = ___ 1_ 
m +n: 

d - - - nlxl +n2 x2 n2 (XI -X2) 
I = XI - X = XI - :.: 

nl +n2 nl +n2 

d - - - nlxl+mx2 nl(X2- xl) 
2 = X2 - X = X2 - = 

nl +m m +n2 

3-11 

... (3·10c) 

the required 

... (3'11) 

Remark. The formula (3·9) can be easily generalised to the case of more 
than two series. If n;, Xi and OJ , i = 1,2, ... , k are the sizes, means and standard 
deviations respectively of k-collJponent series then the standard deviation a of 

k 
the combined series of size I ni is given by 

i - 1 

2 1 [ .,., 2 2 2 ,] a = nl (01- + dl-) + n2 (02 + d2 ) + ... + m (Ok + dk-) 
nl + n2 + .. , +nk 

... (3'12) 
where di = Xi - X ; i = 1, 2, .. ,' k 

- -
and - nIXI+mX~+ ... +nkXk 

X= 
"I + n2' + ... + nk 

Example,3·6. The first of the two samples has 100 items »-ith mean 15 
and standard deviation 3. If the whole grollp has 250 items with mean 15·6 
and standard deviation"; 13·44, find the standard deviation of the second grollp. 

Solution. Here we are given 
"I = 100, XI =]5 and 01 = 3 
n = nl + n2 = 250, X = 15·6, and 0= ";13'34 

We want a~:. 
Obviously m = 250.:.. ]00 = ISO, We have 
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Hence 
and 

nl + n2 
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15.6 = 100 x 15 + 150 x X2 
250 

150 X2 = 250 x \5'6 - 1500 = 2400 

X2 = 2400 = 16 
150 

dl = Xl - X = 15 - 15·6 = - 0·6 
d2 = X2 - X = 16 - 15·6 = 0·4 

The variance (i of the combined group is given by the fomlula : 

(nl + nz)02.=;'1 (o? + d?) + m (oi + db 
250 x 13'44 = 100 (9 + 0·36) + 150 (ol + 0·16) 

150 oi = 250 x 13·44 - 100 x 9·36 - 150 x 0'16 
= 3360 - 936 - 24 = 2400 

2 2400 
. . 02 = 150 = 16 

Hence 02 = Vf6 = 4 
3·8. Co-efficient of Dispersion. Whenever we want to compare the 

variability of tht (WO series which differ widely in their averages or which are 
measured in different units, we do not merely calculate the measures of dispersion 
but we calculate the co-efficients of dispersion which are pure numbers inde­
pendent of the units of measurement. Tl!e co-efficients of dispersion (C.O.) 
based on different measures of dispersion are as follows: 

A -'8 
1. C.O. based upon range = A + B ' where A and B are the greatest and 

the smallest items in the series. 
2. Based upon qua nile deviation: 

C.O. = (Q~ - Ql)/2 = Q~ - QI 
(Q~ + Ql)12 Q3 + Ql 

3. Based upon mean deviation: 

. C 0 = Mean deviation 
.. Average from whkh it is calculated 

4. Based'upon standard deviation: 

C.D ... ~-g 
Mean x 

3·8'1. Co-efficient of Variation. 100' times the co-efficient of desperisfJII 
hllsed upon standard deviation is called co-(~ff'cient of va.riation (C. V.), 

C. V. - 100)(.g .(3·13) 
x 

k:cording to Professor Karl Pearsoll who suggested this measure, C. V. is the 
percentage variation in tIle mean, stl!ndard del'imion bemg considered liS tile total 
mriation in the mean .. 

For comparing the variability 01 two series, we calculate the co-efficient 
of variatiom; for each series. The series having greater C. V. is said to he 
more variable than ihe other and the series having lesser C.V. is said to be 
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morc consistent (or homogcn6u~) than thc other. 
Example 3·7. An analysis oJmontllly Wllges paid to tile workers oJ lU'O 

firms A and B belonging to the slime industry gives tile JolIOlt'ing results: 
.. ,FirmA Firm B 

N.urnber oJ wQr,~e.r.s 5,OQ 600 . 
Al'er(Ise mQnfllly ~mge Rs. 1.86·00 Rs. 1.7'\'00 
\{lIriance oJ distribution oJ li·II~r.:e~ 81 !nO 
(i) Which Jirm. A or B. IIl1s II larger Il'IIge hill ? 

(ii) In u'IIiill Jirm. A or B, is there 1;r('(//:r l'ar;tibil,il,r,in indjl:ic/uJII ~'a~(s? 
(iiI) Galcula,te (II) tile .m:erage. mqntl/I); ,It'ttse, lind· (/») tilt; mriw,ce oj the 

distriblllioll of wil!{es •. (~r fill t(Ie workers in the .fin!!~ A. and B taken IOge!IIer. 

Solutiun. 
{iJ Firm A: 

Nq. (11' wage-eafner.. (say)n, = 500 
Averagc monthly wagcs (say)x, = Rs.IX6 

Total waces paid 
AH:racc monthl\' \\acc = .. 

- . - No. (1' workers 

Hence total \\ages paid to the workrrs = II'\-I 
j.'irm il 
No. of \\ agc-earners (say)n: = 60n 
An-rage monthly wages' (say) x: = R~.175 

500 x 186 = Rs. Q~.OI)O 

:. Tota I wages pa id to the \\ orkers = ii: .\-. = 6QQ x 175 = R". 1,05,000 

Thus we scc that the firm B has la rger wage bill. 

(ii) Variance of distri.hution of wages in firm A (SilY) 0,: = 81 
Variancc of distribution of wages in firm B (say) o~: = 100 

C \',. ,'d' .[. . }o I" A '100 01' 100 x:9 484 . .0 Istn lutlon 01 \\'agcs lOr mn . = x=-= 0 =. 
XI 1,,0 

C V I· d "h' . [. I" B 1()0 o~ 100 x 10 - 71 . .0 Istn utlOIl 01 \\ accs or Iflll = ;( -- = 7-'': ;:). 
- .\," 1 ;:) 

Sinl'e C.V . .for linn B i!' greater than C.V. for ,finn A, firm B has greaJCf 
\ariahilit\ iII individual wagcs. 

(Iii) (a) The average monthly wages l,ay) X, .of all the workcrs iii the 
t\\O firms A and B taKcn togcthcr is given hy - -\' = nix, + p:x: 500 x 186 + 600 x 175 = 19,8000 = R 180 

n, + n: 500 + 600 1100 

(b) The combined variancc 0: is,givcn hy the fnnllula:; 
. I ,. 

(1- =--- [n,(ol- + d,-)+ 11:(0:; + rI;:'\ 
n, +, 11; 

whele d, = XI - x and d: = X2 - x 
Here d, = 186 - 180 = 6 and d: = 175 - 180 = - 5 



3'.14 

Hence 

Fundamentals of Mathematical Statistics 

500 ( 81 + 36) + 600 ( 100 + 25) 
500 + 600 

EXERCISE 3 (a) 

133500 = 121-3 
1100 6 

, 
1. (a) Expillin with suitable examples the tenn 'dispersionf State the 

n,I.!!Jive and absolute measures of dispersion and describe the merits and demerits 
of standard deviation. 

(b) -Explain the main difference between mean deviation and standard devia­
tion. ~how that standard deviation is .independent of change of origin and scale. 

- (c) Distinguish between absolute and retative measures of dispersion. 
~. (a) Explain the graphical method of obtaining median and quartile 

deviation. (Clllicut Unlv.BSc, .April 1989) 

(b) Compute quartile deviatIOn graphically for the following data: 
Marks 20 - 30 30 - 40 40 - 50 50 - 60 60 - 70 70 & o\'er 
Number of 
students: 5 20 14 10 8 5 

J. (a) Show that for raw data mean deviation is minimum when measured 
from the median. 

(b) Compute a suitable measure of dispersion for the following grouped 
frequency distribution giving reasons : 

Classes Frequency 
Less than 20 30 

20 - 30 20 
30 -40 15 
46 - 50 10 
50 - 60 5 

(c) Age distribution of hundred life insurance policyholelers is as follows: 

Age as on nearest birthday 
17 - 19·5 
20 - 25·5 
26 - 35·5 
36 - 40·5 
41 - 50·5 
51 - 55·5 
56 - 60·5 
61 - 70·5 

Calculate mean deviation from median age. 
Ans. Median = 38'25, M.D.=W·605 

Number 
9 

16 
12 
26 
14 
12 
6 
5 

4. Prove that the mean deviation about the mean x of the variate x, the 
frequency of whose ith size Xj is It is given by 
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1 [i ~_f; - ~_f; Xi] 
N XI<X X;<X • 

Hint. Mean dev.iation a'bout me~n 

= ~ [ I _f; ei - Xi) + I _f; (Xi - i)] 
Xl <x Xi >x 

1 .. - r - I _f;(Xi- Xl + 1': _f;(Xi- X>] 
N Xi < X Xi >x 

Since {If; ( Xi - i) = 0, 

If; ( Xi - x) + If; ( Xi - i) • 0 
Xi> i x;c:i 

M.D. = .! ('-I_f;(Xi-i)-I_f;(Xi-i») .. _l( If;(.Xi-":x») 
.. N -"i< x X;<Z N .Ki<K 

s. What is standard deviation? Explain its superiority over other measures 
of dispersion. 

6. Calculate the mean and standard deviation of the following distribution: 
x: 2.5 - 7.5 7.5 -:- 12.5 12.5 - 17.5 17.5 -·22.5 
f : 12 28 65 121 

x: 
f: 

x: 
f: 

22.5 - 27.5 27.5 - 32.5 32.~ - 37.5 37.5 - 42.5 425 - 47.5 
175 198 176 qo 66 

47.5 - 52.5 52.5 - ~7.5 57.5 - 62.5 
27 9 3 

Ans. Mean = 30.005, Standard Deviation = 0.01 

7. Explain clearly the ideas impJied in using arbitrary working orgin, and 
scale for the calculation of the arithmetic mean and standard deviation of a 
frequency distribution. The values of the arithmetic mean an~ standard deviation 
of the following frequency distribution of a continuous variable derived from 
the analysis in the above manner are40.604 lb. and 7.92 ,lb. respectively. 

x : -3 -2 -1 0 1 2 3 4 I Total 
f: 3 15 45 57 50. 36 25 9 740 
Determine the actual class intervals . 

. 8. (a). The arithmetic mean and variance of a set of 10 figures are known 
to be 17 and 33 respectively. Of the 10 figures, one figure (i.e., 26) wa~ 
subsequently found inacurate, and -.yas wee~ed out. What is the resulting (a) 
arithmetic mean and (b) ~tandard deviation. (M.s. Baroda U. BSe. 1993) 

(b) The mean and standard deviation of 20 items is found to be 10 and 
~ respectively. At ·the time of checking it was found that one item 8 was I 

Incorrect. Calculate the mean and standard deviation if ' . 
OJ the wrong item is omitted, and 
(ii) it is replaced by 12. 
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(c) For a frequency distribution of marks in Statistics q.f 400 candidates 
(grouped in intervals 0-5, 5-10, ...• etc.), the mean 'and standard deviation were 
found to be 40 and 15 respectively. Later it was discovered that the score 43 
was misread as 53 ill obtaining the frequency distributi<;>~. ,Fin~ t,he corrected 
mea nand sta nda rd devia tion correspond ing to the corrected frequency dis tribu tion. 

Ans. Mean = 39'95, S.D. = ).4~974. 
9. (a) Complete a table showing the frequencies with which words of 

different numbers of letters occur in the extract reproduced below (omitting 
punctuation marks) treating as the ,variable' the nUJllber of letters in each word, 
and obtain the mean, median and co-efficient of variation o~ the distribution: 

"Her eyes were blue : blue as autumn dista'nce'blue as the blue 'we see, 
between the retreating mQuldings of hills and w9qdy slopes on a sunny September 
morning: a misty and' shady blue; that had no beginning or surface, and was 
looked into rather than at. • 

,Ans. Mean· =,4~3j,_ Median = 4, 0 =1.·23 and 'C.V. :;.?1·~6 

(b) Treating the number of letters in each word in the (ollowing passage 
as the variable, x, pr~parc- the. frequency distribution ·table and obtain its mean, 
median, mode and variance. 

"The .reliabilitY' of data must always be examined .before any attempt is 
made to base conclusions upon them. This is true of all data, but particularly 
so of numerical' dala, .. \yhich do not carry their qu.ality written large on them. It 
is a waste of time to apply the refii\ed theoretical methods of Statistics to data 
w.,bich are· suspect from,the. begi~ming. " 

Ans. Mean = 4·565, Median = 4, Mode = 3, S.D. ;: 2·673. 

10. The mean of 5 observations is 4·4 and variance is 8·24. It three of 
the five observation are 1, 2 and 6; find the' other two. 

11. (a) Scores of two golfers for 24 rounds were as follows: 

Golfer A: 74,75, 78,72, 77~ 79, 78, 81, 76; 72; '71,77,14,70,78,79,'80,81, 
74,80,75, 71, .73. , " 

Golfer B : ~6, ~H, ~O, ~8, 89, 85, ~6, 82, 82, 79,.8,6.,8l), ~2! 76, 86, 89,; 87, 83, 
80, 88, 86, Sl, 81, 87 

Find which golfer mar be c,onsidered to be a more con~iste~t I?layer? 
Ans.. Golfer B is more.consistent'player. 

(b). The sum and 'sum of squares corresponding to length X (in' ems.) and 
weight Y (in gms.) of 50 tapioca tubers are given below: I 

IX - 212, U 2 = 9Q2·8 
IY == 261:, 'l:y2 = 145,7,6 
Which is more varying, the length or weight. 

12; (a) Lives of two models of refrigerators turned in for new 11/0dcls JD 

a recent survey are 

I Life 
(No. of year~) Model A Model.B, 

0-2 5 2 
2-4 16 I 7 , . 
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4 -,6 
6-8 
8 - 10 
10 - 12 

13 
7 
5 
4 

12 
19 
9' 
1 

3·17 

What· is the average life of each model of these' refrigerators ? Which model 
shows more uniformity ? 

ADS; C.Y. (Model Ai)=54·9%, C.Y. (Model B)=3·62% 

( b) Goals scored' by two teams A and B in a 'football season wer~ as 
follows: 

No. of goals. scored 
in a match 

o 
1 
2 
3 
4 

No. of matches 
A B 
27. 17 
9 9 
8 6 
5 5 
4' 3 

(Sri Venketeswara.U. B.Sc. Sept. 1992) 
Find out which team is more consistent. 
ADS. TeamA: c.y.: 122·0, Team B: G.V. = 108·3. 

(c) An analysis 'of monthly wages paid' to the workers iri two firms, A 
and B belonging to the same 'industry, gave the followirig results: 

, Firm A Firm 1J 
No. Qf wage-earnt{rs 986 548-
Average monthly ,wages. Rs. 5f,5 Rs~ 47·5 
Variance of distribution of: wages 100 1:Z 1 
(i) Which firm, A ot B, pays'out larger amount as' inonthIy wages? 

(ii) In which firm A or B, is there greater var'i~bili,ty in individual wAge~~ 

(iii) 'What are the measures of average monthly wages and the ~ariability 
in individual wages, Of all tJie workers 'in the two firms, A ahd 'Q ta~en to~ether. 

ADS. (i) Firm B pays a larger amou,nt as monthly wage~. 
iii) T-here is greater variability in· individual wag~s ,in, fi~Ti1 B. 
~iii)'C~m6ihed arithmetic-mean = Rs.49:S7. 

Combined st~ndard deviation = Rs.IO·82. 

1,4. (a) The fQJlowingdata give the arithmetic averages and standard devja-, 
tions of three, sub-groups. Calculate the .arithmetic ayerage and standard devia­
tion of the ~hole group. 

Sub-gruup 

A 
B 
C 
ADS. 

.No.ofmen Average wages (Rs.) 

50 61·0 
100 70·0 
120 8~5 

Standard 
deviation. ( Rso-) 

8·0 
9;.Q 
IP·O 

Combined Mean = 73, Comb!ned S.D.= 11·9· 

(b) fi~a t~e missing information from the following data: 
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, 

Group J GroupJl Group JII Combined 

Number 50 ? 90 200 
Standard Deviation 6 7 ? 7·746 
Mean 113 ? 115 116 . . .. 
Ans. m = 60, ,f2 = 120 and 0'3 = 8 
15. A collar manufacturer is considering the production of a new style 

collar to attract young men. The following statistics of ne~~ circumference are 
avail based on the measurement of a typical group of students : 

Mid-value : 12·5 .}3·0 13·5 14·0 14·5 15·0 15·5 16·0 
in inches 
No. of students·: 4 19 30 63 66 29 18 

Compute the mean and standard deviation and use the criterion x ± obtain 
.the largest and smallest size of collar he should make in order to meet needs 
of practically all his customers bearing in mind'that the collars are worn. on 
average 3/4 inch larger than neck size. (Nagpur Univ. B.Sc., 1991) 

ADS. Mean = 14·232, S.D.=o·72, largest size = 17·14", smallest size = 12·83" 

16. (a) A frequency distribution is divided into two parts. The mean and 
~tand~d deviation of the first part are m1 and SI and those of the second part 
ai"e m2 and S2 respectively. Obtain the mean and standa:d deviation for the 
combined distribution. [Delhi Univ. B.Sc.(Stat.Hons.), 1986] 

(b) The means of two samples of size 50 and 100 respectively are 54·1 
and 50·3 and the standard deviations are 8 and 7. Obtain the mean and standard 
deviation of the sample of size 150 obtained by combining the two samples. 

Ans •. Combined mean = .51·57. Combined S.D: = 7·5 approx. 
(c) A distribution consis~ of three components with frequencies 200, 250 

and 300 having means 25, to and 15 and standard deviations 3,4 and 5 respectively. 

Show that the mean of the combined group is 16 and its standard deviation 
7.2 approximately. (Ban~aI9re Univ. B.sc. 1991) 

17. In a certain test for which the pass marks is 30, the distribution of 
marks of passing candidates classified by sex (boys and girls) were as given 
below' 

Marks • 
Frequency 

Boys Girls 

30-34 5 15 
35-39 to 20 
40-44 15 30 
45-49 30 20 
50-54 5 5 
55-59 5 -

Total 7C' 90 
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The overall means and standard deviation of marks fQr 1x>ys including the 
30 failed were 38 and 10. The corresponding figures for girls including the 10 
failed were 35 and 9. 

(i) Find the mean and standard deviation of markS obtained by the 30 
boys who failed in the test. 

(ii) The moderation committee argued that pereentage of passes among 
girls is higher because the girJs are very studious and if the intention is to pass 
thoSe who are really intelligent, a higher pass marks· should be used for' girls. 
Wiothout quetioning the propriety of this argument, suggest. what the pass mark 
should be which would allow only 70% of the girls to pass. 

(iii,) The prize committee decided to award prizes to the best 40 candidates 
(irrespective of sex) judged on the basis of marks obtai~ed in the test. ~timate 
the number of girls who would receive prizes. 

Ans. (i) i = 22'83, 02 = 8·27 (ii) 39 (iii) 15 
18. Find the mean and variance of first n-natural numbers. 

(Agra Unlv. B.se:., 1993) 
_ n+l n2 _1 

ADS. x .. -2- ,02= U-
19. In a frequency distribution, the n intervals are 0 to 1, 1 to 2, ... , 

(n -1) to n with equal frequencies. Find the mean deviation and variance. 
20. If the mean and standard deviation of a variable x are m and CJ respec­

tively, obtain the mean and standard deviation of (ax + b)lc, where 0, band c 
are constants. 

ADS. U - ; (ai + b), 0" - I;lo 
21. In a series of measuremen we obtain ml values of magnitude 

Xl , m2 values of magnitude X2, and so on'. If i is the mean value of all the 
measurements, prove that the standard deviation is 

.. , I Ina,. (k - X,.)2 _ ~,2 
V Ina,. 

wherei - k + 6 and k is any consta~t. :Deihl Unlv. B.se:. (Stat. Hons.), 1992 

22. (a) Show that in a discrete series if deviations af!! small compared 
with mean M so that ~/M)2 and higber powers of (x/M) are neglected, prove 
that 

(i) MH .. G2 (II) M - 2G + H .. 0, 
where G is geometric mean and H is harmonic mean. 

(b) The mean and standard deviation ofa variable x are m and CJ respectively. 
If the deviations are small compared with the value of the mean, show that 

(i) Mean (.fi) .. ,rnd 1 - ~2) 
~ 8m 

(~) Mean (,Jx) = 'k (1 + 30:) approximately. , 
~ x m ~ 8m (M.S. Baroda U. B.sc. 19~3) 
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(c) If thc deviation Xi = Xi - M is very small in comparison with mean M 
and (X;I'M)'2 and hig.hc.r J?ower~ 9f (XJ My are neglccted,. prove th'at 

V - .... /2(M - G) 
. - V M 

where G is the geometric JAean of the v.all:l~,!i XII X2 • .... x" and V is the 
coeffj~ieni of dispcrsion (dIM). (Lucknow Univ. B.Sc., 1993,) 

23. Froln' a. sample" ·of 'observations thc arithmetic mean and variance, are 
calculated. It i~ then found that. on~ of the values. ,.t l • is in error and sli6uW be 
replaced by x( Show that the'ildJustment'to the variance to'-correct this error is 

I; " ( , . ~/ - XI + 2T ) - (x I -XI)' x I + XI ... '-'-'-'----'---n /I I 

where T is the total of the original results, 
, I 

(MecI;ut Univ. B.Sc., 19'92; Deihi Univ. n.sc. (Stat. Hons.), 1989, i985] 

I " 2 -
Hint. a2= - I Xi _x2 

ni=1 

I (2 2 2) ~ ;:; -. ,XI + X2 ,+ ... + X" - 2" 
I~ II. 

wherc T=xl +X2,+'" +X'I' 

'Let a: be the corrected variance. 'Thcn 

2 I {2 2 2} {T .,...·"'1 + XI,}2 al = - XI' + X2 + ... + x" - -
/I' 1/1 

AdjustlJ)ent to the variance to'correct the error is : 

a;-a2=!{x;2_ xi} -~{(T-xi +xi,)2 -p} 
IJ /I . 

=~ {XI' +XI} {XI' -XI} -'~ {(XI' -x .. ) x (21' -XI +XI')} 

24. Show that) jf th~ yarjable takes th~ values 0 1 I. 2, "., n with 
frequcnCid proportional' to tlie binomial cticfficlcnfs "Co. "C'" "C2 ..... "e" 
respcctivclY' then the mcan ·of the <listribution iis (nl2). the m'can square deviation 
ahout, X';::,O is /1 (n. + IJ/.1l and the variancc:is nl4 

Hint. N 

"i/x 

[Delhi Univ. B.Sc. (Stat. Hons.), 1991] 
= "i/ = "Co + nc 1. ;,"('2 + , .. t-."CI11,= (I + 1)".= 2" 

= O."Co .. + 1j1G:1 + 1.,",G2 t '3" !1G:l + ,'" +·ll."C." 

{-, . '" - ,,(n !.. I) (ni.." 2.) r} = /I, I I + (/I - I ).+ 2! + ... +.1 

= /I (l + I)" - I = II , 2(11 - I) 

- I II. 2('! -=-,1). IJ 
Hencc mean (x) = IV "i/x 2'" 2" 
The mean squarc·<.!cyi£!!iQp..I?'. (~aY). about th'c.point X = 0 is giyen by, ,. . , 
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52 =~ I/x2 = ill [1 2,"C1 + 22. "C2 + 32."02 + .:. + 1/2."C,,] 

= ;" [1 + 2 (Ii - .1),+ ~ tn - I} (11- 2) + ._ + /I] 

= ~~_ ( { 1 + (11- I) + (II - ~~" - 2) + ... + I.} . 
+ {(/I - I) + (II - 1)(11 - 2) + .... + (1/ - I)}) 

=;', [(n-ICO+/I-I CI +'/-1<;;2+ .... ,../I-IC,,_I) 

t {(II - I) ('1-2eo + 11-2C 1 + ... + ,,-2C,(_2) } ] 

= l!. [( 1 + 1 y,-I + (Il - 1). (I + I );i-~]~=- 1/(11 +. I) 
2" 4 

(J2 = 11(11 + I) _!t-=!!. 
.. -4 _ 4 4' 

25. (a) Let r be the range and s be the standard deviation or a set or 
observations Xi. x2 • ..... xi,~ .then prove· by general reasoning or othcr\vjsc that 
s ~ r. 

Hint. Sincex;-x $; r. i::: 1.2 ..... 11. we have 
1 /I - l' " 

s'2 ::: - 'i Ii (x· - ;)2 < - 'if; ~r'2) N ;=1' ,. . - N ;=1 I 

'>' 5'2 ~ 1'21 if,'::: 1'2 ~ S S r 
N ;=1 ' 

(b) Let I' be the range and 1 

S::: (,,~I ;~ (x; - x)2 r 
be the standard deviation or a set of pbservntions XI. x2 • .... x". then prove that 

1 .' • 

S $ r(,,~ }' r [Punjab Univ. B.Se (Stat. Hons.), 1993] 

3',9. Mo·mcilts. The rth moment--of a varipblc X· about· any point. x = A. 
usually denoted ~y p: js ;givl{n by 

I 
~: ="N 'i;f;(x;-A),. If;=N ..... (3·14) , ; 

I ~ r 
="N~f;d;. , ... (3·14a) 

where d; ::: Xi - A. 

The rth moment of a variable about the rt1ean X. usually denoted by ~r is 
given by 

I - 1 , 
~r::: N- 'i;f; (x;.,.. x)'::: "N 'if; z; ... (3·15) , ; 
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wheIe Z; - X; - i. 
In particular 

~ - ~ ~ f;(x; - it - ~ ~f; - 1 , , 

and 1'1 - ~ ~ f; (x; - i) - 0, being the algebraic sum of deviations from , 
the mean. A1so 

1'2 - .!. 1:. f; (;c; - i)2 - ~ 
N; 

... (3·16) 

These IeSults, viz., lAc, - 1, 1'1 - 0, and 1'2 - cl. aIe of fundamental im­
portance and should be 'Committed to memory. 
We know that if d; - X; - A , then 

i - A+ ~~ f;d; - A + 1'1' .•. (3·17) , 
3·'·1. Relation between"moments about mean in terms of moments 

about any point and vice verso. 
We have 

...... - .!. If; (;c; - xr - .! 1:. f; (x; - A + A - i)' 
N; N; 

- ~~f;(d;+A- i)', where d;- X;- A , 
Using (3·17), we get 

...... - .!. 1:. f; (d; - 1'1')' 
N; 

1 If; [" 'c ,,-Ill' 'c ,,-2 ,2 'c ,,-3,3 (1)' "] - Ii j Qj - 1 Qj 1 + 2 Qj 1'1 - 3 Qi 1'1 + ... + - 1'1 

••• (3·18) 
- ...... ' - 'CIJ.'r.-l' 1'1' + 'C21'r-2' 1'1,2 - .•• + (-1)' 1'1" [ On using (3·141)] 

In particular, on putting r = 2, 3 and 4 in (3·18), we get 
, ,2 

1'2 - 1'2 - 1'1 
, 3 ' , 2 ,3 1'3 - 1'3 - 1'2 1'1 + 1'1 

1'4 - 1'4' - 4J.L3'1'1' + 61'2' 1'1,2 _ 31'1,4 

Convenely, 

...... ' - .!. 1:. f;(x; - A)' - 1 1:.f; (x; - i+ i- A)' 
N ; N ; 

1 
- N ~ f; (Z; + til')' , 

•.. (3.19) 
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wherex;- X = Z; and X = A + Ill' 
, _1 ~ #c (~ .rc ~-I , rc ~-2'2 ,r) Thus Ilr - N ~J; Z, + IZ, III + 2Z, J.l.1 + ... + III 

I ~ 

= Ilr + rClllr_1 Ill: + rC2 Ilr-2 JlI'2 + '" +JlI'r. [From (3·15>: 
In particular, putting r = 2, 3 and 4 and noting that III = 0, we get 

Jl2' = Jl2 + 1l1'2 

Jl3' = 113 + 3Jl2 JlI' + 1l1'3 .. , (3·20) 

Jl4' = 114 + 4Jl3JlI' + 6112 1l1'2 + 1l1'4 
These formulae enable us to find the moments about any point, once the 

mean and the moments about mean are known. 

3.9.2 Effect of Change of Origin and Scale on Moments. 

x-A - - - -
Let II =-h- , so that x = A + hu, x = A + hu alld x - x = h(1I - u) 

Thus, rth moment of x about any point x :: A is given by 
I I ~ I ~ r 

Ilr' = N- J;./; (x; - AY = IV ~/; (hu;Y = hr. IV . ~/; II; 
I I I 

And the rth moment of x about mean is 
1 - I 

Ilr= tv J;./; (x;-xY= IV J;./; [h(u; - uW 
I I 

I -= hr IV J;./; (u; - uY 
I 

Thus the rth moment of the variable x about mean is hr times the rth moment 
of the variable II about its mean. 

3·9·3. Sheppard's Corrections for Moments. In case of grouped 
frequency distribution, while .calculating moments we assume that the 
frequencies are concentrated at the middle point of the crass intervals. If the 
distribution is symmetrj~al or slightly symmetrical and the class interval.s are 
not greater than one-twentieth of the range, this assumption is very nearly true. 
But since the assumption is not in general true, some error, called the 'grouping 
error', creeps into the calculation of the moments. W.F. Sheppard proved that if 

(i) the frequency distribution is continuous, and 

(U) the frequency tapers off to zero in both directions, 

the effect due to grouping at the mid-point of the intervals can be corrected by 
the following fonnulae, known as Sheppard's corrections: 

h2 
Jl2 (corrected) = Jl2 - 12 ... Q·21) 

Jl3 (corrected) = 113 

1 7 
Jl4 (corrected) = 114 - 2 h2 112 + 240 h4 



3·24 ~damenta1s of Mathematical Statistics 

where II is the width of the class interval. 

3·9·4. Charlier's Checks. The following identitfes 

'ift.x + 1-) = I../x +N; 'ift.'x + 1)2 = 'i/x2 + 2!/x + N 
'ift.x + 1)3 = 'i/x3 + 3'i/x2 +. 3'i/x + N 

'ift.x,.. 1)4 .=.'i/x4 t 4,'i/x3 + 6'i/x2 + 4'i/x + N, 

are often used in checking the accuracy in the calculation of first fO,ur moments 
and are known as Charlier's Checks. 

3,10. Pearson's ~ and 'I Coefficients. Karl Pearson defined the following 
four coefficients, based upon the first fout moments"about mean: 

2 

113 114 
~ I = 3' , 'I I· = + -{i3; a'ld ~2 = 2' \ '12 = ~2 - 3 

112 112" , 
... (3·22) 

It may be pointed out that these coefficients 'are pure numbers independent of 
units of measurement. The practical utility of these coefficients is discussed in 
§ 3·13 and § 3·14. 

Remark. Sometiines, another coefficient based on moments, .viz, Alpha 
(ex) coefficient is used. Alpha coefficients are defined as : 

a - H:! - 0 (X - 112 - 1 (X _l!2. - -fa - y (X _ 114 - f.I. 
I - (J - , 2 - (J2 -, 3 ~ cP - -v PI - 11 4 - (J4 - 1:'2 

3·11. Factorial Moments. Factorial moment of order r about the origin 
of the frequency distribution X; 1/;, (i = 1,2, ... n), is defined' as 

II( )' = 1- i: 1', X .<r) 
rr N;=I'" 

1/ 

where X<r' = x (x - l)ex - 2) ... (x - r + I) and N = 'i /; 
;=1 

... (3·23) 

Thus the factorial 'moment' of order r aboUt any point x = a is given by 
J' • • ., 

'l1(r(= t "J;./; (x,- a)(r) ... '(3·24) , 
where (x - a)(r) = (x - a) (x - a - I ~ ... (x - a .... r + q) 

In particular from (3·23J, we have 

11(1,' = ~ r/; x; = ).(.I~ (~bouJ 9rigin) rr..Mea~ (x). 

11(2)' = t "J;./;xP) = t "J;./;x; (x; - 1) , , 
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J.1(3)' = ~ "i;./; xl:') = N1 "i;.f~i (Xi'" ) )(Xi - 2) 
r r 

= ~ "i;./;x,? - 3 ~ "i;.f;x? + 2 -NI ". "i;.f;Xi 
r r r 

= J.13' - 3J.12' + 2J.11' 

J.1(4)' = ~ "i;./;x;<4) = ~ "i;.f;Xi (Xi - I) (Xi - 2) (Xi - 3) 
r r 

=~"i;./;Xi(X?-6x?+ 1]xi- 6) 
r 

I I I I 
= IV "ffi Xi4 - 6. IV I./;x? + I J. IV I./; x? -6. tv I./; XI 

= J.1/ - 6J.1/ + IIJ.1i' ~ 6J.1.' 
Conversely. we will get 

Ill' = J.1(l)' 

J.12' = J.1(2)' + J.1(1)' 

J.1/ = 11(3)' + 311(2)' + 11(1 >' 
J.14' = 11(4)' + 611(3)~ + 711(2) { + 11(1,' 

3·25 

'" (3·25) 

3·12. Absolute Moments. Ror the frequency distribution XI if; i = I. 2 •... 
II. the 11h absolute moment of the variable abo¥t ~he origin is given by 

I" r 

N- .I. /; 1 Xi I. N = I./; ... (3· 26) 
r= • 

where 1 x[ 1 represents the absolute or modulus value of x[ . 

The 11h absolute moment of the variable about the )1lean x .is g,v~n by 
I " - r 
-N'I. /; 1 Xi - xl··· (3·26a) 

r= • 

Example 3·8. The first four momellfs of a distribution about the vallie 4 of 
the I'llriab/e are - J ·5, 17, - 30 and, 108. Find ,the moments t'1/io/lf liiellll, PI lind 

f3!. 
Find (//so the moments nbollf (i) the origin. and (ii) the poillf'x = 2. 
Solution. In the usual notations. we are 'given i\ '= 4 and 

J.11' = -1'5. J.f2' = '17. J.1/:: - 30 and 1I4' ='108. 

Moments about mean: J.11 = 0 

J.12 = J.1{ - J.11'2 = 17 - (-1·5)2 = 17 - 2·25 = ]4·75 

113 = 113' - 3112' J.1;' + 2J.1{' 
=.- 30 - 3 x (17) x (-1 ·5) +.2 (-1·5)3 
=.- 30 + 76·5 - 6·75 = 39·75 
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114 = 1l4' - 41l3' 1lI':to 61l2'Ill'2 - 31ll'4 

= 108 - 4(-30)(- 1·5) + 6(17)(-1·5)2 - 3(-1·5)4 

= 108 - 180 + 229·5 - 15·1875 = 142·3125 
2 

_ 113 _ (39.75)2 
~I - Il~ - (14·75)3 = 0·4924 

~2 =Il~ =(142.3125)=0.6541 
112 (14·75)2 

X = A + Il{ = 4 + (-1·5) = 2·5 

Moments about origin. We have 

x = 2·5, 112 = 14·75, 113 = 39·75 and III = 142·31 (approx). 

We know x = A + Ill" where Ill' is the first moment about the point x = A. 
Taking A = 0, we get the first moment about origin as Il{ = mean = 2·5. 

Using (3·20), we get 

112' = 112 + 1l{2 = 14·75 + (2·5)2 = 14·75 + 6·25 = 21 

Il{ = 113 + 3112 ~{ "': 1l{3 = 39·75 + 3(14·75) (2·5) + (2·5)3 

= 39·75 + 110·625 + 15·625 = 166 

11/ == 114 + 41l31ll' +-61l21lI'2 + 1l{4 
= 142·3125 + 4 (39·75) (2·5) +.6(14·75)(2·5)2 + (2·5)4 
= 142·3125 + 397·5 + 553·125 + 39·0625 
= 1132. 

Moments about the point x = 2. We have x = A + Ill'. Taking A = 2, the 
tirst moment about the point x = 2 is 

Ill' = x -2=2·5-2=0·5 
Hence 

1l2' = 112 + 1lI'2 = 14·75 + 0·25 = 15 

1l3' = 113 + 31l21lI' + 1lI'3 = 39·75 + 3(14·75)(0·5) + (0·5)3 

= 39,75 + 22·125 + 0·125 = 62 

Il/ = 114 + 41l31ll' + 61l21ll'2 + 1lI'4 
= 142·3125 + 4(39·75)(0·5) + 6(14·75)(0·5)2+ (0·5)4 
= 142·3125 + 79·5 + 22·125 + 0·0625 
=244 

Example 3·9. Calculate the first lour moments 
distribution about the mean and hence fmd ~I and ~2' 

x: 0 J 2 3 4 5 6 
f: J 8 28 56 70 56 28 

of the following 

7 8 
8 J 
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Solution. CALCULATION OF MOMENTS 

x f d-x - 4 , fd fd2, 

0 1 -4 -4 16 
1 8 -3 -24 72 
2 28 -2 -56 112 
3 56 -1 -.56 56 
4 70 0 0 0 
5 56 1 56 56 
6 28 2 56 112 
7 8 3 24 72 
8 1 4 4 16 

Total 236 0 0 512 

Moments about the pomts x = 4 are 

\.11' = ~fd = 0, 1l2' = ~fJl = ;~~ = 2, 

I .!.~fi,$ 0 • .!~fi'.J4 2816 . \.13 = N- U = and \.14 = N- U = 256 = 11 

Moments about mean are: 
, " \.11 = 0, Il! = 112 - III - = 2 

, 3 ' , 2 ,3 0 \.13 = !A3 - 112 III + III = 
, 4 ' , 6 ' ,2 3 ,4 !A4 = \-l4 - :J.l3!Al + 1l2!Al - III '"' 11 

!A~ !A4 11 
~l = 1 = 0, ~2 = 2 -= - => 2·75 

!Ai III 4 

3·17 

fd3 f" 
-64 256 
-216 648 
-224 448 
-56 56 

o· \ 0 
56' , 56 
224 448 
216 648 
64 256 

0 2,816 

Exampl~ 3·10' For a distribmion tire mean is 10, variance is 16, Y2 is + 
1 and~! is 4. Obtain tlte first four moments abom the orgin, i.e., zero. 
Comment upon tlte nature 'of distribution. 

Solution. We are given 
Mean = to, !A2 = 16, '/1 = + 1, Ih = 4 

First fOllr moments about origin (Ill' , 1l2' , 1l3' , \-l4') 
Ill' = First moment about origin = Mean = 10 

,,2 , ,2 , 16 102 116 Il! = 112 - \.11 ~ it! = 112 + III ~ it! - + = 
III we have '/1 = + 1 ~ 312 = 1 

112 
~ \.13 = 112 J~ = (16ll = 43 = 64 

, 3" ? ,3 .. 113 = 113 - 112 III +- -!-l1 
. 3 ' , 2 .3 ~ ~t3 = ~l3 + 1l2!A1 - \.11 

= 64 + 3 x 116 x 10 - 2 x 1000 = 3544 - 2000 = 1544 

Now ~2 '= Il~ = 4 ~ \.1\1 = 4 x 162 .= 1024 
112 

and ~l4 = ~l' 4 - 41l3\ll' + 6\.12'\.11'1- 1lI,4 
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~ !-l~' z 1024 + 4 x 1~44.x 1Q -' 6 )(" l,lp,..x .100 +, ~ x 10000 
= 92784 - 69600 = 23184. 

Comments of. Nature of distribution: [c.f. § 3·13 and § 3'141 
Since Y·I = + 1, the distribution is moderately p,ositively skewed, i.e, if we araw 
:the curve for th~ given distribution, it will have longer tail towards the right. 
Further since Ih = 4> 3, the distribution is leptokurtic, i.e., it will be more 
peake.d thali the normal curye. 

Example 3·),11. If for a random variable x, the absolute moment of order 
k exists for ordinary k = 1, 2, ... , n-l, then the following inequalities 

.(i), ~~K s ~~-1. ~+1' (ii.) ~~ S. ~K+I ~.I 
1l0lds for k=;l, 2, .. ~, n-l, whe" ~I( is the 7cth absolute moment abollt the origin. 

, [Delhi Uni,·. B.Sc. (Stat.Hons.) 1989)' 
Solution. If Xi Ifi' i = 1, 2, ... , n is the giyen frequency distrbution;"then 

1- '1 k 1 ~I(= NIl; Xi ... (1) 

Let u and I' be arbitrary real numbers, ,then the 'expressfon' 
II 2 
I. Ii [u' XP:-I)J2, + \ll.xP:+I)J2,] "is nc;m-g~gati~e, 

i. I 
II 2 

~ I. /; [U I Xil(k-I)/2 + \II Xi l(k+I)J2] ~ 0 
i - 1 

~ 112 L/;lx,lA>-l + \12 Lli lxilk+l + 2u\I "'i:.li lxilk ~,O 
Dividing throughout by N and using reiatiOll (1), we get 

,,2(3"-1 + v2 (3"+1 + 2uv~" Ot 0, i.e., '?~I(-I + 2uvl3" + 

We know that. the condition for the' expression (/ .\'2 

non - negative for all values of x llOd y is that 

la hi OtO 
I h b I 

Using this result, we get from (2)' 

I ~: -1 !~: + 1 I ~ 0 

~ ~"_I • ~"T I - 13~ ~ 0 
Raising both sides of (3) to power k, we get 

f:\~" ~ ~~_I. I~"+I k 

PUlling k= 1. 2, ... , k-l, k successively in (4), we get 

v:! ((+1 Ot 0 ... (2) 

+ 2/lX.'':'+ b i to be 

... (3) 

... (4) 
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2k k k 
~k ;S; ~k- I- ~k + I 

Multiplying these in!!qualities and no.ting that.~o = 1, we get 
k+ I 'k 

~k ;S;'~k+1 fork= 1,2, ... ,11-1. 

RlIising both sides of the inequality to the power k(k~ j) , we get 
r:t Ilk < r:t lI(k+ I) 
pk -Pk+1 

Remark. Result (5) shows that ~kl/k is an Increasing function of k. 

EXERCISE 3, (b) 

3·29 

'oo (5) 

1. (a) Define the raw and central moments of a frequency distribution. 
Obtain the relation between the central moments of order r in terms of the raw 
\\Iolllents. What are Sheppard's corrections to the central moments? 

(b) Define moments. Establish the relationship between the moments about 
mean, i.e.. Central Moments in terms of moments about any arbitrary point 
lind vice I'er~·a. 

The first three moments of a distribution about the value 2 of the variable 
arc I, 16 and - 40 .. Show that the mean is 3, the variance is 15 and 113 = -86. 
Also show that the first three moments about x = 0 are 3. 24 and 76. 

(c) For a distribution the mean is 10, variance is 16,11 is + I and ~2 is 4. 
Find the first four moments about tlie origin. . 

Ans.IlI' = 10, 1l2' = 116,1l/ = 1544 and Il/= 23184. 
(d) (i) Define 'moment'. What is its u~e ? p~press first four central 

\\Ioments in terms of moments about the origin. What is the effect of change of 
origin and s,cale o.n 1l3? 

ai) The first three moments of a distribution about the point X;:: 7 are 3, 
II and 15 respectively,. Obtain mean, variance and ~I' 

2. The first four moments of distribution .about the value 5 of the variable 
are 2, 20, 40 and 50. Obtain as far as possible, the various characteristics of the 
distribution on the basis of the information given. 

Ans. Mean::: 7, 112 =16, 113 = - 64, 114 = 162, ~I = I :and ~2 = 0·63. 
3. (a) If the first four moments of a distribution abQut the value 5 are equal 

to - 4, 22, - 117 and '560, determine the corres·p6riilihg. momentS (i) about the 
mean, (ii) about zero. 

(b) What is Sheppard's correction? Wh~. will be the corrections for the first 
lour moments? 

The first four moments of a distribution about.x :: 4 are I, 4', 10, 4'5. 'Show 
that the, meafi.is 5 and the variance IS 3 and.1l3 and 114 m:e 0 and, 26 respectively, 

(c) In certain distribution, the first four moments about the poin.t 4 are 
-1·5, 17, - 13 and 308. Calculate 131 and ~2' 

(el) The first four moments of a frequency distributibn.about the poinl5 arc 
-0.55,4·46, - 0·43 and ·68·52. Find ~I and ~2' 

Ans·1l2 = 4·1575, 113 = 6·5962,1l4 = 75·3944, ~I = 0·6055, '~2 = 4·3619. 
4. (a) For the following data, calculate (i) Mean, (ii) Median, (iii) Semi­

inter-quartile range, (iv) Coefticient of variation, and (v) ~I and ~2 coeffici<;nts. 
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Wages in 170- 180- 190- 200- 210- 220- '230- 240.-
Rupees: 180 190 200 210 220 230 240 250 
No. of 52 68 85 92 100 95 70 28 
persons: 

Ans. Mean = 209 (approx.); Median = 209·8; Q.D. = 15·8; cr = 19.7' 
C. V. = 9·4; ~ I = 0·003; ~2 = 26· ~ Q5. ' 

(b) Find the second, third and fourt~ central moments of the frequency 
distribution given below. Hence find (i) a 'measure of skewness ("{I) and 
(ii) measure of. kurtosis ("{2). 

Class Limits 
100·0 - 114·9 
115·0-119·9 
120·0 - 124·9 
125·0 - 129·9 
130·0 - 134·9 
135·0 - 139·9 
140·0 - 144·9 

Also apply Sheppard's corrections for moments. 
Ans.1l2 = 2·16,113 = 0·804,114= 12·5232 

Frequency 
5 

15 
20 
35 
10 
10 
5 

"{I = {If; = 0·25298; "{2 = ~2 - 3 = - 0·317. 
(c) The standard deviation of a symmetrical distribution is 5. What must be 

the value of the fourth moment about the mean in order that the distribution be 
(i) leptokurtic, (ii) mesokurtic, and' (iii) platykurtic ? 

Hint: III = 113 = 0 (because distribution is symmetrical). 

cr = 5 =::) cr2 = 112 = 25 

114 114 
~2 =2= 625 

112 

(I) Distribution is leptokurtic if ~2 > 3, i.e., if £.~ > 3 =::) 114 > 1875 

(ii) Distribution is mesokurtic if ~2 = ,3 =::) if 114 = 1875 
(iii) Distribution is platJ'kurtic if ~2 < 3 =::) if 114 < 1875 
5. Show that for discrete distribution ~2 > 1. 

[Allahabad Univ. M.A., 1993; Delhi Univ. B.sc~ (Stat. Hons), 1992] 

Hint. We have to show that IlJllf> I, i.e., 114> Ili. If Xi If;, i = I, 2, ... , 

II, be the given discrete distribution, then we have to prove that 

~ 7!; (x;-x)~ :> (k 7!; (X;-X)2f 

Putting (Xi - x)2 ='Zi' we have to show that 

k 7f; Z~ > (~ 7!; Zi) 
2 
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, 

1 '( J )-- ~ r. z'" _ - I r. z' > 0 N"'7 I" N. I' I . , ., 
i.e., 01 > 0, -

,i.e., 

wbicb is always true, since variance is always positive. 
Hence 13z > t. 
6. (a) The scores in Econolilics of 250 candidates appearing at a'n-ex3inina­

tion bave.. 
Mean 

Variance 
'fbird Centra I moment 
Fourtb central moment 

= ; = 39·72 

= 0 2 = 97·80 
= 113 == "" 114· t 8 
= 11-' = 28,396'14' 

It was later f()und on scruti'ny that !be score 61 of a candidate has been wrongly 
recorded as 51.:Make necessary corrections in the given ~alues of the mean and 
the cevtral monJ~iI!. (Gujarat·l)njv • .J\f.A., 1993) 

(b) For a distribution .of 250 heights, calculations showed ·that the mean, 
standar" deviation, 13.1 and th were 54 inc~es, ~ inches Oand 3 inches respectively. 
It was, however,discovered on <:hecking.tbat t.be t,wo items 64 and." ) in the-orjgiqal/ 
data were wrongly written in pll!CC of correct values 62 al,ld ~2 inches respectively. 
Calculate the l'orrect frequency constants. 

Ans. Correct Mean:; 54, S.:O. = 2'97,113 = - 2'18, Il~ = 218'42,131 - 0·OQ70 
and ~2 = Z'81 

7. In calculating tbe moments of a frequency distribution based on 100 
observations, the fom)\viJ1g results are obtained: I 

Mean = 9, Variance = 19, 131 = 0·7 (113 + ive), 132 = 4 
But later on its was found that one observation 12 was read as 21. OiJ1ainthe correct 
va lue of the first Jour centra I moments. . 

Ans. Corrected mean = 8'91, 112 = 17·64,113" 57'05,1:'4 = i257'f5, 
131 = 0·59 and 132 - 4·04. 

8. (3) Show that if a range Of six times the standard deviation ~v.ers at least 
18 c1a!;s intervals, -Sheppard's correction, will make a difference of Ic;s~ th~ti 0·5 
percent in tll~ corrected 'Value of the standard d·cviati~n .. 

Hint. If It is the magnitude of the class interval, tben we want: 

6 0 > 18h ~ <1 > 3" =>\ ,,2 < ~ 0 2 => _ ,,2 > ~ ~ 02 

,,2 2 1 2 2 l " 1 ) .. 112 (corrected) = 112 - 12 ~ 0 - 9712 a. = 0 l' .~ 108 

1/2 • 

=> ~.d. (corrected) ~ 0 ( 1 - 1~8) '_'0 -( 1 - -i x 1~8) 
:. Required adjustement .. 0 - 0 ( corrected) < 2~6 < ~O = t % of s'.d. 
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(b) Show that. if the class intervals of a grouped distribution is less than 
one-third of the calculated standard deviation. Sheppard'l! adjustment makes a 

di~ference of less than! % in the estimate of the standard deviation 

9. (a) If ar is the rth absolute moment about zero. use the mean value of 
[tl 1 x 1 (r - J)'t + v 1 x I(r + J Jl2li 

to show that 
(Or)2r, ~ (ar _ IY (ar + IY 

From this derive the fo\lowing inequalities.: 
(I) (ary+ 1 :::;; (or+ IY. (ii) (ar)!/r:::;; (or+ I}"(r+ I) 

(b) For a random variable,X moments of aU order exist. Denoting ~y Ilj and 
aj , the jth central moment andjth abs91ute moment respectively,l show that, 

(i) (fL2j-~ 1)2:::;; ll'2j 1l2j + 2. l 

(ii)(aj)W:::;; (aj :.. 'I)IIU + I) (Karnatab Univ. B.Sc., 1993) 

10. If ~I and ~2 'are the Pearsons's coefficients of skewnes!>' and Kurtosis 
rcspcctively,'shbw that ~2 > ~I + I. (BangaIore Uhiv. B;Sc., 1993) 

., 3'13. Skewness. Literally. skewness means 'lack of symnietry·. We study 
s\{cwness to have an idea about the shape of the curve which we can draw with 
tlle help of the given data, A distribution is said to l)e' ske\\ ed if 

(i) Mean. median and mode fall at different points. 
i.e., Mean ¢ Median ¢ Mode, 
(ji) Quartilell are not equidistant rrom median. and 
(iii) The curve drawn with the help of the given data is npt symmetrical 

but stretched more to one side than to the mher. 
Measures of Skewness, Various measures of skewness are 
(I)Sk=M-MJ (2)Sk =M'-Mo. 

where M i,s the mean. Md. the median an~ Mo. the mode of th~ distr.ibu~ion. 

(3) 5't; = (Q3 - Mtf) - (Md - Q,). 

These are the absolute measures of ,skewness. As in dispersion, for 
compt\ring two series we do no,~ calculate these absolute measures but we 
calcul'ate the relative measures (fillled the co-efficients 0/ skewness which are 
pure numbers independent of units of measllrement. The following ~re the 
coefficients of Skewness. 

1. Prof, Karl Pearso/l's Coefficient of Skewness. 
(M - Mo) 

Sk 

where.O'I.is the' standard deviation of the distribution. 

... (3·27) 

If mode is iII-defined. then using the relation. M 0 = 3M d - 2M. for a 
moderately asymmetrical distribution. we get 

S _ 3(M - Mil) 
k - '" (3·270) 

0' 
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The limits for Karl Pearson's coefficiept of s)<ewness are ± 3. In practice, 
these limits are ,rarely attained. 

Skewness is positive if M> Mo or M > M.d an!! negativ.e if M < Mb ,or 

M<Md' n. Prof Bowle3'!s Coefficient of Skewness. Based on'quartiles~ 
S (Q3- Md)-(M J -QI)=Q3+QI-2M" 

K (Q3- Ma)+(MJ -QI') Q)_QI" 
... (3·28) 

Remarks 1. Bowley's coefficient of skewness is also known as Quartile 
coefficient oj skew~ess and is especially us'eful in situations where quartiles and 
median are used. VIZ.. . , 

(I) When the. mode is iII-rlefined and extreme .observation,~ ~re prt:(se.nt in the-

data. 
(ii) When the distribution has open end classes 01, uneq",a.\, Clqss i.ntexvals ... 
In these situations Pearson's cQefl'icient of s,k~wness canno.t beused, 
2. From (3·28). we observe that 

Sk = 0, if Q3 - Md = Md - QI 
This implies that for a symmetrical distribution (Sk = 0), median is equi­

distant from the upper and lower qiJartiles. Moreover skewness is positive if: 
Q3-Md>MiJ-QI :::) Q3+QI> 2Md 

and skewness is negative if 
Q3- Md<Md-QI F Q3+QI'<. 2Md 

3. LimitsIor Bowley's Coefficieitt of Skewness. We know that for two real 
positive numbers' a and b·(i.e .• a > 0 and b> 0), the moduls valu~ of the 
difference '(a - bJts' always less than or equal' t01he modules' value' of the sum 
(0 + b), i.e .• 

, I~a - b I la-bl~la+bl:::) . b ~ 1 
I'll' +. .-. (*) 

We also knQw that (Q3"" Md) and (Md - QI) are both non-negative. Thus, 
taking a = Q3 - Md and' b =:= Md - ql, in (*): we get . I 

I(Q) - M d) - (M d - Q I) I < 1 
(Q3- M d)+(M d -QI) -

:::) I S~ (Bowley) I ~ I 
:::) - 1 ~ Sk (Bowley) ~ I. 
Thus, Bowley's coefficient of'skewness ranges from - I to I. 
Furtheri we note from (3·28) that: 

:Sk = + l,"if Md - QI = 0, i.e .• if)1d = QI 

Sk = - L if Q3 --..Md = Q, j.;;fb.. If Q3 = Md' 
4. It should be clearly understood that ther values of Jhe coefficients of 

skewness obtained by Bowley's formula and Pearson's formula are not 
comparable, although in each case, Sk = 0, implies the absence of skewness, i.e., 
the distribution is symmetrical. It may even happen that one of them gives 
positive skewness while the other gives negative skewness. 
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5. In BowleY's coefficienl of skewness the disturbing factor of "va riation is 
eliininated by divi(iing the absolute measur'! of skewness, viz., (QJ - Md) -
(Md - Ql ) by the me.asuI'CI"Of dispersion (Q3 - Q'l ), i.e., quartile range. 

6. The only and perbaps quite serious limitations of tbis coefficient is that it 
is based only on tbe central 50% oftbe.data a~d ignores the remaining 50% of the 
data towards the extremes. 

III.. Based upon moments, co-emcient of skewness is 

Sk =' ~ (~2 + 3 ) 
.2 (, ~2 -' 6 P, - 9) ... ( 3·29 ) 

wbere symbols have tbeir usual meaning. Tbus Sk = 0 if either ~I = 0 or ~2 = - 3. 

But since ~2 = j.l4/j.l~, cannot be negative, Sk = 0 if an"d only if Ih = O. Thus 
for a symmetrical distribution ~l = O. In this respect ~l is taken to be a measure 
ofSkewness. The co-efficient, in ( 3·29) is tQ be regarded aS'without sign. 

We observe in (3'27) and (3,28) that skewness C8J\ be positive as well as 
Regative. The skewness is positive if the larger tail of the distribution lies towards 

x. (Mean) = Mo = Md 
(Symmetrical Distribution) 

the higher values of tbe variate (!he right), i.e., if the curve drawn witti the help of 
the given data is tretcbed more to the right tban to the left and is negative 

(PosItively .Skewed Distributio~) . , (Negatively Skewed Distribution) 
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in the contracy case. 
3·14. Kurtosis. If we know the measures of central tendency, cfJspersion 

and skewness, we still cannot form a complete idea about the distribution' as will 
be clear from the follo~ing figure in which all the three curves A, Band Care 
svmmetrical about the mean om' and have the same range. 
, In addition to tb~se measures we should know one more measure which Prof. 

Karl Pearson calls as the 'Com'exit)' of cun'e' or Kurtosis. Kunosis enables us 
to have·an idea abou,tthe flatness -or peakedness of the curve, It is measure"d-by the 
co-efficient ~~ or its deriv!\tion r2 given by' , ~ 

~2 = J.l~/J.l2, Yl = I~~ - 3 

Curv~ of th~ type 'A' whkh is neither flitt nor peaked is called the normal 
curve or. mesokurtic cun'e and for such a curve ~~ = 3, i.e., '{2 = O. Curve of 
the type' B' which is flatter than th~ norlllal curve is known as platykurtic 1 and for 
such a cun~e ~~ .< 3, i.e., '{2 < O. Cun'e o( the type 'C' which ,is more peaked 
than the normal curve is c~lIed leptokrmic and for such a cun:e, ~2 > 3t i.e.; 
¥2 > O. 

EXERCISE 3 (c) 

1. What do you understand by skewne.ss ? How. is it measured? Distinguish 
clearly, by giving figures, between positive and negative.s~ewne~s_ 

2. Explain the methods of measuring skewness and kunosiS' of a frequency 
distribution. 

3. Show that for any frequency distribution: 

(i) Kunosis is greater than unity. 

(ii) Co-efficient of skewness is less than 1 numerically. 

4. Why (10 we calculate in general,.only the first four moments about mean 
of a distribution and not the higher mo",ents 7 

s. (a) Obtain Karl Pearsons's measure.of skewness for the following data: 
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ValueS 

5 - 10 
10 - 15 
15 -: 20 
20 - 25 

Frequency 

6 
8 

17 
21 

Values 

25 .... 30 
30 - 35 
35 - 40 

Frequency 

15 
11 
2 

(b) Assume that a firm has s~lected a random salllpl~ of 100 from its 
production line and has obtain the,data.shown in tbe table below: 

Cla~s interval Frequency CI(Jss interval 

130 - 134 3 150 - 154 
q5 - 139 12 155 - 159 
140 - 144 21 160 - 164 
145 - 149 28 

. Compute the following: 
(a) The IIrithmctic niean, (b) the stand'ard deviation, 
(c) Karl Pearson's coefficient of skewness. 
A.ns. (a) 147,2, (b) 7·2083 ~ (c) 0·0711 

Frequency 

19 
12 
5 

~. \(a) For the frequen<;y distrjbution given beloW, calculate the coefficient of 
skewness based on quartilcs. 

Annual Sqles No. of Firms 
(Rs. '000) 

Less t~aD 20, 30 
Less than 30 225 
Less than 40 465 
Less than 50 580 
I,.ess than 60 634 

Annual Sales, 
(Rs. '000) 

Less than 70 
LCss tha~ 80 
Less than 90 

Less than 100 

No. of firms 

644 
650 
665 
680 

(b) (i) Karl Pearsons'$.coefficient Of skewness of a distribution is 0'32, its 
s.d~ is 6·5 and mean is '29,6. Find the mode of the distribution. 

(ii) If the mode of the above'distribution is 24·8, what will be the s.d. ? 
7. (a) In a frequency distribution1 the co-efficient of skewness based upon 

the quartiles lis 0·6. If the sum oif the upper and lower quartiles is 100 and median 
is 38, find the value of-the upper lfnd;Jower,quartiles. 

ilint. We are given' 

Q~ + Ql - 2 Md' 
Sk = - = 0·6 

Q3 - Ql ... (*} 
Also Q3 + Ql = ,100 and 'Me'dian = 38 

Subsiruti!lg (*), we get 

~ 

Simplifying we get 

ioo -;- 2"x '38 = 0.6 
'Q3 .1. Ql' . 

Q~ - (h = 40 
'Ql =,'30; Q3 = 70 
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(b) 
(i) 

A frequency distribution gives tbe following results: 
C.V. = 5 (ii) Ka~ Pearsons's co-efficient of skewness = 0·5 

(iii) 0" 2. 
Find tbe mean and mode oflbe distribution. 
(c) find the C.V. of-a freq\lency distribution given that its mean IS 120, mode 

is 123 and Karl Pearons's co-efficient of skewness is - 0·3. 
Ans. C. V. = 8·33 
(d) The first three moments of distribution·about the value 2 are 1, 16 and 

40 respectively. Examine tbe skewness of the c.listributiol\. 
8. The fitst three moments about the origin 51 Kg .. ~lculated from the 

data on the weights of 25 college students are 
!AI' = + 0·4 kg., "Ii! .. 1,2 kg. and (u~: )l/~ ::. - 0,25 kg. 

Detemline tbe mean, tbe standar~ c;!evjatio!l anti coefficient oif skewness. 
,. The first tbree moments about the origin are given by 

, n + 1 , (n + 1 ) (2n + 1) n 9 n + 1 )2 
!AI = ~' !A2 = 6 and ~lJ' = 4 

Exaniine the-skewness oftbe data. 
10. fil'ld out the kurtosis of.tbe.data given below: 

Class inten'al .0 - 10 10 - ~O 20 - 30 30 - 40 

Frequency 1 3 4 2. 
11. Data were ootained for distribution of passengers, entering Bombay local 

trains over time at intervals of 15 minutes for momi~g and evening rush hours 
separately, and the following results were obtained. 

Arithmetic mean (Peak Hou,rs) 

Standard deviation 

Coefficient of skewness 

Morning hours 

8 his. 38 min. 

38·5 min. 

Evening /rours 

5 hrs. 40 min. 

34·9 ,min., 

(in 15 min. unit) - 0·32 + 0'17 

Kurtosis measure 2·0 2'2 
Interpret tbe result and discuss givil!g reasons, wbetber you appr9ve of the 

measure of 'peak bour'. 
12. (a) Tbe standard deviation of a symmertrical distribution is 5., What 

must be the value of the fourtb moment about the mean in o~~~r ,bat tlie distribution 
be (i) Leptokurtic, (ii) mesokurtic, and (iii) pliltykurtic. 

Hint. !AI = !A~ = 0 (Because distribution is symmetricai), cJ = 5 ~ 0 2= 
112 = 25 

j.l~ j.l~ 
~2 = -::; = 625 

!A~ 
(i) Distt. is leptokurtic ir.~2 > 3 j.e., if :/_ > 3 => ~ > 1815 
(ii) Distt. is mesokurtic if ~2 = 3 => if ~l.i'< 1875 
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(iii) Distt. is platykurtic if ~2 < 3 ~ if 114 < 1875. 
(b) Find the second, third and fourth central moments of the frequency 

distribution given below., Hence, find (i) a measure of skewness, and (ii) a 
measure of kurtosis (Y2)' 

Class limits Frequency 
110·0 - 114·9 5 
H5·0- 119·9 15 
120·0- 124·9 20 
125·0- 129·9 35' 
130'·0- 134·9 io 
135·0- 139·9 10 
140·0- 144·9 5 

Ans. 112 = 2'16, 113 = 0·804, 114 = 12·5232. 

YI = if. = 0·25298; l'2 = ~2 - 3 = - 0·317. 
13. (a) Define Pearsonian coefficients ~I and ~2 and discuss 'their utility in 

statistics. [Delhi Univ. B.Sc. (Hons.), 1993] 
(b) What do you mean by skewness and kurtosis of a distribution ? Shov. 

that the Pearson's Beta coefficients satisfy the inequality ~2 - ~I - I ~ O. Als( 
deduce that ~2 ~ 1. (Deihl Univ. B.Sc. (Stat. Hons.), 1991: 

(c) Define the Pearson's coefficients YI and Y2 and discuss their-utility il 
Statistics. 

OBJECTIVE TYPE QUESTIOliS 
1. Match the correct parts to make a valid_statement. 
(a) Range (i) «(23 - QI)12 

(b) Q~qrtile Deviation 

(c) 'Mean Deviation 

(d) Standard Deviation 

(iii) 

(iv) 

S.D. x 100-
Mean 

~ r.fj 1 (XI - ;)1 

(e) Coefficient of Variation (v) Xmax - X min 

II. Which value Of 'a' gives the minimum? 
(i) Mean square deviation from 'a' 
(ii) Mean deviation from 'a' , 
IIi. Mean of 100 obse~v~t,ions is 50 and S.D. is 10. What will be the nev 

mea., and S.D., if 
(i) 5 is added to each observation, 
(ii) each observation is multiplied by 3, 
(iii) 5 is subtracted from each observation and then it is divided by 4? 
IV. Fill in the blanks: 
(i) (d) Absolute sum of deviation is minimum- from .......... . 
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(b) Least value of. root mean square deviation is , ........ / ....... . 

(ii) The sum of squares of deviaJions is least When measured from 
I 

................. 
(iii) The sum of 10 items is 12 and the sum of their squares is 1q·9. 
(iv) In any distribution, the standard deviaiion is always ....... ! ......... the 

mean deviation., . 
(v) The relationship between root mean square deviation and standard 

deviation (} is ................ . 
(vi) If 25% of the items are less than 10 and 2~% are mo~e than 40, the 

coefficient of quartile deviation is ................ . 
(vii) The median and stand~rd devilltion of a distribution are 20 and 4 

'respectively. If each item is increased by 2, the median will be ................. and the 
new standard deviation will be ................ . 

(viii) In a symmetric distribution, the mean and the mode are ................ . 
(xi) In symmetric distribution, the upper and, the lower quartiles are equi-

distant from ................ . 
(x) If the mean, mode and standard deviation or a frequencY distribution 

are 41, 45 and 8 respectively, then its pearson's coefficie~t of skewn~ss is 

(xi) For a symmetrical distribution ~l = ................ . 
(xii) If ~z > 3 the distribution is sai'd to be ................ . 
(xiii) For a symmetric distribution 1-'2 = ..••.•........... 

1-'2n +.1 = ., •.••.•......... 
(xiv) If the mean and' the mode of a given distribution are equal t~en its 

coefficient of skewness is ................ . 
(xv) If the kurtosis of a distribution is 3, it is called ................. distribution. 
(xvi) In a perfectly symmetrical distribution 50% of items are above 60 and 

75Ck items are below 75. Therefore, the coeffident of quartile deviation is 
................. and coefficient of skewness is ................ . 

(xvii) Relation betwer-n ~i and '132 is given by ................ . 
V. For the following questions given correct answers : 
(i) Sum of absolute deviations about median is 

(a) Least, (b) greatest, (c) zero, (d) equal. 
(ii) The sum of squares of deviationS is. least When measured from 

(a) Median, (b), (c) Mean, (d) Mode, (e) none'ofthem: 
(iii) In any discrete series (whenalJ the values are not same) the relationship 

between M.D. about mean and S.D. is 
(a) M.D. = S.D., (b) M.D.·~' S.D., (c) ,M.D. < S.D., 
(d) M.D. s S.D. 
(e) None of these. 

(iv) If e~~h Qf a set o( ob~~rva'ions o( a variable is multiplied by a constant 
(non-zero) value, the variance of the resultant variable. 

(a) is unaltered, (b) increases (c) decreases, (d) is u~nown, 
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(v) The appropriate measure whenever'the extreme items, are to be dis-
regarded and when the distribution contains indefinite classes at' the end is 

(a) Median, (b) Mode, (c) Quartile deviation, 
(d) Staqdard Deviation 

(vi) A.M., G.M. and H.M. in any ,series are equal when 
(a) the distribution is symmetric, (b) all the values are sam~, 
(c) tlie distribution is positively skewe(J, 
(d) the distribution is unimodal. 

(vii) The limits for·quartile cOefficient Of skewness' ar~ 
(a) ± 3, (b) 0 and 3, (c) ± 1, (d) ± oc 

(viii) 'The statemerit that the varian'ce' is equal' to the second central moment' 
(a) always true, (b) someti"mes true, (c) hever true, . 
(d) am,biguous. 

(ix) The standard deviation of a distribution 'is 5. The value of the fourth 
central moment ( 14), in order that the distribution be mesokurtic should be 

(a) e9ual to 3, ,(b) greater than 1,875, (c) equal to 1;875. 
(d) less than 1,875. 

(x) In a frequency curve of scores the mode was found to be higher than 
tbe mean. This shows that the distribution is 

(a) Symmetric, (b) negatively ske~edt (c) positvely sJ<<<tw~d, 
(d) nomlal. . ' 

(xi) For any frequency distrfbutlon, the kurtosis is 
(a) greater than 1, (b) less than 1, (c) equal to 1. 

(xii) "The measure of kurtosis is 
(a) ~2 = 0, (b) 132, = ,3, (c) 132 = 4, 

(xiii) For the di'stribution 
(a) 14 = 0, (b) Median ... 0, 
(c) The distribution of x is symmetrical. 

X: - 4 - 3 - 2 - 1 0 
f: 2 4 5 7 10 

(xiv) For a symmetric distribution 

1 
7 

2 
5 

(a) J.l2 = 0, (b) J.l2 > 0; (c) J.l3 > 0 

4 Total 
2 46 

VI. State which ,of the following'statements' are yure and which False. In 
each oHalse,stat~ments given the correct statement 

(i) Mean, standard deviation and .varaince have·the same unit. 
(ii) Standard deviation of every distribution' is unique and always exists. 
(iii) Median is the value ofthe'variance which divides the total frequ~ncy 

it two equal parts. 
(iv) Mean - Mode = 3 (mean - median) is often approximately satisified. 

(v) Mean deviaHon = ~ (standard' deviation) i~ always satisfied. " 

(vi) ~2 ~ 1 is always satisfi!.d 
(vii) 13. = 0 is a conclusivt: test for a distribution to be symmetrical. 
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C~APT.E~ ,,-OUR 

Theory oJ Probability 

4·1. Introduction. I( an e'xperimept is ,repeated under essentially 
homo.geneous and similar conditio.ns we generally co.me, across two. types o.f 
situatio.ns: 

(i) The result o.r what is usually kno.wn as-the 'O.utccUI'Ie' is UIliijue o.r certain. 
(ii) The result is no.t unique but may be o.ne o.f the several possible o.utco.mes. 
The pheno.mena cov~re4 by.Jj) are kno.wn as 'deterministic' or 'predictable' 

pheno.mena By a deterministic pheno.meno.n we m.ean:o.n~ ill whi~1\ ltle result, can 
be predicted with certainty. Fo.r example: 

(a) Fo.r a_~d~t g~, 
1 , 

V oc: p I.e., PV = constant, 

provided the temperature temairi~ the·same. 
(b) The velocity 'v' o.f a:particle after. time 't ' is given by 

v = u +at 
where u is the initial velocity and a is the acc~leratio.n. Thisequatio.n uniquely 
determines v if the.light-hand quantitie~)81'e kno.wn. 

( )Oh ,- La" . C'£ c ms w, VIZ., = ii 
where C is the flow o.f current, E-the potential difference.between the two. ends.o.f 
the conductor and R the resistance, uniquely determines the vallie C as soon as E 
and R are'given: 

A deterministic model is defined as a model which stipulates' that the co.ndi­
tions under which an experiment is perfo.rmed determine the o.utco.me o.f the 
experiment Fo.r a number o.f situatio.ns the deterministic modeitsuffices. Ho.wevef, 
there are pheno.mena [as covered by (U) above] -which do. no.t leml themselves to 
deterministic approach and are kno.wn as 'unpred,ctable' or 'probabilistic' 
pheno.mena. Fo.r ex~,ple l ' 

(i) In tossing o.f a co.in o.ne is not sUre if a head o.r tail wiD- be obtained. 
(Ii) If a light ture has' lasted for I ho.urs, no.thing can be said atiout its further 

life. It may fail to. function any mo.ment 
In such cases we talk o.f chanceo.r pro.babilitY which is't8J(en to'be il quantitative 

measure o.f certaioty. 
4·2. Short· History. Galileo (1564-1642), an Italian m'athematic~, was the 

first to attempt at a quantitative'measure o.fpro.bability while dealing with some 
problems related to the theory o.f dice in gambiing. Bul the flfSt fo.undatio.n o.f the 
mathematical theory ifprobabilily was laid in the mid-seventeenth century by lwo. 
French mathematicians, B. Pascal (1623-1662) andP. Fermat (1601-1665), while. 
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solving a number of problems posed by French gambler and noble man Chevalier­
De-Mere to Pascal. The famous 'problem of points' posed by De-Mere to Pascal 
is : "Two persons playa game of chance. The person who ftrst gains a certain 
number of pOints wins the stake. They stop playing before the game is completed. 
How is,th~ stake to be decided on the.basis of the number of points each has won?" 
The two mathematicians after a lengthy correspondence between themselves 
ultimately solved this problem and dfis correspondence laid the fust foundation of 
the science of'probability. Next stalwart in this fteld was J .. Bernoulli (1654-1705) 
whose 'Treatise on Probability' was publiShed posthwnously by his nephew N. 
Bernoulli in 1719. De"Moivre (1667-1754) also did considerable work in this field 
and published his famous 'Doctrine of Chances' in 1718. Other.:main contributors 
ai'e: T. Bayes (Inverse probability),P.S. Laplace (1749-1827) who after extensive 
research over a number of ·years ftnally published 'Theoric analytique des prob­
abilities' in 1812. In addition 10 these, other outstanding cOntributors are Levy, 
Mises and R.A. Fisher. 

Russian mathematicians also have made very valuable contribUtions to the 
modem theory of probability. Chief contributors, to mention only a few of them 
are,: Chebyshev (1821-94) who foUnded the Russian School of Statisticians; 
A. Markoff (1856-1922); Liapounoff (Central Limit Theorem); A. Khintchine 
(law of Large Numbers) and A. Kolmogorov, who axibmi.sed the 'calculus of 
probability. . 

4·3. DefinitionsorVariousTerms. In this section we wiUdefane and explain 
the various tenns which are used in the'definition of probability. 

Trial and Event. Consider an experiment w~.ich, though repeated under 
essentially identical conditions, does not give unique results but may result in any 
one of the several possible outcomes.The experiment is known as a triafand the 
outcomes are known as events or casts. For example: 

(i) Throwing of a die is a trial and getting l(or 2 or 3, ... or 6) i~'an event 
(ii) Tossing of a coin is a trial and getting head (H) or tail (T) is an event 

'(iii) Omwing two cards from a pack of well-shuffled· cards is a.trial.and 
getting a .. iqng and a q~n are events. 

Exhaustiye Events. The !ptal number of possible outcomes in ~y trial ~ 
known il$ exhaustive events or ~ltaustive cases. For exampl~ : 

(;) II) tossing of a coin there are two exhaustive cases, viz., head and. tai1[ 
(the possibiljty of the co~ ~tanding on an edge being ignOred). 

(ii) In throwing of a die, there are six, ~xhaustive cases since anyone of the 
6 faces 1,2, ... ,6 may come uppermost. 

(iii) In draw!ng two cards from a pack of cards the ~x~.austive nwnberO( 
cases is 'lCZ, since 2 cards can be dmwn out of 52 cards in ,zCz ways. ~ 

(iv) In tlu'9wing of ~o dice, the exhaustive number of cases is 62 = 36, 
since any of the 6 numbers 1.1.Q 6 on. the fustdie.can be associated with any oftbr 
six numbers on th~ other die. 

prakash
Rectangle
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In general in tI1rowing of n dice th~ exhaustive number 9f cases is 6A
• 

Favourable Events or Cases. The number of cases favourable to an event'in 
a ttial is the number of outcomes which entail the happening of the event For 
~ample, 

(i) In drawing a card from a pack of cards'the number of cases favourable 
to dra\,Ving of an ace is 4, for drawing a spade ~ 13 and for dr~wing a red card is 
26. 

(ii) In throwing ot'two dice, the number of cases favourable to getting the 
sum 5 is : (1,4) (4,1) (2,3) (3,2), i.e., 4. 

Mutually exclusive events. 'Events are said 'to be mutually exclusive or 
incompatible jf the happeJ:li~g of anyone of them precludes the happening of all 
the others (i.e., if no two Or mOre of them can happen simultarleousIy in the same. 
u:iaI;-For example: 

(i) In throwing a die all tl)e 6 faces'numbered 1 to 6 are mutually exclu­
sive since if anyone of these faces comes, ,the possibility of otliers, in the same 
uial, is ruled out 

(a) Similarly in tossing it roih the events head and tail are mutually exclu­
sive. 

Equally likely events. Outcomes of a trial are set to be equally likely if taking 
into consideration all the 'relevant evidenc~ .. there is no reason to expect one in 
preference-to the others. For example w 

(i) In tossing an·unbiased or unifonn com, head or tail ate ~uatly likely 
events. • 

(a) In throwing an unbiased die, all the six faces are equally likely to'come. 
Independent events. Several ev.ents are said 'to be indepeildtnt if the 

happening (or non-happening) of an 'event is 'not affected by the ~..w.lementary 
knowledge concerning the occurrence of any n\llllbet: of the remaining events. For 
example 

. (i) In tossing .. an un1;>iased cpin the event of.g~tin,g Jl head in the flrSt toss 
is independent of getting a head,in the s~nd, third and subsequent throws. 

(ii) ~f we draw a card from ,a ~lc of well-shuffled cards apd.replace it 
before dr!lwing. the secQnd card, th~ trsult of the seco~d draw is indepcfnden~ of 
the fIrSt draw. But, however, if the first card draWn is not replaced then the second 
draw is dependent on the first draw. . • 
.. ·3·1. Mathemat,ical or Classical or ~a·priori~ rrobabalitY 

Definition. If a ttial results in n exhaustive, mutually exclusive and equally 
likely cases an<J m 9f them are favourable to the happening of an event E. ·then -the 
probability 'p' of happening of E is.given by 

I .. it'! J 

= P (E) = Favourable number of cases = m . 
p. Exhaustive number of cases n .... (4·1) 

Sometimes we express (4-1) by saying that 'the odds in favour of E are m :-
(11- m ) or the odds against E are ( n - m): n/' ' 
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Since the nUqlber of cases favoura~le to the 'non-happening' of the event E 
are.( n - m ) ,the probabjlity 'q' that,E will qot happen is given by 

n-m m q=--=l--=l-.p =) p.+ q=U 
n n ... ,(4·la) 

Obviously p as well as q iU'e non-negative aIld cannot exceed unity, i.e, 
o ~ p ~ I .. 0 ~ q~' 1. 

Re,narks. 1. Probability 'p' of the happening of an event is also known as 
the probability of success'and the PfObability 'q' of the non- happening of,tile event 
as the probability of failure. 

2. If P (E) = 1 , E is called a certain event and if P (E) = 0, E is called an 
impossible event. 

3. Limitations of Ciassieal Definition. This definition of Classic8I Prob­
ability breaks down in the following cases : 

(i) If the various outcomes. of the trial are not eqQ3lly likely· or equally 
probable. For example, the probability that a c~didate will pass iI) a certain test is 
not 50% since the two possible outcomes, viz., sucess and failure (excluding the 
possibility of a c~partment) are not equally likely. 

(ii) If the exhaustive number of cases in a trial is infinite. 
4·3·1 •. Statistical or Empirjcal Probability 

Definition (Von Mises). If a trial is' repeated. a number 0/ times under 
essentially homogeneous and identical conditions; then the limiting value 0/ the 
ratiO of'(he number 0/ times the event-happens to the number 0/ trials, as the 
number 0/ trials become indefinitely large, is called the probability 0/ happeniflg 
0/ the, event. (It is asSUl7U!d tMt the limit is finite and unique). 

Symbolically, if in n trials an event E happens m times,. then the probability 
'p' of the happening of E is given by 

p = P (E) = limit !!! 
II~ n .... (4.2) 

'Example 4:1. What is the chance that ~ leap year sele::ted at rfJltdom will 
contain 53 Sundays? 

Solution. In a leap year (which consists of 366 days) there'are 52 complete 
YI«ks and 2 days over. The following are the P,Ossible combinatioqs for these twO 
'over'days: 

(i) Sun~y and Monday, (ii) Monday and Tuesday, (iii) T~esday' and Wed­
nesday, (iv) Wednesday and Thursday, (v) Thurs~y and Friday, (vi) Friday and 
Saturday, and (vii) Satwday and Su~y. 

In order that it leap year selected at random should contain 53 S~ys, one of 
the two 'over" days muSt be SW,l~y. Since out of the above 7 possibilities, 2 vii., 
(0 and (vii), are favourable to this event, 

• • Required RfObability = ~ 

J 
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Example 4,2. A bag contains 3 red, 6 white and 7 blue balls, What is the' 
probability that two balls drawn are white and blue? 

Solution. Total number of balls = 3 + 6 + 7= 16, 
Now, out of 16 balls, 2 can be drawn in ItlC2 ways, 

, 16 16 x 15 
, . Exhausuve number of cases = C2 = 2 - 120, 

Out of 6 while balls 1 ball can be drawn in tiC I ways and out of 7 blue balls 1 
ball can be drawn in 7CI ways. Since each of the fonner cases can be assoc~:ed 
with each of the latler cases, total number of favourable cases is: tlCI x 7Ct 

= 6x7= 42, 

R ' ed b b'li 42 7 eqUlr pro a I ty= 120 = 20' 

Example 4,3. (a) Two cards are drawn 'at random from a well-shuJPed pact 
of 52 cards, Show that lhe chance of drawing two aces is 11221, 

(b) From a {kick of 52 cards, three are drawn at random, Find the chance 
that they are a king, a queen and a knave, 

(c) Four cards are u·3wnfrom a pack of cards, Find tMprobability that 
(i) all are diamond, (ii) there is one card of each suit, and (iii) there are 

two spades and two hearts, 
Solution. (a) From a pack of 52 cards 2 cards can be drawn -in S2C2 ways, 

all being equally likely, 
, , Exhaustive number of ·cases =. 52C2 
In a pack there are 4 aces'and therefore 2 aces can be drawn iit 

R ' ed b b'l' ·C2 4 x 3 2 
" eqUlr pro a Iity = S2C2 = -2- x 52 x 51 

(b) Exhaustive number of cases .= 52C, 
I 

A pack of cards contains 4 kings, 4 9\leens and 4 knaves. A king, a queen and 
a knave can each be drawn in ·CI ways and since each way of drawing a king can 
be associated with each of the w~ys of drawing a queen and Ii knave, the total 
numberoffavourablecases=·CI x·CI x ·CI 

R 'ed bab'l' _ ·CI x-·G1'X·CI 4 x4 x.4 X6_~ 
, , equlli pro J Ity - 51C, = 52 x 51 x 50 - 5525 

(c) Exhaustive number of cases = SlC. • 

(i) 

(ii) 

(iii) 

Required probability = 13C. 
SlC. 

13C 13C 13,.. 13C 
R 'red bab'l' ~ x I X .,..1 X L eqUJ pro Ilty=---""'"'------::S::---'---

• 2C. 
13CZ X 13C2 

Required probability = --:::---
52C •. 
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Example 4·4. What is the probability of getting 9 cards of the same suit in 
one hand at a game of bridge? 

Solution. One hand in a game of bridge consists of 13 cards. 
:. Exhaustive number of cases = SlC13 
Number of ways in which, in one hand, a particular player gets 9 cards of one 

suit are 13C, and the number of ways in which the remaining 4 cards are of some 
other suit are 39C4. Since there are 4 suits in a pack of cards, total num\:ler of 
favourable cases = 4 x nC, x 39C4. 

4x nC x 39C 
Required probability = ' .. 

SlCn 

Example 4·5. (a) Among the digits 1,2,3,4,5, atfirst one is chosen and then 
a secon,d selection is made among the remaining foUT digits. Assuming t!wt all 
twenty possible outcomes have equal probabilities,find the probability'tllDt an odd 
digit will be selected (i) tIlL. first time, (ii) the second time, and (iii) both times. 

(b) From 25 tickets, marked with the first 25- numerals, one is drawn at 

random. Find the chance that 
(i) it is a multiple of 5 or 7, 
(ii) it is a multiple of3 or 7. • 

Solution. (a) Total number of cases = 5 x 4 = 20 
(i) Now there are 12 cases in which the first digit drawn is·O(Id, viz., (1,2). 

(1,3), (1,4), (1,5), (3, 1), (3, 2), (3,4), (3, 5), (5, 1), (5, 2), (5, 3) and (5,4). 
:. The probability that the flTSt digit drawn is odd 

12 3 
= 20= '5 

(ii) Also there are 12 cases in which the second digit dtawn is odd" viz .• 
(2, 1), (3, 1), (4, 1), (5,1), (1, ~), (2, 3), (4, 3), (5, 3), (1, 5), (2, 5), (3,5) and (4, 5). 

. . The probability that the second digit drawn is odd 
12 3 

= 20 = '5 
(iii) There are six cases in which both the digits drawn are odd, viz., (1,3), 

(1,5), (3, 1), (3, 5), (5, 1) and (5, 3). 
:. The probability that both the digits drawn are odd 

6 3 
=20=10 

(b) (i) Numbers (out of the first 25 numerals) which are multiples Of 5 are 5, 
10. 15,20 and 25, i.e., 5 ~n all and the numbers which are multiples of 7 are 7. 14 
and 21, i.t., 3 in all. Hence require(f'number of favourable cases are 5+3=8. 

. . Required probability = ~ 
(ii) Numhers ~among the first 25 numerals) which are multiples of3 are 3, 6, 

9, 12, 15, 18,21,24, i.t., 8 in all, and the numbers which are multiples of 7 are 7, 
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14,21, i.e., 3 in all. Since the number 21 is common ill both the cases, the required 
number of distinct favourable cases is 8 + 3 - 1 = 10. 

R 'd b b'l' 10 2 .. equrrc pro a 1 rty = 25 .= '5 
Example 4·6. A committee of 4 people is to be appointed from J officers of 

the production department, 4 officers of the purchase department, two officers of 
the sales department and 1 chartered aCCOi4ntant, Find the probability offoT1ning . 
the committee in the following manner: 

(i) There must be one from each category. 
(U) It should have at least one from the purchase department. 
(iii) The chartered accountant must be in the committee. 
Sol"tion. There are 3+4+2+ I = I 0 persons ~n ull and a committee of 4 people 

can be fonned out of them in 10C" wa)'$. Hence exhaustive number eX cases is 

10C" = 10 x 9 x 8 x 7 :.: 210 
4! 

(i) Favourable number of cases for the committee to consist of 4 members, one 
from each category is : 

"CI x 3CI X lCi X 1 = 4 x 3 x 2 = 24 

R . ed b b'l' 24 8 
eqUlf pro a I Ity = 210 = 70 

(ii) P [Committee has at least onc purchase officerl 
= 1 - P [Committee has no purchase officer] 

In order that the committee has no purchase officer, all the 4 members are to 
be selected from amongst officers of production department, saJes department and 
chartered accountant, i.e., out of 3+2+1=6 members aM this call be done in 
~ 6x5 
C. = 1 x 2 = IS ways. Hence 

P [ Committee has no purcha:;e officer J = ;:0 = 1~ 

.. P [ Committee has at least one purch.tse officer] = 1- I~ = +~ 
(iii) Favourable number ofrcases that ,the committee consists of a chart.eroo 

accountant as a member and three odt~rs are : 

I x 'C3 = ~~.? = 84 wuys 
Ix2x3 ' 

sin<:e a chartered accountant ('.an be selected out of one chartered accountant in on t y 
1 way and the remaining :3 men~bers atn be .selecred out of the remainin5 

10 - 1= 9 persons in tC3 ways. Hence the required probability = ::0 = ~. 
Example 4·7. (a) If the letters of the word 'REGULATIONS' be am-4".ged at 

randcm, what is'lhe chan~ that there will be exa:tly 4 letters hetween R and ~? 
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(b) What is the probability that four S's come consecutively in the word 
'MISSISSIPPI' ? 

Solution. (a) The word 'REGULATIONS' consists of II letters. The two 
letters Rand E can occupy llp2 , i.e. ,II x 10 = 110 -p0sitions. 

The number of ways in which there will be exactly 4 letters between Rand E 
are enumerated below: 

(i) R is in the 1st place and E is in the 6th place. 
(ii) R is in the 2nd place and E is in the 7th place . 

. ~ .. 

(vi) R is in the 6th place and E is in the 11th place. 
Since Rand E can inte~hange their positions, the requited number of 

favourable cases is 2 x 6 = 12 
Th ired bab'I' 12 6 .. erequ PCQ 1 tty = Uo = ss. 

('» Total number of permutations of the llietters of the word 'MIS~/S.§IPPI', 
in which 4 are of one kind (viz., S)., 4 of othe~ kind (viz., I), 2 of third kind 
(viz., P) and I offourth kind (viz., M) are 

11! 
4! 4! 2! ~! 

Following are the 8 possible combinations of 4-S's coming consecutively: 
ff) $ S $ ~ 

(ii) S S S S 
(iii) S S S S 

(viii) S • S S S 
Since in eac~ of the above cases, the total number of arrangements of the 

remair.ing 7 letters, viz." MIIlPPl of which 4 -are of one kind, 2 of other kind 

and cne ·Jf tJlird kind are 4! ~: I! ' the required nwnber of favourable cases 

8 x 7! = 4! ~! I! 
R 'red b bT 8 x 7! II! 

equt pro a 1 lty = 4! 2! I! + 4! 4! 2! I! 

.. 8x7!x4! 4 
= 11 ! = 165 

Ex&mple 4·8. Each coefficient in the equation td- + bx + c = 0 is deter­
, ined by throWing an ordinary die. F.in4 the probability that the· equation will 

nave real roots. [Madras Univ. B. Sc. (Stat. Main), 1992] 
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Solution. The roots of the eqmltion ax2 + bx + c = 0 ... ( *) 
will be real if its discriminant is non-negative, i.e., if 

b2 -4ac ~ 0 ~ b2 ~ 4ac 
Since each co-efficient in equation (*) is detennined by throwing an ordinary 

die, each of the co-efficients a, b and c can take the values ftOm 1 to 6. 
:. Total number of possible outcomes (all being equally likely) 

= 6x6x6 = 216 
The number of favourable cases can be enumerated as follQws: 

ac a c 4ac b No. of cases 

( so that b2 ~ 
1 1 1 4 2, 3, 4, 5 
2 (,) 

i! 
2 

8 3,4,5,6 
(il) 1 

3 (0 3 12 4,5,6 
(ii) 1 

4 (,) 

l~ 
4 

(il) 1 .16 4,5,6 
(iil) 2 

5 (,) g 5 20 5,6 
(li) 1 

6 (i) 

{i 
6 

(il) 1 24 5,6 
(iiI) 2 
(iv) 3 

7 (ac = 7 is not possible ) 

8 (l) F 4 32 6 
(il) 4 2 

9 3 3 36 6 

4ac) 
1 x 5= 5 

2 x 4=8 

2 x 3=6 

3 x 3=9 

2 x 2= 4 

4 x 2= 8 

2 x 1 = 2 

1 

Total = 43 

Since b2 ~ 4ac and since the maximum value of b2 is 36, ac = 10, 11, 12, ... 
etc. is not possible. 

Hence total number of favourable cases = 43. 

" Required probability = ;:6 
Example 4·9. The sum of two non-negative quantities is equal to 2n. Find the 

chance that their product is not less than ~ times their greatest product. 

Solution. Let x > 0 and y > 0 be the given quantities so that x + y = 2n. 
We know that the product of two positive quantities whose sum is cQnstant is 

greatest when the quantities are equal. Thus the product of x and y is maximum 
whenx= y= n. 
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Maximum product = n. n = n'l 

P [ xy < * n'l] = P [ xy ~ * n2 
] = P [ x (2n - xJ~ i n2 

] 

= P H 4r - 8nx + 3n2):s OJ 
= P [(2t - 3n)(2x - n) :S OJ 

= P [ x lies between ~ and 3;] 
3n n 

Favourable I3Jlge = "2 - '2 = n 

TQtall3Jlge=- 2n 

Required probability = .!!... = ! 
2n 2 

Example 4·10. Out of (2n+ 1) liclcels consecutively numbered thiee are drawn 
at random. Find tM chance that the numbers on tMm are in A.P. 

[Calicut Univ. B.Sc., 1991; Delhi Univ. B.Sc.(Stat. HODS.), 1992] 
Solution. Since out of (2n + 1) tickets, 3 tickets can b€f drawn in 2n + lC3 

ways, 

Exhaustivenumberofcases:2n+1C3= (2n + 1) 2n (2n - U 
3 ! 

-_ n (4n2 -1) 
- 3 

, 

To find the favourable number of cases we are to enumerate all the cases in 
which the numbers on the drawn tickets are in AI' wid) common difference, (say 
d= 1,2,3 •...• n-l,n). 

If d = 1, the possible cases are as follows: 
. 1, 2, 3 

2, 3, 4 

, i.e., (2n - 1) cases in all 

2n - 1, n. '2n + 1 

If d = 2, the possible cases are as follows: 

1, 3. 5 
2, 4, 6 

, i.e., (2n - 3) cases in all 

2n-3, 2n-l, 211+ 1 

and soon. 
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If d:= /1- I, the possible cases are as follows: 

2, n +], 211 • i.e., 3 cases in all 
I, n, 211-1 l 
3. II + 2, 211 + I 

If d ::: n, there is only one case, viz .• (l, II + 1. 2n + I). 
Hence total number of favourable cases 

= (211 ~ 1) + (2n - 3» + ... + 5 + 3 + 1 
= I + 3 + 5 + .... + (211 - 1), 

which is a series in A.P. with d = 2 and II terms. 

:. Number of favourable cases := i [I + (211 - I)] = 112 

. d b bT 112 311 
:. ReqUire pro a I Ity = II (4112- 1)13 - (4112_1) 

EXCERCISE 4 (a) 

4·11 

1. «(1) Give the classical and stati"stical definitions of probability. What are 
the objections raised in these definitions? 

[Delhi Univ. B.Sc. (Stat. Hons.), 1988, 1985) 
(b) When are a number of cases said to be equalIy likely7 Give an example 

each, of the following: 
(i) the equally likely cases., 

(it) four cases which are not equally likely, and 
(iit) five ca~es in which one case is more likely than the other four. 

(c) What is meant by mutually exclusive events? Give an example of 
(I) three mutually exclusive events, 

(ii) three events which are not mutualIy exclusive. 
[Meerut Univ. B.Sc. (Stat.), 1987] 

(d) Can 
(i) events be mutually exclusive and exhaustive:? 

(it) events be exhaustive and indepenene! 
(iii) events be mutually exclusive and independent? 
.(il') events be mutua1\y exhaustive, exclusive and independent:? 

2. (a) Prove that the probability of obtaining a total of 9 in a'single throw 
with two dice is one by nine. 

(b) Prove that in a single throw with a pair of dice the probability of getting 
the sum of7 is equal to 1/6 and the probability of getting the sum of 10 is equal 
to 1112. 

(c) Show that in. a single throw with two dice, the chance of throwing more 
than seven is equal to that of throwing less than seveh. . 

Ans.51l2 [Delhi Univ. B.Sc., 1987, 1985] 
(d) In a single throw with two dice, what is the number whose probability 

is minimum? 



4-12 Fundamentals of Mathematical Statistics 

(e) Two persons A and B throw three dice (SIX faced). If A throws 14, findB's 
chance of throwing a higher number. [Meerut Univ. B.Sc.(Stat.), 1987] 

3. (a) A bag contains 7 white, 6 red and 5 black balls. Two balls are drawn at 
random. Find the probability that they will both be white. 

Ans. 21/153 
(b) A bag contains 10 white, 6 red, 4 black and 7 blue balJs. 5 balls are drawn 

at random. What is the probability dlat 2 of them are red and one black? 
ADS. 'C2 x 4CI/ %1Cs 
4. (a) From a set of raffle tickets numbered 1 to 100, three are drdwn at random. 

What is the probability that all the tickets are odd-numbered? 
Ans. soC, /IOOC3 

(b) A numtler is chosen from each of the two sets : 
(1,2,3,4,5,6,7,8,9); (4,5,6,7,8,9) 

If Pl' is the probability that the sum of the two numbers be 10 and P2 the 
probabili~y that their sum be 8, fmd PI + P2. 

(c) Two different digits are chosen at random from the set 1.2.3, ... ,8. Show 
that the prol:ability that the sum of the digits will be equal to 5 is the same as the 
probability that their sum will exceed 13, each being 1/14. Also show that the 
chance of both digits exceeding 5 is 3/28. [Nagpur Univ. B.Sc., ~991] 

5. What is the chance that (i) a leap year selected 8t random will contain S3 
Sundays? (a) a non-leap year selected at random would contain 53 Sundays. 

Ans. (i) 2fT, (ii) In 
6. (a) What is the probability of having a knave and a queen when two cards 

are drawn from a pack of 52 cards? 
ADS. 8/663 
(b) Seven cards are drawn at random from a pack of 52 cards. What is the 

probability that 4 will be red and 3 black? 
Ans. 26C4 x 211iC3 /S2C, 
(c) A card is drawn from an ordinary pack and a gambler bets that it is a spade 

or an ace. What are the odds against his winning the bet? 
Ans. 9:4 
(d) Two cards are drawn from a pack of 52 cards. What is the chance tIlat 

(i) they belong to th: same suit? 
(ii) they belong to different suits and different denominations. 

[Bombay Univ. BoSe., J986) 

7. (a) If the letters of the word RANDOM be arranged at random, what is the 
chance ~t there are exactly two 1eue~ between A and O. 

(b) Find the probability that in a random arrangement of the leters of the wool 
'UNIVERSITY', the two I's do not come together. 
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(c) In random arrangements of the letl~rs of the word 'ENG~ING' • what 
is the probability that vowels always occur together? 

[Kurushetra Univ. D.E., 1991] 
(d) Letters are <trawn one at a time from a box containing the letters A. H. M. 

O. S. T. What is the probability diat the letters in the order drawn spell the word 
'Thomas'? 

8. A letter is taken out at random out ol· ASSISTANT' and a letter out of 
'STATISTIC'. What is the chance that they are the same letters? 

9. (a) Twelve-persons amongst whom are x and y sit down at random at a 
round table. What is \he probability that there are two persons between x and y? 

(b) A and B stand in a line at random with 10 other people. What is the 
probability that there will be 3 persons between A and B? 

10. (a) If from a lot of 30 tickets marked 1.2. 3 •...• 30 four tickets are drawn. 
what is the chance that those marked 1 and 2 are among them? 

Ans. 2/145 
(b) A l>ag contains 50 tickets numbered 1.2.3 •...• 50 of which five are 

drawn at raq<tom and arranged in ~ending order of the magnitude (Xl < X2 < X3 

< X4 < xs). What is the probability that X3 = 30i 
Hint. (a) Exhaustive number of cases';' soC. 
If. of the four tickets draWn. two tickets bear the numbers 1 and 2. the re~aiping 

2 must have come out of 28 tickets numbered from 3 to 30 and this can be done in 
18C2 ways. 

. . Favourable number of cases = ·C2 

(b) Exhaustive number of-cases = 50Cs 
Ifx, = 30. then the two tickets with numbers Xl andx2 must have come out of 

29 tickets numbered from 1 'to 29 and this can be done in 29C2 ways. and the other 
two tickets with numbers x. andxs must have been drawn out of20 tickets numbered 
from 31 to 50 and this can be done in 2OC2 ways. 

.. No. of favourable cases = "Cz x 2OC2• 
11. Four 'persons are chosen ar random from a group containing 3 men. 2 

women and t\ children. Show that the chance that exactly two of them will be 
Children is 10/21. [Delbi Univ. B.A.I988] 

A ·C2XSC2 10 
ns. , =-

C. 21 

11. From a group of 3 Indians. 4 Pakistanis and 5 Americans a ~ub-com­
miuee of four people is selected by lots. Find the probability that the sub-committee 
win consislof 

(i) 2 Indians and 2 Pakistanis , 
(it) 1 Indian.l Pakistani and 2 Amepcaqs 
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(iii) 4 Americans [Madras Univ. B.Se.(Main Stat.), 1987] 
3C x 4C 3CI X 4C1 X SC2 Sc 

Ans. (i) 2 2 ,(ii) " (ii.) __ 4 
12C4 12C4 12C4 

13. In a box there are 4 granite stones, 5 sand stones and.6 !>ricks of identical 
size and shape. Out of them 3 are chosen at random. Find the chance that : 

(i) They all belong to different varieties. 
(ii) They all belong to the4Same variety. 

(iii) They are all granite stones. (Madras Univ. B.Se., Oct. 1992) 
14. If n people are seated at a round table, what is the chance that two named 

individuals will be next to each other? 
Ans. 2/(n-l) 
15. Four tickets marked 00, 01, 10 and 11 respectively are placed in a bag. A 

ticket is drawn at random five times, being replaced each time. Find th,e probability 
that the sum of the numbers on tickets thus drawn is 23. 

[Delhi Univ. B.Sc.(Subs.), 1988] 
16. From a group of 25 persons, what is the prob~i1ity that all 25 will have 

different birth4ays? Assume a 365 day year and that all days are equally likely. 
[Delhi Univ. B.5c.(Maths Hons.), 1987] 

Hint. (365 x 364 x ... x 341) + (365)15 
4·4. Mathematical Tools: Preliminary Notions or Sets. The set theory was 

developed by the German mathematician, G. Cantor (1845-1918). 
4·4·1. Sets and Elements 0( Sets. " set is a well defmed collection or 

aggregate of all possible objects having giv(' 1 properties and specified according 
to a well defined rule. The objects comprisin~ a set are called elements, members 
or points of the set Sets are' of ten denoted by c''PitaI letters, viz., A, B, C, etc. If x 
is 8..1 element of the set A, we write symbolically x E A (x belongs. to A). If x is not 
a member of the set A, we write x E A (x does not belong to A). Sets are often 
described by describing the properties possessed by ~ir members. Thus the set 
A of all non-negative rational numbers with square less than 2 will be written as 
A ={x: xrational,x ~ O,~ < 2}. 

If every element of the set A belongs to the set B, i.e., if X.E A ~x E B, then 
we say that A is a subset of B and write symbolically A ~ B (A is contained in B) 
or B :2 A (B contains A ). Two sets A and B are said to be equq/ or identical if 
A~ B andB~A andwewriteA=BorB=A. 

A null or an empty set is one which does not contain any element at all and is 
denoted by +. 

Remarks. 1. Ev~ry set is a subset of it'self. 
2. An empty set is subset of every set. 
3. A set containing only one element is :onceptually distinct from the element 

itself, but will be represented by the sarm. symbol for the sake of convenience. 
4. As will be the case in all our applications of set theory, especially to 

probability theory, we shall have a fIXed set S (say) given in advance, and we shall 
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be concerned only with subsets of this given set. The underlying set S may vary 
from one application to another! and it will be referred to as universal set of each 
particular discourse. 

4.4·2, Operation on Sets 
The union of two given sets A and B, denoted by A u B, is defined as a set 

consisting of all those points which belong to either A or B or both. Thus 
symbolically. 

AuB={x :xeAorxeB). 
Similarly 

" u Ai = (x : x e Ai for at least one i = I • 2 , ... , n ) 
i= 1 

The intersection of two sets A and B, denoted by A () B. is defined ag a set 
consisting of all those elements which belong to both A and B. Thus 

A ()B = (x: x e A and x e B) .. 
Similarly 

" ('\ Ai = ( x : x e Ai for all i = 1, 2, ...• n) 
i= 1 

For example, irA = (I. 2. 5. 8. 10) and B = (i. 4. 8. 12). thell 
AuB = (l.2.4.5,8.IO.12) andA() B:i: (2.8). 

If A and B have no common point. i.e., A () B ~ •• then the sets A and Bare 
said to be disjoint, mutually exclusive or non-overlapping. 

The relative difference of a setA from another setB, denoted by A-B is defined 
as a set consisting of those elements of A which do not belong to B. Symbolically. 

A-B= {x :xe Aandx~ B}. 
The complement or negative of any set A, denoted by A is it set containing all 

elements of.the universal setS. (say). that are not elements of A, i.e .. if == S -A. 
4·4· 3, Algebra or Sets 
Now we state certain imponant properties concerning operations on sets. If A, 

Band C are the subsets of a universal set S. then the following laws hold: 
Commutative Law A uB=BuA.A ()B=B()A 
Associative Law (A () B) u C = A u (B Y C) 

(A ()B) () C=A () (B ()C) 
Distributive Law A () (B u C) = (A () B) u (A .() C) 

A u (B () C) = (A u B) () l-\ u C) 
Complementary Law : A u A = S • A () A = • 

Au S=S ,( ',' A =S> ,A ()S=A 
Au.=A.A().=. 

Difference Law A - B = A () B 
A - B = A - (A () B) = (A u B) - B 

A - (B-C) = (A -B) u(A - C). 
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(A u B) - C = (A - C) u (B - C) 
A - (B u C) = (A - B) ()(A - C) 

(A () JJ) u (A - B) = A , (A () B) () (A - B) = ~ 
De-Morgan's Law-Dualizalion Law. 

(A u B) = A () B and """'(A-()-'B=) = A u B 
More generally / 

n n n n 
( U Ai) = () Ai and ( () Ai) = u Ai 

;=1 ;=1 ;=1 ;=1 

Involution Law 
ldempotency Law 

(A) = A 
AuA=A, A()A=A 

4·4·4. Limit or Sequence or Sets 
Let (A-) 'be a sequence of sets in S. The limit supremum or limit superior of 

Ithe sequence , usually written as lim sup A., is the set of all those elements which 
belong to A. for infmitely many n. Thus 

lim sup A. = { x : x E A. fqr infmitely many n } J 

n-too . . .. (4·3) 
The set of all those elements which belong to A. for all but a finite number of 

n is called limit infinimum, or limit inferior of the sequence and is denoted by lim 
inf A •. Thus 

lim Inf A. = (x: x E A- for all but a finite number of n ) 
n-too ... (4·3 a) 

The sequence {An} is said to have a limit if and only if lim sup A. 
= lim inf A. and this common value gives the limit of the sequence. 

GO ... 

Theorem 4·1. lim sup An = () ( U An) 
1ft = 1 n=1ft 

GO ... 

and lim inf ~n = U ( () An) 
1ft = 1 n=1ft 

Der. {A.} is a monotone (infinite) sequence of sets if either 

(i) A.cAul V n or (ii) A.:::>A.+1 V 11. 

In the former case the sequence (An) is said to be IIOII-decreasing seq~nce 
and is usually expressed as A. i and in ~ latter case it is said to be lIOn-increasing 
sequence and is ~xpressed as A.J. • 

For a monotone sequence (non-increasing or non-decreasing), the limit always 
exists and we have, 

lim A.= 
n-.-

... 
u A- in case (i), i.e., A-i 

n=1 .. 
() A. in c~ (ii), i.e., A.J. 

nod 
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4·4·5. Classes of Sets. A group of sets wi1l be tenned as a class (of sets). Below 
we shall define some useful typeS of clas~ 

A ring R is a non-empty class of sets which is closed under the fonnation of 
'finite unions' and 'difference', 

i.e., if A E R, B E R, then A u B E R and A - B E R . 
Obviously ~ is a member of every ring. 
A[r.eld F (or an algebra) is a non-empty class of sets which is closed under 

the formation of finite unions and under complementation. Thus 
(i) A E F, B E F => A u B E F and 
(ii) A E f => A E F. 

A a-ring C is a non-empty class of sets which is closed under the formation 
of 'countable unions' and 'difference'. Thus 

00 

(i) Ai E C. i = 1. 2,... => u Ai E C 
i= 1 

(ii) A E C, B E C => A - B E C. 
More precisesly a-ring is a ring which is closed under the fonnation of 

countable unions. 
A a field (or a-algebra) B is a non-empty class of sets that is closed under 

the formation of 'countable unions' and complementations. 
i.e., 

00 

(i) A; E B, i = I, 2,... => u' Ai E B. 
i= 1 

(ii) A e B => A e B. 
a-field may also be defined as a field which is closed under the formation of 

countable unions. 
4·5. Axiomatic Approach 10 ,Probability., The axiomatic approach to pro~ 

ability, which closely relates the'tnooiy of probability with'the modern metric 
theory of functions and also set theory, was proposed by AN .. Kolmogorov, a 
Russian mathematician, in 1933. The axiomatic definition of probability includes 
'both' the classical and the'statistical definitions as particular cases and overcon,es 
the deficiencies of each of them. On this basis, it 'is possible to construct a 10gicaHy 
perfect structure of the modern theory of probability and at the same time to satisfy 
the enchanced requirements of modern natural science. The axiomatic develop­
ment of mathematical theory of probability Telies entirely upon the logic of 
deduction. . 

The diverse theorems of probability, as were avaHilble prior to 1933, were 
fmally brought together into a unified axiomised system in. 1933. It is important to 
remark that probability theory. in common with all ,axiomatic mathematical sys­
tems, is concerned solely with relations among undefined things. 

The axioms thus provide a set -of rules which define relationships betweer: 
abstract entities. These rules can be used to deduce theorems, and the theorems can 

prakash
Rectangle
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be brought together to deduce more complex theorems. These theorems have no 
empirical meaning although they can be given an interpretation in terms of 
empirical phenomenon. The important point, however, is that the mathematical 
development of probability theory is, in no way. conditional upon the interpretation 
given to the theory. 

More precisely. under axiomatic approach. thf probability can be deduced 
from mathematic31 concepts. To start with some concepts are laid down. Then some 
statements are made in respect of the properties possessed by these concepts. These 
properties. often ten;ned as "axioms" of the theory. are used to frame some 
theorems. These theorems are framed without any reference to the real world and 
are deductions from· the axioms of the thOOcy. 

4·5·1. Random Experiment, Sample Space. The theoiY of probability 
provides mathematical models for "real·world phenomenon" involving games of 
chance such as the tossing of coins and dice. We feel intuitively that statements 
such as 

(i) "The probabi~ity of getting a "head" in one toss of an unbiased coin is Ill" 
(ii) "The probability of getting a "four" in a single toss of an unbiased die is 

1/6". 
should hold. We also feel that the probability of obtaining either a "S" or a "6" in 
a single throw of a die. shoul~ be the sum of the probabilities of a "S" and a ':6". 
viz., 1/6+ 1/6= 1/3. That is, probabilities should have some kind of additive property. 
Finally, we feel that in a large number of repetitions of, for eXaplple, a coin tossing 
experiment, the proportion of heads should be approximately Ill. 1 hat is. the 
probability should have a/requency interpretation. 

To deal with these properties sensibly. we need a mathematical description or 
model for the probabilistic situation we have. Any such probabilistic situation is 
refened to as ~'random experimeTU. denoted by E. E may be a coin or die throwing 
experiment, drawing of cards from a well·shuffled pack o( cards. an agricultural 
ex~riment to determine the effects of fertilizers on yield of a commodity. and so 
on. 

Each performar,ce in a random experiment is called a trial. That is. aU the trials 
conducted under the same set of conditionS form a random experiment. The result 
of a trial in a random experiment is called an outcome, an elementary, event or a 
<;"'mple point. The totality of all possible outcomes (i.e., sample points) of a random 
ex:.~riment constitutes the sample ~pace. 

Suppose et, el • .... e. are the possible outoomes of a random experiment E such 
that no two or more of them can occur simultaneously and exactly one of the 
'outcomes el. e1, .. ~. e. must occur. More specificaUy, with an experiment E, we 
associated a set S = (elt el, ... , e.) of possible outcomes with the foUowing 
properties: 

(i) each element of S denotes Ii possible outcome of the experiement, 
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(ii) any trial results in,an outcome that corresponds to one an4 only one element 
of the setS: 

The set S associated with an exp~iment E, real or conceptual, satisfying the 
above two properties is called the sample space of the experiment. 

Remarks. 1. The sample space serves as universal set for all questions 
concerned with the experiment. 

2. A sample space S is said to be finite (infinite) sampJe sapce if the number 
of elements in S is fmite (infinite). For example, the sample space associated with 
the experiment of throwing the coin until a head appears, is infmite, with possible 
sample points 

{rot. CI)z, CI>J, ro4, ., •. } 
where <.01 = 11, CIh = TH, CI>J = TTH, <Jl4 = TITH, and so on, H denoting a head and 
Ta tail. 

3. A sample space is called discrete if it contains only finitely or infinitely 
many points which can be arranged into a simple sequence rot. (Oz, ••• , while a 
sample space containing non· denumerable number. 9f points is called a continuous 
sample space. In this book, we shall restrict ourselves to discrete sample spaces 
only. 

4·5·2. Event. Every non·empty subset A o( S, which is a disjoint union of 
single el~.ment subsets of the sample space S of a random experiment E is called 
an event The notion of an event rOay also be defmed as folJows: 

"Of all the possible outcomes in the sample space of an experiment,some 
outcomes satisfy a specified description,which we call an event." 

Remarks. 1. As the empty set ~ is a su,?set of S ,. is also an event, known as 
impossible event 

2. An event A. in particular, can be a single element subset of S I in which case 
it is known as elemenl~Y event 

4'5·3~ Some Illustrations' - Examples. We discuss below some examples 
to illustrate the concepts of sample ~~ and event. 

1. -Consider tossing of a coin singly. The possible outcomes for this experiment 
are (writing H for a "head" and T for a "tail") : Hand T. Thus the sample space S 
consists of two points {ro1o CIh}, corresponding to each possible outcome or 
ele~ntary event listed. 

i.e., S = (COt, CIh) = {/l,T} and n(S) = 2, 
where n(S) is the total number of sample points in S. 

If we consider two tosses of a coin, the possibJe outcomes a:e HH, HT, TH, 
IT. Thus, in this case the sample space S consists of four pointS {rot, CIh, ro" CIl4}, 
corresponding to each possible outcome listed and n(S)= 4. Combinations of these 
outcomes form what we call events. For example, the event of getting at lea tone 
head is the set of the outcomes {HH ,HT,T/I} = {(01o CIh, ro,). Thus, mathematically, 
the events are subsets of S. 
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2. Let us consider a single toss of a die. Since there are six possible outcomes. 
our sample space S is now a space of six points (0)1, (J)z, •••• 0>6) where O)j cor­
responds to the appearance of number i. Thus S= { Ct>t. 0)2 ..... 0>6} = ( 1,2 ..... 6) and 
n(S)=6. The event that the outcome is even is represented by the ~t of points 
{00z. 004. 0>6} • 

3. A coin and a die are tossed together. For this experiment. our sample s~ce 
consists of twelve points {O)I, (J)z ...... 0)12) where O)i (i = 1,2, ... , 6) represents a 
head on coin together with appearance of ith number on the die and {))j 

(i = 7, 8, ... , 12) represents a tail on coin together with the appearance ofith number 
on die. Thus 

S = {O)" (J)z, ... , 0)12 ) = { (H • T) x ( I, 2, .... , 6 )} and n ( S ) = 12 
Remark. If the coin and die are unbiased, we can see intuitively that in each 

of the above examples, the outcomeS (sample points) are equally likely to occur, 
4. Consider an experiment in which two balls are drawn one J>y one from an 

urn containing 2 white and 4 blue balls such that w.hen the second ball is drawn, 
the fust is not replaced. 

Le~ us number the six balls as 1,2, 3,4, 5 and 6, numberS I and 2 representing 
a white ball and numbers 3, 4, 5, and 6 representing a blue ball. Suppose in a draw 
we pick up balls numbered 2 and 6. Then (2,6) is called an outcome of the 
experiment It should be noted that the outcome (2,6) is (Jifferent from the outcome 
(6,2) because in the former case ball No.2 is drawn fust and ball No.6 is drawn 
next while in the latter case, 6th ball is·drawn fust'and the second'ball is drawn 
next. 

The sample space consists of thirty points as listed below: 
O>t =(1,2) (J)z =(1,3) O>.J =(1,4) 014 =(1,5) ro, =(1,6) 
CI>6 =(2,1) CJ>, =(2,3) roe =(2,4) ffi9 =(2,5) 0)10 =(2,6) 

O)n =(3,1) 0>t2 =(3,2) 0>t3 =(3,4) 0>14 =(3,5) O)ts =(3,6) 
O)ll; =(411) ~17 =(4,2) O>ta =(4,3) 0>19 =(4,5) 0hD =(4,6). 
O>zt =(5,1) ron =(5,2) 0>zJ =(5,3) CIh4 =(5,4) roz, =(5.6) 
0>76 =(6,1) ron =(6,2) (J)zs =(6,3) <lh9 =(6~4) CIJJo =(6,5) 
Thus 

$ = (rot. (J)z, ro" ... , ro,o) and n(S) ~ 30 
~ S=(1,2.3,4,5,6}x{I.2,3,4,5.6) 

- ((1, 1). (2. 2), (3, 3), (4,4), (?, 5), (6,6)l 
The event 

(i) the first ball drawn is white 
(ii) the second ball drawn is white 
(iii) both the balls drawn ar~ white 
(iv) both the bans drawn are black 

ace represented respectively by the following sets of points: 
{O)" 0>%, 0>.3, 004, 0)5, 0>6, CJ>" CIla, (J)g, roto), 

{O)" 0>6, O)n, ro12, 0)16, 0)17, Ohl, (j}zz, 0>76, 0>z7}, 
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(0)1,0>6), and 
(O>n, 0>14, O>IS, 0>18, CJ)19h 0>20, C!h3, 0>1.4, 0>25, O>2a, 0>29, O>:lo), 
5. Consider an experiment in which two dice are tossed. The sampl~ s~ce S 

for this experiment is' given by 
S = 0,2,3,4,5, 6}.x (1,2,3,4','5,6) 

and n(S)=6x6=36, 
Let EI be the event that 'Ilie sum of the spots on the dice is greater than 12', 

E2 be we event that 'the sum of spots on the dice is divisible by 3', and E3 be the 
event dtat-'the sum is ·greater than or equal tb two and is less than or equal i6 12'. 
Then these events are represented by the following subsets of S : 

EI = (ell }, E, =S and 
El = ((1,2), (I, 5), (2, I), (2, 4), (3, 3), (3, 6), (4,2), 

. (4, 5), (5, I), (5~ 4), (6, 3), (6,6)} , 
Thus n (E1)=O, n (El )=12, and n (E,)=36 
Here E is an 'impossible event' and E, a 'certain Ifvent~. 
6, Let E denote tfte experiment of tossing a coin three times i~ succession or 

toSsing three coins at.a time. Then the sample space S is given by 
S = (H, T) x (H, T) x (H, T) 

= (H, T) x (HH,HT, TH, TT) 

= (HHH, HHT, lITH, HIT, THH, THT" TfH, 'T.IT) 

= (0)1t 0>2. 00" .... roe). say. 

If E I is the event that 'the number of heads exceeds the nUfQber' of tails' , £1, 
the event of 'getting two heads' and E,. the event of getting 'heaitin,the frrst trial' 
then these are represented by the following .Sets of pOin~ , : 

EI = (O>~. 0>2, 00" rosL 
, El = {0>2, 00" O>s} 

and E, = (O>!, 0>2, 00,. 0>4). 

7. In the fQl'eg,oing examples the sample sapce. is fi~ite. To construct an 
experiment in Whict) the sample sapce is countably infmite1 we toss a coin 
repeatedly until head or tail apPears twice in succ~sion. The sample space of all 
the possible outcomes may be represented as : . 

~ = {HH, TT, THH, HTT, IITHH, THIT, THTHH; HTHIT, ... 1. 
4·5,4. Algebra of Events. For events A, B, C 

(i) A u B= {O> E S : 0> E A or 0> E B} 
(ii) A n B= (0) E S : 0> E A and 0> E B), 
(iii) A (A complement) = {O> E S : 0> ~ A } 
(iv) A - B = (0) E S: 0> E A but 0> IE B) 

/I /I 

(v) Similar generalisations for u Ai, n Ai, u Ai etc. 
\ i .. l i=1 i 

(vi) A c B ~ for every 0> E A. 0> E B. 
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! . 

(vii) B ::I A => A c B. 
(viii) A = B if and only if A and B have the same elementS, i.e., if A_c' B 

and B'c A. 
(ix) '~and B disjoint ( mutually exclusive) => A () B ::;:-4" (null set). 
(x) A u B can be denoted by A + fJ if A and B ~e disjoint. 

(xi) A tJ. B denotes those W belonging to exactly one of A and B, i.e .• 
l\~B?ABuAB 

Remark. Since the events are subsets of S, all the laws of set theory viz., 
commutative laws. associative laws. distribqtiv~ laws, ~-Morg4D • slaw. etc., hQld 
for ~Igebra of events. , 

Table - Glossary 0/ P,robabUity Terms 

, Statement 

1. At least one of the events A 
or B occurs. 

2. Both the events A and B occur. 
3. Neither A nor II occurs 
4. EventA occurs and B does not 

occur 
5. Exactly one of the events A orB 

occurs. 
6. Not more than one of the events 

Meaning in terms 
of set theory 

WE AuiJ 
'WE A()B 

WE A()11 

W' E AtJ.B 

A or B occurs. W E (A () 11) u (it' () B) u (A (' 11) 
7. If event A oceurs, so does B A c B .. 
8. Events A and B are mutually ex· 

elusive. 
9. Complementary event of A. 

10. Sample space 

A () B=+ 
A 
unive~ai set S 

Example 4· 11. A, B and Care three orbiirary eventS. Firid eXpressions for the 
events noted below, in the context of A, B and C. 

(i) only A ~curs, 
(ii) Both A andB, but not C, occur, 

(iii) ~II three events occur, 
(iv) At least one occurs, 
(v) At least two occur, 

(vi) OM and no more occurs, 
(vii) Two' and no more occur, 
(viii) None occurs. 
Solution. 

(i) A ()B () C, (il) A ()B () C, (iiI) A ()B () C, 
(iv) ,A, u,B u C, 
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(v) (A()B()C) u (A()H()C) U-(A()B()C)"u (A()B()C) 
(vi) (A ()'1i () C) u ( it () B () C) u (A () Ii () C ) 

(vii) (A ()B () C) u (j{ ()B () C'> u (A ()B () C) 
(viii) j{ ()1i () C or j{ u B u C 

, EXIt'aCISE 4(b) 
I. (i) If A, B and C are any three eve~ts, wri~ down the theoretic;al expressions 

for the following events: 
(a) (;)nly A occurs, (b) A and B occur but C does not, 
(c) A, B, and C all the three occur, '(d) at least one occurs 
(e) Atleasttwo occur, if) one does not occur, 
(g) Two do not occurs, and (h) None occurs. 

(ii)"A, Band C are three events. Express the following events in appropriate 
symbols: ' . 

(a) Simuliar\eous occurrence of A,B and C. 
(b) C 'currence of at least one of them. 
(c) A, Band C' are mutually exclusive events. 
(d) Every point of A is contained in B. . 
(e) The eventB but notA occurs. (Galihati Univ. B.Sc., Oct.I990] 

2. A sampie space S contains four points Xit Xl, X3 and X4 and the'values of a 
set function P(A) are known for the following sets : 

4 6 
Al = (x .. Xl) and P(AI ) = 10 ; Al = (.'t3, X4) and P(Al ) = 10 ; 

4 7 
A3 = (Xl, Xl, X,) and P(A3) = 10 ; A.:;= (Xl, X" x..) and' P(A.) = 10 

Show that: 
(i) the total number of sets (including the "null" set of number points) of points 

obis i6. 
(ii) Although the set containing no sample point has zero probability, the 

converse is not always true, i.e., a set may have zero probability and yet it may be 
the set of a number of points. , 

3. Describe explicitly the sample spaces for each of the following experiments:" 
(i) The tossing off6ur coins. ' 
(ii) The throwing of three diCe. 

(iii) Tlte tossing of ten coins With the aim of observing the numbers of tails 
coming up. ' , 

(iv) Two cards are selected from a'standard deClc of cardS. 
(v) Four successive draws (a) with replaCement, and (b) withOiit replace, 

ment, from a bag containing fifty coloured:balls out of which ten are white, twenty 
blue and twenty red. 

o (vi) A survey' of families with two childrep is condu~ed and the sex of the 
children (the older ~hild first) is re:corded~ 

(vii) A survey of families with three children is made and the sex of the 
children (in order of age, oldest child first) are recorded. 
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(viii) Three distinguis~able o~jects are distributed in three .D\lm1?ered (fells. 
(ix) A poker haqd (five clP"ds) is dealt from an ordinary deck of cards. 
(x) Selecting r screws from the lot produced by a machine, a Screw can be 

defective or non-defective. 
4. In an experiment a coin is thrown fi~e times. Write down the' sample space. 

How many points are there in the sample space? 
5. Describe sample space appropriate in each of the following cas~ : 

(i) n-tosses of a coin with head or tails as outcome in each toss. 
(ii) Successive tosses of a Coin until a head tiims up. 

(iii) A survey of families with two childrell is conducted and the sex of the 
children (the older child first) is recorde<t. 

(iv) Two successive draws, (0) with. replacemerit (b) without replacement, 
from a bag containing 4 coloUred toys ourof which one is white. one black and 2 
red toys. [M.S.Baroda Univ. B.se., 1991] 

6. (0) An experiment consists of toSSing an unbiased' coi~ until the same result 
appears twice on sucCession for the rust time. To every possible outcollJe requiring 
n tosses attribute probability 112-. Describe the sample space. 

(b) A coin is tossed until there are either two consecutive heads or two 
consecutive tails or tfte number of ~sses ~mes five. Describe the sample space 
along with the probability associated with each sample pOint. if every ~u~ce of 
n tosses has probabilty 2-". [Civil Services (main), 1983] 

7. Urn 1 contains twd white. one red and 3 black baIls~ Urn 2 contains one 
white, 3 red and 2 black balls. An experiment cQnsists of rust selecting an urn and 
then drawing a ball from this urn. Derme a suitable sample space for tftis 
experiment 

8. Suppose an experiment has .n outcorpesA l • Al •...• A_ ~ ~at it is repeated 
r times. Letx .. Xl ••••• x"record the number of occurrences of A .. Alo ...• A" • Dpscribe 
thCf sample spaCe. Show that the number o~ sample points is • 

(n;~~ 1) , 
9. A manufacturer buys parts from four different vendors numbered 1.2.3 and 

4. Refming to orders placed on two successive days. (1,4) deno~s tfte event that 
on the rust day, the order was given to vendor 1 and on the second day it was given 
to vendor 4. Letting A represent ttle evel}t tlJat -veP<iof 1 gets at least one of these 
two orders, B the event that th~ same vendor gets both orders and C the event that 
vendors 1 mtd 3 do not g~~ ei!herQrdef. List the elements of : 

(q)enPr~samplespace. (b) A, .(c)-B, (d)C; (e) A, (f)B, 
(g)BuC, (h)AnB, (i)A.nC, (j)AU1I, and (k)A-B 
[Hint. (0) The elements of entire sample space are 

(1,1); (1,2); n, 3); (1, 4); (2,1); (2, 2); (2,,3); (2,.4); 
(3, 1); (3,2); (3, 3); (3,4); (4, 1); (4,2); (4, 3); (4,4). 
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(b J The 'efements of A are , ' 
(1,1); (I, 2);'(1,3);''(1, 4}; (2',1); (3,1); (4, 1): 

(c) The elements of Bare' (1, 1); (2, 2);(3, 3) and (4, 4). 
(d) The elements of C are (2, 2); (2, 4); (~, 2);{4, 4): 
(e)· The element of A are: 

(2,2); (2,3); (2,4); (3,2); (3,3); (3,4); (4,2); (4, 3); (4,4). 

4,25 

-, 

if) The elements ofB are: (1,2); (I, 3); (1,4); (2,1);' (2,3); (2,4); 
(3; 1); (3, 2); (3,4); (4, 1); (4, 2); (4',3). ' 

(g) The elements.ofB v C are (I, 1);.(2,2); E3, 3); (4,4); (2,4): (4,2). 
(h) The ele~ents of An B are (I, 1). ' 
(i) A nC=~ 
lj) Since A'VB.= A n H. The elements of A.v E' are (2,3); (2,4); (3, 2); 

(3,4); (4, 2); (4, 3). 
(k) The elements of A -B are (1, 2); (1,3); (1,4); (2,1); (3,1); (4, 1). 

4·6. Probability - Mathematical Notion. We are now set to give the 
mathematical notion of the occurrence of a random phenomenon and the mathe­
matical notion of probability. Suppose in a large number of trials the sample space 
S contains N sample points. The ~vent A is defined by a, description which is 
satisfied by N A of the occurrences. The frequency interpretation of the probability 
P(A) of the evel1tA, tellS us that P(A)=N,,/N. 

A pw-ely mathematical definition of probability cannot give us the actual v.alue 
of P(A) and this must be eonsideredas a fu.nction defined on all events. With this 
in view, a mathematical definition of probability is enunciated as follows: 

"Given a sample description space, probability is afunction which assigns a 
non-negative real number 10 every event A, denoted by P(A) and is called the 
probability 0/ the event A." 

4·6·1. Probability Function. P(A) is the probability function defined on a 
a-field D of events if the following properties or axioms.hold : 

I. For each A e D, P(A) is defined, is real and P(A) ~'. 0 
2.P(S) = 1 
3. If (",.) is lply fit:tite or infinite sequ~l)ce of disjoint events,it:t D,.then 

/I, 

P(, v A.) = L P(A;) 

/I 

... (4·4) 
;=1 ;=1' 

The above three axioms are termed as the axiom of positiveness, certainty and 
union (additivity), respeCtively. ' 

Remarks. I. The'set function P defined on (J-field D, taking its values in the 
real line and satisfying the above three axioms is called'the probability measure. 

2. The same defmition of probability applies to uncou,"ltable sample space 
except that special restrictions must be placed on S and its subsets. It is imPortant 
to realise that for a complete description of a probability measure, three things must 
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be specified, vii., the sample spaceS, the a-field (a-algebra) B fonned from certain 
~subset of S and set function P. The triplet (S; B, P,) is often called the prohability 
space. In most elementary applications, S is finite and the a-algebra B is taken to 
be the coUection of aU subsets of S., 

3. It is interesting to see that there are some formal statements of the properties 
of events dertved from the frequency approach. Since P(A)=ft/AIN, it is easy to see 
thatP(A) ~ O. as in Axiom 1. NextsinceNs =N, P(S)=I. as in Axiom 2. In case 
of two mutually exclusive (or disjoint) events A and B defined by sample points 
NA and N •• the sample points belonging 10 A u B are NA + N •• Therefore. 

P(AUB)=NA ;N. ~ + ':;=P(1)+P(B), as in axiom 3. 

Extended AXiom or Addition. If an eventA can materialise in the 9Ccurrence 
of anyone of the pairwise disjoint events At, A2, ..• so that 

then 

00 

A=u Ai; AinAj =. (;~J) 
i ... I 

... 
00 

peA) = P ( U Ai) = l: peA) 
i= 1 i= I 

... (1) 

Axiom ofCoDtinuity. H Bit B1 • ••••• B •• ••• be a countable sequenCes of events 
suchlhat_ 

(i) Bi ~ Bi+1' (i = I, 2, 3, ... ) 

and -(ii) n B.=. 
11=1 

i.e .• if each succeeding event implies the preceeding event and if their simul­
taneous occurrence is an impossible event then 

-lim PCB,,) = 0 ... (2) ,. ...... 
We shal~ now prove that these two axioms, viz., the extended axiom of addition 

and axiom of continuity are equivalent, i.e., each implies the other, i.e., (1) ~ (2). 

Theorem 4·1. AXiom ofcondnuityfollowsfrom lhe extended axiom of addit.ion 
and vice versa. 

Proof. (a) (1) ~(1). Let (B.) be a countable sequence of events such that 
B1 ~ B1 ~ B, ;=l •••• ~.B,,::l 811+ 1 ::l ••• 

and let for any n ~ 1. 
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J--J.--J----.. B ... 1 

B..,.10 B'..,.1 

Then it is obvious from the· diagram that 
B"=B,,B''''I U·B" .. IB' ... 1U ... U ( n BI) 

k~1I 
00 

~ Bit = ( U BkB'I ... 1 U ( n BI), 
k=1I k~1I 

4·17 

where theeventsBI B'I+I; (k:.n, n+l, ! •• ) are pairwise disjoint and each is disjoint 
with n BI. 

k~1I 

Thus B. baS been expressed as the countable union of pairwi~ disjoint events 
and hence. by the extended axiom of addition, we get 

since, from (.) 

GO 

P(B,,) = L P(B.B'I+I)+P( n BI) 
k=1I k~1I 

GO 

= !, P(BIB'I+J), 
k=1I 

P( (.) BI ) = P(~) = 0 
k~1I 

Further, from (**), since 
00 

L P (BIB'I+J)=P(BJ) S 1, 
k=1 

the right hand sum in ( •• ), being the remainder after n terms of a convergent series 
tends to zero as n-+oo. 

Hence 
00 

lim P(B.)= lim L P(B.B'hJ)= 0 
11-+00 II ...... k=1I 

Thus the extended axiom of addition implies the axiom of continuity. 

(b) Conversely (2) ~ (1), i.e., lhe Ulended axiom of additionfollowsfrom 
the axiom of continuity. 
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Let (A8) be a countable sequence' of pairwise disjoint events and let 
a., 

A= u Ai 
;= 1 

" 00 

= ( u Ai) u ( U Ai) 
i= 1 .;=,,+ 1 

Let us defil,le a countable sequence (B.) of events by 
00' 

B,,= u Ai 
;=" 

Obviously B" is a decreasing sequence of e,vents. i.e., 
B1 ~Bl ~ ..• ~B.~B .. 1 ~ •••• 

Also we have 

" 

, '. 

.•• (3) 

.•. (4) 

. .• (5) 

A = ( U Ai) uB" l ••• (6) 
i= 1-

Since Ai's are pairwise disjoint, we get 
Aj ", Bu 1 = ~. (i = 1. 2 •...• n) •.. (00) 

"From'(4) we see that if'the event B. has occwyed it implies the "OCcurrence of 
anyone of the ~vents A.+ 1• Al~;; •..• Without loss of generality lerus assume that 
this event is Aj (i = II + 1. II + 2 •..• ). Further since ~ 's are p3irwise disjoint, the 
occurrence of Ai implies that events Ai+1tAi+2 •••• do riot Occur leading 10 the 
conclusiQn that Bi + 1, Bi + 2t ••• will not occur. 

00 

••• (1) 
;=Il 

From (5) and (7) .. we observe that both the conditioQs of axiom' of continuity 
are satisfied and hence we get 

••. (8) 

:From (6). we get 

" P (A) = P[( u Ai) u B .. t1 
i= 1 

" = L, P(-1i) + P(B. + 1} 
i= 1 

(By axiQl1l of Additivity) 

00 " 
P( u Al):= Jim L P(Ai) + lim (B.'+l)' 

i= 1 II ......... ;..-1 "-'" 
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00 

= L, P (Ai), 
i= 1 

which is the extended axiom of addition. 

THEQRF;MS. ON PROBABILITIES OF EVENTS 

4·29 

[From (8)] 

Theorem 4·2. Probability of the impossible event.is zero, i.e.,.P (~) = 0; 
Proof. Impossible event contains no sample point and lience the certain evt.nt 

S and the impossible event ~·arelmutually exclusive . 
. Hence Su~= $: 
.. P(Su~)= P(S)' 
=> P(S) + P(~) = P (S) [By Axiom 3] 
=> P(~)= 0 

Remark. It may be noted P(A)=(), does not imply that A is necessarily an 
empty set In practice, probability '0' is assigned to the events whic;:h are so rare 
that they happen only once in a lifetime. For example, if a person 'who does not 
know typing is asked 10 type the manuscri~t of a book, the probability of the'event 
that he will type it-correctly without any mistake is O. 

As another illusb'atiQn,let us cOl)sider the random tossmg of a com. The event 
that the coin will-stand erect on its edge, is assigned the probability·O. 

"The study of continuous random variable provides imother illusb'ation to the 
fact that P(A>=O, does not Imply A~, because in case 'ofcontilious random 
variable X, the proability ata point is always zero;i.e., P(X=cFO [See 'Chapter· 5]. 

Theorem 4·3. Probability Qf the compl~m~~tary event it of A is given by 
P(A) = 1-P(A) 

Proof. A and it are disjoint events. 
Moreover. A uA = $ 
From axioms 2 and 3 of probability, we have 

P(AuA)= P(A)+ P(A)= P(S)= i 
=> P (A) = I-P (A) 
Cor. 1. We have P (A) = 1 - P (it) 

P(A) ~ 1 

Cor. 2. P (~) = 0, since ~ = S 
and P (~) = P (S) = 1 - P(S) = 1-1 = O. 

Theorem 4·4. ,For any two events A and B .• 

Proof. 
P (A" B) = P (B) - P (A n B) (Mysore Univ,. B.Sc., 1992) 

An B and A ('\ B are disjoint even~ and 
(Aln B) u (A ('\B).= B 
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Hence by axiom 3, we get 
P (B) = P (A () B) + P CA () B) 

::) P (A () B) = p. (B) - P (A () B) 
Remark. Similarly, we shall get 

_....-4,-B P(A()B)= P(A)- P(A()B) 

Theorem "·5. Probability of I~ union of any two events A and B is given by 
P(Au.(J)= P(A),+ P(B)- P(A(.)B) 

Proof. A u B can be written as the union of the two mutually disjoint events, 
A and B() A . . 

P (A uB)= P [Au (B.() A) ] = P (A) + P (B ()A) 
= P (1\) + P (B) - P (A () B) (cf, Theorem 4·4) 

Theore .... "·6. 1/ B c A, then 
(i) P (A () B)::: P (A) - P (B) , 
(U) P (B) ~ P (A) 
Proof. (i) When B c A, B and A () B are r__--------. 

mutually exclusive events and their union isA 
Therefore 

P (A) = P [ B u (A () B) ] 
= P (B) + P (A () ]i) (By axiom 3] 

::) P·(A () 11) = P (A) - P (B) 
(ii) Using axiom I, 

. p' (A () 11) ~ 0 => P (A) - P (B) ~ 0 
Hence P (B) ~ P (A) 
C()r. Since (A () B) c A and (A () B) c B, 

P (A () B) ~ P (A) and P (A () B) ~ P (B) 

"·6·2. Law of Addition of Probabilities 

S 

A 

or 

Statement. If A and B are any (WO events I subsets of sample space S J and are 
not disjoint, then 

P (A uB) = P (A) + P(B) - P (A () B) .•• (4'5) 
Proof. 

A()B 
S 

A B 
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We have 
AvB= Av(AnB) 

Since A at! .1 (A n B) are disjoint. 
P (A v B) = P (A) + P (A n B) 

4·31 

= P(A)+ [P(AnB)+ P(AnB)]r P(A.nB) 
= P (A) ~ P [ (A n B ) u (A n B):] - P (A n B) 

[.: (A nB) and (A nil) are disjoint] 
=> P (A v B) = P (A) + P (B) - P (A n B) 
Remark. An alternative PI09f is provided by Theorems 44 and 4·5. 

4·6·3. Extention of General Law or Addition of Probabilities. For n events 
Ah A2 • ...• A .. we have 

II II 
P(v Ai) = ~ P(Ai)- IIi P(AinAj)+ ~ P(AinAjnA..') 

;=1 ;=1 ISi<jSII IS~<j<kSr 

- ... + ~_1)"-1 P (AI nt\2 n ... nA,.) ... (4·6) 
Proof. For two events A 1 and A 2. we have 

P (AI v A2) = P (AI) + P (A2) - P (AI n Az) ... (.) 
Hence (4·6) is true for n = 2. 
Let us now suppose that (4·~) is true for n = r, (say). Then 
r r 

P ( vA;) = ~ P (Ai) - ~~P (Ai n Aj) + ... + \.- ,),-1 P (AI nA2n ... riA) 
i = 1 i = lIS i < j S.r ••• ( .. ) 

Now 
r+l r 

P( V Ai) = P[( v A;) V A .. l] 
i=1 i=1 

r r 
= p ( v A;).+ P (A .. 1) - PH v Ad nA .. 1)]. ••• [Using (.~] 

i .. l i=1 
r r 

= P ( V Ai) + P (A .. 1) - P [ V (Ai n A .. 1) ] {Distributive Law) 
i=1 i=1 

r 
= ~ P(Ai)- ~ P(AinAj)+ .. , 

i=1 ISi<jSr 

... + (-lr1 P (Al.nA2 n ... nA,) + f (Ar+l) 

r+ r 

r 
- P [ v (A;r"lA"'I)-] 

i.l 

= ~ P(Ai)- ~ P ·(AinAj) + ... 
i=1 ISi<jSr 

+ (_1)'-1 P (AI nA2n ... nA,) 

••• [From( .. )] 
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r 
- [ 1: P(AirtA,+I)- II P(AirtAjrtA,+I) 

;= I I ~;<j~r 

+ ... + (_1)'-1 P(AI rtA2rt ... rt A, rtA,+I) ] ... [From (**)] 
r+ I rt I r 

P ( U Ai) = 1: l' (Ai) - [ II P(.4o rt Aj) + 1: P(Ai rt A,+I )] 
;='1 ;=1 I~i<j~r ;=1 

t ... + (-I),P[(A l rtA2rt ••• rtA,+d] 
r+1 

= 1: ,P(Ai)­

;= I 
~ P (.4ortAj) 

I S;<j~(r+ I) . 

+ I •• + (- 1)' P(AI () A2 rt .•.. () A;+ I) 
Hence if (4·6) is true for'n=r, it is also true for n = (r + 1). But we ~a~e prove<l 

in (*) that (4·6) is true for n=2. Hence by the principle of mathematiCal iqduction, 
it f~Uows lha~·(~·6) is U'Qe for all positive integral values of'll. 

Remarks. 1. If we write 
P (Ai) = Pi ,P (Ai rt Aj) = jJij , p' (A; rt Aj rt Al ) = Pi~ 

and soon and 

then 
II 

II II 

SI = 1: pi= 1: P (Ai) 
,; = I ; = I 

S2= ~ pij= ~ P (AirtAj) 
l~i<jSIl 1~;<j,~11 

S3 = !.p: Pip< and so on, 
I ~;<j<k~1I 

P( u Ai) = SI- S2+ S3- ... + (_1)·-1 S. ...(4'00) 
;= I 

2. If all the events Ai, (i = 1,2, ... , n) are mutually disjoint then (4·6) gives 
II II 

p( U Ai) = 1: P (Ai) 
;=1 ;=1 

3. From practical point of view the theorem can be restated in a slightly 
different form. Let us suppose that an event A can materialise in several mutually 
exclusive fonns, viz., Alt Alt ... , A. which may be regarded as that many mutually 
exclusive eveqts. If A happens then anyone of the events Ai, (i = 1, 2, ... , n) must 
happen and cOnversely if any one of the events Ai, (i = 1,2, ... , n) happens, then A 
happens. Hence the probability of happening of A is the same as the probability of 
happening of anyone of its (unspecified) mutually exclusive forms. From this point 
of view, the total probability theorem can be restated as follows: 

The probability of happening of an event A is the sum' of the· probabilities of 
happening of its mutually exclusiveforms AltA2' ... ,A •• Symbolically, 

'P (A) = P (AI) + P (A2) + ... ,. P (A.) (4·6b) 
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l'he probabi1i~ie~ P(AI), P,{Al)' •.. , P(AN) Qf the mQtuaJ.lx ~xclusive forms of 
A are known as the partial probabilities. Since p(A) is their sum, it may be called 
the total probability. of A. Hence the name of the theqrem. 

Theorem 4·7. (Boole's ine9uality). For n events AI. Al , .•.• , AN' we have 

" " (a) P ( (i Ai) ~ 1: P (Ai) - (n - 1) ... (4·7) 
i=1 i=1 

" " (b) P ( u Ai) ~ 1: P (Ai) ... (4·7a) 
i=1 i=1 

[Delhi Univ. B.sc. (Stat Hons.), 1992, 1989] 
Proor. (a) P (AI U Al) = P (AI) t P (Al ) - P',(AI (i Al ) ~ 1 
,~ P(AI(iAl)~P(AI)+ P(Ai)-1 (*) 
Hence (4·7) is true for n = 2. 
Let us now suppose that (4·7) is true for n=r ~say), such that 

r r 
P ( (i Ai) ~ 1: P (Ai) - (r - 1), 

i=1 i=1 

Then 
r+l r 

P ( (i Ai)= P ( (i Ai}; A'+I) 
i=1 .=1 . .. 

r 
~P( (i Ai) + P(A,+I)-1 [From (*)] 

i= 1 
r 

~. 1: P(Ai)-(r-l)+ P (A,+I)-1 [From (**)] 
'i= 1 

r+ ~ r+ 1 
=> p ( (i Ai) ~ 1: P (Ai) - r 

i=1 i=1 
~ (4·7) is true for n = r of 1 also. 
The result now follows by the principle of mathematical induction. 
(b) Applying ~ inequality (4·7) to·the eventsAI,'Al, ... , A~, we get 

P v'\1 (i A1 (i •••. (i·iW ~ [P (AI) +P (A~) + ... t P (ii,)] - (n - 1) 
= (1- P(AI)] + (1- P(Al )] + ... + [1 - P(A,,)] -.(n.- 1) 
= .. - P (AI) - P (Al ) - •.• - P (A,,) 

~ P (AI) + P (A2) t .. + P (A,,) ~ 1 - P (AI) li Al (i ••• "r\ A..). 
= 1 - P (ii, U Al U ... u It,,). 
= P (AI U Al U •.• u A,,) . 

~ P (AI uAl U ••. uAJ ~P (AI) +P (Al) + ... +P (A,,) 
as desired. 

Aliter ror (b) i.e., (4·78). We have 
P (AI U Ai)'= P (AI) + P (Al) - P (AI (i Al) 
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~ P (AI) + P (Al) [ .: P (AI () A1) ~ 0 ] 
Hence (4·7a) is true for n = 2. 
Let us now suppose that (4·7a) is true for n=r. (say). SO that 

Now 

r r 
P ( U Ai) ~ ~ P (Ai) 

;=1 i=1 

r+ 1 r 
P ( u Ai),= P ( u Ai U Ar+ I) 

i:=1 ;=1 
r 

~P ( u Ai) + P (Ar+I) 
i= 1 

r 
~ .1; P (Ai) + P (A,+ I) ,= 1 

r+ 1 r+ 1 
.~ P ( U Ai) ~ I P (Ai) 

;=1 i=1 

... ( .... ) 

[Using (***)] 

Hence if (4·7a) is true for n=r, then it is also true for n=r+1. But we have 
proved in (* .. ) that (4·7a) is true for n=2. Hence by mathematical induction we 
conclude that (4· 7a) is tole for all positive integral values of n. 

Theorem 4·8. For n events Al, A20 •.•• A.. 
/I II 

P [ u Ad ~ ~ P (Ai) - I . P (Ai () Aj) 
i=1 ;=1 ISi<jSII 

[Delhi Univ. B.sc. (Stat Hans.), 1986] 
Proof. W~ shall prove this theorem by the method of induction. 
We know that 

P (AI u Al u A3) = P (AI) + P (Al) + P (A3) 
- [P(A I () A1) + P(A1 () A3) + P(A, () AI)] + P(AI· () Al () A,) 

3 ~ . 
=> P ( u A;) ~ 1; P (A;) - ~ P (Ai () Aj) 

i=1 i=1 ISi<jS3 
Thus the result is true for n=3. Let US now suppose that the result is true for 

n=r (say). so that 
r 

P( \..J.Ai)~ I P(Ai)- ~ P(Ai()Aj) ... (*) 
i='1 i=1 ISi<jSr 

Now 
r+ 1 ,r 

p( U Ai)'=P( u AiUA,+I) 
i= 1 ;.'1 

r r -
= P ( U ,Ai) + P (Ar+ 1) - P [( U Ai) () A,+ t1 

i=1 i=1 
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r. r 
=P( u A;)+P(A,+i)-P'[ u (AinA,+I)] 

i=1 i=1 

~- [ f P (Ai) J D: P (Ai n Ai)] 
i = liS i <j < r 

r . 

4·35 

+ P (Art.) - P [ u (A; n A,+.)] 
" i= 1 

From Bool:'s inequality-(c/' Theorem 4·7 page 4·33), we get 

. .. ( .. ) 
[From (.)J 

r r 
P [ U (Ai nA,+I)] ~ E P (A; n A,+I) 

i=I' i=1 

r r 
::::::> -P[ u (AIAA,.I)]-~ - E P(Ai-nA,.I) 

i=1 i= 1 
:. From ( •• ), we get 

r+'1 r+ 1 r 
P"( u A;),~ E P (Ai) - ~ P (Ai r\ Ai) - E P (Ai n A,+ d 

i=1 i=L ISi<jSr i=1 
r+ 1 r+ 1 

::::::> :p ( u t\i) ~ 1) P (Ai) - D: P (Ai n Ai) 
i=1 i=1 ISi<jS r+1 

Hence, if the theorem is true for n = 'i. it is also true f<}r n = r + 1 .. But we have 
seen that the result is true for n. = 3. Hence.~y mathematical inductiQn. the result 
is true for all positive integral values of n. 

4·7. M.ultiplicatioD Law or Probability and Conditional Probability 
Theorem 4·8. For two events A and B 

P (A n B) = P(A). P(B I A) .. P(t\) > 0 } 
= P(B) • P(A I B). P(B) > 0 .•• (4·8) 

where P(B I A) represents the conditional probability of (,ccurrence of B when the 
event A has already happe~ and P(A I B) is the conditional probability of 
/wppening of A. given thai B has already happened. 

Proor. 
P(A)= n(A) ; P{B)= n(B) and P(AnB)= n(AnB) (.) 

n (5) n (S) n (5) 
For the conditi~~ ~vent A I B, the favourable outcomes must be one of the 

sample points of B. i.e .• for the eVer)t A I B. the sample space is B and outof the 
n(B) sample points, n(AnS) pertain to the occurrence of the event A. Henc~ _ 

P (A I B) = n (A n B) 
. - n(B). 

Rewri~ng.(.). we get 

P (A n B) = : ~~: n ~A(;:) = P (8) . P (A I B) 
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Similarly we can prove: 

P(A (lB)= :~~~ . n(:(~)B) = P(A) • P(B I A) 

_P~n~ . ~P0(l~ 
Remarks. 1. P (B I A) - P (A) and P (A I B).-, P (B) 

Thus the conditional probabilities P (B I A) and P (A I B) are defined if and 
only if.P(A)¢ 0 .andP(Bj:F O •. respectively. 

2. (i) For P(B) >0. P(AIB)~P(A) 
(li) The conditional probability P (A I 8) is not dermed if P (B) = O. 
(iii)P(B I B)= 1. " 

3. Multiplication Law of Probability for Independent Events. If A and B 
are independent then . 

P (A I B) = P (A) and P (B I A) = P (B) 
Hence (4·8) gives: I 

P (A (l B) = P (A) P (B) ... (4·8a) 
provided A and B are independent. 

4·'·1. Extension of MultiplicatiQn. Law of Probability. For n events 
Alo Al ..... A •• we have 

P (AI () Az () ... () A. ) = P (AI) P (Az I AI ) P (A, I AI (l Az ) ... 
x P. (A. I AI (l Az (l, ... (l A._I) ... (4·8b) 

where P (Ai I Aj ri .4. (l ••• (l A, ) represents the conditional profJabiliry of the 
eveni Ai given that ihe events Aj. At .... ; A, ~ve alreiuit happened. 

·Proof. We· have for three' events Alo Az, and .4, .' 
P (AI (l Az (l A, ) = P [AI () (Az () A,)] ., 

= P.(AI) P (Az(l A, I At) . 
= P (Al')'P'(Az I AI) P (A, I AI f'I Az) 

Thus we find that (4·8b) is trUe for 1i=2,and n=3. Let us sUpPose'that (4·8b) is 
true tor n=k, so that 

:P (AI (l Az h ... (lAt):::!'p (AI) P (Azi Ai) P (A, I AI ()Az) 
... P (At I· AI·t\.41 (l ... (l AI-I) 

Now 
P [(AI (l Al (l ... (l.4.) (l .4.+ I] = P (AI (l Az (l ... (l AI) 

, xP (Ahd AI (lAl(l ... (l.4.) 
= P (AI) P (Al \' Al) ... P (.4.1 AI (lAl(l ... (l AI-I) 

X p(At+lIAI(lAl(l ••• KA,) 
Thus (4·8b) is ·true for 'n=k+l aiso. Since (4;Sb) is true for n=2 and ri=3;'by 

the principle of'mathematical induction, it follows that (4·8b) is true (or all-pOsitive 
integral values of n. 

Remark. If AI, Az, .... A. are independent events then 
P(Al I AI) = P (Al). P (A, I AI (l All = P (A,) 

... P (A. I A I () Az (\ .... () A.. -I) = P (AJ 
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Hence (4·8b) gives : 
P (AI n A2 n .,. n A.) = P (AI) P (A2 ) ... nj' (A. ) , ... (4·8c) 

provided At, A2, ••• , A. are independent. 
Remark. Mutually Exclusive (Disjoint) Events and Independent'~vents. 

Let A and B be mutually exclusive' (disjoint) events with positive probabilities 
(P (A) > 0, P (B) > 0), i.e., both A and B are possible events such that 

AnB= ~ ~ P(AnB)= P(~)= 0 ... (i) 
Fui1her, by compound probability theorem we have 

P (A n B) = P (A) . P (B I A) = P (B) .P (~ I B) ... (ii) 
SinceP (A) "# 0; P (B)"# 0, from (i) and (U) we get 

P (A I B) = 0·"# P (A) , P (B I A) = 0"# p' (B) ... (iii) 
~ A and B are dependent events. 
Hence two possible mutually disjoint events are always dependent (not inde­

pendent) eventS. 
However, if A and B are independent events with P (A) > 0 and P (II) > 0, 

then 
P (A n B) = P (1\) P (B) "# 0 

~ A and B cannot be mutually exclusive. 
Hence two independent events (both o/which are possible events), cannot be 

mutually disjoint. 
4·'·2. Given n independent events AI, (i =1.,2, ••• ,n) with respective prob­

abilities or occurrence pi, to find the probability or occurrence or at least ont 
orthem. 

We have 
P (Ai) = Pi ~ P (A~) = 1-Pi; i = 1,2, ... , n 

[": (AI uA2 u ... u A.) = (AI nA20 .... nA.) (De-Morgan's Law)] 
Hence the probability of happening of at least one'of the events is given by 

P(AI .uA2u .... uA.)'= 1-·P(AI '.JA2u, .. uA.) ... (.) 

= I-P(AI nA2n ... nA .. ) 
= 1-P (AI) P (A2) t •• P (A.) ... (**) 

lcf Theorem 4·14 page4·4P 
= 1 - [(1 - PI) (1- P2) ... (1 - ,p.)] 

[ 
n n n 

::;: L Pi - LL (Pi Pi) + LLL (Pi Pi Pt) 
i=l i,j=l i,j,le=1 

i<j i<j<k 

•... + (- lrl (PIPl ... P.)] 
Remark. The resul~ in (.) and ( .. ) are very important and are used quite often 

in numerical pl'Qblems. Result (.) .stated in words gives: 
l' [happening.of at least one of th~ events A .. A2 • ... , A. ] 

=1 -P (none of the events At, A2, ••• ,A. hap~ils) 



4·38 Fundamentals of Mlltbematlc:al Statistics 

or equivalently, 
P {none of the given events happens} 

= 1 - P {at least one of them happens}. 
Theorem 4·9. For any three events A, Band C 

P (A uBI C) = e (A I C) + P (B I C) - P (A n B I C) 
Proof. We have 

P(AuB)= P(A)+ P(B)- P(AnQ) 
~ P[(A n C) u (B n C) ] = P (A n C) + P (B n C) - P (A n B n C) 

Dividing both sides by P (C), we get 

P[(A n C) u (B n C)] = P(A n C)+P(B n C) - P(A nB n.C) P(C) 0 
P(C) P(C)' > 

_ P(A n C) P(B n C) P(A nB nC) 
- P(C) + P(C) .. ' - P(C) 

~ P [(A u B ) n C] = P (A I C ) + P ( B I C ) - P ( A n B Ie) 
P (C) 

~ P [(A u B )J C] = P (A I C J + P (B I C ) - P (A n B I C ) 

Theorem 4·10. For any three events A,B and C 
P (A n B I C) + P (A n B I C) = P (A I C) 

Proof. P(AnBI C)+ P(AnBI C) 
_ P(AnBn C) P(AnBnC) 
- P(C) + P(C) 
_ P (A n H n 9 + P (A n B n C) 
- P(C) 

= P(AnC)= P(AIc) 
P (C) 

Theorem 4·11. For a fued B with P (B) > 0, P (A 18) is a probability 
IUlletion. [Delhi Univ. B.Sc. (Stat. HODS.), 1991; (Maths Hons.), 1992] 

Proof. 

n P (A I B-) = P (A n B) ~ 0 
I P (B) 

( . ') P (S I B) = P (S n Bl = P (B) = 1 
II P (B) P (B) 

(iii) If (All) is any finite or infinite sequences of disjoint events, then 

P [( u A.) n B ] P [( u A.. B ) ] 
/I /I 

P [,; AlliS] = . P(B) = --P-(B-)--

L P(AIIB) 

= /I = ~ r P (All B)] = ~ P (A I B) 
P (B) ~ l- P (B) ~ • 

Hence the theorem. /I /I 
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Remark. For given B satisfying P(B) > O. -the conditional probability 
pr'IB] also enjoys the same properties as the unconditional probability. 

For example, in .the usual notations, we have: . 
(I) P [cjl 1 H] :: () 

(ii) P [ArBr= 1- P;[A 1 B}' 
n n 

(iii) P[u A; I B] = £ peA; IB], 
i=1 ;=1 

where A l' A2, ... , An are mutually disjoint events. 
(iv) P(A 1 u A2 I B) = P(A liB) + P (A 2 1 B) - P(A 1 A2 I B) 
(v) If E c F, then P(E I B) S P(F I B) 

and so on. 
The proofs of results (iv) ,md (v) are' given in theorems 4·9 and 4'13 

respectively. Others m:e left as .exercises to the reader. 
Theorem 4·12. For any three events. A. Band C defined on the sample 

space S such that B c C and P(.4) > 0, 
P(B 1 A) ::; P(C 1.4) 

P(CnA) 
Proof. P(C 1.4) == P(A) (By' definition) 

== 
P{B0Gf":IA)u(BnCnA) 

P(A) 

P[Bnc'nA) + P(BnCnA) . . 
== P(A) - f!(A) (Usmg aXIOm 3) 

= P[(BnqA)+(BnCnA)] 

Now B c C => B n C = B 

" P(CIA) ==P(B IA)+ P(BnCIA) 

=> P(C 1 A) ~ P(B IA) 
4·7·3. indc))endent E,'cnts. An event B is said to be independent (or 

statistically independent) of event A, if the conditional probabili~v of B given 
A i.e., P (B 1 A) is equal to the unconditional probahiliiy of B, i.e., ({ 

P (B 1 A) == P (B) 
Since 

P (A n B) == P (B 1 A) P (A) = P (A 1 B} P (B) 
and since P (B 1 A) = P (8) when 8 is independent of A, we mLlst have 
P (A 1 B) = P (A) or it fqIlows that A is also independent of B. Hence the 
events A and B are independent jf and only if . 

P (A n 8) = P (A) P (B) ... (4'9) 
4·7'4. Pitil'1vise Indc,)cndcnt El'ents 
Dcfinition. A set of events AI' .42' ••• , An are said to be pair-wise independent 

if P(A;nAj )==P(A;)P(.9 rt i*j ... (4'10) 
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4·7·5. Conditions for Mutual Independence of n Events. Let S denote the 

sample. space for a number of events. The events in S are said to be mutually 
indepdendent if the probability of the simultaneous occurrence of (any) finite 
number of them is equal to the product of their separate probabilities~ 

If Al , Az, ... , A. are n events, then for their mutual independence, we should 
have 

(i) P (Ai (') Aj) = P (Ad P (Ai), (; # j ; i., j = 1,2, ... , n) 
(ii) P (Ai (') Aj(') AI) =P (Ai) P (Aj) P (AI), (i # j #k; i;j; k= 1,2, "',!l) 

P (Al nAz (') .,. (') A. ) = P (Al ,P (Az') ... P(A. ) 
It is interesting to note that the above equations give respectively 

·Cz, ·C3; ... , ·C. conditions to be satisfied by Al , .4z, ... , A •. 
Hence the total number of conditions for the mutual independence of 

Al , Az, ... , A. is ·Cz + ·C3 + ... + ·C •. 

Since ·Co + ·Cl + ·Cz + ... + ·C. ~ 2- , we get the required number of conditions 
as (2·-I-n). 

In particular for three events Al , Az and A3, (n = 3), we have the following 
23 "" 1 .!.. 3 = 4, conditions for their mut~ independence. 

P (Al (') Az) = P (Al) P (Az) 
P (Az (') A3) = P (Az) P (A3) 
P (Al (') A3) = P (Al) P (A3) 

P (.-41 (') Az (') A3) = P (Al) P (Az) P (A3) ... (4·11) 
'Remarks. 1. It may be observed that pairwise or mutual independence of 

events Al , Az, ... , A., is defined only when P (Ai)# 0, for i =1, 2, ... , n. 
2. If the events A and B are' such that P (Ai) #'0, P (B) # 0 and!i is 

independent of B, then B is independent of A. 
Proof. We are given that' 

P (A I B) = P (A) 

P (A (')B) P (A) 
P(B) 

P(AnB) = P(A) P(B) 

P (.8 (') A) = P (B) 
P(A) . 

=> P (B I A) = P (B), 
[ .: P (A) # 0 and A (') B = B n A] 

which by definition of independent events, means that B is independent of A. 
3. It may be noted that pairwise independence of events does not implY tbeir 

mutual independence. For iilustrations, see Ex~ples 4·50 and 4·51. 

Theorem 4·13. If A and B are independent events then A a1l{1 B are also 
independent events. 
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Proof. By theorem 4·4, we have 
P(AnIi)= P(A) - P(ArlB) 

= P ( ~) - P (A ) P ( B) [.: A and Bare independenO 
= P(A) [l-P(B)] 
= P(A) P(Ii) 

~ A and ii are independent events . 
Aliter. P(A nB)=P (A) P (B) =P (A)P (B IA) =P (B)P (A IB) 
i.e., P (B 1 A) = P (8) => B is in4ependent of A. 
also P (A 1 B) = P (A) => A is independent of B. 
Also P (B 1 A) + P (Ii 1 A) = 1 => P (B):+- P (Ii 1 A) = 1 
or P (Ii 1 A) = 1 - P (B) = P (Ii) 
:. Ii is independent of A and by symmetry we say that A is independent of 

H. Thus A and Ii are independent events. 
Remark. Similarly, we can prove that if A and B are independent events then 

A and B are also independent events. 
Theorem 4·14. If A f!nd B are independent events then A and Ii are also 

independent events. 
Proof. We are given P (A n B) = P (A) P (B) 
Now P eft n B) == P (A u B) = 1 - P (A u B) 

= 1 - [P(A) + P(B) -: P(A nB)] 
= 1 - [P(A) + P(B)"- P(A)P(B)] 
= 1 - P(A) - P(B) + P(A)P(B) 
= [1 - P(B)] - P(A) [l-P(B)] 
= [1-P(A)l[l-P'(B)] =;P(A)P(B) 

:. A 'and B are independent events . 
Aliter. We know 

P(AIB) + P(AIH)= 1 
=> P(AIB) + P(A)= 1 , (c.fTheorem4·13) 
=> P(Alli) = 1 - f.(A) = 'J>(A) 
. . A and Jj are independent events. 
Theorem 4·15. If A, B, C are mutually independent events then A u B and C 

are also independent. 
Proof. We'are required to prove: 
P[(AuB)nC] = P(AuB)P(C) 
L.H.S. = P [( An C) u (p n C)J tDistributive Law] 

= P(AnC) + P(BnC) - P(AnBnC) 
= 'P (A)P (C)' + P (B)P (C) - P (A)P (B)P (C) 

[.,' A, B and C are mutua1Iy independent] 
= P(C) [P(A) + P(B) - P(AnB)J ' 
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= P ( C) P ( A u B) = R.H.S. 
Hence ( A u B ) and C are independent. 
Theorem 4·16. If A, Band C are random events in a sample space and if A, 

B andC are pairwise independent and A is independenfo/( B u C), thenA,B and 
C are mutually independent. 

Proof. We are given 

P(BnC)= P(B)P(C) 
P(AnB)= P(A)P(B) ) 

P (A n C) = P (A) P ( C) ... (.) 
P[An(BuC)] = P(A)P(BuC) 

Nc..... P [A n (B u C)] = P [ (A n B) v( An C) ] 
= R (A nB) + P (A n C), - P [A nB )·n (A n C)] 
= P (A) . P (B) + P (A ) . P ( C) - P (A n B n C) ... ( .. ) 

and P (A)P (B u C) = P (A)[P (B) +P (C) -P (B n C)] 
= P (A). P (B) + P (A) P (C) - P (A) P (B n C) ... ( ••• ) 

From ( .. ) and ( ••• ), on using (.), we get 
P (A n B n C)=P (A)P(B n C) =P (A) P (B) P (C) 

Hence A, B, C are mutually independent. 
Theorem 4·17. For any two events A and B, 

P (A nB )~P (A )~P (A uB )~P (A )+P(B) 
[PatDa Univ. B.A.(Stat. HODS.), 1992; Delhi Univ. B.Sc.(Stat. Hons.), 1989] 

Proof. We have 
A=(AnB)u(AnB) 

Using axiom 3, we have 
P (A )·=P [(A nB) u (AnB)] =P(A nB)+P(A nB) 

Now P [(A nB) ~ 0 (From axiom 1) 
.. P(A)~ P(AnB) .. (.) 
Similarly P ( B ) ~ P ( A n B ) 
:::) P(B)-·P(AnB)~ 0 
Now P(AuB)= P(A)+[P(B)-P(AnB )] 
•. P(AvB)~ P(A) :::) P(A)~ P(AuB) 
Also P(AuB)~ P(A)+ P(Bt 
Hence from (.), ( •• ) and ( ••• ), we get 

P(AnB)SP(A) S P(AuB)~ P(A)+ P(B) 
Aliter. Since An B c A, by Theorem 4·6 (ii) page 4·30, we get 

P (A n B ) S P ( A ). 
Also A c (A u B) :::) -p (A) S P (A u B) 

P (AuB )=P(A )+P (B )-P (AnB) 

... ( .. ) 
... ( ... ) 

[From ( .. )] 

SP(A)+P(B) [.: P (A nB) ~O] 
Combining the above results,y.'e get 

P(AnB)SP(A) S P(AuB)S P(A)+ P(B) 
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Example 4·12. Two dice, one green and the other red, are thrown. Lei A be 
the event that the sum of the points on the faces shown is odd, and B be the event 
of at least one ace (number' I'). 

(a) Describe the (i) complete sample space, (ii) events A, B, Ii, An B, 
Au B, and A n Ii and find their probabitities assuming that all the 36 sample 
points have equal probabilities. 

(b) Find the probabilities of the events: 
(I) (A u Ii) (ii) (A n B) (iii) (A n B) (iv) (A n B) (v) (A n Ii) (vi) (A u B) 

(Vil)(A U B)(viil) A n (A u B )(it) Au (it n B )(x)( A / B) and (B / A ), and 
(xi)( A / Ii) and ( Ii -/ A) .. 

Solution •• ( a) The sample space consists of the 36 elementary events . 
(I,I) ;(1,2);(1,3) ;(1,4);(1,5) ;(1,6) 
(2, 1) ; (2, 2) ; (2, 3) ; (2, 4) ; (2, 5 ) ; (2, 6 ) '-
(3, 1) ; (3,2) ; (3, 3) ; (3,4) ; (3, 5 ) ; (3,6) 
(4,1) ;(4,2);(4,3) ;(4,4);(4,5);(4,6) 
( 5, 1) ; (5, 2) ; (.5, 3) ; (5,4) ; (5, 5 ) ; (5, 6 ) 
(6, 1) ; (6, 2) ; ( 6, 3) ; (6, 4) ; (6, 5 ) ; (6, 6 ) 

where, for example, the 'ordered pair (4, 5) refers to the elementary event that the 
green die shows 4 and and the r~ die shows 5. 

A = The event that the sum of the numbers shown by the two dice is odd. 
= ( ( 1,2); (2, 1 ) ; (1,4) ; (2,3) ; (3,2); (4,1 ) ; ( 1,6); (2,5) 

(3,4) ; ( 4,3) ; (5,2) ; (6, 1 ) ; ( 3,6); (4,5); (5,4); (6,3) 
( 5, 6 ) ; ( 6 , 5)} and therefore 

P (A) = n (A) = ~ 
n (Sj 36 

B = The event that at least one face is 1, 
= ( ( 1, 1) ; (1,2) ; (1,3) ; (1,4 ) ; (1,5) ; (1,6) 

( 2, 1) ; (3, 1) ; (4, 1) ; (5, ,1) ; (6, 1 ) ) and therefore 

P (B) = !!.@. = .!! 
n(S) 36 

B = The event that each of the face obtained is not an ace. 
= { (2,2); (2,3); (2,4); (2,5 -); (2,6); (g, 2 ); (3,3); 

(3,4) ; (3,5) ; (3,6); (4,2) ; (4,3); (4,4) ; ( 4,5) ; 
(4,6); (5,2)·; (5,3); (5,4); .("5,5)'; (5,6); (6,2) ; 
( 6, 3) ; (6,4) ; (6,5); (6,6) -f and therefore 

P (Ii) = n (Ii) = 25 
n (S) 36 

A·n B = Ttte ~vent that sum is odd and at least one face is an ace. 
= { ( 1,2) ; (2, 1) ; ( 1,4) ; (4', 1) ; (I, 6) ; (·6, 1 )} 

. • P (A n B) = n (: (~) B) :6 = i 
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A () B = { ( 1,2) ; (2; 1) ; (1,4) ; (-2,3) ; (3,2) ;.( 4,1) ; ( 1,6) ; (2,5) 
( 3,4) ; (4,3) ; (5,2) ; (6, 1 ); (3; 6); (4,5); (5,,4); (6,3 ) 
( 5,6) ; (6,5); (1,1) ; (1,3) ; (1, 5 ); (3, 1) ; (5,1 ) } 

• P ~A B) = n (A u B) == 23 
.. \ U n (S) 36 

A ("I B = { ( 2, 3 ) ; ( 3, 2 ) ; ( 2, 5 ) ; ( 3,4) ; ( 3, 6 ) ; ( 4, 3 ) ; ( 4, 5 ) ; ( 5, 2) 
( 5,4) ; (5,6); (6,3); (6,5) J 

(b) (i) 

(ii) 

(iii) 

(iv) 

(v) 

(vi) 

P(A("IB)= n(A("IB)=Q=.! 
n (S) 36 3 

P (A u B) = P (};riB) = 1 - P (A ("I B) = 1 - ! = ~ 
6 6 

, 23 13 
P (A ("I B) = P~) = 1 - P (A u B) = 1- - = -

36 36 
- 18 6 12 I P(A("IB)= P(A)- P(A("IB)=-- -= -=-

3636363 
IA 11 6 S P V'l n B) = P (B) - P (A ("I B) = - - - = -

36 36 36 
-r=-n I S P (It ("I D) = 1 - P (A ("I B) = 1 - - = -

6 6 
P (A u B) = P (A) + l' (B) - P (A ("I B) 

36 36363 
= (1 -.!!)+ .!! - 2- = ~ 

(vii) P ~) = 1 - P (A u B) = '1 _ 23 = Q 
36 36 

(viii) P,[A ("I (A u B)] = P,[(A ("lit) u (it ("I B)] 

= P(AnB)= 2-
36 

(a)P [A u (A ("I B) ] = P (A) + P (A ("I B) - P (Ii ("I A ("I B) 
"T 18 S 2J = P (A) + P ( It ("I B) = 36 +, 36 = 36 

P (A I B) = P (A ("I B) _ ~ = .!. 
~. P (B) IJn6 11 

I P(A("IB) ~ 6 1 
P (B A) = P (it) 1~6 = Ii = 3 

(x) 

(xi) P (A I B) = P (it ("I B~ = 1¥36 = 13 
P(B) ~ 2S 

P (8 I it) = P (A ("I B) = I~ = 13 
P(A) I~ 18 

Example 4·13. If two dice are thrown, whot is the probobility thot the sum is 
(a) greater thon 8, and (b) neither 7 nor II? 

Solutio~. (a) If S denotes the sum; on the two dice, then we want P(S > 8). 
The required event can happen in the following mutually eXclUSive ways: 
(i) S = 9 (ii) S = 10 (iii) S= 11 (iv) S = 12. 
Hence by addition theorem of probability 

P(S> 8) =P(S=9>.+P(S= 10)+P(S= l1)+P(S= 12) 
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In a throw of two dice, the sample space contains 62 =36 points. 
The number of favourable cases can be enumerated as follows: 

S = 9 : (3,6), (6, 3), (4, 5 ), (5,4), i.e., 4 sample points. 
4 . 

P(S=9)= 36 

S =10: (4,6), (6,4) , (5,5), i.e., 3 sample points. 
P(S:lO)=1.. 

,36 
S =11: (5,6), (6,5), i.e., 2 sample points. 

2 P(S= 11)= 36 

S =12: (6,6), i.e., 1 sample point 
1 

P (S= 12)= 36 

4 3 2 1 10 S 
.. P (S > 8) = 36 + 36 + 36 + 36 = 36 = Ii 

4·45 

(b) letA denote the event of getting the sum of7 and B denote the event of 
getting the sum of 11 with a pair of dice. 

S = 7 : (1,6), (6, 1), (2, 5), (5,2), (3, 4), (4, 3), i.e., 6 distinct sample 
points. 

S · 6 1 P(A)= P( =7)= .-=-
36 ,6 

2 1 
S =11 : (5,6), (6,5), P (B) = P (S =11) -36 = 18 

•• Required probability = P (A n 11) = 1 - P (A 'u B) 
= 1- [P·(A)+ P (B)] 

( '.' A and B are disjoint events ) 
1 1 7 = 1----=-
6 18 9 

El(ampie 4·14 •. 411 urn t:tml7.IiM 4 tickets numbered 1, 2, 3" 4 and another 
contains 6 liclcets numbered 2, 4, 6, 7, 8, 9. If one 0/ the two urns is chosen aI , 
random and a ticlcet is drawn at random/rom the chosen urn,find the probabiliJ;es 
that the ticket drawn bears the number (i) 2 or4, (ii) 3, (iii) lor 9 

.[Calicut Univ. B.sc.,1992] 
Solution. (i) Required event can happen in the following mutuallyexcJusive 

ways: 
(I) First urn is chosen and then a ticket is drawn. 

(1/) Second ~ is chosen and then a ticket is drawn. 
Since the probability of choosing any urn is l,1, the required probability 'p' is 

given by 
p = P (I ) + P (II) 

1 2 1 2 5 =-x-+-x-=-
2 4 2 6 12 
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( "J R " d . bab'l' 1 1 1 0 1 II equlfe pro 1 lty = '2 X '4 + '2 X ="8 

( .: in the 2nd urn there is no ticket with number 3) 

"'J n . d babil' 1 1 1 1 5 (lll ~equlfe pro lty= -x -+ -x -= -
2 4 2 6 24 

Example 4·15. A card is drawn from a well-shuffled pack 0/ playing cards. 
What is the probability that it is either a spade or an ace? 

Solution. The equiprobable sample space S of drawing a card from a well­
shuffled pack of playing cards consists of 52 sample points. 

If A and B denote the events of drawing a 'spade card' and 'an ace' 
respectively then A consists of 13 sample points and B consists of 4 sample points 
so that, 

13 4 
P(A)= 52 and P(B)= 52 

The compound event A n B consists of qnly one sam1)le point, viz .• ace of 
spade so that, 

P(AnB)= 5~ 
The probability that the card <trawn is either a spade or an ace is given by 

P(A uB)= P(A)+ P(B)- P(A nB) 
13 4 1 4 

= 52 + 52 - 52 = 13 
Example 4·16. A box COfitains 6 red. 4 white and 5 black balls. A person draws 

4 balls/rom the box ,at ralidom. Find the.probability that among the balls drawn 
there is at least one ball of each COIOUT. (Nagpur Univ. B,Sc., 1992) 

Solution. The required event E that 'in a draw of 4 balls from .tte box at 
random there is at least one ball of each colour'. can materialise in the 
following mutually disjoint ways: 

by 

(iJ 1 Red, 1 White, 2 Black balls 
(iiJ 2 Red, 1 White, 1 Black balls 
(iii) 1 Red, 2 White, 1 Black balls. 

Hence by the ad<Ution theorem of probability, the required probability is given 

P (E) = P (I) + P (ii) + P (iii) 
= 6C1 x ·C1 X sCl + 6Cl X ·C1 X SCI + '6CI ){ ·Cl X SCI 

uC. ISC. ISC. 

= 7s- [ 6 x 4 x 10 + 15 x 4 x 5 + 6 x f x 5 J 
C. 

4' [ ] 
= 15 x 14 x 13 x 12 240 + 300 + 180 

24x7W 
= 15 x 14 ~ 13 x 12 = 0·5275 

prakash
Rectangle
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Example 4·17. Why does it pay to bet consistently on seeing 6 at least once in 
4 throws of a die, but not on seeing a-double six at least once in 24 throws with two 
dice? (de Mere's Problem). 

Solution. The probability of geuing a '6.' in a throw of die =1/6. 
:. The probability of not geuing a '6 ' in a throw of die 

=1 - 1/6 = 5/6 . 
By compound probability theorem, the probability that in.4 throws of a die no 

'6' is obtained = (5/6)4 
Hence the probability of obtaining '6' at least once in 4 throws of a die 

~ 1 - (5/6)4 = 0·516 
Now, if a trial consists of throwing two dice at a time, men the probability of 

getting a 'double' of '6' in a trial = 1/36 . 
Thus the probability of not geuing a 'double of 6 ' in a trial = 35/36. 
The probability that in 24 throws, with two dice each, faO 'double of 6' is 

obtained = (35/36)24 
Hence the probability of geuing a 'double of·6' at least once in 24 throws 

= 1 - (35/36)2A = 0·491. 
Since the probability in the fast case IS g~ter than the Pf9babili~y in the 

second case, the result follows. 
Exampie 4·18. A problem in Statistics is given to the three students A,B and 

C whose chances of solving it are 1 / 2 ,3 /4 , and 1 /4 respectively. 
What is ,the probability that the problem will be solved if all of them try 

independentiy? [Madurai Kamraj Univ. B.Sc.,1986; Delhi Univ. B.A.,I991] 
Solution. Let A, B, C denote the events that the problem is solved by the 

students A, B, C respectively. Then 
i 3 I 

P(A)= 2' P(B) = 4 and P(C\= 4 
The problem will be solved if at least one of them solves the problem. Thus 

we have to calculate the probability of occ~ence of at least one of the three events 
A , B , C , i.e., P (A u B u C). 

P (A uB u C) =P (A)+P (B)+P (C)-P-(A ("\B)-P (A ("\ C) 
- P (B ("\ C) + P (A n B nC) 

= P (A) + P (B) + P (C) - P (A) P (B) - P (A) P (C) 
- P (B) P (C) + P (A) P (B) P (C) 

1 3 1 = -+ -+ -2 4 ~ 

29 
- 32 

( ... A , B , C are independent events. ) 
1 3 
2 . 4 
1 1 
2 ·4 + 

3 1 
4·4 
1 3 
2 ·4 

1 
4 
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Aliter. P (A vB vC)= 1- P (AvB vC) 
= I-P(AfiBfiC) 
= 1- P(A)P(B)P(C) 

= 1-(1-4)(1-~)(1-~) 
29 

- 32 
Example 4·19. If A fiB =~, then show that ... (*) 

Solution. 

::) 

P(A) ~ P (B) 
[Delhi Univ. B.sc. (Maths Hons.) 1987] 

We have 
A = (A fi B) v (A fi B) 

= ~ v (A fiB) 
=AfiB 

A~B 
P (A) ~ P(jj) 

[Using *] 

as desired .. 
Aliter. Since A fiB =~, we have A cB, which Uraplies thatP (A) ~P (Ii). 
Example 4·20. Let A and B be two events such that 

3 5 
P (A) = - and P (B) = -

4 8 
shOw that 

(a) P(AuB~ ~ ~ 

(b) ~~P(A fiB) ~~ 
[Delhi Univ. B.sc. Stat (Hons.) 1986,1988] 

Solution. (i) We have 
A c (A vB) 

::) P (A) ~ P(A v B) 

::) ~ ~ P(AvB) 

3 
::) P(A vB) ~ 4 

(ii) 

Also 

AfiB ~ B 
5 

P(A fi B) ~ P (B) = i 
P ( A IV !J ) = P (A) + P (B) - P ( A fi B ) ~ 1 
3 5 4+ 8-,1 ~ P(AfiB) 

... (i) 
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6+ ~ - 8 ~ P (A n B) 

~ ~P (A nB) 
... (ii) 

From (i) and (ii) we get 

~ ~ P (A nB) ~ ~ 
Example 4·21. (ChI!bychl!v's Problem). What is thl! chance that two numbers, 

cll()sen at random, will be prime to each othl!r ? 
Solution. If any number' a' is divided by a prime number 'r' , then the possible 

remainders are 0" 1,2, ... r-1. Hence the chance that 'a' is-divisible by r is 1/r 
(beCause the only case fl;lvourable to this ,is remainder being 0). SiJllilarly, the 
probab.ility that any n,umber 'b' chosen at raQ<iom is divisible by r is 1/1'. Siqce 
the numbers a an4 b are chosen at randoq1, the PfQ!?ability th~ none of them is 
divisible by 'r' is given (by compound probability theorem) by : 

( 1 -; ) x ( 1 -; ) = ( 1 ~; J; r = 2, 3, 5, 7, '" 

Hence the required probability that the two numbers chosen at random are 
prime to each other is given by 

P = ~ ( 1 - ; J, where r is a prime number. 

6 
=2 

7t 
(From trigonometry) 

Example 4·22. A bag contains 10 gold and 8 silver coins. Two successive 
drawings of 4 coins ore made such that: 'm coins are repldced before thl! second 
trial, (ii) thl! coins are not replaced before thl! second trial. Find thl! probability 
that the first drawing will' give 4 gold and thl! second 4 silver ~oins. 

[Allahabad Univ. B.Sc., 1987] 
Solution. Let A denote the event of drawing 4 gold coins in the first draw and 

B denote the event of drawing 4 silver coins in the second draw. Then we have to 
fmd the probability of P ( A n B ). • 

(i) Draws with replacement. If the coins drawn in the first draw are replaced 
back in the bag before the second' draw then the events A and B are '~ndependent 
and the required probability is given (using the multiplication rule of probability) 
by the expression 

P(AnB)=P(A).P(B) ... (*) 
1st draw. Four coins can be drawn out of 10+8=18 coins in 18C4 ways, which 

gives the exhaustive number of cases. In order that all these coins are of gold, they 
Illust be drawn out of the 10 gold coins and this can be done in lOC4 ways. Hence 

P (A) = lOC4 I 18C4 
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2nd draw. When the coins drawn in the first draw ¥e replaced before the 2nd 
draw, the bag contains 18 coins. The probability Of drawing 4 silver coins in the 
2nd draw is given by P (B) = 8C. / 18C •• 

Substituting in (*), we have 
IOC4 8C4 

P(AnB)= - x-
18C. 18C4 

(ii) Draws without replacement. If the coins drawn are not eplaced back before 
(he second draw, then the events A and B are not independent and the required 
probability is given by . 

P(AnB)=P(A).P(B LA) ... (u) 

As discussed in part-(i), P (A) = 10C. / 18C •• 

Now; if the 4 gold coins which were drawn in the fIrSt draw are not replaced 
back, there are 18 - 4= 14 coins left in the bag and P (B I A) is the probability of 
drawing 4 silver coins from the bag containing 14 coins out of which 6 are gold 
coins and 8 are silver coinS. 

Hence P (B I A) = 8C. / I·C. 
Substituting in (**) we gl'!t 

IOC4 8C4 

P(AnB)=. ~ x IIC 
C4 • 

Example 4·23. A consignment of 15 record players contains 4 defectives. The 
record players ar:e selected at random, one by one, and examined. Those examined 
are not put back. What is the probability that the 9th one examined is the last 
defective? 

Solution, Let t4 be the ev~nt of gettipg ex~tly 3 defectives in-examination 
of 8 record players and let B the event that the 9th piece examined is a defective 
one. 

Since it is ~ problem of saQJpli{lg without replacement an9 since there are 4 
defectives out of 15 record players, we have 

- (4J (l1J 
P (A) = l3 . x l ~ 

~ - ~ (~J 
P (B ! A) = Probability that the 9th examined record player is defective given that 

there were 3 defectives in the fIrSt 8 pieces examined. 
= 1/7, 

siilce there is only one def~tive piece left amonglhe remaining 15 - 8 = 7 record 
players. 

Hence the required probability is 

P (A n B) = P (A) . P (B I A) 
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Example 4·24. p is the probability that a man aged x years will die ina year. 
Find the probability that out of n men AI. A2 • ••• , A. each aged x, Al will die in a 
year and will be thefirst to die. [Delhi Univ. B.sc., 1985) 

Solution. LetEi, (i = 1,2, ... , n) denote the event that Ai dies in a year. Then 
P (Ei) = p, (i = 1,2 •... , n) and P (Ed = 1 - p. 

The probability that none of n men AI. A2 • ... , A. dies in a year 
= P (EI h E2 f"l ... f"l E.) = P (EI) P (E2) '" P (E,,) 

(By compoilnd probability theorem) 
= (l-p)" 

. . The probability that at least one of AI. A2, ... , A", dies in a year 
= 1 -: P (El f"l E" f"l ... f"l E,,) = I - (1 - p )" 

The probability that among n men, AI is the flCSt to die is lin and since this 
event is independent of the event that at le~t one man dies in a year, required 
probability is 

.; [ I - (I - p)" ] 

Example 4·25.Thf! odds against Manager X settling the wage dispute with the 
workers are 8:6 and odds in favoUT of manager Y settling the same dispute are 
14:16. 

(i) What is the chance that neither settles the dispute, if they both try, 
independently of each other? 

(ii) What is the probability that the dispute will be settled? 
Solution. Let A be the event lha.t the manager X will settle the dispute and B 

be the event that the Manager Y will settle the dispute. Then clearly 
P (A) = _8 __ = i => P (A) = 1 - P (A) = ~ = 1 

8+6 7 14 7 
~ 7 11 16 8 

P (B) = 14 + 16 = IS => P ( ) = I - .P (B) = 14 + 16 = Is 
The required probability that neither settles the dispute is given by : 

P(Af"lIi)= P(A) x P(Ii'= i x ~= E-
. ' 7 IS lOS 

[Since A and B are independent => A and Ii are also independent] 
(ii) The dispute will be settled if at leaSt one of the managers X and Y settles 

the dispute. Hence the required probability is given by: 
P (A u B) = Prob. [ At least one of X and Y settles the dispute] 

= 1 - Prob. [ None settles the dispute] 
=1- P(Af"lB)= 1- E-=.!1.. 

lOS lOS 
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Example 4·26. The odds that person X speaks the truth are '3 :2 and the odds 
that person Y speaks the truth are 5:3. In what percentage of cases are they likely 
to contradict each other on an-identical poillt. 

Solution. Let us define the events: 
A : X speaks the truth, B : Y speaks.the truth 

Then A and Ii represent the complementary events that X and Y tell a lie 
respectively. We are given: 

and 

3 3 
P(A)= --= - ~ 

3+ 2 5 
5 5 

P(B)= --= - ~ 
5+ 3 8 

, 3 2 
P(A)~ 1- -=­

:5 5 
5 3 

PUi)= 1- -= -
8 8 

The event E thal' X and Y contradict ea~h other on an identical pomt can 
happen in the following mutually exclusive ways: 

(i) X speaks the truth and Y tells a lie, i.e., the event A n Ii happens, 
(ii) X tells a lie and Y speaks the truth, i.e., the event An B happens. 
Hen~e by addition .theorem of probability the required probability is given by: 

P (E) = P (i) + P (i,) = P (A n Ii) + P ('A n B ) 

= P ·(A) . P (Ii) + P ( A) .P (B) , 
[Since A and B are independent] 

= 1 x 1+ 1 x 1= .!2.= 0.475 
585840 

Hence A and B are likely to contradict each other on an identical point in 
~1·5% of,the cases. 

Example 4·27. A special dice is prepared such that the probabilities of 
throwing 1,2,3,4,5 and 6 points are: 

1- k 1 + 2k 1-·k 1 + k 1- 2k 1 + k 
-6-' -6-' -6-; 6-' -6-' and -6-

respectively. If two such dice· are thrown, find the probability of getting a sum 
equal to 9. [Delhi Univ. B.Sc. (Stat. Hons.), 1988) 

Solution~ Let (x, y) denote the numbers obtained in a thrown oflwo dice, X 

denoting the numbe~ on the flfStdice and.y denoting the number on the second dice. 
The sum S = x+y = 9, can be obtained in the following mutually disjo~t ways: 

(i) (3,6), (ii)(6, 3), (iii)(4,5), (iv)(5,4) 
Hence by addition theorem of probability: 
P(S = 9) = P(3, 6) + P (6, 3) + P(4, 5) + P(5, 4) 

=P~=~P~=~+P~=~P~=~+P~=~P~=~ 
+ P (x=·5)P ~=4), 

since the number on one dice is independent of th~ number on the other dice. 
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P (S = 9) = (~ - k) (I + k) (I + k) (I - k) (1- + k) (I - 2k) 
., 6'6 + 6'6 + 6' 6 

= 2 (\~k) I (l-k) + (l-2k) I 

1 = Is (I + k) (2 - 3k) 

+ (I - 2k) (I + k) 
6 . 6 
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Example 4:28. (a) A and B a/ternmeiy cut a pack of cards and·the pack is 
shujJ1ed after each cut. If A starts and the game'is continued until one ctas a 
diamond,' what are the respective chances of A and B first cutting a diamond? 

(b) One shot isfiredfrom each oft/Ie three guns. E., E2, E3 .d~fjote-tlze events 
that the target is hit by the firsJ. second and third gun respectively. If 
P (E:) = 0·5, P (E'2) = 0·6 and P (E3) = 0·8 and. E\, £2, E3 are independent 
events,find the probability that (a) exaGt/y one hit is registered,. (b) at/east two 
hits are registered. 

Solution. (a) Let 'E\ and E2, denote the events of A and £i cutting a diamond 
respectively. Then 

. 13 1 - - 3 
P (E\) = P (E2) = - = - ~ P(E\) = P (E2) = -52 4 . 4 

If A starts the game, he can firs~ cl,lt the diamond in the following mutually 
exclusive ways: 

(i) E\ happens, (it) E\ n E2 n E; happens, (iii) E\ n E2 n £\ n E2 n E\ 
happens, and so on. "ence by addition theorem of probability-, the probabiltly 'p. 
lhaL A first wins is given by 

p = P (j) + P (ii)+ P (iii) + ..... . 
= P (E\) + P (E\ n E2 n E\ ) + P (£~ n E2 n E\ n E2 n E\) + ... 
= P (Ed + peEl) P (E2) P (E\) + l' (E\)'P (E2) P (E~) P (£2) P (E\) -I- ••• 

(By Compou/k.{ Probability Theorem} 
1 331333 g 1 

= 4" + 4"' 4"' 4" + 4"' 4"' 4"' 4"' 4" + ..... . 
1 
·4 4 

=--9-=-=; 
1- 16 

The probapility thatB frrst cuts a diamond 
4' 3 = 1- p= 1- - = -7 7 

(b) We are given 
P (E\) = 0·5, P (E2) = 0·4 and P (E3) = 0·2 
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(a) Exactly one hit can be registered in the following mutually exclusive ways: 
(i) E\ ('\ E2 ('\ £3 happens, (ii) E\ ('\ E2 ('\ E3 happens, (iii) Ei ('\ El ('\ E3 happens. 

'Hence by addition probability theorem, the required probability 'p' is given 
by: 

p=P(EJ n E2 n El ) +P(E\ nE2 n El ) +P(E\ Cl E2 ne,l 
= P(E\) P(El ) P(E3) + P(EJ) P(E2) P(E3) + P(E\) P(E0 P(E3) 

(Since.EI, El and E3 arc independent) 
= 0-5 x 0·4 x 0·2 + 0·5 x 0·6 x 0·2 + 0·5 x 0·4 x 0·8·= 0·26. 

(b) At least two hits can be registered in the following mutuidly exclusive ways: 
OJ E\ ('\ E2 ('\ E3 happens (ii) E\ ('\ El ('\ E3 happens, (iii) EI ('\ E2 ('\ E3 hap-

pens. (iv)EI ('\ 'El ('\ E3 happens. 
Required probability 
= P(EI ('\ El ('\ E3) + P(EI ('\ El ('\ E3) + peE; h ~2 ('\ E3) + P(EI ('\ E; ('\ Ej) 
= 0·5 xO·6x 0·2+ 0·5 x 0·4 xO·8 + 0·5 x 0·6 x 0·8 + U·5 x 0·6 x 0·8 
= 0·06 + 0·16 + 0·24 + 0·24 = 0·70 

Example 4·29. Three groups of Ghildren contain respec(ively 3 girls and 1 
boy, 2 girls and 2 boys, and 1 girl and 3 boys. One child is selected at random from 
each group. Show that lhe chance that the three se,lected consist of 1 girl and 2 
boys is /3/32. [Madurai Univ. B.Sc.,1988; Nagpur Univ. B.Sc.,1991) 

Solution. The required event of getting 1 girl and 2 'boys among the three 
selected children can materialise in the following three mutually disj<;>ilJt cases: 

Group No. ~ I Ii III 
(i) Girl Boy Boy 
(ii) Boy Girl Boy 
(iii) Boy Boy Girl 

Hence by addition theorem of probability, 
Required probability = P (i) + P (ii) + P (iii) ... (*) 

Since the probability of selecting a girl from the fIrst group is 3/4, of selecting 
a boy from the second is 2/4, and of selecting a boy from the third group is 3/4, and 
since these three events of selecting children from three groups are independent of 
each other, by compound probability theorem, we have 

. 3 2 3 9 
P (,) = - x - x - = -

4 4 4 32 
Similarly, we have 

P (ii) = .! x ~ x 1 = l.. 
4 4 4 32 

P ( ''') 1 2 1 1 III =-x-x-=-
4 4 4 32 
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Substituting in ( *). we get 

'd b b'l' 9 3 1 13 ReqUire pro a I Ity = 32 + 32 + 32 = 32 

EXERCISE 4 (b) 
1. (a) Which function defines a probability space on S = (' elt e2. e3) 

1 1 1 
(i) P (el) = '4' P (e2) = '3' P (e3) = 2 

{ii) P (ej),= ~. P (e2) = - ~ • P (e3) = ~ 
(,',',') P () 1 P () 1 P () 1 d el = '4' e2 == '3 . e3;:;: 2' an 

I 2 
(iv) P (el) = 0, P (e2) = '3' P (e3) = '3 

Ans. (i) No. (ii) No. (iii) No, and (iv) Yes 
(b) Let S: (elo e2. e3, e,4) , and I~t P be a probability function on S , 

(i) Find P(el). if P(e2) = ~. P(e3) ~ i, P(e4) = l 
(ii) Find P(el) and P(e:z) if P(e3) = P(e4) :: ± and P(el) = 2P(e2). and 

(iii) 'Find P(el) if ,P[(e2. e3)] = ~ . P[(e2, e4)] = 4 and P(e2) = 1. 
Ans. (i) P (el) = )78' (Ji) P (elt: ~. P (el): i. and (iii) P (er) = i 
2. (a) With usual notations. prove that 

P(AvB)= P(A)+ P(B)-P(AnB). 
Deduce a similar result for P (A vB u C)\ where C i~ one more event. 
(b) For any event: Ei• P (Ei) = Pi. (i == 1,2,3) ; P (Ei n Ej) = pij, (i,j = 1,2,3) 

and P (EI n E2 n E3) = PI23, find the probability tfiat of the three events, (j) at least 
one, and (ii) exactly one happens. 

(c) Discuss briefly the axiomatic approach to probability. illustrating by 
examples how it meets the deficiencies of the classical approach. 

(d) If A and 8 are any two events. state the resells giving 
(i) P (A u B) and (iiJP (A n B). 

, 1 1 
A and B are mutually exclusive events and P (A): 2' P (B) = '3' Find 

P (A v's) and P (A nB). 

{ I (1)2 (I)'"} 3. Let S: 1'., '2' 2 ,.... 2 . be a classical event space and A. B 

be events given,by 
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A =J I, j} , B = {( ~ J I k is an even positive integer} 

Find P (A n 8) [Calcutta Univ. B.Sc. ( Stat Hons.), 1986J 
4. What is a 'probability space'? State (i) the 'law of total probability' and 

(ii) Boole's inequality for events not necessarily mutually exclusive. 
S. (a) Explain the tollowing with examples: 
(i) random experiment, (ii) an event, (iii) an event space. State the axioms of 

fl. obability and explain their frequency interpretations. 
A man forgets the last digit of a telephone number, and dials the last digit at 

~'~ndom, What is the probability of caHing no more than three wrong numbers? 
(b) Define conditional probability and give its frequency interpretation. Show 

that conditional probabilities satisfy the axioms of probability. 
6. Prove the following laws, in each case asswning the conditional prob-

abilities being defined. 
(a)p(£I£)=I, (b) P(eIlIF)=O 
(c) IfEI r;;,£z, then E(EI I F)<P(Ezl F) 
(d) p(EIF)= 1- p(EIF) 
(e) P (£1 u £z IF) = P (El IF) + P (Ez IF) - P (P (El n £z IF) 
(f) If P (F) = I then P (E IF) = P (E) 
(g) P (£ - F) = P (E) - P (E n F) 
(h) If P (F) > 0, and E and F are mutully exclusive then P (E I F) = 0 
(i) If P (£ I F) == P (E) , then P (E I F) = P (E) and P (£ I F) = P (£) 

7. (a) UP<A)= a, P(8)= b,thenprovethatP(An8) ~ l-a,..b. 

(b) If P (A) = a, P (8) =~, then prove that P (A I 8) ~ (a + ~ - l)/~. 
Hint. In each case use P (A u 8) ~ 1 
8. Prove or disprove: 
(a) (i) If P (A 18) ~P (A), then P (8 IA) ~P (8) 

(ii) if P (A) = P (8), then A = 8. 
[Delhi Univ. B.Sc. (Maths Hons.), 1988] 

(b) If P (A) = 0, then A = ell 
[QeJhi Univ. B.Sc. (Maths Hons.), 1990] 

Ans. Wrong. 
(c) ForpossibieeventsA,8, C, 

(i) If P (A) > P (8), then P (A I C) > P (8 I C) 
(if) IfP(AIC)~P(81c) and P(AI,C)~P(8IC)' 

then P (A) ~ P (8). [Delhi Univ. B.Sc.(Maths Hons),1989] 
(d)lfP(A)=O, then P(An8)=O. 

[Delhi Univ. B.Sc. (Maths Hons.), 1986) 
(e) (i) If P (A) = P (8) = p, then P (A n 8) ~pz 

(iij If P (8 1:4) = P (8 I A), then A and 8 are independent. 
[Delhi Univ. B.Sc. (Maths Hons.), 1990] 
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(j) If P (A»O,P (8) >0 and P (A 18)=1' (8 IA), 
then P (A) = P (8). 
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9. (a) letA and 8 be two events, neither of which has probability zero. Then 
if A and 8 are disjoint, A and 8 are independent. 

(Delhi Ull.iv. n.Sc.(Stat. Hons.), 19861 
(b) Under what conditions does t~e following equality hold? 

P (A) = P (A 18) + P (A I B) 
(PI,mjab Univ. B.Sc. (Maths Hon:;.), ~9921 

Ans. 8 = S or B = S 
10. (a) If A and 8 are two events and the. probability P (8) :F- I, prove that 

1 
__ [P(A}-P(An8)] 

P (A 8) - [1 _ P (8) ] 

where B denotes the event complementary to 8 and hence deduce th~t 
P (A n 8 ) '2 P (A) + P (8) - 1 

[Delhi Univ. B.Sc. (Stat. Hons.), 1989) 
Also show that P (A) > or < P (A J 8) according as 

P (A I B) > or < P (A). 
[Sri Venkat. Univ. B.Sc.1992 ; Karnatak Univ. B.Sc.1991] 

Hint. (i) 

P(A 1 ~)= p~(~f) = [P(1i~~~~)~8)] 
(ii) Since f (A 1 B) S; I, P (A}- P (;4 n 8) ~ 1- P (8) 
=> P (A) + P (8) - 1 S; P ·(A n 8) 

(iii) 

Now 

i.~., if 

i.e., if 

P (A I B) _ P (B I A) .... 1 - P (8 I A) 
P (A) - P (8 ) - 1 - P (8) 

P (A I B) > P (A) if { 1 - P (8 I A) } > { 1 - P (8) } 

P (8 1 A ) < P (8) 

p(8IA) 1 
P(8) < 

P(A 18) 1 1 i.e., if. P (A) < i.e., if P (A) > P.(A 8) 

(b) If A and 8 are two mutually exclusive events show that 
P (A I B) = P (A)/[l- P(8)] 

[Delhi Univ. B.Sc. ( Stat. HODS.), 1987] 
(c) If A and fJ are two mutually exclusive events and P (A u 8) :F- 0, then 

P (A I A u 8) = P (A) . 
P (A) + P (8) [Guahati Univ. B.Sc. 1991 ) 

(d) If A and 8 are two independent events show that 
P (A u 8) = 1 - P (4. ) P ( B ) 
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(e) If A denotes the non-occurrence of A, tnen prove that 
P (AI U A2 U A3) = I - P (AI) P (A2 I AI) P (A3 I AI (") Az) 

11. If A, Band C are three arbitrary events and 
SI = P (A) + P (B) + P (C) 
S2 = P (A (") B) + P (B (") C) + P (C (") A) 
S3 = P (A (") B (") C). 

[Agra Univ. B.Sc., 1987/ 

Prove that the probability that exacLly one of the three events occurs is given 
by SI - 2 S2 + 3 S3 .. 

12. (a) For the events AI, A2 •...• A. assuming 
1\ 1\ 

P ( u Ai) S 1: P (A). prove that 
;=1 ;=1 

1\ 1\ 

(i) P ( (") Ai) ~ 1 - 1: P (Ai) and that 
;= 1 ;= 1 

1\ 1\ 

(ii) P ( (") Ai) ~ 1: P (A) - (n - 1) 
;=1 ;=1 

, , 

[Sardar Patel Univ.'B.Sc. Nov.1992) 
(b) LetA, Band C denote events. If P (A I C) ~ P (B I C) and 

P (A Ie) ~P (B Ie), then show thatP (A)~P (B). 

[Calcutta Univ. B.Sc. (Maths Hons.), 1992) 
13. (a) If A and B are independent events defined on a given probability 

space (0 • A • P (.», then p .. we that A and B are independent, A and B are 
, independent. [Delhi Univl B.sc. (Maths 'Hons.), 1988] 

( b) A, B and C are three events such that A and B are independent, P (C) = o. 
Show that A, B and C are independent. 

(c) An event A is known to be independent of the events 8,B u C and 
B (") C. Show that it is also independent of C. [Nagpur Univ. B.Sc.1992] 

(d) Show that 'if an event C is independent of two mutually excluc;ive events 
A and B, then C is also independent of Au B. 

(e) The outcome of an experiment is equally likely to be one of the four points 
in three-dimensional sJ)3ce with rectangular coordi~tes (1,0,0),. (0, l,O), 
(0,0,1) and (1,1,1). LetE, FandG betheevents: x~rdinate=l,y~r­
dina~l and z~rdinate='l;respectively. Check if the events E, F and G are 
independent. (Cakutta Univ. B.Sc., 1988) 

14~ ExplaiJi what is meant by "Probability Space". You fue at a target with 
each of ~ three guns; A, B and C dehote respectively the event - hit the target 
~ith the fust, second and third gun. Assuming that the events are independent and 
have probabilities P (A) = a, P (B) = b and P (C) = c, express in terms of A, B 
and C the following events: 

(;) You will not hit the target at all. 
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(ii) Y.ou will 'hit the target at least twice. Find also the probabilities of these 
events. [Sardar Patel Univ. B.Sc., 1990) 

15. (a) Suppose A and B are any two events and that P (A) = Pit P (B) = P2 
and P (A II B) = P3' Show that the formula of each of the following 
probabilities in tenns of Pit P2 and P3 can be expressed as follows: 

(i) P (;;: u Ii) = I - P2 (it) P (~ II Ii) = I - PI - P2 + P3 

(iii) P (A II B ) = PI - P3 (iv) P (A II B) = P2 - P3 
---

(v) P (A II B) = I - P3 (vi) P (A u B) = I - PI + 1'3 

(vii) P (A u I! ) = I - PI - P2 + P3 (viii) P [A II (A u B)] = P2 - P3 

(ix) P [A u (A II B)l =PI + P2 - P3 

(x)P(AIB)=P3 and P(BIA)=& 
P2 PI 

(xi) P (A I Ii) I - PI - P2 + P3 and P (Iii A ) = I - PI - P2 + P3 
J -P2'1 1-PI 

[Allahabad Univ. B.Sc. (Stat.), 1991] 
(b) If P (A)= 1/3, P (B) = 3/4 and P (A u B) == 11112, lind 

P (A I B) and P (B I A). 
(c) Let P (A) = P, P (A I B) = q, 'p (8 I A) = r. Find the relation· between the 

numbers p, q and r such that A and Ii are mutually exclusive. 
[Delhi Univ. B.Sc. (Maths Hons.), 1985] 

Hint. P (AB) = P (A) P (B I A) = P (B). P (A I B) 
=> P (AB) = pr = P (B). q => P (B) = pdq 

!fA and Ii are mutually disjoint. then P (A II Ii) = o. 
=> I - P (A u B) = 0 => 1 - [p + (pdq) - pr] = 0 
16. (a) In terms of probabilities, PI = P (A), P2 = P (B) and p~ = P (A II B); 

Express (i) P (A u B), (ii) P (A I B), (iit) P (A II B) under the condition that 
(t) A and B are mutually exclusive, (ii) A and B are mutually independent. 

(b) Let A and B be the possible outcomes of an experiment and suppose 
P (A) = 0-4, P (A u B) = 0·7 and P (B) = P 

(i) For what choice of P are A and B mutually exclusive? 
(ii) For what choice jjf p are A and B ind«pendent ? 

[Aligarh Univ. B.Sc., 1988 ; Guwahati Univ. B.Sc., 1991] 
Ans. (i) 0·3, (ii) 0·5 
(c) Let A I. A2• A3, A4 be four independent events for which P (AI) = p, 

p (A 2) = q, P (A 3) = rand P (A4) = s. Find the probability tt~at 
(i) at least one of the events occurs, (ii) exactly two of the events occur, and 

(iit) at most three of the events occur. [Civil- Services (Main), 1985] 
17. (a) Two six-face<t unbiased dice are t~rown. Find t~~ p~obabiJjty t~\lt tl~e 

sum of the numbers shown is 7 or their product is 12. 
Ans.2/9 
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(b) Defects are classifcd ac; A, ,8 or C, and the following probabilities have been 
detennined from av~il~ble production data : 

P (A) = 0·2{),·P (B) = 0·16, P (C) = 0·14, P (A (") B) = 0·08, P (A (") C) = 0·05, 
P (8 (") q = 0·04, and P (A (") 8 (") C) = 0·02. 

What is the probability .that a randomly selected item of product will exhibit 
at-least one type of defect? What is the probability that it exhibits both A and 8 
defects but is free from type C defcct ? [Bombay Univ. B.Sc., 1991) 

(c) A language class has only three students A, B, C and they independently 
attend the class. The probat;>ilities of attendance of A, Band C on any given day are 
1/2,213 and 3/4' respectively. Find the probability that the total number of 
attendances in two consecutive days is exactly three. 

(Lucknow Univ. B.Sc. 1990; Calcutta Univ. B.Sc.(Maths Hons.), 1986) 
18. (a) Cards are drawn one by one from a full deck. What is the probability 

that exactly 10 cards will precede the first ace. [Delhi Univ. B.sc.,1988] 

(
48 47 46 39) 4 164 

Ans. 52 x 51 x 50 x ... ~ 43 x 42 = 4165 

(b) hac of (wo persoos tosses three frur coins. What is the probability that 
they obtain the same number of heads. 

Ans. (i J + (~J + (~J + (i J = :6" 

19. (a) Given thatA, 8 and C are mutually exclusive events, explain why each 
of the following is not a pennissible assignment of probabilities. 

(i) P (A) = 0·24, P (8) = 04' and P (A u C) = 0·2, 
(ii) P (A) = 0·7, P (B) = 0·1 and P (8 (") C) = 0·3 
(iii) P (A) = 0·6, P (A (")]i) = 0·5 

(b) Prove that for n arbitral)' independent events AI, A2, ... , t\. 
P (AI U A2 U A3 U ... u A,,) + P (AI) P (AJ .. , P (A.) = 1. 

(c) AI, A2, ... , A,. are n independent events with 
1 , 

P (Ai) = 1 - i' ,= 1, 2, '" ,n . 
a 

Find the value of P (AI u A2 U A3 U ... u A.). (Nagpur Univ. B.Sc., 1987) 
1 

Ans. 1 - ,. (>1+ lY:t 
a 

(d) Suppose the events A .. A2, ... , A" are independent and that 

P (A;) = ~1 for 1 SiS n . Find the probability that none of the n events 
I + 

occW's, justi~ng each step in your. calculations. 
Ans. 1/( n + 1 ) 

20. (a) A denotes getting a heart card, B denotes getting a face card (King, 
Queem or Jack), A and B denote the complementary events. A card is drawn at 
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random {rom a full deck. Compute the following probabilities. 
(i) P (A), (ii) P (A (8), (iii) P (A u -8), (iv) P (A n B), 

(v) P (A vB). 
Assume natural assignment of probabilities. 
Ans. OJ 1/4, (ii) 5/26, (iii) 11/26, (iv) 3/5, (v) 'll/2h. 
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(b) A town has two doctors X and Yoperating independently. If the prohabili ty 
that doctor X is available is ()'9 and thilt for Y is 0·8, what is the probability that 
at least one doctor is available when needed? [Gorakhpur Univ. B.Sc., 1988J 

Ans. 0·98 
21. (a) The odds that a bOok will.be favourably reviewed by 3 independent 

critics are 5to 2, 4 to 3 and 3-to 4 respectively. What is the probability that, of the 
three reviews, a majority will be favourable? [Gauhati Univ. BSe., 1987J 

Ans. 209/343. 
(b) A, B and C are independent witnesses of an event which is known to have 

occurred. A speaks the truth three times out of four, B four times out of five and C 
live times out of six. What is the probability that the occurrence will be reported 
truthfully by majority of three witnesses? 

Ans. 31/60. 
(c) A man seeks advice regarding one o( two possible courses of actionJrom 

three advisers who arrived at the'irrecommendations independently. He follows the 
recommendation of the majority. The probability that the individual advisers are 
wrong are 0·1, 0·05 and 0·05 respectively. What is the probability that the man 
takes incorrect advise? [Gujarat Univ. B.Sc., 1987J 

22. (a) TIle odds against a certain event are 5 to 2 and odds in favour of another 
(independent) event are 6 to 5. Find the chance that at least one of the events will 
happen. (Madras Univ. BSc.,1987) 

Ans. 52/77. 
(b) A person lakes fOOf tests in succession. The probability of his passing the 

fIrSt test is p, that of his passing each succeeding test is p or p/2 according as he 
passes or fails the preceding one. He qualifies provided he passes at least three tests. 
What is his chance of qualifying. [Gauhati Univ. B.Se. (Hons.) 1988J 

23. (a) The probability that a 50· years old man will be alive at 60 is 0·83 and 
the probability that a 45-years old woman will be alive at 55 is 0·87. What is the 
probability that a man who is 50 and his wife who is 45 will both be alive 10 years 
hence? 

Ans. 0·7221. 
(b) It is 8:5 against a husband who is 55 years old living till he is 75 and 4:3 

against his wife who 'is now 48, living till she is 68. Find the probability that (;) the 
COuple will be alive 20 years hence, and (ii) at least one of them will be alive 20 
years hence. 

Ans (i) 15~1, (ii) 59~1. 
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(c) A husband and wife appear in an interview for two vacancies in the same 
post The probability of husband's selection is In and- that of wife's selection is 
1/5. What is the probability that only one of them will be selected·? 

Ans. 2n [Delh,i tJniv. 8.Sc.,.1986] 
24. (a) The chances of winning of. two race-horses are 1/3 and 1/6 respectiye­

ly. What is the probability that at least one will win when the horses are running 
(a) in different races, and (b) in the same race? 

Ans. (a) 8/18 (bJi(2 
(b) A problem in statistics is given to three students whose chances of solving 

itare 1(2,1/3 and 1/4. What is the probability that the problem will be solved? 
Ans. 3/4 [Meerut Univ. B.Sc., .1990] 
25. (a) Ten pairs .of shoes are in a closet. Four shoos are selected at random. 

Find the probability that there will be at least one pair among the four shoes 
selected? 

IOC4 x' 24 
Ans. 1---­

:lDC4 

(b) From 100 tickets numbered I, 2, '" , I 00 four are drawn at random. What 
is the probability that 3 of them will bear number from 1 to 20 and the fourth will 
bear any nwnber from 21 to l00? 

Ans, 
:lDC) X 80CI 

IClOC4 

26. A six faced die is so biased that it is twice as likely to show an even number 
as an odd r.umber when thrown. It is thrown twice. What is the probability that the 
sum of the two numbers thrown is odd? 

Ans. 4/9 
27. From a group of 8 children,S boys and 3 girls, three children are selected 

al random. Calculate the probabilities tl)at selected group contains (i) no girl, 
(ii) only one girl, (iii) one partjcular girl, (iv) at least one girl, and (v) more girls 
than boys. 

Ans. (i) 5(113, (ii) 15(113, (iii) 5(113, (iv) 23128, (v) 2f1.. 
28. If, three persons, selected at random, are stopped on a street, what. are the 

probabilities that: 
((I) all were born on a Friday; 
(b) two were born on a Friday and the other on a Tuesday; 
(c) none was born on a Monday. 

Ans. (a) 1/343, (b) 3/343, (c) 216/343. 

29. (a) A and B toss a coin alternately on the understandil)g -that the first who 
obtains the head wins. If A starts, show that th~ir respective chances of winning are 
213 and \/3. 

(b) A, Band C, in order, toss a coil'. The first one who throws a head wins. If 
A starts, find their respectivre chanc~s of winning. (Assume that the game may 
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continue indefinitely.) 
ADs. 4/7. 2/7. 1/7. 
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(c) A man alternately tosses a coin and throws a die. beginning with coin. What 
is the probability that he will get a head before he gets a '5 or 6'on die? 

ADs. 3/4. 
30. (a) Two ordinary six-sided dice are tossed. 

(i) What is the probability that both the dice show the number 5. 
(ii) What is the probability that 'both the dice show the same number. 

-(iii) Given that the sum of two numbers shown is 8. find the conditional­
probability that the number noted on the first dice is larger than the number noted 
on the second dice. 

(b) Six dice.are thrown simultaneously. What is.the proliability tHat ai, will 
show different faces? 

3J. (a) A bag contains 10balls. two of which are red. three blue and five black. 
Three balls are drawn at random from the bag. that is every l>aU has an equal chance 
of being included in the three. What is the probability that 

(i) the three balls are of different colours. 
(ii) two balls are Qf the ~811le cQlour. and 

(iii) the balls are all of the same colour? 
Ans. (i) 30/120, (U) 79/120. (iii) 11/120. 
(b) A is one of six hor~s entered for a race and is to be ridden by one of the 

tWQ jockeys B and C. I.t is 2 to 1 that B rides A, in which case all the horses are 
equally likely to win. with rider C, A's chance is trebled. 

(i) Find the probability that A wins. 
(ii) What are odds against A's winning? 

[Shivaji Univ. B.Sc. (Stat. Hons.), 1992] 
Hint. ProbabiJity of A's winning 

=P ( B rides A and A' wins) + P (C rides A and A wins) 
2 1 1 3 5 =-x-+-x-=-
3 6 3 6 18 

.. Probability of A's losing-= 1- 5/18 = 13/18. 
HenceoddsagainstA'swinningare: 13/18:'5/18, i.e., 13:5. 

32. (a) Two-third of the students in a class are boys and the rest girls. it is 
known that the probability of a girl getting a first class is 0·25 and that of boy getting 
a first class is 0·28. Find the probability that a student chosen at random will get 
farst class marks in the subject. 

ADS. 0·27 
(b) You need four eggs to make omeJettes for breakfast You find a dozen eggs 

in the refrigerator- but do not realise that two of these are rotten. What is the 
Probability that of the four eggs you choose at random 

(i) norie is rotten, 
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(ii) exactly one is rotten? 
Ans. (i) 625/1296 1 (ii) 500/1296. 
(c) The ,probability of occurrence of an evef)t A is 0·7, the probability of 

non-occurrence of anothe( event B is 0·5 and that o( at least one of A or B not 
occurring is 0·6. Find the probability that at least one of A or B occurs. 

[Mysore(Univ. B.S~., 1991] 
33. (a) The odds against A solving a certain problem are 4 to 3 and odds in 

favour of B solving the ,saple probJem are 7 t9 5. What is the probability that the 
problem is solved if they both try independently? [Gujarat Univ.B.Sc., 1987] 

Ans.16/21 
(b) A certain drug manufactured by a company is tested chemically for its toxic 

nature. Let the event 'the drug is toxic' be denoted by E and the event 'the 
chemical test reveals that the drug is toxic' be denoted by F. Let P (E) = e, 
P (F I E)= P ('F I E) = 1 - e. Then show that probability that the drug is not toxic 
given that the chemical test reveals tha~ it is toxic is free from e . 

Ans. 1/2 [M.S. Baroda Univ. B.Sc., 1992] 
34. A bag contains 6 white and 9 black balls. Four ,balls are drawn at a time. 

Find the probability for the first draw to give 4 white and the second draw to give 
4 black balls in each of the following cases : 

(i) The balls are replaced before the second draw. 
(ii) The balls are not replaced before the SeCond draw. 

[Jammu Univ. B.Sc., 1992] 

Ans. (i) 6e. x ge. Oi) 6e. x ge. 
iSe. iSe• .se. lie. 

35. The chances that doctor A will diagnose a disease X correct! y is 60%. The 
chances that a patient will die by his treatment after correct diagnosis is 40% and 
the chance of geath by wrong diagnosis is 70%. A patient of doctor A. who had 
disease X. died. What is the chance that his disease was diagnosed correctly? 

Hint. Let us define the following events: 
E. : Disease X is diagnosed correctly by doctor A. 
E2 : A patient (of doctQr A) who has disease X dies. 

Then we are givt"n : 
P (E.) = (}6 ~ P (E.) = 1 - 0·6 = 04 

and P (E2 I en = 04 and P (E2 I E.) = 0·7 

I P(E. nE2) P(E. nE2) 6 
We wantP (E} E2) = P (E2) = P (E. n E2) + P (E. n E2) 13 

36. The probability that aL least 2 of 3 people A, B and e will survive for 10 
years is 247/315. The probability thatA alone will survive for 10 years is 4/1,05 and 
the probability that e alone will die within 10 years is 2/21. Assuming that the 
events of t.he survival of A, Band C can be regarded as independent, calculate the 
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probability of surviving 10 years for each person. 
Ans. 3/5, 5n, 7/9. 
37. A and 8 throw alternately a pair of unbiased dice, A beginning. A wins if 

he throws 7 before 8 throws 6, and B wins if he throws 6 before A throws 7. If A 
and 8 respectively denote the events that A wins and 8 wins the series, and a and 
b respectively denote the events that it is A's and B's turn to throw the dice, show 
that 

(;) P (A r a) = i + ~ p (~ I b), (U) P (A I b) = ~! P (A I a) , 

(iii) P (8 I·a) = i P (8 I b), and (iv) P (8 I b) = ;6 + ~~ P (8 I a), 

Hence or·otherwise, fin<f P (A I a) anq P (8 I a). Also comment on the result 
that P (A I a) + P (8 I a) = 1. 

38. A bag contains an assortment of blue and red balls. If two balls are drawn 
at randon, the probability of drawing two red balls is five times the probability of 
drawing two blue balls. FUrthermore, the probability of drawing one ball of each 
colour is six times the probabililty of drawing two blue balls. How many red and 
blue balls are there in the bag? 

Hint. Let number of red and blue balls in the bag ber aM b respectively. Then 
. rO .. -1) 

PI = Prob. of drawmg two red balls = (r + b) (r + b _ I) 

. b(b-I) 
Pl= Prob.ofdrawmgtwo·blueballs= '(r+b)(r+b-I) 

P3 = Prob. of drawiJ;lg one red and one blue ball =.[ (r + b )2: ;'b _ I)]. 
Now PI = 5 P1 and P3 = 6 P1 
.. r(r-I).=5b(b- H and 2br=6b(b-l) 
Hence b = 3 and r = 6. 
39. Three newspapers A, 8 and C are published in a certain city. It is estimated 

from a survey that 20% read Ai 16% read 8, 14% read C, 8% readl A and 8, 5% read 
A and C, 4% read Band C and 2% read all the three newspapers. What is the 
probability that a nonnally cho.sen person 

(i) does not read any paper, (iO does not read C 
(iii) reads A but not 8, (iv) reads only one of these papers, and 
(v) reads only two of these papers. 

Ans. (i) 0·65, (ii) 0·86, (iii) 0·12, (iv) 0·22. (v)'O·I1. 
40. (0) A die is thrown twice. the event space S consisting of the 36 possible 

pairs of outcomes (a,b) each assigned probability 1/36. Let A, 8 and C denote the 
following events : 

A={ (a,b)l a is odd), 8 = (a,b) I b is odd}, C = {(a,b) I a + b is odd.} 
Check whether' A, B and C are independent or independent in pairs only. 

[Calcutta Univ. B.Sc. Hons., 1985] 
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(b) Eight tickets numbered 111. 12.1. \22. 122.211.212.212.221 are plaCed 
in a hat and stirrt'ti. One of them is then drawn at random. Show that the-event A : 
"t~e first digit on the ticket drawn wilrbe 1". B : "the second digit on the ticket 
drawn will be L" and C : lithe third digit on the ticket drawn will be 1". are not 
pairwise independent although 

P (A n Bn C) = P (A) P (B) P (C) 
41. (a) Four identical marbles marked 1.2.3 and 123 respectively are put in 

an urn and one is drawn at random. letA. (i = 1.2.3). denote the event that the 
number i appears OJ) the drawn marble. Prove that the events AI.A2 andAl are 
pairwise independent.but not mutually independent. 

[Gauhati Univ. B:Sc. (Hons.), 1988] 
1 1 

Hint. P'(AI) = 2" = P (A2) = P (Al )'; P(Af A2) = P (AI Al ) = P (A2Al) = 4 
'I 

P (A I A2 A3) = 4' 
(b) Two fair dice are thrown independently. Define the following events : 

A : Even number on the first dice 
B : Even number on the second dice. 
C : Same number on both dice. 

Discuss the independence of the events A. B and C. 
( c) A die is of the shape of a regular tetrahedron whose faces bear the numbers 

111. 112. 121. 122. AI.A2.Al are respectively the events that the first two. the 
last t~o and the extreme two digits are the same. when the die is tossed at random. 
Find w~ether or not the events AI, A2• Al are (i) pairwise independent. (ii) m~tually 
(i.e. completely) independent. Detennine P (AI I A2 Al ») and explain its value by 
by argument. [CiviJ Services (Main), 19831 

42. (a) For two events A and B we have the following probabilities: 

P (A)=P(A I B)=± and P (B I A)=4. 

Check whether the following statements are tr,ue or false : 
(i) A and B are mutually exclusive. (ii) A and B are independent. (iii) A is a 

subevent of B. and (iv) P (X I B) -= ~ 
Ans. (i) False, (ii) True., (iii) False, and (iv) True. 
(b) Consider two events A and B such that P (A)·= 114. P (B I A) = 112. 

P (A I B) = 114. For each of the following statements. ascertain whether it is true 
or false: 

(i) A is a sub-event of B. (ii) P (A IIi) = 3/4. 
(iii) P (A I B) + P (A IIi) = 1 

3 5 
43. (a) Let A and B be two events such that P (A) = 4' and P (B) = "8' 
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Show that 

(i) P (A v 8) ~ ~. (ii) ~:5; P (A.n 8,) :5; % . and (iii) i:5; P (A n B) :5; ~ • 
[Coimbatore Univ. B:E., Nov. 1990; Delhi Univ. n.sc.(Stat. Hons.),1986) 
(b) Given two events A and B. If the odds against A are 2 to 1 and those in 

favour of A v B are 3 to I, shOw that 

152:5; P (B) 5 ~ 
Give an example in which P (B) = 3/4 and one in which P (B) = 5/12. 
44. Let A and B be events, neither of which has probability zero. Prove or 

disprove the following events : 
(i) If A and B are disjoint, A and'B are independent. 
(ii) If A and B are independent, A and 'B are disjoint. 

45. (a) It is given that P(AIVAz):::~,p(Aln!\z)=~andP(AJ=-i, 
where P (Az) stands for the probability that Az does not happen. Determine 
P (AI) and P (Az). 

Hence show that AI and Az are independent. 
2 1 

Ans. P (AI) == 3' P (Az) ="2 
(b) A and B are events such that 

3 1 - 2 
P (A vB) =4' P (A nB) =4' and P (A) =3' 

Find (i) P (A), (li) P (B) and (iii) P (A noB) .. 
(Madras Univ. B.E., 1989) 

ADS. (i) 1/3, (ii) 2/3 (iii) 1il2. 
46. A thief has a bunch of n'keys, exactly one of'wnich fits a lock. If the thief 

tries to open the lock by trying the keys at random, what is tl)e probability that he 
requires exactly k attempts, if he rejects the keys already tried? Find the same 
probability ifhe does not reject the keys rur~dy tried. 

(Aligarh Univ. B.Se., 1991) 

ADS. (i) 1., (it) (n - I J -I ) • 

n n n 
(b) There areM urns numl5cred 1 toM andM balls numbered 110M. ThebalJs 

are inserted randomly in the urns with one ball in e~ch urn. If a ball is put into the 
urn bearing the same number as the ball, a match is said to have occurred. Find the 
probability thllt t:lo match has occurred. . [Civil Services (Main), 1984J 

Hint. See Example 4· 54 page 4·97. 
47. If n letters are placed at random in n correctly addressed envelopes, find' 

the probability that 
(i) none of the letters is placed in the 'correct envelope, 
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(ii) At least one letter goes to the correct envelope. 
(iii) All letters go to the correct envelopes. 

[Delhi Univ. B.Sc. (Stat Hons.), 1987, 1984) 
48. An urn contains n white and m black balls._ a second urn contains N white 

and M black balls. A ball is randomly transferred from the first to the second urn 
and then from the second to the firSt urn. If a bal.l ,is now selected randomly from 
the first urn. prove that the probability that it is white is 

n mN-nM --+ ------'.:..:..,,------'-"----
n+m (n+m)2(N+M+l) 

[Delhi Univ. B.Sc. (Stat.Hons.) 1986) 
Hint. Let us define the foUowing events : 

Bi : Drawing of a black ball from the ith urn. i = 1.2. 
Wi : Drawing of a white ball from the -ith urn. i ,= 1. 2. 

The four distinct possibilities for the first two exchanges are BI W2• BI B2• 
WI B;,. WI Wz . Hence if £ denotes the event of drawing a white ball from "the nrst 
urn after the exchanges, thefl 

P (E) =: P (BIW2E) + P (BI B2£) T P (WI B2 E) + P (WI W2E) ... (*) 
We have: 

I 1 m N n+l 
P(BJ W2£) =P(BI). P(W2 . BI) P(£ BJ W2) = m +n x M +N + 1 x m +n 

1 m M+l n 
P(B I B2£)=P(BI).P(B2 1 BI).P(£ !hB2) = m+n x M+N+ 1 x m+n 

I I n M n-] 
P(WI B2 £) = P(WI) • P(B2 WI). P(£ WI B2)= -- x M Nl x --

m+,n + + ·m+n 

P(WI W2 £) = P(WI) .P(W2 I WI) .P(£ I WI W2) = _n_ x MN+N1 1 x _n_ 
m+n + + m+n 

Substituting in (*) and simplifying we get the result. 

49. A particular machine is prone to three similar types of faults A), Al-and 
A). Past records on breakdowns of the machine show the following: the probability 
of a breakdown (i.e .• at least one fault) h' 0·1; for each i, the probability that fault 
Ai occurs and the others do not is 0.02 ; for each pair i.j the probability that Ai and 
Aj occur but the third fault does not is 0·012. Determine the probabilities of 

(a) the fault of type AI occurring irrespective of whether the other faults occur 
or not, 

(b) a fault of type AI given that A2 has occurred, 
(c)faults of type AI and A2 given that A3 has occurred. 

[London U. B.Sc. 1976\ 

50. The probability of the closing of each relay of the circuit s,hown ~low is 
given by p. If aJl the relays function independently, what is the probability. \hat a 
circuit exists between the terminals L and R? 
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I 2 

L •• __ ---1[1-1 ---.---11 ~f---:-_. R 

1 I'r--J 
3 4 

Ans. p2 (2 - p\ 

4·9. Bayes Theorem. If EI. E2 • ... , E. are mutually disjoint events with 
p (E,) 1:: O. (i = I. 2 •... , n) then for any orbitrary event A which is a subset of 

fa 

u E.such that P (A) > O. we have 
i= I 

P (Ei 1 A>. = nP (Ei) P (A lEi) • i = 1.2 •...• n. 

l: P (Ei) P (A lEi) 
i= I 
n 

Proof. Since A c u Ei • we have 
i = I 

" n 
A = A ("\ ( u E,) = u M ("\ Ei ) [By distributive law] 

i=1 i=1 
Since (A ("\ Ei) C £;, (i = 1.2 •....• n) are mutually disjoint events. we have by 

addition theorem of probability (or Axiom 3 of probability) 
n " n 

P (A) = P [u (A ("\ Ei») = l: P (A ("\'£,) = l: P (E.i) P (A 1 Ei). • •• (*) 
i = 1 i:: 1 i=1 

by compound theorem of probability. 
Also we have 

P (A n Ei) = P (A) P (Ei l A) 

P (£.1 A) = P (A 0 Ei) = P (Ei) P (A 1 Ei) [From (*)1 
• P(A) n 

l: P (Ei) P (A 1 Ei) 

i= 1 
Remarks. 1. The probabilities P (E,I). P (E2) , ••• , P (E.) are termed as the' a 

priori probObilities' because they exist before we gain any information from the 
experiment itself. 

2. The probabilities P (A lEi). i = 1.2 •...• n are called 'likelihoods' because 
they jndicate how likely the event A under consideration is to occur. given each 
and every a priori probability. 

3. The probabilitiesP(Ei ,A). i = 1.2 ..... n arc called 'poslerior probabilities' 
because they are determilled after the resu'ts of the experiment are known. 

4. From (*) we get the following important resulc 
"If the events EJ, E2 • .... E" copstitute a partition of the sample space S aq(j 

P (Ei) ~ o. i = 1."2 ... :. n. then for any-event A in S' we have 
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11 11 

P(A)= r.P(AnEi)=' r.P (Ei)P (A lEi) ... (4·12 a) 
i = I i = I 

Cor. (Bayes theorem/or future events) 
The probability 0/ the materialisation 0/ another event C, given 

P (C I A n EI ) • P (C I An E2), ••• ,P (C I A n E~) is 
11 

r. P (Ei) P (A lEi) P (c.1 EinA) 
P(CIA)=_i_=~I ______ ~ ________ _ 

11 
... (4·Pb) 

r. P (Ei) P (A lEi) 
i=--t . 

Proof. Since the occurrence of event A implies the occurrence of one and only 
one of the events EI • E2 • •••• E~. the event C (granted thatA has occurred) can occu 
in the following mutually exelusive ways: 

Cn EI.C nE2 • •••• Cnf!~ 
i.e., C = (C n EI ) U (C n E2) U ... U (C n E~) 

C I A = [(C n EI ) I A] u [(C n 1:.'2) I A] u ... u [(C n E~) I. A] 
.. P (C I A) ~ P [(C n EI ) I A] + P [(C n E2) I A] + ... + P [(C n E~) I A] 

11 

_= r.p [(C n Ei) I A] 
i= I 

11 

= r. P (Ei I A) P [C I (EinA)] 
i= I 

Substituting the value of P (Ei I A) from (*). we get 
11 

r. P (Ei) P (-1 lEi) P (C I EinA) 
P (C I A) = ..:....i =-.....:. l~ ____ -----,~ ______ __ 

11 

r. P (Ei) P (A lEi) 
i= 1 

Rtmark. It may happen that die materialisation of the event Ei makes C 
i.ridcQendenl of A. then we have . 

. P(C I Ei nA)= P(C lEi). 
and the abo~e.Jormula reduces to 

·11 

l: P(Ei) P (A i Ei) P (C I Ei)~ 
P (C I A) = ..:...i =.....:l~ ____________ _ 

11. 
•.. (4·12 c) 

l: P (Ei) P (A lEi) 
i= I 

l11e event C can be considered in r~gard to A. as Future Event. 



4·71 

Example 4·30. In 1?89 there were three candidates for the position 0/ 
principal- Mr. Challerji, Mr. Ayangar and Dr. Sing/!., whose chances 0/ gelling 
the appointment are in the proportion 4:2:3 respectively. The prqbability that Mr. 
Challerji if selected would introduce co-education in the college is 0·3. The 
probabilities 0/ Mr. Ayangar and Dr. Singh doing the same are respectively 0-5 
and 0·8. What is the probability that there was co-education in the college in 199O? 

(Delhi Univ. B.Sc.(Stat. Hons.), 1992; Gorakhpur Univ. B.Sc., 1992) 

Solution. Let the events and probabilities be defined as follows: 

Then 

A : Introduction or co-education 
EI : Mr. Chauerji is selected as principal 
E2 : Mr. Ayangar is selected as principal 
E3 : Dr. Singh is selccted as principal. 

4 2 3 
P (E1) = "9' P (E2) = "9 a~d P (E3) ±; "9 

P (A'I E1) =,l P (A I E~) = 2- and P (A 'I E3)·=!-
10' 10 10 

.. P (A) = i' [(A n E1) u (A n E2), u (A n £3)] 
= P(AnEd + P(AnE,.) + P(l\nE3) 
= P (E1) P (A. 1 E1) + P (E2) P (A 1 E2) :+- P (E3) P (A I ~3) 

4 3 2 5 3 8 23 
= "9 . 10 + "9 . 10 + "9 . 10 = 45 

.. :xample. 4·31. The contents·o/urns I, II and 11/ are as/ollows: 
I white, 2 black and 3 red balls, 
e white, 1 black and 1 red balls, and 
<I white, 5 black and 3 r(;~.balls. 

One urn is chosen at random and two balls drawn. They happen Jo be white 
and red. What is the probability .thatthey come /rpl!l urns I, II or 11/ ? 

.[Delhi ·Univ. B.Sc. (Stat. Hons.), 1988) 

Solution. LetE\, El • and E3 denote the events that the urn I, II and III is chosen, 
respectively, and let A be the event that the two balls taken from the selected urn 
are white and red. Then 

- 1 
P (E1) = P (E2) = P (E3) = '3 

P (A 1 E1) = 1 x 3 =.! P (A 1 £2-) = 2 x 1 = .! 
6C2 5 • 'C2 3 ' 

1 4x 3 2 
and P (A £3) = 12C2 = IT 
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Hence' 

'p (El I A) = ;. ~E2) P (A I E2) 

L P (Ei) P (A lEi) 
j", 1 

Similarly 
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118 

E~ample. 4·32. In answering a question on a multiple choice test a student 
either knows the answer or he guesses. Let p be the probability that he knows the 
answer an4 I-p the probability that he guesses. Assume that a student who guesses 
at the answer All be correct with probability 1/5, where 5 is the number of 
multiple-choice alternatives. What is the conditional probability that a student 
knew the answer to a question given that he answered it correctly? 

[Delhi Univ. B.Sc. (Maths Hons.), 19851 
Solution. Let us define the following'events: 

EI : The student knew the right answer. 
E2: The student guesses the right answer. 
A : The student gets the right answer. 

Then we are given 
P (EI) = p, P (E,.) = 1 - p, P (A I Ez) = 115 

P (A lEI):; P [student gets the right answer given that he knew the right 
answer] = 1 

We want P (£1 I A). 
Using Bayes' rule. we get: 
P (EI I A) = P (EI) :P (A lEI) = p x 1 2L 

P(EI) P(A lEI) + P(Ez) P(A I Ez) 1 (1 ) 1 4p + I 
. px + -p xs 

Example 4·33. In a boltfactorymachinesA,B and C manufacture respective ly 
25%.35% and 40% of the total. Of their output 5,4, 2.percent are defective bolts. 
A bolt ;s drawn at random/rom the product and is/ound to be defective. What are 
the probabilities that it was manufactured by machines A, B and C? 
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Solution. Let EJ. f-z and E, denote the events that a bolt-selected at random 
is manufactured by the machinesA, B aM C respectively l,Uld let E denote the event 
of its being defective, Then we have 

P (E1) = 0'25, P (£z) = 0·35, P (E3) = 0·40 
The probability of drawing a defective .bolt manufactured by machine A is 

f(E I E1)=0·05. ~ 
Similarly, we have 

P (E I El ) = 0·04, and f (E I E3) = 0·02 
Hence the probability t~at a defective bolt selected-at random is manufactured 

by machine A is given by 

P (El I E) = : (E 1) f (E lEI) 

and 

~ P (Ej ) P (£ I Ej ) 

i= I . 

0·25 x 0-05 125 25 
= =-=-

0-25 x 0-05 + 0·35 x 0·04 + 0·40 x 0·02 345 69 
Similarly 

p(£zl'E)= .. 0·35 x 0·04. 140 28 
0·25 x 0·05 + 0·3? x 0·04 + 0·40 x 0·02 = 345 = 69 

P (E3 , E) = 1 - [P (El , E) + P (£1 , E)] = 1 _ 25 _ :28 :: ~ 
69 69 69 

This example illustrates one of the chief applications of Bayes Theorem. 

EXERCISE 4 (d) 
1. (a) State and prove Baye's Theorem. 
(b) The set of even~ Ai , (k = 1,2, ... , n) are (i) exhausti~e and (ii) pairwise 

mutually exclusive . .If for all k the probabilities P (Ai) and f (E I Ai) are known, 
calculate f (Ail E), where E is an arbitrary evenL Indicate where conditions OJ and 
(ii) are used. 

(c) 'f.he events E10 El , ... , E .. are mutually exclusive and, E = El u el U .. , 

u E... Show. that if f (A , E j ) = P (B , Ej ) ; i = 1, 2, ... , n, then P(A' E) = 
P(B', E). Is this conclusion true if the events,Ei are not mutually exclusive? 

[Calcutta Univ .• B.Sc. (Maths Hons.), 1990) 
(d) What are the criticisms ~gai~t the use of Bayes theorem in probability 

theory. [Sr:i. Venketeswara Univ. B.Sc., 1991) 
(e) Usillg the fundamental addition and multiplication rules Q( prob<lbility, 

show that 
__ P(B)P(AIB) 

P (B I A) - P (8) P (A I B) + P (B) P (.4 I B) 

Where B is the event complementary to the eventB. 
[Delhi Univ. M.A. (.:con.), 1981) 
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2. (a) Two groups are competing for the positions on the Board of Directors 
of a corporation. The-probabilities that the first and second groups will wiii are 0·6 
and 004 respectively. Furthermore, if the first group wins the probability of 
introducing a new product is 0·8 and the corresponding probability if the second 
group wins is O· 3. Whl\t is the probability that the new product will be introduced? 

Ans. 0·6 x 0·8 + 04 x 0·3 = 0·6 

(b) The chances of X, Y, Zbecoming'managersol a certain company are 4:2:3. 
The plOoabilities that bonus scheme will be introduced if X, Y, Z become managers. 
are O· 3. (f·5 and 0·8 respectively. If the bonus scheme has been introduced. what is 
the probability that X is appointed as the manager. 

Ans. 0·51 
(c) A restaurant serves two special dishes. A and B to its customers consisting 

of 60% men and 40% women. 80% of men order dish A and the rest B. 70% of 
women order dish B and the rest A. In what ratio of A to B should the restaurant 
prepare the two dishes? (Bangalore Univ. B.Sc., 1991) 

Ans. P (A) = P [(A n M) u (,4. n W)] = 0·6 x 0·8 + 004 x 0·3 = ()'6 
Similarly -P (B) = 0·4. Required ratio = 0·6 : 004 = 3 : 2. 

3. (a) There are three urns having the following compositions of black and 
white balls. 

Urn 1 : 7 white. 3 black balls 
Urn 2 : 4 white. 6 black balls 
Urn 3-: 2 white. 8 black balls. 

One of these urns is chosen at random with probabilities 0·20. ()'60 and 0·20 
respectively. From the chosen urn two balls are drawn at random without replace­
ment Calculate the probability that both these balls are white. 

Ans. 8145. (Madurai Univ. B.Sc., 1991) 

(b) Bowl I contain 3 red chips and 7 blue chips. bowl II contain 6 roo chips 
and 41blue chips. A bow I is ·selected at random and then 1 chip 'is drawn from this 
bowl. (i) Compute the probability that this chip is red. (ii) Relative to the hypothesis 
that the chip is red. find the conditiona! probability that it is drawn from boWl II. 

[Delhi Univ. B.Sc. (Maths 80ns.)1987] 

(c) In a (actory machines A and B are producing springs of the same type. Of 
this production. machines A and iJ produCe 5% and 10% defective springs. 
respectively. Machines A and B produce 40% and 60% of the total output of the 
factOry. One spri~g is selected at random and it is found to be defective. What is 
the possibility that this defective spring was pfuduced by machine A ? 

. [Delhi Univ. M.A. (Econ.),1986] 

(d) Urn A con'tains 2 white. 1 blac~ and 3 red balls. urn B contains 3 white. 2 
black and 4 red balls and urn C con~ns 4 white. 3 black and 2 red balls. One urn 
is chosen at random and 2 balls are drawn. They happen to be'red and black. What , 
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is lhe probability that both balls came from urn 'B' ? 
[Madras U. H.Sc. April; 1989) 

(e) Urn XI. Xl. Xl. each contains 5 red and 3 white balls. Urns Yi. Yz• each 
contain 2 red and 4 white balls. An urn is selected at random and a billl is 'drawn. 
It is found to be red. Find the probability lh~t the ball comes out of the urns of the 
first type. [Bombay 1I. B.Sc., April 1992] 

if) Two shipments of parts are, recei'ved. The first shipment contains 1 000, parts 
with 10% defectives and the second Shipment contains 2000 parts with 5% 
defectives. One shipment is selected at random. Two parts are tested and found 
good. Find the,probability (a posterior) that the tested,parts were selected from the 
first shipment. [Uurdwan Univ. B.Sc. (Hons.), 1988] 

(g) There are three machines producing 10,000 ; 20,000 and 30,000 bullets 
per hour respectively. These machines are known to produce 5%,4% and 2% 
defective bullets respectively. One bullet is taken at random from an hour's 
production of the three machines. What is the probability that it is defective? If the 
drawn bullet is defective, what is lhe probability lhat this was produced by the 
second machine? [Delhi. Univ. B.Sc. (Stat..uons.), 1991] 

4. (0) Three urns are given each containing red and whjte chips as indicated. 
Urn 1 : 6 red and 4 white. 
Urn 2 :'2 red and 6 white. 
Urn 3 : 1 red and 8 white. 

(i) An urn is chosen at random and a ball is drawn from this· urn. The ball is 
red. Find the probability that the urn chosen was urn I . 

(ii) An urn is chosen at random aIld·twq balls are drawn without replacement 
from this urn. If both balls are red, find the probability that urn I was chosen. Under 
thp.se conditions, what is the probability that urn III was chosen. 

An~. 108/173, 112/12,0 [Gauhati Univ. B.Sc., 1990) 
(b) There are ten urns of which each of three contains 1 white and 9 black balls, 

each of other three contains 9 white and 1 black 'ball, and of the remaining four. 
each contains? white and 5 black balls. One of the urns is selected at random and 
a ball taken blindly from it turns out to be white. What is the probabililty that an 
urn containing 1 white and 9 black balls was selected? ~Agra Univ. B.Sc., 1991) 

3 3 4 
Hint: P (E1),= 10' P (Ez) = 10 and P (E3) = 10' 

Let A be the event of drawing a white blll. 
3139451 

P(A)= ~OxW+ iOxW+W x W=2 

P (A lEI) = l~ ~d P (El I A) = ;0 

(c) It is known that an urn containing ·a1together 10 balls was' filled in, the 
following manner: A coin was tossed. 10 times, and accordiJ]g a~ it showed heads 
Or tails, one white or one black ball was put into· the ul1.l.·Balls are dfawnJrom lhis 
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urn one at a time, to times in succession (with replacement) and everyone turns 
out to he white. Find the chance that the urn contains nothing but white balls. 

Ans. 0·0702. . 
5. (a) Frqm a vessel containing 3 white and 5 black balls, 4 balls are 

transferred into an empty vessel. From this vessel a ball is drawn and is found to 
be white. What is the probability that out of four balls transferred. 3 are white 
and I black. [Delhi U~i. B.Sc. (Stat. 1ions.), 1985] 

Hint. Let the five mutually exclusive events for the four balls transferred be 
Eo. E It E2, E 3, and E4• where E; denotes the event that i white balls are 
transferred and let A be the event of drawing a white ball from the new vessel. 

and 

Then 
sC4 3C I x 5C3 3C2 X 5C2 

P (~o) = 8C4 ' P(E I') 8C4 ' P (E2) = 8C4 

3C3 X SCI 
P (E) = 8C4 and P (E4) = 0 

I 2 3 
Also P(A I'Eo) = 0, P (A lEI) = 4' P (A I E2) = 4' (A I E3) = 4' 

I 
P (A l'E4) = I·. Hence P(E31 A) = =;. 

(b) The contents of the urns I and 2 are as follows: 
Urn 1 : 4 white and 5 black balls. 
Urn 2 : 3 white and 6 black balls. 

One urn is chosen at random and a ball is drawn and its colour noted and 
replaced back to the um. Again a ball is drawn from the same urn, colour noted 
and replaced. The process is repeated 4 times and as a result one ball of white 
colour and three balls of black colour are obtain, 1. What is the probability that 
the urn chosen was the urn 1 ? (Poona Univ. B.E., 1989) 

Hint. P(EI) = P (E2) 1F 1/2, 
P (~ lEI) = 4/9, I - P (A lEI) = 5/9 
P (A I E2) = 1/3, 1 - P (A I E2) = 2/3 

The probability that the urn chosen was the urn I 

! 1. (~)3 
2· 9 9 

=------------------------
! 4 (~)3 L 1, .(~)3 
2· 9· 9 + 2· 3· 3 

(c) There are five urns numbered I to 5. Each urn contains to balls. The ith 
urn has i defective balls and 10 - i non-defective balls; i = 1,2, ... 5. An urn is 
chosen at random and then a ball is selected at random from that urn. (i) What is 
thc probability that a defective ball is selected? 

(ii) If the selected ball is defective, find the probability that it came from 
urn i. (i = 1,2, ... , 5). [Delhi Univ. B.Sc. (Maths Hons.), 1987] 

Hint.: Define the following events: 
E;: ith urn :is selected at random. 
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(i) 

(ii) 

A : Defective ball is selccted. 
p. (Ei) = 1/5; i = 1,2, ... , 5. 
P (A lEi) = P [Defective ball from ith urn] = il1O, (i = 1,2, ... , 5) 

P (Ei) . P (A lEi) =' k x liO = ;0 ' (i = 1 , 2 , ... , 5). 

P(A)= ~P(Ei)P(A I Ei)= ~ (.1..)= 1-+ 2+3+4+5 3 
j = 1 j = 1 50 50 10 

I P (Ei) P (A lEi) i/50 ! . ~ 
P (Ei A) = "LP (Ei) P (A lEi) = 3/10 = 15 ; l = 1 ,2, ... ,5. 

j 

4·77 

For example, the probability that the defective ball came from 5th urn 
= (5/15) = 1/3. 

6. (a) A bag contains six balls of different colours and a ball is drawn from it 
at random. A speaks truth thrice out of 4 times and B speaks truth 7 times out of 10 
times. If both A and B say that a ,ed ball was drawn, find the probability of their 
joint statement being true. 

[Delhi Univ. B.Sc. (Stat. Hons.),1987; Kerala Univ. B.Sc.I988] 
(b) A and B are two very weak students of Statistics and their chances of 

solving a problem correctly are 1/8 and 1/12 res~tively. If the probability of their 
making a common mistake is 1/1001 and they obtain the same answer, find the 
chance that their answ~r is correct. [Poona Univ. B.sc., 1989] 

A R d Pr bab'I' I;S x 1112 13 
ns. eq. 0 I Ity = 1111 x ilI2 + (l - I;S) • (l ~ ilI2) . ilIool 14 

7. (a) Three bOxes, practicaHy indistinguishable in appearance, have two 
drawers·each. Box l.contaiils a gold 'coin in one and a sit ver coin in the other drawer, 
boX'II contains a gold coin in each drawer and box III contains a silver coin in each 
drawer. One box is chosen at random and one of its drawers is opened at random 
and a gold coin found. What is the:probability that the other drawer contains a coin 
of silver? (Gujarat Univ. B.Se., 1992) 

Ans. 113, 113. 
(b) Two cannons No. I and 2 fire at the same target Carinon No. I gives.on 

an average 9 shots in the time in which Cannon No.2 fires 10 projectiles. But on 
an average 8 out of 10 projectiles from Cannon No. 1 and 7outofIO from Cannon 
No. 2 ~trike the target. [n the course of shooting. the target is struck by one 
projectile. What is the probability of a projectile which has struck the target 
belonging to Cannon No.2? (Lueknow Univ. B.Sc., ,1991) 

Ans. 0·493 
(c) Suppose 5 mep out of 100 IlDd 75 women Ol,lt of 10.006 are colour.blind. 

A colour blind person is chosen at random. What is the probability of I)is being 
male? (Assume.males and females to be in equal number.) 

Hint. £1 = Person is a male, E2 = PersOn is a female. 
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A =.Person is colour blind. 
Then P (EI ) = P (E1) = Yi, P (A lEI) = 0·05 , P (A I E1) = 0·0025. 
Hence find P (EI I ,A). 
8. (a) Three machines X, Y, Z with capacities proportional to 2:3:4 are 

producting bullets. The probabilities that the machines produce defective are 0·1, 
0·2 and 0·1 respectively. A bullet is taken from a day's production and found to be 
defective What is tflpo orohability that it came from machine X ? 

[Madras Univ. B.Se., 1988] 
(b) In a f~ctory 2 machines MI and M1 are used for manufacturing screws 

which may be uniquely classified as good or bad. MI produces per day nl boxes of 
screws, of which on the average, PI% are bad while the corresponding numbers for 
M1 are n1 andpz. From the total production of both MI and M1 for a certain day, a 
box is chosen ~t r~ndom, a screw taken out of it and it is found to be bad. Find the 
chance that tbe selected box is manufactured (i) by M I , (if) M1• 

Ans. (;) nl PI/(nl PI + n1P1) • (ii) n1pz/(nl PI + n2P1) • 

9. (a) A man is equally likley to choose anyone of three routes A, B, C from 
his house to the railway station, and his choice of route is,not influenced by the 
weather. If the weather is dry. the probabilities of missing the train by routes A, B, 
C are respectiv~ly 1/20, 1/10, 1/5. He sets out on a.dry day and misses the train. 
What is the probability that the route chosen was C ? 

On a wet day, the respective probabilities of missing the train by routes A, B, 
Care 1/20, 1/5, 1/2 r~pectively. On the average, one day in four is wet.lfhe misses 
the train, what is the probability that the day was wet? 

[Allahabad Univ. B.se., 1991] 
(b) A doctor is to visit the patient and from past experience it is known that 

the probabilities that he will come by train, bus or scooter are·respectively 3/10, 
1/5·, and 1/10, the probabililty that he will use some other means of transport being, 
therefore, 2/5. If he comes by train, the probability that he will be late is, 1/4, if 
by bUs 1/3 and if by scooter 1/12, if he uses some other means of transport it can 
be assumed that he will not be late. When he arrives he is .late. What is the 
probability that (i) he comes by train (if) he is not.late? 

[Burdwan Univ. B.Se. (Hons.), 1990] 
Ans. (i) 1/2, (ii) 9/34 

10. State and prove Bayes rule and expalin why. in spite of its easy deductibility 
from·the postulates of probability, it has been the subject of such extensive 
controversy. 

In th~ chest X-ray tests, it is found that the probability of detection when a 
person has actually T.B. is 0·95 and probabiliIty of diagnosing incorrectly as having 
T.B. is 0·002. In a certain city 0·1 % cf the adult population is suspected to be 
suffering from T.B. If an adult is selected at random and is diagnosed as having 
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T.B. on the basis of the X-ray test, what is the probability of his.actually having a 
T.B.? (Nagpur Univ. B.E., 1991) 

Ans. 0·97 
11. A certain transistor is manufactured at three factories at Bamsley, Bradford 

and BrisLOl.lt is known that the Bamsley facLOry produces twice-as many transisLOrs 
as the Bradford one, which produces the same number as the BrisLOI one (during 
the same period). Experience also shows that 0·2% of the transistors produce4 at 
Bamsley and Bradford are faulty and so are 0·4% of those produced at BrisLOI. 

A service engineer, while maintaining an electronic equipment, finds a defec­
tive transistor. What is the probability that the Bradford facLOry is to blame? 

(Bangalore Univ. B.E., Oct. 1992) 
12. The sample space CO!1Sists of integers from -I to 2n which are assigned 

probabilities proportionalLO their logarithms. Find the probabilities and show tbat 
the conditional probability of the integer 2, given that an even integer occurs, is 

log 2 
[n log 2 + log (n ! ) ] (t.ucknow Univ. M.A., 1992) 

(Hint. Let Ej : the event that the integer 2i is drawn, (i = 1,2, 3, ... , n ). 
A : the event of drawing' an even integer. 

11 

=> A = E. U E1 U .•. u E~ => P (A) = 1: P (Ej ) 

;= ) 
But P (Ej ) = k log (U) (Given) 

11 11 

P(A)=k 1: log (fi)=k log n (2i) = k[nlog2+ log (n!)] 
;=) ;=) , 

p(E.1 A)= 10g(U) , 
. . . • [ n log 2 + log (n !) ] 
13. In answering a question on a multiple choice test, an examinee either 

knows the answer (with probability.p), or he guesses (with probability 1 - p). 
Assume that the probability of answering a question correctly is unity for an 
examinee who knows the an~wer and 11m for tI)e examinee who guesses, ~here m 
is the number of multiple choice alternatives. Supposing an examinee answers a 
question correctly, what is the probability that he really knows the answer? 

and 

[Delhi IJniv. M.e.A., 1990; M.sc. (Stat.), 1989] 
Hint. Let E. = The examinee knows the answer, 

£1 = The examinee guesses the answer, 
A = The examinee answers correctly. 

Then P (E.) = p, P (E1) = 1 - p, P (A I E.) = 1 and P (A IE;) = 11m 
Now use Bay~ theorem LO prove 

p(E.IA)= I+(:-I)P 

14. DieA has four red and two, white faces whereas dieB has two red and four 
White faces. A biased coin is flipped once. If it falls heads, the game d,'ntinues by 
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throwing die A, if it falls taUs die B is to be used. 
(i) Show that the probability of getting a red face at any throw is 1/2. 
(ii) If the first two throws resulted in red faces, what is the probability of 

red face at the 3rd throw? 
(iii) If red face turns up at the· frrst n throws, what is the probability that die 

A is being used? 

Ans. (U) 3/5 (iii) 2?A 
+1 

15. A manufacturing finn produces steel pipes in three plants with daily 
production volumes of 500, 1,000 and 2,000 units. respectively. According to past 
experience it is known that the fraction of defective outputs produced by the three 
plants are respectively 0.005, 0.008 and O.OIO.1f a pipe is selected at random from 
a day's total production and found to be defective, from which plant does that pipe 
come? 

Ans. Third plant. 
16. A piece of mechanism consists of 11 components, 5 of type A, 3 of type 

B, 2 of type C and 1 of type D. The probability that any particular component will 
function for a period of 24 hours from the commencement· of operations without 
breaking down is independent of whether or not any other component breaks down 
during that period and can be obtained from the following table. 

Component type:ABCD 
Probability:(}60· 70· 30· 2 
(i) Calculate the probability that 2 components ch9~n at random from the 11 

components will both function for a period of 24 hours from the commencement 
of operations without breaking down. 

(ii) If at the end of.24 hours of operations neither of the 2 components chosen 
in, (i) has broken down, what is the.probability that they are both type C .COIn­

ponents. 
l:ii!1t. 

(i) Required probability = _1_ [ SCi x (0·6)1 + 3C1 «(). 7)1 + lCl (0·3)1 
"Cl 
+ sCt x ~Ci x 0·6 x 0·7 + sCt x lCI x (0·6) x (0·3) 
4- sCt x let x (0·6) x (0·2) + 3CI x lCt x 0·7 x 0·3 
+ 3Ct x ICI x 0·7 x (}2 + lCI x ICI x 0·3 x 0·2] 

=p (Say). 
(ii) Required probability (By Bayes theorem) 

lCl x (0,3)1 0·09 
= p . p 

4·10. Geometric probability. In renuuk 3. § 4·3·1 it was pointed out that the 
classical. definition of probability fails if the total number of outcomes of an 
('~periment is infinite. Thus. for e~~mple. if we are interested in finding the 

;l 
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probability that a point selected'at random in a given region will lie in a,specified 
part of it, the classical definition of probability is modific<l and extended to what 
is called geometrical probability or probability in continuum, In this case, the 
general 'expression for probability 'p' is given by 

_ Measure of specified part of the region 
p - Measure of the whole region 

where 'measure' refers to the length, area or volume of the region if we are dealing 
with one, two or three dimensional space respectively. 

Example 4·34. Two points are taken at random on the given straight line of 
length a. Prove that the probability of their distance exceeding a given length 

c (<: a).is equalto (I -; J. 
[Burdwan Univ. B.Sc. (Hons.), -1992;.l)elhi Univ. M.A. (Econ.), 1987] 

So~utio",. Let f and Q be any two points taken at random op the given straight 
line AB of length • a: . Let AP = x and AQ = y, 

(0 ~ x ~ a, 0 ~ y ~ a). 
Then we want P {I x - y I > c}. 
The probability can be easily calculated geometrically. Plotting. the lines 

x - y = e and y - x = e along·the co-ordinate axes, we get the fol1owing diagram: 

Since 0 ~x~ a, 0 ~y ~ a, total ~a=a. a 7' a1• 

Area favourable to the event I x - y I > e is given by 

A LMN + h. DEF = k LN. MN .f. k EF . DF' 

=! (a- d+! (a -d=(a _e)2 
2 . 2 

(a 'e)2 ( ef 
P(lx-yl>e)= :1 I-~) 
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Example 4·35. (Bertrand's Problem). If a chord is taken at random in a 
circle, what is the chance that its length.l is not less than 'a' ., the ra4~us of the 
circle? 

Solution. Let the chord AB make an angle e with the diameter AOA ' of the 
circle with centre 0 and radius OA=a. Obviously, e lies betwseen -1t/2 and 1t12. 

Since all the positions of the chord AB and 
consequently all the values of e are equally 
likely, e may be regarded as a random vari-
able which is unifonnly distributed c/. § 8·1 A' 
',over (~1t/2, 1t/2) with probability density 
function 

1 f (e) = - ; - 1t/2 < e S 1t/2 
1t 

L ABA " being the aQgle in a semi­
circle, is a rigt-t angle. From A ABA' we have 

AB = cose 
AA' 

~ 1=2acose 
The required probability 'p~ is given by 

p=P(1 ~ a)=P(2acose ~ a) 
=p(cose ~ 1/2)=p(le I S 1t/3) 

1tI3 1tI3 

= ,J f (e) de = ~ J de = ~ 
-1tI3 -1tI3 

A 

Example 4·36. A rod of length' a' is broken into three parts at random. What 
is the probability that a triangle can beformedfrom these parts? 

Solu~ion. Let the lengths of the three parts of the rod' be x, y and a - (x + y). 
Obviously, we have 

x>O; y>Oandli+y<a =.. y<a-x ... (*) 
In order that these three parts fonn the sides of a triangle, we should have 

and 

a 
~+y>a-~+~ ~ y>--x' 

2 

x+a- (x+ y» y 

y + a - (x + y) > x 

a y<-
2 
a y<-
2 

... (**) 

since in a triangle, the sum of any two sides is greater than the third. Equivalently. 
( .. ) can be written as 

a a --x<y<-2 2 

Hence, on using (.) ~d ( ... ), the required probability is given by 

... (.**) 
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al2 aI2 aI2 

.::....[ _<,;:;..,al2:;<.,.L....::.x_d---,Y dx_" = l [~- (~- x )] dx 

a a-x 

f f dydx 
o 0 

a 

f (a -x) dx 
o 

rf I~/~ a2/8 1 

-1-(a2-x)2'1~ = a2/2 = '4 
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Example 4·37. (Burron's Needle -Problem). A vertical Qoard is ruled with 
horizontal parallel lines at constant distance 'a' apart. A needle of length I J < a) 
is thrown at random on:the table. Find the probability that it will intersect one of 
the lines. 

Solution. Let y denote the distance from the cenlre of the needle to the nearest 
parallcl and ~ be angle fonned by the needle with this parallel. The quantities y 
and ~ fully detennine the position of the needle. Obviously y ranges from 0 to 
0(2 (since I < a) and, ~ from 0 to 1t • 

Since the needle is ,dropped randomly, all poss~ble ~alues of y and ~ may be 
regarded as equally lik~ly and consequently the joint probability density function 
fCy,~) of y and ~ is given by the unifonn 
dislribution.( c.f. § 8.1 ) QY 

JCy,~)=k.; O~~S;1t, 
Os; Y s; a12, ... (*) 

where k is a constant. 
The needle will jnt~lsect one of the 

lines if the distance of its cenlre from me 
line is less than ~ I sin~, i.e., the required 

event can be represented by the inequality 

1 
a 

I 
0< y < t I sin ~ . Hence.the required probability p is given by 

It ('~.)12 

J J f(Y, ~) dy df!> 
-0 0 

1= . It -alZ 

J J f(y,~)djiJ~ 
o 0 

It 

~J sin~d~ 
0 = (a/2) .1t . 
l-cos~I~= 21 -

a1t an 
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EXERCISE 4 (e) 
1. Two points are selected at random in a line AC of length 'a' so as to lie on 

the opposite sides of its mid-point O. Find the probability that the distance between 
them is less than a/3 . 

2. (a) Two points are selected at random on a line of length a. What is the 
probability that .10ne of three sections in which the line is thus divided is less than 
al41 

Ans. 1116. 
(b) A rectilinear segment AB is divided by a point C into two parts AC=a, 

CB=b.PointsXand Y are taken at random onAC and CB respectively. What is the 
probability thatAX,XYand BY can form a triangle? 

(c)ABG is a straight line such thatAB is 6 inches and BG is S' inches. A pOint 
Y is chosen at random on the BG part of the line. If'C lies between Band G in such 
a way that AC =t inches, find 

(i) the probability that Y will lie' in BC. 
(ii) the probability that'Y will lie in CG. 

What can you say about the sum of these probabilities? 
(d) The sides of a rectangle are taken at random each less than a and all lengths 

are equally likely. Find the chance that the diagonal is less than a. 
3. (a) Three points are taken at random on the circumference of a circle. Find 

the chan~ that they lie on the same semi- circle. 
(b) A chord is drawn at random in a given circle. Wliat is the probability that 

iris greater than the side of an equilateral triangle inscribed in that circle? 
(c) Show that the probability of choosing two points randomly from a line 

segment of length 2 inches and their being at a distance of at least I inch from each 
other is 1/4. [Delhi Univ. M.A. (Econ.), 1985] 

4. A point is selected at random inside a circle. Find the probability that the 
point is closer to the centre of the circle than to its circumference. 

S. One takes at random two points P and Q on a segment AB of length a 
(i) What is the prooabiJity for the distancePQ being less than b ( <a )1 

(ii) Find the chance that the distance between them is greater t~an a given 
length b. 

6. Two persons A and B, make an appointment to meet on a certain day at a 
certain place, but without fixing the time further than that it is to be between 2 p.m. 
and 3 p.m and that each is to wait not longer than ten minutes for the other. 
Assuming that each is independently equally likely to arrive at any time during the 
hour, find the probability that they meet. 

Third person C, is to be at the same place from 2·10 p.m. until 2·40 p.m. on 
the same day. Find the probabilities of C being present when A and B are there 
together (i) When A and B remain after they meet, Oi) When A and B leave as soon 
as they meet. 
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Hint. Denote the times of arrival of A by x and of B by. y. For the meeting to 
take place it is necessary and sufficient that 

Ix-yl<lO 
We depict x and y as Cartesian coordinates in the plane; for the scale unit we 

take one minute. All possible outcomes can be described as points of a ~qujife with 
side 60. We shall finally get [cf. Example 4·34, with a == 60, c = lO] 

P [I x - y 1< lO] = 1 - (5/6)~ = 11136 
7. Tile outcome of an experiment are represented by points 49 the square 

bOunded by x = 0, x = ~ and y = 2 in the ~-plane., If the probability is distributed 
~niformly, determine the probability that Xl + l > 1 

Hint. 

Required probability P (£) = J ~ dx dy = 1 - J ~ dx dy 
E E' 

where E is the region for whiCh Xl + 'l:> 1 and' E' is the region for which 
Xl+ l~ 1. 

1 1 

4P (£) = 4 - J J dx dy = 3 
o 0 

3 
P(£)=-

4 

8. A floor is paved with tiles, each tile, being a parallelogram such that the 
distance between pairs of opposite sides are a and b respectively, the length of the 
diagonal being I. A stick of length c falls on the floor parallel to the diagonal. Show 
that the probability that il will lie entirely;on one tile is 

(1-7 r 
If a circle of diameter d is thrown on the floor, show that the probability that 

it will lie on one tile is 

(I-~J (I-~) 
9. Circular discs of radius r are thrown at random on to a plane circular table 

of radius R which is surrounded by: a border of uniform width r lying in'the same 
plane as the table. {f the discs are thrown independently and at random, end N stay 
on the table, show that the probability that a fixed point on the table but not ~ the 
border, will be covered is 

1- [1- (R:d J 
SOME MISCELLANEOUS EXAMPLES 

Example 4·38. A die is loaded in' such a manner thatfor n=l. 2, 3. 4. 5./6.the 
probability of the face marked n. landing on top when the die is rolled is propor­
tional to n. Find the probability that an odd number will appear on tossing the d,e. 

[Madras Univ. D.SIe. (Stat. Mafn),1987] 
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Solution. Here we.'are given 
P (n) oc n or P (n) = kn, where k is the constant of proportionality. 

Also P(l) + P(2) + .. 'p(6) = I => .k( I + 2 + 3 + 4 + 5 + 6) = I or k = 1/21 
, .' .,' 1+3+5 3 
Requlred Probablhty = P(1) + P(3) + P(5) = 21 = '7 
Example 4·39. In.terms of probability : 

PI = peA) , P'1. = PCB) , P'l = peA (\ B), (PI. P'1., P3 > 0) 
Express the following in tenns of PI .. p'1., P'l . 
(a) peA u B). (b),PeA u Ii). (c) ,PG\ (\ B). (d) p(i\ u B). (e) peA (\ B) 

if) P( A (\ Ii). (g) P (A I B), (h) P (B I A), (i) P [A (\ (A u B)} 

S9lution. 
(a) P( Au B) = 1- peA u B) = I - [P(A) + PCB) - P(AB)]. 

= 1- PI- P2+ P3. 
(b) f( A u Ii) = P (A () B)= 1- P (A (\ B) = 1- Pl 
(cj P( A (\ B) = P (B - AB) = P (B) - P (A (\ B) =,n'1. - Pl 
(d)· P eA u B) = P G\) + P (B) - P (A (\ B) = I - PI + P'1. - (P '1. - Pl) 

::;l-PI+P'l 
(e) P( A (\ Ii) = peA u B) = 1 - PI - Pz + P3. [Part (a)] 

if) P( A (\ B ) = P (t\ - A (\ B) = peA) - peA (\ B) = PI - P3 • 
(g) P(AI-B)= P(A<'1B)/P(B)= p,IPz 
(h) P (B ~A1 = P( A (\B )/P (A)= <P2 - Pl)/(I- PI) 
(i) P[A(\(A~B)]~ p[(AnA),u(A(\B») 

= P ( A (\ B) = P2 - P3 [ .: A (\ A = ~ ] 
Example 4·40. Let peA) = P, P (A I B) = q, P (B I A) == r. Find relations be-

tween the ill:Uhbers P. q. r for thefollowing cases: 
(a) Events A and B are mutually exclusive. 
(b) A and B are mutually exclusive and collectively exhaustive. 
(c) A is a subeyent ofB; B is a sribevent of A. 
(d) A and B' are mutually exclusive. 

tDelhi Univ. B.Sc. (Maths Hons.) 1985) 

Solution. Frpm given data : P (A) = p, P (:A (\ B) = P (A) P (B.I A) = rp 

P (B) = P (A (\ B) !I!. 
.. P (A IB) q 

(a) P(A(\.B)= 0 => rp= O. 
(b) P(AilB)=O and P(A)+ P(B)= 1 

=> p'(q+r)= q; rp= 0 ='> pq= q => p=1 V q=O. 
(c) A~8 => A,(\B=A or'P(A(\#)='p(A) => rp=p => r=1 Vp=O. 

B ~ A => ,A (\ B' = B or peA (\ B) = P(B) 
=> rp=(rplq) or rp(q-I)=O => q=1 

(d). P (:4 n Ii) =. J - P (A u B) => 0 = I - [P (A) + P (B) - P (A (\ B)J 
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So P (A) + P (8) = 1 + P (.4 n 8) => 
P (q+ r)= q (1 '+ pr). 

. 4-87 

p[I+(r/q»):;: I+rpl 

Example 441. (a) Twelve balls are distributed at random among three bOxes. 
What is the probability that the first bo~ will contain 3 balls? 

(b) If n biscuits be distributed among N persons, find't~ chance that a 
particular person receives r ( < n ) biscuits. [Marathwada Univ. B.sc. 1992] 

Solution. (a) Since each ball can gOlo'any one ofthe·three bbxes, there. are 3 
ways in which a ball can go to anyone of the three boxes. Hence there are 312 ways 
in which. 12 balls can be placed in the three boxes'. 

N~mber of ways in whic~ 3 balis out of 12 can go. to the fIrSt box is 12C3. Now 
the remaining 9 balJs are to be placed in 2 boxes and'this can be done in 2' ways. 
Hence the total number of favourable cases = 11C3 x 29. ' 

, uC3 x29 

:. Required probability ;::; ---:-=---
311• 

(b) Take anyone biscuit. This can be given to any one-'of the N beggars so that 
there are N ways of distributing anyone biscuit. Hence I)le total number of ways 
in which n biscuit can be distributed at random among N beggars 

= N . N .. , N ( n times',) = N·. 
1 r' biscuits can be given to an'y particular beggar in ·c, ways. Now we are left 

with (n'- r) biscuits which are'to be distribut¢ among the remaining (N - I) 
beggars and this can be done' in (N - 1)"-' ways. 

. . Number of. favourable cases = ·C,. (N - IX -, 
"C (N -1)"-' . 

Hence, required prob;,lbility = ' N " 

Example 4·42. A car is parked among N cars in a row, not,ilt either end. On 
his return the owner finds that exactly r of the N pJaces are still occupied.Whaiis. 
lhe probability that both neighbouring places are empty? 

Solution. Since the owner finds on return lhat exactly r of the /Ii places 
(including.Qwner's car) are occupied, the exhaustlve number of cases for such an· 
arrangement is N-1C,_1 [since the remaining r!... 1 cars are to be parked in 'the 
remainingN - I places and thiscan·bedone in N-1C,_1 ways]. 

Let A denote the event that both the neighbouril)g places to owner's car are 
empty. This requires the remaining (r - 1) cars to be parked in 'the remaining 
N - 3 places and hence the num6er of cases favourable to A is N- 3C;_I. Hence 

N-'3' , ' 
P(A) = C,_~ = (N-r)(N-r-l) 

N-1C,_1 (N' - I)(N - 2) 

Exam pIe 4·43. What is the probability thai at least two out of n people have 
lhe same birthday? Assume 365 days in a year and that all days are equally likely. , 
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Solution. Since the birthday of any person can fallon any one of the 365 days, 
(he exhaustive number of cases for the birthdays of n persons is 365". 

If the birthdays of all the n .persons fallon different days, then the number of 
favourable cases is 

365 (365 -1) (365 - 2) .... [365 -(n-l)], 
because in this case the birthday of the first person can fallon anyone of 365 dayS, 
the birthday of -the second person can fall on anyone of the remaining 364 days 
and soon. 

Hence the probability (p) that birthdays of all the n persons are different is 
given by: 

_ 365 (365 - 1) (36~ - 2) ... [ 365 - (n - 1)] 
P - 365" 

= (I - 3!5 ) (1 - 3~5 ) (1 -~ ) '" (1 - n3~51 ) 
Hence the required probability that at least two persons have the same birthday 

is 

1 - P = 1- (1- 3!5/) (J - 3~5') (1- 3~5 ) ... (1- n3~51 ) 
Example 4·44. A five-figure number is formed by the digits'O, 1, 2,3,4 

(without repelitiofl).;Find the probabilifJI-lhtJt the number formed i~ divisible by 4. 

[Delhi Univ. B.sc. (Stat. Hons.), 1990) 

Solution. The total number of ways in which the five digits 0, 1, 2, 3,4 can be 
arranged among dtemsel ves is 51. Out of these, the num ber of arrangements which 
begin with 0 (and, therefore, will give only 4-digited numbers) is 41. Hence the 
total number of five digited nwnbers that can be formed from the digits 0, 1,2,3, 
4is 

5! -4! = 120-24=96 
The number formed will be divisible by 4 if the number formed by the two 

digits on extreme right (i.e., the digits in the unit and tens places) is divisible by 4. 
Such numbers are : 

04 , 12 ,20 , 24 ,32 , and 40 
If the numbers end in 04, the_remaining three digits, viz.,l, 2 and 3 can be 

arranged among dtemselves in 3 I ways. Similarly, the number of arrangements of 
the numbers ending with 20 and 40 is 3 ! ~n each case. 

If the numbers end with 12, the remaining three digits 0,3 ,4 can be arranged 
in 3 ! ways. Out of these we shall reject those numbers which start with 0 (i.e., have 
o as the first digit). There are ( 3 - t ) ! = 2 ! such cases. Hence, the number of five 
digited numbers ending with 12 is 

31-2!=6-2=4 
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Simil¥ly the number ,of 5.digited numbers ending with 24 and 32 each is 4. 
Hence the total number of favourable cases is 

3 x 3 ! + 3 x 4 = 18 + 12 ~ 30 

. ed b bT 30 5 Hencerequlf pro a llty= 96= J6 

Example 4·45. (Huyghe,n's problem). A and B throw alternately with a pair 
of ordinary dice. A wins if he throws 6 be/ore B throws?, and B wins if he throws 
7 be/ore A throws 6.I/A begins, show that his cliance-o/winning is 30 161 

[Dellii Univ. B.Sc. (Stat. Hons.)t 1991; Delhi Univ. B.Sc.,1987] 
Solution. Let EI denote the event of A 's throwing '6' and E2 the event of B's 

throwing '7 with a pair of dice. Then £1 and £2 are the complementary events. 
'6' can be obtained with two dice in the following ways: 

(1,5 ), (5, I ), (2, 4), (4, 2), (3, 3), i.e., in 5 distinct ways. 
5 ,. - 5 31 

.. P (E1) = 36 and P (~I) = I - 36 = 36 

'7' can be obtained with two dice. as follows: 

(1,6), (6,1), (2, 5), (5, 2), (3,4), (4, 3), i.e., in 6 distinct ways. 
'. 6 1 - 1 5 

P(E2) = -,- = - and P,(ElJ = 1-- = -
36 6 '- 6 6 

If A starts the· game, he will win in the following mutually exclusive ways: 
(i) EI happens (ii) £1 n £2 n EI happens 

(iii) £1 n £2 n £1 n £2 n EI happens, and so on. 
Hence by addition theorem of probability, the required probability of A's 

winning, (say), P (A) is given by 
P (A) = P (i) + P (U) + P (iil) + .. , 

= P (E1) + P (£1 n £2 n E1) + P (£1 n £2 n £1 n £2 nE1) + .... 
= P(E1) + P(£I) P(£2) P(E1) + P(£;) P(£2) P(£l) P(E2) P(E1) + '" 

(By compound proba,bility theorem) 
5 31 5 5 31 5 31 5 5 

= 36 + 36 x'6 x 36 + 36 x'6 x 36 x'6 x 36 + .. , 

= 
5/36 30 

31 5 - 61 
1- 36 x'6 

Example 4·46. A player tosses a coin and is'to score one point/or every head 
and two points/or every tail turned up. He is to play on until his score reaches or 
passes n. If p~ is the chance 0/ allaining exactly n score, show lha! 

1 
P~=2 [P~-I + P~-2], 

and hence find the value o/p~. [Delhi Univ. B.Sc. (Stat. "ons.),1992] 
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Solution, The score n can be reached in the following two Jrlutually exclusive 
ways: 

(i)By throwing a tail when score is (n - 2), and" 
(ii)By throwing a head when score is (n - I), 

• HenCe by addition the<,>~m of probability, we get 

P~ = P.(i) + P (ii) =t ,P~-2 +! 'P~-I =t (P~-I + P~-2 ~ 
To find P~ explicitly, (*) may. be re-written as 

+ 1 . + I 
P~ 2. P~-I = P,;-I 2. P~-2 

I 
= Pl'+'2 P1 

S~nce the score 2 can be obtained as 
(i)Head in fU'St throw and head in 2nd throw, 
"(ii)TaiI in tbe first throw, we have 

111113 . 1 
P2=- -+-=-+-=- and obvIOusly PI =-

2'2 2 4 2 4 2 

Henc~, from (u), we get 

1 3 1 1- 2 1 2 1 2 
P~ + 2. P~ -I = 4 + 2.' 2. = 1 = 3" + 3" = '3 + 2. ' 3" 

P~ - i = ( - ~) (p. - 1 - ~)l 
PN - I - i = ~ - t) (p. - 2 -:~) 

P2 - t = ( -~) (PI - i) 
Multiplying all the above equations. we get 

P~ -i=(-~)1I-1 (PI-i> 

= (_.!.)N-I (!_~)= (-I)" .1 ! 
:: :: 3 • 2" ' '3 

2 (- I)" I I 
p.= 3'+ - 2" '3' 

= .! [2 + ( - 1)" 1.] 
3 2" 

Example 4·47. A coin is tossed (m+n) times, (mn). Show that the probability 

of I . L __ J_' n + 2 
at east m consecutive m:uu3 IS "Z" + 1 ' 

- [Kurukshetra Univ. M.Sc.I990; Calcutta Univ.8.Sc:.(IIo05.),I986] 
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Solution. Since m >n, only one sequence of m consecutive heads is 
possible. This sequence may start either w~th the first toss or second toss or third 
toSS, and so on. the last,one will be starting with (n + l)th toss. 

Let Ei denote the event that the sequence of m consecutive heads starts with 
ith toss. Then the required probability is 

P (EI ) + P (E2) + ... + P (EM : I ) ... (*) 
Now P(EI ) = P [Consecutive heads in f~rst m tosses and head or tail in the rest] 

= (~J 
P (E2) = P [Tail in the first toss, followed by m cOJ)~utive'heads and 

head or tail in the nexU 

= ~ (~J = 2}+ I 

In general, 

P (E,) = P [tail in the (r - I)th trial followed by m consecutive heads 
and head or tail in the next] 

1 ('I J -" 1" . = '2 '2 = 2""1-' -V r = 2, 3, ... , n + 1. 

Substituting in (*), 

R 'ed babT 1 n 2+n 
eqUlC pro llty:: 2'" + 2"'+ 1= 2"'+ I 

Examp~e 4·48. Cards are dealt one by one from a well-shuffled pgck until an 
ace appears. Show that the probability that exactly n cards are dealt before the 
first ace appears is 

4(51 - n) (50 - n) (49 - n) 
52.51.50.49 [Delhi Univ. B.Sc. 1992] 

Solution. Let Ei denote the event diat an ace appears when the ith card is 
dealt. Then the required probability 'p' is given by 

Now 

p:;= P '[Exactly n cards are dealt before the first ace appears] 
= P [The first ace appears at the (n + l)th dealing] 
= P (EI fi E2 fi E3 fi .,. fi EM-I fi EM fi Eul) , 

= P (EI ) P (E21 EI) P (E3 lEI fi EJ ... 
x P (EM I EI fi E2 fi . '.' fi EM-I) X P (E. + I I EI fi E2 fi ... fi E.) , 

I ••• (*) 

P (EI ) = ~~ 
- - 47 

P (E2 I EI ) = 51 
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- - - 4 
P(E~_IIElnE2n ... nE~_J= 52-(n-2) 

- - - - 5O-n 
P(E~_IIEI nE2n ... nE._J'~ 52-(n-2) 

- - - 4 
p ( E~ I EI n E2 n ... n E~ -I) = 52 ~ (n - l) 

- - - - 49- n 
P (E~ I EI n E2 n ... n E._I) = 52 _ (n _ 1) 

- - - 4 
P ( Eu d EI n E2 n ... n E~) = 52 _ n 

, :- Hence. from (*) we get 

~ -[48 47 46 45 44 43 _ 52 - n 
p= 52x5tx50x49x48x47x ... x 52 - (n - 4) 

. 51 - n 50 - n 49 - n 4] x "x x x--
52- (n- 3) 52- (n- 2) 52- (n- I) 5+- n 

_ (51 - n)(50 - n)(49 - n) 4 
- 52x51 x50x49 

Example 4-49. If/our squares are cliosen at random on d chess-board,find 
the chance 'that they slwuJd be in a diagonal line. 

[Delhi Univ. B.Sc. (Stat. Hons.), 1988] 
Solution. In a chess-board there are 8 x 8 = 64 squares as shown in the 

followim~ diagram. 

A 
Al ~~-+--~~~-+-+~ 
AI I~~~ __ ~~~-+-+~ 
A3 
~ ~~~~~--~~~ 

Let us consider the number of ways in 
which the 4 squares selected at random are 
in a diagonailine parallel to AB. Consider 
the II ABC. Number of ways in which 4 
selected squares are along the lines ~ B •• 
.A,B,. A2B2. AIBI and AB are ·C4• 5C •• 
"C •• '7 C4 and sC. respectively. 

Similarly. in llABD there are an 
equal number of ways of selecting 4 
squares in a diagonal line parallel to AB. 

Hence, total number of ways in which 
the 4 selected squares are in a diagonal 
line parallel to AB an 
2 (·C. + 'C4 + 6C. + 7C.) + ·C •• 
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Since there is an equal number of ways in which 4 selected squares are in a 
diagonal line parallel to CD, the required number of favourable cases is given by 

2 [ 2( 4C4 + sC4 + 6C4 + 7C4) + 8C4] 

is 
Since4 squares can be selected outof 64 in 64C4 ways, the required probability 

= 2 [2( 4C4 + sC~ + 6C~ + 7C4) + 8C4] 

64C4 
_ [4 ( 1+ 5 + 15 + 35,) + 140] x 4 !, _ 91 
- 94 x 63-x62 x.61 -.158844 

Example 4·50. An urn contains four tickets "f(lrked with numbers 112, 121, 
211,222 and one ticket is drawn 'at random. Let Ai, (i=1, 2, 3) b.e the event that ith 
digit of the number of the ticket drawn is 1. DiscuSs the independence of the events 
A"Al and A3. [Qelhi Univ.I}.Sc.(Stat. Hons.),1987; Poona Univ. B.Sc.,1986] 

Solution. We have 

P(AI) = ~ = t = P(A1) = P(A3) 

AI n A2 is the event that the fIrst two digits in the number which the selected ticket 
bears are each equal to unity and the only favourable case is ticket with number 
112. 

1 1 1 
P(A I nA1) = '4 = 2·2 

= P(A I) P(A1) 

Similarly, 
1 P(Al n A3) = '4 = P(Al) P(A3) 

and P(A3 n AI) = ~ = P(A3) P(A I) 

Thus we conclude that the events Ai> A2 and A3 are pairwise independeni. 
Now P(AI n:A3 nA3) = P {all the three digits in the number are 1 's} 

= P(cI» 
= 0 :F P(AI) p{.('h) P(A3) 

Hence Ai> A2 and A3 though pairwise independent are not mutually inde­
pendent. 

Example 4·51. Two fair dice are thrown independently. three events A, B 
and C are defined asfollows: 

A: Oddface withfirst dice 
B : Oddface with second dice 
C .: Sum of points on two dice is odd. 

Are the events A, B and C mutually independent? 

[DelJti Univ. BoSe. (Stat. Hons.) 1983; M.S. Baroda Univ. B.Sc.1987) 
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Solution. Since each of the two 4if:e can show anyone of the six faces 1,2,3, 
4,5, 6, we get: 

P(A) = 3 x 6 = .! 
36 2 

[.: A= (1,3,5) x (1,2,3,4,5,6)] 

P(B) = 3 x 6 = .! 
36 2 

- ,. 
[ .: B = (1,2,3,4,5,6) x (1,3,5) ] 

The sum Qf points on two dice will be 0<14 if one shows odd number and the 
other shows even number. Hence favourable cases for C are : 

(1,2), (1,4), (1,6); (4, I), (4,3), (4,5) 
(2, I), (2,3), (2,5); (5,2), (5,4), (5,6) 
(3,2), (3,4), (3.6); (6, n, (6,3)" (6,5) 

i.e., 18 cases in all. 
18 I 

Hence P(C) = 36 = 2" 
\ 

Cases favourable to the events An B, A (') C, B (') C and A (') B (') C are 
given below: 

and 

Event Fav,ql,Uable cases 

AnB (1,1), (i l 3)~ (1, 5), (3,. '1), (3, 3), (3, 5), (5, 1) (5, 3) 

(5,5), i.e., 9 in all. 

A(')C (1,2), (1,4). (1.6), (3.2), (3, 4), (3, 6), (5, 2), (5, 4) 

.(5,6). i.e., 9 in all. 

B(')C (2, 1), (4,1), (6, 1) (2, 3), (4, 3), (6, 3), (2, 5), (4. 5). 

(6. 5), i.e., 9 in alf 
AnB(')C Nil, because AnB· implies that sum of points on two dice is 

even and hence (AnB )(')C = ell 

. 9 1 
P(A (') B) = - = - = P(A).P(B) 

36 4 
9 1 

P(A (') C) = - = - = P(A) P(C) 
36 4 
9 1 

P(B.(') C) = 36 = 4 = P(B) P( C) 

P(A (') B (') C) = P(eII) = 0." P(A) P(B) P(C) _ 
Hence the events A, B and C are pairwise independent but not mutually 

inde~ndent 
• 

Example 4·52. Let A.,Az, .... A. be independent events and P (At) =Pl. 
Further, let P be the probabiJiJy thoi fWne of the events occurs; then sho'(fl thol 

p ~ e - tPI [Agra Univ. M.Sc., 1987] 
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SOlutfon. We have 

p = p ( AI 0 A2 n ... n A~) 
I 

II II II 

= n P (it) = n [1 - P (Ai) ] = n (1 - Pi) 
;=1 i=1 ;=1 

4·95 

{since Ai'S are indepelldent] 

II 

[.: I~x ~ e- 1t forO~ x ~'I 
and 0 ~ Pi ~ 1 ] 

~ p ~ exp [- 1: pd, 
i= 1 

as desired. 
Remark. We have 

I-x ~ e- 1t for 0 ~ x ~ 1 ... (*) 

Proof. The inequality (*) is obvious for x = 0 and x = 1. Consider 0 < x < 1. 
Then ~. . 

1 • <-
log (I-xf = -102 (I-x) 

.. x+2'+'3+'4+ ... , [ 
X2 x) X4 ] 

the expansion being valid since 0 < x < 1 . Further since x > 0, we get from (* * ) 
log(l-xr 1 > x 
-log (l - x) > x 

log (1 - x) < - x 
~ 

as desired. 
Example 4·53. In thefollowing Fig.(a) and (b) assume that the probability oJ 

a relay being closed is P akd that. relay is open or closed independently of any 
other. In each case find the probability that current flows from L to R. 

~t~ ~2~R 
It"" T·",'s . H 6 F"U) V' FI9(&) 

Solution. Let Ai denote the event that the relay i, ( i = 1,2, .•. ,6) is closed. 
Let E be the event that current flows from L to R. 

In Fig. (a) the current willflow from L to R if at least one of the circuitsirom 
L to R is closed. Thus for the current to flow from L to R we have the fo119wing 
favourable cases: 
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(z) At nA1= Bt , (ii) ~ nAs= B1 , 

(iii) At nA3 nAs= B3, (iv) A. nA3 nA1= B., 
The probability Pt that current flows from L to R is given by 
Pt :::; P(Bt u B1 U B3 y:B.) = I: P(Bj ) - I: P(B; n B;).+ I: P(B; n Bj n Bi) 

i i<j i<j<k 

- P(B l nB1nB3 n B.) 

Since the relays operate independently of each other, we have 

P (BI) = P (AI n A2) = P (AI) . P (A1) = p. P = p1 

P (H1) = P (~ n As) = P (~) . P (As) = p . p = l 
P (B3) = P (AI) P (A3) P (As) = p3 

P (B.) = P (~) P (A3) P (A2) = l 
Similarly 

P(BI n B2) = P(AI n A2 n ~ n As) = P(AI) P(A2) P(A.) P(As) = p. 

P ({JI nB1n,B3)= P (AI nA1n A3 n ~ nAs) =i 

and so on. FinaUy, substituting in (*), we get 
PI = (p1 + p1 + p3 + p'l) - (p. + l + l + l + l + l) 

+(ps +l +l +l)-l 

= 2l + 2 p3 - sl + 2l 
In Fig. (b). Arguing as in the above ease, the req~ired l~robability P1 that the 

current flows from L to R is given by 

where 
P2 = P (EI U E1 U E3 u E.) 

EI =AI n A1• E1=A3 nA2.E3=A., E. =As nA, 
P2 = I: P (E;) - I: P(E; n Ej ) + I: P(E; n Ej n Ei) 

i<j i<j<1e 

- P(EI n El,n E"n E.) 
= (p1 + p2 + P + p1) _ (p'l + p3 + l + il + p' + l) 

+ (p4 + l + l + l) - p' 
=p+ 3p2_4 p3 -p. +3l-p' 

Matching Problem. Let us have n letters corresponding to which there exist 
n envelopes bearing different addresses. Considering various letters being put in 
various envelopes, a match is sqid to occur if a letter goes into the right envelope. 
(Alternatively, if in a party there are n persons with n different hats. a match is 
said to occur if in the process of selecting hats at random, the ith person 'rightly 
gets the ith hat.) , 

A match at the kth position for k=l, 2, ._; D. -Let us fIrst consider the event 
Ale when a match occurs at the kth place. For better understanding let us .put the 
envelopes bearing numbners 1, 2, ••.• ~ ~ ascending order. When Ale .000urs, k th 
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letter goes to the kth envelope but (n - 1) letters can go to the remaining (n - 1) 
envelopes in (n - 1) ! ways. 

Hence P (Ak) = (n - I)! = .!.. 
n! n 

where P \AI:) denotes the probability of the kth match. It is interesting to see that 
P (AI:) does not depend on k. 

Example 4·54. (a) 'n° different objects 1.2 •...• n are distributed at random 
in n places marked 1.2 •...• n. Find the probability that none of the objects occupies 
the place corresponding to its number. [Calcutta Univ. B.A.(Stat.Hons.)1986; 

Delhi Univ. B.sc.(MathS Hons.), 1990; B.Sc.(Stat.Hons.) 1988J 

(b) If n letters are randomly placed in correctly addressed envelope~,prove 
that the probability that exac~/y r leters are placed in correct envelopes is given by 

1 II-! I: 1 
-; 1: (-1) -k'; r=I.2 •....•. n 
r. k=O • 

[Bangalore Univ. B.Sc., 1987J 

Solution (Probability 01 no match), LetEi • (i = 1.2 •...• n) denote the event 
that the ith object occupies the place corresponding to its number so that Ei • is the 
compJe~entary event Then the probability 'p' that none of the objects occupies 
the place corresponding to its number is given by 

p= peEl n £2 nE, n '" It.) 
= 1 - P {at least one of the objects occupies the place corresponding 

to its number} 

= 1- P(EI uE1uE,u '" uE~) 
II II II 

= 1 -. [ 1: P(Ei} - D: P(E; n,Ej) + D:l: P(Ei n Ej nEil) - ... 
i=l i,/=1 i,j.It:1 

}<j r<j<k 

+ (_I)~-1 P(ElnEln ... nE~)J ... (*) 

Now P(Ei) = !, V i 
n 

P(E; n Ej) = P(E;) P(Ej IE;) 

1 1 '-4' .(. ;\ 
= -'--1' v I.) 1<;' n n-

P(Ej n ~ n EI:) = P(Ej ) P(Ej lEi) P(Etl Ei n Ej) 

and so on. Finally, 

1 1 l' V ... k (. . k) = -'--1'--2' I.). I<.j< n n- n-

1 1 1 1 
P(EI n El n E, n ... n E~) = -: . -:-t . ~ ... -;; . 1 
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Substituting in (*), we get 

1 [ ~c 1 ~C 1 ~C 1 
p= - 1-;- 2 n(n-l) + 3 n(n-l)(n-2) - ... 

. + (_1)".,.1 '1 ] 
n(n - 1) .. .3 .2. I 

= 1 - [ 1 - 2\ + 3\ - ... + (- 1)~ -I n\] 
1 1 1 ~ 1 

=:=-2'--3'+-4,-···+(-1) -, . .. n. 
n (-It 

= I k' k=O • 

Remarlt For large n, 
1 1 1 

p= 1-1 +21-31+41- ... 
= e- I = 0·36787 

Hence the probability of at least one match is 
1 1 (- 1)~ 

I-p=1--2 '+-3'-···+ , .. n. 

= 1-!, (foclarge n) 
/ e 

(b) [Probability or exactly' r matches {r ~ (n - 2) }] Let Aj , (i = 1,2, ... , n) 
denote the event that ith letter goes to the correct env~lope. TIlen the l?robability 
that none of the n letters goes to the correct ,envelope is 

n 
pal f"'lA2 f"'l ... f"'l AJ = E (- Itlk! ... (**)[(c! part (a)] 

k=O 

The probability that each of the 'r' letters is in the r~ght envelope is 

n (n - 1) (n _ i) ... (n _ r + 1) , and the probability that none of the remaining 

(n - r) letters goes in the correct envelope is obtained by replacing n by (n - r) in 
n-r (_ It 

(**) and is thus given by k:O k! . Hence by compound probability theorem, 

the probability that out of n letters exactly r. letters go to correct envelopes, (in a 
specified order), is 

1 n-r(l~ 
E ~; r~n-2. 

n(n-l)(n-2) ... (n-r+ 1) k=O k. 

Since r letters can go to n envelopes in ~C, mutually exclusive ways, the 
required probability of exactly r lettets going to correct envelopes, (in any Ofder, 
whatsoever), is given by 
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'C,x I. niT (-It = 1- niT (_I)i _I 
n(n-l)(n-2) ... (n-r+l)k=O k! r! k=O k! 

Example 4·55. Each of the n urns contains 'a' white balls and 'b' black balls. 
One ball is transferr~dfrom thefirst urn to the second, then one ballfrom the latter 
into the third, and so on. If Pi is the probability of drawing a white ball from the 
kth urn, show that . 

a+ 1 a 
Ph 1 = a + b + I pt+ a + b + I 0 - Pi) 

Hence for the last urn, prove that 
a 

p. = a + b ;lPunjab Univ ~ B .• Sc.(Mattts Hons.),1988] 
Solution. The event of drawing a white ball ,from the kth urn can. materialise 

in the following two ways: 
(i) The ball transferred from the (k - I)th urn is white a!ld then a white ball is 

drawn from the kth urn. 
(ii) The ball transferred from the (k - I)th urn is black and then a white ball is 

drawn from the kth urn. 

The probability of case (i) is Pi-1 X a; I I ' 
. a+ + 

since the probability of drawing a white ball from the (k - I)th urn is Pi -1 and 
then the probability of drawing white ball from the kth urn is 

a+1 
a+b+ I . 

Since the probability of drawing Ii black ball from .the (k- I)tb urn is 
[1- Pi- 11 and then the probability of drawing a white ball from the kth urn is 

a 
a+b+I' 

the probability of case (ii) is given by 
a 
b I [I-Pi-d 

a+ + 
Since the cases (i) and (ii) are mutually exclusive, we have by addition theorem 

of probability 
a+ I a 

P. = a+b+ I Pi-1+ a+b+ 1 [l-pi-d 

I a 
P = P + • • 1 a +'b + I i - 1 a + b + I 

Replacing k by k+ tin (*) we get the reql}ired result. 
Changing k to k - I, k.,... 2, ... ~d SQ on, we get 

I .a 
Dl~l = a+b+ I Pi-l+ a+b+ I 

... (*) 

... (1) 

... (2) 
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1 a 
Pk-Z = 'b 1 Pk-3 + b 1 , .. (3) a+ + . a+ + 

1 a 
PZ = a + b + 1 PI + a + b + 1 •.. (k - 1) 

But p: = Probability of drawing a white ball from the first urn = ~b . 
a+ 

Multiplying (1) by 1, (2) by a +! + l' (3) by ( a +! + 1 J. ... , and (k - l)th 

( 1 ;-Z equation by a + b + 1 and adding, we get 

Pi = (a +! + 1 fl PI + a +: + 1 [ 1 + a +! + 1 + (a + ~ + 1)2 + ... 

. ( 1 ;-Z] 
+ a+b+ 1 

[ 
( 1 1- 1 1 _ ( 1 ;-1 x __ a_+ a l-la+b+ I J 

- a + b + 1 (a + b) a + b + 1 ( 1 _,' 1 ) 
a+b+l 

a ( 1 ;-1 a [ ( 1 ;-1] 
= li+b a+b+l + a+b 1- a+b+l 

= a:b[(a+!+ Ifl +{ 1-(a+!+ Ifl}] 
a 

=-b' (k=I,2, ... ,n) 
a+ 

Since the probability of drawing a white ball from the kth urn is independent 
of k, we-:have 

a p,,=--. 
a+b 

Example 4·56. (i) Let the probability p" that afamily has exactly n children 
be a pit when n ~ 1 and po = 1 - a p (1 + P + pZ + .. :). Suppose that all sex distribu­
tions of n children have the same probability. Show that for k ~ 1, the probability 
that afamily contains exactly k boY$ is 2 a .l/(2 - pr l • 

Oi) Given that afamily includes alleast one bUy, 'show that the probability 
that there are two or more boys is p/(2 - p). 
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Solution. We are given 
p. = P [that a family has exactly n Children) 

=: o.p., n ~ 1. 
and po = 1 - 0. P (1 of p.+ p"'2 + ... ) 

4-101 

Let Ej be the event ihatthe number of children in a family is j and let A be 
the event that a family contains exactly k boy-so Then 

P (Ej ) = p,; j = 0, 1, 2, ... 
Now. since each child can have any of the two sex distributions (e~ther boy or 

girl), the total number of possible distributions for a 'family to !\ave 'j' children 
isi. 

and 

·[Putj-,k=r.] 

= 0. '(!!.'J t ·"c, (!!"J' 
2 r=O 2 

(.: ·C,=· ... C,,_,J 
" 

We know that ' .. r 

Hence 

-"c, = (-1)'. H,-IC, ::::) (-1)'" ~"C,_= U,-IC, 
, (-1)'. -(t+I)C, = t.,c, 

I -

(b) Let B denote the event that a family includes at ieast one'boy and C denote 
the eyent that a family has two or more boys. Then ' 
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00 

P (B) = L P [family has exactly k boys] 
k=l 

_ L ap _ 2a L ~ 2 l 00 [ J 
- k=l (2_p)I+\ - 2-p k=,l 2-p 

2a p/(2-p) ap 
=-- x = 

2,-p 1- fp/(2-p)] (\ -p)(2-p) 
00 

P (C)· = L P tfami~y has exactly kboys] 
k=2 

- i 2al - 2a i .(~J 
- k=2 (2:',:pt+ 1 - 2-p k=2' 2-p, 

2 a . fp/(2 - p)]l ap2 
= '2'-= p • 1 - fp/(2 - p)] =. (2 - p)2 (1- p)' 

Since C cB andB ('\ C= C,P (B ('\ C) =P (C) ~ P (B)P (C IB) =P (C) 
Therefore, 

P(C) ap2 (1-p)(2-p) p 
P(CIB)=--= x -

P(B) (2_p)2(1_p) ap 2-p 
Example 4·57. 'A slip of paper is given to person,A who marks it either with 

a plus sign or a minus sign,' the probability of his writing a plus sign is 113. A passes 
the slip to B, wlu? mqy either leave it alone or change the sign before passing it to 
C. Next C passes the slip to D after perhaps changing the sign. Finally D passes it 
to a ~eferee after perhaps changin"g the ~ign. The ref~ree sees a plus sign on the 
slip. It is known that B, C and D each change the sign with probability 213. Find 
the probability that A originally wrote a plus. 

Sol~tion. Let us define ~e following events.: • 
EI : A wrote a plus sign; £2: A wrote a minus sign 
E : The referee observes a plus sign on the slip. 

We are given: P (EI ) = 113", P (E2) = 1 - 113 = 2/3 
We ~ant P (EI I E), which'by Bayes'rule is given,by: 

P (EI ) P (E 1 EI). " 

P (Ell E) = P (EI) P (E 1 EI~ + 'P (E2) P (~ 1 E2) ... (i) 

P (E 1 EI ) = P [Referee observes the plus sign given that 'A' wrote 
the plus sign an the slip] 

= P [(Plus sign was not changed at all) v (plus sign was 
.~hanged exacOy twice'jn,passing from 'A' to referee 
through B, C and D)] 

= P (£3 v £.), (say). 
= P ~(~3) + f (~4), •.. (ii) 



Theory or Prob:.bility 4-103 

Let AI. Ai and A3 respcctivelydenote the events that 8, C and D change the 
sign on the slip. Then WI# are given 

P (AI) == P (AI) == P (A3):: 2/3 ; P <AI) == P (A2) = P <A3) = 113 
We have 
P (E3) = f (AI n A2 n A3) = P (AI) P (A2) P (A3) = (l/W = 1127 
P (E.) = P [(AI A2 A3) V (AI A2 A3) 1..,;1 (AI Al A3)] , 

= P (AI A2A3) + P (AI A2A3) + f (JI A2A3) 
= P (AI) P (A2) P (A3) + P (AI) P (A2) P (A}) + P (AI) P (A2) P (A3) 
2212121224 

. ==3·3·3 + 3·3·3 +. 3·3·3=9' 
Substituting in (it) we get 

'I 4 13 
P (E lEI) =-+-=- ... (iii) , 27 1) 27 

Similarly, 
P (E t£2) = P [Referee observes the plus sign given that 'A' wrote minus 

sign on the slip] 
= P [(Minus sign was chang~d exac~ly.once) 

v (Minus sign was changed thrice)] 
::; P (Es V E6), (say), 
= P (Es) + P (£6) , .. (iv) 

P (Tis) =' P [(AI A2 A3) V (AI A2 A3) V (AI A2 A3)] 
= P (AI) p. (A2) P <A3) + P (AI) P (A2) P (A3) + P (AI) P '(A2)" P (A3) 
2111-'211122 

=3·3'"} + 3·3·3 + 3·3·3=9 
2 2 2 8 

P (E6) = P (AI A2A3) = P (AI) P (A2) P (tt3) = 3·3·3 = 27 

Substituting in (iv) we get: 
2 8 14 

P (E lEI) == "9 + 21 = 27· 

Substituting from (iii) and (v) in (i) we get: 
1 13 
3x 27 

P(EdE) = 1 13 2 -14 = 
3x 27 + 3'x 27 

13 :=: Q 
13, :t 28 41 

.. ,(v) 

Example 4·58. Three urns of the >same appearance have the foliowing 
proportion of balls. 

-First urn 
Second Urn 
Third urn 

2 black' 
1 black 
2 black 

1 white 
2 white 
2 whit~ 
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One of the uens is,selected and one Mil isdra'wn.lt turns out to be white. What 
is the probability of drawing a white ball again, the first one not having oeen 
returned? 

Solution. Let us define the events: 
Er= The'event of selection ofith' urn, (i = I ,2,~) 

and A::: The event of dr;lwing a ~hite ball. 
Then 

P (EI ) = P (£z) = P (E3) = 1/3 
and P (A r Elj = 1/3, P (A I"Ez) = 2/3 ~nd P (A I E3) == 1/2 
Let C denote the future event of drawing another white ball from the urns. 

Then 
P(CIElIlA) = O,P(CIEzIlA) = 1,1.andP(CIE3IlA) = h 

3 
. t P(Ei)P(AIEj)P(CIEiIlA) 

P (C I A) = ...:;-=..:..1---=3:--------

t P (Ei) P (~ I f:"i) 
; = 1 

1 1 0 1 2 1 1 1 1 
3'"3· +3·3'2+3'2'3 I 

= 1 1 1 2 1 1 - 3 
3 . 3 + 3 . 3 + "3 ;j 

MISCELL.A.NEOUS EXERCISE ON CHAPTER IV 

1. Probabilities of occurrence Of n independent events EI • Ez •... , E" are p., 
pz, ...• p .. respectively. Find tl)e probabili.ty of occurrence of the compound event in 
which E •• Ez •••• , E, occur ana E,. I. E,. z ••••• E,. do not Occur. 

r 
r /I 

Ans. n.pi x n (I - Pi) 
;=1 ;=r+l 

2. Prove that for any integer m ~ I, 
m m m 

(a) P( n Ai) S P(A;)SP( u Ai)S tP(Ai) 
;=1 ;.=J;=! 
m m 

(b) P ( 11 Ai) ~ 1- t P (A;) 
;= I· ;= I 

3. Establish tile inequalities: 
P(AIlBIlC) S P(AnB) S P(AuQ) S f(AuBuC) S P(A) + P(B) + P(C) 

4. Let AI.Az •.•.• A" be mutpally independent events with p·(A.)"=Pi. 
k = 1.2 •...• n. 

Let P be the probability that none of the events AI.Az • ...• AiI·occurs. Show 
tflat 

p = ~ (I - Pi) S exp {- i: P.} 
k=1 k=1 
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Usc the abo\:'.,e relation tQ compute the probabil ity .that in si~ toss~s of a fair die, no 
"aces are obtained". Compare this wi,th the pppcr bound given above. Show that if 
each Pi is small tom pared. with n, the upper ~und is a gQOd approxim~tion. 

-5. A and B 'play a t;natc~, the winner being the one who first wins two games 
in succession, no games being drawn. Their re~pective chances of winn~ng a 
particular game are' 'p : q. Find 

" (i) A's initial chance of winning. 
(ii) A's chance of winning after having won the first game. 

6. A carpenter has a tool chest with two compartments, each one having a 
locJ<,. He has two keys for each lock, and he keeps all four keys in the 'same ring. 
His habitual procedure in opening Ii compartment ~s to select a key' at random' and· 
try it. If it fails, ~e selects one of the remaining three and tries it and so on. Show 
that the probability that he succeeds on the first, second and third try is 112,1/3, t:/6 
respectively. (Lucknow Univ. B.Sc., 1990) 

7. Three players A, Band C agree to playa series of gap1~ qbserving the 
following rules: two players participate in each game, while third is idle, and the 
game is to be won by one of them. The lose~ in each game quits and his place in 
the next game is taken by the player who was idle. The player who succeeds in 
winnin~ over both of his opponents without interruption wins the whole series of 
games. • 

Supposing the probabilIty for each player to win a single game is 112, and that 
the first game is played by A andB, find the probability for A, B and C respectively 
to win the whole series if tile numbef of games is unlimited. 

Ans. 5/14,5/14,2(1 , 
8. In·a certain group of mathematicians; 60 per cent have insufficient back­

,gr9lPld of modem Algebra, 50 per cen,t have inadequate knowledge pf Mathemati­
cal Statist,ics and 80 per cent are in either o~e or both of the two categories. What 
is the percentage of ~Qple who know Mathematical Statistics among those wh'o 
have a sufficient background of Modem Algebra? (ADS. 0,50) 

9. (0) If A has (n + I) and B has n fair coins, which they flip, show that 

the probability that A geL<; more heads than B is .~. 

rb) A stli<fent-'is given a column of IOdates and column'of 10 events·and is 
asked to match the correct date to each evenc He is not allowed to use ariy ite'm 
more than once. Consider the case where'the student knows. how to match four of 
the items but he is very doubtful of the remaining six. He.decides to·match these 
at random. Find the probabilities that.he will correctly match (i) all the items, 
(ii) at·least seven of the items, 'and (iii) at least five. 

1 10 I 
Ans. (a)6!' (b)6T' (c) 1- 6! 

10. An astrologer claims that he can predict before birth the sex of a baby just 
to be born. Suppose that the astrologer has no 'real power but he tosses a coin just 
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once before every birth and if the head turns up he predicts a boy for that birth and 
if the'tail turns up he predicts a girl. Let p be the probabilil y of the event that'at a 
certain birtti a male child is born, and p' the pro15ability of a head turning up· in a 
single toss with astrologer's coin. Find the probability of a correct 'prediction and 
that of at least one correct prediction' in' n predictions. 

11. From a pack of 52 cards an even numbel: of cards is drawn. Show that the 
probability of half of these cards being red is· 

.[52 !/(26 !)l_ I] I (2s1 - I) 

12. A sportsman's chance o( shooting an animal at a dista~ce r (> a) i~ 

al/rl .. He fires when r = 2a, and if he misses he reloads and .f~res when 
r = 30,40 •.. Jf he misses at distance na, the anitpal escapes. Find. the odds ag~inst 
the sportsman. 

Ans.n+I'n-1 

Hint. P [Sportsman shoots ilt a distance' ia] = all = ~ 
(io) i 

~ P [Sportsman misses the shot at a distance ia] = 1 - .\ 
1 

/I ( I) /I [( i-I J (i + 1 )] •• P [Animal escapes] =.n 1--:2 =.n -. --:-
1=2 I 1=2 I .1 

= ~ (i-: i) ~ (i~ 1 )=!!±! 
i=2 1 i=2 I 2n 

Requn:edratio= n2+nl : ( 1- n2+nl )= (n+ l),: (n-l) 

13. (0) Pataudi, the captain of the Indian team, is repoi1ed to have observed 
the rule of calling 'heads' every time ,the to~ was made during the five'matches of 
the Test series with the Austral~ team. What is the probability of his wirming the 
toss in all the five matches? 

Ans. (l/2)s . 
How will the probability be affected 'if '. 
(i) he had made a rule of tossing a coin privately to dec.K\e whether to call 

"hea~lt or "tails" on each,occasion. 
(a) the factors deteqnining his choice were not pre<tetermined·but he called 

:ouUihatever occWYoo to him on the spqr of the moment? 
( b) A lot contains SO defective and 50 non-defective bulbs. Two bulbs are 

drawn ~t random ~e at a- time. ·with replacement 1)e events A, B'. r. are 
defillfAas 

A = (The first bulb is defective) 
B = (The second bulb is non-defective) 
C= {The two.bulbs are bodt 4efective or both non-defectiv~} 
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Determine whether 
(i)A. B, C are p;urwise independent, 
(ii)A. B, C are independent 
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14. A, B and G are three urns which contain 2 white, 1- black, 3 white. 2 black 
and 2 white and 2 black balls. respectively. One ball is drawn from urn A and put 
into the urn B; then a ball is drawn from urn B and put into the urn C. Then a ball 
is drawn from urn C. Find the probability that the ball drawn is while. 

Ans. 4/15. . 
15. An urn contains a white and b black balls and a ~ries of drawings of one 

ball at a time is made. the bail remove(J being retrurned to the urn 'immediately after 
the next drawing is made. If p" denotes the probability that the nth baH drawn is 
blade. show" that 

p~ :-(b - P~-t) I (a + b- '1). 

Hence nnd Pit • 
16. A person is to be tested to see whettter he can differentiate between the 

taste of two brands of cigarettes. If he cannot differentiate. it is a~sumed that the 
probabili'ty is one-half that he will identify a cigarette correctly: Under which'of 
the following two procedures is ther:e less cpance ~hat he will make all correct 
,identifications when he actually cannot differentiate between, the two br,ands? 

(i) The subject i~ giv~n fo!JI' p~rs each containing bo"th"brands.of cigarettes 
(this is known to the subject). Jte !.11~~t identify for each pair which cigarette 
represents each.brand. 

'(ii) The subject is given eight cigarettes and is told that the first four are of one 
brand and the last four of the other brand . 

. How do you explain the difference in results d~spite the fact ~at eight 
cigarettes ~e tested in each case? 

Ans. OJ 1/16 (ii) l/2 
17. (Sampling with replacement). A sample of size r is takep (rpm a 

popu\atipn of n people. Find the probability.'Vr that N given people will be inc'Iu~.ed 
in. the, sample. . -

Ans. "Ur= ~ (- 1)'" (N) (1- 'm J 
m=O m n 

18. In a lottery m tickest' are drawn at a time out of the total, number of n 
tickets. and returned before the next drawi,Og is mad~\~how that the chance th~t.in 
k drawing~. each of.the. numbers:l. 2. 3 ..... n will appear at'least once is given by 

Pi = 1 - (~ ). '( 1 - .: J + ( ~ ) ( 1 ~ : J ( 1 -- n.: 1 J -", 
. [Nagp~r Univ. M:s(: 1987) 
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19. '.In a certain book of N pages. no page contains more than four errors, nl 
of them contain one error, nl contain two errors, n) contain three error:; and n. 
contaill four ~rror~. 'FwQ copies of the book are opened at any' two g~ven ,pages, 
Show the pr9bability that the number of errQ{S in these two pages ~hall not-exceed 
.five is 

1 -= ~ (n31 + nl + 2nl n. + 2n3 n.) 
N 

Hint. Let Ei I : the event that a ,page of first book contains (errors .. 
and Ei II : the event that a page of second book contains i errors, 

p ~o. of errors in the two pages shall. not exceed 5) 
;:;:.1 - P [Gl I P4 II + E3 I E4 II +. E. I E4 Ii 

+ E3 I E) II + E4 I E3 II + E4 :~ El II 1. 
20. (a) Of three independent even~. the chance that the ftrst only should 

, happens is a, the chance of the, second only is b and the chance of tbe third only 
-is c. Show that the independent chances of the three events are reSpeCtively ~I 
lb' _0 _ __ _ c_ 

. ~o.+r·'b+x· c.fx I 

where x is the root of- the equation 
(a + X) (b + x) (c + x) = x 1 

flrnt P (EI ("\ £1'("\ '£3) = P (E1) U - p. (Ei)] [1 ...,. P (£3)] = a 
P (£1 ("\'£1'("\ Ej) = [1- P (E1)] 'P (El) [1- P (E3)] = Ii 
-p (EI ("\ E~ ("\ £3) = ['i - P (£1)] {l- P (El)] P (E~) = c 

Multiplying (.), ( .. ) and (~ .. ), we get 
. p (£1) P (E1)P (E~) x' l = abc, 

w~re.x-= [1 - P (E1)] [1 :- P. (E1)] [1 -.P (E3)] 
Multiplying (.) by [1 - P (EI~].-we get 

r(E1) = ~ ,and so on. 
o+x 

... ( .. ) 
... ( ... ) 
, , 

(b) Of three independent events, the probability that the ftrst' only should 
happens is 1/4, the probability that the 'Second only should happen is 1/8, and the 
probability that the third only should happen is 1/12. Obtain the unConditional 
~bilit1es of the three events. 

Ans. 112, 113. 1/4. 
( c) A total of n shells are fared at a target The probability of the ith shell ,hitting 

tIie target is Pi; (= I, 2, 3, .. " II! I\ss~ming that the II firings are n mutually 
independent events, find theJKobability that.at least two shells out of Whit the 
target. [Calcutta Univ. B.sc.(Maths Hon~), 1988] 

(d) An urn cOntains M balls numbered, 1 to M, where the ftrst K balls are 
defective and the remaining M .... K· are non4efective. A sample, ~f n balls is 
~wn f.roin the~. Let At be the event Jhat the sample of ' II balls contains exactly 
k defeCtives. ruUt p(At) when the sample is drawn (i) with replacement and. 
(a) withoot replacemenL [Delhi Univ. B.Sc. (Maths HonS.), 1989] 
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21. For three independent events A; 8 and C, the probability for A to oc~ur·i!\ 
a, the probability that,( 8 and C will not occur is b, and the probability that at least 
one of the three events will not occur is c. If P denotes the probability that C occurs 
but neither A nor 8 occurs, prove that p satisfies the quadratic equation 

ap~+ [ab- (1- a) (a+c - I)] p=+-b (I-a) (1- c),=O 
. (l-a(+ab 

and hence deduce that c > (I _ a) > 

Further.show/that tlte probability of occurrence of·C is p/(P + b); and that of 
8's happening is (I -.c) (p + b)/ap. 

Hint. Let P (A) = x, P (8) = y and P (C)~ ~ 
Then x=a, (1-:t)(1-y)(l-z).=b, l:-xyz=c 

and \ - p=z(I-.x)(I;-y) 
Elimination of x, 'y and z' gives quadratic equation in p. 
22. (a) The chance' of success in each trial is p. If Pi is the probability ·that 

there are even number of successes in k trial,s, prove that 
Pi = P + Pi-I (1 - 2p) 

Deduce that Pi = i:[1 + (1 - ZPt] 
(b) If a day is dry, the conditional prob~bility that the following day wlil also 

be dry is p; if.a day is wet, the conditioruil probability that 'the foUowing day will 
be dry is p~. it u.. is the probability that the nth day will be dry, prove that 

u,.-(P-P')u..-I-P'=O; 'n~2 
If the fust day is dry, p = 3/4 and p' ='114, fmd u,. • 

23. There are n similar biased dice suct..that ~e prol:>ability of obtaining a 6 
with each one of them is the same and equal to p. If all the dice are rolled once, 
show that p", the probability that an odd number of 6's is obtained satisfies the 
difference equation • 

p,. + (2p - 1)·p"_I~= P 
and hence deriye'an explicit expresSioii for p". 

'ADS. p,,=![l".f(1-2p)"] 
1 r 

24. SUIJIX)se that each day tl)~ weath.er,can be uniquely classified as '(me' or 
'bad'. S~ppose further that the probability of haVing fme wcilther on ~~ Jas,t day 
of fl ~~ year i$ Po and. we have the prQbability p'that the weather on an arbitrary 
day will be ,of the same lUnd as on the preceding day. Let the probability of having 
fme w~ther on the nth day of the following year be P II' Show that . 

P:=(2p-I)P,,-I+(I-p) ~- • 

~ucethat 

. ,( I)' 1 P,=;(2p-I) Po-'2 +'2 
25. A closet contains n Pairs .of ~~s. If 2r shoes are chosen at random 

(with 2r < n ), wh~t is the probability. '~' there -will be (i)'oo complete pair, 
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(ii) exactly one complete pair, (iii) exactly two complete pairs among them? 

Hint. (i) p(n~ complete pair)= ( ;r ) 2'Jr +, ( ~ ) 
(ii) P(exactly one complete pair)= n ( ;r--I~ )2'Jr-2 + ( ;; ) 

and (iii) P(exactiy two complete pairs):: ( ; )( ;-_24 )2'Jr-4 i" ( ~ ) 

.26. ShQw.that the probability of getting no right pair olit of n, when the left 
foot shoes are paired randomly with the rigth foot shoes; is the sum of the frrst 
(n + I) tenns in the expansion of e- I • 

27. (a) In a town consisting of (n + I) inhabitants, a person narrates a rumour 
to a second person, who in turn narrates it to a third person, and so on. At each step 
the recipient of the rumour is chosen at raJ)dom from the n available persons, 
excluding .the narrator himSelf. Find the probability. that the rumour will be told r 
times without: 

(i) returning to the originator, 
(ii) being narrated to any person more than once. 

( b) Do the above problem when, at each step the rumour is told by 09.e p€(rson 
to a gathering of N randomly cfi9sen people. 

A ( )( .)n(n-l),-I - (I-!J-I. ( .. ). n(n-I)(n-2) ... (n-r+ l ) ns.a, - ,Il - -.-
n' n n r 

( .. ) t~) lim 
28. What is the probability that (i) the birthdays of twelve people will fall 

in twelve different calendar months (assume equal probabilities for the twelve 
months) and (ii) the birthdays of six people will fall in exactly two calendar months? 

Hint. (i) The birthday of the fllSt person, for instance: can fall in .12 different 
ways and so for the second, and so on. 

:. The total number of cases = li2. 
Now there are 12 months in which the birthday ,of one persOn can fall and 11 

months in which the birthday of the second pe~n can fall and 10' months f6r 
another third person, and so on. 

:; The total number of favourable cases::; 12.11.10 .. .3.2.1 
Hence the required probability = B.! 

• .' 1212 

(ii) The total number of ways in which tl'.e birthdays of 6 persons can (all in 
any of the month = It. 

, (.t2] ( 26 - 2 ) 
The·required probability = ~.' 126 
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29. An elevator starts with 7 passengers and' stops at 10 floors. What is the 
probability p that no two passengers leave at the same floor? , 

[Delhi Univ. M.e.A., 1988] 
30. A bridge player knows that his two opponents have exactly f1ve hearts 

between two of them. Each opponent has thirteen cards. What is the probability 
that there is three-two split on the hearts (that is one player has three hearts and the 
other two)? [Delhi Univ. B.Sc.(Maths Hons.), 1988] 

31. An urn contail)s Z white and 2 black- balls. A ball is drawn at random. If 
it is whitt. it is riot replaced into the urn. Otherwise it is replaced along with another 
ball of the same colour. The process is repeated. Find the probability that'the third 
ball drawn'i,s black. [Burdwan Univ. B~Sc. (HODS.), 1990] 

23 
Ans. 30 

32. There is a series of n urns. In the itll: urn there are i 'white and (n -I) 
black balls. i == '1. 2. 3 ..... k. One urn is chosen at random and 2 balls are drawn 
from it. Both turn out to be white. What is the probability that the jth urn was 
chosen. where j is a particular number berween 3 and n. 

Hint. Let Ej denote the event of selection of jth urn. j = 3. 4 ..... n and A 
denote the event of drawing of 2 white balls. then 

P(AIE-)=(i)(cl). P(E-)=! P(A)= i 1 (i..)(i=.!) 
J II 11-1 J II' • 1" II 11-1 

1= 

!( i )( cl ) 
P(EjIA)= _ II II 11-1 

i~.(~)(*)(!~~) 
_33. There are (N + I) identical urns marked O. I. 2 ..... N each of which 

contains N white and red balls: The kth urn contains k red and N - k white balls. 
(k = 0; I. 2 •... N). An-urn is chosen ~t random apd n ~d9m drawmgs of a ball are 
made f~m it, the ball drawn being replaced after each draw. H the balls drawn are 
all red. show that the probability that the next drawing will alsQ yield a r~ ball is 
approximately (n + I) (~ + 2) when N is large. 

34. A printing machine can print n letters. say al. al ..... a. . It is operated 
by electrical impulses. each 'etter being prodiJced by a different impulse. Assume 
that p is the constant probability of .printing the correct letter and :the impulses are 
independent. One of the n-impulses. chosen at random. was fed intO-the machine 
twice a..1l<1 both times the letter ai was printed. Compute the· probability that the 
impulse chosen was meannoprint al. [Delhi Univ. M,sc.(Stat.), 1981] 

Ans. (n_l)pl/(npl_2p+ I) , , 
35. Two playC'lS A and B- agree to conlest a match consisting-of a'Series of 

games. the_ match to-be won by the player who rust wins three games. with the 
provision that if the players win two gam~ each. the-match is to continue until it 
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is won by one player winning two games more than his opponent. The probabililty 
of A winning any given g~e is p,"and the games cannot be drawn . 

.(i) Prove thatf(p). the initial probability of A winning the match is given by: 
f(P) =p3 (4 - 5p + 2l)(1-7/H.'J,p2) 

,0;) Show that the equation f (p,).= p has five r~ roots, Qf whi~tt.' t~r~e are 
adrpissible values of p. Find these three· roots and explain their significance, 

[Civil Services (Mai.n), 1986] 
36. Two. players A and B start playins. a series of games with J.?s. a ;md b 

respective~y. The stake is Re. I on a game and no game can be drawn. If the 
probability pf A 'Yinning any game is a <;Ot:lstaQt p, find the initi~ proQapility of 
.his exhausting the funds of B or his own. Also show that if the resources of B 
ru:e ut:lHmited then 

(i) A is certain to be ruined if p = l,1 , and 
(ii) A has an even chance of escaping ruin if p = tl·/O + tl.)~ 
Hint. Let u" be the probability of A's final win when he has Rs~1,I. 
Thep u,. = pu,,,+1 + (1- p)Y,,-.i where Un = O· and· u,. H'= I 

u,.+1-u,.=r 1.=.£)(U,,-u,._I) 
,P . 

Hence u,.,+.1 - u,. = ( I; P J Ult by repeated applicatipn, 

so that 

Hence using u,. + b = I, u,. = [ 1 - ( 1 ; P ) 1 / [ 1 - ( 1 ; P )'. + b .J 

:. Initial probability of A's win is u. = .~: - (1 -' p ~ +. . pb 
P - (1- p) 

Probability".of A 's ruin = 1 _0u., . 
'For p = ta, u. = _0- -+ 0 as b -+ 00 and for p ~ l,1, u. = Ih 

0+ b 

if p = i '·/(1 + i '·) . " 
37. In a game of skill a plaYe&: has p~bability 1{3, 5/12 30<11/4 of scoring 0; 

l"~4 7. p'oints ~pectively at each trial, the game terminating on the first realization 
of a zero ·score at a trial. Asslillling that ·tIle trials are independent~ proye that the 
probability of the,player obtaining ,a total score of n' points is 

u,.=1..(1 J+.±.(_! J 
13 4 39"3 " 

Hint. Event can materialize in·the t'Yo'mutualiy exclusive ways;: 
m lit \he (n - I)th.trial, a score.Q! (n -·1).points"is·.obtained! and a-:score·of 1 

point is obtaine4 at the nth trial. .. 
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(ii) at the (n - 2)th trial, a scbre of (n - 2) points is '~btained and a score of 2 
points is oQtained at the last two trials, 

, 5 1 1 155 
Henceu" == 12Un-1 + 4'un-z whereuo=3" uI=3"}2=36 

( 3 1) 1 1 3( 1 ) Also U]I= 4 -3' U __ I +4 U_-z => u" +3' Un-I =4 U_-I +3' Un -2 

This equation can be solved as a homogeneous difference equation of second 
order with the initial conditions 

1 1 5 5 
Uo = :3' UI = 3' '}2 = 36 

38. The following weather forecasting is used by an amateur forecaster. Each 
day is classified as 'dry' or 'wet' and.the probability that any given day is same as 
the prec~ing one is assumed to beaconstantp, '(0 <p < 1). Based on past records, 
it is supposed that January 1 has a. probability ~. of being dry. Letting 

~_ = Probability that nth day'of the year is dry, obupn an ~~pressipn for ~n in 
terms of ~ and p, Also evaluate lim, ~_. 

Hint. ~_ = p.~n-I + (I-p)(1-~ __ IJ 
=> ~_ = (2p- D ~_-I + (I-p) ; n = 2,3,4, ... 
l'\ns. ~. = (2p - 1 r -I, (~ - Ill) + Ill; lim ~_ = . III 

11-+00 

39. Two urns cQntain respectively 'a white and b black' 'and 'b .white and a 
black' balls,. A series of drawings is made according to the following:rules: 

(i) Each time only one~ball is drawn and imm,ediately retufued to the same urn 
itcame from. 

(ii) If the ball drawn is white, the next drawing is' made from the first urn. 
(iii) If it is black, the next drawing is made from the second urn. 
(iv) The first ball drawn comes from the first-urn. 
What is the probability that nth ball drawn will be white? 
Hint. p, = P [Drawing a white ball at the rth drawJ. 

, a b· ) 
p, ,= ~bP.'-1 '+ --b'( I-p,,_1 a+" a+ " 

=> 
a-'b b " 

p, = ""i+iJ. P,-I + ~ + b 

AJ)s. -Pn = .1 + .!. ( a - ~ I 
2 2 .a+b '; 

40. If a coin is tossed repeatedly: shbw that the probability of gelling fir heads 
before n tails is : • I I 

" 

[Burdwan Univ. (Maths HODS.), 19911 
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QBJECTIVE TYPE QUESTIO~S 

I. Find out the com~ct answer from group Y for each item 'of group X~ 
Group X Group Y 

(a) At least one of the events A or B (i) a n B) u (A n B) u a n B) 
occurs. 

(~) Neither A nor B occurs. (ii) (A u B) - (A n B) 
(c) Exactly one of the events A or B (iii) 1\ c B 

occurs. (iv) B c A 
(d) If event A occurs"sodoesB. (v) [A - (A nB)] u [B - (A nB)] 
(e) Not more than one of the events A (vi) An B 

orB occur; (vii) 11_(AuB) 
(viii) AuB 

(ix) i - (A 'VB) 
U. Match the correCt expression of probabilities on the left: 

(ar P(cp),wherecp-isnullset (i) I....:P(A) 
(b) P (A I B) P (B) (ii) P (A n B) 
(c) pa) (iii) P(A)-f(AnB) 

(d) P(A'"'IB) (iv) 0 
(e) P(A-B) (v) I-P(A)-P(B)+P(Anp) 

(vi) P (A) + P (B) - P (A r't B) . 
"111. Given that A, B 'arid',C are mutuall), exclusive·events, explain why the 

following are',notpermissible assignments of-probabilities: 
(i) P (A).=,0·24, P (B) = ().4 and P (A' u C) = 0·1 
(ii) P (A) = 0·4, P (B) = 0·61 

(iii) P.(A)=0·6, P (-A nB)=.0·5 
IV. In each -of the following, indicate wHether events· A and B are : 

(i) independent, (ii) mutually...exclusive, (iii) dependent but not mutually ex­
clusive. 

(a) p.(l\nB) = 0 (b). P'(AoB) = 0·3, -P'(A) = 0·45 
(c) P (A ~ B) = ()'85, P (A) = 0·3, P (B) ;= 0·6 
(d) P(AuB) ='()·70, P(A) = 0·5, P(B) = 0·4 
(e) P(AuB) = ()'9C, P(t\IB) = 0·8, P(B) = 0·5. 

V. Give the correct label as ailS'"wp.r like a or'b 'etc., for the following 
questions: 

(i) The probability of drawing any Qne spade card froin a pack of.cards is 
·1 1 4" 1 

(a) 52 (b) 13 (c) 13 (d) '4 
(ii) TheJJrobability of drawing one'whfte'ball from a'bag.contairiing.6 red. 

8 black, 10 yellow and 1 green balls is 

(a) is (b) 0 (c) 1 (d) 24 
2S 
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(iii) A coin is tossed three .times in succession,. the number of sample points 
in sample space is 

(a) 6 (b) 8 (c) 3 
(iv) In the simultaneous tossing of two perfect coins, the probability- of 

having at least one head is 
(a) ! (b) ! (c)' 1 (d) 1 

2 4 4 
(v) In the simultaneous tossing of two perfect dice, the p'robabili~y' of 

obtaining 4 as the sum of the resultant faces is . 
4 1 3 2 

(a) 12 (b) '12 (c) 12 (d) 12 

(vi) A singlp.leu~r is selected at random from the word 'probability'. The 
probability that it is a vowel is 

3, 2 4 
(a)1l (b)1l (c) Il (d) 0 

(vii) An lD1l contains 9 balls, two of which are red, thre.e blue and four 
blaCK. Three balls are drawn at random. The chance that they are of the. same 
colour is 

(a)'~ (b) ~ (c)' ~ (d) :7 
(viii) A number is chosen ,at random among the first J20 natural numbers. 

The probability of the number chosen being a Multiple of 5 or 15.is ' 
1 1 1 

(a) 5 (b) '8 (c) 16 

(ix) If A -and B are mutually exclusive' events, then 
(a) P(AuB)=P(A).P(B) 
(b) P(AuB)=P(A)+P(B)" (c) P(AuB)=O. 

(x) If A and iJ are tWQ independent events,· ,th~ probabili~y~that both A 
and B occur is i and the probability that ~either of them occUrs is.~. The prob-

ability of the occurrence of Ai,s: 
1 1 

(a) 2' ,(b) 3 I 
VI. Fill in the blanks; 

1 
(d) :s' 

·(i) Two events are $lid·to be equally likely if .... .. 
(ii) A set of even~ is said to be independent if ..... . 

(iii) If P(A) .. P(B). P(C) = f(A nB nC). then the, events A, B,.C are ..... . 
(iv) Two events·A 'and B are mutually exclusive if P (1\ n,B) = '" and are 

independent if P (A n B) = '" . 
(v) The probability of getting a multiple of 2 in a throw of a dice is 1/2 and 

of getting a multiple of 3 is 1{3. Hence probability of getti,ng a multiple of 2 or 3 
is ...... 

(vi) Let A and B be independent events and suppose the evtrpt C has prob-
ability 0 or 1. Then A, Band Care ...... events. .. 

(vii) If A, B, C are papwise independent and A is independent of B u C. 
then A, B, C are ...... independent. 
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(viii) A man has tossed 2 fairdiee. The conditional probability that he has 
tossed two sixes, given tha~ he has tossed at least one six is ..... . 

(ix) Let A and B be two events such that P (A) =·0·3 and P (A v B) = 0·8. 
If A and; B are independent events then P (B) = '" ' 

VII. Each of following statements is either true or false. If it is true prove-it, 
otherwise, give a counter example to show that it is false. 

OJ The probability of occurrence of at least one Qf two events ,is the sum 
of the probability of each of the two events. 

(ii) Mutually exclusive events are independent. 
(iii) For any two events A and B, P (A ("\ B) cannot be less than either P (A) 

or P (B). 
(iv) The conditional probability of A given B is always. grea~r than P (A). 
(v) If the occurrence of an even\A implies the occurr~nce of another event 

B then P (A) cannot exceed P (B). 
(vi) For any two events A andB, P(AvB) cannot-be greater theneither 

P (A) or P (B). 
(vii) Mutually exclusive events are not independent. 
(viii) Pairwise independence·does not necessarily imply mutual independ­

ence. 
, (ix) Let A and B ~ events neither of Whic~. hils prObability zero. Then if A 

and iJ are disjoint, A and B are independent. " 
(x) The probability of any event is always a proper fraction. 

(xi) If 0 < P (B) < I So that P (t\ l.fl) and ,P (A Iii) ar~ bQth defined, then 
P (A) = P (B) P (A I B) + P (Ii) P (A Iii). 

(xii) For.two events A and B if 
P (A)=P'(A IB) =·1/4 andP (A I B)' = 112;, then 
(a) A and B are muwally exclusive. 

-(b) A and B are independent. 
(c) A is a sub-event of B. 
(d) P (A IB) = 3/4. l[Delhi Univ~ B.Sc.(Sta~ Hans.), 1991] 

(xiii) Two eventS can be independent and mutually excliJSive simultaneously, 
(xiv) Let A and B be even~, neither of which has p(Obal>ility zero. Prove or 

disprove the following: 
(a) If A llnd B are diSjoint, A ,and.fl are independent. 
(b) If A and B are indepeodent3 A and B ,are disjoint 

(xv) If P (A) = 0, then A. =~. 

• 



CHAPTER FIVE 
" 

Random Variables - Distribution Functions 
5·1. Random Variable. Intuitively by a random variable (r.v) we mean a 

real number X connected with the outcome of a random experiment E. For 
example, if E consists of two tosses of a coin, we may consider the random varilble 
which is the number of heads ( 0, 1 or 2). . 

Outcome: HII liT Til IT 
Value 0/ X : 2 I 1 

,(01 
o 

Thus to each outcome 0> , there corresponds a real number X (0)). Since the 
points of the sample space S correspond to outcomes, this means that a real number , 
which we denote by X (0)), is defined for each 0> E S. From this standpoint, we 
define random variable to be a real function on S as follows: 

.. Let S be the sample space associated with a given random experiment. A 
real-valued/unction defined on S and taking values in R (- 00 ,00 ) is called a 
olle-dimensional random variable. If the/unction values are ordered pairs o/real 
numbers (i.e., vectors in two-space) the/unction is said to be a two- dimensional 
random variable. More generally, an n-dimensional random variable is simply a 
function whose domain is S and whose range is a collection 0/ n-tuples 0/ real 
numbers (vectors in n- space)." 

For a mathematical and rigorous definition of the random variable, let us 
consider the probability space, the triplet (S, B, P), ~here S is the sample space, 
viz., space of outcomes, B is the G-field of subsets in S, and P is a probability 
function on B. 

Def. A random variable (r.v.Y is a function X (0)) with domain S and range 
( __ ,00) such that for every real number a, the event [00: X (00) S; a] E B. 

Remarks: 1. The refinement above is the same as saying that the function 
X (00) is measurable real function on (S, B). 

2. We shall need·'to make probability statements about"a'random variable X 
such as P {X S; a}. For the simple example given above we sbould write 
p (X S; 1) = P {HH, liT, TH}.= 3/4. That i's, P(X S; a) is simply 'the probability 
pfth~ set of outcomes 00 for which X (00) S; a or' 

p (X S; a) = P { 00: X (oo)S; a) 
Since Pis a measure on (S,B) i.e., P is defined on subsetsofB, theabovepro~bility 
will be defined only if [ o>:X (OO)S;~) E B, which implies thatX(oo) is a measurable 
function on (S,B). 

3. One-dimensional random variables will be denoted by capit8I leuers. 
X,y,z, ... etc. A typical outcome of the experiment (i.e., a typical clement of the" 
sample space) will be denoted by 0> or e. Thus X (00) represents the real number 
which the rand<,>m variable X associates wi~ the outcome 00. The values whict 
X, y, Z, ... etc., can assume are denoted by lower case letters viz., x, y, z, .:. etc. 
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4. Notalions.-If X is a-real number, the set of all <0 in S s!lch that X( <0 ) = x is 
denoted briefly by writing X = x. Thus 

Similarly 
and 

P (X =x) = p{<o: X (<0) =x.} 

P (X ~ al= p{<o: X (<0) E l- 00, a]} 
P>[a < X ~ b) = P ( <0 : X ( (0) E (a,b] ) 

Analogous meanings are given to 

P ( X = a or X= b ) = P { (X = a ) u ( X = b ) } , 

P ( X = a and X = b ) = P { ( X== a ) n (X = b )}, etc. 

Illustrations: 1. If a coin is tossed. then 

S = { <01, (Jh} where <01 = It, (Jh::; T 

X(<o)= {I, ~f <0 = N 
_ 0, If <0 == T 

X (<oj is a Bernoulli random variable. Here X (<o).takes only two values. A random 
variable which takes only a finite number of values is called single. 

2. An experiment consists of rolling a die and reading the number of points 
on the upturned face. The most natural random variable X to cunsider is 

X(<o) = <0; <0 =1, 2, ... ,6 

'. If we are interested in whether the number of point,s is even or odd, we consider 
a random. variable Y defined as follows: 

y ( <0 ) = {O, ~f <0 ~s even 
1, if <0 IS odd 

3. If a dart is thrown at a circular target. the sample space S is the set of all 
points w <.'n the target. By imagining a coordinate system placed on the target with 
the origin at the centre, we can assign various random variables to this experiment. 
A natural one is the two dimensional random variable which ~signs to the point 
<0, its rectangular coordinates (x,y). Another is that which assigns <0 its polar 
coordinates (r, a ). A one dimensional random variable assigns to each <0 only one 
of the coordlnatesxory (for cartesian system), rora (for polar system). Theevent 
E, "that the dart will land in the first qUadrant" can be described by a. random 
variable which a<;signs to each point'W its polar coordinate a so that X (<0) = a and 
then E = {<o : ° ~ X (<0) ~ 1t12}. ' 

4. Ifa pair of fair dice is tossed then S= {1,2,3,4,5,6}x'{1,2,3,4,5,6} and 
n (S) = 36. Let X be a random variable with image set ' 

XeS) = (I ,2,3,4,5,6) 

P(X= 1)=P{I,I} = 1/36 

P(X = 2) = P{(2,1),(2,2),(l,2)} = 3/36 

P(X = 3) = P{(3,1).(3,2),(3,3),(2,3).(l,3)} = 5/36 
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P (X = 4) = P (4, I), (4,2), (4,3), (4,4), (3,4), (2,4), (1,4) J = 7/36 

Similarly. P(X = 5) = 9/36 and P (X = 6) = 11/36 

Some theorems ()~ Random Variables. Here we shall stale (withoUt proof) 
some of the fundamental results and theorems on random variables. ' 

Theorem 5·1. A function X(oo) from S to R (- 00 , 00) is a random variable if 
and only if 

{oo:X(oo)<a] E B 

Theorem 5·2. If XI and Xl are-rdndom yariables and C is'a constant then 
CXI , XI + Xl, XIXl are also random variables. 

Remark. It will follow that CIXI + C1Xl is a random vari~ble for constants 
CI and Cl . In particular XI - Xl is a r.v. . ~ 

Theorem 5·3. If {X. «(J), n ~ 1] arc random variabl~s then 
sup X. (00), in[ X. (00), lim sup X. (00) and lim in[ X. (00) are·all ran-

/I /I 

dom va: iables, whenever-they are finite for all 00. 

Theorem 54. If X is a random variable then 

(i) ~ where ( ~ )< (0) = 00 if X (00) = 0 

(U) X + ( (0) = max [0, X ( 00 ) ] 

(iii) X - ( (0) = - min [0, X ( 00 ) ] 

Ov) I X I 
are random variables. 

Theorem 5·5. If Xl and X2 are random variaQles then 
(i) max [XI. X2 1 and (li) min [XI. X1 1 are also random variables. 

Theorem 5·6. If X is a r.v. andf(·) is a continuous fun~tioJl, then 
[(X) is a r.v. 

Theorem 5·7. If X is. a r.v. and f(.) is an increasing function, then 
[(X) is a r.v. 

Corollary. If [is a function of bounded variations on every finite interval 
[a,b], hIld X is a r.v. then [(X) is a r.v. 

(proofs o[ the above theorems are beyond the scope of this book) 

EXERCISE 5 (a) 

1. Let X be a one dimensional random variable. 0) If a< b, show that the 
two events a < X ~ b and X ~ a are disjoint, (U) Determine"the union of the two 
events in part (i), (iii) show that P ( a < X ~ b) = P( X ~ b") - P( X ~ a). 

2. Let a sample space S consist of three elements 001 , roz, and ro,. Let 
P(OOI) = 1/4, P(roz) = l/'2.and P(0)3) = 1/4. If X is a random variable defined' on 
S by X (001) = 10, X (001) = :-03, X (0)3) =15, find P ( - 2 ~ X ~ 2). 
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3. Let S:::: (e\, e2, ••. , en) be the sample space of some experiment and let 
E ~ S be some event aSsociated with the experiment. 

Define'l'E, the characteristic random variable of E as follows: 

() { I if eo E E­
'l'E ei = 0 if ei Ii!: E . 

In other words, 'l'E is equal to 1 if E occurs, and 'l'E is equal to 0 if ~ does not 
occur. 

Verify the following properties of characteristic random .variables: 
(i) '1'" is identically zero , i.e., '1'" (ed = 0; i = 1,2, ... , n 
(ii) 'l's is identically one , i.e., 'l's (ei ) = 1 ; i = 1,2, ... ,n 

(iii) e = F ~ 'I'd ed = 'l'F (ed ; i ~ l. 2, ... ,n and conversely 
(iv) If E ~ F then 'I'd ed s. 'l'F (ei); i = 1,2, ... ,n 
(v) 'l'E ( ei ) + 'l'E ( ei) is identically 1 : i = 1,2, .... , n 

(vi) 'l'E /"'IF ( ed '=' 'I'd ed 'l'F ( ed; i ='1~ 2, ... , n 
(ViirWEVF ( ei) = 'l'E (ei) + 'l'F ( ei) - 'l'E (ei ) 'l'F (ei), for i = 1, 2, ... , n. 
S.2. Distribution Function. Let X be a r.v. on (S,B"P). Then the function: 

Fx(x)=P(XS.x)=P{ro:X(Cll)S. x}, - oo<x<oo 
is called the distribution function (d,f.) of X. 

If clarity permits, we may writeF(x) instead of Fx (x). . .. (5·1) 
~·2·1. Properties of Distribution Function. We now proceed to derive a 

number of properties common to all distribution functions. 
Property 1. IfF is the df. of the r.v. X and if a < b, then 

P(a<XS.b)= F(b)- F(a) 

Proof. The events I a<Xs. b' and 'X S. a' are disj(,i~t and their union is the event 
'X~ b' . Hence by addition theorem of probability 

P(a<Xs. b)+ P(Xs. a)= P(XS. b) 

~ P ( a < X S. b ) = P ( X S. b ) - P ( X S. a ) = F ( b ) - F ( a ) ... (5·2) 

Cor.!. 

P(aS.XS.b)=P{(X= a)v. (a<X;S;b)} 

=P(X= a)+ f(a<XS.b) 

(using additive property of P) 

= P ( X = a ) + [F ( b ) - F ( a ) ] ... (5·2 a) 
Simil~ly, we get I 

P(a<X<:b) =.P(a<Xs. b)-P(X=b) 

=F(b)- F(a)- P(X= b) ... (5·2 b) 

P(aS. X<b)~ P(a<X<b)+ P(X=a) 
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= F ( b) - F (a) - P (X:::: b) + P (X:::: a) ... (5·2 c) 

Remark:. When P (X = a) = 0 and P(X = b) = 0, all four events a~ X ~ b. 
a < X < b, ~ X < b and a < X ~ b have the same probability F(b) - F(a). 

Property 2. If F is the df. of one-dimensional r.v. X, then 
(i) 0 ~ F (x) ~ 1, (it) F (x) ~ F (y) if x < y. 

In other words, all disttibution functions are monotonically non-decreas.ing 
and lie between 0 and 1. 

Proof. Using the axioms of certainty and non-negativity for the probability 
function P, part (i) follows uiviality from the defiqition of F (x). 

For part (ii), we have for x < y, 

F(y)-F(x)=P(x<X~'y)~ 0 (Property I) 

~ F (y) ~ 'F(x) 

~ F (x) ~ F(y) when x < y ... (5·3) 
Property 3. IfF is df. of one-dimensional r. v. X, then 

F!-oo)= lim F(x)= 0 
.1:-+-00 

and F(oo)= lim F(x)= 1 

Proof. Let us express the whole sample space S as a countable union of 
disjoint events as follows: 

00 00 

S = r u. (- n < X ~ - n + I ) ] u [ u ' '( n'< X ~ n + I )] 
n=) n=O 

00 00 

~ P(S)= L P(-n<X~ -n+I)+ L 'P(n<X~ ri+l) 
n-= ) n=O 

( '.' P is additive) 
a 

I = lim L [F ( - n + I ) - F ( - n) ] 
a-+oo n=1 

b 

+ lim L [F(n+I)-F(n)] 
b-+oo n=O, 

= lim [F(O)-F(-a)l+ lim· [F(b+l.)- F(O)] 
a-+oo b-+oo 

= LF ( 0 ) - F ( - 00 ) ] + .[ F ( 00 ) - F ( 0 ) ] 
1= F(oo)- F(-oo) 

Since -00<00, F.( -00) ~ F (00). Also 
F ( - 00 ) ~'O and F ( 00 ) ~ 1 ( Property 2 ) 
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.. O~F(-oo)~F(oo)~J 

(*)and(**)giveF(-oo)= 0 and F(oo)= 1. 

and 

Remarks. 1. Discontinuities of F(x) are at most countable. 
2. F(a)- F(a- 0)= liin P(a-h~ X~ a). h> 0 

=> 

II -+0 ' 

F(a)- F(a- 0)= P(X= a) 
F ( a + 0) - F ( a ) = lim P ( a ~ X ~ a+ h) = 0.' h > 0 

11-+0 

oF ( a + 0') = F ( a ) 
5·3. Discrete Random Variable. If a randorit,variable takes at most a 

countable nomber of values, it is called a discrete random variable. In other 
'words, a real valued/unction defmed on a discrete sample space is called a discrete 
rando~ variable. 

S:)' f. Probability Mass Function (and probability distributiqn 0/ a 
discrete random variable). . -

Suppose X is a one-dimensional discrete random variable taking at most a 
countably infinite number of values Xl> X2, '" With each possible outcome Xi , 

, we aSsociate a number Pi = P ( X = Xi ) = p ( Xi ). called the probability of Xi. The 
numbers p (Xi); i:; 1,2,.,.. must satisfy the following conditions: 

(i) p ( xd ~ 0 Vi, (it) 1: p ( xd = 1 
. i= 1 

This function p'is called the probability mass function of tl)e random variable 
X and the set (Xi, p (Xi) ) is called the probability distribution (p.d.) of the r.v. X. 

Remarks: 1. The set ~f values which X takes is called the spectrum of the 
random variable. 

2. For discrete random- variable, a knowledge of the probability mass 
iunction enables us to compute probabilities of arbitrary events. In fact, if E is a 
set of real numbers, we have 

P ( X E E) = 1: p' (x), where S is the sample space. 
xe EnS 

Illustration. Toss of coin, S = {H.T}. Let X be the random variable 
liefined by 

X (" Ji) = I, i.e., X = I, if 'Head' occurs. 
X ( T) = 0, i.e., X = 0, if 'Tail' occurs. 

If the coin is 'fair' the probability fUl\ction is giv~n by 
P( {H} )=P( {T} )=1 

and we can speak. of the probabilitY,distribution of the random variable X as 
P(X= I)=P( {H} )=1 ' 

P(X=O)=P( (T) ~=1 ' 
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5-3-2. Discrete Distribution Function. In this case there Ufc a 

countable number or points Xl. X2, Xlt • . j. <!fld numbers p. ~ O. E p. = I such 
1 

that F (X ) = E Pi. For example if Xi is just the il1teger t, F (x) is a 
(i: x. $ x) 

"step function" having jump Pi at i, and being constant between caeii' pair of 
integers. 

F()() 

Theorem5·5. p(Xj)= P(X= Xj)= F(x,)- F(.t.J-I), whereFisthed/. 
ofX. 

and 

Proof. Let XI < X2 < ... We have 
F(xj)= P(XSXj) 

j j 

= L P (X = ;t;) =. L P ( Xi') 

l= 1 i= \ 
J -\ 

F(Xj_ 1)= P(X~Xj_I)= ! P(Xi) 

i= 1 

.. F(Xj)- "(Xj_ 1)= p(x,) ... (5·5) 
Thus, given the distribution function of discrete random variable. we can 

compute its probability mass function. . 
Example 5·1. An-experiment consists of three independent tosses of a fair 

coin. Let 
X = The number of heads 
Y = The number of head runs, 
Z = The lenght of head runs, -

a head run being defined as consecutive occurrence of at least two heads, its length 
then being the number of heads occurring together in three tosses of the coin. 

Find the probabilityfunction of (i)X. (if) Y. (iii) Z, (iv) X +Y and (v) XY and 
construct probability tables and draw their probability charts. 
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Solution.· 

Table 1 

S.No. . Elementary Random Variables 

event 

X y Z X+Y XY 
1 HHH 3 1 3 4 3 
2 HHT 2 1 2 3 2 
3 HTH 2 0 0 2 0 
4 HIT 1 0 0 1 0 
-5 THH 2 1 2 3 2 
6 THT 1 0 0 1 0 
7 ITH 1 O· 0 1 0 
8 ITT 0 0 0 0 0 

l{ere sample space is . 
S = {HHH, HHT, HTH, HIT, THII, TilT, ITH, ITT} 

(i) Ol)vio~ly ~ is ar.v. which-can take the values 0, 1, 2, and 3 

p (3) = P (HHH) == (1f2)3 '"' 1/8 
p(2)=P [fIHT uHTHu THH] 

=p (HHT ) + 'p (ilTH) + P (THII) = 1/8 + 1/8 +1/8 = 3/8 

Similarly p (1) = 3/8 and p (0) = 1/8. 

These probabilities could alsO be obtained directly from the above table i. 

Table 2 

Probability table or X 

Values of X 
0 1 

(x) 

p(x) 1/8 3/8 

2 3 

3/8 1/8 
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Table 3 

(ii) Probability Table or Y 

Values of Y, o I 
(y) 

p(y) 5/8 3/8 

This is obvious from table 1. 
(iii) From table 1 , we have 

Table 4 

Probability Table or 

ValuesofZ, 
0 1 2 

(z) 

p(z) 5/8 0 2/8 

3 

1/8 

PeY) 

'518 
4(8 

318 
218 

'/8 
O .. --,.f-----'y 

P(z). Probability chart of Y 

518 

4/8 

3/8 

218 
1/8 If 

1 2 3 Z 
Pro.bability chart of Z 

5·9 

(ivl Let U = X + Y. 
p(u) 

From table I, we get 5/8 

Table 5 

Probability Table or U 

Values of U, o 1 234 
(u) 

p(u) 1/83/8 1/8 2/8 lIS 

(v) Let V=XY 

Table 6 

Probability Table or V 

Values of V; o 1 2 
(v) 

3 

p(v) 5/8 0 2/8 1/8 

418 
.318 

2/8 

1(8 
O~~,~~~--~--u~ 

Probability chan of U = X + Y 
p(lI') 

5/6 
4/8 
3/8 

o 1 2 3 t· 
Probability chart of V = XY 
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Example 5·2. A 'random variable X has the follqwing probability 
distributiofl : 

x: 0 1 2 3 4 5 ·6 7 
p (x) : 0 k 2k 2k 3k k2 2k2 7 k2 + k 

(i) Find k, (ii) Evaluate P (X < 6), P (X ~ 6), and P ( 0 < X < 5), (iii) If 

P (X $ c) > t,find the minimum value of c, and (iv) Determine the distribution 

function of X. [Madurai Univ. B.Sc., Oct. 1988] 
7 

Solution. Since L p (x) = I, .we have 
x=o 

~ k + 2k + 2k + 3k + k2 + 2k2 + 7 k2 + k = l 
~ 10k2 + 9k - 1 = 0 
~ ( 10k - J) (k + I) = 0 ~ k = JlIO 

[.: k = -I, is rejected, since probabili~y canot be negative.] 

(ii) P (X < 6) = P (X = 0 ) + P (X = J) + ... + P (X = 5) 
1 2 2 3 I 81 

= 10 + 10 + 10 + 10 + 100 = '100 

19 
P (X ~ 6) = I - P (X < 6) = 100 

P (0 < X < 5) = P (X:: 1) + P (X = 2) + P (X = 3) + P (X = 4) ,,; 8e= 4/5 

(iii) P (X $ c) > i. By trial, we get c = 4. 

(iv) X Fx (x) = P (X$x) 

o 0 
1 k = 111 () 
2 3k = 3110 
3 5k = 5/10 
4 8k = 4/5 
5 8k + k2 = 81/100 
6 8k + 3k2 = 831100 
7 9k + IOk2 = 1 

EXERCISE 5 (b) 

1. «(I) A student is to match three historical events (Mahatma Gandhi's 
Birthday, India's freedom, and First World War) with three years·(I.947, 1914, 
1896). If he guesses with no knowledge of 'the correct answers, what is the 
probability distribution of the number of answers he gets corre~tly ? 

(b)' From a lot of ·10 items containing 3 defectives, a s{lmple of 4 items is 
drawn at random. Let the random variable X de.note the number of defective items 
in the sample. Answer the following when the sample is drawn without 
replacement. 
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(i) Find the probability distribution of X. 

(ii) Find P (X !'> 1), P (X < 1) and P (0 < i < 2) 

Ans. (a) x 0 1 2". 3 

p(x) 1 .! 0 .! 
3 2 6 

(b) (i) _x_+-0_l----:2,.--3_ 
1 1 3 1 

p(x) "6"2 10 30 

(ii) 2/3, 5/6. 1/2 

2. (a) A random variable X can take all non· negative integral values, and the 

probability that X takes the value r is' proportional to ar ( 0 < a < 1 ). Find 
P (X = 0). [Calcutta Univ. B.Sc.1987] 

I . 

Ans. P (X = r) = A a' ; r = 0, 1, 2, .... ; A = 1 - a ; P (X = 0) = A = 1 - a 
(b) ~upposc that the mndom variable X has possible values 1,2,3, ... and 

P ( X = j) = 1/2 J , j = 1,2\... (i) Compute P ( X "is even), (ii) Cq,npute 
P (?C ~ 5) ,and (iii) Compute P (X is divisible by 3). 

ADS. (i) 1/3, (ii) 1/]6, and (iii) In 
3. (a) Let X be a random variable such that 

P(X= -2):::: P(X= -1), P(X= 2)= P(X= 1) and 

P(X> 0):::: P(X< 0)= P(X= 0). 

Oblain the probability ma~s function of X and its distribution function. 
ADS. X -2 -1 0 1 

1 1 1 1 - - - -
6 6 3 6 

p(x) 

124 5 - - - -
6 6 6 6 

F(x) 

2 
1 
6 

'(b) A.random variable X assumes the values -3, -2, -1,0, 1,~, 3 s\lch that 

P(X= -3)= r(x= -2)= P(X= -1), 

P(X= 1)= P(X= 2)= P(X= 3), 

and P ( 'J( = 0) = P ( X > 0) = P ( X < 0), 

Obtain the probability mass fUnction of X and 'its distribution function, and find 

further the probability mass function of Y = 2X 2 + 3X + 4. 

Ans. 

p(x) 

Y 

pry) 

-3 
1 

9 
13 
1 
9 

-2 
1 
9 
6 
1 
9 

-1 
1 
9 
3 
1 
9 

[Poona Univ. B:Sc., March 1991] 
o 1 2 3 
1 1 1 1 - - - -
3 9 9 9 
4 9 18 31 
1 1 1 1 - - - -
3 9 9 9 
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4. (a) A random variable X has the following probability function: 
Valuesof X.x : .... 2 -1 0 1 2 

p(x) .' 0·] k 0·2 2k 0·3 
(i) Find the value of k. and calculate mean and variance. 

. (ii) Construct the c.d.f. F(X) and draw its graph. 
Ans. (i) 0·1,0·8 and 2·-16, (ii) F (X) = 0·1,0·2,0·4,0·6,0·9, 1·0 
(b) Given the probability function 

~ 0 1 2 3 

3 
k 

p(~) I 0·1 0·3 0·5 0·1 

Let Y = X 2 + 2X , then find (i) the probability function of Y, (ii) mean and 
variance of Y. 

Ans. (i) y 0 3 8 15 

p(y) 0·1 0·3 0·5 0·1 
(ii) 6·4 ,16·24 

5. A random variable X has the following probability distribution: 
Values of X, x 0 1 2 3 4 .5 6. 7 8 

p{x) a 3~ 5a 7a 9a 11a 13a 15a 17a 
(i) Determine the value of a. 
(ii)FindP(X< 3),P(X~ 3),P(O< X< 5). 
(iii) What is the smallest value of x for which P (X ~ x) > 0·5? and 
(iv) Find out the distribution function of X ? 

Ans. (i) a = 1/81, (ii) 9/81, 12/81,24/81, (iii) 6 
(iv) x 0 1 2 3 4 5 6 7 l8 

F(x) a 4a 9a 160 2Sa 360 49a 64a 81a 

6. (a) Let p (x) be the probability function of a discrete random 
variable X which assumes the values XI , X2', x, ,X. , such that 2 p (XI) = 3 p (x~ 
= p (x,) = 5 p (x.). Find probability distribution and cumulative probability dis-
tribution of X. (Sardar Patel Univ. B.Sc. !987) 

Ans. 
X XI ~2 x, X. 

P (x) 1~6 1'¥l6 3Q16 416 

(b) The following is the distributiQll function of a discrete random 
variable X : 

x -~ -1 0 1 2 3 5 

f(x) 0·10 0·30 045 0·5 0·75 0·90 0·95 

(i) Find the probability distribution ofX. 
(ii) Find P (X is even) and P ( 1 ~ X ~ 8). 
(iii) Find P ( X = - 3 I X < 0) and P ( X ~ 3 I X > 0). 
[Ans. (ii) 0·30, 0·55, (iii) 1/3, 5/11]. 

8 
1'()() 
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7. If 
x 

p(x)= 15; x= 1,2,3,4,5 

= 0, elsewhere 

Find(i)P{X=lor2), and (ii)P{t< X< ~I ~> I} 

5·13 

[Allahabad Univ. B.sc., April 19921 

Hint. (i) P { X = 1 or 2 l:: P ( X = 1) + P ( X = 2) = _1 + ~ = .! 
f . 15 15. 5 

p{(..!.<X < ~~n X> f} 
(ii) P {-21 < X < ~21 X> I} ~ l2 2 ) 

P(X> I) 

P (X = 2) ~15 _.! 
--l-P(X=l) 1-(Vls)-7 

P { (X = 1 or ~) n X> I; 
= P (X> I) 

8. The probability mass function of a random variable X is zero 
except at the points i = O. 1,2. At these points it has the values p (0) :: 3c3, 

p(I)=4c-IOc1 al!dp(2)=5c-1 forsomec>O. ~ 
(i) Determine the value of c. 

(ii) Compute the follow!ng probabilities, P (X < 2) and P (1 < X S 2). 
(iii) Describe the distribution function and draw its graph. 
(iv) Find the largest x such thatF (x) < ¥2. 
(v) Find the smallest x such thatF (x) ~~. [Poona Univ. B.Sc., 1987) 

Ans. (i)1. (i.!~J,~, (iv) I, (v) 1. 

9. (a) Suppose that the random variable}( assumes three values 0,1 and 2 
with probabilities t, ~ and ~ respectively. Obtain_the distribution function of 

X.. [Gujarat Univ. B.Sc., 1992] 

(b) Given that f (x) = k (112t is a probability distribution for a random 
variable which can take on the values x = 0, I, 2, 3,4, 5, 6, find k and find an 
expression for the corresponding cumulative probabilities F (x). 

[Nagpur Univ. B.sc., 1987) 
5·4. Continuous Random Variable. A random variable X is said to be 

continuous if,it can take !ill possible values between certain limits. I n other wor.ds. 
a random variable is said to be continuous when its different values cannot be put 
in 1-1 correspondence with a set o!positive integers. 

A continuous random variable;: is a random variable that (at least concep­
tually) can be measured to any desired degree of accuracy. Examples of continuous 
random variables are age, height, weight etc. 

5'4·1. Probabiltty Density Function (Concept and Definition). Consider the 
small interval (x, x + dx) of length dx round the pointx. Let! (x) be any continuous 
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function of x so that / (x) dt represents the probability that X falls in the in­
finitesimal interval (x, x + dt). Symbolically 

P (x:5 X :5 x + dt) = /x (x) dt ... (5·5) 
In the figure,f ( x ) dt represents 

the area bounded by the curve r ~\'" 
~ 

Y = /(x), x-axis and the ordinates at 
the points x and ~ + dt . The func­
tion /x (x) so defined is known as 
probability density/unction or simply 
density function 0/ random variable 
X and is usually abbreviated as 2 

p.d/. The expression,f (x) dt , usually written as dF (x), is known as the prob: 
ability differential and the curve y = / ( x) is known as the probability density 
curve or simply probability curve. 

Definition. p.d.f./x (x) of the r.y. X is defined as: 

jj ( ) _ I' P (x:5 X:5 x + 5 x) (55 ) 
xX-1m 0 ... ·a 

Sx--. 0 x 

, The probability for a variate value to lie in the interval dt is /(x) dt and hence 
the probability for a variate value to fall in the finite interval [0. , ~] is: 

P(o.:5X:5~)= J~ /(x)dt ... (5:5 b) 

which represents the area between the curve y = / (~), x-<\xis and the ordinates at 

x = 0. and x =~. Further since total probability is unity, we have Jb / (x) dx = 1, 
a 

where [a, b ] is the range of the r~dom variableX . The range of the variab.le may 
be finite or infmite. 

The probability density function (p.d/.) of a random variable (r. v. ) X 
usually denoted by/x (x) or simply by / (x) has the following obvious properties 

(i) /(x) ~ 0, - 00 < x < 00 

(tid 00 f(x) dt = 1 
-00 

(iii) The probability P (E) given by 

P(E)= J/(x)dt 
E 

is well defined for any event E. 

... (5·5 c) 

... (5·5 (/) 

... (5·5 e) 

Important Remark. In case of discrete random yariable., the probability ata 
point, i.e., P (x = c) is not zero for some fixed c. However, in case of continuous 
random variables the probability at a point is always zero, Le., P (x = c) = 0 for 
all possible values of c. This follows directly from (5·5 b) by taking 0. = ~ = c. 



. 
Ramdom Variables· Distrillution Functions 5-lS 

This also agrees with our discussion earlier that P ( E ) = ° does not imply that 
the event E is null or impossible event. This property of continuous r.v., viz., 

-
P(X= c)= 0, V c ... (5·5!> 

leads us to the following important result : 
p (0. 5 X ~ ~) = P (0. ~ X < ~) = P (0. < X ~ ~) = P (0. < X < ~) ... (5·5 g) 
i.e., in case of continuous r.v., it does matter whether we include the end points of 
the interval from 0. to ~. 

However, this result is in general not true for discrete random variables. 
542. Various Measures of Central Tendency, Dispersion, Skewness, and 

Kurtosis for Continuous Probability Distribution. The formulae for these 
measures in case of discrete frequency distribqtion can be easily extended to the 
case of continuous probability distribution by simply replacing Pi = f;IN by 
f (x) dx, Xi by x and the summation over' i' by integration over the spedfied range 
of the variable X. 

Letfx (x) or f(x) be the p.d! of a random variable X where X is defined 
from a to b. Then 

(i) Arithmetic mean = Jb x f(x) dx 
. a 

(ii) Harmonic mean. Harmonic mean H is given by 

~ = J: (~ ) f (x) dx 

(iii) Geometric mean. Geometric mean G is given by 

log G =.J: 199 xf(x) dx 

(iv) ~' (about origin) = Jb x f(x) dx 
a 

~' (aboutthe point! = A) = Jb (x - A)' f(x) dx 
a 

and ~ (about mean) = Jb (x - mean)' f(x).dx 
a 

In particular, from (5·7), we have 

Ill; (about origin) = Mean = Jb x f(xj dx· a I 

and 1l2' == Jb ;. if (x) dx 
a 

... (5·6) 

... (5·6 a) 

... (5·6 b) 

... (5·7) 

... (5·7 a) 

... (5·7 b) 

Hence 112 = Ilz' - 1l1,2 = J: x2 t.~) dx - (I: xf(x) dx J. ... (5,: c~ 
From (5·7), on putting r=3 and 41 respectively, we get the values of 

Jl{ and \.4' a~d consequently the mo~ents about mean call be obtained by using 
the relations : 
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and J.13 = Jl,' - 3Jli' Jll' + 2~ll'3 } 

~ = ~' - 4113' Il( + 6!lz' IlI'z - 311114 
... (5·7 d) 

and hence PI and pz can be computed. 
M Median. Median is the point which divides the entire distribution in two 

equal parts. In case of continuous distribution, median is the point which divides 
the total area into two equal parts. Thuc: if M is the median, then 

Thus solving 

I~f(X)dx= f!f(x)dx=t 

J'M 1 Ib 1 a f (x) dx = 2. or M f (x) dx = 2. 
for M, we get the value of median. 

'" (5·8) 

... (5·8 a) 

(vi) Mean Deviation. Mean deviation about the mean Ill' is given by 

M.D. = fba I x- mean I f(x) dx ... (5,9) 
(vii) Quartiles and Deciles. QI and Q3 are given by the equations 

fQI f (x) dx = 1. and fQ3 f (x) dx = 2. 
a 4 a 4 ••. (5·10) 

D;, i th decile is given by 

JV; f(x) dx= ...L 
a 10 ... (5·10 a) 

(viii) Mode. Mode is the value of x for whichf (x) is maximum. Mode is thus 
the solution of 

f'(x) = 0 and f"(x) < 0 ... (5·11) 
provided it lies in [a,b]. 

Example 5·3. The diameter of an electric cable; say X, is assumed to be a 
continuous random variable with p.df. f ( x ) = 6x ( 1 - x), 0 ~ x ~ 1. 

(i) Check that above is p.d/., 
(ii) Determine a nwnber b such that P (X < b) = P (X> b) 

[Aligarh Univ. B.Sc. {Hons). 1990) 
Solution. Obviously, for 0 ~ x ~ 1./( x ) ~ 0 

Now f6 f (x) dx = 6 f6 x V - x) dx 

= 6 f1 (x - .?) dx = 61 x2 
_ x311 = I o . 1 2 3 0 

Hence f (x) is the p.d/. of r. v. X 

(ii) P(X<b)=P(X>b.) ... (*) 
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~ I~ f(x) dK= I! f(x) dx 

~ 6 f~ X (1 - x) dK = 6 f! x (1 - x) dx 

I~-~I~= I~-~I~ 
~ [~ -~ )=[( ~-3 }-(~ -~)] 
~ 3b1 - 2b' = [ 1 - 3bz + 2b' ] 

~ 4b' - 6 b1 + 1 = 0 

(2b - 1 )(2b1 - 2b - 1) = 0 

~ 2b - 1 = 0 or 2b1 - 2b - .. = 0 

Hence b = 112 is the only real value lying between 0 and 1 and satisfying (*). 
~:xample 5·4. A continuous random variable X has a p.d/. 

f(x)= 3.?, o~.x~ 1. Find a and b such that 

(iJ P { X ~ a } = p { X> a}, and 
(ii) P { X> b } = 0·05 . [Calicut Univ. B.Sc., Sept. 1988] 

Solution. (i) Since P ( X ~ a) = f ( X > a), 
each must be equal to I/2,'because total probability is always one. 

=> 

=> 

=> 

~ 

1 fa 1 .. P(X~a)=2 ~ 0 f(x)dx= ~ 

3Ja x1dx-! o -2 ~ 31 x' la =! 
3 O· 2 

, I 
a='2 ~ cr a= 2. ' 

(iiJ p (X > b) = 0·05 ::::::> f!f (i) dx = 0-05 

Ix'lI T- , I 
3 - =- ::::::> I-b =-

3 b 20 . 20 

b' _12 
-~O 

::::::> b=(~)L 
Example 5·5. LeeX be a conlinuous,random variate withp,d/. 

f(x)= ax, O~ x~ 1 
=a, I·~x~2 
=- ax+ 3a, 2:5 x~ 3 
= 0, elsewhere 
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(i) Determine the constant a. 
(ij) Compute P (X ~ 1·5). [Sardar Patel Univ. B.Sc., Nov.19881 

Solution. (i) Constant 'a' is detenniiled from the consideration that total 
probability-is unity, i.e.,. 

Loo~ f(x) dx= I 

~ LOoof(x)dx+ f~f(X)dx+ ftf(x)dx+ gf(X)dx+ f3°O f(x)dx= I 

~ f~axdx+ ft a.dx+ g (-ax+3a)dx= I 

~ a 1 ~ 1 ~ + a I x I ~ + a 1-~ + 3x 1 ~ = I 

~ ~ + a + a [( - .% + 9 )- (- 2 + 6) ] = I 

a' a . I 
~ -+a+-=I ~ 2a=1 =) a=-
22' 2 

(ii) P(X~ 1·5) = f2':, f(x) dx= LOoo f(x) dx+ f6 f(x) dx + Jli5 f(x) dx 

n fl.5 
= a JO xdx+ 1 a.dx 

= a 1 ;-1 1 + a I x 1 1.5 =!! + 0·5 a 
2 ° 1 2 

- a-! - - 2 [ '.' a = ~, Part (i) 1 

ExalP pie 5·6. A probability curve y = f ( x ) has a range from 0 to 00 • If 
f(x) = e-·, find the mean and variance and the third moment about mean. 

[Andhra Univ. B.sc. 1988; Delhi Univ. B.Sc. Sept. 19871 
Solution. 

Il, (rth moment ,about origin) = fooo x' f (x) dx 

= f; x' e- x dx= r(r-t" 1)=r!. 

(Using Gamma Integral) 
Substituting r = 1,2 and 3 successively, we get 

MeaJI = Ill' = 1 ! = I, 112 = 2 ! = 1, 113' = 3 ! = 6 
Hence variance = III = 112 - III ,1 = 2 - r = 1 
and 113 = 1l3' - 3112' ttl' + 2111'3 = 6 - 3 x 2 + 2 = 2 
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.. :xample 5·7. In a continuous distribution whose relative/reque'!cy lknsity 
is given by 

/ (x) = Yo . x ( 2 - x ), 0 S; x S; 2, 

find mean, variance, ~I ,and ~2 and hence show that the distribution is symmetri­
cal. Also (i)/ind mean deviation about mean and (U) show that/or this d(stribUlion 
1l24.1 = 0, (iii)find the mode, harmonic mean and median. 

[Delhi Univ. B.Sc.(Stat. Hons.), 1992; B.Sc., Oct. 19921 
Solution. Since total probability is unity, we have 

Po /(x) dx= 1 

yofo x(2-x)dx= 1 ~ yo=3/4 

3 
/(x)= 4"x(2- x) 

, r2 '/()dx 31'2 "1(2)dx 3·2"1 
IJ.r=JOx x =4"Jox -x = (r+2)(r+3) 

In particular 

, 3.22 

Mean = III = 3.4 = 1, 

, 3·t 8 
113 = 5.6 = 5' 

, 3·2s 16 
and /l4 = 6.7 = 1"" 

IJ· ,,2 6 1 1 "tence vanencc= 112 = 112 - III = 5 - = 5' 

'3"2'38 3 6 1. 20 113 = 113 - 112 III + III = 5 - . 5,' + = 

, 4 ' , 6 ' ,2 3 ,4 16 4 8 1 6 6 1 3 1 3 /l4 == /l4 - 113 III + 112 III - III = 1"" - . 5' + . 5' - . == 35 

113 2 /l4 3~S 15 
~I = -3 == 0 and ~2 == -2 = --2 =. -

~2 III (lis) 7 

Since ~I = 0, the distributior is symmetrical. 
Mean deviation about meafJ 

= Po I x-I I /(x)dx 

= J~ I x-I I f (x) dx + ~ I x-I I / (x) dx 

= i [J(\ (1 - x) x (2 - x) dx + ~ (x - 1) x ('~ -~) dx ] 
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:: %[Ib (lx-3x2+r)dx+ n (3r-r-lx)dx] 
"t!o 

:: '1[lx2.- U+ X41I + \3 x3 _l_ lx2 12]:: ~ 
4 ~ 40 '34 21 8 

112&+ 1 :: fa (x.- mean ):u.+1 f(x) dx 

= ~ Po (x - I):u.+ 1 X (2 - x) dx 

= 1 II t :u. + 1 (t + 1) (1 - t) dt 
4 -1 (x-I=t) 

:: 1 II t :u. + 1 (1 - t 2) dt 
4 -1 

Since t:u. + 1 1 is an odd function of t and (1 - t -2) is an even function of t , 
the integrand t:u.+ 1 (1 - t 2) is an odd function of t . 

Hence 

Now 

112..+1 = o. 
f'(x):: 1 (2 - lx) = 0 => x = 1 

4 

Hence mode:: 1 
Harmonic me~ H is given by 

1 Po 1--:: - f(x)dx 
1/ 0 x 

:: ~ Po (2 - x) dx = ~ 

H= ~ 
3 

If M is the median, then 

IOM f(x)dx= i 
~ rM x(2-x)dx=.! 
4 JO 2 

IX2_; I~ = ~ 
3M2- M 3= 2 

M3_3M2+2= 0 
(M-1)(M 2-2M-2)= 0 
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The only value of M lying in [ 0, 2 ] is M = 1. Hence median is 1. 
Aliter. Since we have proved that distribution is symmetrical, 

Mode = Median = Mean = 1 

5·21 

Example 5·8. The elementary probability law 01 a continuous random 
variable X is 

1 (x) = Yoe-b(x-a) , a~x<oo, b>O 

where a, b and Yo are constants. 
Show that Yo = b = Va and a = m - cr, where m and (1 are respectively the 

mean and standard deviation 01 the distribution. Show also that ~1 = 4 and 
~2 = 9. [Gauhati. Univ. n.Sc.,.l99~ J 

Solution. Since total probability is unity, 

J 00 1 (x) dx = 1 
a 

~ Yo Joo e-b(x-a) dx= 1 
a 

I e-b(X-4) 100 

Yo -b I a = 1 

~ ~=b 

JA.: ( rth moment about the point 'x = a') 

= J 00 (x - ar 1 (x) dx = b J 00 (x - ar e-b(x-a) dx 
a a 

=,b J; t' e-btdt 

_ • b r (r + 1) _ r! 
- bH I - -b' 

[ On pUlling x - a = l] 

[ Using Gamma Integral] 

In particular 

and 

Hence 

Also 

and 

IJ/ = lib, ~{= 2/b2, ~/:±: 61b3, J.4' = 241b4 

m= Mean =a+~{=a+(lIb) 

~= ~2= ~z' - ~1'2= 1/b2 

(1=.! and m= a+ .!!:: a+ (1 
b b 

1 
Yo=b=- and a=m-cr (1 

~3= ~3'-3~2'~{+ 2~{3= ~(6-3.2+2)=~=2d 
b3 b3 

J4 = J.4' - 4 ~{ ~1 ' + 6 ~z' ~{ 2 - 3 ~{4 
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19 4 
= 4 (24 - 4.6.1 + 6.2.1 - 3 ) = 4 == 90' 

b b 

Hence ~l= ~l/~i= 40'6/0'6= 4 and ~l== ~~l= 90'4/0'4= 9 

Example 5·9. For the following probab.ility distribution 
dF -Ixldx == Yo . e , - 00 < x < 00 

show that Yo = ~, ~l' = 0, 0' = ..J2 and mean deviation about mean = 1. 

Solution~ We have J..::, f(x) dx = 1 

=> Yo J~oo e- Ixl dx= 1 => 2yo J; e- Ixl dx= 1, 

=> 

(since e- I x I is an even function of x) 

(sinceinOSx<oo,lxl=x) 

2 1 · 1 Yo= , l.e., Yo= '2 

~.' (about origin) = J~ 00 x f(x) dx = ~ J~oo x e- I xl dx 

= 0, 
( since the integrand x . e- I x I is an odd function of x ) 

~2 = J~oo Xl f(x) dx= ~ J~oo Xl e- I xl dx 

= ! 2 100 X- e- Ixl dx 
2 0 
[since the integrand Xl e - I x I is an even function of x 1 

~2 =.I.~ i" e- X dx = r( 3 ) (on using Gamma Integral) 

=> ~2= 2! = 2 

Now ~= ~l= ~2 - ~l'l= 2 

M.D .. about mean = J 00 I x - mean I f (x) dx 
-00 

= ! Joo I x I e- I xl dx 
2 -00 

(.: Mean = ~.' = 0)-

=~.2J; Ixl e-I"l dx 

= JOoo x e-" dx = r( 2 ) = 1 
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Example 5·10. A random variable X has the probability law: 
1 2 

dF(x)= :1.e-X1lb dx, O:5x<oo 
I 

Find the distance between the quartiles and show that the ratio of this distance to 

the standard devation of X is independent of the patame.ter 'b'. 
Solution. If QI and Q3 are the first and third q~artiles respectively, we 

have 

Put 

Again we have J OQ3 f (x) dx = ~ which, on proceeding similarly, will give 

2 2 2 2 

1 - e-(b Ilb = 3/4 => e- lb I2b = 114 

=> Q3 = -1 2b -1 log ( 4 ) 

The distance between the quartiles is given by 

Q3 - QI = -12b [-1 log 4 - -1 log (4/3) ] 

100 Joo X '2/lb2 
~I'= O· x f(x)dx= 0 x b1 e- X dx 

= J; -12by'1l e-' dy 

- 2b1 Joo -'dy - 0 ye 

= 2b1 r( 2 ) = 2b1 • 1 I = ;2b1 
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a'- = ~,12 = ~1' - ~I' 1 = 2b1 - b2 • ~ = b2 ( 2 - ~ ) 
(J = b "2.- (1tI2) 

Q, - QI _ "2 [ {iOg'4 - "log ( 4/3) 1 
(J - V 2 - (1t/2) , 

'Yhich is independent of the parameter • b' . 

Example 5·11. Prove that the geqmetric mean G of the distribU!ion 
dF;6(2-x) (x.". 1) dx, 1 ~x~ 2 

isgiven by 6 log (16G) = 19. [Kanpl,lrUniv.B.sc:.,Oct.I9921 
Solution. By definition, we have 

10gG= F. logxf(x)dx= 6F. logx (2-x)(x-l)dx 

= - 6 F. (.i - 3x + 2) log x dx 

Integrating by parts, we get 

log G = - 6 [ H ~ -3: ~ 2x ) log x I ~ 
_ 1'2 (Xl _ 3.i + 2x) .! dx] 

Jl 3 2 x 

=-4 log 2+ 6x 19 
36 

(on simplification) 

19 19 .. logG+410g2="6 ~ I08G+log24 ="6 

19 19 
~ 10gG+log 16="6 ~ IOg(16G)="6 

~ 6 log (16'G) = 19 

Example 5·12. The time one has to wait for a bus at a downtown bus stop 
is observed 10 be random phenomenon (X) with thefoJ/owing probability density 
function: 

fx(x)= 0, for x< 0 

= ~(x+ 1). for O~ x< 1 

= !(x-!) 
, l' for 1~ x< ~ 

=!(1-x) '1 · for ~~ x< 2 
=~(4-x). for 2~ x< 3 
_ I 

for 3~ x< b 
- " 
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= O. for 6~ x. 
Let the events A and B be defined as follows: 

A : One waits between 0 to 2 minutes inclusive: 
B : One waits between 0 to 3 minutes inclusive. 

(i) Draw the graph of probability densityfunction. 

(ii) Show that (a) P (B IA ~:= ~. (b) P C4" n li) = ~ 
Solution. (i) The graph of p.d.f. is given below. 

f(X) ,.,9 
3r9 

219 

o 1 2 3 6 X 

(ii)(a) p(A)=Fof(X)dx=J~ ~ (x+l)dx+ J~ ~(X-~)dx _ 

• + J~ ~(%-x )dx 

1 
- 2 ( on simplification) 

f(AnB)= P( I~X~2)=~ f(x)dx 

= J~ ~(x-~)u+ ~ ~(~-x }x 
= ~ [ ~ - ~ r.n + .~ [ ~ x- ~ t = t \ 

S·2S 

( on simplification) 

P ( B I A ) = P (A n B ) = 1/3 = ~ 
.. P(A) 1/2 3 
(b) It n Ii means that waiting time is more than 3 minutes. 

:. P(Anli):P(X>3)=J3°o f(x) dx= J3
6 !(x) dx-t J; f(x)dx 

= J6 1: dx=! 1 16 =! 3 9 9 x 3 3 
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Example 5·13. The amount o[bread (inlwndredso[pounds)X that a certain 
bakery is able to sell in a day is found to be a numerical valued random 
phenomenon, with a probability [unction specijJ.ed by the pr()bability density 
[unctionf( x) ,given by . 

f (x)::. A . x, for 0 ~ x < 5 
= A (lO-x) , for 5 ~ x< 10 
= 0, otherwise 

(a) Find the value of A such thatf(x) is a probability density function. 
(b) What is the probability that the number of pounds of bread that will be sold 

tomorrow is 
(i) more than 500 pounds, 
(ii) less than 500 pounds, 

(iii) between 250 and 750 pounds? [Agra Univ. ~.Sc., 1989] 
(c) Denoting by A, B, C the events that the pounds of bread sold are as in h 

(i), b (iO and b (iii) respectively, find P (A I B), P (A Ie) . Are (i) A and B 
independent events? (if) Are A and C independent events? .. 

Solution. (a) In order thatf(x) should be a probability density function 

i.e .• 

=> 

L:, f(x) dx = I 

Jg Axdx+ J~O A(lO-x)ax=1 

1 
A= -

25 
(On simplification) 

(b) (i) The probability that the number of pounds of bread 'that will be sold 
tomorrow is more than 500 pounds, i.e., 

JIO· 1 1 I Xl \10 
P (5 ~ X ~ 10 ) == 5 25 ( 10 - x ) dx::. 25 lOx - "2 5 

= 2~ "( ;~ ) = i = 0.5 

(ii) The ·probability that the number of pounds of bread that will be sold 
tomorrow is less than 500 pounds, i.e., 

. I5 1 I I Xl 15 1 P(0~X~5)= 0 25 .xdx= 25 "2 0= 2= 0·5 

(iii) The required probability is given by 

J 5 1 n·5 1 3 
P(2·5SX~7·5)= 2.5 25 x dx+.J5 25 (lO-x)dx= 4" 

(c) The events A, Band C are given by 

A:S< X~ 10; B:O~ X< 5; C:2·5< X< 7·5 
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Then from pans b (i). (ii) and (iii), we have 

3 
P (A) = 0·5, P (B) ~ 0·5, P (C) = 4" 

The events A n B and A n C are given by 

An B = ~ and An C : 5 < X < 7·5 

.. P(AnB)= P(~)= 0 

n·5 1 n·5 
and P(AnC)= J5 f(x)dx= 25 J5 (lO-x)dx 

1 75 3 
= 25 Xg="8 

1 3 3 
P(A).P(C)= ~ )(4"= 8= P(AnC) 

=> A and C are independenL 

Again P(A).P(B)= t ~ P(AnB) 

=> A and B are not independent. 

P (A I B) = P (A n B) = 0 
P(B) 

P (A I C) = P (A () C) = 3/8 = .! 
P (C) 3/4 2 

527 

Example 5·14. The mileage C in thousands of miles which car owners get 
with a certain Idnd of tyre is a random variable having probability density function 

f(x) == 2~ e-Jl/7JJ, for x> 0 

= 0, for xSO 
Find the probabilities that one of these tyres will-last 

(i) at most 10,000 miles, 
(ii) anywhere from J6,OOO to 24,000 miles. 

(iii) at least 30,000 miles. (Bombay Univ. B.sc. 1989) 
Solution. Let r.v. X denote the mileage (in '000 miles) with a certain kind 

of tyre. Then required probability is given by: 

(i) P·(XSI0)= JbO f(x)dx= 2~ JbO e-Jl/7JJ dx 

_ 1 I e-Jl/7JJ 110 _ -11'2 

- ~O - 1/20 0 - 1 - e 

= 1 - 0·6065 = 0·3935 
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(ii) P (16~X ~ 24)= 2~ g: exp ( - ;0 )dt= 1- e- zI2O I~: 
= e- I6/20.- e- 24/20 = e- 415 _ e- 6/5 

= ()'4493 - 0·3012 = 0·1481 

00 1 [ e- llI20 [00 
(iii) P (X ~ 30) = J30 1(X) dt= 20 - 1120 30 

= e- 15 = 0.2231 

EXERCISE 5 (c) 

1. (a) A continuous random variable ~ follows the probability law 

I (x) = Ax2 , O~x~ 1 

Determine A and find the probability that (i) X lies between 0·2 and 0·5, 
fii)Xis less than 0·3, (iii) 1/4 <X < l/2an<1 flV)X >3/4 given X >1/2. 

Ans. A = 0·3, (i) 0·117, (ii) 0·027, (iii) 15/256 and (iv) 27/56. 
(b) If a random variable X has the density fUl\ction 

I (x) = {114, - 2 < x < 2} 
0, elsewhere. J 

Obtain (i) P (X < 1), (ii) P (I XI> 1) (iii) P (2X + 3 > 5) 
(Kerala Univ. B.Se., Sept.1992) 

Hint. (ii) P (IX I> 1)= P(X > 1 or X <-1)= J~ i f(x) dt+ ~/(x) dt 

or pd xl> 1) = 1- P (I X 1 ~ 1) = 1 - P (- 1 ~X ~ 1) 
Ans. (i) 3/4, (ii) 1/2 (iii) 1/4. 
2. Are any of the following probability mass or density functions? 
Prove your answer in each case. 

1 3 1 1 
(a) {(x) = x; x= 16' 16' 4'-; 
(b) I (x) = A. e-k< ; x ~ 0; A. > 0 

1 2.x, 0< x< I 
(c) f(x)= 4- lx, 1< x< 2 

0, elsewhere, 
(Calicut Univ. B. Sc., Oct. 19_ 

Ans. (a) and (b) 3I'ti .,.m.f./p.d.f.'s, (c) is not. 
3. If II and /z are p.d.f.' s and 91 + -9z = I, check I( . 

g (x) = 91/1 (x) + 9z/z (x) , is a p.d.f. 

Ans. g (x) is a p.d.f. if 0 ~ (Eh, Eh) ~ 1 a-' fll + Eh= 1. 
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4. A continuous random variable X has the probability density function: 
/ (x) = A + Bx, 0 ~ x ~ 1. 

If the mean of the distribution is 1, find A and lJ • 

Hint: Solve I~/(x)dx= 1 and I~ x/(x)dx = 4. Find A andB. 

5. For the following density function 
/(x)= cr(1-x), O<x< 1, 

fmd (i) the constant c, and (ii) mean. 
[CalieufUniv. B.Se.(subs.), 1991J 

Ans. (i) C = 12; (ii) mean = 3/5 . 
6. A continuous distribution of a variable X in the range (-3, 3) is defmed by 

/ (x) = i6 (3 + X)l, - 3 ~ x ~ - 1 

=.!.(6-2xl) -1<x<1 16 • , --

= i6 (3 - x)z, 1 ~ x ~ 3 

(i) Verify that the area under the curve is unity. 
(ii) Find the mean and variance of the above distribution. 

(Madras Univ. B.Se., Oct. 1992; Gujarat Univ. B.Se., Oct. 1986) 

Hint: I!3/(X)dx= I~i /(x)dx+ J!l/(X)dx+ Ii /(x)dx 

Ans. Mean=O, Variance=1 
7. If the random variableX has tJ'te p.dJ., 

/ (x) = i (x + 1). - 1 < x < 1 

= 0,' elsewhere, 
find the coefficient of skewness and kurtosis. 
8. (a) A random variableX has the probability density function given by 

/ (x) = (it (1 - x), 0 ~ x ~ 1 
Find the mean I.l , mode and S.D. cr , Compute P (IJ.- 2cr < X < I.l + 2cr). 
Find also the mean deviation about the median. 

(Lueknow Univ. B.Se., 1988) 

(b) For the continuous distribution 
dF = Y~ (x - r ) dx ; 0 ~ x ~ I, Yo being a constant. 

Find (i) arithmetic mean, (ii) harmonic mean, (iii) Median, (iv) triode and (v) rth 
moment about mean. Hence find ~1 and ~2 and show>,that the distribution is 
symmetrical. (Delhi Univ. B.se., 1992'; Karnatak Uni v. B.Se., '1991) 

Ans. Mean = Median = Mode = 1 
• > Z 
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(c) Find the mean, mode and median for the distribution, 
dF (:c) = sin x dx, 0 ~ x ~ Jt/2 

ADs. I, Jt/2, Jt/3 

9. If the function f(x) is defined by 
f(x)= ce-'u, O~x<oo, a>O 

(i) Find the value of constant c. 
(ii) Evaluate the first four moments about mean. 

[Gauhati Univ. B.Se. 19871 

ADs. (i) c = a , (ii) 0, I/cil , 2/a' , 'J/a4• 

10. (a) Show that for the exponential distribution 
dP= y".e-";o dx, O~x<oo, (J>O 

the mean and S.D. are both equal to (J and that the interquartile range is 
(J loge 3. Also find 1J,r' and show that ~I = 4, ~2 = 9. 

[Agra ;):liv. B.Se., 1986 ; Madras Univ. n.Se., 1987) 
(b) Define the harmonic mean (H.M.) of variable X as the reciprocal of the 

expected value of IIX, show that the H.M. of variable which ranges from 0 10 

00 WIth probability density i xl e-' is 3. 

tion, 
11. (a) Find the mean, variance ~d the co-efficients ~I , ~2 of the distribu-

dF = k x'J. e- a dx, 0 < X < 00 • 

Ans. ,,= 112; 3,3, 4/3 and 5. 
(b) Calculate PI for the distribution, 

dF:= k x e-adx., O<x<oo 
Ans. 2 [Delhi Univ. B.Se. (Hons. Subs.), 1988J 
12. A continuous random variable X has a p.d.f. given' by 

f (x) = k x e ).a , x ~ 0, A. > 0 
-= 0, otherwise 

~LCrmine the constant k ,obtain the mean dlld variance of X . 
(Nagpur UDiv. n.Se. 19901 

0. For the probability density function, 

f ( )= ,?(b+ x) - b~ x< 0 
x b(a+b)' 

= 2(a-x) O~xSa 
a(a+b)' 

Find mean, median and variance. [Calcutta Unh'. B.Se, 1984) 

Ans. Mean =( a - b )/3, Variance = (a2 + b2 of ab )/]8, 
Median = a - " a(a+ b) /2 
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(U) Show that, if terms of order ( ci - b )2/ a2 arc neglected, then 
mean - median = (mean - mode) /4 

5-31 

14. A variable X can assume values only between 0 and 5 and the equation 
of its frequency curve is 

y = A sin ~ 1t x, 0 $; x$;5 

where A is a constant such that the area under the curve is unity. Detennine the 
value of A and obtain the median and quartiles of the distribution. 

Show also that the variance of the distribution is 50 { k - ~z } . 

Ans. 1/10\ 2·5, 4{3, 10{3 
1 S. A continuous variable X is distributed over the interval [0, I] with p.d·L 

a XZ + b x, where a, b are constants. If the arithmetic mean of X is 0·5, find the 
values of a and b. 

ADS. -6,6 
16. A man leaves his house at the same time every morning and the time 

taken to journey to work has the following probability density function: less than 
30 minutes, zero, between 30 minutes and 60 minutes, unifonn with density k ; 
between 60 minutes and 70 minutes, uniform with density 2k ; and more than 70 
minutes, zero. What is the probability that on one particular day he arrives at. work 
later than on the erevious day but not more than 5 minutes later. 

17. The density function of. sheer strength of spot welds is given by 
f(x) = A /160,000 for 0 $; X$; 400 

= (800 - x) /160,000 for 400 $; X$; 800 
Find the number a such that 

Prob. (X < a) = 0·56 and the number b such that 
Prob. ( X < b) = 0·90. Find the mean, median and variance or X .. 

[Delhi Univ. B.E., 1987] 
18. A baLCh of small calibre ammunition is accepted as satisfactory if none 

of a sample of five shot falls more than 2 feet from the centre of the target at a 
given range. If X. the distance from the centre of the target to a given impact 
point, actually has the density 

Z 
f(x)= k.2xe-:r , 0< x< 3 

where" is n number which J118kes i~ probability density function, what is the value 
of k and what is the probability that the baLCh will be accepted? .. 

[Nagpur Univ. B.E., 1987J 

Hint. Ii f(x) fLY::' 1 ~ k = 1I( 1- e- 9 ) 
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Reqd. Prob. = P [ Each of a sample of 5 shots falls within a distance of 2 ft. 
from the centre] 

= [P(O<X <2ll' = [ Ig f(;<)dx r = ( : =::: J 
19. A random variable X has the p.d.f. : 

{ 2x,O<X<1 
f ( x ) = 0, otherwise 

Find (i) P ( X < ~ ), (ii) P ( i < X < ~ ) " (iii) P ( X > ~ I X > ~ ), and 

(iv) P ( X < ~ I X > ~ ). (Gorakhpur Univ. B.Sc., 1988) 

A (')1/'" (")3/16 (l")P(X> 3/4) 71\6_ l. (. )PO~< X< +'4) 
ns. I "t, II ,II P (X> In) 3/4 - 12' IV P (X> Iii) 

5·4·3. Continuous Distribution Function. If X is a continuous random 
variable with the p.d.f. f (x), then the function 

Fx(x) = P(X~x)= toof(t)dt, -oo<x<oo. ...(5·12) 

is' called the distribution function (dJ.) or sometimes the cumulative distribution 
function (c.d.f.) of the random variable X. 

Remarks 1. 0 ~ F {X ) ~ 1, - 00 < x < 00. Il 

2. From analysis ·(Riemann integral), we know mat 

F' (x) = ! F (x) = f(x)? 0 [.: f(x) is p.d.f.] 

==> F (x) is non-decreasing function of x • 

3. F.(-oo): lim F(x)= lim rx f(x)dx= I-co f(x)dx= 0 
-00 -00 .l-+-oo x __ oo 

and F(+oo)= lim FJ-x.) = lim toof(x)dx= I':--oof(x)dx::: 1 
.l-+'!" x-+oo 

4. F ( x) is a continuous function of x on the right. 
5. The discontinuities of F ( x) are at the most countable. 
6. It may be noted that 

P(aS X~ b)= I: f(x)dx=- I!oc;f(x)dx- I~'oof(X)dx 
= P ( X ~ b) - P ( X ~ a) = F (b) - F (a) 

Similarly 

P ( a < X < b) = P (a < X ~ b) = P «(l ~ X < b) == I h f( I) d/ 
a 
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7. Since F'(x)=/(x), wQhave 
d 

- F ( x ) = / ( x ) ~ dF( x ) = / ( x ) dx 
dx 

This is known a5 probability diffe{ential of X. 

Remarks. l. It may be pointed oUt that the properties (2), Q) and (4) above 
uniquely characterise the distribution functions. This means that any function F(x) 
satisfying (2) to (4) is thP, distribution function of some random variable, ari(l any 
function F(x) violating anyone or more of these three properties cannot be the 
distribution function of any random variable. 

2. Often, one can -obtain a p.d.f. from a distribution function F (x) by 
differentiating F (x) , provided the derivative exists. For example, consider 

\
0, for x <: 0 

F x( x ) = x, for 0 ~ x ~ 
1, for x> 1 

The graph of F (x) is given by bold liJles. Obviously we see that F (x) is 
/. 

continuous from right a<; stipulated in (4) and we also see that F (x) is .. not 
continuous at x = 0 and x = 1 and hence is no( deriv~ble afX = 0 .and x = 1. 

F(x) 

--------~---~----

1 

Dirferenitating F'(x) w.r.t. x, we get 

!! F ( x ) = { 1 , 0 < x.< 1. 
dx 0, otherwise 

)( 

INote the strict.inequality in 0 ~ x < 1, since F (x) is not derivable at 
X=' 0 andx= 11 

Let us define 

{ l,O<X<l 
/ (x) = 0, othef)t(ise 

Then / ( x) is a p.dJ. for F. 
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Exam pie 5,15. \lerify that the following is a distribution functiof.l: 

{ (), 

F(x)= ~;+ I , - a~ x~ a ( J 
x< - a 

1" ,x> a 

(Madras Univ. B.Sc., 1992) 
Solution. ObVIOusly the properties (i), (ii), (iii) and (iv)are~atisfied.Also 

we o~~rve that f+:t) is continuous at x = a and x = - a, as well. 
Now 

d' 1'1 « F( ), -2' - a_ x_ a 
dx"x:::;Jtl 

0, otherwise 

= f( x), say 

In order that F (x) is a distribution function, f (x) must be a p.d.f. Thus we 
have to sh()w tl}at 

Loooo f(x) dx = I 

Now f:'oo f(x) dx = f~.a f(x) dx = 2~ f~ a I. dx = I 

Hence F ( x) is a d.f. 
Example 5·16. SW'pose'the life in hnuq of a certain kind of radio tube has 

the probability density function: 

100 
f ( x ) = -2 ' when x ~ 100 

x 
= 0, when x < 100 

Find the distrib~tionfunction of the distribution, What is the probabilty that none 
(~f three such tubes in a given radio set will have to be replaced during thejirst150 
hour;~ of operation? What is the probability thai all three of the original tubes will 
have been replaced during thefirst 150 hours? (Delhi Univ. B.Sc. Oct. 1988) 
I • 

Solution. Probability that a tube will last for first 150 hours is given by 

p ( X'~ 150) = p ( (j < X < 100) + P ( I 00 ~ X ~ 150) 

= f!~ f(x) dx = f!~ l~. dt = ~ 
Hence the probabmiy that none of the three tubes will have to be replaced 

.dllring the first 150 hours is (1/3)3 = 1127 . 

The probability lhal a tube will not last for the first 150 hours is 1 - i = ~. 
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Hence the probability that 'allthrcc of the original tubes will have to be replaced 
during the Iirst 150 hours is (2/3)3 = 8/27 . 

Exam pl~ 5·17. Suppose that the time in minutes that a person has to wait at 
a certain station for a train is found tq be a random phenomenon, a probability 
function specified by the distributionfUilction, 

F ( x ) = 0, for x ~ 0 
for 0 ~ x < 1 .t 

= 2' 
I 

= '2' for I ~ x < 2 

= ~, for 2 ~ x < 4 

= 1, for x~ 4 
(a) Is the Distribution Function continuous? If ,ro, give the formula for its 

probability density/unction? 
{IJ) Whgt is the probability that ,a person will.ha ... e to wait (i) more than 3 

miTlUtes, (uj less than 3 minutes, and (iii) between 1 and 3 minutes? 
(c) W~at is .the conditional probability that the person will have to. waitfor·a 

trainfor OJ more than 3 minutes, given that it is more than} minute, (ii) less than 
3 miTlUtes given that it is more than 1 minute? (CalicutIUniv. B.Se., 1985) 

SoMion. (a) Since the value of the distribution fUllctioQ is t~e same ~tthe 
points x = 0, x = I, x = 2" and x = 4· given by the Jwo fonns, o(:l ( x) ;lor 
x < 0 and 0 ~ x < 1, 0 ~ x < 1 and 116 x < 2, 1 ~ x < 2 and 2~' x < 4, 
2 ~ x < 4 and x ~ 4, the distribution function is continuous. 

Prob~bility density function = f ( ~ ) = -1; F ( x ~ 
.. f( x) = 0, for x < 0 

1 
= '2' for 0 ~ x < L 
= 0, for 1 ~ x < 2 

= ~, for 2 ~ x < 4 

= 0, for x~ 4 
(b) Let the random variable X represcnllhe waiting time in minutes. 

Then 
(i) ... R~!lired prQbability = P ( x. > a.) = .1 ~ P. ( X ~ 3) =. 1 - F (~) 

=. 1- .~. 3 = ~ 
(ii) Required'probability =' P (X < 3) = P (X ~ tg ) ... P (x·= 3') 

, = F (3) = l' . 
4 

(Since, the probabihty that a continuous variable takes a.fixed value b 
7.ero) I 
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(iii) Required'Probability = P ( I < X < 3) = P ( 1 < X ~ 3) , 

= F(3j- t(1)= ~- ~= ~ 
(c) l-etA den9te ~he eve"t that.a person has to wait for m9re than 3 mInutes 

and B the event that he has to wait for more than 1 minute. Then 

P(A)= P(X> 3)'= ~ [c/.(b),(i)j 

P(B)·= P(X> 1)= I-P(X~ 1)= I-F(1)= 1- ~= ~ 

P ( A n B) = P ( X > 3 n X > 1) = P ( X> 3) = ~ 
OJ Required probability is 

P (A I B) = p.( ~ 0 B') 
P(B) 

114 1 
112 =2 

.(;;) R~iJirea prob~bil,ity = P (A I B)::; P ~~ ~: ). 
No,,<p(~,nBi)=P(X~ 3(l).X>, 1)=f(,l',:: X~ 3)=F(3)'- F(1).= ~- ~= ~ 

- i/4 1 
. :'. . .p ~ A r:B t= 112 =:'2 
·Example-5.'18. A petrol pump is supplied witli pet;ol once a day. /fits 

daily volume 'X 'oj sales in ihousands 0/ Ii/res is distributed by 
/(x)=5(f-xt, O~x~,I, 

what must be the capacity..o/ its tank. in order: that the probability that its supply 
will be exhausted in a given day shall be c)-OJ? (Madras Univ. B.E., 1986) 

Solution. Let the capacity of the tank ( in '000 of litres).be 'a' such that 

P(X?. a)= 0·01 ~ J1 i(x)dx= 0·01 a 

~ II 5'(, l-x)4 dx= 0.01 or r 5 (l-x )511 ~ 0·01 
a ~ . (- 5) 1 

~ (l-a)~=1/100 or l-a'=(1Il00)115 
1/5' .' 

.. d= 1 - .( 1/1(0) = 1 - 0:3981 = 0·ro19 
Hence the capacity of the tank = 0·60 19 x 1000 litres = 60 1·9 litres. 
Example 5·19; Prove,that mean deviaiion is least when measured/rom the 

median. . [Delhi ·Univ. B.sc. (Maths. Hons.)~ 1989] 
:Solution. If / ( x) is the: probability function of a random variable X, 

a ~ X ~ b, -the,n mean deviation'M (A ), ~y, about the point x = A is given 
by '-

. Ib M ( A ) = I x - A I / (x) dx a 
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JA ' Jb = a Ix-Alf(x)dx+ A Ix-Alf(x)dx 

JA fb' = a (A-x)f(x)dx+ A(x-A)f(x)ax .. , (1) 

We; want to find the value of 'A' so that M (- A -) is minimum: From the 
principle of maximum and minimum rn differential calculus, M (A) will be 
minimum for variations inA if 

aM(A) 0 d a2M(A) 0 
aA = an aA2 > ... (2) 

Differentiating (I) w.r.t 'A' under the integrarsign, since the runctions 
(A - x) f ( x) and ( x - A ) f ( x) vanish atthe pOint x = . A *, we get 

a~~,A) JA f(x)dx-,J b f(x)dx ... (3) 
aA a A 

Also a ~ ~ A ) = J: f ( x ) dx ~ [ .1- - J: f ( x ) dx '] , 

[.: J: f(x)dx= I] 
= 2 JA f(x)dx- }.= 2F(A) . .,.. I; a . 

where F(.) is the distribution fURction Qf X. Differentia'ii~ a~iliQ w.r.t.A, we,get t 

a~2 M(A)= ~f(A) ... (4) 

Now a ~ ~A ) 0, on using (3) gives ~ 

J: f(x)dx=' J1 f(x)dx 

i.e., A is the median value. 
Also rrom (4), we see that 

~~ ~ (~) > 0, 
aA 

L 

assuming thatf( x) does not vanish at the median val~e. Th~s mea~ deviation is 
least when taken from median. , 

* If f ( x • a) is a continuous function of both variables x and a, possessing 

Continuous partial derivatives a :2£9' a;2 f x and a and b are differentiable 

functions of a, then 

ada [J;'f(x,a)dx ]= J: ~ dx +f(b,a) :-f(a,a):: 
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EXERCISE'S (d) 

1. (a) Explain the terms (i) probability differential, (U) probability'density 
function, and (iii) distribution function. 

(b) Explain what is meant by a ra~do~ ~ariable. Distinguish between a 
djscrete and a COQtinllOUS random variaole .. Define distribution function of a 
Plndom .variable and show that it is ·monotonic non-dccrcasing everywbere and 
continuous on the rigbt at every point. 

[Madras Uniy. B.Sc. (Stat Main), 1987) 
(c) Show that the distribution function F (x) of a random variable X is a 

~on:.decreasing fUllction of x. Determine the jump of F (x) at a point Xo of its 
discontinuity in terms of the probability that the r~dom variable has the ~alue Xo .. 

'[Calcutta Univ. B.Sc. (Hons.), 1984) 
2. The length (in hours) X of a certain type of light bulb may be supposed to 

be a continuous random · .. ariable with probability density function: 

f(x)= °3 ,15.00< x< 2500' 
x 

= 0, elsewhere. 
Determine the constant a, the distribution function of X, and compute the 
probability of the event 1,700 ~ X ~ 1-.900. 

Ans. a = 70,31,250: F (x) = 1 (22,5~,oOO - :2) and 

P( 1,700 <X < 1,900)= F(I,900)- F(I,700)= 1(28,~,OOO- 36,1~,()()()) 

3. Define the "distribution futlction" (or cumulative distrtbution function) of 
a random variable and state its essential pro~rties. 

Show that, whatever the distribution function F (x) of a random variable 
X , P [ a ~ F (x) ~ b] = b - a, 0 ~ a, b ~ 1. 

4. (a) The distribution function of a random variable X is given by 

F ( x ) = { 1 - ( 1 + x) e - oX , for x ~ 0 
0, for x< 0 

Find'the corresponding density function of random variabJeX. 
ib) Consider the distribution for X defined by 

10, for x< 0 
F(x)= 11 -x 1" >0 - 4" e lor x_ 

Deoonnine P ( x = 0) and P ( x > 0). 
(Allahabad Univ. B.Sc., 1992] 
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5. (a) Let X be a continuous mndom variable with probability density 
fllnctioll given by 

l
ax, 0 ~ x.~ 1 

f( ) a) 1 ~ x ~ 2 
x = _ axt 3(l,~)~ x~ 3 

0, elsewhere 
(i) Detennine the constant a. 

(ii) Det.cnnine F ( x ), and sketch its ,graph. 
(iii) If three independent observations are made, what is the probability that 

exactly one of these three numbers is larger than 1·5 ? 
[Rajasthal1 Univ. M.Sc., J987\ 

Ans. (i) 1/2, (iii) 3/8. 

(b) For the density fx (x) = k e- ax ( 1 - e· ax) 10._ (x), find the nonnalising 
constant k , fx (x) and evaluate P ( X > 1). 

[Delhi Univ. B.Sc. (Maths Hans.), 1989] 
Ans. k= ~.;,F(x)= 1_2e-ax+e-2ai~P(X>1)= 2e- a_e- 2a 

6. A random variable X has the density function: 

f( x)= K._I_ if -oo<;:x<oo 
.. 1+x2! 

= 0, otherwise 
Det.cnnine K and the distribution function. 
Evaluate the probability P ( X 2: 0). Find also the mean and variance of X . 

[Karnatak Univ. B..Sc. 1985] 

Ans. K = 1 , F (x) = -i { tan- 1 x + ~.}, P (x 2: 0) = 1/2" Mean = 0, 

Variapce does IJot exist. ... 
7. A- continuous random variable X has the distribution function 

[ 
0, if x ~ 1 

F ( x ) = k ( x-I )4, if 1 < x ~ 3 
1 , if x> 3 

Find (i) k, Oi) the probability density functionf ( x ) , and (iii) the mean and 
the median of X. 

Ans. (i)k= 1~' (ii)f(x)= -1- (x-:' 1')', 1 s: xS: 3 

8 G· f() - {k x ( 1- x), for 0 < x < 1 
• lVen x.-:- 0 • elsewhere 

Show that 
(i) k = 1/5, (ii) F (x) = 0 for x ~ 0 and F ex) = 1 - e- ZlS , for x> 0 
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Using F ( x ) , show that 
(iii) P(3 < X < 5) = 0-1809, (iv) P( X < 4) = 0-5507, (v) P( X > 6) = 0·3012 
9. A bombing plane carrying three bombs flies directly above a railroad lIack_ 

If a bomb falls within 40 feet of track, the track will be sufficiently damaged to 
disrupHhe traffic.Within a certain bomb site the points of impact of a bomb have 
the-probability-density function: 

f(x)= (100+ x)/IO,OOO, when -100:s; x:s; 0 
= ( 100 - x) 110,000, when O:s; x:S; 100 
= 0, elsewhere 

where x represents the vertical deviation (in feet) from the aiming point, \Yhich is 
the traCk in this case_ 'find the distribution function_ If all the bombs are used, what 
is the probabjlity that track will be damaged ? 

Hint. ProbabiJity that track will be damaged by the bomb is given by 

~ (I. X I < 40) = P (- 40 < X < 40) 

= J~ 40 f(x) dx+ J~O f(x) dx 

Jo lOO+x r40 lOO-x 16 
=, -40 10,000 dx+ JO 10,000 dx= 25 

. . Probabi\ity that a bomb will not damage the track = I - ~~ = ~ 
Probability that no"e of the three bombs damages the track 

== (. i; J = 0-046656 

Required'probability that the track will be damaged = I - 0-046656 = 0-953344_ 

10. The length of time (in minutes) that a certain lady speaks on the telephone 
is found to be random phenomenon,'with a probability' function specified by the 
probability denSl~y functionf( x), as 

f.(x)=Ae-X/5, forx~O 

= 0, otherwise 

(a) Find the value of A that makes f (x) a p.d.f. 
Ans. A = 1/5 
(b) What is the probability that t~e number of minutes that she will talk over 

the phone is 
(i) More than 10 minutes, (ii) less tHan 5 minutes, and (iii) between.5 and 10 

minutes? [Shlvaji Uitiv. BSC., 1990J 

A ( -J 1 (--J e - I (---J e - I os. ' 2 , U --, III -2-' 
e e e 
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11. The probability that a person will die in the time interyal (tl , tl) is given 
by 

A JIl f(t)dt; 
tl 

where A is a constant and the functionf ( t ) detennined from long records, is 

f(t) = { t l ( lOO-t)l, o~ t~ 100 
0, elsewhere 

Find the probability that a person will die between the ages 60 and 70 assuming 
that his age is ~ 50. [Calcutta Univ. B.A. (Hons.), 1987] 

5·5. Joint Probability Law. Two random.variables X and Y are said to 
be jointly distributed if they are defined on the same probability space. The 
sample points consist of 2-tuples. If the joint probability function is denoted by 
Px r ( X , y) then the probability of a certain event E is given by 

Pxr(x,y)= P[(X,Y)E E] ... (5·13) 

(X, Y) is said to belong to E, if 10 the 2 dimensional space the 2-tuples lie in the 
Borel set B, representing the event E. . 

5·5·1. Joint Probability, Mass Function and Margina~ and Condi­
tional Probability Functions. Let X and Y be random variables on a sample 
space S with respective image sets X(S)= {XI ,Xl, ... ,X.} and 
Y (5) = {YI , Yl, ". , y .. }. We make the product set 

X(S)xY(S)= {XI ,Xl, ... ,X.}X{yt-,.Yl, .... ,y .. } 

into a probability space by defining the probability of the ordered pair ( Xi, Y j) 

to be P (X = Xj. Y = Yj)' which we write P (x i , Y j) . The function P on 
X (S) x Y (S) defined by 

pjj= P(X= Xj ("'\ Y= Y})= p(x'F"',Yj) ... (5·14) 
is called the joint probability function of X and Y and is usually represented in the 
fonn of the following table: 

~ YI Yl Y3 ... Yj . .. y .. Total 

XI Pll Pil P13 ... PI} ... PI .. PI. 
Xl Pli Pu PZ3 ... P1i . .. p,.,. Pl. 
X3 P31 P31 P,3 ... P,i ... p"" P3. 

Xi Pjl Pil P,) ... pjj ... PiM .pi. 

x. P.I p.z P1f3 ... 'PII)' -, • .o" • P- p •. 

Total P:I P.l P.3 ... p.j ... p ... I 

prakash
Rectangle
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n m 

;= 1 j= 1 

Suppose the joinldistribution ofLwo random variables X and Y is given~·then 
the probability distribution of X is determined as follows: 

px (x;) = P(X=x;}= P[X=Xi liY=y!l+PTX=Xi liY=Yzl+ ... 
+ P [X = Xi Ii Y = Yi ]+ ... + P [X = Xi Ii . Ym ] 

= Pll + PiZ + ... + Pi} + ... + Pim , 
m m 

= 1: Pij = 1: P ( Xi, Yj) = Pi. .. (5·14a) 
j=1 j=1 

and is knowll as marginal probability function of x. 
n n m 

Also 1: pi.= PJ.+ pz.+ ... + P4.= 1: 1: pij= 1 
;=1 ;=1 j=1 

Similatly, we can prove that 
n n 

pr(Yj)= P,(Y= Yj);:: 1: Pij= 1: P(Xi, jj)= Pi ... (5·14 b) 
;= 1 ;= 1 

whi~h is the marginal probability function of Y. 
Also 

P [X = xd Y = Yil == P [X = ~! ~ Y = Yj] = P (Xi, Yj ) - Plj 
P [ Y - Yj] P ( Yj ) p.j 

This is known as conditional probability function of X given Y = Y j 
Similarly 

P [ Y - ·1 X - . I - P ( Xi., Yj ) - Pi j -YI -XI - --
P (X;) Pi. 

is the conditional probability function of Y given X = Xi 
n 

Also 1: fu= Pl,+ pz,+' ... + Pij+ 
.j= 1 p.j PI 

Similarly 
n 
1: l!!1 = 

j=1 Pi. 

... + P4 1 = l!.:i = 
p.j 

Two random variables X and Y are said to be independent if 

P ( X = Xi, Y = Yi) = P ( X = X;) . P ( Y = Yj), 

otherwise they are said to be dependent. 

... (5·14 c) 

... (5·14 d) 

S·S·2. Joint Probability Distribution Function. Let (X , Y.> be a two­
dimensional random variable then 'their joint distribution function i~' denoted by 
F x y ( X ,y) and it represenlS the probability lhat simullaneously the observation 
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(X, Y) will have the property (X S x and .Y S y), i.e .• 

~y~~=P~~<XS~-~<YS~ 

Jx JY = [ Ixy (x, Y) dx dy 
-00 -00 

5-43 

... (5·15) 

(For continuous variables) 

lIhere Ixy (x, y) ~ 0 

And J~~ J~~ Ixy (x, y) dx dy = I or ~ 71 (x, y) = I 
Properties of Joint Distribution Functio~ 

1. (i) For the real numbers a., bl> a2 and b2 

P (a. < X S bl> a2 < Y S b2) = Fxy (bl> b2) +- Fxy (a., a2) 

- Fxy (q., b2J - Fxy (b .. a2) 

[For proof, See Example 5·29] 

(ii) Let a. < a2, b l < b2. We have 

(X Sa., Y S a2) + (a. <,X S b .. Y S a2) = (X.S b .. Y S a2) 

anlJ the events on the L.H.S. are mutually exclusive. Taking probabilities on 
both-sIdes, we get: 

F(a .. a2)+P(a. <X Sb., YSa2)=F(b .. a2) 

F(bl>a2)-F(a .. a2)=P(a. <XSb., YSa2) 

F (bl> a2) ~ F(a., a2) [Since P (a. < X ~ b .. Y S a2) ~ 0] 

Similarly it follows that 

F (a .. b2) - F'(a., a2)'= P (X Sa., a2 < Y S b2) ~ 0 

:) F (a., b2) ~ F (a .. a2), 

which shows that F (x, y) is monoto~ic non-~ecreasing function. 
2. F(-~,y)=O=F(x,-~),F(+~,+~)=l 

3. If the density function j{i, y) is continuous at (x, y) then 
()2 F 
dx dy =/(x,y) 

5·5,3. Marginal Distribution Functions. From the knowledge of joint 
distribution function F Xy (x, y), it is possible to obtain the individual 
distr.ibution functions, F x (x) and F y (y) which are termed as marginal 
distribution function of X and Y respectively with respect to the joint 
distribution function F Xy (x. y). 

Fx(x)=P(XSx)=P(XSx, Y<~)= lim FXY(x.y). 

= Fxy(x,~) 
Similarly, Fy(y)=P(YSy) = P(X<~, YSy) 

= lim Fxy(x,y)=Fxy (~,y) 

...(5·16) 
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Fx'(x) is termed as the marginal distribution function of X corresponding to 
the joint distribution function Fx'y (x, y) and similarly F y (y) IS called marginal 
distribution function of the random variable Y corresponding to the joint distribu­
tion function Fxr(x ,y). 

In the case of jointly di!crete random variables, the marginal distribution 
functions are given as 

Fx(x)= L P(X~x,Y=y), 
y 

Fy(y)= L P(X=x,Y~y) 
x 

Similarly in the case of jointly continuous random variable, the marginal 
distribution functions are given as I 

Fx(x)= j~oo {f:'oo/xr(x,Y)dY} dx 

Fy (y) = f! 00 { f:'oo Ixy (x ,.Y) dx} dy 

5~5·4 Joint Density Function, Marginal Density Functions. From the 
joint distribution function FIX Y ( X , Y ) of tWo dimensional continuous random 
variable we get the joint probabilty density function by differentiation as follows: 

Ixy(x ,y) = a" F (x ,Y)laxa y 

_ I' P(x~ X~ x+ox,y$ Y~ )'+oy) 
- Im6x· .. O. 6,....0 .. Ox oy 

Or it may be expres~ed in the following way.also : 
"The probability that the point ( x ,y) will lie in the infinitesimal rectangular 

region, of area dx dy is given by' 
{ III' I}' P x-2dx$X~X+2dx,y-2dy~Y~y+2dy =dFxY(x,y) 

and is denoted by Ix y (x .,.Y) dx dy, where the function/xy (x ,Y) is called the joint 
probability density function of X and Y. 

The marginal probability function of Y and X are given respectively 

Iy (y) = .L~ Ix y (x , y) dx (for continuous variables) 

= 2: pxr(x ,y) (for discrete variables) 
x 

... (5·17) 

apd Ix (x) = Loo 00 Ix y(x ,y) dy (for continuous variables) 
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= L Pxr(x,y) 
y 

(for discrete variables) 

(5· 17a) 

The marginal density functions of X and Y can be obtained in the following 
manner also. 

dFx (x) foo 
/x(x) = ~= -00 /xr(x ,y) 4y 

and /Y (y) = dFdY (y) = f:x' /xr(x, y) dx y -00 1 ... (5·17 b) 

Important Remark. If we know the joint p.dJ. (p.mJ.) /x Y (x ,y) of two 
random variables X and Y, we can obtain the individual distributions of X and Y 
in the form of their marginal p.dJ.'s (p.m.rs)/x (x) and/y (y) by using (5·17) and 
(5·17a). However, the converse 'is not true i.e.,from the marginal distributions 0/ 
two jointly distribUJed random variables, we cannot determine the joint distribu­
tions o/(hese t.",o random var.iables. 

To verify this, it will suffice to show that two different joint p.mJ's (p.d.f.'s) 
have the same marginal distribuuon for X and the same marginal distI:ibution for 
Y . We give beiow two joint discrete probability distribUtions which 'have the 

. .' l' r 
sam~ marginal distributions. 

JOINT DISTRISPTIONS HAVING SA~1E }1~~jlNALS 
Probability Distribution I Probability Distribution II 

~ 0 1 /y(y) 

.' ~ 0 1 /y(y) 
I -

0 0:28 0·37 0·65 0 0·3~ 0·30 0·65 

1 0·22 0·13 0·3~ ·1 0·15 0·20 0·35 

. 
/x (x) 0·50 0·50 1·00 /x(~) 0·50 0·50 1·00 

As an illustrinion for continuous random variables, let (X , y) be «ontinuous 
r.v.,with joint p.dJ. 

/xr(x,y)=x+y; O::;(x,y)::;1 ... (5·17 c) 

The marginal p.d.f. ':S of X and Y are given by : 

·n nil 11 /x(x)= Jo/(x,y)dY=JO (x.+y)dY= xy+f 0 
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Similarly 

fx(~h::x+1 

fy (y) =. Jb f (x , y) dx = y + 1 : 1 ... (5·17 d) 

Consiger another continuous joi,nt p;d.f. 

g(x',y)= (x+n(Y+1); 0-$ (x,y)$ 1 ... (5·17e) 

Thpn marginal p.d.f.'s of X and Yare. given 'by: 

81 (x) = J~ g (x , y.) dy = r x + 1 ~ Jb (y + ~ ) dy 

I 2' 1 11 ~ (x+' n ~+"2 y 0 

~ gl (x) = X + ~ 0 $ x $ 1 1 
Similarly g2 (y) = Y + 1 0 $ Y $ 1 I ... (S·~7f) 

(5·17 cO amJ (5·17 f) imply that the two joint p.d.f.'s in (5·17 c}and (5·17 e) 
have the same marginal ,p.d.f. 's (5: 17 d) or (5: 17 f)., 

Another iUustrati,on of continuous r.y.'s, is given in Remark to .Bivariate 
Normal Distribution, § 10·10·2. 

5·5·5. The Conditional Distribution l<~unction a~d Conditinal Prob­
ability Density Function. For two diamensi<;mal random variable (X , Y) , the 
joint distribution function Fx r(x ,y) I for any real numbers x and y is given by 

FxY(x,y)= P(X$x,Y$y) 

Now let A be the event (Yo $ y) such that the event A is said to occur when Y 
assumes values up tQ and in~lusi~e of y. 

l:Jsing conditional probabililics we may now write 

Jx . 
FxY(x,y)= P[A,IX=x] dFx(x) 

.. -00 , 
'" (5·18) 

The conditional distribution function Fnx (y I x) denotes the distributiOn 
function of Y when·X has already assumed the particular value k Hence' 

Fylx (ylx)= P[Y$yIX=x)= PIAIX=x, 

Using this expression, t~e joint di~tribution func.tion Fx r(x,; y) may ·be 
expressed in terms of th~ condition,a1 distribution function as foIlo\Ys,:. 

FxY(x,y)= rx Fylx(ylx) dFx(x) ... (5·18a) 
-00 

Similarly 

FxY(.A.,y)= J!oo F~,y'(xIY) dFy(y) ... (5·18b) 
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The conditional probability density/unction of Y given X for two random 

variables X and Y which arc jointly continuously distributed is defined as follows, 
for two real numbcr~ x and y : 

/nx (ylx)= i)i)y FylxCylx) ... (5·19) 

Remarks: 1. /x (x) > 0, then 

Ji ( I ) - /xr(x ,y) 
rlX Y x - /x(x) 

Proof. We have 

FxY(x,y)= JX Fnx(Ylx~ dFx(x) 
-00 

= J.:oo FnX(ylx) /x(x)dx 

Differentiating w.r.t. x, we get 

d a; Fxr(x,y)= FnX(ylx)/x(x) 

Differentiating w.r.t. y, we ,ge\ 

ddy [iJdx Fxy(x ,y)]= /nx (y Ix) /x (x) 

/XY(x, y) = fnx (y I'x) /x(x) 

Ji ( I ) - Ix y(x , y) 
nx .y x - /x(x) 

'2. If /r (y) > 0, then 

ji ( I ) - Ix y(x , y) 
Xlr x y - fr(y) 

3. In tenns of the differentials, we have 
, ; 

P (x<X ~x+dx I y< Y~y+dy) 
_ P(x<X~x+dx, y<Y~y+dy) 
- P(y<Y~y+dy) 

_ Ix y(x ,y) dx dy _ ji ( I ) itx 
- /r(y) dy - Xlr x Y 

Whence/XI r (x I y) may be interpreted as t,he conditional density function of 
X on the assumption Y = Y • 

5·5·6. Stochastic Independence. Let us consider two mndoin variables X 
and Y (of discrete or continuous type) with joint p.dJ.lxY(x ,y) and marginal 
p.dJ.'s/x (x) andgr (y) respectively. Then by the compound probability theOrem 

/xr (x ,'y)";' Ix (x) gy (y I x) 
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where gr (y I x) is the conditional p.d.f. of Y for given value of X = x. 
If we assume that g (y I x) does not depend. on x, then by the definiiion of 

marginal p.d.fo's, we get for continuous r.vo's 

g (y ) = J 00 f (x, y) dx 
- 00 

= Joo fx(x)g(ylx) dx 
- 00 

= g(ylx) J.:"oo k(x) dx 

[since g ( y I x) does not depend on· x· l 

= g(Ylx) [.: f(.) is p.d.f. of X I 
Hence 

g(y)= g(Ylx) 
and fxy{x ,y)= fx(x) gy{y) ... (*) 
provided g ( y I x) does not depend on x. This motivates the following definition 
of independent random variables. 

Independent Random variables. Two r.v.'s X and Y with joint p.d! 
fx y( x , y) and marginal p.d!.' s fx (x) and gy(y) respectively are said to be 
stochastically independent if and only if 

fx. r ( X , Y ) = fx (x) gr (y) ... (5·20) 

Remarks. 1. In tenns of the distribution function, we have the following 
definition: 

Two jointly distributed random variables X and Yare stocliastically inde­
pendent if and only if their joint distribution/unction Fx.r ( . , . ) is the product of 
their marginal distribution func,.tions.F x (.) and Gy{.) , i.e., if for real ( x , y ) 

Fx.r(x,y)= Fx(x), Gr(y) ... (5·20a) 

2. The variables which are not stochastically .independent are said to be 
stochastically dependent. 

Theorem 5·8. Two random variables X and Y with joint p.d! f( x, y ) are 
stochastically independent if afl.{i only if .Ix. /(x ,)I) can ~ be f.xpressed as the 
product of a non-nega~ive function of x alone and a non-negative function of y 
a/one, i·if·, if 

fx. r (x, y) = hx (x) kr (y) ... (5·21) 

where h (.) ~ 0 and k (.) ~ O. 
Proof. If X and Yare independent then by defiIlttiQn, we .have 

fx. r. (x , y) = fx (x) . gy (y) 

prakash
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wheref(x) and g (y) are margjnal p.d.f. of X and Y respectively. Thus condition 
(5·21) is satisfied. . 

Conversely if (5·21) holds, then we ha:ve to prove that X and Y are lnde~ 
pendent. For continuous random variables X and Y, the marginal p.d.f. 's ,CUY'given' 
by 

fx (x) == Loooo f(x, y) dy == J:'oo h (x) k (y) iy 

== h (x) J 00 k (y) dy = CI h (x), say 
-00 

and ·gr(y)== J~oo f(x,y) dx= J:'oo h(x) k(y) tb 

== k (y) J 00 h (x) dx ~ Cz k ;). say 
- 00 

where Cl and Cz are constants indepen(ienlof x and y. Moreover 

J~oo J~oo f(x. y) dx dy= 1 

::) J.:"'oo J.:"'oo h(x) k(y) dx dy= 1 

::) (J~oo h (x) dx J(J:oo k (y) dy J= ;. 
Cz C\ = 1 

Finally. we get 
fx. r (x • y) = h~ (x) kr (y) = CI Cz hx (x) ky (y) 

= (C'I hx (x» (cz ky (y» 

... (.) 

.... ( .. ) 

'" ( ... ) 
[using ( ••• )] 

= fx (:!) gr (y) [from (.)an<l(")] 

::) X and Yare stoct[astically independent. 

Theorem 5·9. If the random variables X and Yare stochastically inde­
pendent, thenfor all possible selections of the corresponamg pairs of real nUlJlbers 
(a), b\) • (az. bz) where aj ~ bi for all i = 1, 2 and where the values ± 00 are 
all~wed, the events (a\ <X ~ bl) and (elz < Y S b2) are independent, i.e., 

P [(al <X S bl) f"\ (az< Y~bz)] = P (al <XSbl)P (02< YS bz) 

Proof. Since X and Y are stochastically independent. we have in the uS~1 . 
notations 

fx. r (x • y) = fx (x) gy (y) 

In case of continuous r.v. 's , we have 

P[(a\<XSbdf"\(az<Y~bz)]= Jbl Jbz f(x,y) dx dy 
a\ az 

.. J*) 
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= (J~I fx (x) dx J( f~2 g, (y). dy ) [from (*») 

= P ( al < X 5; bd P ( a2 <; Y ~ Q2) 

as desired. 
Remark. In case of discrete r.v.'s th~orems 5·8 and 5·9 can be proved on 

replacing integration by summation over the given range of the variables. 
Example 5.:-0. For the following bivariate probability distribution of X and 

Y, fina 
(i) P (X 5; 1 , Y = 2"), (ii) P (X 5; 1 '), (iii) P ( Y = 3 ), (iii) P ( Y 5; 3) and 

(v)P(X<3,Y5;4) 

~ 1 '2 3 
:. 

4 5 6 

0 0 0 
1 2 2 3 

32 32 32 32 

1 
1 1 1 1 1 1 

16 16 8 8 8 8 

2 1 1 1 1 
0 

2 -32 32 64 64 64 

Solution. The marginal distributi9ns are given below: 

-~' 1 2 3 4 5 6 px(x) 

0 

1 

2 

py(y) 

(i) 

(it) 

(iii) 

(iv) 

Q 0 
1 2 2 3 8 - - -

32 32 32 32 32 
1 1 1 1 1 1 10 
16 16 8 8 8 8 16 

.J.. 1 1 1 
0 

2 8 - - -
32 32 64 64 64 64 
3 3 11 13 6 16 l:p(x)= 1 

32 32 64 64 32 64 _ l:p(y)= 1 

P(X5; I, Y= 2)= P(X= 0, Y= 2)+ P(X= I, Y= 2) 
I I = 0+ -=-
16 16 

P(X5; 1)=. P(X= 0)+ P(X= I) ~"\. 
8 10 7 '\ = - + - = - ( From a ve table) 
32 16' 8 
11 

P ( Y = 3) = 64 ( From above table) 

P(YS 3)= PO'= 1)+ P(Y= 2.)+ P(Y= 3) 
3 3 11 23 =-+-+-=-32 32 64 64 
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(v) P (X < 3. y ~ 4) = P (X = O. y ~ 4) + P (X-= 1 • Y ~ 4 ) 
+P(X=2.Y~4) 
-' . 

( 1 2J (1 1 1 I'J =. 32 + 32 + 16 + -16 + "8 + "8 

( 1- 1 1 1 J' 9 
+ 32 + 32 + 64 + 64 = 16 

Example 5"21. The joinJ probability distribution 0/ two random variables X 
and Y is given by : ' _ 

2 .~= 1.2 • ...• n 
• y= 1.2 • ...• x 

Examine whether X and Yare independent. (Calicut Univ. B.sc., 1991) 
Solution. The joint probability distribution table along wilh the marginal 

distributions of X and Y is given below. 

~ 1 2 3 ......... n pr(y) 

1 
2 2 2 2 2n ......... ---

n (n+ 1) n(n+) n (n+ 1) n(1tt 1) n (rt+ 1) 

2 
2 2 2 2{n-Q 

- n (Itt 1) n (Itt 1) 
......... 

n (Itt 1) n( Itt 1) 

3 
2 .2 2{n-2F 

- - n(n+ n ......... 
n (n+ 1) '!(Itt 1) 

n-l 
2 2 2x 2 ---

'n(n+ Ij - - - n (n+ 1) n (n+ 1) 
2 2 

n - - - - n (n+ 1) n (n+ 1) 

px(x) 
2 2x 2 2x 3 2x n 

n(n+l) n(n+l) n(n+l) 
......... 

n (n+ 1) 

Note that Y = I. 2 •...• x. 
When x=l. 0/=1; whenx= 2. y= 1.2;when~= 3.y= 1.2,3 and 

soon. • 
From the above table, we see lhat 

Pxr.(x,y)~ /1X(x)pr(y) v x .. y 

X and Y are not independenL 
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Example 5,22. Given the following bivariate probability ,distribu­
tion, o,btain (i) marginal distributions of X and Y, (ii) the conditional 
distribution of X given Y = 2, 

~ -1 0 1 

0 VIs ?t1s I,IIS . 
l' ¥Is ?,1s I,IIS 

2 ?,1s Vts 7(IS 

/ 

( M>:sore ,Univ. B~c., Oct. 1987 : 
Solution. 

-~ 
-1 0 I £ p(x,y) 

x 

0 Vis ?,1s VIs ~S 

I 3IIs ¥It; VIs lns . 
2 7,lis Vis ?,1s siis 

! t p(x,y) lns siis 4'ls 1 
y , 

:r~t M.argi:4a1 distribution of X. From'the above table, we get 

P~~X'S;"I)="I~= ~; P(X= 0)= 155= t; P(X= 1)= ~ 
Marg~a.i:distribution ofY : 
", 4 6 2 5,1 

.p (-'Y·: .. O ) = - . P ( Y = I) = - = - ; P ( Y = 2) =-- = -
15 ' 15 5 15 3 

(ii)Cond~tional distribution of X given Y = 2. We have 
;P(X= x ('\ Y= 2)= P(Y= 2),P(X= xl Y= 2) 

Ji>(x= xl Y= 2)= P(X= x ('\ Y~ 2) 
'P(Y.:=2\ 

," 'f .11 

:. P',(;X=:./'-II Y= 2)"~" P(X;i~;l:::('\2~= 2)=,2{); = ~ 
Example''' 23~, X and 1'iUtf·tt1!p,Jan4f:,m!rariob/e,s having t¥ joint density 

funct~QIJ. f ~,.tr:Y"'F- ~7 ( :h + J.)', -w"t~~;~ #n'd.rIJ,tA.wt'~I~ only the integer 

values O. J 4!U! ~ ~NJ the conditional disiri~ullo.n: oAf !1",~ ~ x.' .:. . . 
I [South Gujatat Univ. B~c., 1988] 
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Solution. The joint probability function 

I 
/(x'Y)=27'('2t+y); x=O,I,2; y=O,I,2 

gives the following table of joint probability distribution of X and Y. 

JOlNT PROBABILITY DISTRIBUTION/( x, y) OF K AND Y , 

~ 0 'I 2 /x (x) 

0 0 1127 2/27 3/27. 
1 2/27 3/27 4/27 9/27 
2 4/27 5/27 6/27 15/27 

1 
For example/ ( 0, 0) = 27 ( 0 + 2 x· 0 ) = 0 

- 1 2 1 ~ 
-.(,il,O)= 27(0+ 2x ~)= 27; /(2,0)= 27(0+ 2x 2)='27 

and so on. ' 
The marginal probability distribution of X is given by 
. /x (x) = t /( x, y) , 

y 

and is tabulated in last column of above table. 
The conditional:,!distribution of Y for X = x is given by 

/m (Y = Y I X = x) = /( x, y) 
/x (x) 

and is obtained in the following tab,le., 

CONDITIONAL DISTRIBUTION OF Y FOR X = x 

~ 0 1 2 

I 

0 0 1/3 2/3 

I 1 2/9 3/9 4/9 

2 4/15 5/15 6/15 

553, 

Example 5·24. Two discrete random'vanaples X and Y Mve the jOint 
probability density/unction: 

A.x e-a. t (1- p )"'-~ 
p ( x ,y ) = '( _ )' ,y = 0, 1,2, .... x ; x = 0, I, 2. ... y . x y . 
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where A. p are constants with A->' 0 and 0 < p < 1. 
Find (i) The marginal probability density functions of X and Y. 
(ii) The conditional distribution of Y for a given X and of X for a given Y. 

(Poona Univ. B.Sc., 1986 ; Nagpur Univ. MSc., 1989) 
Solution. (i) 

x 
A"e-).t( 1- p)"-1 

px(x)= L p(x .• y)= L y !(x- y) ! 
y= 0 y= 0 

= A"e-). ~. x !p"( I-p)"-1 = A"e-). ~ "C....,( 1-.. )"-1 
x! k" y!(x-y)! x! k" 1P P 

J=O J=O 
A" e-). 

;:: -,-. X= 0.1.2 •... x. 
which is the probability function of a Poisson distribution with parameter A . 

GO GO 

A"e-).rI( 1- p),,-1 
py(y)= L p(x.y)= L y ~(x- y)! > 

Jt= 0 Jt= Y 

= (Ap)' e-).; [A ( r-.p~ ],,-1 ::: (Apt e-). l(l-p) 

y! k" (x-y)! y! 
x=y 

_ e-).P ( Apt. _ 
- , • y - O. 1.2 •... j 

y • 
which is the probability ftinction of a Poisson distribution with parameter A p . 

(U) The conditional distribution of Y for given. X is 
( I ) - Pxr (x. y) _ A" e-). p' ( 1- P Y-1 X ! 

Prix y x - px(x) - y! (x- y) ! A"e- 1 

= , ( X ~ )' II ( 1-p r ' = "c, p' (.l ~ P )"-1 • X> Y 
y. X Y . 

The conditional probability distribution of X for given Y is 

( I' -)':=-pxr (x. i) 
PXI r x y - Pr ( Y ) 

A" e-1. II (1-p ),,-1 Y ! 
;: y! (x - y)! . e- 1p (A P )' 

[c/. Part (i) ] 

._ e-1. Q (Aq),,-1. _ 
- (x-y) I • q-l-p. x>y 

Example S·2S. The joint p.d/. of two random variables X aniJ ,Y is 
given by : 

. _. 9 ( 1 + x + y) • (0$ x < 00)' 
f (x • y ) - 2 ( 1 + x) 4 ( 1 +' y)4' 0 < Y < 00 

prakash
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Find the marginal distributions of X and Y, and the conditional distribution of Y 
for X =x. 

Solution. Marginal p.d.f. of X is given by 

fX(x) = fooo f( x,y l d~ 

= 9 100 (1 + y) + x d 
2 ( 1 +' X)4 0 (1 + y)4 Y 

= 9 4' 1000 [(1-+ y r 3 + X (1 + y r 4 ] dy 
2(I+x) 

9 [I -:-1 100 I -1 100
] = 2 ( 1 + X)4 2 (1 + y)1 0 + x 3 (1 + y)3 0 

= 2 ( 19+ x )4 . [ ! + 1 ] 
3 3 + 2x 

= - . . O<x<oo 
4 (l:t-xt' 

Since f('x ,y) is symmetric inx andy, themarginalp.d.f. ofY i~ given by . . 

fr(y)= Jooo f(x ,Y) dx 

3 3 +2y 
='4' (l+yt; O<y~oo 

The conditional distribution of Y for X = x is given by 

fxr( Y = y I X = x ) = fxr ( x ,y ) 
fX(x) 

_ 9(1 +x+y) 
- 2(I+x)~ (Ity)4 

4(1+xt 
3(3+2x) 

6(I+x+y) = - - . O<y<oo 
( 1 + y)4 -(3 + 2X) , 

Example 5·26. The joint probability density function of a two-dimen­
sional random variable (X,Y) is given by 

f(x,y)=2; O<x< I,O<y<x 

= 0, elsewhere 

(i) find the marginal density fwactions of X and Y, 
(ii) find the conditional density function of Y given X;,. x and conditwnal 

density function of X given Y = y, and 
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(iii)fcheck/or indepe~ence o/X and y. , 
[M.S.Baroda,Univ. B.se., 1987; Karnataka Univ. B.se., Oet.1988) 

. Solution. Evidently / ( x , y ) ~ O' and 

I J~ J; 2dxdy= '2 J~ x dx= 1 

li) The marginal p.d.f: s of X and Y are given ~y 

/x(x)= J~/xr(x,y)dy= J; 2dy= 2x, O<x<l 

= fO, elsew~re 

/r(y)= JOG fxr(\x,~)dx= JI 2dr=.2(1- y), 
i • -00' ~ y , 

O<y<1 

=. 0, elsewhere 

(ii) The~conditional density function of Y given X is 
. k(x,y) 2 1 

/Ylx(ylx)= - - = -= - 0< x< 1 
/x(x) 2x x' 

The cOnditional density function of j( given Y is 
_k(x,y)_ 2 1 

ix'1r(xl y)- /r(y) - 2(1-y) (I-y)' O<y<-1 

(iii) Since/x(x)/r(y)= 2(2x}(1-y)~/xr(x,y), X and'Yarenot 
independenL 

Example 5·27. A gun is aimed at a certain point (prigi" 0/ the coordinate 
system). Because o/the random/actors, the actual hit point can be any point (X,Y) 

-in a circle of radius R about the origin. Assume tMt the joint density o/X and Y is 
constant in this circle given by : 

/n (x , y ) = k , for K + y'l So Rl 

= 0 , . otherwise 

(i) Compute k, (ii) show ,hat 

h (x) = :R {\-( i J r for- - R So x S. R 

= 0, otherwise 

[Calcutta Univ. B.Sc.(Sta( 8005.),1987] 
Solution. (i) The constant k is computed from the consideration that the total 

PfObability is ,1. i.to, ' 
GO GO 

J J f(x .,Y) dxdy= '1 
-00 -00 

~ J J -kdxdy= 1 
1 1"'R1 
%+,~ 

prakash
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=> 4 JJ fdxdy= 1 
I 

where region 1 is the first quadrant.of the circle 
Xl+ i= R2. 

(ii) 

4k Jt(J;R2~i1.dY)dx=1 

4k J~ ..JR2 - i- (b:.= 1 

4k I x ..JR2 - i + ~l sin-I (i ) I~ = 1 

4k . (~2 . ~ J= 1 => k= _1_ 
1tRl 

/xr(x,y)= l/(nR2) x2+i~ R2 

= 0, otherwise 
..JR1_i 

/x (x) = J~oo /( x, y) dy = 1t ~2 J 1 . dy 
-..JR2_ i 

5·57 

[ because i- + f ~ R2 => - ( R2 - i- f2 ~ Y ~ ( R2 - i- f2] 
..JR1_,i 

= ~ J l'dy= ~ (R2_i-tl 
nRl 0 1tR 

= n2R [ 1 - (i )2 'fl 
Example 5·28. Given: 

/(x,y)= e-(a+,) I(o .• )(x). I(o ... )(y) , 

find (i)P (X> 1), (il) P.(X < Y'I,X < 2·y), (iil) P (1 <X + Y < 2) 

[Delhi Unlv. BoSc. (Maths Hons.), 1987] 
Solution. We are given: 

/(x ,y)= e-(H,) 0 ~x<oo, 0 ~y <00 

= ( e-· )( e- 1 ) 

=/x(x).fr(y) ; O~x<oo, O~y<oo 

=> X and Y are independent and 

... (1) 

/x(x)= e-·; x~ 0 and /r(l)= e-' ; y~O ... (2) 
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00 00 

(i) P(x>l)=f fx(x)dx=f e-xdx 

(ii) 

X~y 

~ ____ -*X 

o . 

P(X< Y)= [[ [ f(x.y)dx ] dy 

= j[ e-' I~-;!~ ]dY= - fe-'( e-'-l )dy 
o 0 

= -I ~~ + e-1 I~ = 1 -1 == 1 
P(X< ~Y)= j[ tf(X.Y)dx]dY= -fe-'(e- 2'-l)dy 

000 

= _ \ C + e-' \00 = 1 _ .!. = 1 
. . . -3 0 3 3 

Subsutuung In (3). 

P ( X < Y I X < 2Y ) = 1/2 = 1 
213 4 

'" (3) 

(iii) P(1<X+Y<2)=fJ f(x.Y)dxtly=II f(x.y)dxdy 
. y I II 
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= l( r;(X,Y)dY]dx+ t( j-;(X,Y),dyjdx 
o l-x 1 0 

= l(e-. J-:-, dy jdx+ t(e- x J-;-, dy jdx 
o l-x 1 0 

1 2 

J e-' (.-1 I-\)dx J e- x ('-1 l)dx = =t,e -e + =t e - , 
o 1 

1 2 

= - ( e- 1_ e- I ~ J 1· dx - J ( e- 1_ e-')dx 

o 1 

= -(e- 2 -e- l ) \ X \1 - \ e-1·x + e-'\ i o . 
= 2/e - 3/e2 

Example S·~9_. (i) Let F (x .. y)_ be -the df. ()f X and Y. Show that 
P(a< X~ b, c< Y~ d)= F(b,d)- F(b,c)- F(a,d)+ F(a,c) 
where a .. b, c, d are real constants a < b ; c < d. 

Deduce that if: F (x, y ) = 1, for x -+ 2y ~ 1 
F ( x , y ) = 0, f~r x + 2y < 1, 

then F ( x , y) cannot be joint distribuJion function of variables X and Y. 
(ii) show that, with Usual notatio" : for all x, y, 

F x ( x ) + F r( Y ) - 1 ~ F rr ( x : y) ~ ..J'"=F-x (-x--:)--:F=-r--=-( -y -) 

• [Delhi Univ. B.Sc. (Maths Hons.), 1985 ] 
Solution. '(i) Let us define the events : 

A:{X~aJ ;B:(X~b};C= {Y:S;c}';O= (Y~d); 

fora<b;c<d. Y )") 
P(a< X~ b n c< Y~ d) d (a,d " ,<b,d 

= P [ (B - A) n (0 - C) ] 
=P'[B n (O-C)-A n(O-C») 

(. C I-----:--..-t""+!.., 
... (*) 

(By distributive property of sets) 
We know that if E cF => EnF=E. then 0 0. b X 
P(F-E).= P(Er.'I F)= P.(F)- P(EnF)= P(F)- P(ty ... (u) 

Obviously A c B => [A n ( 0 - C)] c [B n ( 0 - C)] 
Hence using (**). we get from ( .. ) 
P(a< X:S; b n c< y:s; d)= P[Bn(O'- CT1- P.[An(O'- C)] 

= P [ (B nO) - (8 n C ). ] - P [ (A nO) - (A n C ) 1 
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= P(BnD).:.. f(B.nC)- P(Anp)+ P(AnC) ... (***) 

[On using (**), since C cD=> (B n C) C: (B ("\ D) and (A n C) c (A n D) ) 
We have: 
P(BnD)= P[XS b n YS d]= F(b,d). 
Similarly 
P (B n C) = F (b ,c) ; P (A n D) = F (a , d) and P (A n C) = F ( a , c) 
Substituting in (***), we get: 
P (a<XS bn c< YS d)=F(b ,d)-F(b ,c)-F(a ,d) +F(a ,c) ... (1) 

.We are given F (x ,y) = 1, for x+ 2y ~ 1 } 
= 0, for x + 2y < 1 ... (2) 

In (1) let us take: a= 0, b=· 1/2, ; 'c= 1/4, d= 3/4 S.t. a< b and 
c < d . Then using (2) we get: 

F(b,d)= 1 ; F(b,c)= I'; F(a,d)= 1 ; F(a,c)= O. 
Substituting in (1) we get: 
P(a< XS b n c< YS d)= 1-1-1+ 0= -'1; 

which is ilot.l,ossible since P ( . ) ~ O. 
Hence F ( x , y) defined in (2) cannot be the distribution function of variates 

X and Y. \ , 
, (ii) Let us define the events: A = {X s" x} ; B = { Y S y} 

.Then P (A ) = P (X S x) = Fx (x ); P (B ) = P (Y S y) = F y (y ) } (3) 
and, P(AnB)= P(XS xnYSy)= FXY(x,y) •.. 

(AnB)cA ~ P(AnB)S P(A) => FXY(x,y)S Fx(x) 
(AnB)cB => P(AnB)s:. P(B), => Fxr(x,y)S Fy(y) 

~ultiplying these in~ualities we get.: ' 
rx,r (x,y)S Fx(x)Fr(y) => f\r(x"y)S ..JI7x(x)Fr (y) ... (4) 

Also P(AuB)S 1 => P(A).,+ P(B)- P(AnB)S 1 
=> P(A)+ P(B)- 1 S P'(Af"I B) 
=> Fx(x)+ Fr(y)-1 S Fxr(x,y) ... (5) 
From (4) and (5) we get: 
Fx(x)+ Fr(y)-.J. S Fxr(x,y) S ..JFx(x)Fr(y) , as' required. 

Example 5·30. If X and Yare two random varjables having joilll density 
function 

1 
f(x,y)= i (6-' ... - y) ; O:c:: x< 2, 2< y< 4 

= 0, otherwise 

Find (i)P(X<lf"1Y<3)~ (ii)P(X+Y<3) and(iii)P(X<11 Y< 3) 

(Mad"~ Univ. B.5c., Nov. 1986) 
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Solution. We have 

(i) P (X < I ('I Y < 3) = J~ 00 I! 00 /( x, y) -dx dy 

11.J3 l.N-' - ) dxd 3 = -\v-x-y Y =-o 2 8 8 

(ii) The probability that X +Y will be/less than 3 is 

1IJ3-xI, 5 
P(X+ Y< 3)= 0 2 'S(6-x.,-y) dxdy = 24 

(iii) The probability that X < I when it is-known that.Y < 3 is 

P ( X I I Y 3) = p ( X < I ('I Y < 3 ) 3/8 = 1 
< < p ( Y < 3 ) 5/8 5 

[ 'p ( Y < 3) = Ig I] t ( 6 - x - y ) dx dy = i ] 
Example 5·31. I/thejoint distribution/unction o/X and Y is given by: 

F(x;y)= I-e-~-e-'+ e-(H,); x> 0, y> 9 
-.. 

= 0; elsewhere 

(a) Find.,he marginal densities o/X and Y. 

(b) Are X and Y independent? 

5,61 

(c)FindP(XS I ('IYS I) andP(X+ Y~ I). (i.c.s., 1989) 

Solution. (a) & (b) The joint p.d.f. of the r.v.'s (X, Y) is given by: 

~ ( ) _ d2 F. ( x ,y ), d [ -, _ (H") ] 
}xr X ,y - dx dy 'dx e - e 

= e-(U,); x~o, y~O 

= 0; otherwise ... (i) 

We have 

/xdx,y)= e-". e-'= /x(x )/dy) ... (ii) 

Where /x(x)= e-" ; x~O ; /dy)= e-' ; y~ 0 ... (iii) 

(ii) => X and Y are independent, 

and (iii) gives the marginal p.d.f.'s of X and Y. 

(c) P(XSI ('I YSI) = Id fol/(x,y)dxdY 

~ ( M- e-" dx ) (Jd e-' dy ) 

= ( 11.. e~J r 
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P(X+Y~I)= J J f(x,y)= J Jf(x,y)dy dx Y 
1 [I-X ) 

.t+ y~ 1.... 0 0 {O,n 

I[ I-x 1 =! e- X ! e-1 dy dx 

I 

= J e- x ( 1 - e-(J "x) )dx = 1- 2 e- t 

o . 

Example 5·32. Joint distribution of X and Y is given by 

< 1 + 1)~ f(x,y)=-4xye- X y '.; x~ 0, y~ O. 

Test 'whether X and Yare independent. 

o {l,O} 

For the above joint distribution I find the conditional densit), of X given 
Y = y. (Calicut Univ. B.Sc., 1986) 

Solution. Joint p.d.f. of X and Y is 

f(x,y)= 4xY'e-<i+ h; x~ 0, y~ O. 

Marginal density of X is given by 
oa .... 

fdx)= J f(x,y)dy= J 4xy p'-<i+ h dy 
o o 

oa 

1 J 1 = 4x e- x y e-ry-dy 

o 
oa 

4 -i J -, dt = xe . e .-
o 2 

-i 1 -, 100 ·=2x·e -e 0 

1 

=> fdx)= 2x e- x ; x~O 

Similarly, the marginal p.d.f. of Y is given by 

(1(y)= j f(x,y)dx = 2y e- l ; y~ 0 
o 

(Put l= t ) 

Since f ( x ,y ) = It ( x) • /2 ( y ) , X and Y are independently distributed. 
The conditional distribution of X for given. Y is given by : 
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f(X= xl Y= y)= f(x,y) 
/z (y) 

z 
= 2t e- x ; X ~ O. 

EXERCISE 5(e) 

S·6J 

1. (a) Two fair dice are tossed sim'ultaneously. Let X denote the number on 
the ftrst die and Y denote the number on the second die. 

(i) Write down the sample space of this experiment. 
(ii) Find'the following probabilities: 

(1) P ( X + Y = 8), (2) P ( X + Y ~ 8), (3) P ( X = Y L 
(4)P(X+ Y= 61 Y= 4), (5) P(X- Y= 2). 

(Sardar Patel Univ."B.Sc., 1991) 
2. (a) Explain the concepts (i) conditional· probability, Oi) random vwiable, 

(iii) independence of random variables, and (iv) marginal and conditional prob­
ability distributions. 

(b) ~xplain the notion of the joint distribution of two random variables. If 
F(x , y) be the joint distribution function of X and Y , what will be the distribution 
functions for the marginal distribution of X and Y ? 

What is meant by the conditional distribution of Y under the condition that 
X = x? Consider separately the cases where (i) X and Y are both discrete and 
(a) X and Y are both continuous. 

3. The joint probability distribution of a pair of random variables is given by 
the following table :-

~ 1 2 

j 

1 0.1 0.1 

2 02 0.3 

3-

0.2 

0.1 

Find: 
(i) The marginal distributions. 

(ii) The conditional distribution of X given 
Y'=]. 

(iii) P { ( X + Y) < 4}. 

4. (a) What do YQU mean by marginal and conditional distributions? The 
following table represents the joi~t p.,robability distribution of the discrete random 
variable <. X , Y) 

~ 1 2 3 

. I v\l 116 0 
2 0 Ih l~ 

3 Vt.s V4 ~5 

(i) Evaluate marginal distribution of X. 
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(ii) Evaluate the conditional distribution of Y given X = 2, 
(Aligarh Univ. B.Sc., 1992) 

( b) Two discrete ral1dom variables X and Y have 

P(X= 0, Y= 0)= ~ ; P(X= 0, Y= 1)= i 
P(X= I, Y= 0)= i ; P(X= I, Y= 1)=,% 

Examine whether X and Y' are independent 
(Kerala Univ. B~c., Oct. 1987) 

5. (a) Lelthejointp.mJ. of Xl and'Xl be 

Xl +Xl 
P(Xl,Xl)= U-; XI= 1,2,3; Xl= 1,2 

= 0, otherWise 

Show that marginal p.m.r.'s of Xl and Xl are 

(b) Let 

2x1 + 3 6 + 3Xl ' pd xI) = 21"; Xl = I, 2, 3; Pl ( Xl ) == 21" ;' Xl = 1,2 

!(Xl,Xl)= C(XlXl+ eX1 ); 0< (Xl , Xl) < 1 

= 0, elsewhere 

(i) Qeterinine C. 
(U) Examine whether Xl andX2 are stochastically independent. 

4 g (Xl) = C ( ~ Xl + e'" ) , 
Ans. (i) C = --, (ii) . 

4e. - 3 g ( ':1 ) = C q Xl + e - 1 ) 

Since g (xI) . g (xz) :# !(XI ,Xl) , Xl and Xl are not stochastically inde­
pendent. 

6. Find k so that! ( X , Y ) = k X y, 1::S x::S y::S 2 will be a probability 
density function. \ (Mysore Univ. B.sc., 1986) 

Hint. II ! ( X ,y) dx dy = t ~ k 1\ r l y ely 1 dx = 1 ~ k = 8/9 
1 tx ' 

7. (a) If !(X,y)= e-(r+1 ); x~ 0, y~ 0 
= 0, .elsewhere 

is the joint probability density function of random variables X and Y, find 
(i)P(X< I), (ii)P(X> Y), and (iii)P(X+ f< 1). 

Ans. (,') 1 I (") 1 d' (''') 1 2 • --, II - an III --
e 2 e 
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( b) The joint frequency function of ( X , Y) is given to be 
f(x,y)= Ae- x -,; O~ x~ y, O~y<+oo 

= 0 ; otherwise 
(i) Detennine A. 

(ii) Find the marginal density function of X. 
(iii) Find the m<a'ginal density function of Y. 
(iv) Examine if X and Y are independent 
(v) Find the conditional density function of Y given X = 2. 

5·65 

• [Madras Univ. B.5c. (Main Stat.), 1992] 
(c) Suppose that the random variables X and Y have the joiqt p.dJ. 

f( x, ) = f k x (x - y), 0 < x < 2, - x < .v < x 
y 1 0 , elsewhere. 

(i) Evaluate the constant k . . 
(ii) Find the marginal' probability' density functions of the random " .. .iables. 

(South Gujarat Univ. B.5c., 1988) 
8. (a) Two-dimensional random variable (X , Y) have the joint density 

f(x,y.)= 8xy, 0< x< y< 1 

= 0, otherwise 

(i) Find. P (X < 112 n y.< 1/4). 
(ii) Find the marginal and conditional distributions. 
(liij Are X and Y indf,;pendcnt? Give reasons for your answer. 

. (South Gujarat Univ. B.Sc., 1992) 
fl(X}=4x(l-xz),O< T< I fl(xly)=2x/l : O<x<y,O<y<1 

A~s. = 0, otherwise 
• fz(Y) = 4l, 0< y < 1 'b(Y I x)=2y/(l-.t2); x <y < 1,0 <x < 1 
9. (a) The random variables X and Y have the joint density function: 

f(x,y)= 2, if x+ y~ I, x~ 0 and y~ 0 
= 0, otherwise 

Find the conditional distribution of Y ,given X = x . 
(Calcutta Univ. B.Sc. (Hons.), 1984) 

(b) The Iat:ldom variables X and Y have.the joint distribution given by the 
probability density function: 

f( x ) = { 6 ( 1 - x - y), for x> 0, y > 0 , x + y < 1 
, YO, elsewhere 

Find the marginal distributions oJ X and Y • Hence ex~ine if X and Y are 
independent [Calcutta Univ. B.5c. (Hons.), 1986) 

10. If the j6i'nt distribution function of X and Y is g~ven by 
F (x, y ) = ( 1 - e- X

)( 1 - e ') for x> 0, y > 0 
= 0, elsewhere 
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Find P ( 1 < X < 3, 1 < Y < '2) . [Delhi Univ. M.A.(Econ.), 1988] 

mot. Reqd. Prob. = [f e-~ <Ix-If eO, dy J= ( I - eO' X I - eO' 1 
11. Let X and Y be two random variables with the joint probability density 

function 

I ( x ) = { 8 x y ,0 < x:s;. y < 1 
, Yo, otherwIse 

Obtain: 
(i) the joint distribution function of X and Y. 

(ii) the marginal probability density function of Y; and 
(iii)p(~:S;~11< Y:S; I). 

12. Let X and Y be jointly distributed with p.d.f. 

/{x,y)=! ~(I+Xy), Ixl < I, Iyl < 1 
o ,otherwise 

Show that X and Y are not independent but X2 and y2 are independent 
1 

Hint. Idx)= J I(x,y) dy =~, -1<x<l; 
-1 

1 

fz ( Y ) = J f (x ,Y) dx = ~~, - 1 < y < 1 
-1 

Since I( x, y) -:I: Ji (x )/2 (y) ,X and Y are not independent. However, 
..fi 

P ( X2 :s; X ) = P ( I X I:S; ..JX) = J Ji (x ) dx = ..JX 
-..fi 

P ( X2:s; X ("\ y2:s; y) = P ( I X I:S; ..JX ("\ I YI:S; ,fJ) 

=.f[ [f(U'V)dv] du 
-..fi -..ry 

.= ..JX-,fJ 
= 1'. ( X2:s; x) . P ( y2:s; y) 

=> ;X2 and y2 are i,ndepen4eiit 
U .. ( a) The joint probability density. function of the two dimensional random 

.Variable (X , Y)_ is given by : 
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I( x, )={ x3 l/16 , O~x~2,O~y~2 
YO, elsewhere 

Find the marginal densities of X and Y. Also find the cumulative distribution 
functions for X and Y. (Annamaiai UDiv. B.E., 1986) 

3 3 

Ans. Ix(x)= ~ ; O~ x~ 2; Ir(y)= ~ ; O~ y~ 2 

j 0 ; x< 0 j 0 ; y < 0 
Fx(x)= x·/16; O~ x~ 2 Fr(y)= l/16; O~ y~ 2 

1 ;x>2 1 ;y>2 
(b) The joint probability ~ensity function of the two dimensional random 

variable (X , Y) is given by : ' 

18. 1< < < 2 I(x,y)= 9 xy , _x_y_ 
O , elsewhere 

(i). Find the marginal density functions of X andY, 
(;;) Find the conditional density function of Y given X = x, and conditional 

density funciton of X given Y = Y . 

• 

[Madras Univ. B.Sc. (Stat. Main), 1987] 
2 

Ans. (i) Ix(x)= J I(x,y)dy= ~X(4- xz) 1~ x~ 2 

= 0 otherwise 

fr( y ) = r I(x ,y) itt = ~ y (i - 1) ; 1 ~ Y ~ 2 
I 

2x 
IXIy(xIY) = -z-l 1 ~ x~ y 

y -
_/(x,y)_~ 

Inx(YI x) - fx(y) - 4-xz x~ y~ 2 

14. The two random variables X and Y have, for X = x an<1 Y == Y , the joint 
probability density function: 

I ( x , y ) = -+ ' for 1 ~ x < 00 and .! < y < x 
2x y x 

Derive the marginal distributions of X and Y . Further obiain the conditional 
distribution of Y for X = x and also that of X given Y = y. 

(Civil Services Main, 1986) 
x 

Hint. Ix ( x ) = J f ( x ,y )'dy = J I ( x ,y ) dy 
y lIx 
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Idy)= J I(x,y)dx 

.,. 

=J/(x,y)dx; O~y~1 
1/y 

00 

=J/(x,y)dx; l:Sy<oo .. 
X y 0 

15. Show that the conditions for the tunction 

I(x,y)= k t. •• p [AXz+ 2 Hxy+ Bl], -oo«x,y)<oo 

to be a bivariate p.dJ. are 

(i)A:SO, (ii)B:SO (iii) A B - H2 ~ O. 

Further show that under these condition~ 

k = ~ (A B - HZ JIl 
Hint. I ( x ,y) will represent the p.d.f. of a bivariate distriibution if and 

only if 

JOO Joo l(x,y)dxdy=1 
-00 -00 

~ k J .:"00 1.:"00 exp [A.? + 2 H x y + B l ] dx dy = 1 ... (.) 

We have 

A.?+ 2Hxy+ 3l= A [~+ ~ xy+ 1f] 
= A [( x+ ~ y j + AB;.H' ."j ... ( .. ) 

Similarly, we can.write 

A.t'+2HXY+B"~B[(Y+ ~xi+ AB;'H' x'] .:. ( ... ) 
Substituting from ( .. ) and ( ..... ) in (.) we observe that the double integra,lon 

the left hand side will converge if ~nd only if 

A~ 0, BS 0 and AB- HZ~ 0, 
as desired. 

- Let us take A = - a ; B = - b ; H = h so that AB - HZ = Db - hZ, where 
a>O,b>O: 
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Substituting in (*), we get 

J 00 J 00 [Ob - h'2 '2 1 '2 ] k exp - --'y - - ( - ax + hy ) dx dy = 1 
.-00 -00 0 a 

J 00 r J ob - h2 2) J 00 {I '2}] => k _ oct ex~ - -0- y . _ 00 exp -; ( ax - h>: ) dx dy 

= 1 ... (****) 

Now 

(B
J 

Fubini's theorem) 

Joo {I l} Joo (u'! du exp --( ax- hy) dx= expo -- -
-00 0 -00 0 0 

(ax- hy= u) 

Hence from (****), we get 

k - I! J 00 exp {_ ob - hl l}' dy = 1 'I"; -00 0 

k --K."~ = 1 a ab-h 

=> k= !~ob-hl = !~AB_Hl. 
1t 1t 

OBJECTIVE TYPE QUESTlQNS 

I. Which of the following statements are TRUE or FALSE. 
(i) Giv.en a continuous random variable X with probability density function 

f( x), thenf(x) cannot exceed unity. 
(ii) A random variable X has the following probability dellSity function: 

f(x)= x, 0< x< 1 
= 0, eisewhere· 

(iii) The function defme4 as 
f( x)-= 1 x I. '- 1 < x < 1 

= 0, elsewhere 
is a possible probability depsity function. 

(iv) The following representS joint probability distribution. 
X 

1 2 3 

-1 1/9 1/18 1/18 ° 1/18 2/9 3/9 
1 118 1/18 1/18 
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II. Fill in the blanks : 
(i) If Pl (x) and Pl (y) be the marginal probability functions of two inde­

pendent discrete random variablies X and Y , then their joint probability function 
p(x,y)= ..• 

(ii) The functionf( x) defined as 
f(x)=lxl, -1< x< 1 

= 0, elsewhere 
is a possible •..... 
5·'. Transformation or One~imension~" Random Variable. Let X be a 

random vanable defined on abe event space S and let g (.) be a function such that 
Y = g (X) isalsoat.v.defmedOllS. In this section we shall deal with the following 
problem : 

"Given the probability density of a r.v. X, to determine the density of a new 
r.v.Y=·g(X)." 

It can be proved in general that.. if g (.) is any continuous function, then the 
distribution of Y = g ( X) is uniquely determined by that of X . The proof of this 

\ 

result is rath~ difficult and beyond the scope of this book. Here we shall consider 
the following, relatively simple theorem. ' 

Theorem 5·9. Let X be a continuoUs r.v. withp.df.fx (x). Let y= g(x) 
be strictly monotonic (increasing or decreasing) function of x. Assume that 
g (x) is differentiable (and hence continuous)for aUx. Then the p.d/. of the r.v. 
Y is given by 

hy(y)= flC.(X) \ :; \' 

where x is expressed in terms ofy. 
Proof. Case (i). y = g (x) is strictly increasing fUliction' of x (i.e., 

dy/ dx > O. The df. of Y is given by 

Hrty)= p.(YS y)= P[g(X)S y)= P(XS g-l(y)], 

the inverse exists and i~ unique, since g (.) is strictly increasing. 

.• Hr(y)= Fx[g-l(y)], whereF isthed.f.ofX 

= Fx(x) [ .. , y=g(x) ~ g-l(Y)=XJ 

Differentiating w.r.t. y, we get 

d d ( )dx hr(y)= dy [Fx(x)]= dx Fx(x) dy 

dx 
=/x(x)-

dy 
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Case (ii). Y = g (x) is s~rictly monotonic decreasing. 

Ilr (y) = p (Y ~ Y ) = P [g (X) ~ Y ] = p [X ~ g-I (y )] 

= I-P[X~g-l(y)]= I-Fx[g-I(y)]= I-Fx(x), 

where x = g-I (Y), the inverse exists and is unique. Differentiating w.r.t~ y, we 
get 

d[ ]dx dx 
hy (y) = dx I-fx(x) dy= -/x(x)· dy 

=Ix(x). -dx 
dy ... (**) 

Note that the algebraic sign (-ive) obtained in (**) is correct, since y is a 
decreasing function of x ~ x is a decreasing functio~ of y ~ dx / dy < O. 

The results in (*) and (**) can be combined to give 

hy (y) = Ix (x) I : I 
Example 5·33. If the cumulative distribution/unctiOn of X is F (x) , find the 

cumulative distributiOn/unction of 
(i). Y == X + a, (ii) Y = X - b, (iii) Y= ax , 
(iv)Y = X 3., and (v) Y =,1 z 
What are the corresponding probability 'density functions? 

Solution. Let G (.) be the c.dJ. of Y. Then 
(;) G(x) = P ( Y~' x) = P [ X + a ~ x] = P [X ~ x - a] = F (x - a) 

(ii) G(x) = P(Y.~ x-)= P[X- b~ x]= P[X~ x+ b]= F(x+ b) 

(iii) G(x) = P [ax ~ x];= P [ X ~ ; J. a> 0 

=F(;}ifa>o 

and G(x) = P [ X ~ ;] = 1 - P [ X < ; J 
= 1- F(;J. ifa< 0 

(iv) G(x) = P[Y~ x]= P[X'~ x]= p[X~ x l13 ]= F"(Xl/3 ) 

(v) G(x) = p[xz~ x]= [_ilz~ X~ xllZ ] 

=: pJ X ~ in J - P [ X ~ - -il~Z ] 
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Variable 
x 

X- a 

aX 

X, 
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= 0, ifx< 0 
= F(,/x)- F(- -Ix- 0), ifx> 0 

df· p.d/. 
F(x) ft.x) 

F(x+a) ft.x+ a) 

} F(z/a) a> o} (Va) /(x/a) , a> 0 

I-F(x/a) ,a< 0 (- Va) /(x/a) , a< 0 

} .F(~z)- F(- ~z-o) 1 I 

} 
2 (~x) [f Vi + /(- -Ix ) ] 

for x> 0 ( for x> 0 
. 0, otherwise 

= 0 for x~ 0 

F(x l13) .!. / (XIl3 ) • _1_ 
3 r 

EXERCISE S(f) 

1. (a) A random variable X has F (x) as its distribution function [f(x) is 
the de,!lSity function]. Find the distribution and the, density functions of the 
random variable: 

(i) Y= a+ bX ,a and b are real numbers, (ii) Y= X -I, [P (X= 0)= 0], 
(iii) Y= tan X , and (iv) Y= cos x. 

(b) Let/(X)~ { ~ • - 1< x< 1 
. 0 , elsewhere 

be the p.d.f. of the r. v. X. Fiild the distribution function and the p.d.f. of Y = X 2 • 

[ Delhi Univ. B.5c. (Matbs HODS.), 19881 
I 

Hint. F(x)= P(X.~ x)= r /(x)dx= t(x+ 1) 
-I ... (.) 

Distribution function G ( .) of Y = X 1 is given by : 

Gr (x) = F (..fX) - F (,... ..fX) .; t> 0 [c.f. Example 5·33 (v)] 

1 .r' 1 ..fX 
= '2 ("IX + 1) - '2 (- x + 1) [From (.)] 

=..fX O<x<1 
( As - 1 < x < 1, Y = X 1 lies between 0 and 1 ) 

f l, . G' 1 0 p.d.f. 0 Y = X IS g (x) = ( x ) = 2Tx; < x < 1 
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2. Let X be a continuous random variable with p.d.f.1 (x ) . Let Y = X 2. Show 
that the random variable Y has p.d.f. given by , 

g (y ) = l2"1y- [I ( ..JY) + 1 (- ..JY)], y> 0 

o , y~ 0 
3. Find the distribution aDd dehsitiy functions for (i) Y = aX + b, O::F- 0, 

b real, (ii) Y = eX, assuming that F (x) andl (x) , the distribution and the density 
of X are known . 

. G(y)= F[(y-b)/o], if 0> o} __ 1_ (L:..!!.)' 
Ans·(l)G(y)=I_F[(Y_b)/o], ifo<'O gl(Y)-loI 1 0 

(ii) G(y)= F(logy), y> o} g(y)= ~/(logy), y> 0 
=0, y~O' =0, y~O 

4. (0) The random variable X has an exponential distribution 

I(x)=e-", O<x~oo 

Find the density function of the variable (i) Y = 3X + 5, (ii) Y = X 3 • 

(b) Suppose that X has p.d.f., 
f(x)= lx, 0< x< 1 

= 0, elsewhere 
Find the p.d.f. of Y = 3X + 1. 

Ans. g ( y ) = % ( y - 1), 1 < Y < 4 

5. Let X be a random variable with p.d.f. 

I(x)= ~(x+ 1) -1 < x< 2 

= 0, elsewhere 
Find the p.d.f. of U = X 2. 

6. Let the p.d.f. of X be 
I 

I(x) = '6' - 3 ~ x~ 3 

= 0, elsewhere 
Find the p.d.f. of Y = 2X 1 - 3. 

[ Poo~a Univ. B.E., 1992] 

7. Let X be a random variable with'the distribution function: 

10, x<:O 
Fx(x)= x, os xS 1 

1, x> 1 
Determine the distribution function F y ( y) of the random variable Y = vx 

and hence compute mean Qf Y. [ Calcutta Univ. B.A.(Hoos.), 1986 ] 
5·7,. Transrormation or Two-dimensional Random Variable. In this sec­

tion we shall consider the problem o(c~ge of variables in the two-dimensional 
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case. Let the r. v.' s U and V by the transfonnation u = u (x, y ) , v = }' (x, y ), 
where u and v are continuously differentiable functions for-which Jacobian of 
transfonnation 

J= a(x,y) 
a(u,v) 

ax ~ 
au au 
ax ~ 

, a v a'v 
is either > 0 or < 0 throughout the ( x , y) plane so that the inverse transfonna,tion 
is uniquiely given by x = x ( u , v ) , y = y ( u , v ) . 

Theorem 5·10. The joint p.d/. guy ( u , v) 0/ the transformed variables U 
and V is given by 

guy ( u , v ) = /n ( x ,Yo ). I J I 
where I J I is the modulus value 0/ the Jacobian 0/ trans/ormation and / ( x ,y) is 
expressed in terms 0/ u and v. 

Proof. P ( x < X S x +. dx, y < Y S Y + dy) 
=P(u<USu+ dU,v<VSv+dv) 

~ /n (x, y) dx dy = guy (u, v) du dv 

~ guy ( u , v) du dv = /n ( x , y) I ~ ~.~ : ;~ I du dv 

~ guv (u, v ) = /n ( x , y) I ~ ~ ~ : ~ ~ I = /n (x, y) IJ I 

Theorem 5·11. I/X and Yare independent continuous r.v.' s, then the p.d/. 
0/ U = X + Y is given by 

h(u)= Loooo/x(v)/y(U-V) dv 

Proof. Let/n ( x ,Y) be the joint p.dl. of independent continuous r.v.' s X 
and Yand let us make the transformation: 

u=x+Y,v=x 

J= a(x,y) 
a·( u , v) 

x=v,y=u-v 

~ 
au_lo 11'-_1 
~ - 1 ... 1·-
av 

Thus the joint p.d.f. of r. v.' s U and V is given by 
guy ( u , v ) = /n (x ,y) I J I 

=/x(x)'/Y(Y) IJI 

(Since X an~ Y are independent) 

=/x(v)'/Y(u"- v) 
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The marginal density of U is given by 

h ( u ) = Loooo guy ( u , v) dv 

= foo fx(v)fr(u-v) dv 
-00 

Remark. The function h (.) is given a special name and is said to be the 
convolution offx (.) andfr (.) and we write 

h (.) = fx (.) * fr(·) 

Example 5·34. Let (X , Y) be a two-dimensional non-negative continuous 
r. v. having the joint density : 

{ 4 -(i+/). 0 0 f(x,y)= rye , x~ ,y~ 
o , elsewhere 

Prove that the densitiy function of U. = ~ X 2 + Y 2 is 

h(u)= { 2u,' eo-
i , OS u< 00 

, elsewhere 

Solution. Let us make the transfonnation : 

u = ~~ + l and v = x 

[Meerut Univ. M.Sc., 1986) 

~ v~o, u~O and u~v => u~O and O$v$u 

The Jacobian of-transformation J is given by 

a x i1. 
1_ a(u,v)_ au au y 
J- a(x,y) - ax £1. = -' -:"X~2=+y=2 

a v a v 

The joint p.d.f. of U and V is given by 

g (u , v) = f( x, y) I J I 

= 4x ~~+ l e-(i+ /) 

= {4vu.e- i ; u~ 0, OS V$ u 
0, othe~ 
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Hence the density function of U = "X 2 + Y 2 is 

h(u)= J; g(u,v) dv=; 4ue- i J; v.dv 

{ 

1 

_ 2u3 e- w , u ~ 0 
0, elsewhere 

Example 5·35. Let the probability density function of the random variable 
(X,Y) be 

{ a- 2 e- CU ,)/Cl • x y> 0 a> 0 
f(x y)- '" 

, - ·0 , elsewhere 

Find the distribution of ~ (X - Y). 

Solution. Let us make the transfonnation : 

U= !<x- y) and v= y 

~ x= 2u+ v and y= v 

The Jacobian of the transfonnation' is : 
ih ih 

J= dU dV = 12 11=2 
il ~ 0 1 
dU dV 

[ Nagpur Univ. D.E., 1988 ] 

Thus, the joint p.d.f. of the random variables ( U , V) is given by : 

{ 
21 e-(lIa)(w+w), -00<u<00,v>-2u.if u<O 

g(u,v)= a v>O if u~O and a>O 
o • elsewhere 

The marginal p.d.f. of U is given by 

gu(u) = 

Hence 

to 2u ;1 exp {.- (~u)( u + v)} dv 

= ! t-WCl • w<o 
U 

J; ~ exp{ - (~u)(u+ v)}dv 

1 -WCl •• :to 
=-t 

u 

-oo<u<oo 
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Example 5·36. Given the jOint density function of X and Y as 

f(x,y)= tx e-' ; 0< x< 2, y> 0 

= 0, elsewhere 

Find the distribution of X + Y. 
Solution. Let us make the transfonnation : 

u=x+yandv=y ~ y=v,x=u-v 

5·77 

The Jacobian of transfonnation J = ~ ~ x , y ~ 1 and the region'O < x < 2 
u, v . 1/ 

and y > 0 transfonns to 0 < u - v < 2 and v> 0 as shown ia the following figure. , 
tJ-

o u 

(0,.2) 

The joint density function of U and V is given by 

g (u , v) = t (u - v} e- v ; 0 < v < u, u> 0 

To find the density of U = X + Y, we split the range of U into two parts 
(i) 0 < uS 2 (region I) (ii) u>.2 (region II) (which is suggested by the 
diagram). 

For 0 < u S 2, (Region I) : 

h (u) = J; g (u, v) dv= t J; (u - v) e- v dv 

1 I I V= u = -2 -e-"(u- v)+ e- v 

v = 6 (Integration by parts) 
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For 2 < u < 00. (Region II) : 

h(u)= ~ J:- 2 (u- v) e- v dv 

I I IV= u .: - e-· ( 1 + v - u ) 
2 v= u- 2 

Hence 

{ ~( e'--+ u- 1). 0< u~ 2 

g(u)= ~ e-- (1+ i). 2< u< 00 

o . elsewhere 

(on simplification) 

.J MISCEllANEOUS EXERCISE ON CJlAPTER FIVE 

1. 4 coins are tossed. Let X be the number of heads and Y be the numt5er of 
heads minus the number of tails_ Find the probability function of X, the probability 
function of Y and P ( - 2 ~ Y < 4 ) _ 

Ans. Probability function of X is 

Values of X, x 0 1 2 3 4 

Pi (x) I 4 6 4 I 
16 16 16 16 16 

Probability function of Y is 
Values of Y, y 4 2 0 -2 -4 

P2(Y) 
I 4 6 4 I 
16 16 16 16 16 

P ( - 2 ~. Y < 4 ) = 4+ 6+ 4 7 
J6 = S-

2. A random process gives measurements X between 0 and 1 with a probability 
density function 

!(x)= 12x'- 21x2 + lOx. O~ x~ 1 

= 0, elsewhere 
(;) FindP(X~ n andP(X> i) 

(ii) Find a number k such that P (X S; k) = 1-
A "s. (;) 91\6. 7116. (ii) k = 0·452_ 
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3. Show that for the distribution 

dF = Yo [ 1 - I x ~ b I ] dx. b - a < x < b + a 

= O. otherwise, 

Yo = 1 , mean = b and variance = al /6 
a 

5·79 

4. A my of light is sent in a mndom direction towards the- x-axis from a 
station Q (0, 1) on the y-axis and the my meets the x-axis at a point P. Find the 
probability density function of the abscissa of P. 

(Calcutta Univ. B.sc.(Hons.), 1982] 
• 5. Let X be a continuous variate with p.d.f. ' 

f(x)= k(x- i') ; a< x< b, k> 0 
What are the possible values of a and b and what is k ? 

(Delhi Univ. B.Sc.(Maths Hons.), 1989) 
6. Pareto distribution with parameters r and A is given by the probability 

density function 

f(x)= rA' ~"'l' for x~A 
x 

= 0, x< A, r> 0 
Show that it has a finite nth moment if and only if n < r. Find the mean and 
variance of the di~tribution. 

7. For a continuous random variable X, defmed in the mnge ( 0 ~ x < 00), 
the probability distribution is such that 

2 

P (X ~ x).= 1 - e- 1h , where ~ > 0 

Find the median of the distribution. Also if m ,m" and cr denote the mean, mode 
and standard deviation respectively of·the distribution, prove that 

2m! - m1 = ~ and m" = 'm V ~7t 
What is the sign. 9f skewness. of the distribution ? 

8. (a) Two dice ar~ rolled, S = {( a , b) I a , b = 1, 2 .... ,61. Let X denote 
the sum of the two faces and Y the absolute value of their difference, i.e., X is 
distributed over the integers 2, 3, .... , 12 and Y over 0, 1,2, ... ,5. Assuming the 
dice are f~r, find the probabilities that (i) X = 5 h Y = 1, (ii) X = 7' n Y ~ 3, 
(iii)X= Y, and (iv)X+ Y= 4nX- Y= 2.' 

Ans. (i) I,t, (it) ft9, (iii) 0 and (iv) Ifts. 
9. The joint Probability density function of the two-dimensional variable 

(X, y) is ofq,e form 
f ( x , y ) = k e -c .... ,) , 0 ~ y < x < <Xl 

= 0, elsewhere 
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(i) Determine the constant k. (ii) Find the conditional probability den;;ity 
function Ji (x I y) and (iii) Compute P ( Y ~ 3). 

[ Sardar Patel Univ. B.Se., 1986 ] 
," (iv) Find the marginal frequency functionfl (x) of x. 

(v) Find the marginal frequency function/2 (y ) of Y. 
(vi) Examine if X. Y are independent. 

(vii) Find the conditional frequency function of Y given X = 2 . 
Ans. (i) k = 1, (ii) Ji (x I y ) -= £ ... (iii) e- 3 • 

10. Let l(!)pllt(l- py_1It e-",').! 
f(x,y)= y. . 

. ; x = 0, 1,2, ... ; Y = 0, 1,2, .•. ; with .y ~ x 
0, elsewhere 

Find the marginal density function of X and the marginal density function of Y. 
Also detennine whether the random variables X and Y are independent. 

[I.sl., 1987] 
11. Consider the following function: 

lil.!.. -f(xly)= x! .x-0.l.2 •... 

0, otherwise 
(i) Show thatf( x I y) is the conditional probability function of X given Y; 

y~ O. 
(ii) If the marginal p.d.f. of Y is 

fr(y)=.{Ae- h , x> O. 
o x~ 0, A> 0 

what is the joint p.d.f. of X and Y 1 
(iii) Obtain the marginal probability function of X. 

[Delhi Univ. MA.(Econ.), 1989) 
12. The probability density function Of (XI, X2) ~s gtven as 

{e e -8\lII-II2.1'l if XI,X2>O 
f(Xi ,old;::: 01 2e L'_ • 

ot,/.t;rwlSe. 

Find the densny fUI;CtiOIl of (YI ,Y2) where 

Yl = 214 + 1, V2 = 3Xl + X2 almost tvcrywtiere. 
X2 

[Punjab Univ • .MA.(Econ~), "1992] 
13. (a) Let Xl, X { 'be a random sample of size 2 from a distribution with 

probability density'ftmction, 

f(x)= e- IIt , O<x<oo 



Random Variables· Distribution Functions 

= 0, elsewhere 

Show 

YI = Xl + X~ and" Yz= XI: 
, , " I • XI + X'1. 

581 

are independent. [Sardar Patel Univ. B.sc., Sept. 1986] 
(b) XI" X2 , X, denote random sample of si7e 3 drawn from the distribution: 

t(x)= e- x , O<x<oo 

= 0, elsewhere' 

Show that 

Y- ~ y- ~+L ~ ~=~+L+~ 
J; -' XI + Xz" '1. - XI + X2 + X, 

are mutually independeQt.. . 
14. it the probability density function of the random varaibles X and Y.I X is 

given by • - - - I 

f( x)- e ,x_, {
, -x > 0 

. - 0" , elst:W/J.ere 

l~ > 
and Inx (:)' I x) ==. y! ' ' ~ y - 0 

o ,elsewhere' 

respectively, find the probability density function of the random variable Y. 
[Jiwaji Univ. M.Sc., 1987] 

15. (a) The random variable X ahd Y have a joint p.d'J.t (x ,y) give!! by 

t(x,y)=g(x+y), x>O,y>O 

= 9, otherwise. 

Obtain the distribution. function /1(:) of Z = X + Y and hence show that its 
p.d.f. is 

h ( ~ ) = : g(z) , 
=0 

z> 0 
z~ O. 

( b) The joint density function of two random variables is" given by 

t(x,y)= e-(>r+ 1 ) ; x.> 0, y> O. Show that the p.dlf. of 

U X + '1', ( ) 4 - 2 • . = -- IS g U = ue , 2 
[Calicot U~iv. B.Sc., 1986L 

16. The time,~ taken by a garage to repair a car is a continuou~,random , 
variable witJ:!-probability density fu~ction . 



5·82 r-l!n~amentals. of.Mathematlcal Statistics 

/I(x)= {~X(2- X), O~ x~ 2 
o , elsewhere 

1f, on leaving his car, a motori.st goes to .keep an engagement1lasting for a time 
- Y, where Y is a continuous random variable, independent of X, with probability 

function 

b(y')= {~y; O~ y~ 2 
...... O. elsewhere ; 

<deterinine the probability that the car will not be ~~y Qn his return. 
[Calcutta Univ. B.A.(Hons.), 1988] 

17. If X and Y are two independent random variablts such that : ' 

',[(x')= e- x ,x:~ 0 and g(y)= 3e- 3, ,y~ 0; 
1 

find the probabiIi~ distribution of Z = Xif. 
. . . [Maduraj 'lni". B;Sc." Qct. 1987) 

18.- The random variables X and Y are independent and their probability 
density functions are. respectively-given by • 

[(x)= 1. . ~I' I'xl< r and g(y)= ye-/12 , y> O. 
:It 1~~ 

Find the joint probability density ofZ and W. ,where Z = X Y and IW = X . 
Deduce the probability density of Z.. [Calcutta Univ. B.Sc.(Hons.), 1985] 



CHAPTER SIX 

Math,~matical Expectation, 
Gen'erating FU'flctions and 
Law of Large Numbers 

"1. Mathematical Expectation •. Let J( be a random variable '(r.v.) with 
p.d.f. (p.m.f.) I(x). Then its mathematical expectation, denoted by E,X) is " 
given by: 

E (X] = I l: I<x) dx, (for continuous r.v.) -= I x I( x) , (for ·discrete r.v.) 
• 

... (6'1) 

... (6·la) 

provided Ole righthand integral or series IS absoJ'utely' convergent, i.e., provided .. 
fix H x ) 1 dx = f il x·1 f ( x,) dx < co 

-CIO _00 ' 

or l: Ixl(x)I=I Ixl I(x) <co 
x x 

... (6'2) 

... (6·2a) I 

Remarks. 1. Since absolute convergence i!llplje~ ordinary ~qU\~ergence, if ' 
(6'2) or (6'2a) holds then the integral or series in (6'1) and (6'10) also t:xists, i.e., 
bas a finite value and in that case we define E (X) by (6'1) or (6·la~. It should be 
clearly understood that although X has an expectation only if 1...~:S. in (6'2) or . 
(6'2a) exists, i.e., ('onvcrges to a finite limit, its value is given by (6'1) or (6·1a). 

2. E (X) exists iff £ I XI exists. i 

3. The expectation of a random variable is thought of.as a lon~-term average. 
ISee Remark to, Exampk (6'20), page 6.19.]. " , 

4. Expected value and variance of an Indicator Variable. Consider the 
indicator variable: X = 1,0. so tbat 

X = 1 if A happens 
• = 0 if A happens 
.. £ (X) = 1 P (X = 1) + O. P (X = 0) 
~ £ (1,0.) = 1 P 1/4 = 1] + O. P [/,0. =, 0] 
~ £(14) = P(A) 
This gives us a 'Very usefull tool to find P (A), rather than' to evaluate £ (X). 

Thus ' P (i4) - £ (lA) , ... (6~iii) 
For iHustration oftliis result, see Example 6.'14, page 6'2'7, 

£(X~)= 12. P(X=1) + 02 • .('(X .. O)= P(lA=.t)= p'(A) 
'2 ' 

Va,. X= .£(x2)- [£(X)] = PO\)- [peA)] 

=P (A) [l-P (A)] 

prakash
Rectangle
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= P(A) PtA) ••• (6'2c) 

Illustrations. lfthe r,v, X takes the values 0 !, 1 !,2!, '" with probability 
" law 

-I e, , ' 
P (X = :x-! ) = '"---t; x = 0; 1,2, '" x, .... 

then ! x ! P ()( = x !) = e .... l' ! 1 
x.o -•• 0 

which is a divergent series, In this case E (r) does not exist-
More rigorously, let us consider a random variable X which takes the values 

Xi= (- ii+ 1 (i+ 1); l= 1,2,3', '" 
with the probabilitY'law 

1 
Pi = P (X = x;) = '('. 1) , = 1, 2,3, '" 

, l t + 

"-Here ± Xi P(){=Xi)=- ± (-,li+ 1 (~)= J"- ~+ ~- ~+ 
i-I I' i-l t 

Using Lcibnitz test for a,terirJting series the serie~ 9\1 righ~ ,hand side is 
-conditionaIly, convergent since the terms, alternate i'n sign, are monotonically 
decreasing and converge to zero~ By conditional convergence. we mean that 

a Ithough ! Pi Xi converges,! I Pi ~i I does not converge, So, rigorously speak-
i.'1 i-I 

ing. in the aoovc' example 'E (X) does not exist, 'althou~h ! PiXi is finite, viz" _ 
~ ;.1 

logf,2, 
As another exainple; let us t'onsiderthe r,v,X wlJJch takes the yalues 

(_1)'l.2k 

Xk= k ; k= 1,2,3,,,, 

.. 'w~th probabiliti~s Pk = 2~~. 
-. I 

Here also we get 

1 
amJ ! I Xi I/h = L ! k' 

t. It. I 

whidl is'a. div.crgent ·scriQs. Hence in this ca'se also expectation doc.<; I).ot exist. 

A~ an illustration of a. continOous r.v, let us.cQlI$ider the r,v,,A; with p.dJ. 

prakash
Rectangle
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1 I 
f(x)= -;: • 1 +X2 -00< x< 00 

which is p.d.f. o(Standar~ Cauchy distribution. \c.f.s.8·91· 

J" I x I f (x ) dx =.!. J" ~ tb; = ~ J" ~ d-.: 
, 31: _" ·1 + x '31: 0 1 +. x-

( .: llf.tegrand is an even fimc;(ion of x) 
1 I log (1 +Xl) I~ - ·00· 
31: 

Since this integral does not cQnverge to* finite:limit, E (X) does not exist. 
6·2. Expec'f;tion ora Function ora Random Variable. Consider a r.v.X 

with p.d.f. (p~m.f.)){f) and distribution function F(x). It g (.) is a function such 
that g (X) is a r.v. an)) E [g (X)] exists (i.e., is defined), then .. 

E [g (X)] = J g (x) dF(x) = J g (x)f(x) dx 
-co' -co 

=l: 'g(x)f(x) 
r 

By definition, tbe expectation of Y = g. (X) is 

... (6'3) 

(Fpr contmuous r.v.) 
... (6·3a) 

(For discrete r. v.) 

E [g (Af>] = ~ (Y) = J y.. dHy{y) = J y II (y) dy 

or E{r) = l: y" (y)'k , 

.. :(6'4) 

... (6·4a) 
> 

where Hy (y) js the distribution (unction of Y and "(y) is p.dJ. of Y. 
[Tile proqf of equivaience of (6'3) and (6'4) is beyond tile .scope gftlte book.! 
This result extends into high~r. ~imensions. If X and Y have a joint p.d.f.. 

f(x, y) and 2 = It (x, y). is a random variable for some (unction,ll and if ~ (Z) 
exists, then 

or 

E (2) = J J " ( x , y ) f ( X , y ) dx dy 
_oa _GO 

E (2) = I!' "( x , y ) f ( x , y ) 
x )' 

... ({l·5) 

.,.(6·5a) 

Particular Cases. 1. If we take g (X) = X', r ~ing II positive !nreger, in 
(6'3) we get: 

E(X')= J x'·f(x)tb; ... (6·5b) 

which is defined as Il,', the rth moment (about origin) of the probabi\ity distribu­
tion. 

Thus Il,' ~ about o!i~i.n) = E (X'). In particular 

Ill' (about oril.{tn) = E (X) and 1l2' (about origin ,) .. E (Xl)" 
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Hence Mean = ~= 1-'\' (about origin) = E (X) 

and 1-'2 = "2' - '1-'\,2 = E (X 2) _ ! E (..\) )2 

2. If gOO = [X - E 00] ' .. (X -'x)', then fron· (6·3) we get: 

E [X - E (X»)' - f [x -E (X) tf,,(x) itt = f (x -i)' f(x) dx 

which is 1-'" the rth moment' about mean, 

In particular, if r = 2, we get 

7 2 f 1-'2= E[X4(X)] = (x - i)2 i (x ) dt 

... (6'6) 

... (6-6a) 

... (6'7) 

... (6'8) 

F,ormulae (6'6a) and (6'8) give the Nariance of,the"l>robability distribution of 
a r.v. X in terms of expectation. 

3. Taking g (x) = constant = £; say in (6·3) we get 

E(c)'= f c·f(x)dt = c f f(x)dt = c 

E(c),.. c 

... (6·9) 

... (6·9a) 

Remark. The corresponding results for a discrete r.v.X can be obtaint:d on 
replacing integration by summation ( r ) over the given range of the variable X in 
thdormulae (6·5),to (6'9). 

. In the following sections, we shaI'1 establish some more results on Expecta tion 
,'.in the fOrin Of theorems, for continuous r.v. 's only. The corresponding results for 
discrete r.v.'s can be obtained similarly on replacing integration by summation 
( r) over the given range of the variable X and are left as an exercise to the reader. 

6·3. Addition'Theorem of Expedation 
Theorem 6'1. If X, and Yare random variables then 

, E(X.,. Y)= E(X)+ E(Y), ... (6'10) 
'proviJJ...ed all the expectations exist. 

Proof. Let X and Y be continuous r.v.'s with joint p.d.f. Ix y (x, y) and 
- marginal p.d.f 's fx(x) andfy'(y) respecti~ely. Then by definition: . 

I co 

E (X) =: f x fx(x) dX ... (6·11) 

E (Y) .. f y fy·(y) dy ... (6·12) 
-co 

E (X + Y) .. f f (x + y ) fXY (x, y) dt dy 
__ _00 
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+ f f y fxy(x:y) 'dx dy 

=,£ x· [f fxr(x,.Y?- dY].dxl 

t £ y. [£ fxr(x,y) d'C IdY 

J' 
=f xfx(x)dx+f yfr(y)dy 

_I_ 1-00. • . 

= £ (X) + £ (Y) [On, using (6'11) and (6'12)] 
.\ 

The result in (~'1O)\can be extended to n v~tiltblc::s as given below. 
Theorem '·l(a). the mathematical expectation, of the sum of n f.-milom 

variables is equal to the sum of their ·~xpectations,. provided all the expecIIAtio'!S'" 
exis( .. 

Symbolically,. ifXt,l/2, ... ,X",are rand,om variables then 

£ (XJ'+ X 2 + ... +'. X;, ) = E' (XI) + '£ (X2):t- • -..-: +' £ (X,,) 

or £ ( i~1 X r= :~I £ (X;), 
if all the expectations ~ist. ' 

Proof, Using (6'10), for two r.v.'s XI and Xi we get: 
£ (XI + X 2) = £ (XI) +' £'(.\'2) ,. 

~ (6'13) is t'rue for n = 2. 
Let us now suppose that (6'13) is true.for n = 'r (say), so that 

£ ( i~1 X;) = i~1 £ (X; ) 

,.t ,.1 ' 

... '(6·1~) ; 

... (6·13a) 

... (6'14) 

£ ( '.i:IXi) = E [ .. ;; Xi + ';X, + I] ] , 

= £ ( i~1 Xi ) :- ;,' (X,+ I) [Using (6'10)] 
, 

= l: £ ( X; ) + £ .{X, + I) [Using (6'14)] 
;-L 

,+1 

= l:E(X;) 
I i.I' 

Hence if (6'13)1 is true for n = r, it is also. true for n = r + 1. But we 
have proved in (*) above, that (6'13) is. true f~t n = 2.' Hence it is trile for 
n = 2 + 1 = 3; n = ~ + 1 = 4 ; ... arid so on. Hence by the principle of mathemati-
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c.a1lntroduction {6'13) is true for all-positive int'egraJ'values of n. 
'-,4. Multiplication Theor~m of Expectati~n • 
Theorem ',2. If X and Yare independent random variables. then 

E (X¥) = E.(X) .E.(y) ... (6'15) 
.Proof. Proceeding as in Tbeorem.6:1. we have :_ 

E (Xy) = f f xy fxy(x.y) dx dy 

.. f f x Y fx( x ) fYl. y) dx dy 

(Since X and Yare independentJ 

= r~Jxr'x)dx f y fr(y)dy 
-co 

= E (X).E..(y) , - lUslng (6'11) and (6'12)J 
proyid~d X and Yare independent. 
Generalisation to-n-variables. 

Theorem '·2(a). The mathematical expectation of tl!e product of a number 
of independent random variables. is equal'to the product of their expectations. 
Symbolically. if X .. X2 • •••• X. are n indePendent random variables. then 

E ( XI X2 ... X. ) .. E (XI ) ~ (~2 ) .. .. E (X~ ) 'I 
i.e.. E ( n X;) = n E (X,) ... (6'16) 

I ;. 1 ;.1 

provided all tlte expectations exist. 

ParOo~. Using (6'15). for two .independent random variables Xi and X2 • we 
get: ' 

E \ XI X2 ) = .£ (XI) E ( X2 ). 

(6'16) is true for n = 2. ...(*) 

Let us now suppose, that (6'16}is true for n = T", (say) so"ihat : 

E( ;~I X; ) = n E(X;) 

E ( ~nl X; ) = ~-(J .~ Ai 'X X,. I) 
te) I_ J 

= 'E ( .n X; ) E (X,. I. ) 
,.1 , 

= .n (E X; ) E (X'+I) 
'L ,. t 

,+1 

= ,n, ( E X; ) ( 
.-1 

... (6'17) 
I 

[Using (6-15)] 

[Using (6·17)] 
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Hence if (6'16) is true for n = r, it is I!lso true foin "", t + J . Hence using (*), 
by the principle of mathematical induction we, conclude .tbai (6'16) is true for all 
p~itive integ~1 yalues of n. " .\ 

Theorem 6·3. If X is a random. v,ariable and 'a' is constant, then - . . 
(i) E [ a'V (X) ] = a E ['I' (X) ] 

(ii)' ·E ['l' (X) + a ] = E ['l' (X) ] + a, 
where'l' (X), a funciioh of x,-6 is a 1;. v. and all the exi!ctations exist. 

Proof. 

... (6'18) 

... (:)'19) 

(i) 'E [0 'V (X)] = f ti'l' (x) . f(x) dx'·. a f 'l' (x)f(x) dx = a E ['l' (X)] 

(ii) E ['l' (X) + a] = r [tV (x) + a] [(x) dx 
, .. 

. 
= f 'l' (l') f(:t;) ~i: a f f(x) dx 
. I __ . 'II 

= E ['l'I(X)] + a 

.( .. ) f (x) dr ~ll·1 
Cor. (i) If'l' (X) - X, tben 

E(dX)·~ aE(X) a'ndE(X+ a)~.E(X)+ a 

(ii) If'l'(X)= l~tbenE(a')= a. 
... (6'20) 

. .. (6·21) 

Theroem 6·4. If X is a randQm variable qnd a and bare COIISfllIllS. thell 

E ( a X + b) = a E (X ) + b ... (6'22) 
provided all the expectations exist. 

Proof. By definition, we hav.e" 1 

1 

E ( a x,+ b) = f (ax,,+- b) !-(x) drl 

.. 
=; q 1 x~ f(x)' dr .~ b f f(x) dt 

= a"E(X) + b 
Cor. 1, 'It b = 0, then we get 

E( a X ) = d . E (X ) ,I. 

Cor.~. Taking a = 1, b = - X= - E (X), we,get 

E(X -X) =0 
Remark. If we write, 

g.(X) = aX+b 
then g I~(X>] =.a E (X) + b 

~ .. (6·22a) 

... (6'23). 

... (6·23a) 
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Hence from (6'22) and (6·23a) we get 

E [g (X)] = g [E (X)] .... (6,24) 
Now (6'23) and (6'24) imply' that expectation of a linear iunction ;.s'the same 

linear fUnction of the expectation. The result, however, is not true If g (.) is not 
linear., For instance 

I I 

E(1/X) ;of (l/EXl E(~2) ;01 [E(X1Pt i 
E [ log (X);of iog [ E (X)]; E (X"2) ;01 [E (X) ] 2 , 

since all the functions stated, above are non-linear. As an illustration, let us 
consider a ra!.ldotQ varibleX 'whioh,assumes only ~o values + 1 and ':"1, e~~~ with 
equal probability t . Then . I 

E (X) = 1 x ~ + (-1) x j,= 0'. 

and E(X 2 )= 12X~+ (_1)2~i~ 1. 

Thus E (X 2) ;of [E (X)]2 

For a non-linear function g (X), 'it is difficult to obtain expressions for 
E [g (X)] in terms of g [E (X)], say, for.£ [log (X)] or E (X2) in terms of 

log [E (X)] or [E (X)]~. However, som~ results in tlie form ofineqtialities between 
E [g (X)] and g [E (X)] are available, as discussed in Theorem 6:12 (Jenson's 
Inequality) page 6·15. .. 

',5. Expectation·of a Linear Comb"irlation of Random Variables 
Let Xt. X2, ••• , X" be any n random variables and if at, th, ~!., aK are any n 

constants, then 

" E (I aj X; ).. I aj E (Xj ) 

i-I i-I 

provided all the expectations exist. I 

Proof. The result is obvious from (6'13) and· (6,20) , 

Theorem '·5 (a). If XC!: 0 then E (X) C!: O. 

Proof. If X is a continuous-random variable S.t: X C!: 0 then 

E(X)= J x.p(x),dx= f x.p(.x)dx > 0, 
':'00 0 

... (6'25) 

[ .: ,~X C!: 0, p (x) = 0 for x < ~] 

provided the expectation exists. t I 

Theorem '·5 (b). Let X and Y be two random v~riables such that Y s X then 
E (Y) s E (X)" 

provided the expectations exist. ' 
Proof. Since Y s X, we have the r.v. 

Y-X s 0 ~ 

Hence E(X-Y) C!: 0 ~ 

E(X) C!: E(Y) ~ 

., 
X-Y C!: 0 

E'($) '- E (Y) C!: 0 
E'(Y) ~ E (i), 
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as desired. 
Theorem 6,6. IE (X) I s E lxi, 

provided the expectations exist. 
Proof. Since X s I 4,1 , ~e have by TheQrem 6·S(6) 

E(X) s EIXI' . 

Again since - X s I X I , we have by Theorem 6'S'(b) 
E(-X) s EI'X I 

=> -E(X) s E I X I 
From (*) and (**), we get the desire~ result I E (X) I s EJ X I. 
Theorem 6·7. If It: exists, then J.I. ... ex~ts for aliI s s s. r . 

Mathematically, if E (X') exists, then E (X I exists for all 1 s s s r, i.e., 

... (6'26) 

... (**) 

E (X') < 00 => E (XI < 00 V 'I s s s r ... (6'27) 

Proof. J I J: r dF (x) D J I,x I' dF (x) 
-I 

J. I ~ I' dF (x) ,. 
+ I r I ~ 1 

If s < r, then I x I' < I x I r for I- x I > 1. 
1 

.. J I x I' dF (x) s J 'I x I' dF (x) + f. I x I'r. dF (x) 
-I I r I ~ ~ 

di J dF (x) + J. I x I r dF (x) , 
-I I r I ~ 1 

since for - 1 < x < 1. I x I' < 1. 

J I x I' dF (x) s 1 + E I X I r < 00 

E(x') exists"f Is s s r (.: e (X') exists I 
Remark. The above theorem states ,that if the moments of a specified order 

exist, then all the lower orderffiQments automatically exist. However, the converse 
is not true, i.e., we may have distnbutions for which all the moments ofa specified 
order exist but no ~igher order lI~oments eXist. For example, for the r.v. with p.d.f. 

p (x) .. 2/x3 X i!: 1 \ 
.. 0 .x. < 1 

we have: 

E (X) = J x p (x) dx = 2 J x- 2 (Ix.. (-}') : =' 2 
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E (X 2) = 1 x2 P (x) dx = 2 J ~1 dx = 00 

Thus for the above~i!tribution, 1st ordelr moment (mean) exists hut 2nd ordcr 
moment (variance) doe not exist. 

As another iIlustrat on, consider a r.v.Xwith p.d.f. 
(I + 1) a 1+ I 

p(x)= ·x~O· a>O x + a) ,+2' ' , 

x' 
~:= E'(~')= (r+ll) ~Ol J (x+~)'+2 dx 

o 

Put x = a! and ::i_1g Beta integral: 

J <t+x)imu = ~(m,n), 
o 

we shall gct on simplification : ~ 

~: = (~+ 1 ) a'. ~ ( r + 1, 1) = a' 
Howcver, 

r x 01 

",+1' = E X,+I) = (r+ 1) a01 J dx r (x+a)'+2 ...... ro, 
0' 

as the intcrgal is not cq~vergent. Hence in this case only tbe mQm~{lts up to rth 
ni'cr cxist and highcr order m.oJllents do not exist. 

Theorem-6·S. If X Is a random variable, then 

V ( a X + b I) = a2 V (X), 
where a and bare cqnstants. 

Proof. Let r = a X + b 
Then E (Yj) = a E (X) + b 
. . Y - E (l'i) = a I X - E (X) I 
Squaring and taking :expectation of both sides, we get 

E{Y-E(yd- = aZ E]X-E(Xd 
=> V (1') = a2 V (X) => V ( a X + b) = a' V (X), 
where V <X) is written fpr yariancc of X. 
Cor. (i) Ifb = 0, ~hen V(a X) = a2 \' (X) 

'=> Variance is ;not independent of ~hange of scalc . 
(ii) If a = 0, then V (b) = 0 

=> Variance of a constant in zero. 

(iii) If a = 1, then V (X + b) = V (X) 

=> Variancc is indcpendent of changc of origin. 

... (6·28) 

I, 

... (6·28a) 

... (6·28b) 

. .. (6·28c) 
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6'6. Covariance: If X and ,Yare two random variables, then covariance 
between them is defined as 

case 

Cov (X, Y,) ~ r; [IX - E (j) }{ Y - E (y) } ] ... (6'29) 
= E [ XY - X E (y) - Y E (X) + E (X) E (y) ] 
= E (X y) - E (Y) E (X) - E (X) E (Y) + E (X) E (Y) 
= E (X Y) - E (X) E (Y) •.• (6'290) 

If X and Yare independent then E (X Y) = E (X) E (Y) and hence in this 

Cov (X, y) = E (X) E (Y) - E (X) E (Y) = 0 

Remarks. 1. Cov (aX, bY) =,E [{ aX - E (aX)} I bY - E (bY) } ] 

... E [ a IX - E (X) } b {Y - E (Y) } 1 
= ab E [ I X - E. (X) ) IY - E (Y) } ] 
= ab Cov (X, Y) 

2. Cov (X + a, Y + b) = Cov (X, f.) 

.(X-X Y-Y) l' 3. Cov --, -- = -- Cov (X, Y) 
Ox Oy Ox Oy 

4. Similarly, we shall get: 
Cov (aX + b, c¥ + d) ... ac Cov (X, Y) 

Cov (X + Y, Z) >= Cov. (X, Z) '+ Cov (Y"Z) 

... (6·29b) 

... (6'30) 

.. :(6·300) 

.•. (6·3.0b) 

Cov (aX + bY, cX + dY) = acox 2 + bdoy 2 + (ad + bc) Cd" (X, Y) 

••• (6·30c) 
•.• (6·30d) 
... (6·30e) 

If X and Y arc indcpc'ndent, Cov (X, y) = 0, [c.f. (6'29b)] 
However, the converse,. is not true. 
(For details see Theorem 10·2) . 
6'6·1. Correlation Cdefficient. The correlation coefficient ( Pxr) , between 

the variables X and Y is dcfined as: 

PXy = Correlation Coefficient (X,'Y) = C~v. (X, Y) ... (6'301; 
~ O.y Oy. 

For detailed discussion oJ\.correlation coefficient, see Chapter 10. 
6·7. Variance of a Linear Combination of Random Variables 
Theorem 6·9. Let Xb X2, ... , X. be n r~ndom variables then 

{ .- 1\· · · r V ~ aj Xj = i: aj 2 V (Xj.) + 2 i ~ aj OJ C{Jv (X, Xj) ... (6'31) 
;-1 i-I i-I i-I 

i < j .l 

Proof. Let U = a,X, + a2 X2 + ... + a.X. 

.. /E;(lJ.) = a, E (XI)"" a2 E (X2)'~ ... + a. E (,Y.) 

.. lJ - E' (U) = a, (XI - E (X,)] + 02 [X2 - E (X2)]' + ... + a~ [X. - E (X.)] 
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Squaring a'nd taxing expectation of both sides, we get 

E [U - E (UW = al 2 E [X, - E (X1)]2 + a22 E [X2 - E (X2)]2 + ... 

+ a/E[X"- E(X"W 
" ", 

+ 2 l: :t aj qj E [! X; - E (X;).} I X; - E (X;) ) ] 
i-I j-I 

i < j 

" " 
+ 2 I I ai iij Cov (Xi, Aj) 

i-I ie' 
i<.j 

" ]" " " l: ai Xi ... I a/ V (Xi) + 2 I l: ai aj Cpv (Xi,Aj) 
i.l i.,1 i-I j-I 

i < j 

Remarks. 1. If ai = 1; i '" 1, 2, ... , n then 
V (XI + X2 + .. , + Xn) = V (XI) + V(X2) + ... + ~(Xn) 

" n 
+ 2 I I Cbv (Xi, Aj) 

i.l i. ~ 

i.< j 

... (6·31a) 

i. If XI ,X2, ... ,X" are independent (pairwise) thenCov (Xi,X;) ~ 0, (i;oe }). 
Thus from (6'31) and (6'31a), we get 

.v(aIXI +(a7X2 + ... + a"xn»= aI2(V(~I) +(al)v (X2) +.;/ ~/V(Xn) 1 ... (6'31b) 
and Vi XI +X2 'f; ••.• +X~ = VXI7 + ViX2 + ... + v-\X"1. r 

3. If a) = 1 = a2 and a3 = a4 = ... = all = 0, then from (6·3l). we get 
.. V(X I\+X 2)·= V(X.) + V(X 2 )+ 2 Cov (XI.X::) 

Agam If al "i'1, a2 = - 1 and a,3 = a4" ... = an';=; 0, then 
V(X I - X 2)= V(Xr) + V(X2')- 2. Cov (X I.,X2) 

Thus we have 
V(X I :t-X2)= V(X I )+ V(X 2 ):t 2 Cov (X I ,X2) ... (6-31c) 

If X I 'and ·x 2 are. independent, then Cov (X 1 , X 2) ... 0 ~nd we get 
V (X I :t X 2 ).= V. (X j) + Y.,(X 2)' ... (6·31d) 

Theorem ~·10. ffX and Yare independent random variables then 
E fit (X) . k (Y)] = E rh (X)] E [k (Y)] ... (6·32) 

where h (.) is.a function of X alone and k (.) is a function of Y alone, provided 
expectations on both sides exist . 

. Proof. ~'/.y(x} ltnd. gy(y') bethema~ginalp.d.f.'sofX an~ Yrespectively. 
SinceX and Y are ind~pendcnt, their joint p.d.f.fxy (x, y) is given by 

fxY(x,y)='/.Y(x) fy(y) • ..(If<) 
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By definition, fo~ cp,ntinuous-r.v.'s . . 
E [h (Xl : k (y) ] ~ f f h (x) k (y) I <Ix , y) dx dy 

_GO _,tJG' .. .. 
= f f ·h(x) 'k(y'} I(x) g(y) dx dy 

~oo -'GO 

[From (*)] 
Since E [h (X) k (Y)] exists,.the integral on tbe right hand side is absolutely 

convergent and hence by Fubini's t!leorem for: integrable JunctJQDS we can change 
tbe order of integration to get 

E[h'(X) ''k1(y) j= [l,h.(x)'/(x) dx ][:~ k(y) g(y) dY ] 

- E [h (X) ] . E [k (Y) ], 
as desired. 

Remarf5.. J"b.c, res~lt can be proved for discrete random variables X and Y on 
replacing integration by summi\'ion_o~yer tbe ~ivel} range. oJ X and Y. 

Theorem 6·11. Cauchy-Schwartz Inequality. II X and Yare random 
variables la~ing.real values, Ihen 

[E (X Y)]2 :5 E (.¥ 2), • E (y2 ) ... (6.33) 

P)'Oof. Let tis consider a real valued function oftbe real variable I, C1efined 
by 

Z (I) = E (X + I Y)2 
'which i.s always non-neg~Hve, since (X t I Y)2 ~ 0, for all real X J Yand I. 

Thus Z (I) = E (X + I iy ~ Q V l. 

=:> 1 Z (I) = E {X 2 + 2 I X Y + I 2 Y ~ ] 
= E (-X 2) *' 2 t. E (X Y) + l E (Y 2) ~ 0, for all I. ( *) 

Obviously,Z (I) is jI Auadratic e~pression.in 'I'. . , 

We know that tbe quadrati~ expressi~n of the form : 

''''It 4J( t) 

L-----------·---~~1 1 
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'l' (t) = A t2 + B t + C ~ 0 for all t, implies th~t the graph of the- function 
'l' (t ) either touches the t -axis at only one point or not at all, as exhibited in the 
diagrams. ' , 

'This is equivalent to saying that the, <liscriminant of the function 'l' (t) , viz., 
B2 _ 4 A C sO, since the condition B2 - 4 A C > 0 implies that the function 
'l' (t ) has two distinct real rools which is a contradiction to the fact that 'l' (t ) meets 
the t -axis either at only one point or not at all. Using this result, we get from (*), 

4 . ~E (X Y) ]2 - 4'. E (X2) . E (Y2) S 0 
~ [ E ,(X Y)]2 s E (X~) . E"(Y~~ 

Remarks'.!. The sign of equality holds i" (6'33) or (*) iff 
, E(X+tY)2,= 0 V t ~ P[(X+tl))2='0],=1, 

~p. [X + t Y = 0] = 1 ~ P [Y = - ~ 1 = 1 

~P[Y""AX]= 1 (A= -l/t) : .. (6·:33b) 
, . . .. ,.. . 
2. If the r.v. X takes the real values xi, X2, ••• ,xft aftil" t.v.' Y ''takes the real 

values Yh Y2, ... , Y~ then Cauchy-Schwart'z in~quafity impiies : 

( t! 1: Xi Yi )2. S (:! i xl) . (!:!" il il)' 
n i-J n i-I n i-I ' 

~ (,1: Xi Yi)2 s ( ,f X i2 ) • ( ,1: Yi 2 \ 
,.1 ,- 1 ,. 1 )~ 

the sign of equillity holdj,ng if alJ,d only if,: . 

Xi = constant = k, (say) for all i = 1,.2, ... , n 
Yi " 

. I'ff XII X2 • :X ft 'L'(") I.e. '~= Y2" •••• m Yft'= ,1(., say. 

3. Replacing X by I X - E (X) 1 = 1 X - I! >: 1 and taking Y = 1 in (6'33 i 
\Veget 

[, E I X - Jl:1 ]2 = E I x - I! x 12 . E (1) 
[ Mean Deviation about mean] 2 S Varianc~ tX) 
M.D. s S.D. '~t S.D. ~ ME;' ' . '-' ... (6·33a) 

.6·7. Jenson's Inelluality 
Continuous Convex Function. (Definition). A continuous. iunction g( X ) 

on the interval I "convex if for every x I and x 2, (x I + x ;Vt. E I, we have 

'''j'\'I+X2) 1 1 
g ~ 2 ' s '2 g ( X I ) + ~ g ,( x 2) . , .. (6'34) 

Re~arks. 1. If x I , X, 2 E I, then ( X I + X i )/2 E I. 
2. Sometimes (Q;34) is.replaced by the stronger condition: I 

For x I , X· 2 'E ~, 
g'(AX 1+ ,0- A) \" zl s Ag (x 1)+ (1:- k·) g (x 2) ; 0 s AS 1 ... (6'35) 
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(6'34) and (6'35) agree at A = 4. 
3. If we do not assume the continuity of g( x) ,then «i'35) j;> rl(qpired to define 

convexity. There are certain 'no,.,-measurable' non-constant functions g (.) satis­
fying (6'34) but not (6'35). If g (,.) 'is me'asurable, then (6'34) and (6·35) are 
equivalent. 

4. A functiO'n satisfying (6,35) IS cO'ntinuous eXcept possibly at the end PO'ints 
of the interval/ (if it has end PO'ints). 

5. If g is twice differentiable, i.e., gH(X) eXists 'fO'r X E [(nteriO'r O'f 11, and 
gN(X) ~ 0 for such x, then g is convex 0'1) the interiO'r ,PO'ints. 

6. For ;my PO'int x 0 interior to I, 3 a straight line y'= ax + b, which passes 
thrO'u.~h (x 0, g (x 0» and satisfies g (x ) ~ ax + b, fO'r all x E I . 

Th'eorem 6·12. (Jenson's Inequality). If g-is continuous and convex functi9fJ 
O!I tlte interval/, andX is a random variable whose values are in I witlt probability 
1, then 

E[g(X).1~ g[E(X)]l 
provided'the expectations exist. 

... (6'36) 

Proof. First O'f all we shaH show that E (X) E I. 
The variO'us PO'ssible cases fO'r I are: , 

1= (- 00,(0); 1= (a,oo); 1= [a,oo); 1= (- oo,b); 
1= (- 00 , b ], 1= (a, b) ~~~ Yi\riatiO'ns O'Ohis,. 

If E (X) exists, then.- 00 < E (X) <. 00. 
If X ~ a almO'st surely (a.s.), i.e., with probability 1, thenE (X) ~ a. 
If X s b, u. then E (X) s /Y. .. 
Thus E (X) E I . NO'W E (X -) can be either a left end O'r a rigbt end PO'int (if 

end PO'ints exist) O'f I O'r an interi'O'r point O'f I. J 

SUIlPO'Se I has a left enCl pOint 'a', i.e., X ~ a and E (X) •• a. Then 
X - a ~ 0 a.s. and E (X - a) "" O. 

Thus P (X = a) = 1 O'r P [(X - a) '" 0).] = 1. 

.. E[g(X)]= ~[g(a)] [.: g(x)= g(a) a.s.] 

= g (a ) ~.: g (a') is a constant) 
= g E (X)]. 

The resull can be established similarly if r ha" a right end PO'inl 'b' and 
E (X) = b. 9 (x) 9 (x) , 

Thus we are nO'w required ,to establish 
(6'36) when E (X) = x 0, is an interiO'r pqint 
of I. 

Let ax + b, pass through the point 

Ox+ 

• x 
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(X 0 1 g ( X 0» and let it be below g 
[c.f. Remark 6 above]. 

E [g (X) ] ~ E (a X + b) = a E (X) + b 
=axo+.b 
= g (x 0)" g [E (X) ] 

=> E [g (X) ] ~ g' r (X) 1 . 
Continuous Concave FUllctlOn. (Definition). A continuous function g is 

concave on an interval I if (- g) is convex. 
Corollary to Theorem 6·12. If g is a continuous and concave [unction on 

tile interval I and X is a r.v. whose values are in I with probability I, t/len 
E[g(X)J.s g.[E(X)] ... (6'37) 

provided the expectations exist. 
Remarks. 1. Equality holds in Theo,-em (6'12) and corollary (6'37) lif and 

only if 
P [g (X) = aX + b] = 1, 

for some a and b. 
2. Jenson's inequality extends to random vectors. If I is a conv«x set in 

n-dimensional Euclidean spac.e, i.e., the interval I in theorem 6·12 is transferred to 
convex set, g is conotinuous on I, (6'34) holds whenever Xl andX2 are any arbitrary 
vectors in I. The condition g" (x) ~ 0 fOI x interior to I implies 

( ::~ ~~ ) = ~(x), (say), 

is non-negative definite for all x interior to I. 
SOME ILLUSTRATIONS OF JENSON'S INEQUAJ...ITY 

1. If E (X 2) exists, then 

E (X 2) ~ [E (X) f, ... (6'38) 
since g (X) 0;0 X2 is convex function of X as g" (X) = 2? O. 

2. If X> 0 a.s. i.e., X assumes only positive values and E (X) and E (l/X) 
exist then 

E(~)~E~X)' 
because g (X) = ~ is a convex function of X since 

g" (X) =~ > Of for X>'O, 
X 

3. If X > 0, a.s. then 

E (X ~~) s I E (X) ( , 

:linn' ~ (X) = X ~~ , X >-0 is a concave funclion 

<IS g:'(X)=-~X:'~<O, forX>O. 

·t II X> O .... :1. Ihcn 

... (6·38a) 

... (6·38b) 
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E [ log (X) J :S log [E (X) ], ... (6·38c) 
provided the expectations exist, because log X is a concave function of X . 

5. Since g (X) = E (e IX) is a convex function of X for all t and all X, if 

E (e IX) and E (X) exist then 

E (e IX) ~ e IE(K) ••• (6·38d) 
If E (X) = 0, then 

Mx(t) = E (e IX) ~ 1, for all t. 
Thus if Mx (t) exists, then it has a lower bound 1, provided E (X) = O. Further, 

this bound is attained at t = O. Thus Mx (t) has a minimum at t = O. 
6·7·1 ANOTHER USEFUL INEQUALITY ~Let f and g be monotone functions 
on some subset of the real line and X be a r. v. whose range is in the subset almost 
sltrely (a.s.) If the expectations exist, tl,en 

or 

E [f(X) g (X)] ~ E [f(X)] E [ g (X) ] 

E [f(X) g (X») :S E [f(X) ) . E [ g (X) ) 

... (G·39) 

... (6·39a) 

according as f and g are monotone in the same or in the opposite directions. 
Proof. Let us consider the case when both tfle functions f and g a re monotone 

in the same direction. Let x and y lie in the <!omain Qf f and g respectively. 
Ir fand g are both monotonically increasing, then 

y ~ x => f(~') ~ f(x) and g (y).~ g (x) 
=> f(y) - f(x) ~ 0 and g (y) - g (x) ~. 0 
=> [f(y) - f(x)] . [g (y) - g (x)] ~ 0 ... (*) 
Ir f and g are both monotonically decreasing then.for y ~ x, we have 

f(y) :S f(x) and g (y) :S g (x) 
=> f(y) - f(x) :S 0 and g (y) - g (x) :S 0 
=> [f(y) - f(x)] . [g (y) - g (x)] ~ 0 ... (**) 
Hence iff and g are both monotonic in the same direction, then [rom (*) and 

(**). we get the same result, viz., 
[f(y) -'f(x)] . [g (y) - g (x)] ~ O. 

Let us now consider indepcndently and identically distributed (i.i.d.) random 
variables X and Y. Then [rom above, we get 

E [if(Y) - f(X)(g (Y) - g (X»] ~ O. 
=> E [f(Y) . g (Y)] - E [f(Y) . g (X)] - E [f(X) g (Y)] 

+ E [f(X) . g (X)] ~ 0 ... (6'40) 
Since X and Yare U.d. r.v.'s, we have 

E [f(Y) g (Y)] = E [f(X) g (.X»):-
E. [feY) g (X)] = E [f(Y») E Ig (X») = E [f(X)] E [g (X)] 

( .: X and Yare independent) ('": Xand Yare identical) 
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and E[f(X)g(Y}J = £ [f(Xn· E [g(y)1 =E (f(x)1.E[g (x)1 

Substituting in (6·40) we get 

2 E [f(X) . g (X)] - 2 £ [f(X)] . E [g (X») .~ 0 , 
~ E [f(X) . g (X)] ~ E [f(X)1 . E [g (0) 

which establishes the result in (6·39). 
Similarly, (6.390) ~an be esta~lished, iff and ,g are monotonic in opposite 

directions, i.e., if/is monotonically inc~a~ing (deqel!sipg) and g is,monotonically 
decreasing (increasing). The proof.is left as an exercise to the rea<!eI:. 
SOME ILLUSTRATIONS Ol'INEQUALITY (6·39.). 

1. If X is a r.v. which takes on1y no.n-negativ~ yalues, i.e., if X ~ 0 a.s. then 
for a > 0, ~ > 0,J(x) =X a and g (X) =XII are monotonic in the same direction. 
Hence if the expectations exist, 

E(Xa .XII) ~ E(Xa).E(XII) 
~ E (xa+ lI ) ~ E (xa), £ (XII); a> 0, .~ > 0 ... (6·41) 

In particular, taking a = ~ = 1, we get 
E (X 2) ~ [E (X)]2 , 

a' result already obtained in (6:38). 

2. If X ~ 0, a.s. and E (X a) and £.(X- I) exist, then for u> 0, we get from 
(6·390) 

£(xa .X-4 ) s Eq"a).E(X- 1 ) 

£ (;a) E (:~) ~ E (X a -I ); a > O. 

In particular with a = 1, we ~et 

£ (X) £ (~)- ~ 1, 

a result already optained iq (6·38a) 
, Taking a = 2 in (6·42), we get 

£ (X 2) £(~) ~ E(X) 

£'(X 2) £ (X) t 

, ~~('~)~[£(~)r' 
(III IIsin& (6·380). 

. .. (6·42) 

... (6·43) 

Taking a.= 2 and ~ = - ~',inf(x) = xa , g (X) =XII and using (6·39a), W~ get 
E (X 2) . £ (X - 2) ~ E (X 2 • X -, ) = 1. 

=;> £ (X 2) 1 
~ £ (X-2) ... (6·430) 

\\ hir~ is it weaker ineguality than (6~4~)., 
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3. If M x (t) = £ (e Ll) exists for alIt and for some r.v.x, then 

Mx(u+v) =~ [e (u +v)x ] =£ (eu,r. e VX) 

~ £ (e uX) • £ (e v.r) 
= M"x(u) . M x (v) 

:. M.du + y) ~ M.du) . Mx(v) , for u, v ~ O. 
Example 6·1. Let X be a random variable with the following probability 

distribution: 
X 

Pr (X :;ox) 
-3 
1I6 

6 

1/2 
9 

1/3 

Find £(X) and £(X2) and using th,e laws of expectation, evaluate 
E(2X + Ii· ' 

(Gauhati Univ. ~.sc .. , 1992) 
Solution. £ (X) = I x "P (x) 

= (- 3) x! + 6 x! +'9 x! = !!. 
6 2 3 2 

£(X2) = ~X2p(X) 

= 9 x! + 36 x! + 81 x! = 93 
t:. 2 3 2 

£ (2X + 1)2 = £ [~2 + 4X + 1] = 4£ "'" 2) + 4£ (X) + 1. 
= 4x93+4x!!.+1 = 209 

2 2 
Example 6'2. (a) Find tlte expectation of the number on a die when thrown. 
(b) Two unbiased dice are t/u'own. Find the expected values of the sum of 

numbers of points on them. 
Solution. (a) LetX be the random variable representing the number on a die 

when thrown. Then X can take anyone of the values 1,2,3, ... , 6 each with·t!(jual 
probability 1/6. Hence 

1 1 1 1 £ (X) = 61)( 1 + 6 x 2 + 6 x 3 + ... ,to 6 X 6 

1 1 6x7 7 
= '6 (1 + 2 + 3 + ... + 6) = 6 X· 2 = '2 

Remark. This does not m~an that in a r.andom throw of a dice, the player will 
get the number (7/2) = 3·5. In fact, one can never get t~is (fractional) number in 3 

throw of a dice. Rather, this implies that if the player tosses the dice for a "long" 
period, then on the average toss'he will get (7/2) = 3·5. 

(b) The probability function of X (the sum ofnumbe,s obtained on two dice), 
is 

Value of X : x 2 3 4 5 6 7 ..... 11 12 

Probability 1136 ~6 3136 436 5136 6J36 ..... ~ 1;36 
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E (X) = r. p; X; 
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= 2x.!.+3x2+4x~+5x.i.+6x-~+7x~ 
.~ ~ ~ ~ ~ ~ 

5 4 j 2 + 8 x - + 9 x - + 10 x -- + 11 x - + 12 x 1 
36 36 36 ~ 36 

= ;6 (2 + 6 + 12, + 20 + 30 + 42'+ 40 + 36 + 30·+ 22 + 12) 

= .!. x 252 = 7 
36 

Aliter. Let X; be the number obtained on the itb dice (i = 1,2) when thrown, 
Then the sum of the number of points on two dice is given l;Jy 

S = XI +X2 
7 7 

E (S) = E (X I) + F (X 2) = '2 + '2 = 7 [On using (*)] 
Remark. "fI\is result can be generalised to the sum of points obtained in a 

random throw of n dice. Then 
'" " 7 n 

E (S) = ;:1 E (X;) = ;:1 (7/~) = """2 
Example 6·3. A box contains 2" ti<.kets among which "C; tickets bear the 

number i ,. i =·0, 1,2 ..... , n. A group of m tickets is drawn. What is the expectation 
of tlte sum of-their numbers? 

Solution. LetX i ; i = 1,2, "', m be.the variable representing the number on 
the ith ticket dra~n. Then the sum'S' of the numbers on the tickets drawn is given 

:by 
m 

i.l 
m 

E (S) = r. E (Xi) 
i.l 

NowX; is a random-variable which can take anyone of the possible values 0, 
1,2, ... , n with respective probabilities. 

"Co/2", "CI /2", "C2/2", "', "C"/2", 
-

E (X;) = ;n r 1."CI• + 2."C2 + 3,"C3 + ... + n."C" ] 

1 [ n(n-l) n(n-l)(n-2) ] 
= 2" 1.n + 2. 2! +~. 3 ! + ... + n.1 

= ;" [ 1 + (n _ -I) + (n - 1~ ~n - 2) + ... + 1 1 

n ["-IC "-IC "-IC "-IC] =2" 0+ 1+ 2+ ... + "-I 

= ~. (1 + 1)"-1 = !!.. 
2 2 
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m m n 
Hence E (S) = I (nI2) = -'-

i.1 ~ 
Example 6,4, In four tosses of a coin, let X be the number of heads, T.lbulate 

tile 16 possible outcomes with the corresponding values ofX. By simple counting, 
derive the distribution of X and hence calculate the expected value of X. 

Solution, LetH represent a head, Ta \ail andX, the random variable denoting 
the number of heads, 

S.No. Outcomes No. of /leads S.Np. Outcomes No. of Jleads 
(X) (X) 

1 HHHH 4' 9 HTH'T 2 
2 HHHT ;3 10 THTH 2 
3 HHTH 3 11 T H H T 2, 
4 HTHH 3 12 H T T T"'~ 1 
5 TH H H 3 13 T H T T 1 
6 HHTT i 14 T T H T 1 
7 HTTH 2 15 TTTH 1 
8 T T H H 2 16 TTTT 0 .. 

The randomvariableX-takes the values 0,1,2,3 and 4, Siltce, from the above 
table, we find that the number of cases favourable to the coming of 0, 1, 2, 3 and 
4 heads are 1,4,6,4 and 1 respectively, we have 

1 4 1 6 3 
P (X = 0) = 16' P (X = 1) = 16 = 4' p (X = 2) = 16 = ~' 

p (i ;. 3) = i~ = i and P (X = 4) = -}16' 

Thus the probability distribution of X can be summarised as follows: 
x: 0 1 2 '3 4 

p(x) : 
1 
16 

1 
4 

3 
8 

1 
4 

4, 1 3' '1 1 
E(4) = %:0 xp(x) = 1'4+ 2 '8+ 3 '4+ 4 '16 

133 1 
=-+-+-+-=2 

4 4'4 4 ' 

1 
16 

Example 6'S, A coin is tossed until a head.appe{lr~. What is the expectation 
of the number of tosses required? [Delhi Univ. B.Se., Oct. 1989] 

Solution. Let X denote the number of tosses required to get the first head, 
Then X can materialise in the following ways :') 

E(X) = I xp(x) 
... 1 
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Event 

H 
TH 

rrR 

x 

1 
2 
3 

Probability p (x) 

112 
112 x 112 = 114 
112 x 112 x 1/.2 = 118 

This is an arithmetic-geometric series with ratio of GP being r = 112. 

Let 
1 1 1 1 

S = 1. 2 + 2 . 4 + 3 . 8 + 4 . 16 + ... 

Then 
1 1 1 1 
2 S " 4+. 2 '8+ 3 '16+'" 

1 1 1 1 
.. (1 - ~) S = 2 + 4 + 8 + 16 + ... 

!S... 112 = 1 
'}, 1 - (112) 

... (*) 

[Since the.sum of an infinite G.P. with first tenn a and common ratio'r « 1) 
is a/(I- r) ] 
~ S = 2 
Hence, substituting in (*),. we get 

E(X)=2 . 

Example 6·6. What is the expectation of the number of failur.es preceding 
the first success it. an infinite series of independent trials with constant probability 
p of success in each trial? [Delhi Uni\'. B.Sc., Oct. 1991] 

Solution. Let tbe random variableX denote the number offa i1u res preceding 
the first success. Then X can take the values 0, 1,2, ... , 00. We have 

p (x) ... P (X = x) = P [x failures precede the first success] = tf jJ 
where q = 1 - P is th~ probability of failure in a ~rial. Then by def. 

~ ~ . 
E(X) .. 1: xp(x) = 1: x.tfp = pq 1: xtf-t 

.... 0 .... 0 ' .... 1 

= pq [1 + 2q + 3l + 4il + ... ] 
Now 1 + 2q + 3t/ + 4l + ... inn·infinite arithmetic-geometric series'. 

Let S = 1 + 2q + 3l + 4l + .. . 
qS... q+2l+3'(/+ .. . 

(1 - q) S .. 1 + q + t/ + q'3 + ... = _1_ 
1-q 

• 
S _ 1 

- (1- q)2 
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-:l 3 1 1 + 2q + 3'1 + 4q + ... .. z 
(1 -q) 

Hence E(X)= pq =pq",!J. 
(1- q)2 p2 P 

Example 6·7. A bBx contains' a' white and :b' black balls. 'c' balls are drawn. 
Find the expected value of the number of white balls drawn. 

[Allahabad Univ. B.Se., 1989; Indian Forest Service 1987] 

Solution. Let a variable Xi, associated with ith draw, be defined as follows: 
X; = 1, if ith'ball drawn is white 

and Xi - O~ If ith 'ball drawn is black 
Then the number 'S' of the white balls among 'c' balls drawn is given by 

c c 

S = XI + X2 + ... + Xc = 1: Xi => E ts) = 1: E (Xi) ;."'. 
Now P (X; = 1) = P (of drawing a white ball) = ~b 

a+ 

and P (Xi'" 0) :;: P (of drawing a black ball) '" ~b 
' a+ 

.. E (X;) = 1 . P (Xi = 1) + 0 . P (Xi = 0) = a: b 
c 

Hence £,(S) '" ~ (_a_) = ~ 
.. ~ a+b a+b 

;-1 

Example 6·8. Let variate X have the distribution 

P (X = 0) = P (X = 2) = p; P (X = 1) = 1 - 2p, for 0 $ P $ ~ • 

For what p is the Var JX) a,maximum ? 
[Delhi Univ. B.Se. (Maths HODS.) 1987,85] 

Solution1 Here. the r~v. X takes the values 0, 1 and 2 with respective 
probabilities p, 1 - 2p and p, 0 $ P $ ~ • 

.. E (X) = 0 x p + 1 x (1 - 2p) + 2 x P ~ 1 
E'(X2) '" Oxp+12x(I-2p)+22xp .. i+2p 

.. Var(X) = E(X2)'-[E(X)t = 2p; O$P$~ 

Obviously Va'r(X) is maximum whe",p ;= ~, ~,nd 

[Var (X) ]m .. '" 2 x ~ '" 1 

Example, ~·,9.. Yar.(X) '" 0, => P [X = E (X) ] = 1. ·comment. 
Solution. Var (X) ;= E [X - E (X)]l = 0 
=> :[X- E (X)]2 :. 0, with'probability'1 
=> [X - E (X)] .. 0, with probability 1 
=> f[%.:;:E(X)] Po 1 
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Example 6·10. Explain by means of an example that a probability distribu­
tion is not uniquely determined by its moments. 

Solution. Consider a r.v. X witb p.d.f. [c.f. Log-Normal distribution; 8·2'15 

f(x) = V2~x.exp[-1(1ogx)2] ; x>O ... (*) 

=' 0; otbeiwise 

Consider, anptber r. v. Ywitb p.d.f. 

g(y) = [1+dsin(2rclogy)]f(Y) = ga(Y),r(say), y>O ... (**) 
which, for - 1 s a s 1, represents a family of probability distributions . .. 

E(Y") = f y' {1+asin(2TClogy)1 f(y)dy 
o 
'" 00 

= J y' f (y) dy + a.f y'. sin (2 TC log y) f (y) ~y-
0_0 .. 

= EX' +-a. ~ { y'. sin (2rc IOgy).~ exp [-i (I0gy)2\dY 

, a' f 2 ()' - EX +..f2i _00 en -rn. . sin 2 rc z dz 

//2 • 
[logy = z 

= EXr+~ f 
,f2i 

1 2 

e-'2(z-r) .sin(2rcz)dz 
I 

-00 , '" ,/2 , 

= EX r + a~ f e- y12 • sin (2 TCy) dy 
-.. 

[z -'r = y 9 sin (2·rcz) = sin (2 TC r't- 2 rcY)'=~in 2 ~y, 
r being a positive integer I. 

= EX', . 
the value oftbe integral being zero, since tbe integraM is an odd function ofy. 

=> E (Y') is independent of 'a' in (;1<*).-
Hence, {g (y) = ga (y); - 1 sa s 1 }, represents a family of distributions, 

eacb different from tbe otber, but baving'the same moments. This explains tbat tbe 
moments may not detemline a distribution uniquely_ . 

Examp,e 6·11. Starting from t"e qrigin, unit steps ore taken to tlte rig"t witll 
probability p and to the left wit" probability q (= 1 - p). Assuming independent 

J movements, {urd the mean and variance of the distance moved from origin after n 
steps (Random Walk Problem). 

Solution. Let us associate a variable Xi witb tbe ith step defined as follows: 
Xi = + 1, if tbe ith step is towards the rigltt, 
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= - 1. if the ith step is towards tbe left. 
Then S = XI + X2 + '" + X. = ! X;, represents tbe random distance 

moved from origin after n steps. 

E (X;) ... 1 x P + (- 1) x q = p - q 
E (X; 2) ... 12 X P + (- 1)2 X q = p + q 0;0 1 

Var (X;) ... E f.l{; 2) _ [E (X;)]2 = (q + p)2 _ (p _ q)2 = 4 pg 
,. 

E (S,.) = ! E (X;) = n (p - q) 
i-1 ,. 

V(S,.) ... I V(X;) .. 4npq 
;-1 

[.: Movements of steps are. independent J. 
Example 6·12. Let r.v.X have a density functionfO, cumulativedistribu­

tion function F (,), mean 14 and variance 0 2, Define Y = a + lU', where a and 
~ are constant~ satisfying - 00 < a < 00. and ~ > O. 

(a) Select a and ~ so that Y has mean 0 and variance 1. 

(b) What is the'correlation coeffici~nt P,Y)' between X and Y ? 
(c) Find the cumulative distribution function ofY in terms oJ-a,'~ and 

F(·). 
(d) ffX is symmetrically distributedabout:JJ, is Y necessarily symmetrically 

distributed about its mean? 

Solution. (a) E (X) = 14, Var (X) '" 0 2, We want a and 13 S.t. 

E (Y) ... E (a + fiX) = a + ~14 .. 0 
Var(Y) " Var(a + fU) = ~2, 0 2 '", 1 

Solving (1) and (2) we get: 
13 = 110, (> 0) and a '" - 14/0 

.. ,(1) 

.. ,(2) 

.,,(3) 
(b) Co\' (X, Y) ... E f.l{ Y) --E (X) E (Y) ... E [X (a + fiX) ] 

[,: E (n = 0] 
.. a.E(X)+j3.Ef.l{2) <:; <114+13;[02 +142 ] • 

P Cov (X, Y) a 14 + @ [02 + 142 ) ' 
XY'" = 

OXOy 0.1 

1 [ ; , , = 0 2 - 14 + 0- + 1-1-] = 1 

(c) Distribution function Gy (.) of Y is given by: 
Gy(y) = P(Ysy) = P[a+JU"syj 

= P (X s (y - a)/j3) 

~ Gy (y) ... Fx ( y; a) ; 
(d) We have: Y .. <1 + JU" .: ! ex - 11) .. (J (X - J.c.) 

o 

(': Oy = 1) 

[On using (3) ] 

[On using (3) ] 
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Since X is given to be symmetrically 4istributed about mean f.l, (X - f.l) and 
- (X - f.l) have the same distribution. 

Hence Y = ~ (X - f.l) and - Y = - ~ (X - f.l) bave the same distribution. 
Since E (Y) = 0, we conclude tbat Y is symmetrically distributed about its mean. 

Example 6'13. Let X be a r. v. with mean f.l and variance. 02. Show that 
E (){ - b)2, as afunction ofb, is minimised when b = f.l. 

Solution. E (){ - bf = E [(X - f.l) + (f.l- b) ]2 
= E (X - f.lf + (f.l- b)2 + 2 (f.l - b) E (X - 11) 
= Var (X) + (f.l- b)2 [ .,' E (X - f.l) = 0] 

=> E ()( - b)2 ~ Var (X), ... (*) 
since (f.l - bf, being tbe square of a 'real' quantity is always non-negative. 

The sign of equality bolds in (*) iff 

(f.l·-b)2 = 0 => f.l = b. 
Hence E (X - b)2 is minimised when f.l = b and its mfniinum value is 

E (){ - f.l)2 = Ox 2. . 
Remark. This result states that the sum of squa.~s of deviations is minimum 

wh~n taken about mean. 
[Also see § 2·4, Property 3 of Arithmetic Mean] 
Example 6·14. Let a., a2, ... , an be arbitra.ry real numbers and At.A2, 

... , An be events. Prove that 

I k ai aj P (AiAj) ~ 0 
i_\ j- I 

[Delhi Univ. B.A. (Spl •. Cou.,~ - Stat. Hons.), 1986] 

Solution. Let us define the indicator variable: 
X .. IAi = 1 if Ai occurs 

= 0 if Ai occurs. 
Theo using (6'2b): 

E (Xi) .. P (Ai); (i = 1,2, ... , n) 
Also XiXJ = IA;nA; 

=> E (XXi) = P (AiAj) 

Consider, for real numbers at. q2 , ... , an, the expression ( 

is always non-negative. . 

( 
n 2 

=> I ai X) ~ 0 
i-l 

=> ( .i ai Xi) ( .i al Ai) ~ 0 
,.1 I-I 

n n 

=> II l: aiaj XiX} ~ 0, 
i.1 i-I 

... (i) 

... (ii) 
n 2 

I ai X) , which 
;-1 

... (iil) 
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for all ai'S and ai's. 

Since expected value of a non-negative quantity is always non-negative, on 
taking expectations of both sides in (iii) and using (i) and (ii) we get: 

II II " " 

I I ai aj E (Xi}4) 2: 0 => I I ai ai P (Ai Aj) 2: O. 
i-I i-I li-I i-I 

Example 6'15,. In a sequence of Bernoulli trials, let X be the length of the 
run of either successes or failures starting with the first trial. Find E (X) and 
V(X}. 

Solution. Let 'p' denote th~ probability of success. Then q = 1 - P is the 
probability of failuure. X = 1 means that we can have anyone of the possibilitjes 
SF and FS with respective probabilities pq and qp. 

.. P(X=I) = P(SF)+P(FS) = pq+qp = '2:pq 
Similarly 

P(X=2) = P(SSF)+P(FFS) .. p2q+t/p 
In general 

Now 

P (X .. r) .. P [SSS .. .sF] + P [FFF .. FS] .. p'. q + if. p '. . 
E (X).. I r P (X .. r) - I r Cp' • q + q' "p) 

,..1 ,..1 . . 
"pq [I r.p'~I+ I r.q'-I] 

,.1 ,.1 
.. pq [(1 + 2p + 3p2 + ... ) + (1 + 2q + 3q2 + ... ) ] 
= pq [( 1 - P r 2 + (1 _ q r2] .. pq [q-2 + p-2 ] 
(See Remark to Example 6:17) 

=Pq.[;2+~]"~+;· 
V (X) = E (X 2) - {E (X)\2 =; E {x (X ... 1)\ + E (X) - {E (X}} 2 

. . 
E (X(X -1») .. I r (r -l)P (X = r) .. I r (r~ l)(p'q + q'p) 

,-2 .,-1 . . 
= I r(r-l)p'q+ I r(r-l)qp 

,.2 ,..2 . . 
=lq I r(r'-1)p,-2+t/p I'r(r-1)q'-2 

,-2 f-2 

2 2 i: r (r - 1) ,- 2 ",.-2 ' i r (r - 1) ,- 2 = P q 2 P + ~p, 2 q 
,..2 ,.2 

= 2p2 q, (1 - p r 3 + Up (1 - 4f 3 

=2(t+!l) q2 p2 
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Aliter. PrJCeed as in Example 6'17. 
Example 6·16. A deck of" numbered cards is thoroughly shuffled and the 

cards are inserted into n numbered cells one by one. If the card number' i' falls in 
the cell 'i', we count it as tl match, otherwise not. Find the mean and variance of 
total number of such matches. [Delhi Univ. B.Sc., (Stat. Hons.), 1988] 

Solution. Let us associate a random variable,Xi with the ith draw defined as 
follows: 

Xi = {1, ifthe it~ card dealt has the number' i' oq it 
0, otherwIse 

Then the total number-of matches 'S' is given by 

Now 

" 

" E (S) = I E (Xi) 
j -I 

1 
E(Xj) .. 1.P(Xj =1)-t0.P(Xj =0) .. P(Xi-1) =­

n 

Hence E (S).. I .:.. = n. - = 1 " ( 1 ) 1 
. j_1 n n 

V(S) = V (XI +X2 + ... +X,,) 
" " = I V (Xi) + 2 II Cov (X, Xj) 

i-I j,j-I 

Now V (X) = E (X 2) - !E (Xi) }' 

( 
1 2 

= 12.p(X=1)+~.P(X=0)- n) 
1 1 n - 1 

:1---=--
n n2 n2 

Cov (Xj, Xi) = E (X Xj) - E (Xi) E (Xj) 
E(Xi Xl) = 1 .. P(XXj =1) + O.P (XiAj = 0) 

(n - 2) ! 1 =---, 
n.! n (n - 1) 

... (1) 

... (2) 

... (3) 

since XX/= 1 if and only if both card numbers i and j are in their respective 
matching places and there are (n - 2) ! arrangements of the remaining cards that 
correspond to this event. 

Substituting in (3), we get 
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1 1 1 1 
Cov (Xi, Xi) = n (n _ 1) - -;; . -;; = n2 (n _ 1) ... (4) 

Substituting from (2) 3nd (4) in (1), we have 

" (n-1 "" [ 1 ] V (S) = l: -2-) + 2 l: l: 2 
i-I n i-,I)-I n (n-1) 

", 
= n ( n - 1) + 2,"C2 1 = n - 1 +! = 1 

n2 n2 (n - 1) n n 

Example 6·17. If t is any,positive real number, show that the function 
defined by 

p (x) _ e-' (1 _ e-' y- I ... (*) 
can represent a probability function of a random variable X assuming the values 
1,2,3, ... Find the E (X) and Var (X) oft/te distribution. 

[Nagpur Univ. B.Se., 1988] 
Solution. We have 

e' > 1, V t > 0 => e-' < 1 => 1 - e-' > 0 

Also 

Hence 

Also 

-, 1 0 W 0 e =,> , v t> 
e 

:r -1 
p,(x) = e-'(1-e- t ) ~O V t>O,x=1,.2;3, ••• . . 

l: p (x) = e-' l: (1'" e-' y- I = e-' l: tt·- I ; 
x!,'l 

-, (1 ,2·1 ) -, • 1 ., 
;= e + a + a + a +... - e x (1 _ a) 

= e-'[1-(1-e-~r~ = e-'(e-'r l -1-
Hence p(x) defined in (*) represents the probability function ofa r.v.x. 

• 
E(X) = l:x.p(x) = e~' l: x(1-e:-'y-1 

r-I . 
= e-' l: x. ar - I ; [a = 1 _ e"] 

r_1 

= e-' (1 + 2a + 3a,2 + 401 + ... ) = e-' (1 - ur2 ... (*), 
= .e-' (e-'r 2 .= e' .. 

E (X2) = l:K p (x) = e-' l: x2 , a"-I 
r-I 

= e-' [1 + 40 + 9a2 + 16a3 + ... ] 
= e=' (1 + a)(1 - ar 1 = e-' (Z - e-') e3t 

Hence Var (X) = E (X 2) - [E (X)]2 = e-' (2 _ e-') ell :. e" 
= eZl [(2 _ e-') - 1] = eZl (1 _ e-') 
= e' (e' -1) 

Remark. 
(;) C<?nsider S .. 1 +. 2a + 3a2 + 403 + ... (Arithmetico-geometric series) 

" 
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as = a + 2a2 + 3a3 + ... 
(l-a)5' .. 1+0'+a2 +a3 + ... = !;tl-a) => S = (l-ar 2 .. 

I xa x - I = 1+2a+3a2 +4a3+ ..... (l-tir 2 ••• (*) 
x-I 

(ii) Consider 

S = l' + 22 • a + 32 • a2 -+ 42 • a3 + 52 • a4 + ... 
=> S = 1 + 4a'+ 9a2 + 16a3 + 25a4 + ... 

- 3a S = - 3a - 12a2 - 27a3 _ 48a4 - ••• 

+ 3a2S .. + 3a2 + 12a"3 + 27a4 + ... 
_ a3S = _ a3 _ 4a4 _ ••• 

Adding the above equations we get: 
(l-a)3S" 1 +-a => S = (1 +a) (l-ar3 ..• (**) .. 

l!. ~ ~-.I = 1 + 4a + 9a2 + 16a3 + ..... (1 + a) (1- ar 3 
x-I 

The results in (*) and (**) are quite useful for numerical problems and should 
be committed to memory. 

Example 6·18. A man with n keys wpnts to open his door and tries the keys 
independently and at random. Find the mean and variance of the ,!umber of trials 
required to open the door (i). if unsuccessful keys are not eliminated from further 
selection,-and (ii) if they are. [Rajastha~ Univ. B.Sc.(Hons.), 1992) 

Solution. (i) Suppose the man gets the filSt.success at thexth trial, i.e., he is 
unable to open the door in the filSt (x - 1) trials. If unsuccessful keys are nol 
eliminated then X. is a random variable which can take the values 1, 2, 3, .... ad 
infinity. -

Probability of succ~ss"at the filSt trial = lin 

Probability of failure at the filSt trial .. 1 - (lin) 

If unsucc(,-'ls(ul keys are not eliminated tnen the probability of success and 
consequently of..failure is constant for each trial. 

Hence p (x) .. Probability of 1st success at the .-1h trial 

( 
1 7-1 1 

= 1-;) .;; 
.. .. 1 7-1 1 

E (X) = I x P (x) = I, x. ( 1 - - ) 
x_I x-\ n n 

1 ; AX-~ A 1 .. x ,w,here = 1 - -
n x-\ n 
1 2 3 1 -2 

E (X) = - [1 + 2A + 3A + 4A + ... J .. - (l-A) 
n n 

. rSee (*), Example (6,17)1 
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1 [ 1 ]-2 - 1 - ( 1 - - ) = ,n 
'n \ n 

E (X 2 r = i x2.p.(x).. i X 2 ( 1 _! )X - f 1 
.... t x.t n, n 

=! ixlA x - t 
n x.t 

.. ! [1 + 22 .A + 32 .,A~ + 42 .A3 t •... ] 
n 

6-31 

- ! (1 +A)(I-A)"3 
n 

[See (**), Exampl,e (6'17)] 

= ~ [ 1 + ( 1 - ~ ) ][ 1 - ( 1 - ~ ) f3 
= (2n - 'i)n 

Hence 21}2 , ,22 V (X) = E (X ).- E (-P = (Zn - ~) n - n = n - n .. ldn ... 1) 

(ii) If unsuccessful keys are eliminated from further selection, then the 
random variable X will take the values from 1 to n. In this case, we have 

Probabilit,y ofsucce~.at the filSi-trial ... lin 

Probability of success at the 2nd trial = 1,1,,- 1) 

PrObability of success at the 3rd trial T' I,1n - 2) 
and so on. 

Hence proba bility of lst succes at 2nd trial = (1 -!)......!.-1 .. ! 
, n,"- n 

Probability of filSt'success ~t the ,third trial 

- 1-- 1--- ,-- .. -( 1.) '( 1), 1 1 
- n n -,1 'tt' -,2 In' 

and so on. In gen~ra,l, we have 

p (x) = Probabj!ity offilSt success at thexth trial ... ~ 
.. 1 n n+l 

E (X) = I x p (x) ='"7 I x = --
x-\ n x.\ 2 

E (X 2) = t x2 p,(x) ... ! :i: x2 = (n + 1) (2n + 1) 
x-\ ,II, x.t 6, 

Hence V(X) = E (X 2) _ [E (X)t = (n + J)(2~ ~ t) _ (n -+' 1')2 
, 6· ~ 2 '. 

= n + 1 [ 2 (211 +.1) :=:3 (n,t i)] = n~ r ,! 
12 12 
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Example 6'19. In a [ouery m tickets are drawn at a time out of n tickets 
numbered 1 to n. Find tile expectation and the variance of tile sum S of tile numbers 
on the tickets drawn. lDelhi.Univ. B.Sc. (Maths Hons.), 1937] 

Solution. Let X; denote the score on the ith ticket drawn. 

Then 
i-I 

is the total score on, them·tickets-drawn. 
m 

., E (S) = I E (~i) 
i-I 

Now each Xi is a random variable which ~ssumes the values 1,2,3, ... , n each 
with equal probability lIn. 

1 . (n + 1) 
. . E (Xi) = -;; (1 + 2 + 3 + '" + n) = -2-

Henc~ E (S) = i:'( n + 1 ) = m (n + 1) 
i-I 2 2 

V (S) = V (XI + X2 + ... + Xm) 
-"'~ .. .. 

= I V (Xi) + 2' I~ Cov (Xi, Aj) 
i.l ~j 

ie; 

E (Xi 2) .= * ( 12 + .22 + ~2.+ ... + n2) 
_.! n (n+ 1)(2n + 1) _ (n + 1)(2n + 1) 
-fl' 6 - 6 

V (X;) = E (Xi 2) - [E (Xi) ]2 

. = (n+ 1) !2~' + 1) _ ( n ; 1 r = n2

1; 1 

Cov (Xi, Aj) = E (Xi Aj) -.E (Xi) E (Ai) Also 
To find E (X; Xi) we note that the variables Xi and ~ can take die values as 

shown below: 

Xi Xi 
1 2,3', ... , n 
2 1,3, ... : n .. , I 

n 1,2: ... , (n - 1) 
I' 

Thus the variable X/Xi can take n (n - 1) p.;:;:;ible values and 
1 

P(Xi = In XI - k) = n1n.-1)' btl. Hence 
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1.2 + 1.3 + ........ + l.n 
+ 2.1 + 2.3 + ........ : + 2.n 1 

E (XiX,) = ( 1) n'n-
+ .............................. : .... . 

··········!.!·t··~,···················· 
+ n.l+ n.2+ ... + n.(n -:, ~ 

1 (1:1' 2 + 3 + ....... + n) -I; 1 

, n (n 1_ 1) ::~:(~:~:;::~:~::::::::::::::~:~~:E: 1 
+ n (1 + ~ + ...... n - J + n)t n2 

= n(n1_1) [(1+2+3+ ... +n)2-('2~2~+ ... +n1] 

1 . [.{ n (n + 1)}2 _ n (n,+ 1)6~2n + 1) ] 
n (~- 1) 2 

I 

(n:t 1) (3n2 - n - 2) 
= 12 (n - 1) 

Co (X X) _ (n + 1)(3n2 - n - 2) _ (n + 1 )2 
. V I, I 12 (n _ 1) 2 

(n + 1) [ 2 2] = 12 (n _ 1) 3n - n 12. - 3(n - 1) 

(n + 1) 
12 

V (S) = ± (' I n2 
- 1 ) + 2 ! .. ~ 1- (n ~ 1) } 

. I 12 . . L ,. ~ • </.1 

Hence 

= m (n2 -1) 2 m (m,:..Q {- (n +!l} 
12 t· 2! 12' 

[since th~re are "'e2 covaria~ce terms in Cov ~X;.Xi)] , 
V(S) = m(n+1) [(n-1)-(m-l)] =_m(n+1)'(n-m) 

12 . 12 
Example 6'20:' A die ~s tilrown (n + 2) times. After each throw a '+' is 

recorded for 4, :5 or (J JTUi· t -' for 1, 2 or 3, the signs forming an ordered sequence. 
r) each, except the first and the' last sigrt. is attached a c1wracteristic random 
wlriable which takes the value 1 ifboth the neighbouring signs differ from the one 
between them and 0 otherwise. If XI> X2, ••• , Xn are characteristic random vari-

n 

ables, [md the mean and (iariance'of X =. I Xi. 
i.t 

Solution. :r=IXi ~ E(X)=IE(Xi) 
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Now E(X;) = 1P(Xi =1)+OP(X;=0) = P(Xi =l) 
For Xi = 1, there are the foJlowing two mutually exclusive possibilities: 
(i) +, (ii) + + 

and since the probability of each signis~ , we have by addition probability theorem: 

Hence 

Now 

Now 

3 3 

P(Xi=1) = P(i)+p(ii) = (j) +(~) = ~ 
1 . 

E (Xi) = "4 

E'(X) = i ( . .!.) = ~" 
_ i-I 4 4 

V(X) = V(XI + V2 + ... +Xn) 
n 

= ~ V (X;) + 2 ~~ Cov (X;,~) ... (*) 
i-I i<j 

E(Xi2) .. 12:p(Xi=1)+02p(Xi =0) = P.(Xr=1) '"' ~ 

') 2) () 2 1 1 3 V,(Xi = E (Xi - (E Xi ] ="4 - 16 ... 16 

E(X;~) = 1P(Xi =1nXj =1")+Op(Xi =onxj =0) 

4 + OP(X; = 1 nxj = 0) + OP'(X;= 0 nXj= 1) 

.- P(X;~l nxj = 1) 
Since there are the following two mutuaily exclusive possibilities for the event 

: (Xi = 1 nxj ,", 1), 
(i) - + - + 
(ii) + - + -, we have 

Hence 

P(X,-I nX;-l) - P(ij +P(iij - (~)' + (~)' - ~ 
Cov (Xi, Xj) = E (Xi Xj) - E (Xi) E (~) 

1 1 1 1 
=---x-=-

8 4 4 16 
n 

V(X) = ~ (3/16) + 2 ~~ COv (Xi,Xj) [From (*)J 
i-I 01 i<j 
3n . -

= 16 + 2 (Cov (Xt,X2) + Cov (X2,X3) + 

...... + Cov (X"'''hXn)] 

= 3n + 2 (n _ 1) ~ =' Sn - 2 
16 . 16. 16 

Exampie '·21. From d'point on the circumierence o/a drCleo/radius 'a',a 
chord is drawn in a random direction, (all directions are e.qually likely). Show that 
the expected value 0/ the length 0/ the chord is 4aht and that the variance 0/ the , 
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length is'202 (1 - 8/rr?). Also show that the chQf1ce is.113 that the.length pfthe chord 
will exceed the length..of the side of an equilateral triangle inscribed in the circle. 

Solution •. LetP 1>e any point on the circumference of a circle of radius 'a' and 
centre '0'. Let PQ be any chord drawn a~ randqm and let LOPQ = 9. Obviously, 

9 ranges from - 31:/2 to,31:/2. Since all the direc­
tions are equally likely, the probability differen­
tial of 9 is given by the rectangular distribution 
(c.f. Chapter 8) : 

d9 
dF ~9) = f (9) d (9) = 31:/,2 _ (..: ~/2) 

=d9 -31:s9s~ 
31:' 2 2 

Now, s~nce LPQR is it right angle? (angle in 
a semi-drcle),'we have 

~~ = cos 9 => PQ'='PR cos a = 20 cos 9 

f 31:12 2a f 31:12 E (PQ) = _ 31:/4 (PQ) f (9) d (9) = -;- . _ 3f12 cos 9 d 0 

= 20 I sin 9 131:12 = 4a 
31: - 31:/2 31: 

E [(PQ)2] = f31:12 [PQ]2 f(9) d 9 = 4Q2 f 31:12 cos2 9 d 9 
- 31:12 31: - 31:12 

= 4a2f31:12 2cos2 9d9 = 4a2f31:/2 (1 + cos 29)d9 
31: 0 31: 0 

(Since cos"2 9 is an even function of 0) 

=- 9+-- =-,,-=20 4a21 ' sin -29 131:/2 4a2 31: 2 

31: 20 31:2 

.. v (PQ), = E[(PQ)~]-[E(PQW = 202 _ ]:~2 = 202(1_ ~) 
We.know that the Jeng~h of the side.of an equiJateral triangle inscribed in a 

circJe of radius 'a' is a'v 3. Hence 
'v 

P (PQ > a V 3) = P (20 cos 9 > 11 V 3) = p{ cos 9 > -f ) 
= P (19 I < ~) = P (-631: < 9 < ~) 
= f31:/6 1(9) d9 = .!f31:/6 . 1. d9. = !. ~ = ! 

- 31:/6 . 31: - 31:/6 31: 3 3 
Example ',22. A chord of a circle of radius 'a' is drawn parallel to a given 

straight line, all distances from the centre of the circle being equally likely. Show 
that the expected valuepl the length of the chord is 3tQ12 and that the variance of 
the length is i (32 - 33t2)1~2. Also show that the chance is 112 thot the length of 
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the chord will exceed the length of the side of an equilateral triangle inscribed in 
the circle, 

Solution, Let PQ be the chord of'a cirCle with centre 0 a,nd radius 'a' drawn 
at random parallel to the given straight line AB. Draw OM 1. PQ. Let OM=x. 
obviously x nnges from - a to a. ,Si~e all distances from ihe centre are equally 

I 

A B 

likely, the probability that a random value of x will lie in the small,interval "tn'is 
given by the rectangular distiibution [d, Ch~pier 8]: 

dF(i)'= f(x)dx = ~) = 2tn ,-asxsa , 'a--a ,a 
Length of the chord is 

PQ .. 2PM = 2 ';a~ -xl 

" Hence E (PQ) = fa PQ 4F (x) = .l.fa ,; ii - x2 tn -a 2a -a 

.. ~Jao ,; a2 - xl tn) 
a. 

(since integrand is an even function of x). 

'" - - x V a7 - X- + - a sm -2\1 -rr--T' 1 2, -1(X) \a 
a ·2 2 'a 0 
2,i 1\ :ita 

=;'2''2='2 
E [(PQ)2] '" fa (PQ)2 dF(x) = 2a4 fa (a2 __ x2) tn 

-a -a 

4 fa 2 _.2 411 2 ~ I' a .. - . (0 - x ) dx = - a x - -
a 0 a 3 0 
4 203 Sa2 

'" ;'3" 3 
Hence 

8a2 1(2a2 
Var(lengthofchOJ;d)= E [(PQ)2] - [E(PQ)f = 3-4 

a2 
= -(32-3~) 

12 
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The length of the chb-rd is greater than the side of the equilatefl\) triangle 
inscribed in the circle if 

2 V a~ - i'- > crl3 => 
• 2 2/4 I.e., x < a => 

4 (a2 -J) > "3a2 

Ixl < al2 
Hence \he required probability. is 

P(lxl<al2) = p(-~<X<~) = f~~~4 dF(x} 

-= .lfal2 loth = 1. 
2a - al2 2 

Example 6'23. Let X\,X2, ""Xn be a seqqence of mutually independent 
random variables with common distribution. Suppose X" . assumes only pdsitive 
j; .. egral values and~. (XIc) =.a, exists; k = It 2, ... , n. Let Sn = ~I + X 2 + ... + Xn. 

(i) Show that E.( ~:) '"\ ~ , for 1 s m s n ..' 

(ii) .show that E ('Sn -I ) exists and -

E ( ~:) = 1 + (m - n) a E (Sn- I ), for 1 s n s m I 

(iii) Verify-and use the inequality x + X-I ~ 2, (x > 0) to ·show'that 

(S",) m 
E S. ~ -n for m, n ~ 1 

.. JDelhi Univ. M.Sc. (Stat.), 19881 
Solution. (i) We have 

E r XI + X 2 + ... + Xn] =, E (1) = 1 
,XI +X2 + ... +Xn 

=> E [ XI +,X2 ;n ... + Xn l = "1 

=> E{ ~~,).+ f; (~:}L .. ;+ E (~: ') .. t 

Since Xi'S, (i = 1,2, ... , n) ar~ identically distributed random variables, 
(XISII), (; = 1,2, ... , n) !lre ~Iso identically distributed random variables. 

.. nE(i)=l 

E-2. =-; (X) 1 
Sn n 

i'= 1,2~ "tn 

Now 

E (S",) _ E (XI + X2 + ... + X",) = E [ !I X2 X", ] 
Sn Sn Sn + Sn + ... + Sn 
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( Xl) (Xl) !(Xm) '" E S" + E S" + ... + E S" 

1 1 1 . 
- ~+-+ ..• +- [(mtlmes)] 

n n " 
= m ,(m<n) 

n 
(ii) Since X; 's assume only positive integral ~alues, we'have 

n ~ XI + X 2 + ... + X" < 00 

1 1 -I 1 => - ~ - > 0 => 0 < S,,' :s:-
n S" n 

Since S,,-I lies between two, finite quantities 0 and! , we get 
n 

Hence E (S; I) exists. 

( X,.. I ) E ( XIII ) = 1 + E S" - .+ ... + S" 

[Using (*)] 

,. 

Since X,.. I; X" 't 2, ••• , X", are independent of S" = XI + X2 + ... + X", they are 
independent of S; I also. 

•. E (~:) '" 1 + E (X,..I)·E (S,,-I) + .. , + E-(X",) E (S;I) 

, = l+[E(X"'I)+ •.. +E(X",)]E(S;I) 
- l+.(in .... n)a.e:.(S;I), l:s:n:s:m 

[ ... E (X;) = a Vi] 

1 
(iii) Verification of x +, '2 ~ 2, (x > 0). 

x + i ~'2 
.i'- + 1 2: 2x (multipIItation-valid only if'x > 0) 

(x - 1)2 ~ 0 

which is always true for x > O. 
If l.:S:,m:s: n, result follows fr;om (*). 
If 1 :s: n :s: m, then using (**), we'have to prove that 
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1 + (m - n) a E (S,,-I) ~ m . n 

(m-n)aE(S,,-I) ~ m-n, 
n 

E (S,,- t) ,~ .!. .,' an 

In (**), taki,ng x = !~ > 0, we get 

E (x) + E (X-I) ~ 2 

-I 

E[!~]+E[!~] ~ 2 

..L .,E (S,,) + an E (S,,- t) ~, 2, 
an 

..L . an + an E (S,,-f) ~ 2 
an 

anE(S;I) ~ 1 

E(S;I) ~ ..L, 
an 

which was to be proved in (***). 

6·39 

•.. (***) 

Example ',24. LetXbe a r.v./or which ~I and ~2 exist: Then/or anY'reol Ie, 
prove t!!at : 

:>2 ~ ~I - (2k + k 2) ... (*) 
Deduce that (i) ~2. z ~b (ii) ~l ~ 1. When is ~2 = 1 ? f 
Solution. Wil~out any loss of generality we can take E (X) = O. [If 

E 00 ., 0, t~eI;l we may start with the random variable Y .. X - E (X) so. that 
E (y) = 0.'] 

Consider the real valued function oftbe real variable t defined by : 

Z(t) = E[X 2+tX+'/clll}2 ~ 0 'V t, 
where ll. = EX', ' . . (1) 
is the rth moment of X about mean. ' 

.. Z(t) = E[X4+t2X~+!C1l22.+2tX3-+2k1l2X2+'2k1l2tX] 
2 k122t 2kl = ll4 + t 112 + 112 + 113 + ~2 

[Using (i) and E (X) = 0] 
= t 2 112 + 2t 113 + 114 + ~ llf + 2k llf ~ 0: for' all t. ...(il) 

Since Z (I) is a quadratic form ~n t, Z (t) ~ 0 for all t iff its discriminant is 
sO, i.e., 

iff 



6·40 Fundamentals of Mathematical Statistics 

~I - ~2 - (2k + e) :s 0 
~2 ~ ~I - (2k + e ) 

Deductions. (i) Taking k = 0 in (*) we get ~2 ~ ~I 

(ii) Taking k = - 1 in (*) we get: '~2-~ ~I of 1 
a result, which is established differently in Example 6'26'_ 

(iii) Since ~I = Ilillll is always non-negative, we get from (***) : 
~2 ~ 1 

Remark. The ~ign of equality holds in (****), i.e., ~2 == 1 'iff t 

~2 = ~ == 1 ~ 114 == Ili 
Ili 

2 
E [X - E (X)t == [E(X - E (X))] 

E (y2) - [E (n]2 = 0, (Y == [X _ E (X)] 2) 

Var (Y) == 0 
P [Y = E (Y)] == 1 

P [(X - 1l)2 == E (X - 1l)2 ]': 1 
P [(X - 1l)2 == 0 2 ] = 1 
P[(X-Il)=±o] == 1 

P[X=Il±O] == 1 

[See Example .6'9') 

ThusX takes only two values Il + 0 amI Il.- 0 with respecti\!e probabilities 
p and q, (say). 

.. E (X) = P (Il + 0) + q (Il- 0) = Il 
~ P + q = 1 and (p - q) 0 = 0 
But since 0 0& 0, (since in this case ~2 is define~) we have' : 

p + q = 1 and p - q = O. ~ P = q = fa. ' 
Hence ~2 == 1 -iff the r.v. X assumes only two values, each with equa( 

proba bility 1,-2. 

Example ',25. Let X and Y be two variates having [mite means. 

Prove or disprove: 

(a) E [Min (X, Y)] :s Min [E (X), E (Y)] 
(b) E [Max (X, ¥)] ~ Max [E (X), E (Y)] 
(c) E [Min (X, Y) + Max (4', 1'-)] == E (X) + E (Y) 

[Delhi Univ. B.A. (Stat. Hons.), Spl. Course, 1989J 

Solution. We know that 

Min (X, Y) == i (X + Y) -I X - Y 1 
and Max (X, Y) = ~ (X + 1') + 1 X - Y 1 

... (i) 

... ..(ii) 
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(a) ,. E [Min (X, Y)] .. ~ E (X + Y) - E I X - Y [ .•. (iii) 

Wehave: IE(X-Y)I s EIX-YI 
~ -'E(X.-Y)J i!: .-EIX-YI·, 
~ E[X-Y[s-[E(X-y)'[=-fE(X)-E(Y)[ .. ,(*) 
Substituting in (iii) we get: 

1 -
E [Min (X, Y)] s 2 E (X:+- Y) - E 1 X - Y 1 

s ~ [E (X) + E (Y)] -I E (X) - E (Y)'I ···Wrom (*)] 

~ E [Min (X, Y)] s Min [E (X), E (Y)] 
(b) Similarly from (ii) we ~et : 

E [Max (X, Y)] = ~E(X+II-rE.lX+tl 

c!: ~E(X+y)+IE(X+'Y)1 

(':IE(X+V)I s EIX+YI) 

= ~ [E .(X) + E (1') ] + 1 E (X) + E (1') 1 

= Max [E (X), E (1') ] 
i.e., E [ Max (X, 1')] C?: M.~x [~,(X), E (1') ] 

(c) [Min (X, 1') + Max (X, 1')] = [X + Y) 
~ E[Min(X, 1')+ Max (X, 1')] = E(X+1') 

= E (X) + E (1'), 
as required. 

Hence all the results in (a), (b) and IC) are true. 

Example 6·26. Use the relation £' (AX G + BX b + Cx c)2 C?: 0, X being a 
random variable with E (X) = 0, E denoting the mathematical expectation, to 
show that 

!!20 !!a+b !!a+c. 
!!a+b!!2b !!b+c C?: 0, 
!!a+c !!b+c !!2c 

!!n denoting the nth moment about mean. 

Hence or otherwise show that Pear~on Qeta- coefficients satisfy the ine­
quality 

~2 - ~I - 1 C?: O. 
Also deduce that ~ ~. 1. 
Solution. Since E (X) = 0i we get 

E (X') = !!, ... (**) 
We are given that 

E (AX a + BX b + Cx c)2 C?: 0 

E [A2X 2a + B2X 2b + C2X 2c + 2ABXa+b :+- 2ACX a+c + 2BCX b+c] C?: 0 
2 2 2 ' 

A !!20 + B !!2b + C !!2c + 2AB!!a + b + 2AC!!a+C + 2BC!!b+ c C?: 0 , 
[From (**)] ... (***) 
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for all values of A, B, C. 
We know from matrix theory that the con~itions for the quadratic form 

a'x2 + bi + c'i'- + 2f'yz + 2g'zx + 2h'xy, 
to be non-negative for all v~lues of x, y and z are 

Comparing with (***), we have 

a' h' g' 
(iii) h' b' f' 2: 0 

g' f' c' 

, b' , f' , I' a = ~:z." = ~2b, C = ~2c, = ~b + c, g .. ~G + C, , = ~G + b 

Substituting these values in condition (iii) abQve, we get the required result. 
Taking a = 0, b = 1 and c = 2 in (*) apd noting that !.to = 1 and ~1 = 0, we 

get 

1 0 ~2 
o ~2 ~3 2: 0 
~2 ~3 ~4 

~2 ~4 - ~i -+ ~2 (- ~i) 2:' 0 

Dividing throughout by ~! (assuming that ~2 'is finite, for 9therwise ~2 will 
·e'--ome infinite), we get 

=> 
Further since ~1 2: 0, we get ~2 2: 1. 
Example 6·27. Let X be a non-negative random variable with distribution 

function F. Show that 

E (X) = f [1 -.F (xl] eU. . .. (i) 
o 

Conjecture a corresponding eipression for E (X2). 

[Delhi Univ. M.Sc.(Stat). 1988] 
Solution. Since X 2: 0, we have: .. .. " 

R.H.S. = f [1- P (X sx)] dx = f [1 - f f(u) du] feU, 
o ,0 0 

wheref(·) is the p.d.f. ofr.v.X. 

R.H.S. = r [ f f (u) du ] eU; 
.•. (ii) 

From the integral in bracket (ii), we have, u 2: x and since x ranges from 0 to 
00, u ~Iso range from 0 to 00. Further'u 2: x => X s u and since x is non-negative, 
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we have 0 s x s u. [See -Region Rdn Remark 2 below]. Hence changing tAe 
order of integration in (ii), [by Fubini's theorem for non-negative functions], we 

get 
• k • 

R.H.S. = f [f r. dx ]f(U) du = f u ·f(u)'du 
000 

= E (X) [Since f ~) is p.d.! of X] 
Conjecture for E (Xl). Consider the integra).: 

~ 2x [1- F (x)] dx .. ~ 2x ( I f(u) du ) dx 

= t ( I 2xdx k(U)dU, 

(By Fubini's theorem for non-negative functions) . . 
= f u2 ·f(u).du = .E(X2) 

o 
Remarks. 1. If X is a non-negative r.v.lhen .. 

Va.;X = EX2 - [E (X)t = f 2x [1 - F (x)l dx - "..: ... (iii) 
o 

2~ If we do not restrict ourst;lves to p'on,negative random variables only, we 
have the following more generalised result. 

IfF denotes the'distribution/unction of the random variable X then: 
• o· 

E(X) = f [l-f(x)]dx - f F (x) d,x, ... (iv) 
o 

provided the integrals exist {miiely. 

Proof of (iv). The first integral has already been evaluated in the above 
example, i.e., 

f [1-F(x)]\~ = f U ·f(u).du ... (v) 
o 0 

Consider: 

o Q 0 1C 

.£ F(x)dx = £ P(Xsx)dx = £ (£f(u)d(l Jdx 

-1. (~ 1- dx 1/< u) du. 

i Cha~g,jng.lhe ~rder of ,illlegration in tbe Region Rf wber~ u s xl· 
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o 
= f /I • f ( " ) dll ... (vi) 

-'" 
Subtracting (vi) from (v), we get: 

o o 

I [1- F (x)] dx - I F (x) dx = I 'uf(u) d(1+ I uf(u) dll 
o -.. 0 

co 

= J lllt.")du 

~ E(4), (Since f (.) is p.d.f. oj X) 
al'desired. 

In this generalised case, 
co 

Var(X) = I 2x(l-Fx(x)+Fx{-x)li!x - (E(X)t 
o 

3. The corresponding analogue of the above result for discrete random variable 
is given in the next ExampJe 6·28. 

~xarnple ',28. If tile possible va/iies of a variate X are 0, 1, 2, 3, .... then 
co' 

E(X) = }'; P(X>n) 
•• 0 

[Delhi,Upiv. B.Se? (Maths Hons.), 1987] 
Solution. Let P (X .. n) = p., n = 0, 1,2,3, ". ...(;) 
If E (X) exists, then by definition: 

co 

E(X) =. }'; n. P (X ... n) = }'; ". p. • .. (ii) 
r..O n-t 

Consid'er: 

}'; P (X > n) = P (X> 0) + P (X > 1) + P (X> 2) + "'; 
•• 0 

= P (X ~ 1) + P (X ~ 2) .f P (X ~ 3) + ". 
= (PI + P2 + P3 + P4 + ...... ) 

+ (P2 + P3 + P4 + ...... ) 
+ (P3 + P4 + ps + ...... ) 
+ ...................... .. 

= PI + 2P2 + 3P3 ~ ..... . 
co 

= }'; np • 
•• 1 

= E(X) (From (U) J 
As an illustration of this result, see Problem 24 in Exe..cise f?(a). 

co co 

Aliter. R.H.S. = }'; P (X > n) = }'; P'(X ~ n) 
.·1 
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= i ( i p (X») 
,..1 x-n 

• 

Since the series is !=onvergent andp.(x), ~ 0 V X, by Fubini's theorem, chang­
ing the order of summation we ge~ : 

R.H.S. '= i ( I p (X) ') = i {p (x) i l} 
x-t , ,..1 x-I ,..1 

since X ~ n => n s; X and x assumes on1!' positive integral values : .. .. 
R.H.S. = I xp (x) = I xp (x) = E (X) 

x-I .r.O 

Example 6,29. For any variates X and Y, show that 

I E (X +)')2}1h s; I E(x~}lh + I E(y2)1Ih 
Solution. Squaring both ~ide~ in (~,-we have to prove 

Ih 1,.1 2 

E:(x+yi s; [{E(X~)}/ +{E(Y~)}r--"-] .....,.,........ _.,,-
=> E(X7)+ E (y2) + 2E (Xl') s; E (X 2)+ E (y2) + 2 v' £'(X2) E (y2) 

=> E(XY) s; VE (X 2) E (y2) 

=> [E(mJ s; E(X2),~(y2), 

... (*) 

This is nothing 'but Cauchy-Schwartz inequality. [For proof see Theorem 
6·11 page 6'13.] 

Example 6·30. Let X and Y be independent non-degenerate variates. Prove 
tllat 

Var (Xl') = 'Var (X) , Var (Y) 
iff E (X) = 0, E (Y) = 0 

[Delhi Uniy. n.,sc. (M~ths HonS.), ~989) 
Solution. We have ! 

Var (XY) = E' (XY)2 - (E (XY)]2 = E (X2Y2) - [E (XY)Y 

~ E (X 2) E (y2) - [E'(X)]2 [E (Y)]~ ... (*) 
since X and Y are indepell~eitt. 
If E tX) = 0 = E (Y) } 
tben Var (Xl = E (X:) ~n~'yar (y) = E (y 2J . 

Substituting from (**,) in ~*), we get 
Var (m = Var (X), , Var 0'), 

as desired~ 

Only if. We have to prove that if 
Var.(XY) ~ Var (X) . Var (Y) 

then E (X) =: 0 and E (Y) = 0, 

" 

... (***) 

Now (***) gives, (on using (~)] 
E(X2).E(y2) _ [E(X)]2.[E(Y)]~ = IE(X2) - rE(X)l2\ x IE(y2) - rE(Y)12} 
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= E (X 2) E (y2) - E (X 2) [E (l'W- [E (X)]2 E (y2) + [E (X)]? [E (lW 
~ E(Xl).[E(Y)]2 - [E(X)]2.[§(Y)t + [E(X)]2 E(y2) - [E(~]2 [E(Y)]2 '" <l 
~ [E (Y)]2! E (X 2) - [E (X)]2 } + [E (X)]2! E (y2) - [E (Y)]2} = 0 

~ [E (y)]~ Var (X) + [E (X)]2 Var (y) - 0 ... (****) 
Si~ce each of the quantities [E (X)]2, [E (Y)]2, Var (X) and Var (Y) is non-

negati,\~e and since X and Yare.given to ~'non-degenerate random variables such 
that Var (X) > 0 and Var (l') >'0, ("'***) .holds only if we haveE (X) = 0 = E (y), 
as required. ' 

EXER~IS~ '(a) 

1. (a) Define a random variable and its mathematical expectation. 
(b) Show that the mathematical expectation oft!le sum of two random vilriables 

is the sum of their individual expectations and If two variables are independent, the 
mathematical expectation of their 'product : .. the· product of their expectations. 

I~ t~e condition of independt<nce necessary tor the latter? If not, w.hat is the 
necessary condition? 

(e) If X is a random variable, prove that 1 E (X) 1 :s E ( 1 X I). 
(d) If X and Yare two nmdom variables such that'X :s Y, prove that 

E (X) :s E (Y). 
(e) Prove thatE [(X -ef j == [Var (X)] + [E (X) - e]2, where e is a consta'nt. 
2. Pr~)Ve tha t • 

(a) E (qX + bY) = a E(X) + bE(y). 
where a and b are any constants. 

(b) E {~} = a, a being.a constant. 
(c) E lag (X)] = aE [g(X)] 
(d) E [gt(X)'+ g2(X) + ... + gn(X)] R E [gt(X)] + E .[g~(X)] t ... + E [gn(X)] 
(e) 1 E [g (X)]I :s Ell g (X)I 1· . , 
(f) If g (X) ~ 0, everywhere then E [~(X)] ~ O. 

(g) lfg (X) ~ o everywhere and E [g (Xl] ~ O,.theng (X) '"i b,i.e., tbe~ndom 
variable g (X) has a one point distribution.atX = O. 

3. Show that if X is non-negative random variable such that both E (X) and 
E (1/X) exist, then 

Z (l/X) ~ ilE (X). " 
4. If X, Yare independent random variables with E (X) = al.~ (X 2) = (3, and 

E(Y1=ak; k=1,2,3,4, findE(xy+y2)2.~ : .,,' 

5. (II) If X and Yare two independent'random 'variables, show that 

Var (ax'+ bY) = a2 Var (X) + b2 Var (1/ .. , 
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(b) With usual notations, show that 
Cov (a X + hY, eX + dY) = ae Var (X) + bd Var (Y) + (ad + be) Cov (X, Y) 

(c) :::r*. G, X,. ,*. b, Xi ) = J*. ,*. OJ b, CO" (X,. Xi) 

6. (a) DefIne )he in.di~ator function IA (x) and show that E (/A (X») = P (A) . 

(b) Prove t~at the probability function P (X e A) for set~A and the 
distribution function Fx (x), (- 00 < x < 00). can be regarded as expectations of 
some random variable. 

Hint. Define the indicator functions: 

IA (x) = I if x e A I I}. (x) = I if x ::; y 
= 0 if x ~ A = 0 if x > J 

Then we shall get : 
E (fA (X») = P (X e A) and E (Iy (X» = P (X ::; J) = Fx ( y ) 

7. (a) Let X be a continuous random variable with median m. Minimise' 
E I X - b I. as an function of b. 

Ans. E I X - b I is minimum when b = m = Median. This states that 
absolute sum of deviations of a given set of observations is minimum when taken 
about median. [See Example 5·19.) 

(b) Let X be a ran<;i~m variable such that E I X I < 00. Show that 
E I X - C I is minimised if we choose C equal to the median of the distribution. 

'[Delhi Vnlv. B.Sc. (Matbs HODS.), 1988] 
8. If X and Y are symmetric. show that 

E'(X~YJ=! 
Hint. 1= E [.!2...!] = E r-x ] + E [-Y ] X+Y X+Y X+Y ... 

~ 1=2E[~] 
. X + Y ( .... X and Y are symmetric.) 

9. ({l) If a r.\'. X has a symmetric density about the point 'a' and if 
E ( X ) exists. then 

Mean ( X) = Median (X) = a 

Hint. GivenNa - .\) = f (a + x) ; f( x) p.d.f. of X. prove that 
~ ~ -

E ( oX - a ) = i t·\ - a ) f t x ) (l\' = J (x - a ) f ( x ) dx + J (x - a ) f ( x ) dx = 0 
a 

tb) If X and Y are two mndom variables withiinitevariarices. then show 
that 

~ (Xn ::; E (X!) . E 0..2) ... (.) 

When does the equality sign hold in (*) ? [Indian CivU Service, 1"'1 
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Let X be a non-negativ: arbitrary r.v. ~ith distribuln function F. 

- 0 

to. 
show that 

E (X) = J [I - Fx (x) J dt - J Fx (x) dx, 

o .. -
in the sense that, if either side. exists, so dpes the other and the two are equal. 

, [Delhi Univ. B.Sc. (MathsUons.), 1992] 
11. Show that if Y and Z are independent rando'm values of a variable 

X, the expected value'of (Y - Z)2 is twice the variance of the distribution of X, 
[Allahab ad 'Univ. B.Sc., 1989] 

x 

Hint. E (Y) = E (Z) = E (X) = 11, (say) ; crJ = ~ = cr; = ~ , (say) . ...(*) 

E(Y - Z)2 = E(y2) + E(Z2) - 2E(Y)E(Z) 

( '.' Y, Z are independent) 

== (cr; + 11;) + (cr~ +. 11;) - 2112 

= 2(i = 2 crx' [On using. (*)] 
12. GIven the following table: 

-3 -;-2 '-I , . 0 I 2 , 3. 

p (x) 0·05 oho 0·30 0 0·30 0·15 0·10 
I 

:Compute (i) E (x) , (ii).E(2X±3), (iii)E(4X+5), 

(v) V (X), and: (vi}V'(2X ± 3) . 
i3. (a) A and B throw with one die for a stake of Rs.,44 which is to be 

won by the playr wh.O first thr.Ows a 6 .. If A has the first throw, what are their 
respective expectati.Ons? 

Ans. Rs. 24, Rs. 20. 
(b) A c.Ontract.Or has t.O choose between two j.Obs. The first promises a profit 

.OfRs. 1,20,000 with ~ pr.Obability .Of-y4 .Or a I.OSS .OfRs. 30,000 due t.O delays with 
a probability of V4 ; the sec.Ond promises a profit of Rs. 1,80,000 with a pr.Obability 
pf lJ2 or a I.OSS .Of- ~s. 45.,000 with a probability .Of lJ2. Which j.Ob sh.Ould the 
contractor choose s.o as t.O maximise his expected pr.Ofit? . 

(c) A ~and.Om variable X can assume any P.Ositive integral value fl with a 
probability P.Orp.Orti.Onal t.O 1/3n• rind the expectati.On .Of X. 

[Delhi Univ. B.Sc., Oct. 1987] 
14. Th'ree tickets are ch.Osen at rand.Om with.Out-replacement from 100 

tickets numbered 1,2, , .. , 100. Find the math~matical expectation Qfth~ sum .Ofthe 
numbers on the tickets drawn. 

,15. (a) Three urns c.Ontain.respectavily 3 green and 2 white balls,S green 
and 6 white balls aOd 2 green and 4 white balls. One ball is drawn fr.Om each urn. 
Find the expected number of white balls drawn out. 1 • 

, Hint. Let us detj ne the r. v. 



Mathematical Expectation 6'49 

Xi = 1, if the ball drawn from ith urn is white 
= 0, otherwise 

Then the number of white balls drawn is S = X\ + X 2 + X 3• 

2 6 4 266 
£ (S) = £ (X.) + £ (X2) + £ (X3) = 1 x"5 + 1 x 11 + 1 x'6 = 165 • 

(b) Urn A con'tain~ 5 cards numbered from 1 to 5 and urn B contains 4 cards 
numbered from 1 to 4. One car~ is drawn from each of these urns. 'Find the 
probability function of the number which appears on the cards drawn and its 
nlathematical expectation. 

ADs. 11/4. 
16. (a) Thirteen cards are drawn from iis pack simultaneously. Iftbe values 

of aces are 1, face cards 10 and others according to denomination, find the 
expectation of the total score in all the 13 cards. 

> [Madurai Univ. B.Se., OeL 1990] 
(b) I..etXbe a random variable with p.d.f. as given below: 

x: 0 1 2 3 
p(x): 1/3 1(2 1/24.1/8 

Find the expected value ofY = (X - 1)2. [Aligarh Uliiv. B.Se. (Bons.), 1992] 
17. A player tosses 3 fair ~oins. He wins Rs. 8, i( three heads occur; Rs. 3, if 

2 heads occur and Re. ], if one head occurs. If the game is to be fair, how much 
should he lose, ifno heads occur? [puf\jab Univ. M.A. (Econ.)"1987] 

Hint. X ; Player's prize'in Rs. 
x 831 a E'(X)=l:xp(x)=1,1!(8+9+3+a) 

No. of heads, 3 2 1 0 

P (x) . 1,1! 3;8 3;8 1;8 

no heads come up. 

For the game to be fair, we have: 

£00=0 => 20+a-0 => a=-20 

Hence the player Jose;;. Rs. io,. if 

18. (a) A coin is tossed until a tail appears. What is the expectation of ,the 
number oftosses ? 

ADs. 2. 
(b) Find the expectation of (i) the sum, and (U) the product, of numberofp~ints 

on n dice when thrown. ' 

• Ans. (i) 7n12, (ii) (712r 
19. (a) Two cards are drawn at fan~om from ten cards numJ>ered 1 to}O. fin~ 

the expectatio~ of the sum of points on two cards. 
(b) An urn contains n cards marked from 1 to n. Two cards are drawn at aclime. 

Find the matliematical expectation ofthe.product of the numbers on the cards. . 
[Mysore Univ. BSe., 1991) 
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(c) In a lottery m tickets are drawn out of" tickets numbered from 1 to n. What 
is tbe expectation of tbe sum of tbe squares of numbers drawn ? 

(d) A bag contains" wbite and 2 black balls. Balls are drawn one by One 
witbout replacement until a black is drawn. I( 0, 1, 2, 3, ... wbite ballll are drawn 
before tbe first black, a man is to receive 0', 12,22,32, ••• rupees respectively. Find 
bis expectation. [Rajasthan Univ. B.Se., 1992] 

(e) Find tbe expectation and variance of tbe number of ~uccesses in a series of 
independent trials, tbe probability of success in tbe itb trial being Pi (i = 1., 2, 
... , n). [NagaIjuna Univ. B.Se., 1991] 

20. ·Balls are taken one by one out of an urn containing w wbite and b black 
'balls until the fi~t wbite ball is drawn. Prove that the expectation of tbe number of 
black balls preceding tbe first wbite ball is bl(w + 1). 

[Allahabad Univ. B.se. (Hons.), 1992] 
h. (0) X and Yare independent variables witb tn~ns 10 and 20, and variances 

2 and 3 respectively. Find tbe variance of3X + 4Y. 
Ans.~66. 

(b) Obtain tbe variance of Y .. 2X1 + 3X2 + 4X3 wbere Xl, X2 and X3 are three 
random variables witb means glven by 3, 4, 5 respectively, variances by 10,20,30 
respectively, and co-variances by (lx,x .... 0, (lx.x • .. 0, (lx,x. = 5, wbere (l~x. stands 
{or tbe co-variance of X, aqd X •. 

22. (a) Suppose tbat X is a random variable for wbicb E (X) .. ~o and 
Var (X) = 25. Find the positive values of a and b sucb that Y = aX - b, has 
expectation ° and variance 1. 

Ans. a .. lIS, b - 2 
(b) Let Xl and X2 be two stochastic random variables having variances k and 

2 respectively. If the variance ofY ... 3X2 - Xl is 25, find Ie. 
(poona Univ. B.Se., 1990) 

Ans. k=7. 
23. A ba~ contains 2n counters, of wbicb balf are marked witb odd· numbers 

and baJf ~itb even numbers, tbe sum of all the numbers being S. A man is to draw 
two counters. Iftbe sum oftbenumbers drawn is odd, be is to receive tbat number 
of rupees, if even be is to pay tbat number of rupees. Sbow that his expectation is 
SIr" (2n - 1) ) rupees. . (I.F.s., 1989) 

24. A jar bas n cbips numbred 1, 2, ... , n. A person draws a c~ip, returns it, 
. draws anotber, returns it, and so on, untiJ a chip is down that bas been drawn 
before. letX' be tbe number of drawings. Fihd E 00. 

'[Delhi Univ. B.A: (Stat. BonS.), Spl. Course, 1986] 
'Hint. Obviously P (X> 1) - 1, because we must have at least two draws to 

get the chip wbicb has been drawn before. 
• P (X> r) • P [Distinct number on itb draw; i-I, 2, .• ; r ] 
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=!!. X!!....=.....! X n - 2 X '" X n - (r - 1) 
n n n n 

P (X > r) ~ ( 1 - ~ ) ( 1 - ~ ) ...... { 1 - r ~ 1 ); r = 1, 2, 3, .. . 

Hence, using the r~sult tn Example 6:28 
. .. (*) 

E (X) = 1: P (X > r) 
r=O 

.. = P (X > 0) + P (X > n + P (X > 2) + ... 

=1+~:[I<~l+[I-~)L-~)+ .. 
... + ( 1 n J ( 1 - n ) .. ( 1 - n )+ ... [Usmg ( )] 

25. A coin is tossed four times. Let X denote the number of times a head 
is followed immediately by it tail. Find the distribution, mean and variance of X . 

m~L s = { H, T} X {H, t} X {H, T} X {H, T} 

x 
p (x) 

X: 

= {HHHH, HHHT, HHTH, HTHH, HTHT, ..... , 1TIT} 

0, 1, 

2 

~6 

1, 1, 2, . 

E (X) = ~, E(X2) = 'It 
Var X = 'It - 9/16 = ~16 . 

o 

26. An urn contai!ls balls numbered 1, 2, 3. First a ball is drawn from the 
urn and then a fair coin 'is tossed the number of times as the number shown on the 
drawn ball. Find the expected rwmber of heads. 

[Delhi Univ. B.Sc. (Maths Hons.), 1984] 

Hint. Bj: Event of drawing the ball numberedj . 
P(Bj) = 113;·j = 1,2,3. 

X : No. of heads shown. X is a r.v. taking the values 0, 1, 2, and 3. 
3 1 3 

P (X = x) = 1: P (Bj) . P (X = x I Bj) = - 1: P (X = x I Bj) 
j=1 3 j=I' 

1 
:P(X=O)=3" [P (X=Ol BI)+P (X=Ol B2)+P (X=O I B3)] 

=k[1+~+~]=;4 
1 

P (X = 1) = 3" [ P (X = 1 I BI) + P (X = 11 B2) -t- P (X = ] I B3) 1 

= 1. [1. + ~ + 1] 
3 2 4 8 

e.g., P (X = 0 I B2) = P [ No head when two coins are tossed] = ¥4 
P (K= 1 B3) = P [ 1 head when three coins are tossed] = :}t 

Similarly P(X = 2) =! (0 +! + 1),= ~ . 3 4 8 24 
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P(X = 3) = 1 (0 + 0 + 1) =-1.. 
3 8 24 

3 II 10 3 
E(X) = LX P (X = x) = - + - + - = I 

• x=O ~ ~ ~ 

27. An urn contains pN white and qN black balls, the total number of balls 
being N, p + q = I. Balls are drawn one by one (wi'thout being returned to the 
urn) until a certain number II of balls is reached. 

Let Xi = I, if the ith ball drawn is white. 
= 0, if the ith ball drawn is black. 

(t) Show that E (Xi) = p, Var (Xi) = pq. 

(iI) Show that the co-variance between Xj and Xk is _....l!!l...-I ' (j :# k) 
11-

(iii) From (i) and (iO, obtain the variance of Sn = XI + X2 + ... + X'I' 
28. Two similar decks of fl distinct cards each are put into random order and 

are matched against each other. Prove. that the probability of having exactly r 
matches is given hy 

I n-r(_l)k 
-I L k'" 'r = 0, ~I, 2, ... II r . k=O • 

Prove further that the expected number of matches and its variance are equal 
and are independent of fl. 

29. (a) If X and Yare two independent random variables, such that E (X) = 
2 2 

A(o V (X) = crt and E (1') = A2' V (1') = cr2, then prove that 

... 222222 
V (X1') = crl cr2 + AI cr2 + A2 crl [Gorakhpur Univ. B.Sc." 1992] 

(b) If X and Yare two independent random variables, show that 
V (Xy) 2 2 2 2 

[E (X)]2 [E (1')]2'= Cx Cy + Cx, + .Cy 

where C - (V(X) C - (V(Y) x - E (X) , y - E (Y) 

are the so-called coefficients of variation of X and Y? [Patna Univ. B.Sc., 1991] 
30 •. A point P is taken at random ,in ~ line AB of length 2a, all positions of 

the point being equaIly likely. Show that the expected value of the area of the 

rectangle AP. PB is 2a2/3 and the probability of the area exceeding I12a2 is 

UTI. [Delhi Univ. B.Sc. (Maths Hons.), 1986] 
31. If X is a random variable with E (X) = 1.1 sa,tisfying P (X ::; 0) = 0, 

show that P (X > 21.1) ~ 112. [Delhi Univ. B.Sc. (Maths Hons.), 1992] 

OBJECTIVE TYPE QUESTIONS 
1. Fill in the blanks: 
(t) Expected value of a random variable X exists if ........ . 

(i/) If E (X') exists then E (XS) also exists for ........ . 
(iii) When X is a random variable, expectation of (X-constant)2 is mini-
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mum when the constant is .... 
(iv) E IX -A I is minimum whenA = .... 
(v) Var (e) = ...• where e is a constant 
(vi) Var (X + e) = ...• where e is a constant 

(vii) Var (aX + b) = ...• where a and b are constants. 
(viii) If X is a r.v. with mean It and varian~e 0 2 then 

E ( X ~ It ) = ....• Var ( X ~ It ) = .... 

(ix) [E (XY) )2 ••.• E (X 2) . E (y2). 
(x) V (aX :: bY) = ... 

where 0 and b are constants. 
11. Mark the correct answer In the following: 

(i) For two random variables X and Y, the relation 

E (xy) = E (X) E (y) 

bolds gQod 
(a) if X and Yare statistically independent. 
(b) for allX and Y, 
(e) if X. and Yare identic!!!. 

(ii) Var (2\' :: 3) is 
(0) 5 (b) 13 (c)4. ifVar X = 1. 

(iii) E (X - k)2 is minimum when 
(a) k <E (X). (b) k > E (X). (e) k =E (X). 

III. Comment o~ t~~ fol!owing : 
, If X and rar.e mutual,>, ·in~'crpe~dent varia1;lles. t~en 
(i) E (XY + Y + 1) - E (X +. 1) E (y) = 0 

(ii) X and Yare independent if and only if 

Cov (X. y) .. 0 

(iii) 'For every uhivariable distribution: 
(0) V (eX) = e2V (x) (b) E (e/X) = e/E (X) 

(iv) Expected value of a r.v. ~Iways exists. 

IV. Mark tru-e -or [ .. Ise with reasons for your answers : 
(a) Cov (X. y-) = 0 => X andY are independent. 
(b) If Var (A:) > Var (y), thenX + Yand X ,.., Yare dependent. 
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(e) If Var (X) = Var (Y) and if 2\' + Y and X - Yare independent. thenX and 
Yare dependent. 

(d) If Cov (a.y + br. bX +.af) '" ab Var ($ + y), thenX and Yare dependent. 
6·8. Moments of Bivariate Probability Distributions. The mathematical 

expectation of a function g (x. y) of two~dimensional random variable (X. Y) with 
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:p.d.f. f(x, y) is given by 

E [g (X, Y)] ... J: ooJ: 00 g (x,y)f(x,y)dxdy ... (6'43) 

(If X and Yare continuous variables) 

.. I I Xi Yi P (X = Xi n Y = yJ, ... (6'43 a) 
; j 

provided the expectation exists. 
(If X and Yare discrete variables) 

In particular, the rtb and sth product moment about origin of ,the random 
variables X and Y respectively is defined as 

~,: =E(X'Y')= J:ooJ:.oo x'y'f(x,y)dxdy 

-
or ~,: = I I x;' y/ P (X = Xi n Y '7 'yi) 

; j 
... (6·44} 

The joint rtb central moment of X and sth central moment of Y is given.by 

l'n .. E [ { X - E (X) r {Y'- E (Y) f ] 
= E [-(X - ~x)' (Y - ~y)'], [E (X) = ~x, E OJ = ~y ] ... (6·45) 

In particular 

1Joo' = 1 = 1Joo, ~IO = 0 .. ~I 
~IO' .. E(X) '~I' =E(Y) 
~20 = Ox 2 ,~2 = Oy 2 and ~II = Cov (X,y). 

6·9. Conditional Expectation and Conditional Variance. 
Discrete Case. The conditional expectation or mean value of a continuous 

function g (X, Y) given that Y = .vi, is defined by 

E I g (X, Y) I Y = yd = ,k g (xi, Yi) P (X ~ X;! Y = Yi) 
,-I 

I g (Xi, Yi) P (X .. Xi n y .. Yi) 

= 
i-.!..I ________ _ 

P (Y .. Yi) ... (6'46) 
i.e., E [g (X, Y) I Y = Yi] is nothing but the expectation of the function 

g (X, Yi) of X w.r.t. the conditional distribution of X when Y = Yi' 

In particular, the conditional expectation of a discrete random variableX given 
Y .. Yj is 

E (X I Y", Yi) '" I Xi P (X - xd Y & Yi) 
i-I ... (6'47) 

'The conditional variance of X given Y·· Yi is J,ikewise given by 
I 

V (X I Y - Yi) - E [ { X - E (X I Y • Yi) }? 'I Y - Yi J ... (6'473) 
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The conditional expectation ofg(X, Y) and the conditional variance ofY given 
X" Xi may also be defined in an exactly similar manner. 

Continuous Case. The conditional expectation of g(X, Y) on the hypothesis 
y .. y is defined by 

£ {g (X, Y)! Y = y}= I: 00 .g (x,y)fxlY(X I y) dt 

I: 00 "g (x,y)f(x,y)dt 

fy(y) 

. In particular, the conditional mean 9fX given Y = y is defined by 

I: 00 x f(x, y) dt 
£ (X I Y = y) = fY(y) 

Similarly, we define 

I: 00 yf(x, y) dy 
£ (YIX =x) = . f:dx) 

The condithnal' variance of X may be defined as 

V (X I Y = y) = £ [{x -£ (X I Y = y) t I Y = y r 
Similarly, we define 

... (6·48) 

... (6·48 a) 

V (YIX :x) = £ [IY - £ (YIX .. x)f IX=x] ... (6'49) 

Theorem "13. The expected value of X is equal to the expectation of the 
conditional expectation of X given Y. Symbolically, 

£ (X).:;: £ (£ (X I·Y») ... (6'50) 
[Calicut Univ. B.Sc. (Main Stat.), 1980] 

Proof. £ (£ (X I Y)] .. £ [ l: Xi P (X .. x;!' Y = Yi)] . . 
I 

= £ [ ~ Xi P (X - Xi n Y = y,) ] 
~ P(Y=Yi) 

I 

= l: l: Xi ,P (X .. Xi n Y 9 Yi) 
i I 

-7 [X;{: p(X-XinY-Yi)}]. 

- l: Xi P (X - Xi) - £(X). 
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Theorem 6:14. The variance of X can be regardeq as consist~ng qf two parts, 
the expectation of tTle conditional variance and the variance of the ~onc(ilwnal 
expectation. Symbolically, 

V (X) =E [V(XI Y)] + V[E (XI Y)] ... (6'51) 
Proof. E [V (X I Y)] + V [E (XI Y)) 

= E [E (X 21 Y) - {E (X I Y)}2 ] 

+E [{E (XI Y)}2] - [E {E (XI Y)}]2 
= E [E (X21 Y)] - E [{E (XI Y)}21' 

+ E [{E (XI Y)}2] - [E {E (XI Y)}]2 
= E [E (X 21 Y)] - [E (X)t (c.f. Theorem 6'13) 
= E [I X; 2 P (X = ir; I Y = Yi») - [E (X»)2 

; 

=E['" X;2 p(x=x;nY=Y;)]_[E(X)]2 
~ P(Y= Yi) , 

= + {[ + X;2 P(X;t~~~=Yj) 1 P(Y=Y,j) }_[E(X)]2 

= 7 [X; 2 7 P (X "'x; n Y= Yj)]- [E (X)f 

= ~ x; 2 P (X = X;) - [E (X)]2 
; 

= E (X 2) - [E (X)]2 = Var (X) 
Hence the theorem. 
Remarks The proofs of Theorems 6·13 and 6·14 for continous r.v.'s X and 

Yare left as an exercise to the reader. 
Theorem 6·15. Let A and B be two mutually exclusive events, then 

E(XIAUB)=P(A)E(XIA)+P(B)E(XIB) • (5 
P (A U B) ... 6· 2) 

where by def., 
1 

E(XIA)=p(A) .I x;P(X=x;) 
, r,EA 

1 
Proof. E (X I A U'!3) = P (A B) I X; P(X = x;) 

U x,EAUB 

Since A and B are mutually exclusive events, 
I X; P (X = x;) = I x;.P (X = Xi) + I X; P (X = x;) 

~EAUB ~EA ~EB 

:. E(XIA'U B) = P(A lU B) [p(A)E(XIA) + P (B) E (XI B)] 

Cor. E (X) = P(A) E (XIA) +PWE (XIX) ... (6·53) 

The corollary follows by putting B = X in the above Theorem. 
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Example 6·31. Two ideal dice are thrown. Let XI be the score on the first die 
and X2 tlte score on tlte second-die. Let 'y denote the maximum of XI and X2, i,e., 
y::: max (Xt,X2). 

(i) Write down the joint distribution ofY and XI, 
(ii) Find tlte mean and variance ofY and co-variance (Y, XI)' 

Solution, Each of the random variables XI and X2 can take six values I, 2, 3, 
4,5,6 caeh with probability 1/6, i.e" 

P (XI = I) = P (X2 = i) = V6 ; i = I, 2, 3, 4, 5, 6 ,.,(i) 
Y = Max (XI, X2), 

Obviously 
P (XI = i, Y = j) = 0, if j < i r: 1, 2, .. ,,6 

i 

P (XI = i, Y = I) = P (Xl = i'X2 S i) = I P (XI = i, X2 =)) 
i-I 

= I P (XI = I) P (X2 ... )) 
/- I ( ': XI, X2 are independent.) 

= i~! b16) = 3i6 ; i = 1,2, ... , 6. 

P (XI = i, Y = j) = P (XI = i, X2 = j) ; j > i 

= P (XI = i) P (X2 = j) = 3~ ; j > i = 1, 2; ...• 6, 

The joint probability table of XI and Y is g!ven as follows: 

~ 1 2 3 4 5 6 

~ 

1 1/36 1/36 1/36 1/36 ,Mt . 1/36 - '. 
2 0 2/36 1/36 1/36 -1 1/36 
3 0 0 3/36 1/36 1/36 1/36 
4 0 0 0 4/36 1/36 1/36 
5 0 0 0 ·0 5/36 1/36 
6 0 0 0 '0 0 6/36 

Marginal 1/36 3)36 5/36 7/36 9/3(j 11/36 
TOlals . ~ 

1 J 5 7 9 11 
E (y) = 1.36 + 2'36 + 3'36 + 4'36, + 5'36 + 6'36 

1 [ ] 161 = 36 1 + 6 + 15 + 28 + 45 + 66 = 36 

( 2 2 1 2 3 2 5 2 7 2 9 2 11 791 
E Y ) = 1 '36 + 2 '36 + 3 '36 + 4 '36 + 5 '36 + 6 '36 == 36 

V (y) .. E (y2) _ [E (Y)t ... 791 _ ( 161 )2 = 2555 
, 36 36 1296 

Marginal 
Totals 

6/36 
6/36 
6/36 
6/36 
6/36 
6/36 

1 
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E (Xl) = ~ [1 + 2-+-3\' 4 + 5 + 6] .. 126 = 21 
36 _' 36 6 

1 1-1 1 1'-1', 
E (Xl Y) =.J'36-+ 2'36 + 3'36 ~ 4~36 + 5'36 + 6'36 

2 - 1 1 1 1 
+ 4'36 + 6'36 + 8'36 + 10'36 + 12'36 

3 1 1 1 
+ 9'36 + 12'36 + 15'36 + 18'36 

4 1 1 
+ 16'36 + 20'36 + 24'36 

516 
+ 25'36 + 30'36 + 36'36 

- = 3~ [21 + 44 + 72 + 108 + 155 + 216] = 3~ X 616 

Cov (Xl, y) = E ~l Y) - E (XlfE (Y) 
616 21 161 3696 - 33'81 315 

=36-6"' 36 == 216 = 216' 
Example 6·32. Let X and Y I?e two ;andom variables each taking,three values 

. -1, 0 and 1, (iiid having the joint probability distribution: 
(i) Show that X and Y have different expectations . 

.. 

~ 
-- --

-1 0 

-1 q - ,I 
0 I ,2" ,2 

1 0 ,I 

Total 2 ,4 

(ii) Prove that X and Yare uncorrelated. 
(iii) Find Var X and Var Y. 

1 

·1 . 
,2 
,I 

·4 

, 
Total 

,2 
,6 

'2-

10 .. 

(iv) Given that Y = 0, what is the conditional probability distribution o/X ? 
(v) Find V(YIX = -1). 

Solution. (i) E (Y) = IpiYi = -1(·2) +0('6) + K2) = 0 
E (X) .. IPiXi = -1(·2) + 0('4) + 1('4) =·2 

(ii) 
E(X)-E(y) 

E (xy) = I Pij Yi Xj 
= (- 1)(- 1)(0) + 0(- 1)('1) + 1(- 1)('1) 

+ 0(- 1)(·2) + 0(0)('2) + 00)('2) 
+ 1(-1)(0) + 1(0)('1) + 1(1)(:1) 

- - 0·1 + 0'1 .. 0 
Cov (X, Y) .. E (xy) ., E (X) E (Y) - 0 

=> X and Yare uncorrelated (c./. flO·.) 
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(iii) 

(iv) 

(v) 

g(y2) == (_ 1)2('2) + 0(·6) + 12(.2) ==.4 
V (y) = E (y2) - [E (Y)]2 = ·4 

E (X 2) =< (_1)2(·2) +,0('4) + 12('4) = ·2 + ·4 = ·6 
V (X) = ·6 - '04 = ·56 

P (X OF _ 11 Y = 0) = P eX = - 1 n y ... 0) = '2 =.! 
P(Y .. O) '6 3 

P (X = 0 I Y", 0) .. P (X = 0 n Y = 0) '= '2 =! 
P(Y= 0) , -6 3 

P' (X = 1 I Y = 0) = P (X = 1 n Y = 0) = ·2 =! 
P(Y .. O) ·6 3 

V(Ylx. -1) "'E (YIX= _1)2 -IE (YIX= -1)t 
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E(Y·IX - -1) =l:yp(Y ... y IX- -1) ... (-1)0 + 0(·2) +. 1(0) .. 0 
y 

E(YIX .. _1)2 =l:/ P(Y .. y IX .. -1) .. 1(0) + 0(·2) +.1(0) ... 0 
y 

V(YIX=-1)-0. 

Example 6·33. Two tetrahedra with sides IUImbered J to 4 are tossed. Lei X 
denote the number on the downturned face of the first tetrahedron and Ydenote 
the larger of the downturned IUImbers.lnvestigate the following: 

(a) Joil'lt densiJy function of X, Yand marginals fx and fy, 
(b) P {X 10 2, Y 10 3}, (c) p (X, n, (d) E (Y IX .. 2), 
(e) Construct joint density different from that in part (a) but P':lssessing same 

marginals fx and fy . [Delhi Univ. B.A. (Sfat. Hons.), Spl. COllrse, 1985] 

Hint. The sample space is S = {I, 2, 3, 4} )( {I, 2,3, 4} and eacb of the 16 
sample points (outcomes) bas probability p .. '116 of occurrence. 

l,.etX: Number on tbe.t1~t dice and Y: ~tger of the numbers on the two dice. 
Then the above 16 sample points, in that order, give tbe following distri.~ution of 
X andY. 

Sample Point (1,1) (1,2) (1,3) (1,4) (2, 1) (2,2) (2,3) (2,4) 
X 1 1 1 1 2 2. 2 2 
Y 1 2. 3 4 2 2 3 4 

Sample Point (3,1) (3,i) (3,3) (3,4) (4,1) (4,.2) (4,3) (4,4) 
X 33334444 
Y 33344444 

Since eacb sample point has probability p .. 1;16, tbe joint density functions of 
X and Yand the ~rginal densities fx and fy are given on page 6:61. 

Herep .. 1A6. 
(b) P(X 10 2, y.1O 3)· .. p +p + 2p +p +p -6p =~. 

(c) Var (X) - EX 2 - (E (X)]2 _ 1; -~ == ~ (Tl) it) 
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--
(a) (e) 
x x 

1 2 3 4 Total 1 2 3 4 Total - , 
(f,,) (f,,) 

1 p 0 o· 0 p 1 p 0 0 ' '0 P 
2 p 2p 0' 0 3p 2 p 2p 0 0 3p 

Y 3 p p 3p 0 5p Y 3 p p+E 3p-e 0 5p 
4 P P P 4p 7p 4 p p~E. p:te 4p 7p 

-
Total 4p 4p 4p 4p 16p=1 Total 4p 4p 4p 4p 1 
(fx) (!x) 

2 

Var (y) =Ey 2 - [E (lW .. 8; -(2;) = ~! (Try it) 

1355255 
Cov (X, y) = E (xy) - E (X) E (y) .. 16 - '2 x 8' = '8 (Try it) 

5A! 2' 
•. ' p (X, y) = '/5/4 x 55/64 = Vll 

(d) E (YIX = 2) = Iy .f(y Ix ='2) = Iy .1<;(: :~{) 
= 4. Iy f(2,y) ':" 4 [0 + 4p + 3p + 4p] .. 44p = ~ 

(e) let 0 < e < p. The joint density of X and Y given in (e) a~ve is diffe~.nt 
from tqat in (a) but has the sam« marginals as in (a). 

Example 6·34. (a) Given two variates XI and X2 with joint density function 
f (xt. X2), prove that conditional mean of X2 (givenXI) coincides with (uncoiuJition. 
al) mean only if XI and X2 are independent (stochastically). 

(b) Let f(Xt.X2) = 21xl xi, 0 < XI < X2 < 1, and zero elsewhere be the ;'Jim . ' . 
p.d./. of XI and X2 . Find the conditional "lean and variance of XI given X2 = X2, 
0< X2 < 1. [Delhi Univ. M.A. (Eco.), 1986] 

Solution. (a) Conditional mean of X2 given XI is given by : 

E (X2IXI =XI) = f ~d(X21 XI) dx2 
rz 

wheref(x2IxI) is condltiQnal p.d.f. ofX2 givenXI =XI. 
But the joint p.d.f. of XI and X2 is given by. 

f(Xt. X2) = fdxI) .f(X2.1 XI) 

i(X21'XI) .J(XI,X2) 
Ji (XI) 

where Ji(.) is marginal p.d.f .. ofXI. 
Substituting in (*), we get , 
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E (X2IXI =XI) = J [ x2f~;;2) ] dx2, 
_ x~ 

... (**) 

Unconditional mean ofX2 is given by 

E (X2) = J X2 /2 (X2) dx2, 
"2 

where/2(.) is marginal p.d.f. ofX2• 
From (**) and (***), we conclude that the conditional mean of Xl (givenXt ) 

will coincide with-unconditional mean of X2 only if 

[(xl, ..1.2) _[ ( ) 
[I (XI) - 2 X2 

==> [(Xt. X2) =[1 (x1)./2(X2) 
i.e., if XI and X2 are (stochasticaJly) il1dependent. 
(b) [(xl,x2)=21xI2X23; 0<xI<x2<1 

= 0, otherWise 
Marginal p.d.f. ofX2 is given by 

x~ "2 

/2 (X2) = J [(XI> X2) dxl = 21 X23 J XI 2 dxl 

o 0 

= 21 X231 x~31:2 = 7 X26 ; 0 < X2 < 1 

.. Conditional p.d.f. of XI (given X2) is given by 
I [(xl, X2) XI 2 

[I (XI I X2) = [( ) = 3 -3 ; 0 < XI < X2 ; 0 < X2 < 1 
• 2 X2 X2 

Conditional mean of XI is 

Now 
"2 "2 

E (X/ IX2 =X2) = J XI 2 Ii (XI I X2) dxl =~ J XI 4 dxl 
o X2 0 

3 xi 3 2 
= X23 ·S:=SX2 

.. Var (XI IX2 = X2) =E (X12 1X2 -X2) - [E (XI·IX2 =X2) ( 
3 2 .9 2 3 2 

"'-X2 --X2 =-X2 • 0 <X2 < 1 5 16 80' . 
Example 6·;'5. Two random variables X and Y·have the [ollowinig joint 

probability density [unction : 
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f(~,y)=2-x-y; Osxsl, Osys1 
= 0, otherwise 

(i) Marginal probability density functions of X and Y. 
(ii) Conditional density funciions. 
(iii) Var (X) and Var (Y). 
(iv) Co-variance between X and Y. 

[Dibrugarh Vniv. B.Sc. (Hons.), 1991) 

Solution. (i) fx(x) = I~: f(x,y)dy 

Similarly 

I 1 3 = 0 (2 - x - y) dy = "2 - x 

Ix (x) = ~ - x, 0 < x < 1 

= 0, otherwise 
3 

fy(y) ="2- y, 0 <y < 1 

c 0, otherwise 

(,',') f; (I) fxr (x, y) (2 - x - y) 0 (' ) 1 
XIY x Y = fy(y) .. (312-y) , < x,y < 

I fxr (x, y) (2 - x - y) 
fYlx (y x) = fx (x) .. (312 _ x) ,0 < (x, y) < 1 

(iii) 

Similarly 

(iv) 

E(X)= f~ xfx(x)dx=f~ x(1-x )dx= ;2 

E(y) = f~ y fy(y)dy= f~ y(~ -Y )dY - ;2 

2 f1 2 (3 ) r 3 3 x·]1 1 E~)= OX "2- z dx=l'6 x -4 0="4 

V (X) = E (X 2) _ [E(X)f.! _ 25 =1!. 
4 144 144 

V(y) =1!. 
144 

E (XY) =I~I~ xy (2 -x - y) dx dy 

~if~ 12~_~_xY 11 dy 
2 3 2 0 

QI~(~y-~l)dY 

='I~ -f I ~ = ~ 
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=li_i I1:! 3 6 0 6 
1 5 5 ,1 

-- Cov (X, Y) .. E (Xl') - E (X) E (y) = 6 - 12 -J:? ... - 144 -

'Example 6-36. Let f(x, y) = 8xy, 0 <x .... y < 1 ;f(~,Y) = 0, elsewhere. Find 
(o)E(YIX=x), (b.~E(XYIX = x), .. (c) Var(YIX = x). ~Cal~tta Univ. 

B.Sc. (Maths Hons.), 1988; Delhi Univ. B.Sc. (Maths Hons.), 19901" 

Solution. fx (x) = f~ co l(x, y) dy 

(0) 

(b) 

(c) 

=8xf! ydy. 

= 4x (l-x\ 0 <x < 1 

fy(y)'= f~ co f(x, y) dx 

=,8y f~ xdx 

=4/ ,O<y< 1 

jj (I) f.J&1!l 2x Ji Ii.' I , ) ~ 0 1 XIY x Y = fy(y) = I" YIXv x =1-~' <x<y.< . 

E (YIX=x) =f! y( 1 =y~ )dY .. ~{! =~) =~( 1 ~:.:~) 
E (XYIX =x) =X E (YIX =x) _~ _ x (~::~X2) 

E (Y 21 X = x) =f 1 I (~) dy =! ('1 ,..,. X4 ) .. 1 + x2 

x l_x2 21_x2 2 

Var(YIX =x) =E (Y21X =x) - [E(YIX ax)]2 

l+x2 4 (l+x+x~)2 
=-2--"9 -<t+X)2 

EXERCISE 6(b) 

1. The joint probability distribution of X and Yis given by'theJoliowing tab~, 

;~ i 3 
... ~-.. &_-

9 

-~ .--
2 1/8 1/24 1/12 
4 1/4 1/4 0 
6 1/8 1/24 liP 

(i) Find the marginal probability distribution bf Y. 
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(ii) Find the conditional distribution'of Y given thatX = 2, 
'(iii) Find the covariance of X and Y, and 
(iv) Are X and Y independj!nt ? 

2. A fair coi.n is tossed four times. LetX denote the number of heads occurring 
and let Y dehot~ the longest string of heads occurring. 

(i) Detennine the joint distributiC'n of X and Y, and (ii) Find Cov (X, Y). 

Hint. - " 

~ 0 1 2 3 4 Total 

-

0 1/16- 0 0 0 0 1/16 

1 0 4/16 0 0 0 4/16 

2 0 3/16 3/16 0 0 6/16 

3 0 0 2/16 2/16 0 4/16 

4 0 0 0 0 1/16 1/16 

Total 1/16 7/1'6 5/16 2/10 1/16' 1 

(ii) Co_v (X, Y) - 0·S5. 
3. X and Yare jointly discrete random variables with probability function 

p (x,y) = 114 at (x,y) = (- 3, - 5), (-1, -1), (1,1), (3,5) 
= 0, otherwise 

COmpute E (XhE (y), E (Xl') and E (X I Y). Are X and Y independent? 
4. XI and X2)have a bivariate distribution given by 

XI + 3X2 ) P (XI .. XI () X2 - X2) .. 24 ,where (XI, X2) - (1, 1), (1, 2), (2, 1 ,(2,2) 

Find the conditional mean and variance ofXh gi~enX2 - 2. 
5. Two random variablesX' and Y have the followingjoint probability density 

function: 

!(x,y)=k(4-x-'y)\; Osxs2; Osys'2 
= 0, otht:rwise 

Find (i) the constant k, 
(ii) marginal density functiobS of X and Y" 
(iii) conditional density functions, and 
(iv) Var (X), Var (Y) and Cov (X, Y). (poona Univ. B.Sc., Oct. 1991) 

6. Let the joint probability density function of the random variables X and Y 
be 

{(X,y) = 2 (x + y - 3,iy); O'<x < 1, 0 <y < 1 
== 0, otherwise 

(i) Find the marginal distributions ofl{ ~~d Y. 
(ii) Is E (Xl') - E (X) E (y) ? 
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(iii) Find E (X + Y) and E (X - Y) , [Calicut Univ. B.Sc., Oct. 1990] 
7. (a) l.-et X and Y have the joint probability density'function 
f(x.},) = 2. 0 <x <y < I 

= O. otherwise 
Show thatthe conditional mean and variance of X given Y. = }' are}'12 and 

/IL2 respectively, 
(b) If f(x,}')=2; O<x<}"O<},< I 
Find (i) E (Y IX). (ii) E (X I Y) . 

8. G~e an example to show that E (Y) may not exist though E (XY) and 
E (Y I X) may hoth exist? [Delhi Univ. B.A. (Stat. HoDS.) Spl. Course, 1985] 

Hint. Consider the joint p.d.f. : 
f(x,},)=x.e-X(I+),);x ~ a,}, ~ o. 

= 0, otherwise. 
Then we shall get : 

00 

fx(x) = J f(x,}')d}'=e-~;,x ~ 0 
o 

00 

fr (s) = J f(x, y) dx = 1 ; Y ~ 0 
o (I + y)2 

f(y I x) = ffi.!.l2 = x e-X)'; y ~ ° 
fx(x) 

00 

E (y) = J yf()') = 00 ::::) E (Y) does not eXist. 
o 

E (Xy) = J J xy .f(x }') dx dy 
o 0 

'"J I E (Y I X = x) = , )'. f (y I x) dy =-
o x 

::::) Botft E (XY) and (E (Y I X =. x) exist. though E (}) does not exist. 
9. Three coins are tossed. Let X denote the number of heads on the first 

two coins, Y denote the number of tails on the last two and Z denote the number 
of heads on the last two. 

(a) Find the joint distribution of (i) X and Y: (il) X and Z. 
(b) Find the conditional distribution of Y given X = I . 
(c) FindE(ZIX= l). 
(d) Find px. y and px. z . 
(e) Give a joi nt distribution that is no! the joint distribution of X and Z in 

(a) and yet has the same marginals asf:(x. z) has in part (a) . 

[Delhi pniv. B.Sc. (Maths HoDS.), 1989]­
Hint. The, sample ~p~ce is S ' = 'tH, T} X t H. T} x { H. T} 
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= {H, T} x {HH,HT, TH, IT} 

and each of the 8 sample· points (outcomes) has the probability p = 118 of 
occurrence. 

x 

X: Number of heads on the 1st two coins. 
Y : Number of fails on the last two coins. 
Z :ll'Iumber of heads on the last two coins. 

,~ 

Then the distribution of X, Yand Z is given below: 

Sample Point:. HHH HHT HTH HTT THH THT TTH TTT 

Probability p p p 'p p p p' p 
X 2 2 1 1 1 '1 0 0 
Y 0 1 '2 0 .1 2 
Z 2 0 2- 0 

Joint Distribution of X and Y Joint Distribution of X and Z 

y Total Z Total 
0 I 2 . (fx) 0 1 2 ifx) 

0 0 118 1/8 1/4 0 118 1/8 0 1/4 
I 1/8 2/8 1/8 112 x I 118 2/8 118. 112 
2 1/8 1/8 0 1I4 2 0 1/8 1/8 1/4 

Total 1/4 112 1I4 1 Total '1/4 112 1/4 1 
(f.,.) ifz) -- ... . , 

(b) P(Y=OIX=1)=P(Y=O. X= 1)=1/8=! 
P (X = I) 112 4 

218 1 118 I 
Similarly. P (Y = I I X = I) = 112 = 2; p (Y = 21 X = 1) = 112 = 4 

1/8, 2/8 1/8 
(c) E (Z I X = 1) = LZ. P (Z I X = I) = 0 x 112 + I x 112 + 2 x 112 = I 
(d) PXY = Cov (X, n = -114 =_1 

crx cry ~ 112 x JI2 2. 
Cov (X. Z) _ -1/4 I 

pxz crx crz - ~ 112 X 112 = - 2 
(e) Let 0 ::;; £ ::;; ·1/8. The joint probability distribution of (X, Z) given belc 

has the same marginals as in pflrt (a). .. ,.- , ., •• i~ _ 

0 Z 2 Total 
1 (Ii) 

X 0 118· 1/8 0 1/4 
, I , 

1/8 '218 + £ 1/8 -£ 112 
I 2 0-' 1/8-£ 1/8 + £ 1/4 

Total 114 ~/2 1/4 1 
(h) 
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10. Let[xY(x,Y) = e-(UY); 0 <x < cx>, 0 <Y < cx> 

Find: 
(a) P (X> 1) (d) m so that P (X + Y < m) = 1;2 
(b)P(1<X+Y<2) (e),P(O<X<;IIY=2) 
(c)P(X < YIX <2Y) ({) Pxy 

Ans. [x(x)=e- r ; x~~.o; [y(y)=e-Y;.y~O 

(a) lje (b) Hint. X + r is a Gamma variabte with parameter n = 2. 

[See Chapter 8] (2/ e - 3/ e2). 

(c)P(X<YIX<2y)=p(x<ynX<2Y) = P(X<y) = 1;2=l 
P(X < 2Y) p\(X < 2Y) ¥.3 4 

(d) Use hin,t in (b). e-: m (1 + m) = 1;2; (~),I(e -l)/e 

({) [XY (x, y) = [x (x) [Y (y) "* X and Yare lIi(Jependent "* PXY = O. , 
11. The joint p.d.f. of X and Y is given by: 

[(x,y) =3 (,t".+Y) ; Osxsl, Osysl; Osx+ysl 
Find: (a) MarginaJ'density ofX. (b)' P (X + Y < 1;2) 

(c) E (YIX =x) (d) Cov (X, y) 
3 

Ans.(a)[x(x)='2(1-x2); Osxsl. 

(b) P (X + Y < h) -1 [ or 3 ~ + y) dy 1 dr - ~ 
(e) (1 ;;i~x;2) (d)E(XY)-! [ 'tXY f«,y)dydr- i~ 1 

, 1.3 3 13 
Cov (x,y) .. E'(xy) -E (X)E (Y) = 10 -8 x 8 = - 320' 

"10. Moment Generating Function. The moment generating. functio$l 
(m.g.f.). of a, random variable X (about·origin) ha~ing til$! probability functi'o~ 
[(x) is given by 

Mx (I) = E (etX) = f ~tx [(x) dx, 

I (for co~tinuous probabiliity dislribulio!l) 
(6'54)... .. I. tIS I(T.). _.; 

\ " (for discre;e probability distribution) 
th~ integration or summation being extended to t!le entire range of x, t being the 
Teal parameter and it is being assumed that the righi-hand side of (6·54) is absolutely 
convergent for some positive number h such that .... h < t < h. Thus 

IX- [ t 2X2 t'X' J 
Mx(t)-E(e )=E l+tX+2T+"'+~~'" 

1 , 

-I + t E (X) +. 2t• fE_(X 2) +' .. , T ~ E (X):to .. : . 
. r. 

prakash
Rectangle

prakash
Rectangle

prakash
Polygonal Line
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, t 2, t ' , 
= 1 + t ~I + -2 , ~2 + .,. + --.~, + '" ... (6·55) 

. r. 

wbere ,~: = E (X ') .. f x' f (x) dx, for conti .. uous distribution 

.. I x ' P (x), for discrt;te distribution,-.. 
is tbe r.lb moment of X about origin. Thus we see tbat tbe coeffiCient of ~ in 

r. 
Mx (I) gives~: (above origin). ~ince Mx (t) generates moments, it is known as 
moment genefclting function. 

Differentiating (6·55) w.r.t. t and tben'putting 1 = 0, we get 

Idd', {Mx(/)} I -I~'; .r!+~'''lt+~''+2·2t~t···I' 
t "-0 r . . ,-0 

=> ~: .. [~', {Mx(t)} I' ... (6'56) l ,.0 
In general, tbe moment geperating function of X about tbe point X. a is 

defined as . 

Mx(t) (about X = a) .. E (e'<X-G)j 

I t2 2 I t' , I 
=E l+t(X-a)+2i,(X-a) + ... +-;:t(X-a) + ... 

, t 2, t', 
- 1 + t ~I + -2 ' ~2 + ... + ,~, + '" ... (6'57) • r . 

wbtre~:.1S E {,(X - an, is tbe rtb moment-about tbe point X - a. 
'·10'1. Some Umitations or Moment Generating Functions. 

Moment generating function suffers frol\l some draw~cks wbicb bave restricted 
its use in StatistiC$. We' give below some of tbe deficiencies of m.g.f.'s witb 
illustrative examples. 

1: A raildom·variIJbleX may luzve no moments although its m.g.f. exists. For 
example, jet us consider a discrete r.v. witb probability function 

f(X): x (:fl~ 1) ; x·-..1, 2, "'l' 
D 0, otherwise 

Here E (X) - I xf(x) s' i: ( 11) 
i-I .. -I V' + 
111 

.. ;:-+'3+'4+ .,. 
• 1;' 

.'[ I :"'],-1 
.. -I x 

~in<:e 1: ! is a divergent $eries, Ii (X) does not "exist and consequently no 
... 1 x ' /. 

Dloment ofZ euts. However, tIIc·m.g.f. of.X is given by 
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[ i l Z4 ] z i! l Z4 
... z+"2+3"+"4+ ... -2'-3"-"4-5-··· 

. 1 [i Z3 z/ 1 
= -log(l-z) -z '2+'3 +"4+ ... 

1 = - log (1 - z) + 1 +.,... log (J - z), I z I < 1 
z 

= 1 + [ ~ - i jlOg (1 - z), I z I < 1 

... 1 + (e-' - 1) log (1 - e'), t < 0 

( .: I z I < 1 => I e'l < 1 => t < 0] 
And Mx(t) =1, for t = 0, [From (*)] 
while for t > 0, Mx (t) does not exist. 
2. A random'varitlbleX can have m.g.f. and some (or all) moments, yet the 

m.g.f. does not generate the moments. For example, consider a discrete r.v. with 
probability function 

-I 

P (X == 2X) = ~ ; x = 0, 1, 2, ... 
x. 
co co (2r)x 

Here E (X r ) = ~ (2 x ) r p (X = 2',% ) = e - 1 ~ -,-
1;-0 1;-0 x . 

.. e - 1 • exp (2 r) =, exp (2 r - 1 ) 
Hctnce all the moments of X exist. 
The m:g.f. of X, if it exists is given by 

Mx(t);" i: exp (t. 2) (e-:) = e- I i: exp (i. 2)~ 
x-o x. %-0 x'. 

By 0' Alembert 's ratio test, the series on tht! R.H.S. converges for t. s band 
diverges for t > O. Hence Mx (t) cannot be differentiated at. t = 0 and has no 
MI!c1aurin's expansion and consequently it does not.generate moments. 

3. A r. v. ,X can have all or some moments; but m.g.f. does not exist except 
perhaps at one point. 

For exa~ple, let X be a r.v. with probability function 
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-I 

P (X = ± 2x ) = ~ ! ; .r - 0, 1, 2, ... 

= 0, otherwise. 
Since the distribution is sytruJletric about the Jj"e X = 0, all moments of odd order 
a!x>ut origin vanish, i.e., 

E (Xlr+.~ = 0 => J!lr+1 = 0 

E (X 2') = i: (±'2" W (_1_, ):;= ~ i: (i'7 
X.O 2ex. - e •• 0 t. 

1 (lr lr =-. exp 2 ) = exp (2 :-1) 
e 

Thus all the moments o'f.l( exist. The m.g.f. of X, if it exists, is given by 

Mx(t) = i [ (e,,2 x + e-··2 ) 2e1 , 1 
".0 x. 

= e-I i: [cos (~.2X) ] 
X.O x. 

which converges only for t = O. 
As an illustration of a continuous probability, distril>u~ion, consider Pareto 

$Iistribution with o.d.f. 

9.09 
P (x) ="""'Q;'j"'; x ~ 0 ; 9> 1 

x 

E. (X~ = 9.08 J ';-9-1 dx = 9.08 • ~I :~.~ .1= ' 
, I 

,which is finite iff r - 9 < 0 => 9 > r and then 

E(X')=909 0_-0- -~ . r. 
,-9] 9 ., 

. r-9 9-r' 

However, the m.g.f. is,givo n by': 
» e'K 

Mx(t) = 9.08 f --e;t dx, 
G x 

which does not exist, since tt dominates:i +1 and (eO!. / x8 +1) -+ 00 as x ... ·00 and 
hence the integral is not convergent: 

For more illustrations see Student'~ t-distribution and Snedecor's F-distribu­
tions, for which m.g.f.'~ (10 not exist, though the moments of all olders exist. [c.f. 
Chapter 14, § 14'2·4 and 14·5'2.]. 

Remark. The reaspn that in.g.f. IS a poor tool in comparison with characteristic 
function (c.f. § 6'12) IS t!lat the domain of the dummy Rarameter 't"ofthe m.g.f. 
depends on the distribution of the r.v. under consideration, while 'characteristic 
function exists for all ~l t, (- 00 < t < 00). If m.g.f. is v~I.id for t lying in an interval 
containing zero, the~ m.g.f. can be expanded with perhaps some additional restrie­
tioas, 
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6·10·2. Theorems on ~olJ1eJlt Generating 'Functions. 
Theorem 6·17. Mcx(t) = Mx(ct), c being a constant. . .. (6·58) 

Proof. By def., 

L.H.S. = McX(t) = E (e/£x) 

R.H.S. = Mx (ct) = E (edX) = L.H.S. 
theorem 6·18. The moment generating function of the sum of a number of 

independent random variables is equal to the product of their respective moment 
generating functions. 

Symbolically, if Xl, X2,: •• , An are independent random variables, then the 
mOl,lent generating function oft/leii surqX. +Xi + ... +Xn.is given by 

Mx; +X,+ '" +X, (t). = Mx. (.) 1Ix. (.) ... Mx. (,) ... (6·59) 
Proof. By definition, 

M (t) =E [e,(X,+·y:+",,+X.l] 
• Kt+X:+ ••. + X• 

Hence the theorem. 

= E [ e'X,. e'X, ••• elx.] 

= E (e'X,) E (e'X,) ••• E (e' ·Y') 

( .:' Xl, X2, ••• ,X. are independent) 
~ • Mz. (t), MZa (t) .•• Mz. (t)-

1;heorem 6·19. Effect pf change ot.origin and scale on M.G.F. Let us 
transronn X to the new variable U by changing both the origin and scale inX as , 
follows: 

X-a 
U = h' where a and h are constants 

M.G.F. of U (about origin) is given by 

Mu (t) = E (elU) = E [ exp{ t (x - a)/ " }]. 

= E Ie'-K/ii : e-ollh ] "!; e- ol/ h E (eLY/h) 

= e- ol/ h E (~/h) = e-ol/h M~ (II") ... (6-60) 

where Mx (t) is the m.g.f. of X about origin. 

In particular, if we take a = E (x) = Il (say) and h = ax = a (say),'t~en 
X-E(X) X-Il 

U = ax = -0- = Z (say), 

is known as a standard variate. Thus the m.g.f. of a standa rd variate Z is given by 
Mz (t) = e"-w/o M.y(t/a) ... (6-6i) 

Remark. E (Z) = E ( X ~ Il ) = ~ E (X - Il) 

=! IE (X) - III =! (Il- Il)" 0 a a 
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and V(Z)=~(X-l1)=J..V(X-iL) 
(J cr [ef, Cor. (i) Theorem' 6·8] 

=J..V(X)=!cr= 1 cr (J , [ef, Cor. (iii) Theorem 6·8] 
• . E (Z) = 0 and V (Z) = Le., the mean and variance of a standard 

variate are 0 and I respectively. 
6·10·3. UniqueDe~ Theorem ot Moment Generating Function. The 

moment generating/unction of a dist~iliuiion, if it exists, uniquel/y determines the 
distribution. This implies that corresponding to a given probability distribl,ltion, 
tliere is only one m.g.f. (provided it exists) and corresponding to a given m.g.f., 
there is only one probability distribution. Hence Mx (I) = My (t) => X and Y are 
identically distributed. [For detailed discussion, see Uniqueness Theorem of Char­
acteristic Functions - Theorem 6·27, page 6·90] 

6·11. Cumulants. Cwnulants generating function K (I) is defmed as 
Kx (I) = log. Mx (I), ••. (6-62) 

provided the right-hand side can be expanded as a convergent series in powers of 
I. Thus 

,2 I'r 
Kx (t) = le. t + '-1-2 I + ... + lC, .. + ... = log Mx (I) 

. r. 

= log [ I + J.1.'1 + J.11 2
t : + J.1,' 3t : + ... + ~' ~ + ... 1 

• • r..J' 
... (6·62a) 

where lC, = coeffICient of ~ in Kx (I) is called the rth cumulant. Hence 
r. 

Comparing the coefficients of like powers of '( on· both sides, we get the 
relationship between the moments and cWnuiants. Hence, we have 

, 12 
, M 1C1 J.11 J.1. , .1 

Ie. = J,ll = eaR. 2T = 2 ! - 2! => K2 = J.12 - J.11 = J.11 

, 3 ' , 2 ,3 1C] - J.l.3 -, J.l.2 J.I.. + J.l.1 = J.l.3 
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Also 

~_~_!(lll2 2 111'll/) !311,'2112_~ 
41- 4 2 4 + 31 +3 2 4 

=> ~ = J4' - 311211 - 4111' 113' +'1211111112 - 611114 

( '4"6'11314)3(112'11 14) = J4 - ll, III + 112 III - III - 111 - 111 III + III 
= J4 - 3( 111' - ~111)1= J4 - 311l= J4 - 31Cl1 

=> J4=~+31Cl 
Hence we have obtained: ' 

. Mean = lCl ) 
111 = 1Cl :!: Variapce 
ll, = 1C3 • 

J4 = 'X4 + 3 lCl~ 

... (6·62b) 

Remarks. 1. 1bese results are of fundamental importance and should be 
committed to memory. 

2. If we differentiate both si!Jes of (6·62a) w.r.l t 'r' times and then put 
11=0, we get 

lC,=[ :; Kx(t)] 
,,,,0 

... (6-62c) 

6·11·1. Additive Property 01 u.maJants. The rth cumu/an/ of lhe sum of 
independenl random variables is eqlllJ! 10 ihe sum of lhe rth cumwants of lhe 
individual variables. Symbolically. 

lC, (Xl f Xi + ... + X.) = lC, (Xl) + lC, (Xl) +. ••• + 1C, (X,,), ... (6·63) 
where Xi; i = 1,2 ..... n are independent random variables. 

Proof. We have. since Xi 'ure indepe~ent. 
MX1+Xl+ ... +X" (I) = MXI (I) MXl (I) ... Mx. (I) 

Taking logarithm of both sides. ~ p:t 
KXI +Xl+ ... +X" (1)= KXl (I) + KXl (I) + ... + Kx. (I) 

Differentiating bolh sides W.r.L 1 'r' times and putting 1= O. we get 

[ !: KXI+Xl+ ... +X" (I) 1 -= [:", KXl (I) 1 
,-0 ,-0 

[ d' 'J [ d' 1 + dl ' KX2 (I) + ... + dl ' Kx. (I) 
,-0 ,-0 

=> 1C, (Xl + Xl + ... + XJ = 1C, (Xl) + 1C, (X,) + ... + 1C, (X .. ). 
which establishes Ihe iesulL 

'·11·2. Effect or Cbaoge 01 Origin aDd Sale OIl CumulaDD. If we fake 
X -4 V'.. lIu U=-It-' IhenMu(/) = exp~-al/Ii.l""x('/h) 

prakash
Rectangle

prakash
Rectangle
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al 
•• I(u (I) = - h + K" (1Ih) 

",11 ,1' al 
lCl~·lCl l+lCl -21 + ... +~ '+"'=--h + lCl(llh) . r. 

(1Ih)l (ilh)' 
+ lC2 2' + ••• +1C, 1 + ••• . ' r. 

w.here~' and 1C,are the rth cumulanlS of U and X respecuvely. 
Comparing coefficients. we get 

, lCl - a and ' 1C, 2 3 
lCl =-h- 1C, =-;;; ; r= • • ... . .. (6.63a) 

Thus we see that except the first cumulant, all cumulants are independent of 
change of origin. But the cumulanlS are not invariant of change of scale as the rth 
cumulant of U is (l/h') times the rth cumulant of the dislribiution of X. 

Example 6;31. LeI Ihe random .variable X assume the value 'r' with Ihe 
probability law : . 

P(X=r)=q,-l p ; r=I.2.3 •... 
Find Ihe m.g f. of X and hence ils mean and variance. 

(Calieut Unh·. B.Se., Oct. 19921 
Solution. Mz (I) = E (e«) 

00 

00 

= E.qe' L (qe'y-l = pe' [1 + qe' + (qe')2 + ... ] 
.q ,.;,. 1 

-( pe' ) 
- 1 - qe' 

If dash (') denotes the differentiation w.r.t.t,tfien we have 

Hence 

and 

M ' '(I) - pi M ,~ (I) - ,(1 + qe') 
x - (1 ""' qi!'Y • x -.pe (1 _ ql)' 

JJ/ (about origin) = Mx' (0) = P 1 =! 
(1-q) p 

Ill' (about origin) = MXH (0) = p (1 + q) = 1 + q. 
(l-q)' 7 

'(abo .. ) 1 mean = III ut ongm =-
p 

• " 1 1 + q. 1 -Iq 
vanance = J.Lz = III - 111 = ---::r- - '::2 =,~ 

. p p p 
Example 6·38. The probability density junr.iioll of lhe rfJndom variable X 

follows the following probability 'law: 
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p (x) == 2~ exp ( - 1 ~; 91 ). - 00 < X < 00 

Find M.GF. olX. lienee or otlierwisefinil E (X) and V (X). 
(Punjab Univ. M.A.(Eoo.), 19911 

Sdution. The moment generating fl,Ulction of X is 

Mx (t) = E (~) = }. de exp (- I x; a I ) e'" dx 

9 

= J .. da exp ( -' a; x I ) e'" dx 

+ 001-1 cxp(_lx-al)el!C dx 
29 a \ e 

Forxe (-oo,a), x-a<o ~ 9-x>O 
.. Ix-61=a-.x Vxe (-00,00) 

Similarly, Ix-al=x-a Vxe (a,oo) :\ 
9 GO 

• • Mx (I) == ~~ J exp [x ( t + i )] dx + ;a J exp [-x ( i -t )1 dx 
-00 9' 

= ;~ . [I:~ (:p[ e['+~)l 

~;e'[~~' rp[-e[~-I)l 
ea.. etl etl 

== 2 (at + 1) + 2 (1 - at) = 1-a'lt; 

'::: etl (1 - e2t 2r I 

a2 2 
I 2 2 " = [1 + a, + 2T + ... ].[1 + a I + a I + ... ] 

3 a2,2 
= 1 + 61 + """'2'! + ... 

• . E (X) = J!' == Coefficient of I in Mx (I) == a 
2 -

J!2' = Coefficient of ~! ih Mx (I) = 3 a2 

Hence Var (X) ='J!i ... J!I' 2 = 3 a2 - a2 = 2 a2 

Example 6·39. Illhe momenls of a variate X-are defined by 
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E (X') = 0·6 '; r = 1, 2. 3 ... , 
show that P (X = 0) = 0·4, P,(X = 1) = 0·6, P (X ~ 2) = o. \ 

[Delhi Univ~ B.Se. (Maths Hons.), 1985] 
Solution. The m.g.f. of variateX is : 

.. t' .. t' 
Mx(t) = I '1 Il:-= 1 + I ,(0·6) 

r.O r. ,.1 r. 
.. t' 

= 0·4 + 0·6 I - = 0·4 + 0·6 e' ... (i) 
,.0 r! .. 

But Mx (t) = E (etx) = I etr P (X =x) 

= P (X = 0) + i . P (X = 1) + I e'x .. P (X -= x) ... (ii) 

From (i) and (ii), we get: 
P(X=0)=0·4; P"(X=I)-=0·6; P(X~2)=0. 

Remark. In fact (i) is the m.g.f. of Bernoulli variate X with P (k = 0) = 
q =0·4 and P (X = 1) = p = 0·6 [See § 7·1·2] and P(X~2) .. 0. 

Example ,6-40. Find the moment generating function of tlle random variable 
whose moments are 

Il: = (r + 1) ! 2' 
Solution. The m.g.f. is given by 

00 t' 00 t' 
Mx(t)= I -Il',· I "- (r+l)!2' ,.0 r! ,.0 r! - .. 

• I (r,+ 1)(21)': 
r-O 

Mx (I) = 1-+ 2 . (2if+ 3 (2t)2 + 4 (2t)3 + ' .. 

=(1-2tr 2 

Aliter. The R.H.S. is an arithmetic:geometric series with ratio r = (2t) 

Let S = 1 + 2r + 3r~ + 4r3 + ... 

Then rS = r + 2r2 + 3l + .. ' 

=> 

2 1 
(1 - r) S = 1 + r + r + ... = (1 _ r) 

S = _1 ~ = (1 _ rf 2 = (1 _ 2/f 2 
(1 - r) 

Remark. This is the m.g.f. of Chi-square (X2) distribution with parameter 
(degrees of freedom) n = 2 [c.f. Chapter 13.]. 
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Example 6·41./f J.l: "is the rth moment about origin. prove that 
r 

~:=j~1 (; ~ D·~r-jKj, 
where Kj is the jth cumulant. 

Solution. Differentiating both sides of (6·620) in § 6·11, page 6·72 w.r.t. 
t. we get 

t2 tr - 1 
KI + K2 t + K3 21 + ... + Kr (r _ 1) ! + ... 

t2 Ir - 1 

= J.l1' + ~2' t + J.l/ 2!'+ ... + J.l: (r - 1) ! + 

1 ' ,t2 ·,·tr 
+ J.l1 t + J.l2 -2 , + ... + J.lr -, + . r . 

[ t2 tr - 1 ] 
KI + K2 t + K3 2! + ... + ~r (r _ I) ! + ... 

[ 1 ' , t2 , tr ] x + ~I t + J.l2 .2! + .. , + J.lr ~ + ... 

t2 tr - 1 
= J.l1' + J.l2' t + J.l3' 2! + ... + J.l: (r _ 1) ! + ... 

Comparing the coefficient of (r t~-./) ! on both sides, we get 

( r - I) + ... + ,. _ 1 ~o Kr 

dF (x) '= c (1 + X2)1II dx ; m > 1, - 00 < x < 00, • 

the m.g.f; does not exist, since the integral 

Mx (t) = C [00 e'X (' +'X2)1I/ dx, 
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does not converge absolutely for finite positive values of m because the function 
eta dominates the function?" so that e" /x'1lrt ~ 00 as x -+ 00. 

Again, for the discrete probability distribution 

I (x) = J.t;X=.1,2,3,... 1 
= 0, elsewhere 

_. 6 00 leal 
Mx (I) = l:ebt/(x)= ~ L r 

% - %-1 

The series is not convergent (by D' Alembert's Ratio Test) for I> O. Thus the~ 
does not exist a positive numbe!, h such that Mx (I) exists for - h < I < h. Hence 
M. (I) does not exist in this case also. 

A more serviceable function than the m.gJ. is what is known as ChardCteristiC 
function and is-defmed as 

~(I)=E(eUX)= I eiu/(x)dx 

(for continuous probability distribUlions) =--..,,-------
-IeG/(x) 

, JC (fqr dis"re(e probability distributions) 
••• (6,64) 

If F x (x) is the distsribution function of a continuous random variable X, then 

~ (I) = I 00 eitx dF (x) 
• ... 00 ••• (6-640) 

Obviously ~ (t) is a complex valued fWlction of real variable I. It may be noted 
that 

1 ~ (I) 1= 1 J eiu /(x) dx I' ~ J 1 eitx I/(x) dx= J/(x) dx= 1, 

since I iUI = I cos tx + i sin IX 111'2 = (co~,2 IX + sin2.tx)!1'2 = 1 
Since I cHt) I:s 1, characteristic function cIlX(I) a!ways cxists~' 

Yet another advantage 01 cbaraclcristic funcllon IICS fnlncfact tMt it uniquel.deter. 
mines the distribution function, i.e., if the characteristic function of a distribution 
is given, the distribution can be uniqu~ly detennined by the theorem, known as the 
Uniqueness Theorem of Characteristic FWlctions [cJ. Theorem 6·27 page 6·90]. 

6·12·1. Properties or Characteristic Functions. For all real' :,' , we have 

(i) ~ (0) = 1:00 dF (x) = l' •.• (6.64b) 

(ii) 1 ~ (I) 1 ~ 1 = ~ (0) ••• (6·64c) 
(iii) ~ (I) is continuous everywhere, i.e., ~ (I) is\acontinuous fWlction of I 'in 

(- -, 00). Rather ~ «() is Wlifonnly continuo"s in 'I' . 

Proof. For h¢O, I~(I+ h)-~(I) 1 = If: 00 'l[ei<I+4)II_eibt] dF (x) 
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~ [00 I ei1x (e ill.t ~ 1) I dF (x) 

= [00 I eillx -1 I dF(x) 

&79 

... (*) 

The last integral does nor depend on f. If it tends to ~~ro as h ~ .0 then 
~x (t) is uniformly. continvou~ in 'f'. 

Now I eillx - 1 I ~ I eihx 1+ 1 = 2 

. . [00 I eillx - 1 I dF (x) ~ 2 [00 dF (x) = 2. 

Hence by Dominated Convergence Theorem (D.C.T.), taking the limit 
inside the integral sign in.(*), we get 

lim I <l>x (f + h) - <l>x (f) I ~ Joo Jill) I eillx - 1 I dF (x) = 0 
11-+0 -00/,4'0 

=> lim cl>x (t + h) = <l>x (t) 'v' t. 
11-+0 

Hence <l>x (t) is uniformly ~ontinuous in 't'. 

(iv) <l>x (-t) and <l>x (t) are conjugate functiQns, i.e". <l>x (-t) = <l>x (t), where a 
is (he complex conjugate of a. 

Proof. <l>x (t) = E (eiIX) = E [cos ix + i sin tX] 

=> <l>x (t) = E [cos tX -.i sin tX] 
= E [cos (-t) X + i sin (-t) X] 
= E (e-ilx) 7~X (-t). 

6·12·2. Theorems on Characteristic Function. 
Theorem 6·20. If the distribution fimction of a [. v. X is' symmetrical about 

zero, i.e., 
I - F (x) = F (-x) => f(-x) :;j(x), 

thell <l>x (t) is real valued alld even fimction of t. 

Proof. By definition we have 

<l>x (I) = [00 ei1x/(x) dx = [00 r:-il'\'f(-Y) dy (x = -y) 

= [00 e-il.l:/(y).dy ,.[.: f(-).') =f(y)] 

= cl>x (-t) ... (*) 

=> <l>x (t) is an even fup<;tion 9f t. 

Also <l>x (t) .:: <1>; (-t) • 

.• <l>x (I) = <1>x (-I) = <l>x (t) 
Hence <l>x'(t) is'a real valued function of t. 

rd. Property (Iv) * 6·12.1,] 
(From *) 

Theorem 6·21. If X is some random variable with characteristic fimction 
, $x (t), alld if IJr' = E (X') exists, then 
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, [ d' ) 1-4' = (- it at' cjl (t) .=0 
... (6·65) 

Proof. ~ (t) = f: 00 i x !(x) dx 

Differentiating (under the integral sign) 'r' times w.r.t. I, we get 

~ 4> (t) =foo (ir)' . eitx I (x) dx = (,y foo xr e;tx !(x) dx 
aI' _00 _00 

.. 1£ 4> (I)] = (i)' [fOO x' eitx !(x) dx) 
:II' - 00 1- 0 
u t- 0 

= (i)' 1':00 x'! (x) dx = i' E (X ') = i' 1-4' 

Hence J.lr' (1) [d'] [d' 1 ~ i ' -,cjl(t) =(-,)' -,cjl(t) 
dt 1=0 dt , .. 0 

The theorems, viz., 6·17,6·18 and 6·19 on m.g.f. can be easily extended to the 
characteristic functions as given below. 

Theorem 6·22. C\Icx (t) = cjlx (et), c, being a eOl'lStant. 
Theorem 6·23. /fXI and X2 are independent random variables, then 

cl»xl +otz (t) = cjlx, (t) cl»xz (i) ... (*) 

More, geQerally Cor independent random variables XI.; i = r, 2, '" n, we have 
cl»xl + X2 +... + x .. (t) = cjlXI (t) cjlx; ,(t) ••• cI»x .. (t) • 

Important Remark. Converse of (*) is not true, i.e., 
<-XI +X2 (t) = <-XI (t) <>X2 (I) does not imply that X I and X2 are independent 
For example, let X I b.c a standard Cauchy variate with p.dJ. 

Then 
Let 

1 
[(x) = 7[(1 +r) , - 00 <x<oo 

cI»x, (t) = e-II! 

X2=X" [e., P (XI =X2) = l .. 
Then cl»xz1t) = e- I •I 

Now cl»x1,+XZ(t)=cI»2XI (t) = <-XI (2t) = e-'2l t l 

= cjlXI (t) cjlxz (t) 

(c.C. Chapter 8) 
. .. (*.) 

i.e. (.) is satisfied but obviously X I and X2 are not independent, because of (**). 

In fact,(*) will hold even if we take XI =aX and X2=bX, a and b being real 
numbers so that XI and Xl arc connected by the relation: 

XI X2 - = X = - ~ aX2 = bXI • 
n b 

As another example let us consider the joint p.dJ. of two random variables X 
and Y given by 

1 
!(X,Y)='4az [l+XJ(x'-y)]; Ixl·Sa, lylSa. a>O 

= 0, elseWhere 
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Then the marginal p.dJ.·s of X and Yare given by 

g(i)= J~a !(x.y)dy= ~; Ixl~a 

h(Y)=Ja !(x.y)dx~_I; IYI~a 
-a 2a 

Then 

~x (t) = J:' ~ eUz g (x) dx = ~ J ~ a i lJC dx 

eUu _ e - Uu sin at 
= 2m1 =--;;-

Similarly ~ (t) = sin at 
at 

6-81 

(on simplification) 

~x (t) ~ (t) = ( sin at f 
.. ~ at ) ... (.) 

The p.dJ. k (z) of the random variaJ-!e Z = X + Y is given by the convolution 
ofp.d.f.'sof X and Y, v;z., , 

k(z)=J !(u,z-u)du 

= 4~ J [I + u (z -14) {u2 - (z - U)2}] du 

=~J (I +3iu2 -2z';:..z'u)du. 
4a 

the limits of integration for 4t being in terms of z and !,lC<; given by (left as an exercise 
to the reader) 

and 
Thus 

-a~u~i+a;u~O 

z-<a~u~a; u>O 

, 

4 ~ (1 + 3z u -;- 2zu - z u) du=-z-; - 2aSz ~O 
a -a 4a l1Jz+a 22 33 2a+z 

·k z = ] a 2a-z 
() 4 ~ I (1': 3iu2 -2zu' - z'u) du=-Z-; O<z~2a 

a z-a 4a 
0, elsewhere 

Now 

C/lx +,. (J) = 4>z (J) = J :02il (r' k (z) tlz 

-IO. ( 2a ~ Z) it= d f20 (20 - Z) itz d - 2 e Z~ 0 ,e z 
- 211 4(1 40-
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_J20 ( -it= itz) ( 2a - Z) dz - 0 e +e 2· 4a . 

[Changing z to -z in the f~ integral] 

IJ20 = 202 ° (20 - z) costz dz 

2-2 cos 2a1 I-cos2a1 = =--~~-
4a21 2 2a11 1 (on simplification) 

=( Si:,at ) 
=~(/)."'(/) [From (-)] 

But g(x).h(y)*/(x.,) 
~ X and Yare not independenL 
However 

~1.X2 (/1. 12) = E (i'~Xl+i'aXZ) = ~X'l (I). ~2 (I) 
implies tl!at Xl and X2 are independenL 

(For proolsee T~or(:m 6·28) 
Theorem 6·24. Effeci of Change 0/ Origin and Scale on CluJraclerislic 

FUllClion, If .U = X ~ a, a and h being conSlanlS, lhe~ 

C>U (I) == e- itII1h ~ (tlh) 
In particular if '!Ie take a = E (X) == J.L (say) and h = ax= a then the chamcleristic 
function. of Lhe standard variate 

Z == X -.E (X) .X - J.L. 
crx 'a' 

is given by Qz (I) == e-il""o C>x.(llcr) ••• (6·66) 
Definition. A random variable X. i~ said 10 be a Lattice variable or be lattice 

distributed, if/or some Iz > 0. 

P [~, is an integer ] = 1. 

II is called a mesh. 

The9rem 6·1S. 1/19x(s) I =-l/or some s*O,lhenfor some real a,X.- aisa 
La(uce variable with mesh h = 2vl s I. 

Proof. Consider any fIXed I. We can write 
C\lx (t) = I C\lx (t) I iat, (a dependenl on I), since any complex number z can be 

. . I j 0 lI.,.w,'n as z = I z e . 
•. 1~(/)I=e-ial~(/)=~_.j) (I) 

= E [cos I (X - a) + isin I (X~a)] =E. [cost (X -a)] 
since Icft-hand side being real, we must have E [sin:1 (X - a)] = 0. 

•• l-I~(/)I==E[1-cosl'(X-a)] ••. (-) 
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If J ~x (s) I = 1. S ;II; 0 then for some a dependent on s, wc have from (*) 
E[1-coss(X-a)]=O , .. (**) 

l.\utsince I....: coss (X ...,a) is a non.ncgative random variable. (."') 
=> P(1..",coss(X-a)=O]=I 
=> P [cos s (X - a).= U = 1 
=> P ,[S (X - q) = 2111tJ =, 1 

[ 2mt] . => P (X-a)=1ij =1.forsomen=0.1.2 •.•• 

Thus (X - a) is a Lattice variable with mesh h = 12~ . 
6·12·3. Necessary and Sufficient Conditions for a Function ~ (I) to be 

Characteristic Function. Properties (i) to (iv) in § 6·12·1 are merel y the necessary 
conditions for a function ~ (I) to be the characteristic function of an r.v.X. Thus jf 
a function ~ (I) dOes not satisfy anyone of these four conditions, it cannot be the 
characteristic function of an r.v. X. For cXlPl\ple. the function 

, (I) = Jog (I + I), 
cannot be the c.f. ofr.v. X since ~ (0) = log 1 = 0;11; 1. 

Thcse conditions are. however. notsufficienL Jtl}as been shown (f;f. Methods 
or Mathematical Statistics by H;Cramer) lhaUf 9 (1) is near I = O.of the form, ~ 

,(I) = 1 + 0 (I 2 + 8), lb 0 ... (*) 

where 0 (I r) divided by 1 r tends to zero as 1 -+ 0, then ~ (1) cannot be the 
charac'teristic function unless it is identically equal to one. Thus, the functions 

(i) ~ (I) = -it = 1 + 0 (I·) 

(ii) ~ (l) =_1_= 1 +0 (I'·) 
1 +1'· 

being of thc form (*) are not characteristic functions, though both satisfy all the 
necessary conditions~ 

We give below a set of sufficient but not ncccsary conditions. due to Polya for 
a function "(I) to be the characteristic function: 

~ (l) is a characteristic function if 
(1) ~(O)= 1, 
(2) 41 (l) = 41 (- I) 
(3) ~ (I) is contInuous 
(4) ~ (I) is convex for 1 > 0, i.e .• for IJ. 12 > 0,. 

~ [t (It +- '2)] ~ ~'(II) + ~ (I2J 

(5) lim ~ (I>. = 0; 
1-+00 

Hence by Polya's conditions the functions e- Ill and [1 + I 1 I rl are charac­
teristic functions. However, Polya's conditions are only sufficient arid nocneces­
. sary for a characteristic fWlction. For example, ,if X - N' (~ c:r). 
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. 2 2/2 
• ~(/)=e'tJ.L~t (J , [cf.§ 8.5] 

and ~(-/)~~(/). 
Various necessary and sufficient conditions are known. the simplest seems to 

be the following. due to Cramer. 
"In order that a given. bounded and continuous function ~ (I) should be the 

characteristic function of a distribution. it is necessary and sufficient that 
~ (0) = 1 and that the functi9n • 

~ (X. A) = I ~ I ~ ~ (I - u) /t- ,t)t7l1 du 

IS real and non-negative for all real x and all A > O. 
6·12·4. Multi-variate Characteristic Function. Then 

x=[;:) am '=[n ~rMI 
be z x 1 column vectors. Then characteristic function of X is defined as 

~x(/) = E (eiIX) = E [i(IJX1 +t7X2+.:.+t,.\',,~ ... (6,67) 
We may also write it as 

~l.X2. ••• x" (/1. I~ • •••• I,,) or ~x <!It f2 •...• I,,) 
Some Properties. 

(i) ~ (0.0 •.. ,0) = 1 
(ii) ~x (I) = ~ (I) 

(iii) I ~ (I) I ~ 1 , 
(iv) .. ~ (I) is uniformly·con~nuoqs in n-dimensional Euclidian space. 
M I~~~~L~~ I 

00 00 

I I iIt·x· 
~ (I) = ... Ix (Xl. X2 • •••• x..).e J 1 dx1 dx2 ... dx" 

-00 -_ 

(vi) ~ (I) = ~ (I) for all t.thtifl X and Y have the ~e 4istribuiton . 
.. 00 

(vii) If I I I ~x (/1. /2 • ... I.) I dl1 dr, ••. dI" < 00. 

-00-00 

then X ~ absolutely continuous and has a uniformly contim,lous p.d.f . .. .. 
1 I ,I,' '" !x (X .. X2 • .... x..) = (2n)" J I i'1.IJ'lj '" (It. 12t •••• I,,) flit dl2 ••• dl" 

-00-_ 
(viii) The random variables X .. X2 • .... X" are (mutuaUy) independent iff 

"".~20".x.(/.,/2t .... I,,) = ~XI(/1) ~x2'(12) ... ~~.(/.) 
Remark. Multivariate Momenl O~nerating'F~/ion. Similarly. the m.gi. 

of~tor X=(X.,X" ""X,,)' is given by: 
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Mx (t) = E (e"x) = E (e"XI +~2+ ... '..x,,) 
We may also write: 

M () M ( ) E ( 'IXI +~2+ . .J..x,,) x t = XI.X2. ... X" tit t2 • •••• t" = . e 
In particular. (or two variates XI and X2 

00 00 

) M ( ) E( IJXI+t)l{2) ~ ~.!.L. t2 'E(X'X ') 

6-85 

... (6·68) 

Mx (t = XI.X2 tit t2 = e = £.J £.J r! s I I 2. 

r=O &=0 ... (6·69) 
provided it exists for - hI < tl < !II and - h2 < t2 < h2 • where hI and h2 are positive. 

M XI .X2 (t1. 0) = E (e'lxI) = MXI (tl) ... (6.69a) 

M XI .X2 (0. t2) = E (e~2) = MX2 (t~ ... (6·69b) 

If M (t1. 12) exists. the moments' of all orders of X and Y exist and arc given by: 

E (X2') = [a r M (t1. t2)J _ ar M<o. 0) ... (6,70) 
':l. r - ':l. r 
U '2 'I = '2 = 0 u '2 

E (XI r) =-[""a ' M (tit 11) 1 = arM (0. 0) 
ah' J ah' 

II = 12=0 1 

E (XI r X2 ') = U ,t), :2 ~ U M ( • ) [
':l.'+'M()] ·'':l.r+& 00 

a tl a t2 II = 12 = 0 a II ' d t2 & 

Cumulant generating function of X = (X), X2)' is given by : 
_ KXI.X2 (t1. 12) = log MX.,X2 (11. 11). 

Example 6·42. For a dislribulion, Ihe cumulants are given by 
K;.=,n[(r-I)!]. n>O 

•.• (6·70a) 

... (6·70fJ) 

... (6·71) 

Find the characterislic/unclion. (Oelhi Univ. n.5c. (Stat. Hons.), 1990) 

Solution. The cumulant gen~rating function K (I). if it exists, is given by 
00 00 00 

K(t)='L (~~' lCr=L (~~' n{(r-I)!}=nL -(i;' 

r=1 r=! r=! 

=n[ il+ (it + (il/ + ... ]=n [log(1-it)] 

=- n log (I-it) = log (1- ilf" 
Also we have 

K (t) = .log ~ (t)-= log (1 - ilf" 

~(/)=(1-i/)-" 

Remark. This is the characteristic function of the gamma distribution: (c/. 
§8·H) 
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f(x) 
e-X yn - I 

r(n) ; n > 0, 0 < x < 00. 

Example 6·43. The moments about origill of a di~tribution are given by 

, .r (v + r) 
Ilr '" r (v) . 

Find the characteristic function. 

(Madurai Kamaraj Univ'. B.Sc., 1990) 

. Solution. We have 

'" ( ) ~ (it)' , ~ (it)'. r (v + r) 
'I' t - £... Il - £.... " - ,=0 r! r - ,=0 r ! r (v) 

_ ~ (it)' . (v + r - 1) ! 
- -::-0 r ! (v - I) ! 

= L (it)'.v+,-IC,= L (-I)'.-vC,(i/)' 
,=0 ,=0 

[.,' -vCr = (-I )".v +, ~ IC, => (-I)'. -vC, = v + r - IC,] 
,00 

~ (t) ;= L -YC, (-,it)' = (I - it):"v 
,=0 

Example 6·44. Show that 
X(2) i<') 

eilx = 1 + (eil - 1) x(1) + (eil - 1)2. -2 r + ' ... + (e il - I)'. ~ + ... 
• r: • 

where ~,) = x (x - 1) (x - 2) .... (x - r + 1). f/ence show that 

Il(,{ = [D' ~ (t)], = 0, wl1e[e D = .d teil) and Y(,!' is the rI" factorial 

moment. 

Solution. We have 
X<2) x(') 

R.H.S. = I + (e il - I) x(1) + (eil - 1)2. -2 , + '" + (eil - I)' . -, + ... . r . 

By def. 

= 1 + (eil_l) (XCI) + Ceil - 1)2 eC2) 

+ (eil _ 1)3 (XCj) + ... + (eil - I)' (XC,) 

= [I + (eil - lW = eilx = L.H.S. 

~ (t) = [00 eitx f(x) dx 
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100 [ iI (I) it l)l'P .' r') ] 
:::: _00 l+(e ·-l)x +(e - '21+··· +(e"-I)".-, + ... /(x)dx 

r. 

= 1 + (e il _ 1>1:00 il) lex) dx+ (eIl
2-, 1)1 I: 00f2> lex) dxi- ... 

(i' -1)" 100 .l,)/() dx + 1 ~. X + ... r. -00 

[D" ~ (t)) 1 .. 0 =[ d' ~"P) 1 = I 00 i") lex) dx= J.I<,{ 
d( ),. -00 • 

e 1=0 

where J.I<,{ is the rth factorial moment. 
Theorem 6·26. (Inversion Th~orem). Lemma.. If (a - h, 0 + h) ;s the 

continuity intervatofthe distribution/unction F (x), then 

F(a+h)-F(a-fr)= lim ! ITT sinht e-;"~(t)dJ, 
T-+_n - t 

,(t) being the characteristic/unction o/the distribution. 
Corollary. If ~ (t) is absolutely integrable over RI, i.e., if 

1:00 I~(t) I dt <00, 

then the derivative of F (x) eXists; wtuch is bounded: continuous on RI and is given 
by 

1 100 .-
lex) = F' (x) = -2 e- u ~ (c) dc, 

1t -00 •.. (6·72) 

for every x E RI. 

Proof. In the above lemma replacing a by x and on dividing by 2h. we have 
F (x + h). - F (x - h) __ 1 I' IT sin ht a",.) d 

2h - 2n ·T =- -T - Itt e. y 1I -t 

1 100 sinht -U"'()d-­=- --e 't't t 2n ,.- 00 ht 
r F(x+h)-F(x-h) _1 Ii I~ sinht -U"'()d 

•• II~O 2h 2nll-:'0 -00 ht 'Ie 'I' t t 

Since 1:00 I ~ (tn dt < 00, 

the integrand on the nght hand side is bounded by an integrable function and hence 
by Dominali>.d Convergence 1beorem, we get 

lim F(~+h~-F(x-h) __ 1 100 lim,(~J.e-il%'(t)dt 
11-+ 0 2h 21t - 00 II -+ o· ht~ ) 

By mean yalue theorem of differential calculus, we have" 
lim F(x+h)-F(x-h) F'(x)=/(x), 

11-+0' 2h 
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wheref(.) is the p.d.f. corresponding to cjl (I). Thus 
, 1 Joo ' f (x) = F '(x) = -2 e- u cjl (I) dl, n - 00 

as desired. 
Remark. Consider the function !J. defined 'by 

c 

,; = J e - ax cjl (I) dl 
-c 

Now if F '(x) = f (x) existS, then 
c 

lim ;= lim i J cjl(/) e-iudl 
C-+ OO C'-+ oo c_c 

= lim {' 21 • 2nf (X)} = 0 
c-+oo C 

Hence ; ~ 0 at all points where F (x) is continuous. In other words, if the 

prbability distributjon is continuous 

1'.: ~O as' c~oo 
2c 

If, h~wev~r, the frequency function is discontinuous. i.e .• distribution is 
discrete, consider one point of discontinuity say. the frequency fj at x = Xjo Then 

the contribution of Xj to cjl (I) is fj eilx} and hence ~ts contributions to!J. will be 
c 

J fj e~ e - ilx dl 
-c 

c 

Ii !J. I' 1 (J .·il (Xj-x) d •• m - = 1m - Jj e· I 
c -+'00 2c c -+ 00 2c 

= lim J.. fj [-;il (.xj - x) lc 
c -+ 00·2c , (xr x) 1- c 

_ { O· for X~Xj 
- fj for x=Xj 

. Hence if !J.1k -+ 0 al a poinl, lhere is no disconlinuity in lhe dislribulwn 
function.atlhat point, bUI if illends 10 a, p~silive fUlJt}ber fj. lhe dislribution is 
discontinuous allhal point and lhe frequency is fj. T.his gives us a crilerion w~/her 
a given characlerislic funclion repreSe{lIS a conl(nuou,s diSlribution.or nol. 

Theorem '·27. Uniqu,eness Theorem'~ or Characteristic F.unctions. 
Characlerislicjunction uniquely delermines.lhe distribution, i.e., a necessary and 
sufficient condilionfor two dislribulions wilh p.df.'.sfi (.) andfr(.) 10 be identical 
is lhat lheir charac;erislic funclions cIlt (I) and ~ (I) are ideniical. 
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Proof. If/I (.) = /z (.), then from the definition of characteristic function, 
we get 

GO 00 

cjldt) = J e* Ji (x) dx = I ill: /1 (x) dx::: cIlz (t) -- -_ 
Conversely if cIlt (t) =cIlz (t); then from·corollary to Theorem 6·26, we-get 

GO GO 

I J - ] J -It (x) = 21t e - ib: cIlt (t) dt == 2n e - ib: cIlz (t) dt = b (x) 
_00 -00 

Remark. This is one of the most fundamental theorems in the distribution 
theory. It implies that corresponding to a' diStribution there is only one chmtcteristic 
function and corresponding to a given charaCtl!ristic function:, 'ther~ IS only one 
dislribution. This one to one corresponde.'1ce between characteristic junctions and 
the p.d!.' s enables us to identify the form 0/ the,p.df. from l tliat 0/ characteristic 
JUlletion. ' 

Theorem 6?28. Necessary and sufficient condition/or the random vari­
ables X I and X l·to be independent, is thanheir joint characteristic/unction is equal 
to the produCt 0/ their individual characieristic /unl;tioRS/ i.e., 

cjlXJ.Xl (t)', t2) = cjlxl (tl) cjlx1 (t~ ... (*) 

Proof. (0 Condition is Necessary. If XI and X2 are independent then 'we 
have to show that (*) holds. By def: • 

• 

as required. 

= f (i/x• + il:Xl) = P (i/x.,. el~l) 

= E (i/x.) E (ej~l)(-: X .. X2 are independent) 
= cjlx. (tl) cjlxl (t2). 

(Ii) Condition is sufficient. We have to show that if (*) holds, then Xl and 
Xl are independent 

Lei/x,.xl (Xhi',) lje-thejoint'p;dJ. of Xl and Xl andJi (xl) and/i (xi) be the 
marginal p.d.f:s of X; and' Xl respectively. Theil by definiuon (for coniinuous 
r.v.'s). we get .. I . 

-GO 

GO 

-GO 

.... , (t,) +x, (t,) ~ I ~j"" fi (x,) dx, H J. ."''' "(x,) dx, 1 
:0 J J eiv\r\ +'2r1) J; (xd 12 (X2) dXJ dx! 

- 00 _ 00 ... (**). 
by Fubini's theorem, since the integrand is b<)unded by an integrable function. 
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Also by def! 00. ooJ 

'" (I I) J ei (11Xt + I~V f (XI. x~) dxt dx~ .yX •• X2 I. l = '" '" 
-00 -00 

If(*) holds. we get from'(**) 
00 GO 

-00 -00 

Hence by uniqueness theorem of characteristic functions. we get 
f(XIt Xl) = Ji (XI)/2 (XlJ. 

which;implies thatX1 and Xl, are.independent 
Rernar~s. 1. For discrete r.v.·s. the result is established ~y uS,i,ng,summation 

in~tea~ of integration. 
2. The result can be g~neralised to the case of·mor~ thaJl two'~ariables. 
Necessary and sufficieQt cpndition for the mutual independence o( random 

variables Xi. (i = 1.2.3 •...• n) is that 
cl>X •• X20 ••• x. (/1.12 • •••• ,8 ) = cI>x. (It) 4>X2 (Il)' ••• 4>x •. (I.) . 

3. In terms of moment generating functions. the necessary and sufficient 
condition for the r.v.~sXt, Xl • ...• XR to be mutually independent ,is that .' 

MX •. X20 •••• x. (/t.ll • • ". I.) = Mx. (II) MX2 (Il) ••• M-x. (I.) 
provided m.gJ.·s exist. 

Theorem 6~29. Hally-Br~y Theorem. If Ihe sequence of dislr;ibulion 
funclions { F. (X) I con.verg~s 10 (he diSlribulion function F (X) al alilhe poinls of 
conlinuity of Ihe [aller and g (x) is botindeq. continuous funclion over Ihe line 
R,~ (- 00.00). Ihen 

00 00 

lim I.g (x) dF • .!x) = I g (x) dF (x) 
ia-+oo -09 -:.0 

... (*) 

Corollary.. If F.. (x) -+,F (x). then the corresponding sequence of charac­
teristic functions 4>8 (I) of f. (x) converges to.the ch¥3c~ristic function 4! (I) of 
F at every point 't'. .___''-

Proof. c.os LX andt sin LX are continuous and bounded functions of x 
for all I and hence from (*). we get 

00 00 

lim J cos IX ~. (x) = I cos LX dE~) 
,.-+00 __ 

-00 

00 00 

and lim J sin LX d/i" (x) = I sin LX d/i (x) 
-00 

00 00 

:. lim J (cos IX+ i s~n LX) dF., (x) = J (co .. ; IX+ i sin LX). 
11-+ 00 _ 00 -00 
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00 00 

lim J iJx e dF. (x) = J i tJc dF (x), 
,.-4 00 _ 00 -00 

~ 4>. (t) -+ 4> (t) as n -+ 00 

Theorem 6,30. Continuity Theorem for Characteristic Functions. 
For a sequence of distribQtion fun~tions { F. (~)} with t!te corresponding sequence 
of characteristic functions {4>. (')}' a necessary and sufficient condition that 
F~ (x) rl F (x) at all points Qf continuity of F is that for every real t, 
,. (t) ~ 4> (t), which is continuoUS at f= 0 and. (t) is the characteristic function 
correspomJing to F. 

Example 6·45. Let F. (x) be the distribution/.lI!lction defined by 
F. (x)=o for xS-n 

x+,n fi = ~ oc '-n<x<n 

=lforx~n 
Is the limit F. (x) a distribution function ? If nQt, why? 

" 
Solution. ~. (t) = J itt ~ dx ( ':f"(x)=F,, '(x» 

-II 

= ..!..[ i 'll -. eJ.. u" J'= sin nt 
,2n It nt 

c> (t) = tim c>. (t) = lim sin nt 
,,~OO ,,~OO nt 

-' {. 1 if t =-0 
- 0 if t ~O 

i.e., c> (t) is discontinuous at t = O· 
. 1 

and lim F .. (x)!:: '2 
,,-+00 

Hence F (x) is not a distribution function. 

Example 6·46. Find tl-.e distribution. for which characteristic function is 
, 22 -

(0) 4> (t) = (q + peil)", (b) 4> (t) = e-' a 12 

" Solution. (oJ .(t)='(q+pi')"= ~ ·cJ{itf-ili 
J=O 

We have 

1".= j e- itJc ~(t)dt= j {e- itJc ,i ·CjJ}q"-iii}dt 
-c -c }=o 
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=.f r IICjpi qn - j IC 

e-il (x - j) dt] 
)=0 l . 

-c 
(l) If x ;J: j. 

~ "1 e-il Ix - j) IC ~ • • [e iC (x - j) - e-iC (x - j)] :r. = £.. nc·pI q"-J = £.. nC·pJqn-J J, j = 0.J • J -j.(x - j) _ C j = 0 J i (x-- j) 

=f [,nc.ni lI_j.2isinfc<x,-D}] 
j = 0 J y- q (x - j) 

lim l,.. ~ 0 'Vx. 
c~ .. 2c • 

Hence there is no discontinuity in the distribution function when x ;J: j. 

(ii) If x =j, 

II [ IC 1 II ' 1;;=.L nCjpiqn- j dt =2c.L "Cj piqn·- j =2c(q+p)n=2c 
)=Q J=:O 

-c 

Since 2:Fc ~ 1 at x·= j', the distribution function is discontinuous anti its c . -
frequency is IICjpi qll-j. 

C 

(b) Let 1;; = I e-iIX -!a2,= dt 

C C 

I :Fc I ~ I I e-ilx - talll \ dt ~ I e- ta112 dt 
-c -c 
co 

~ I e-ta21' dt. = ~ 
lim 1;; = 0 'Vx. 
C~OO 2c 

Hence the distribution function is continuous for all x. 

Put t cr + ~ = 1;, i.e .• crdt = dI; 
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Hence 

1 {i"}& 1 {i"} f(x)=- exp -- -=~ exp -- -OO<X'<oo 
21t 2cr (J (JV 23t 2cr ' 

which is the p.d.f. of nonnal distribution. 
Example 6·47. Find the density junctionf(x) corresponding to the charac­

teristicfunction defined asfollows : 

ell (t) = { ~ - I t I, I t I ~ 1 
0, Itl.> 1 

[Delhi Univ, B.Sc. (Maths Hons.), 1989] 
Solution. By Inversion Theorem, the p.d.f. Qf X is given by : 

00 

1 I . f(x)=21t e- IU eII(t)dt 
-00 

Now 
o. [ e - ibe ]0 1 0 . I e -.be (1 + t) dt = -.- (1 + t) + -:- I e -/Ix dt 

-IX -1 IX 
-1 -1 

Sim\tarly, 
1 / 

=_~+~[e-~ ]0 
IX IX -IX -1 
1 1 . 

=--+-(elX -l) 
ix (ix)l 

I -ib: d 1 1 - ir 1 e (1-t) t=-+-(e r_ ) 
ix (ix)2 o 

f(x) = -21 [~{ elx -l +~-Ix_ dl 
1t (IX) ~ 

1 [ elx + e - Ix ] 1 1 - cos x " 1 -- -oo<x<oo 
= 1t Xl - 2 - n: • x2 ' 

EXERCISE 6 (c) 

1. Define m.g.f. of a'random variable. Hence' or otherwise find the m.g.f. of: 

• .: for - 1 < t < 0, 1 t I = - t and for 0 < t < 1, ,I t 1 = + t 
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(i) Y = aX + b, (!i) Y = X - In • 
0' 

[Sri Venkat Univ. B.Sc., Sept. 1990; Kerala Univ. B:Sc., Sept. 1992] 
2. The random variable X takes the value n with probability 1I2n, 11 = 

I, 2, 3, ... Find the moment generating function of X and hence find the mean 
and variance of X. 

3. Show that if X is mean of n independent random variables, then 

M-X(I) = [Mx (;) r 
4. (a) Define moments and moment generating function (m.g.f.) of a 

random variable X. If M (I) is the m.g.f. of a random variable X about the origin, 
show that the moment Il,' is given by 

'= [d' M (1)] 
Il, dl' 

1=0 

[Baroda Univ. B.Sc., 1992] 

(b) If Il: is the rth order moment about the origin and Kj is the cumulant of 
jth order, prove that 

() Il: _ (r - 1) ! o Kj - j - 1 Il,-j 

(c) If Il: is the rth moment about the origin of a variable X and if Il: = r !, 
find the m.g.f. of X. 

5. (a) A random variable 'X' has probability function 
I 

p (x) = 2'" ; x = 1, 2, 3, ... 

Find the M.G.F., mean and variance. 
(b) Show that the m.g.f. of r.v: X having the p.d.f. , 

!(x) = 3' , - I < x < 2 

= 0, elsewhere, 
e21 - e-I 

is M (I) = 31 ' 1 * 0 

= ~,I = 0 lGujarat Univ. B.Sc., Oct. 1991) 
\1) A random variable 'X' has the density function: 

1 
!(x)'=, .r'O<:x< I 

2'1x 

= 0 ~.e.ls~'.'(bere 
Obtain the moment gene,rati.ng functi9n ,and hence the mean and variance. 
6. X is a random variable and p (x) = abX, where a and b are positive, 

a+ b = I and' x taking the values 0, I', 2, ... Find the moment generating 
function of X. Hence show that 

1n2 = In, (2m, + I) 
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"II and ml being the first two moments. 
7. Find the characteristic fWlctiofl of the following distributions and th~ir 

variances: 
(i) dF (x) = ae-(U'dx. (a> O.x > 0) 

(U) dF(x)=te-lxldx. (-oo<x<oo) 

(iii) P (X= J) lineu=(; J,i q"-i. (O<p< I.q= l-p.i=O.I. 2 •...• n). 
8. Obtain the m .. g.c. of the random variable X having p.d.f .• 

I x. forO~x< I 
f(x)= 2-x. forl ~x<2 

O. elsewhere 
Determ ine Ill'. Ill. III and J4. 

(el-lJ '1 '7 Ans. -t-' III = • III = . 
9. (a) Define cumulants and obtain the first fourcumulants in termsofcemr31 

moments. 
(b) If X is a variable with zero mean and cumulants 1(" show thal the first 

:wo cumulants 1\ and 11 of X 1 are given by II == lCl and 11 ='2 lCl + lC4. 

10. Show that the rth cumulant for the distribution 
f(x) = ce- ca • where e is positive and 0 ~x < 00 

is 1 
-;.(r-l)! 
c 

11. If X is a random variable '1\'ith cumulants lC,; r = I. 2 •.... Find the 
Cllmulants of 

(i) eX. (U) e + X. where e is a constant 
12. (a) Dc(ine the characteristic functi(;m of a random variable. S how that the 

characteristic function of the sum of two independent variables is equal to the 
product of their characteristic functions. 

(b) If X is a random variable having cumulants lC,; r = 1.2 •... given by 
lC,=(r-I)!pa-';p>O.a>O, 

find the characteristic func40n of X. 
(e) Prove that the characteristic fWlction ofarandom variable X is real ifa:l~ 

only if X has a symmetric distribution about O. 
13. Define ~ (t), the characteristic function of a random variable. rand the 

characteristic function of a random variable X defmed:as foUows : I O. x<O 
f(x)= I, O~x~·1 

0, x> I 
Ans. e(il-l)/it 
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14. For the joint distribution of two-dimensional random variable (X. y) 
given by 

= O. elsewhere ~ 
show that the characteristic function of X + Y is equal to the product of the 
characteristic functions of X and Y. Comment on the result. 

Hint. See remark to Theorem 6·22. page 6-81. 
15. Let K (h. (2) = log. M (h. (2) where M (11. 12) is the m.g.£. of X and Y. 

Show that: 

a K (0. 0) = E (X) • 
all • 

a2 K (0. 0) .... v" X' a2 K (0. 0) C (X Y) 
~ 2 .- ,r. ~ ~ ov. 
CJh CJl1 CJI2 

[Delhi Univ. B.A.(Stat. Hons.), Spl. Course 1987) 

OBJECTIVE TYPE QUESTIONS 

1. Comment on the following. giving examples. if possible: 
(i) M.g.f. of a r. v. always exist. 

(ii) Chardcteristic function of a r.v. always exists. 
(iii) M.g.f. is not affected by change of origin orland scale. 
(;v) eIIx.y(I) = <!>x(I). eIIy(l) impliesX andY are independenl. 
(v) eIIx (I) = cIIr (I) implies X and Y have the same distribution. 

(vi) ell (0) = 1 and I ell (I) I ~ 1. 
(vii) Variance of a r.v. is 5 and its mean does not exist. 
(ix) It is P<;lSsible to fmd a r.v. whose fIrst k moments exist but (k+ 1)'" 

moment docs not exist. 
(x) If a r. v. X has a symmetrical distribution about origin then 

(a) cIIx (I) is even valued function of t. 
(b) cIIx (I) is complex valued function of I. 

I1~ (a) Can the following be the characteristic functions of any diStribution 7 
Give reasons. 

(i) log <1 + I). (U) exp (- I 4). (ii,) 1/(1 + ( 4 ). 

(b) Prove that ell (I) = exp (- t a). cannot be a characteristic function unless 
.tl = 2., 

III. State the relations. if any. between the following: 
OJ E (X ') and ¢Ix (I). 

(ii) Mx (I) and Mx- a (I). a being constant. 
(iii) Mx (I) and M(X-a)/h (t). a and h being constants. 



~fatbemaucal Expectation 

(iv) «I>x (t) and p.d.f. of X. 
(v) J,f.. and J,f..'. 

(vi) First four cumulants in tenns of first four moments about mean. 
IV. Let XI. Xl • .... X. be n i.i.d. (independent and identically distributed) 

r.v.'s with m.g.f. M(t). Then prove that 

Mx (t).=JM (tlnW, 
/I 

where X= 1: Xj/n 

J 
-I e . 

i= 1 
V. If Xh Xl • .... X. are independent r.vo's then prove that 

/I 

M • (t) == n Mx; (Cj t). 
I CjXj i=1 

j=1 

VI. Fill in the blan.ks : 
00 

(i) If I I «I>x (t) I dt < 00. then p.d.f. of X is given by ... -(ii) XI aJ'ld Xl are independent if and only if... . 
(Give result in tenns of characteristic functions.) 

(iii) If X I and Xl are independent then 
«I>x,-x, (t) = ... 

(iv) «I>(t) is ... definedandis ... forall t in (-00. 00). 

VII. Examine critically the following statements : 
(a) Two distributions having the same set of moments are identical. 
(b) The characteristic function of a certain non-~egenerate distribution is 

6·13. Chebychev's Inequality. The role of standard deviation as a 
parameter to characterise variance is precisely interpreted by means of the well 
known Chebychev's inequality. The theorem discovered in 1853 was later on 
discussed in 1856 by Bienayme. 

Theorem 6·31. II X is a ~andom variable with mean J.L and variance ~, 
lIIen/or any positive number k, we luive 

P{IX-J.LI~kcr}~!1/k2 ••• (6·73)~ 
or P {X - J.L I< k cr } ~ 1 - (Ilk2) ••• ( 6·73 a) 
Proof. Case (i). X is a continuous r.v. By de/.. 

0 2 = 0,,/ = . E [X - E (X) ]2 =-E [X - J.L ]2 
00 

= J (x - J.L)2 I (x) dx. where I (x) is p.d.f. of X • 
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Jl- ka 11 + ko 

= J (x -1l)2 j{x)dx + J (x. -1l)2 f (x) dx + J (x -1l)2j (x) dx 
'11- ko 11 + ko 

Jl- ka 

~ J (x-Il)2f(x)dx+ J (X-Il)2f(x)dx ... (*) 

11 + ko 

We know that: 

x S Il - k(J l.m,d x ~ Il + k(J ¢:::> I x - III ~ k(J 
Substituting in (*), we get 

... (**) 

Jl-ka .. 

,,' , t'''' [l f(x) dx + .L f(x) dx 1 
= k2 (J2 [P (X 's·Il- k(J) + P (X ~ Il + k(J)] 

• = ,,2 (J2. P (I X -Ill ~ k(J) 

=> P (I X -Ill ~ k(J) S l/k2• 

which establishes (6·73) 
Also since 
P {I X -Ill ~ k (J) + P {I X -Ill < k (J) = I, we get 
P {I X - III < k (J) = I - P {I X -Ill ~ k. (J) ~ I - { I/k2 } 

which establishes (6·73a). 

[From (**») 
[From (**») 

. .. (***) 

[From (***)] 

Case (ii). In case of discrete random variable, the proof follows exactly 
similarly on replacing integration by summation. 

Remark. In partfcular. if we take k (J = c > 0', then (*) and (**) give 
respectively 

{ (J2 { } .(J2 
P I X -1l·1 ~ ciS. c2 and P I X -Il I < c ~ J - c2 

P { I X - E (X) I ~ c } S va:;X) ) 

and P{IX-E(X)I<c} ~ 1_ va~~x) 
... (6·73 b) 

6·13'1. Generalised Form of Bienaymc-Che6ychev's Inequality. Let 
g (X) be (l lIon·llegative fllllction of a ralldom variable X. Theil for every k > O. 
we have 

P { g (X) ~ k } S E. 1-1 (X) } ... (6.74) 

[B~ngalore Univ. B.Sc., 1992] 
Proof. Here we shall prove the theorem for continuous random variable. 

The proof can be adapted to the case of discrete random variable on replacing 
integration by summation over the given range of the variable. 

Let S be the set of all X where g (X) ~ k. i.e .• 
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S = {x: g (x) ~ k} 

then J dF (x) = P(X E S) = P .[g (X) ~ k], 

s 
where F(x) is the distribution function of X. 

Now E [g (X)] = J g (x) dF (x) ~ J g (x) dF (x) 

s 

6·99 

... (*) 

~ k. P [g (X) ~ k] [.,' on S, g (X) ~ k and using (*)] 

=> P [g (X) ~ k] 
::; E [g ,(X)] 

k 

Remarks 1. If we take g (X) = {X - E (X)}2 = {X -1l}2 and replace k by 
k2 (J2 in (6·74), we get 

P {(X _ )2> k2 2} ~ E (X -1l)2 ~_.!. 
Il - (J - ~2 (J2 k2 (J2 - k2 

=> P {I X -Ill ~ k (J} ::; I/k 2, (6·14 a) 

which is Chebychev's inequality. 

2. Markov's Inequality. Taking g (X) = I X I in (6·74) we get, for any 
k> 0 

... (6·75) 

which is Markov's inequality. 

Rather, taking g (X) = I X I' and replacing k by k' in (6·74), we get a more 
generalised form of Markov's inequality, viz .• 

P [ I X I' ~ k'] ::; E ~; I' ... (6.75a) 

3. If we assume the existence of only second-order moments of X, then we 
cannot do better than Chebychev's inequality (6·73). ~owever, we can 
sometimes improve upon the results of Chebychev's inequality if we assume the 
el\istence of higher order moments. We give below (without proof) ~>ne such 
inequality which assumes the existence of moments of 4th. order. 

Theorem 6·31a. E I X 14 < 00, E (X) = 0 and E (Xl) = (J2 

114 - (J4 
P { I XI > kO'} ~ 4k4 2k2 4 ... (6·76) 114 + (J - (J 

If X - U [0. 1]. [c./. Chapter 8], with p.d.f. p (x) = 1,0 < x < 1 and == O. 
other~ise. then 

E(X,) = I/(r+ I); (r= 1,2,3,4) 
E (X) = 112, E (Xl) = 1/3, E (,X3) = 1/4, E (X4) = 115 ... (*) 

Var (X) = E (Xl) - [E (X)]2 = 1112 

114 = E (X -1l)4 = E(X _t>4 = 1180 



6-100 Fundamentals or Mathematical Statistics 

, ' ' [On using binomial expansion with (*)\ 
Chebychev's inequality (6·73a) with k = 2 giv~s : 

p[lx - tl < 2 .ful~ I -~=O'7S 
With k = 2 , (6,76) gives: 

[ , '1] 1,.g0 - 1!44 4 
P IX-11>2vi2 s l,.go+~--IA! 49 

[ I] 4 45 PIX-lis 2= O!:I--=-=O'92 
2 vI2 49 49 ' 

whicb-il- a much better lower bound than the lower bound given by ,Cheby,-'bev's 
inequality. 

',14. Convergence in probability. Weshall now introduce a newCClnCept 
of co~y~rgenee, viz., convergence in probability or stochastic convergence whicb 
is defin~d as follows;.. 

A sequence of random variables Xl. X2, ... , Xn, ... is said t6 converge in 
probability to a constant a, jf for any € > 0, 

lim P(IXn -a!<€)=l' 
n - 00 ••• (6'77) 

or its equivalent 

lim P ( I Xn - a ! O!: €) = 0 
n-oo ... (6·77a) 

and we write 

Xn !: a as n - 00 
... (6·77b) 

If there exists a random variable X such that Xn -X !: a as n - 00 , then 

we say that the given sequence of random variables converges in probabiLity to the 
rauLlom variableX. 

Remark.1. If a sequence of constantS' an - a as n - 00 , then regarding 
the constant as a random variable having a one-point distribution at that point, we 

can say that as an !!. a as n - 00 • 

z. Although the concept Of convergence in probability is basically different 
from that of ordinary convergence of sequence of numbers, it can be easily verified 
that the following simple rules hold for convergence in probability as well. 

If Xn !!. a and y,,!!. () as n - 00, then 

(i) Xn±Yn !!. a±() as n-oo 

(ii) Xn Yn !!. a ~ as n - 00 
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(iii) ~: ! * as n - 00, provided 13 '" 0 . 

6·14·}. (Chebychev's Theorem). As an immediate ~9nsequencc ofCheby 
_chcv's inequality, we have the fo))owin~ theorem and convergence in probability. 

"If X], X2 • .... Xn is a sequence of random variables and if mean !!n and 
standard deviation an of Xn exists for all n and if an -. - as n - 00 • t/ten 

Xn -!!n ! 0 as n - 00 

Proof. We know. for any 10 > 0 

a 2 

P I I Xn -!!n I ~ 10 l s 10; - 0 as n - 00 

Hence Xn -!!n ! 0 as n - 00 

6·15. Weak Law of Large Numbers. Let Xl. X2 • .... Xn be a sequence of 

random variables and!!1, !!2 ..... !!n be their respective expectations and let 

Bn = Var (Xl + X2 + ... + Xn) < 00 

Tbenp{ IX~+X2: .. _+Xn !!1+~l2: ... +!!n·1 <1S}~1'T.11 
... (6-78) 

for all n > no, where E and 1) are arbitrary small positive nllmlJers. provided 

lim Bn _ 0 

n - 00 n2 

Proof. Using Chebychev's Inequality (6·73b). to the random variahlc 
(Xl +X2 + ... +Xn)ln. we get for any 10 > 0, 

P { I ( Xl + X2 : .. , + Xn ) _ ( E Xl + X2 : ... + Xn ) I < IS } ~ 1 - n~:2 ' 

[ . (XI.X2+ ... +Xn) 1 V (X X) Bn1 SInce Var = ~ ar Xl + 2 + ... + n =? 
n n- n-

=> P { I Xl. X2 + ... + Xn _ !!l + ~l2 + '" + !!n I < IS } ~ 1 _ Bn? 
n n n2 E-

So far. nothing is assumed about the bchaviourof Bn for indefinitely inl'l'Cas­
R' 

ing values of n. Since 10 is arbitrary, we assume ;n 2 - O. as n becomes 
n 10 

indefinitely large. Thus. having chosen two arbitary small positive numbers 
10 and 1). number no can be found so that the inequality 

Bn 
2'2<-1), 
n E. 

will hold for n > no. Consequently. we s~all have 

P { I Xl + X2 : ... + Xn _ !!l + !!2 : '" + !!n I < 10 } ~ 1 - 11 
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for all n > no .(to, '1) . 
This <;onclusion leads to the following important result, known as tbc 

(Weak) Law of Large Numbers: 
"With the probability approaching unity or certainty as near as we plellse, 

we may expect that the arithmetic mean of values actl/lIlly assumed by n ·random 
variables will differ from tlte arithmetic mean of their expectations by less than any 
given number, however small, provided tlte number of variables can be taken 
sufficently large and provided the condition 

. ~ 0 
n2 - as n - ~ 

is fulfilled". 
Remarks. 1. Weak law of large numbers can also be statcd as follows: 

- p XII _ iill 

provided B; _ 0 as 'n - oo( symbols having tbeir usualmcanings. 
n 

2. for the existence of the law we assume the following conditions: 
(i) E (Xi) exists for all i, (ii) BII = Var (Xl + X1 + .,. + Xn) exist'>, and 

(iii) Bnln2 - 0 as n - 00. 

Condition (i) is necessary, without it tbe law itsclf cannot be stated. But tb<.' 
conditions (ii) and (iii) are not necessary, (iii) is howevcr a sufficient condition. 

. 3. If the variables Xl'; Xn, ... , XII are independent and identica lIy distributed, 

i.e., if E (Xi) = ~ (say), and Var (Xi) = 0 2 (say) for all i = 1,2, ... , n then 
n 

BII = Var (XI + X2 + ... + Xn) = ~ Var (Xi) 
i-I 

the convariance tenns vanish, since variables are independent. 

.. Bn =n 0 2 

l.!..m B~ lim (02In) = 0 
n - oc n- n - op 

Hence 

... (*) 

Thus, the law of large number holds for the sequence I XII ~ of i.i.d. r.l'.'s and we 
get 

r <E > -l1 vn >no P { I Xl + X 2 : ... + X .. - II I } 1 

i.e., P {I X .. - ~ I < E } - 1 as n - 00 

~ P {I X .. - ~ I ~ E } - 0 as n - oc 

where X .. is the mean of the n random variablesXI,X2, ... ,X ... This result implies 

,t~LX.. converges in probability to ~, i.e., 

XII! ~ 

prakash
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Note. If ~ is the mean of n U.d. r.v.'s XI> X2, ••• , Xn with 
E (Xi) = Il ; Var (Xi) = (J2, then [On using (*)] 

E(~) = Il ;-and Var (~) = Var (.f xii n) ... (6·80) 
/= I 

Theorem 6·32. If the variables are uniformly bOllnded then the condition, 

lim Bn - 0 
n -+00 n2 -

is necessary as well as sufficient for WLLN to 'hold. ; 
Proof. Let ~i = Xi - ai, where E (Xi) = ai ; then E (~i) = 0, (i = 1,2, ... , n). 
Since X;'s are uniformly bounded, there exists a positive number c < 00 

such that I ~i I < c. 

If p = P [ I ~I + ~2 + ... + ~n I ~ n e] 
then I - p = P [ I ~I + ~2 + ... + ~n I > Il e] 
Let Un = ~1 + ~2 + ... + ~n' 

n 

then E (Un) = I. E (~i) = 0 
i= I 

and Var (Un) = E (ifn> :: Bn (say). 

o 

= U;dF+ 
2 

U"dF 

dF + ,,2 c2 J dF 

lu.lslI£ lu.l>n£ 
~ n2 e2 p + n2 c2 (I - p) 

Bn 
.. n2 ~ e2 p + c2 (1 - p) 

If the law of large numbers holds, 
I - P = P [ I ~I + ~2 + ... + ~n I > Il e ] ~ 0 'as n ~ 00.1 

Hence as n ~ 00, (I - p) ~ 0, and 
B -f < e2 p + c2 0, e and 0 being arbitrarily small positive numbers. 
n 

BII 
Hence 2" ~ 0 as n ~ 00. 

n 
6'15·1. Bernoulli's Law of Large Numbers. Let there be n trials of an 

event, each trial resulting in a success or failure. If X is the number of successes 
in n trials with constant probability p of success for each trial, then E (X) = np 
and Var (X) = npq, q = 1 - p. The variable Xln represents the proportion of 
successes or the relative frequency of successes, and 

prakash
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1 1 - no 
E(X/n) = - E (X) = p, and Yar (X/n) ="2 Var (X) = l::L 

n n . n 

P {:I ~ -p 1 < E } -+ 1 as n -+ 00 

p{ 1 ~-p 1 ~E }-+o as n-+oo 

..• (6'81) 

... (6·81 0) 

[or any assigned E > O. This implied that (X/n) converges in probability to 
p as n -+ 00. 

Proof. Applying Chebycbcv's Inequality [Form (6'73 bH to the variable 
X/n, we get for any E > 0; 

p { .1 ~ - E ( ~} 1 ~ E } V u!;/ n) 

~ P{I ~-p 1 <E}-+ 1 as n-+oo 

since the maximum value of pq is at p = q = 1/2 i.e., max (p 4)= 114 i.e., 
pqs1l4. 

Since E is arbitrary, we get 

P { I ~ -p I ~ E } -+ 0 as n -. 00 

P{I ~-p I <E}-+ 1 as n-+oo 

6·15·2. MorkolT's-Theorem. The law of large numbers holds iffor some 
b > 0, all the mathematical expectations 

E ( IX-II + 6) •. - 1 , , , 1- ,_, •.• ... (6'82) 
exist and are bounded. 

6·15·3. Khinchin's Theorem. ffX; 's are identically and independently 
distributed random variables, the .only condition necessary for tile law of large 

numbers 10 hold is thaI E (X;) ; i = 1,2, ... should exist. 

Theorem 6·33. Let I Xn J be any seqlUmce of r.v. 'so Write: 

Yn = [Sn - E (Sn)]ln where Sn = XI + X2 + ... + Xn . 
A necessary and sufficient condition for the sequence I Xn ~ to satisfy the 

W.LL.N. is that ) 

E{~'}-+O as n-+ oc • 
1 + Y~ ... «()·83) 

prakash
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Proof. 1lPart: Let us assume that (6-S3) holds_ We_ shall prove I X" r 
satisfies W.L.L.N. 

For real numbers a, b ; a C!: b > 0 we have: 

a C!: b ~ a + ab C!: b + ab ... (*) 
Let us define the event A = \1 Y" I C!: Et . 

2 2 
W E Ax ~ I Yn I C!: E ~ I Yn I C!: E > 0 

:. Taking a = Y~ and b = E2 in (*), we define another-event B as follows: 

B. - \( I ~~ I C ;:' ) ~ I H I ~ ~. I :'" } 

Since wEA ~ wEB, A ~B ~ P(A) sp (B) 

P [ I Y" I C!: E ] $ P [ y~ ~ --S 1 
l+Yirl+E 

E I Y,,/(l + Y~) l 
E2/(l + E2} 

[By Markov's Inequality (6-75)J 
- .. 0 as n --+ 00 [By assumption (6'83» 

P [ I Y" I C!: E ] --+_0 as n --+ 00 

n ~ 00 P [ I S" -! (S,,) I C!: E ] --+ 0 

~ WJ LN holds for the sequence I X" I of r. v_'s. 

Conversely, if( X" 1 satisfies WLLN, we shall establish (6-83). Let us assume 

that Xi'S are continuous and let Y" have p.d.f. I" (y) _ Then 

E ~ .. f ~./,,(y}dy { Yn} co 2 

1 + Yir -co 1 + Y 

2 .. (f +-f) ~ I" (y) dy 
A < 1 + Y 

_4 

where -A-i I Y I C!: Eland A~ = II y I < E } 
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E (I :n~n2):5 J I.fn (y) dy + J y2./" (y) dy \-: I :\2 < I and !' r2 y2 < y21 

A AC 

:5P{A)+£2 J f,,(y)dy (·:OnAc:lyl<£) 

AC 

= P (A) + £2 • P(A C) 

:5 P (A) + £2 

=> EL :"~n2]S'P {I Yn I~£} +£2 

But since (Xn,} satisfies WJ,..LN, we have: 

lim P [I Y" 1 ~ £] ~ 0 
II ~ 00 

... (**) 

and since £2 is arbitrarily small positive number, we get on taking limits in (**), 

Ii m E [I Y" ~ 2] ~ 0 
,,~oo + n 

Corollary. Let XI, X2, ... , X" be sequence of independent r.v.'s such that 
Var (Xi) < 00 for i = 1,2, ... and 

( " ) Var L Xi 
Bn i = I Var (S,,) 0 
2= 2 = 2 ~ aSIl~oo 
II II II 

Then WLLN holds. 

Proof. We have: 

Yn2 y2 _ [S" - E (s,,)]2 
2:5 ,,-

I + Y" /I 

I, E [ Yn2 ] I' B" 0 1m 2 :5 1m 2~ 
,,~oo I + Y" ,,~oo II 

(By assumption) 

Hence by the above theorem WLLN holds for the sequence (X,,} of r. v.' s. 

Remark. The result of Theorem 6·33 holds even if E(Xi) does not exist. In 
this case we simply define Yn = [S,;lII] rather than [Sn - E (S,,)]/II. 

Example 6'48. A symmetric die is throwlI 600 times. Find the lower hOUlld 
for the probability of getting 80 to J 20 sixes. 

Solution. Let S be total number of successes. 
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Then 
1 

E (S) = np = 600 x '6 = 100 

1 5 500 
V (S) = npq = 600 x '6 x '6 =""""6 

Using Chebychev's inequality, we get 

=> 

=> 

Taking 

1 
P [ IS -E (S) I < k (J ] ~ 1 -Il 

p II S - 100 I < k "SOO/6 ~ ~ 1 - ;2 
pi 100 -k"SOO/6 <S < 100 + kv5GG/6 I ~ 1- ~ 

:w 
k .... "500/6' we gct 

1 19 
P (80 s S s 120) ~ 1 - 400 x (6/S00) 24 

6-107 

Example 6·49. Use Cllebycllev's inequality to determine how many times 
a f{lir coin must be tossed in order tltat the probability will be 17! least 0·90 tllat the 
ratio oftlte observed number of heads to tlte number of tosses will lie between 
0·4 andO·6. 

[Madrels Univ. B.Se (Stat.)Oct 1991; Delhi Univ. B.Sc. (Stat Hons.) 19891 
Solution. As in thc proof ofBcrnoulli's Law of Large Numbers, we gct for 

any E > 0, 

p{I!-pl~E}S~ n 4n f-

=> p{I!-pl<E}~l-~ n 4n [-

Since p = O·S (as the coin -is unbaiscd) and we want the proportion of 
succcssesX/n to lic bctwccn 0·4 8.,d 0'6, we have 

I !_p I sO'1 

n '-

Thus choosing E = 0'1, wc havc 

p { I ~ -p I < 0·1 } ~ 1 - 4n (~'1 )2 = 1 - O'O~ n 

Since wc want this probability to bc 0·9, we fix 

___ 1_ = 0.90 
0·04 n 

prakash
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1 
0·10=--

0'04n 
1 

n = 0.10 x 0.04 = 250 

Hence the required number of tosses i~ 250. 

Example6·SO. Forgeometricdistributionp (x) = 2- r ; x = 1,2,3, ... prove 
that Chebychev' s inequality gives 

P [ I X - 21 s ) > t 
while the actual probability is !~ . [Na~ur Univ. B.Sc. (Stat.), 1989] 

00 x 1 2 3 4 
Solution. E (X) = l: - = - + - + - + - + 

.1'- 1 2r 2 22 23 24 ... 

=t(1 + 2A +3A2 + 4A3 + ... ), (A = 1/2) 

= .! (1 - Ar2 = 2 
2 

2 00 x2 1 4 9 
E(X)= l: --;=2+3"+4+'" 

.1'_12 2 2 2 

= ~[1 +4A+9A2+ ... )=~(I+A)(1-Ar3=6 

.. Var(X)=E(X 2)-[E(X)f=6-4=2 
Using Chebychev'& inequality, we get 

P {I X - E (X) I s k o} > 1 - ~ 
With k = ..j 2, we get 

P {I X - 21 s ..j 2 . ..j 2} > 1 - ~ = ~ 

~ P{IX-2Is2}>~ 
And the actual probability is given by 

[See Example 6'17) 

P {IX - 21 s 2} = P {O sX:s 4} = P {X = ],2,3 or 4} 

= ! + ( ! )2 + (! )3 + ( ! )4 = 15 
2 2 2 2 16 

Example 6·51. Does there exist a variate X for which 
P [Il. - 2 0 :s X :s Il. + 2 0) = 0·6 ... (*) 

[Delhi Univ. D.Sc.{Maths Hons.) 1983] 
Sol~tion. We have: 

P (Ilr - 20 sX S fAr + 20) = PriX - Ilr Is 20) 

~ 1-!=0'75 
4 (Using Chebychcv's Inequality) 
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Since lower bound for the probability is 0·75, there does not exist a r.v. X 
for which (*) holds. 

Example 6·52. (a) For the discrete yariatewith density 
1 6 1 

f(x) ="8 /(-1) (x) +"8 /(0) (x) +"8 /(1) (x) 

evaluate P [I X - ~l.1 ~ 2 a,,]. [Delhi Univ. B.Se.(Maths Hons.) 1989] 

(b) Compare tbis result with that obtained on using Chebychev's inequality. 
Hint. (a) Here X has the probability distribution: 

x: -1 0 1 :. E (X) = - 1 x.! + 1 x.! = 0 
8 8 

p(x): 1/86/8 1/8 EX2=1x.!+1x.!~.! 
8 8 4 

.. Var(X) = E (X 2) - [E (X)]2 = 1/4 => a" = 1/2 
PlIX-~,,1~20,,] = PlIXI~1] = 1-P(!X!<1) 

. =1-P[-1<X<1]=1-P(X=0)=1/4 
1 . 

(b) P II X - ~x 1 ~ 2 ox] s 4 (By Chebychev's Inequality) 

In this case both results are same. 
Note. This example shows that, in general, Chebychev's inequality cannot be 

improved. 
Example 6·53. Two unbiased dice are thrown. If X is the sum of the 

numbers showing up, prove t"at 

P ( ! X - '71 ~ 3) ~ ~! . 
Compare this with the actual probability. (Kamataka Univ. B.Se., 1988) 

Solution. The probability distribution of the r.v. X (the sum of the numbrs 
on the two dice) is as given beiow : 

X Favourable cases (distinct) Probability 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

(1,1) 
(1,2), (2, 1) 

(1,3), (3, 1), (2, 2) 
(1,4), (4, 1), (2, 3), (3, 2) 

(1, 5), (5, 1), (2, 4), (4, 2), (3, 3) 
(1,6), (6, 1), (2, 5), (5,2), (3., 4), (4, 3) 

(2,6), (6,2), (3, 5), (5, 3), (4, 4) 
(3,6), (6, 3), (4, 5), '(5,4) 

(4,6), (6, 1), (5, 5) 
(5, 6), (6, 5) 

(6,6) 

(P) 
1/36 
2/36 
3/36 
4/36 
5/36 
6/36 
5/36 
4/36 
3/36 
2/36 
1/36 
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E(X)=I p.x 
x 

1 
= 36 (2 + 6 + 12 + 20 + 30 + 42 + 40 + 36 + 30 + 22 + 12) 

1 
=-(252) = 7 

36 
2 2 E(X)=Ip.x 

x 

1 
= 36 [4 + 18 + 48 + 100 + 180 + 294 + 320 + 324 + 300 

= 1.. (1974) = 1974 = 329 
36 36 6 

Var (X) = E (X2) _ [E (X)f = 329 _ (7)2 = 35 
6 6 

By Chebychev's inequality, for k > 0, we have 
VarX 

P ( I X - fAl ~ k) s ~ 

~ P (IX -71 ~ 3) s 35:6 = ~! 
Actual Probability: 

P (IX -71 ~ 3) = I-P (!X - 71 < 3 
=1-P(4<X<10) 

+ 242 + 1441 

(Taking k = 3) 

= 1- [P (X = 5) + P (X = 6) + P (X = 7) 
P(X=8)+P(X=9IJ 

1 _ 24 1 
= 1 - 36 [4 :> + 6 + 5 + 4J = 1 - 36 = '3 

~xample 6·54. If X is tile number scored in a tllrowof{/ fair die, showtlu/I 
tlte CltebycJlev's inequality gives 

PIIX-fAl>2·51<0·47, 
wltere J.1 is tlte mean of X, while tlte act/llli probability is zero. 

[Kerala lfniv. B.Sc., Oct. 1989] 
Solution. HereX is a random variable which takes the values 1,2, ... ,6,eacb 

with probability 1/6. Hence 

( _ I (') _ I 6 x7 _7... 
E X) - '6 1 + - + ... + 6) -,.. 2 -, 2 

E (X~) - I (1 ~)~ 62) _ I 6 x 7 x 13 _ 2! 
-'6 +-+ ... + --'6 6 -6 

~ , 91 49 35 
.. Var(X) =E(X 4)-IE'(X) 1-=6' -'4= ~2 =2·9167 

For k > 0, ChebYl'hev's inequality gives 
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VarX PI 1 X - E (X) 1 > k ] <-;r 
k 

Choosing k = 2·5, we get 
, .. 2·9167 PI IX-I! I >2·5] <--=0·47 

6·25 
The actual probability is given by 

p = P I I X - 3·51> 2·5 I 

6-111 

= P L X lies outside the Iin:tits (:}·5 - 2'5, 3·5 + 2'5), i.e." (1,6)] 
ButsinceX is the numberon tbe dIce when thrown, it cannot lie' outside the 

limite; of 1 and 6. 

".' P = P (q;) F Q 
Example ~·55. If tire variable Xp aSS1Jme:+ t~le .value 2P- 210gp with prob-

ability 2-P ;.p = 1., 2) ... , examine if th~ law of1arge numbers holds in this case. 

Solution. Putting p = '1', 2, 3, .... , we get 

'-21-2101. 22-2 IDa 2 23- 2101; - . . ... 
I 

as the values of the variables XI, X2, X3 ... respectiveI1. and 

1 1 1 
2' 22 ' 23'''' 

their corresponding probabilities. Therefore, 

E (Xl) = 21 - 2 log I . ~ t 22 - 210g 2 . ~ + ... '\" ; ~ - 2{ogp • 2-~ 
- . 1 p.t 

co 1 
= L 2210gp 

p_1 

Let U = 2210gp, then 

log U = 210gp log 2 = Iqgp . log. 22 = log 4·.logp =.Iogp )g4 

" l' 
.. E(Xk)= L - = 

p_'1 plog4 

wbich is a convergent series. 

1 1 
1 + log4 + log4 + ... 

2' 3 

[ :.' i ..!. is conver~ent if and on,ly if p > 1 1 
fl· I nP 

Tberefore, the mathematical expectation of the variables X J., X2, ... , exists. Thus 'by 
Kbincbin's theorem, tbe law of large numbers bolds in tbis case. 

Exmaple 6'56. L.!t XI.X2, ... , Xn be i.i.d. variables witlr mean J.l and 
variance 0 2 and as n' --. x, 

/'v1 X1 X1~/ P "i,j+ i+ .,. + ;;, n --. c, 

for some con,stant c; (0 :s c:s (0). Find c. [Ddhi Univ. IJ,Sc. (Stat; H,ons.),.!989] 
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Solution. We are giveil E (Xi)'= ~l; Var (Xi) = o~; i = 1,2, ... , n . 

:. E (Xi) = Var,(Xi) + [E (Xi)l~ = (J~ + ~l2 (finit~) ; i = .. 2, ... , n . 

Since E (XJ) is finite; by Khinchines's Theorem WLLN holds for tllt' se· 

'~UCl\n~· xi: of Li.d. r.v.'s so that 

~ 2 ~ P ~ (Xi +X2 + ... +XII)/n -+ E "A;). as.1I ~ 00 

~ (X;+X~+ ... +X~)/II!!. <T~+~~=c, as n-+'X; 

Hence c = (J~ + ~~ . 
Example 6·57. How large (/ sample must be taken in order that the probe 

ability will be at least 0.,95 tha; X, will be lie within 0·5 oJ ~ . j.t is unknown and 
o = 1 . (Delhi lIniv. n.s,:. (MatlIs HelOs.) 1988] 

Solution. Wehave:E(Xn)~~l and Var(Xn~=·<.l2/n 
[ c.t'. § 6'15, = n (6'80)1 

Applying Chcbychev's inl'quality to the r.\'. Xn \\le gl't, for any c > 0 

P[i Xn-E(X;,) l<c] O!: 1- Var0'n) 
c' 

o~ 
P rI Xn - ~ I < cJ.O!: 1 - -, 

n c· 
We \Vanl n so that 

Pll Xn -~t 1<0·5] O!: 0·95 
Compa ring (*) and (**) we get: 

c = 0·5 = 112 and 

1 -.~ = ()'95 ~ 
n 

Hence n O!: 80. 

0 2 
1 --1 = ()'95 and <T = I 

n c" 

~ = 0·05.=..!. ~ n = 80. 
n 20 

... {*) 

... (**) 

(6iven) 

'Example 6·58. (a) Let Xi assume that nllues i and -i with equal prob­
alJilities. Show tlwttlie law oJ large numbers cannot be applied-to the independent 
\'arid/JIes XI, X2, ... , i.e., Xi 'So 

(h) fIX, can Halle only two values witli equal probabilities i U and - i (I, show 
,thm the IIIW of large lIumbers can he applied to the independent mriables 
X • X~ • ... , if <t <~. 

Solution. (a) We have 
P (Xi = i) = L P (X; = - i) = ~ - . - -

E (Xi) = ~ (i) + ~ (- i) = 0; i = 1. 2,3, ... 
. '" .'" 

,/ ':'I ,- ,- .'" 
\l (Xi) ::i E (Xi) ="2 +"2': ," [ '.' E (Xi) =,0 I ... (*) 
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B" = V (XI +X2 + ... + X,,) = V (XI) + V (XZ) + ... + V(X,,) 

= (1 + 22 + ... + n2) = n (n + 1 ~ (2n + 1) ... [From (*)] 

., B; _ 00 as n _ 00. Hence we cannot draw any conclusion whether 
n 

WLLN holds or not,Here, we need to apply further tests. (See Theorem 6·33 page 

'6·104) 

(b) E(Xi)~i~"+(-~")~o 
2 (i")2 (-i"') .aZ 

E (Xi) =---y- + -y- = 1 

V (Xi) = E (XTl -I £ (Xi)l~ = i 2 0. 

n " 
B,,=V(XI+X2+ ... +X,,)= ~ V(Xi)= ~ i 2a 

" 
.=1~U+.2~(I+ ... +22<1= fX2D dx 

o 

I x~"+ I In n2 CJ.+ 1 

= 2(;(+1 0 =2a+l 

[From, Euler Maclaurin's Formula] 

Bn n~ u - I 0 ·t· 2 1 0 I 
.. L=---- I C(- < =>u<-

n 2<1+1 2 

Hence the result 
Example 6·59. Let P'k) be mutually independent and identically dis­

tributed random variables with mean !A and finite variance. If SrI =XI +X2 + ... 
+ X". prove that the law of large numbers d<l'es not hold for the sequence I S" ). 

Solution. Th~ va ria bl<;s now are S Ii S2, ... , S" . 
B" = V (S I + X 2 + ... + SrI) 

= V! XI + (XI + X2) + (XI + X2 + X3) + ... + (XI + X2 + ... , + Xn ) } 

= VlnXI+(n-l)X2+' ... +2Xn-I+X"l . 
J ~ ., 2 

= n- V(XI) + (n - 1 t V (X2) + ... + 2" V(X" '-I) + 1 V (Xn) 

(Covariance terms vanish since variables are independent.) 

Let V (Xi) = <i for all I. 

(Since the variables are identically distributed.) 

B (1 ~ 22 2) : n(n+1)(2n+1) ~ 
n =, + + .. , + n a, + 6 (1 

B" (n+l)(2n+l) ,2' • 2= -,. .(1 _00 as n-.oc 
n 6n 
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Example ','0. Examine whether .tb.e week law of Iprge numbers holds for 
the sequence I Xk i ~f independent random variables defined as follows: 

P [Xk = % 2kl = 2-(2k+ 1) 

P [ Xk = 0 1 :;: 1 - 2- 2k [Delhi Univ. B.Sc. (Maths Hons.), 1988] 
Solution. We ~ave 

E (Xk) = zk 2,,(21. t) + (_ 2k) . 2-(2k+ 1) + 0 x (1- Z-2k) 

= 2-(2k+ 1) (2k _2k) = 0 

E (Xi) = (2k)2 .2-(2k+ 1) + (_ 2k)2 . r (2k+ 1) + 02 x (1 ..., 2- 2k) 

= 22k. T(2k+ 1) + 2kz • 2-(2k+ I) 
r 

=~+~=.1 

.. Var(Xk) =E (Xi)-E(Xk»2 = 1-0=1 

Bn = Var ( i: Xi) = i: Var (Xi) 
; - 1 i. I : 

[ '.' Xi;S (i = 1,2, ... ,11) are independcnt 1 
n 

lim Bn lim! __ '0 
. . n __ :0 n2 n -- 00 n 

Hcnce (Wea k) Law oflarge numbers, holds for the scquel\c~ of indepcndent. 
r.v.'s I Xk I· 

Example ,., I. Let XI, X2, .. , Xn be jointly normal »tith E (Xi) = 0 and 

E (Xt) = 1 fqr all j and Cov (Xi,Xj) = P if Ij -,i I = 1 and =.0\ other.wise. Ex· 
amine if WLLN '{olds for. the seljllence 1 Xn }" ... (*) 

Solution. We have: 

Var (Xi) = (Xl)-[ E (Xi) f = 1, (i = 1,'2, ... ,n). 

f:(Sn)=E (.i: Xi)=O 
,·1 

Var. (Xn) = Var ( :,i: XI) 
,·1 

= ~ Var Xi + 2 ! Cov (X;,.Xj) 
j.l i ~j- 1 

= n + 2 . (n' - 1) r [On using (*)1 
Sinn: X. X~, ... , Xn arc jointly nonna), 

S,,= ! Xi -N(O;~~)where o2=_n+2(n-.f)p>O, 
; _ 1 

prakash
Rectangle

prakash
Rectangle
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Taking Yn = 1 f. Xi = Sn • we have· 
n i=1 n 

=J 

__ 2 { } J y2 
- . r=- Il + 2 (Il - I) p. 2 2 { 2 ( I ) ) 

"'l 2n n + y n + n - p 
o 

00 

< Il + 2 (n -:-..1) p ._2_J 2 -l':12 d 
- 2 .r=- y.e y 

n "'l2n 
o 

~ Oasn~oo 

I, I Yn 2 I .. 1m ElY i ~ 0 
n-+ oo + n 

Hence by Theorem 6·33. WLLN holds for {XII}' i.e .• Sn ~ 0 as n ~ 00. 
II 

6,16. Borel-CantelIi Lemma. (Zero-One Law). Let A .. A2 '" be a 
sequence of events. Let A be the eeht "that an infinite number orAn 'Occur. That 
is 0) e A if 0) e An for an infinite number C?f values of n (but not necessarily 
every n). But the set of such 0) is precisely lim sup An • i.e .• lim An. Thus the 
event A. that an infinite number of All occur is just lim An. Sometimes we are 
interested in the probability that an infinite number of the evellts An occur. 
Often this question is answered by means of the Borel-Cantelli lemma or its 
converse. 

Theorem 6,34. (Borel-Cantelli Lemma). Let AI.,A2 .... be a sequence of 
events 011 the probability space (S. B. P) and let A = lim All. 

00 

if L P (All) < 00. then P (A) = 0: 
11=1 

In other words, this states that if L P(An) converges then with probability 
one, only a finite number of AI' A2 .... can occur. 

Proof. Since A = lim An = n U Am 
n = I lII=n 

00 

we have A C U Am' for every 11. 
m=n 

Thus for each n. 
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P (A) ~ L. P(Am) 

m=n .. .. 
Since L. P(An) is convergent (given). L. .P (Am). being the remainder 

11= I m=/I 

term of a convergent series. tends to zero as 11 ~ 00, 
o. 

P (A) ~ L. P (Am) ~ 0 as n ~ 00. 
m=n 

Thus P (A) = 0 as required. 
The result just proved does not require events A .. A2 • ... considered to be 

independent. For the converse result it is necessary to make this further 
assumption. 

Theorem 6,35. Borel-CanteIIi Lemma (Converse). Let AI. A2• ,'" be 
illdepelldelll ev~nts 011 (S. B, Pl. A equal to lim An. .. . , 

If L. P (An) = 00. thell P (A) = I.' 
11=1 

Proof. Writing. in usual notation. An for the complement.s - A" of Am we 
have for any III, II (Ill > II). 

111-

(I Ak C (I Ak 
k=1I k=1I 

P ( n Ak) ~ P ( A Ai.) 
k=n k=" 

= n P(Ak). 
k=n 

because of the fact that if (An. AlIi' I •.. ". Am) are independent events. so are (An' 

A"I+-I,' .... Alii)' 

Hence 

Since 

III 

~ n e-P(Ak, 
k=1I 

11/ 

[... 1 - x ~ e-X for x ~ 0) 

- n P(Akl 
=ek=n 'VIII 

00 III 

~ P(Ak) = 00. L. P (A k) ~ 00 as ,III ~ 00 

k=:1 k=" 

- f P(Akl 
and hence e h. 'V 111 ~ 0 as m ~ 00, 

P ( n Ak) =0 
k=n 

... (*) 
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00 00 

But A = n UA k 
n·= I k=n 

00 

A = U n Ak 
n=lk=n 

(De-M"organ's Law) 

=> P {A") s f J> (n Ak) = 0 
n = 1 k = /I 

[From (*)] 

Hence P(A) = .} - P (A) = I, as required. 

If A .. A2 • ... are independent events it follows from Theorems 6·34 and 
6·35 that the probability that an infinite number of them occur is either zero 

00 00 

(when L P (An) < ~) or one .[when L P (An) = 00]. This statement is a 
/1=1 n=L 

special case of so-cailed "Zero one law" which we now state. 

Theroem 6'36. (Zero Olle Law): If A .. A' 2, ... are independellt alld if E 
belong.f to the CJ-field generated by the ciass (An> An + ..... ) for every n. then 
P (E) is zero or olle. 

ExampJ'e 6~62. What is the probability fllat in a sequence of Bernoulli 
trials with probability of success p for each trial. the pattei'll SFS appears 
illfillitely often ? . 

Solution. Let Ak be the event that the trial number k. K + I. k + 2 produce 
the sequence SFS (k = 0, 1.2 .... ). The events Ak are not mutually independent 
but the sequence AI' A4, A7• A 10, ••• contains only mutually independent events 
(since no two depend on the outcome ofthe same trials). 

Pk = P (Ak) = P (SFS) = p2 q, (q = 1 - p) 
is independent of k, and hence the series 

PI + P4 + P7 + ... ,diverges 

Hence by B.C.T. (converse) the 'pattern SFS appears infinitely often with 
probability one. 

Example 6·63. A bag colltains Olle black ball and, .white balls. A ball is 
drawn at ralldom.lfa white ball is drawn, it is returned to the bag together with 
an additional white ball. If th,e blac,k ball is drawlI. it alo{le is returned to the 
bag. 

Let An denote the event that the black ball is lIof {irawn ill the first II trials. 
Discuss the converse to Borel-Cantelli Lemma with reference to evellts A", 

Solution. All = The event that ~lackball is not drawn in the first II trials . 

... (*) 

= The event that ,each of the first. II trials r.esulted: in the 
draw of a white bqll,. 

~ P (An) = P (E1'(\ E2 1'\ ... 1'\ ~/I)' 

where E; is-the event of drawing ,a whit\(' ball' in the ith trial. 

:. P(A,,) = P (Ei) P'(E2 lEI" .. P (£3 lEI 1'\ E2) .... P(En Ie, 1'\ E2 .... 1'\ En - ,) 
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m m+l m+n-l m 
=--x--x ... x =--
, m+l m+2 m+n m+n 

(Since if first ball 'drawn is white it is returned together with an additional 
"wliite ball, i.e., for the seconod draw the box contains 1 b, m + 1 W balls and 

•• P (E21 EI) = m + 21 ,and so on. 
m+ 

=m[~1 +~2+·~3+···} m+ m+ m+ 

... (**) 

But >~ ! is div.erge,nt: ( ... ~ .! is 'conve~ent, iff p> 1 ) 
n'''l n n~ln" 

and ~ 1 . fi . 
~ - IS Imte, 

II-I n 
RJI.s. of (**) is di"ergent. 

GO 

Hence I P (An) .. 00 

n-I 
From the definition of An in (*) it is obvious that An l . 
.. A = Urn An = lim supAn = cP 

n n 

P (A) = P (cp) - 0 

,This result is inconsisteni with converse of Borel-CanteI1i Lemma, the reason 
being that the events An (n =1, 2, ... ) considered here are not indepelUienl, 

m 
P(Aj nAJ') .. P(Aj) .. -. _P(A;)P(Aj), 

m + I ' 

since for (j > i) Aj C Aj as An ~ 

EXERCISE' (d) 

1. 'State and prove Chebychev's inequality. 
Z. (a) A random variableX' has a mean value of 5 and variance of 3. 

(i) What is the least value of Prob [ I X-51 < 3] ? 
(ii) What value of h guarantees that Prob [ I X-51 <·h] :t 0·99 ? 
(iii) What is the least value'of Prob ( I X-51 < 7·5) ? 
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(b) A random variable X takes the values -1, 1, 3, ~ witiA associated 
probabilities 1/6, 1/6, 1/6 a"d 11.2. Find by direct computation P t I X - 3 I ~ 1) • 
find an upper bound to this probability by applying Chebychev's inequality. 

(c) if X denote the,sum of the num1;>ers obtained when two dice are thrown, 
use Chebychev's inequality to obtain an upper bound for P II X- 71 > 4 } . Com­
pare this with the actualy probability. 

3. (a) An unbl!ised coin is tossed 100 times. Show that the probability that 
Ibe number of heads will be belween 30 and 70 is greater than 0·93 . 

(0) Within what limits will the number of heads lie, with 95 p.c. probability, 
in 1000 tosses of a coin which is praclically unbised.? 

(c) A symmetric die is thrown 720 ti~es. Use Chebychev's inequality to 
find the lower bound for the probability of getting 100 to 140 'sixes. 

(d) Use Chebychev's inequality to determine how many' times a .fair coin 
must be tossed in order that the probability will be. at least 0·95 th.at the ratio of the 
number of heads 10 t,he {lum~r qf tosses will be between 0'45 and 0·55 . 

[Delhi Univ; B.~c. (Stat. Hons.), .988] 
4. (0) If you wish to lfstimate the proportiov Qf engineers and scientists 

wbo have studied probability theory a nd you wish ¥our estimate to be correct withip 
2% with probability 0·95 or more, how large a sample would you take (i) if you 
bave no idea what tlie true proportion is, (ii) jf you are confident that the true 
proportion is less tha" 0·2 ? [Burdwan Univ. O;J'sc.:(Hons.), 1992] 

Hint. (i) E = 2% or 0·02 

Jii) 

P [.I{;'-p I <0'02I'~ 1 ___ l_ ",,0·95 
4n (0,02)2 

1 
0·05 = .. 2 ::> n = 12,500 

4n (0'02) 

. P(1-p) 
p<:::0'2,P[ l.f".,..p ISE I ~ 1-- ~ 

nE 

. 0'16 
Now P (l-p) < 0'16, therefore 1--2 = 0·95 

nE 

Hence n = 50 x 50 x 20 x ·16 = 8000 

(0) 'Let the sample mean of a random variable X ?e X s.d.s. Then if at lea~e 
99 per cent of the values of X fall within K standard deviations from the mean, 
lindK. 

S. (a) If X is a r.v. such tbat E (X) oi,3 and E (X2) = 13, use Chebychev's 
inequality to determine a lower bound for P (- 2 < X < 8) . ' 

[Delh~ Vn~v. Q.sc. (Maths Hons.), 1990] 

Bint. J..lx - 3, o~ = 4 ~ Ox = 2. Chebycnev's inequality gives 

P[IX-31<2kI~I-i/~ ~ P(3-2K<X<3+2k)~I-lIk2 
Now taking k" 2·5, we get.P (- 2 < X < 8) ~ 21/25 . 
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(b) State and prove Chebychev's inequalit¥. Use it to prove that it! 2000 
throws with a coin the probability that the nu"lber o.f heads lies between <j00 and 
1100 is at least 19/20. [Oelhi'Univ. 8.S·c. (Mnths 80ns.).1989] 

6. (a) A random variable X has the density function e- r for xC!: O. . 
Show that Chebych<;v's inequality givel' p [I X - 1'1> 2)< 114 and show ,that the 
'tctual probability is e- '3 • 

(b) LetX have the p.d.f.: 

[(x) = 2~ ,_.-13 <x<-13 

= 0, elseWhere. 

Find thCilct~ilJ,p,robability P [ IX ~ IAI C!: % (J I and c9 III pa re.it with the.upper 

bound obtained by Chebychev's inequality. 

7. If X has tbe distributiQli with p.d.f. 

[~r) = e-x.~ 0 sx < oc, 
use Chebychev's inequaiity to obtaIn a lowcr bound to the prQbability (-,I' the 
inequality -, I s X s 3, and compare it with actual value. 

k. Explain the concept of "convergence In probability"'. 

If XI,X2, ... ,Xn' by r.v.s. }vit~ mcall'; 1A1, !-l2, ''', IAn and stilndard dcy,iations 
01, <'~2, ... , o'! -and if On -+ 0 a~ n --t 0:, show that Xn -'!in converge!\ ~Q zero 
stochasticallv. 

Hence'show that if m is the number of successes in n inoeperidcnt 'trials, the 
probability of success at .the ith' tr~al being Pi th~l\llI!" cQnverges in probability 
to (PI + P2 + .... +Pn)/n. 

9. (il) IfXn takes the values 1 and 0 with corresponding probabiliticsPn and 
1 - pn , examine whetber tbe weak law of largc numbers can be applicd to the 
sequence 1 Xn l where tbe variables {(n , n = 1,2,3, ... are indepcndent. 

(b) I Xi} i = 1,2, ... is a scqucnce of independent' random ~ariables with 

expccted value of Xi cqual to mi and varj~n(:e of Xi, equal to fJl . If"; i 07 
n- i-I 

tends to zero as n tcnds.o infinity ~sho\v t~l\t the weak law of large numbers bolds 

good to tbe.sequence,· [Bombay ~niv .. 8.Sc •. (Stat.), 1992) 
10. FXf:, k = 1,2, ... 'is a sequence o·fipdependent.random variables each 

taking the values -1, 0, 1. Given tbat 

( 1. '. . • . ~ . 2 P Xk = I) = k = P (Xk = -1), P \Xk = 0) = 1 -k' 

E~amine if the raw of large numocrS bolds for this sequence. 

tl. (a) Derive Cbebycbev's inequality and stow bow it leads to the weak 
law of large numbers. Mel\tiQn.some important p3rticular cases wherein the weak 
law of large numbers bolds good.' 
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(b) State and prove the weak law of large numbers. LJeduce as a <;orollary 
Bernoulli theorem and comment on its applications. 

(c) Examine whether the weak law of large numbers holds good for the 
sequence Xn of independent random variables where 

;Xn \ 
l J 

P ( Xn ~ In ) ~ ~, P ( Xn = - In ) = ~ 
(d) (Xn l is a sequence of independent random variables such that 

P ( X" = In ) = pn, P ( Xn = 1 + In ) = 1 - p" 

Examine whetherthe wl'ak lawortarge numbers is applicable to the sequence 

(e) Irx is a random variable and E (X2) < 00,', then prove that 

I I ,1 ' P \ I X '~II is', b (X~), for all a> 0 . 
a-

Use Chebyshev's inequality to sho';v that for n > 36., the'probability that in 

n throws of a fair die,'the number of sixes lies between i n ~.fii. and in + rn is 

at least 31136. [Calcutta Univ. B.Sc. (Maths Hons.), 1991] 
12. Let \ Xn l be a sequence of mutually independent random variables such 

X 1 · h "'~b'I' 1 - 2- n that n = ~ WIt ProUd I Ity --2-

and, Xn = ~ 2- n with probability Tn-I 

Examine whether the weak la\V of large numbers can be al?plied to the 
sequence I Xn l· -

13. Examine whether the law of large numbers holds for the sequence 

(Xt) of independent random variables defined by P (Xk = ~ k- 1/2) = ~ . 

14. (a) State Khinchin's th'eorem. 
(l?) Let XI.X2.X~, ... be a sequence of independent and identically dis­

tributed r.v.'s, each unifoml on [0, I) . For the geometric mean 

Gn = (XI X2 ... Xn)l~n 

show that Gn !!. c for I'Qme (il\ite number c. Find c. 

Hint. X -V[O, 1], let Y =-logX; 

Then F.,(y)=l'-e-);.~ fy(y)=e-·';y~O. 

:. Yi = -JogXi , (i = 1,2, "', n) arc i.i.d. r.v'.'s. with E (Yi) = 1 . 
By Khinch'in{s theorem 

i Yn1n=-( i 10gX;ln).=-IOgGn!!. EYi=l. ~ Gn!!. e-I=c. 
i-I i-I 

(c) ,LetXt:X2, ... be Li.d. r,vJs-with common p.d.L 
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1+6 f (x) .. x2 + 6 ,x ~ 1, 6 > Q 

.. 0, X < 1 
Discuss ifWLL~ holds for the sequence I Xn } . 
Hint. EXi" (1 + 6)/6 < 00 (finite). Hence by Khinchin's theorem 

Sn/n = IXi/n ! (1 + 6)/6 as n -+ 00 • 

. l' . n 

IS. Let ( Xn I be any sequence of r.v. 's Write Yn = - I Xi. 
n i-I 

Prove that a necessary and sufficient condition for the sequence I Xn I to 
satisfy the weak law of la rge 11uil}bers is that 

E[ Y; ~] -+ as n-oo. 
1 + Yn 

Hint. See Remark to Theorem 6·33' . 
16. State and prove Weak Law of Large Number.;, Deter~ine whether it 

holds for the following sequence of independent random variables: 

P (Xn = + I) = (1 ~ 2- n)/2 = P (Xn = - I) 

[Delhi Univ. B.Sc. (Maths Hons.j, 1989] 
17. LetXI, X2, _ .. be Li.d. standard Cauchy variates. Show tliin the WLLN 

does not hold for the sequence IXn I. 
HinJ. Use Theorem 6·33 . 

with 

. (. 11 ~ (. Si ~ r(. (S;,,)'1 ) 
Ell + 'y~ J.- E \,,2 + S~)= , \1 + (S;,,)2 

00 x2 1 1 
=f-'--"'dx 

_",.1 + x2 l't 1 + x,2 

[ 
Sn XI +X2'+ .. , +Xn . . : - = IS also a standard Cauchy 
n n 

variate. See . Remark 4, § 8-9'1.1 

'" 
= ~ f sin2 0 de = .! (x = tan 0) 

l't 0 2 

[ y:2 1 => n ~ 00 E 1 +ny{ -+ 0 => WLLN does not hold for I Xn}. 

18. (0) Examine if the WLLN holds for the se<Juence I Xn} of i.i.d. r.v.'s 

p[X;=·(-1l- 1 .k]= ?6 2; k=I,2,3, ... ,i=I,2,3, ... 
l't-k 

[Delhi Univ. B.Sc. (Maths ~Hons.), 1990] 



('.' The series in-bra~~et IS convergent ~y ~ibnitz test for alternating series]. 
_ Hence by Khinchin's theorem, WLLN holds for the sequence {Xi) of Li.d. 

r.v.'S. 
(b) The r.v.'s X .. X2, •.. , Xn have equal expectations and finite variation. Is 

the weak law of large numbers applicable to this sequence if all the co-variances 
ai-j are negative? [Delhi Univ. B.Sc. O\laths Hons.), 1987] 

8,,_ Var(XI+X2+ ... +Xn)_l..r ~ f 2 ~ --1 
2 - 2 - 2 .. 0, + .. O'J 

n n n L i-l i-<j-' 
Hint. 

< ~ ( i: ot) -> 0 as n~ - 00 

n i- 1 ( '.' ot are finite) 
Hence WLLN holds. 
19. State and prove Borel Cantelli Lemma. 
In a sequencet>f.Bernoulli trials !etA" be the event that a run of nconsecutive 

~uccesses occurs \>etween the Z"th and 2"" lth trails. Show that if p ~ ~ , there is 

probability one that infinitely many A" occur; if p < ~, then wjth probability one 

only tinitely many An occ~r. 
" 00 

20. LetX',X2 •... bcindependent-r.v/s_andSn = l: Xk.If l: 02X.con-
k.' n-l 

verges, prove tbl!t the series l: (.¥n - E ~¥n) converges i!l probability. 

If ~ i ii Xi - 0, then prove thlll 
b n~ .Ie - 1 

!~n - ESn p 0 

bn -' 
Deduce G:hcbyt:hrv's inequality. 
"17. I)robahility Generating Function 

Definition. If ao, aJ, (1~ •• ,. is a seqll'ence of real nllmbers and if' 
00 

2 1 
A(s) = (/0 + o} S + (I~ S + ... = _ l: (Ii S 

I • l.O 

... (6'84) 

converges in some interval - So < s < ~o, when. tlie sequence is it/finite then tbe 
function A(s) is known as the generatmgfunctlOn oltlle sequeflce {ail· 
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Tbe variable s bas no significance of its own and is introduced to identify aj 

as tbe co-efficient of s' in the expansion Of A(s). If the sequence {ai} is bounded, 
then the comparison with the geometric series shows that A(s) converges at least 
for lsi < 1. 

In the particular case when aj is the probability that an integral valued discrete 
variable X lakes the value ~ 

i.e., aj" Pi = P (X" i); i - 0, 1, 2, ... witb Ipj = 1, then tbe proba bilily 
generating function, abbreviated as p.g.f., ofr.v. X is defined as : 

co 

P(s)=E(sx)_ I sX. p" ... (6·85) 
x-o 

Remarks., 1. Obvjqusly we have P (1):;0 I px -. 1. 
x 

Thus a function P(s) defined in (6'85) is a p.g.f. iff Px ~ 0 'V x and 
I px= 1 
x 

2. Relation between p.g.f. and m.g.f. 

Taking s = e' in (6'85), we get 
P (e') = E (l") =Mx (t). . .. (6·86) 

i.e., from p.g.f. we can obtain m.g.f. on replacing s .bye'. 

3. Bivariate probability generating fllnction. The joint p.g.f. of two random 
varia bJesXl and X2 is a function of two variables SI and S2 defined by : 

.PXI,'X2 '(S1; S2) = E (SI XI, • 52X2) = I I 'SIX1 S2,X2 • p (Xl, X2) ••• (6·87) 
XI Xl 

Marginal p.g.f.'s can be obtained from (6'87) as given below .. 

PXl (SI) = E (SIX1 ) - PXJ,X2 (SI, 1) ; PXl (S2)· E (S2%2 ).= PXJ,X2 (1, S2) ••• (6'88) 
4. Two r.v.'s are independent. if and o~Jy if: 

PXI.X2 (SI, S2) a PXI (SI) • PXz (S2). ...(6·89) 
The above concepts can be generalised to n random variables 
Theorem 6· 37. If X is a random variable which assumes only integral vallles 

with probability distribution 

P (X = k) = Pk; '; - 0, 1, 2, ... and P (X> k) .. qk, k ~ 0 
k 

so that qk = Pk + 1 + Pk + 2 + ..... 1 - I pj ,and two generating jjJnctions are 
; - 0 

P (s) .. po + PI S + P2 i + , .. 

Q is) = qo + ql s + q2 s2 + ... 

then for - 1 < s < ,1, Q ,(s).= 1 ~ ~ ~s) ... (6·90) 

Proof. We have 
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s Q(s) - Q (s) + qo - P (5)'- Po 

Q (s) = (po + qo) -P (s) 
(l-s) 

But po + qo = po + PI +'P2 + '" = 1 
Henq! tbe·theorem. 

'·125 

Theorem ',38. Fora random variableX, which ossumesonly integral values, 
the e>.:pec.tation E (X) can be calClliated either fro11! the probability 
distribution. P (X = i) = Pi or in terms of * 

qk ~ Pk + 1 + Pk + 2 + '" 
'" 00 

Titus E (X) = I ip; = I qk 
i-I k-O 

In terms of the gererating functions 

Proof. 

We knowtbat 

E (X) = P '(1) = Q'(l) 
co 

p (s) = I Pk S k • If E (X) exists, then 
k .. O 

'" 

'" '" P'(s)= l: kPkSk-t => P'(l)= I kPk 
k:.1 k-f 

E (..\') = P , (1) 

Q'(s) [1 - sl = l"'P (s) 
Differ.c~ltiatipg.l)()th'sidJ!s w.r.t. s" we:~et 

... (6'91) 

Q' (s)[f -,sJ - Q (s) = - P' (s) ..• (*) 
.. Q(1)-P'(1) 
Hence E; (X) = P , (1) = Q (1) 

2 2 • 
Theorem ',39. If E (X ) = I k Pk exists, then 

E (X 2) = P" (1) + P , (1) = 2 Q ' (0 + Q (1) 

o'nd hence V (X) =.2 Q' (1) + Q 0) - {Q (In2 ... p" (1) +P' (1) - {P' (1)}2 

.., 
Proof. P(s)= IpkSk. P'(s)= IkpkS·k-1 

k-O 

... (6'92) 
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s P '(s) - 1: k p".s" • DiJfe!entiati~g again, we get 
P' (s) + sP" (s) = 1: kl.p"S"-1 

k2 

P' (i) + P" (1) .. ± kl Pic'" E (X 2) •.. (**) 
[Differentiating (*) againl Q" (s) [1 - s1 - 2 Q' (s) =.-.P" (s) 

Putting s .. 1, we get 
2 Q' (1) .. P" (1). Substituting' in (**), we get 

E (X 2) - P' (1) + P!' (1) .. Q .(1) + 2,Q' (1) 

Var(X) .. E (X 2) - {E (X)}2 ='1''' (1) + P' U) - {p' {1)}2 

- 2 Q' ,(1) + Q (1) - {Q (1)}2 .. 
',1',1. Probability Generating function for tbe sum of independent 

variables (Convolutions). If X and Yare non-negative independent, inlegral 
valued discrete random variables with respective probability generatiilg functions . . 

OD 

P(s)= 1: p"s", p,,=P(X=k) 
k-O 

R (s) - 1: rIc s Ie, rIc = P (Y - ~), 
k-O 

it is possible to dedqce. the probability g~neratif!g Junction for th~ variable 
Z .. X + Y, which is also clearly integral valued, in terms of P (s) and Q (s). 

Let w" denote·P (Z .. k). The event Z - k is the union of the following 
mutually exc!usive events, 

(X ... 0 n Y - k), (X '"' 1 n Y = k - 1), (X .. 2 n Y = k - 2), ... , (X'"' k n y .. 0) 
and • 
since the variatile~ X ajld Y are indepe~dent, each joint probability is the product 
of ·the appropriate individual probabilities. Therefore the distribution w" '"' P 
(Z .. k) is· given by 

w" .. po rIc + P1 r"-1 + P2 rIc _ 2 + ••• + PIc ro for 'all' integral k ~ 0 

The new sequence of probabilities fwd defined in tenus of'the sequences 
{Pi} and {rd is called the convolution of these sequences and is denoted by 

{wd" {Pi} * {rIc} •.. (6·93) 

Theorem ',40. 
~~(~)-E[X(X-l)w .. (X-r+l)]·=[. a',; P(S)] 

as s-1 

Proof. Differentiating (6'85)-partially r times w:r.t. s, we get' 
a' P (s) 
__ a ~ x(x-l)(x-2) .... (x-r+l)sX-'Px as' - ~ • 

x 
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[ a' ~~) 1 .:2 x (x. -1)(x- 2) .,. (x-r + I)Pr a ~'(,.). 
s-1 x 

Theorem 6·41. If {Pk} and {rk} are the sequences with the generating 
functions p(s), R(s) and {Wk} is t~ir convolution, then W (s) - P (s) R (~)J where 
W (s) - I Wk skis the generating function of the sum X + Y. 

Proof.' Since the co-efficient of s" In the product P (s) R (5) >is 

Po r~ + PJ rk - I + . ~ ~ + Pk - 1 rl + Pk ro - Wk, 

it follows that the probability genefllting function for Z, namely, 
, CD 

JV (S).. I Wi skis equalto P (s) 8 (s). 
k- 0 . 

Cor. If Xl, X2: ... , X" are independent integral-valued discrete variables with 
respective probability generating functions PI(S) , P2(S), ... , P,,(s) and if Z -Xl 
+ X2 + ... + X", the probability generating function for Z is given by 

n 

Pz (s) - II Pi (s) 
i-I 

In particular, wben XI, X2, ... , X" all have a common distribution and hence 
common probability generating function P (s), we have 

, \ 

Pz (s) = [P (5)]" 

Example 6·64. Can p(s) ~ 2/(1 + s) be tile p.g.f. of a r.v. X? Give reasons. 
Solution. We bave P(1) - 212 .. 1. 

CD 

Also P(s)= I p,<:' = 2 (1 +S)~I 
r-O' 

CD 

= 2 I (- 1)' . S' 

r-O 

=> p, D 2(-1)' 

H ~+l 0 . . ence p <, r.e., Pt.P3,pS, '" are negative. 
Since some co-efficient in (*) are negative, P (s) cannot be the p.g.f. ofa 

r.v.X. 
Example 6·65. Ifp (s). is tile pr-obability generating function for X, find the 

generating function for (X - a )/b. 

Solution. P (s) = E (s X) 

P.G.F. for X; a = E (s (x- aVb) .. e- alb • ~ (s xlb) 
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:or S-a//I·. ~ [(Sllbtl = S-tJlb P (sl/~ 
Example 6:66': /tet X be a random variable' with generating function 

P (s). Find/he genel'flt;ngfunct;on of (a)X + 1 (b) U'. 

"" 
Solutiqll. fa) P. (s) = 1: Pk S k "" "E (~oX) 

k-O 
:. P'.G.H. of X t 1 = E;,(s x + 1) =.s .IE ~x) = s, P(s) 
(b) P.G:F. of 2X =/E (s '2X) ='£'-[(s 2rt= P(s 2) 
Example 6·67. Find tire generlitipg/!unctioil..of -(a) P(X ~ n), ~b) P (X < n), 

and (c) P(X = 211).. [Delhi Univ. M.Sc. (O .. R')i 19891 

Solution. (a) Let X b'e an int'rgral valued random variable with the 
probability distribution 

P (X.= n) c'R" and I? (X, ~ n) = q".. 
so that q,," po. + P1 + P.2 + .... +.p",; n,= 0, 1,2, .. \ 

q" - q" - r.zp", n ~ 1 
co 

1: q.s"- 1: q"_ls"" 1: P"s" 
n-I ,,-I n-)' 

Q.(s) - qo - s Q(s) .. P'(s) - po 
Q (5) = .p (s) + qo - Po'. P .(s) 

1-s l-s 
(b) Let q,,=P(X<n)=po+P1+ ••• +P,,-.1,q,,-q,,-1-p,,-1, n~.2 

Hence 

~ co 'co co 

~ q. s·" - ~ q,,_1 s".. :t p" -1 s" - sIp" s f.I 
n-2 n-2 ,,-2 ,,-I' 

Q (s) - q1 S - sQ(s) ... sP(s) - spo 

Q (s) [1- sl - sp(s) -spo+ q1 S 
Q (s) = sP(s) 

l-s 

{": qo =01 
[ \: q1 ... po I 

(c) Let p(x. 211) ... (n,. 
co 

Q(s). 1: P2llS"=PO+P2S+P4S2+.,. 
or-O 

2Q (s). .. 2po + 2P2 s + 2P4 s 2 + .. , 
(p . V2 312 2 ) 

- 0'+ P1 s +. P2 S ""'P3 S + P4 s + ... 
, 1(2· ,1,12; + (Po - P1 S + P2 s - P3 S + ... ) 

co • 00 

~. ~ -Pk (S 112)k + 1: PJ: (_' S 1'12)k 

k-O k-O 

a P (S 112) + P (_ S 112) 

Q (S),. P (S V2)+ P (S -Vi) 
2 



Example "'8. Let {Xk} be mutually independent, eacn assuming the values 

o 1,2, ... , a-I with probability ! . 
, • (I 

Let S,,:a Xl + X2 + ; .. + X". Show that the generatmg function of S" is 

[ 1 "]" P(~) - a (; ~ s) 

ant/hence 

P(S".J1.1. i (_It+j+tIY(n)(.-~ ') 
a"v_O v J-av 

"..;(Rjtjasthalj Univ. M.Sc.199Z) 

Solutiop. As the (Xk} are, mutua))y. ,inde,Den~enf, vanables and each Xi 

assumes the same val~es 0, 1, 2, ... , a - t wit\l. the prob&bililY.-~' therefore each 

will have the same gen~rati(lg function and the generating function of SrI will be 
the nth convolution of generating function 0(%1. 'Now 

(1-1' (I 

'" k' 1 0 1 a-I l-s 
Pxds) '"' 1: pkS .. - [s + s + ... T S ' ]l= (1 ) 

k~O a a -s 

.. Ps" (s) '"' ( a ~; (S) r , 
Now the probability SrI '"' j is the co-~fficient of i in 

.!(1-s(l)"(I-sf" 
, a" 

If we take (v + l)th term from (1 - s a)", then it w!~ have the power of s 

equivalent to s iN and hence to get the power of's' as j, we, must 'take tl.; term from 

(1 - sf" having the power ofs as j - avo I 

.. Required prpbability , 

• .! i (n)(_l t (.-n )(-.1Y-(I\I 

a"v_O v l- av . 

'''1. ~i (!.. '11)j,,.. y -'tIY'(' n ~ ( : - n° ) 
a"v_O v)-j-av" 

.1. i ,(""l)j+!+~J(~)(,-n ) 
a"v_O v ~-.av 

[ ... (71)2aY=1 .=> (_.1)tIY_(_lftIY] 

Example, ',69. AI r.,;,ndom .\!.ar.i{l,b,I( X q,~s..lIml!$ the. vatu~ AI, A2,' .... ,with; 
prpbabilities U1, U2, .. ~, show t(lqt 

P', k • .1. ·i' u,' e. -).j ('l.)k., A' > 0 Iu'" 1 . t·" 0 :'1 1.' 1. 
• J - ! 
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is f;l probabi!ity distribpt,ion. Find its ~enerating function and prove that its,mean 
;equals E (X) and variance equals V (X) + E (X). 

Solution. 

00 00[100 ] I Pk = I ki I Uj e-A.i O .. if 
k-O k-O 'j-O 

00 [ '00 ] 00 - I Uj e-A.j I (Al/k! ',= I Uj e-k; ii 
j-O k-O ' j-O 

00 
.. I Uj =:1. 

j-O ' -

Hence Pk re"nesenis a prba6i1ity'distribution. 
Let P(s) be the generatiQg function of Pk, then 

Thus' 

P(S) = i puk = i [k\ i ,.uje~~, CMk sk] 
k-O /C-o' j-O -

P'(I)- I Uj Af:i:E(X) 
j-O 

co 

P " (s) = I "uJ" [} l '+-'ii./ (s---.t) + ... J. 
j-O 

co 

P" (1) = I Aj2 Uj = E (X 2) 
j- 0 

'(Fubini's Theorem) 
-.' -

, . 

V (Pk):= pit (1) i; P' (1)' - {P' (1)}2 = E (X 2) + E (Xl - {E (X)}2 
-E(X)+V(X) 

EXERCISE 6'(e) 

1. (a) Define !be probability generating function (p.g.f.) of a random variable. 
(Ii) X is a positive integral valued variable, sucb tbat P (X = n) '"' pn, 

n .. 0,1,2, ... Define the probability generating function G (s) and the moment 

generatiug function M (t) for X and show that, M (t):G (e'). Hence or otberwise 
prove tbat 

E(X) - G' (1), va; (X) - G" (1) + G' (1) - [G' (1)f 

-



> 
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(t) If X and Yare non-Ifegative integral valued independent random variables 
with P (s) and Q (s) as their probability .gen~rati'ng functions, 'Show that their sum 
X + Y has the, p.g.f. P (s) Q (s). 

2. A test of the st~ength of a wire consists of-bending and unbending until'it 
breaks. Consideri!lg be~ding,and unbending as two operations, let X denote the 
random vlJriable corresponding to the·number of operations necessary to bWltk the 

wire. If P (X = r) = (1 - p) 1'-1; r 0= 1, 2, 3, ... and 0 < P < 1, find the probability 
generating function ofX. 

3. Define the generating function A(s) of .the seq!lence {aj}. Let aj be the 
number of ways in which the scorej can be obtaine~ by throwing a die any number 
oftime~. Show that the g.f. of {aj} is (1 - s _ S 2 _ s:3 _ S 4 ,.,. S S _ S 6r I - 1. 

4. Four tickets are drawn, on~ at a time 'wit~ ~p,lacement, from a set 9f ten 
tickets numbered respectively 1, 2, 3, .:., 10, iii such a way that ai each d'raw each 
ticket is equally likely to be selected. Wllat 'is the probability tbat {he total of the 
numbers on the four drawn tickets is '201 

Hint. If X; denotes the riumber on the ith tiCket· then, for i = 1, 2, 3, 4, we 
observe that X; is an integral-valued variate with possible values 1, 2, 3, ... , to, 
each having associated probability 1/10. Here eachX; 'has 

, 1 1 2 1 10 '1 10 - I 
g.f. = to s:t'lO s 1: •• : + 10 s - to s (1.,..05 )(1- s) .. 

and, since the X; 's are indepehdent;it follows that the total of the numbers on tlie 
drawn tickets I 

Z -XI +X2 +X3 tX4 
has probability generating function 

{ I 10 -1 }4 1 4 10 4 _ -4 
10s(I-~ )·(I,..s) '''i04~'<t.'''''S')'(1-s>. 

The requfred proba bility is the co-effici~nt 'Of ~16 in 

1 UM -4 63 ' 
104 (1 - S J (1 - s) .. 10~000 " . 

5. Findthegeneratingfunetionsof (a)P'(X~'n): (b)P(X>n+l). 
6. (a) Obtain the generating function of q~, !the probability tb8i in k tosses 

of an idea] coin, no run of three beads occurs. . , 

(b)" LetX be a non-~~~tive integIll-]-Va~u~ ~ndo~ v~riable'witb proba~litYI 

generatingfunctionp(s) - I PlIs",After.obseiving'X, eonductXbiiionUan'ria]s' 
n-O 

with proba bility P of success, and let y' denote the corresponding resulting number 
of successes. . , ,_. _ 

Detennine (i) the probability gen~rating t'U~ciion 'of rand. (ii) probabiliiy 
generating functio~ of X given tliat y' = x. " , ... ' . 
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7. In a sequence of Bernoulli. trials, .Iet U" be tbe probability .. b~t tile first 
combinaiion SF occurs at trials number (n - 1) and ·n. 

Find tbe generati.ng-f!l.nction;, mean'a nd .v.ariapce. 
Hint. lh ·,P(SF) • pq, U3 = p(SSF..) + P(FSF) '='pqi(P + q) 

U~ •. (SSSF) + P(FSSF) + P(FFSF) ... pq(p2 +'JXi + l) 
·,,-2 

In general' u." -pi{ ,I l4' -2 - k 
. Ic-O-

,.pt/'-1 [-1+f+'(f)2 + .... +(fr-2 ] 
.q, q q 

....n-1_ ,,-1 
'.pq.'1 P. J 

.q-p ,. 
8. (0) In a sequence of .Bernoulli trials, let U" be tbe probability of an even 

number of successes. Pr,ovi tbe recursion fonnul~ 
Un· qU,,-l + (1- U,,-J)p 

,_ Fro~ t)p's 4erivp1he generat,iog function an~ b,ence tbe expliCit, fomlU,la for 
u.n. . 

(1#:1\ series Qf independent B~rnoul!i trjals is perfonne~ ~"t"l. a.~.uni~terTUpted 
run of r:su('..cesses is obtained for the f'irst time wbere r is a 'given positive integer. 
Assumiqg-tbat tbe probabili!y of a success in any trhtl is'p,. 1 - q, sbow tbat tbe 
p'robability_ genera~ing function of tbe ~umber of \riafs is 

F (s) • p's ' (~ - ps) 
1-s+qp'so·i. 

I 

ADDITIONAL 'EXERCISES ON CHPATER VI . . 
1.- (0) A borizontal,line oflength '5' uni~ is divided into two,parts . .Ifth,e first 

part is otlengtbX, find'E(X) ~~~ ElXf5 -X») .. 
(b) Show that 

. 3 3 .. ....2 3 E (X - J') ~E(X ) -;~J"' - J' 
~bere J' and d- are tbe m~ariattd variance.g,f.X ~spectively. 

2. (q) Two players A and B alternately· roli a!Piir'of fl\ir.di£t.A wins if be 
gets six points ~fote B gets seyen points a~d 'B wins if "e gets se,ven points 
before A gets'six points. If A takes tlie fi 1St tum, find tbe probability tbat B wins 
and tbe expected numlJeroftrials,forA to win. 

(b) A box contaips 2" tickets among wbicb "~; tickelS bear tbe numbers 
i (i - 0, 1, 2, ••• , n). A group of m tickets is drawn. Lei S denote tbe sum of tbeir 
numbers. Find tbe expectation and vari~nce of S. 

1 r ... . " Ans. 2 mn, '4 mn - {mn (m -1)/4 (2 -I)} 
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3. In an objective type examination, consisting of 50 questions, for each 
question there are four answers of which only one is correct. A candidate scores' 1 
if be picks, up tbe correct answer and -1/3 otberwise. If a candidate makes only a 
rando.m cboi<;~ in respect of eacb of tbe 50 questions, find bis expected score and 
the variance of bis score. 

4. (a) A floristl in order .to satisfy tbe needs 'Of a number of regular and 
sophisticated customers, stocks a higbIY'~risbable flower. A dozen flowers cost 
Rs.3and sell for Rs.10. Any flowers not sold tbeday tbey are stocked arewortbless. 
Demand in dozens of UowelS is as follows: 

Demand 0 1 2 3' 4 • 5 

Probability 0·1, 0·2 0·3 0·2 0·1 0·1 
(i) How many flowe~ sbould tlie florist stock daily in ~rder to maximise tbe 

expected value of bis n~ P£?rit ? . 
(ii) Assuming tbat faih~re to satisfy anyone customer's reque~t will result in 

fUture lost profits amounting·to Rs. 5'10 (goodwill cost), in: addition to tbe lost 
profit on tbe immediate sale~ bow many flowers sbould.tbe florist stock? 

(iii) Wbat is tbe smallest goodwill cost of stocking five dozen flowers ? 
Hint. For t- 0, 1,2,3,4,5,< letXi. be tbe rando'm variable giving tbe florist's 

net profit, wben be decides to stock 'i' dozen flowers. Detennine tbe probability 
function for eacb and tbe mean of eacb and pick up tbat .. i ~for wbicb it is.maximum. 

Ans. (i) 3 dozen, (ii) 4 dozen and (iii) Rs. 2 
S. Consider a sequence of Bemo,ulli trials witb a constant probability p of 

success in a single trial. Let Xl denote tbe number of failures Iollowi~g tbe 
r 

(k - l)tb arid preceding tbe ktb s9ccess, and let Sr = I Xl. 
l k- I 

Derive tbe p'robability ·distribution of Xl. Hen"ce derive tbe pro\?ability 
distribution of Sr. 'Find'E (S,,) an~ Var(Sr). 

6. In tbe simplest type ofweatber forecasting'- "rain" or'"no·rain" in tbe next 
I 

24 hours -suppose tbe,probabllity o'frairung is~ (> ~)', ana that a forecaster~Coies. 

a point if his forecast proves correct and zero otberwise. In making n independen~ 
forecasts of this type, a forecaster, wbo bas no genuine ability, predicts "rain""w~th 
probability A i'q~ ",no rain" witb pr,oba1?i1i.ty (1 - ~). Prove 1bat the pr.oba1?i!i~y of 
the forecast being correct for .any one day is 

[1-~p+.(2p,-1)Al . , 
Hence derive the expectation of the total score (S,,) of the forecaster for the n .days, 
and sbow that this attains its maximum ~Iue for.A = 1. AlsC), prove tbat 

Var (S,,) • n [p - (2p - 1) A} [1 - P + (2p - 1) A] 
and thereby deduce that, for fixed n, this ~ariance is ~axi?,um for A -~. 
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II 

-Hint. P (Xj - 1) = 1 - P (Xj - 0) = pi.. + q (1 - )..), S" = I' Xj, 
- . i'- 1 

.and the Xj s being independent, tbe stated results follow. 

7. In the simplest type of weatber forecasdrg - ra in or no ra in in tbe next 24 

hours - supPQse the ,probabiJity of raining is p (> ~), and that a forecastetscorcs 

a point if his forecast proves correct and ~e~ otbCfrwise. In.mak,ing" indiependent 
forecasts of this type, a forecaster wbo has no genuine ability decides to a))ocate 
at random r days to a ~rain" forecast and tbe rest to "no rain". Find·tbe expectation 
of his total score {SIll for the n days and sbow that this attains its maximum value 
for r - '!. What is the va ria nce, of S" ? 

'Jlr~L _~tXj be a random variable sucb that 

Xi'· 1 if forecast is correct for ith day 
= 0 ifforecast is incorrect for ith day, (i - 1, ~, ... , n) 

P (X; - 1) _!., P (X; _ OJ _ 1 _!. .. ,n - r 
n n n 

Then 

•. E (Xj) _ p (~ ) + q ( n ~ r ) and S" ,.' ~ ~ /j 
But the Xj 's are correlated random variables, so tbat for i .. j, 

f 

E ()(jXj) - P (Xj -j n Xj - 1) 

~ p. ;;T~ ( : '-! .) + q,(: - ~.) ] 
... 

+' q ( n ~r H p ( n ~ 1 ) + q ( n ~ ~ ~ 1 ) 1 
Hence-E· (S,,) .1)P - (n -'r) (p - q) < np, for p;> q 'and ,.v (SII) - npq. 
8. 'Lei nt letters. 'A' and n2 letters 'B' be arranged at random in a sequence. 

A run is 'a ~u~ession of Ii~e lett~'" preceded, and fO))Qwed by-none or an unJike 
letter. Let W be the total number of runs of 'A's and 'B' s. Obtain expressio~ (or 
Prob {W - r}, where r is a given positive even integer and also wh~n r is ~d. 

Compute the expectation of'W. 

9. 'An urn contains K varieties ,of o1)jects in equal numbers. The objects are 
drawnone'at a time and replaced before the neXt drawing. Show that the probability 
that n and no less drawings wiJI be,required to produce objects of all varieties is 

\., 

ki l (_I)' k-lC, (k_:_r)"-l __ 
,-0 \_ 

Hence or otherwise, find the expected number of drawings in a ,simple form. 
- \ 
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10. An urn contains a white and b black ba'iis. After a ball is drawn, it is to 
be returned to tbe urn if it is white, but if it is blaci, it is to be replaced by a wliite 
ball from aQotber urn. Sbow that tbe probability of drawing a white ball after tbe 
foregoing operation bas heen repeated x times is 

b.(, 1) x 
l- a + b ,l- a + b 

11. A box contains k varieties of objects, tbe number of objects of each 
variety being.the same. These 9bject,s a~ drawn o.ne at a time and put back before 
tbe next drawing. Denoting by n the smallest number of drawings which produce 
objects of all varieties, find E (n) and V (n) . 

12. There is a lot of N obj~cts from which objects are taken at random one 
by one with replacement. Prove. that the expected value and variance of the least 
number of drawings needed to get n different objects !l,~ ~pectiv~ly. given by 

N[ !+ N~1 + ... + N!...~+ll 

and N[ (N~I)2+ (N~2)2+":+ (N~~:li 1 
13. A larg~ population consits of equal numberofindividuals of c different 

types. Individuals are drawn at random one by one until at leas~ one individual of 
eacb type bas been found, wbereupon sampling ceases. Sbow that the mean number 
of individuals in the sample is 

'('I 1 1 1). C +'2+'3+"'+;-
and the variance of the number is 

2 3 c , ,c: 
c2 (1 + \ + \ + ... + 12) -C '( 1 + -21 + ~ + ... + ! ) 

14. (a) A PQint.P ,is tllken, at.-:ail40m in a lineAB <;>f1ength~" aU pos,itions 
oftbe point being equallllikely. Sbow·that the expected value of the area of the 
rectangle AP.AB is' 2a ij and the .probability of ~he area exceeding a2/2 
1m. . 

(b) A point is cbosen at random on a circle of radius a. Sbow that tbe 
expectation of its distance from anotber fixed point also on the circle is 4a/:n: • 

(c) Two points P and Q are selected at random in a square of side a. Prove 
tbat 

E(IPQI 2)_aV3 
15. If the rooISXt"X2 ofthe equation; - ax + b - 0 are real and b is positive 

but otberwise unknown, prove that . 
. E (Xi) - ~ a !l,nd .E ~~ ~ ~ a 

16. (Banach's Match-box Problem). A certain mathematician always carries 
two match boxes (initially containing N. match-sides). Each time he wants a 
matcb-stick, he selects a box at random, inevitably a inoment comes when he finds 
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a, box empty. Show that the,proba,bility that there are exactly r matc~-sticks in one 
box when the other box becomes empW is 

2N-,C 1 
NX~ 

'Prove also that the expe~ted number of matches i~ 

2NC 2N+I 1 
NX~-

17. n. couples procrete independetnIy with no limits on fa'mily size. Births 
are single and independent and for the lth Couple, the proba bility of a baby is Pi. 
The'sex ratio S is defined as 

S!II' Mean number of all boys 
, Mean number of all children 

Show that if all couples, 
(t) Stop procreating on the birth of a boy, then 

/ 
" 1 

S=n -l: ~ 
i-I P' 

(ii) Stop procreating on birth of a girl, then 

S - 1. - [ n / ,i ~ 1, where qi ... ,1 -PI 
,-1 t/ 

(iit) StO(l procreating when they have children ofbotla sexes, then 

S - l: - - l: Pi l: -, - - n [ Ill II ]/ [" 1 ] 
, i-I qi ; 'l' 1 ' ; - 1 Pi qi . 

18. Show that if X is a 'random variable such that P (a SoX So b) -1, then 
E (x.) and Var (X) exist, and a So E (X) So band Var(X) So (b1_o)2/4. 

19. (X, Y) in two-dimensional discrete random varia'bl~ with the po~sible 
values 0 and 1 for x: and also 0 and-l-'for Y, and with the joint-probabilities given 
by , 

o 1 

Y 

PI0 o poo 
.' 

-: 1 POI Pn 

Find the characteristic functions -.p. (I), -.p2' (I) 'and ; (11,12) for X, Y and 
(X, Y) respectively and show that -.p (11, '2) .. ~J (11) -.p2 (12) when pooPli - POI 
P.l0 .1_ 

'ZOo For a1given1sequence-! XII 1 of r.v/s, 
" 'c .. 
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CPit. (I, X .. ) = (sin nl)/nt, 

determine the distribution function of X". Hence show ·that even though- the 
sequence of characteristic functions cP" (I) converges to a limit cP (I), the sequence 
of distribution functions does not converge to a distribution function. What is "the 
,CQl}dition that is violated here? [Indian Civil Services~ 1984] 

21. Two continuous variates X and Y have a joint p.d~f: with a joint 
characteristic function cP (It, 12); If.gx (x) . .is. the marginal density, show that 
Il ' r (x) , the rt~ simple moment for the conditional distribution of Y given X = x, 
satisfies the equation 

... -
11',. (x) . g (x) ... -.!.... f a' q, (II, 0) e- ill % dl l 

2" .:II' 
-... "2 

[Indian Civil-Services, 1987] 
22. Prove that the real part of a characteristic functiorulS again a charac.­

teristic function. Prove further that if '1'1 (I) - al (I) + ibIin and ~i2'(I)," 02 "(I) + 
iln (I) are characteristic functions, then til (I) a2 (I) - bl (I) b2 (I) is a cbai'actir'istic 
function. • 

23. Show that for any distribution 

1 [ 1 - ~ ) dE «) • !. dE (x) 

and hence deduce P [IX -E (X) I > ko] s ~, where k> 0 and Var (X) _ 0 2• 

" 
24. (0) Let X ~a random vllri,able with moment genetilualg lunctiOif 

M (I), - h < I < h. Prove that 

P (X~ a) s e-Gl M(I), 0 <I <h 

Pf){ sa) se- Gl M(I), -h <I < O. 
(b) Letf(x,y)-xe-x()l+I);x>O,y>O 

- 0, elsewhere 
Find moment generating function of Z - XY • 

... ... 

Hint. Mxr(I)- f f e'x y f(x,y)dxdy 
o 0 

-{ [xe_x II e-(Hq dy 11dx ; 1-1>0 

f 1 1 
- x e-x dx---1-;1 < 1. 

o (l-I)X -I 

25. The probability of obtaining a 6 with a biased die is p, where 
(0 < p < 1) . Three players A, Band C roll this die in order, A starting. The first 
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one to throw a 6 wins. Find the probability o(winning for A, Band C . 
lfX is,a random variable which tl!,kes the value r if the game fiDi~hes at the 

rth throw,.,determ~Qe the pro.bability.generating function of X arid hence, Or 
otherwise, evluateE (X) and, Vjlr (X).. . 

Hint. Pt9bjlbiljtie,s for the wins of A, Band C .are pl(h-£[) 
pq(1- q3)andpq21.(1-l) respe~tively. ' 

P(X=r)=pf/-l, for r.d. 
The probability generating function of X is P(s) = P sl(1-·qs) , 

whence E (X);= lip and Var (X) .. 11(/1,2 • 
26. Define convergenf,:~ in probability. LetXI,X2, .. , be i.i.d. variates with 

f (x) = e-(x-l), X:i!: 1. Show that YII - 1 in probability where YII = Min (Xk); 
1 s k:i!: n . (Indian Civil Services, 1982) 

27. Let! XII, n = 1, 2, ... } be a sequence of standardised variates and Con 
(X"" XII) = exp [ -1!1} - n I a ] , a > 0 and m .- n. ~h9W that W.L.L.N. 110lds 
fqr this sequence. (Indi~n q~U Services, ~9~8) 

28. From the probability generating function (p.g.f.) of two random vari­
ablesX and Y given by 

P (s, I) = exp [ - A. - ~ - b + A. s + ~ 1 + bsl ] , 

(I) 'obtain the marginal p.g.f.'s and identify them, 
(ii) obtain the p.g.f. ~fX + Y and P (X + y) - 0·, and 
(iii) interpret the case b .. 0 . 



CJlAPTER SEVEN 

Theoretical Discrete Probability 

Distributions - 7·0. Introduction. In the previous chapters we have discussed in detail the 
frequency distributions. In the present chapter we will discuss theoretical discrete 
distributions in which variables are distributed according to some definite 
probability law which can be expre~sed mathematically. The present study will 
also enable us to fit a mathematical' model or a function of the form y = p(x) to 
the observed data. 

We have already defined distribution function. mathematical expectation. 
m.g.f .• characterIstic function and moments. This prepares us for a study of 
theQretical distributions. This chapter is devoted to the study of univariate 
(except for the mult.ino~ial) di~tributions like Binomial •. Poisson. Negatiye 
binomial Geometric. Hypergeometric. ~uItinomial and Power-series 
distributions. 

7'1. Bernoulli Distribution. A random variable X which takes two values 
o and I. with probabilities q and p respectively. i.e .• P (X = I) = p. 
P(X = 0) = q. q == I -p is called a Bernoulli variate and is said to have 'a 
Bernoulli distribution. 

Remark. Sometimes.·the two values are +1. -I instead of I and 0, 
70J01. Moments of Bernoulli distribution. The ,rill moment about origin 

is 
Ilr' = E (X~) = or . q + I r • p ,= p ; r = I. 2 •... 

Ill' ~·E(X) = p. 112' = E(X2) = p 

112 = Var (X) = p - 1'2 = PlJ. 

The m.g.f. of Bernoulli variate is given by : 

M x (1) = eO" x P (X = 0) + e I I . P (X = I) = q + pel 

. .. (7.1') 

... (7·la) 

Remark. Degenerate ~anaoDl Variable. Sometimes we may come 
across a val'iate X which is degenerate at a point i e•• say. so that: P (X = e) = 1 
and = 0 otherwise. i.e.. the whole mass of the variable is concentrated at a singie 

, . 
pomt ·'c? • 

Since P (X = e) = I. Var (X) = O~ 
Thus adegenerale r.v. X is characterised by Var (X) = O. 

M.g,(. of degenerate r.v. is given by 

Mx (t) = E (eIX) = e'c P(X = c) = eCI ... (7·Jb) 

7'2. Binomial Distribution. Binomial distribution wa~discQvered by James 
Bernoulli (1654-1705) in the year 1700 and was first published posthumously in 
1713. eight years after his death). I,.et a randqm experiment be performed 
repeatedly and let the occurrence of an event in a.trial be called a success and its 
non-occurrence a failure. Consider a set of Il independent Bernoullian trials (Il 
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being finite), in "'1hich the probability 'p' of success in any trial is constant for each 
trial. Then q = 1 - p, is the probability of failure in,any trial. 

Ti.c probability of x successes and consequently (n -x) failures in n inde_ 
pendent trials, in a specified order (say) SSFSFFFS .. .FSF (where S represents 
success and F failure) is given by the compound probability theorem-by the 
expression: 

P (~SFSFFFS .. .FSF) = P(S)P(S)P(F)P(S)PH1P(F)P(F)P(S) x 

••• x P(F)P(S)P(F) 

s p . p .~ .. p . q . q . q . p •.. q . p'. q . 
l 1 , X ,,I'-x . ='p,p .... p q. q.q ..... q = P '« 

I x factorsl l(n -x) factors) , 

- Butx successes in n trials can oC('\lrjn ( ~}ways and the probability for each 

of these ways is PC'cf'-x .. Hence the probability of'x successes in n trials in any 
order whatsoever is given by th~ a"d,ition theor~m of 'prqba hil JlY by the ~xpression: 

Th bab·l· d· 'b . '(f;)PX cf'-be
x 

f ' • b . d· . I 
. epro Ilty- Istn utIOno t6enum ro successes~so.o tame 1SC3 led' 

the Binomial probability distribution, fOI\ the ,obvious riason that the' probabilities. 
of 0, 1~ 2, ... , n successes, viz., , 

,/I (n),/I'- 1 '( n) ,/1.- 2 2 " . h . ~ f b b· :' ,I « p, 2 « p , ... , ,P ,are t e successive terms 0 t, e mo· 

mial expansion (q + p)". 

Definition. it random variable X is said to follow binomial distribution if 
it assumes only non-negative vallies and its'P,robabilitj mass {unction is given by 

{(. n ) pX q'-x ; X '"' 0.1,2, ... , n ; q = 1 _ P •.. (7'2) 
P(X ... x) .. p(x) "" x 

0, otherwise. 

, The two independent constants nand p in the! distribution.~!e known as the 
parameters pfthe distribution. 'n' is also, sometimes .. known as the. degree of the) 
bi~~Qn;lj,,1 di~triJ>ution. ' .• 

Binomial distribution is a discrete distritJution asX can take only the integra'! 
values, viz., 0, 1,2 •... , n. Any varjable which follows binomial'distribution is 
known as binomial vanate. , 

We shall use the notation X - B(n,p) to denote that the random variable~ 
f91.I9w~ binomial distribution with parameters,n and p, 

1he probability p(x) in (7'2) is also sometimes denoted by,b(x, n!.p). , 
Remarks 1. T&is as~igitrgeiit of pr6~l)iJities is pemlis~ible because 
." n' n' - ( 

1: p(x>. = l:' It n ) pX 4' -~ .. (q +. p)" = 1 
x-O'. x-O' X ' ." 
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2. Let us suppose tbat n trials C9nstitute an experiment .. Jhen if this 
experiment is repeated N tinles.the frequency function of the binomial distribu­
tion is given by 

~t) = Np(x) = N ( ; ) pX qn-x;x _ 0.1.2 •...• n ... (7.3) 

and the expected frequencies of O. 1. 2 •...• n successes are t&e successive terms of 
tbe binomial·expansion. N <II f pt. q + p = 1. 

3. Binomial distribution is important 'not only because of its wide ap­
plicability. but because it gives rise (0 many:o(her probability distributions. Tables 
for p(x) are available for various values ofn, andp. 

4. "Physical conditions for Binomial Dist'ribuqon. We get the binomiar 
distribution under the following experimeJ\tl,ll·cOlfditions. 

(i) Each trial results in two mutually (li~ioint outcomes. tenned as success 
and failure. 

(ii) Tile number of trials en' is finit~. 
(iii) The' trials are independent of each other. 
(iv) The prQbability of.succe~s 'pi is constant for-each trial. 
The problems relating to t.lssing of a corn or throwing of dice or drawing 

cards from a pack- ~f cards with replacement lead to bipomial probababiliiy 
distribution. 

Example 7·1_ Ten coins are thrown simultaneously. Find the probability of 
getting at least seven "ea,,~_ ' 

Solution. p,= Probabili~ of getting a head =:I 
q = Probability'of not getting a head = 1 

The probability Of getting x heads in a random fbrow~f 10 coins js 
x 10-x 10 

p(x) _ (~O) (¥) (~) = (~O) (~) ; x _ 0" 2 ..... 10 
:. Probability of getting at least seven: he~ds. is given by. J 

.. ' 
P()( ~ 7) .. p(7j + p(8) +' P(9) + p(10) · ( ~ r (( 1~ ) t ( ~'J t ('~o.) + ( :~ )} 

120' + 45 + 10 + 1 176 
= =--

1024' 1024' . . , , ' ~I", . 
Exa~ple' 7·2. A and B playa gllme in wli;ch tlleir cl~a{fces of winning qre 

i" the ratio 3 : 2. Fin~ A's chance l!f winning at least ,three gqmes., outl?[ t!ie five. 
8ame~play¢d. ' [8~rd~an Univ. p.S~. (Hons,),199~] 

, Solution~ Let p be the probability that 'A • w1ns the game. Thc:P. ~e are 
glvenf = 3is' :=T' q = I-p = 2/5. , 

"Hence. by 'binomia1 probability law. the probability Jhat out of 5 gant~' 
played.A wins 'rl.gilmes is given by : 
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P(X .. r) .. p(r) ... ( ;) . (3l5)" (2/5)5-,; r - 0, 1,2, ... ,5 

The required probability that 'A' wins at least three games is givenby : 

P(Xi1:3)= ~ ( 5) 3' .~5-' 
,-3. r 5 

_ ~: [U.) 22 + (!).3X2+ 1.32Xl] _ 27x (4~1~30+ 9),. 0,68 

Example 7~3. If m things are distributed among 'a' men and 'b' W{>men, 
show that the probability that the number pFihings received by men is odd, is 

.! I~ (b + a)m :... .. (b _ a)m]' 
2 l (.b + a)m 

(Nagpur Univ B.Sc., 1989, '93) 

Solution. p = Probability that a thing is received by man ... ~b' then 
a + 

q = 1 - P .. 1 - ---.!!.-b = ~b' is the probability tbat a thing is received by 
a + a + 

woman. 
The probability that out of m things exactly x are received by men and the 

rest by women, .il1 given. by 

p(x) .. mCxIfq"'-x; x ... 0,1,2, ... ,m 

T~e probability P that tlie num~r of things received'by Illen is odd is given 
by 

P ('I) (3) (5) "'c ,"-I '" C ",-3 3 "'c .. -5 5 • P + P + P + ... - I' q 'p + 3' q 'p + 5' q 'p + '" 
Now 

( )'" "''''c ... -1 "'c ",-2 2 "'c ",-3 3 "'c ",-4 4 q+p -q + I'q 'p.+ 2'q P + 3'q "p + 4'q 'p + .. , 
and 
( ) '" III '"c ",..,1 "'c ,"-2 2 "'C, ,"-3 .3 "'c 111-4 4 q-p -q -' "q 'p+' 2'q 'p - 3,'q 'p +' 4'q 'p - .. , 
., (q + pT -(q-pt =.2 [mCI . q"'-l.,p + mC3' q"'-.3·l + ... J = 2P 

b-a 
But q + P = 1 and q - p = --,., ,.. a 

1 _ (b - a)m _ 2P ==> P = . .! [(b + a)m - (b - at] 
b + a 2 (b + ar 

Example 7· 4 An irregular six faced di~ is. thrown and. the expectation 
tlrat in 10 tlrrows it will give five even numbf!rs is twice the expectation that it will; 
glveJour even numbers: How many times in 10,000 sets of 10 throws each. wollid' 
you expect it to give no even number. (Gujarat Univ. B.Se.1988) 

Solution, Let p be the probability of getting an even number in a thro~ 
of a die. Then,the probab,ility of getting x even numbers in ten throws of a die is 

P(X = x) .... ( ~) If qIO-x.; X '" 0, 1, 2 ... ~0 
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We are given tltat 

i.e., 

p(X - 5) - 2 p(X - 4) 

( ~) i ~' = 2 ( ~) l q6 

10 ! p _ 2 10 ! q 
5 ! 5 ! 4 ! 6 ! 

:.3p=5q=5.o-p) ~ Sp=5 ~ p=5/Sendq-'3/S 
5 x 3 10-x 

7·5 

:. p(X = x) .. ( ~) (8) (~ 1 
Hence, the required number O}'times that in 10,dOO s~ts of 10 throws each, 

we get no even number 
3 10 

'"' 10,000 x P(X .. 0) = 10,000 x ( 8) = 1 (approx.) 

Example ,·s In a precision bombing anack there is a 50% c/uince thaI 
anyone bomb will striKe the target. Two direct hits are required to destroy the 
target completely. How many bombs m~st be dropped to give a 99% chance or 
beller of completely,des..troying the target? [Gauhati Univ. M.A., 1992] 

Solution. ytle have: 
p = Probability th!lt tl!e bomb 'strikes the target = 50% - ~. Let n be the 

number of bombs_ which should be dropped to ensure 99% chance or -better of 
completely destroying the target. This implies that RprobabiJity that out ofn bombs, 
at least two strike the target, is greater thap 0·99R. , 

Let X be a r.v. representing the number of bombs striking the target. Then 
X -1J,(n,p = ,~) with 

p(x) = p(X = x) .. ( :)( ~ r· ( ~ r-x 
- ( :)( ~ r; x .. 0; l,~_, n 

We should have: -
P(X OP: 2) OP: 0-99 

=> (1 - p(X s 1)] OP: 0-99 
=> [1 - '(1'(0) + p(1)U OP: 0·99 

=> 1 - {( ~ ) + ( ~ )} ( ~ r OP: 0·99 

=> 0'01 OP: ~ => 2ft x (0:01)" OP: 1 + n-
2ft 

'2!' OP: 100 '+ 100 n - -
By trial method, we find that the inequaJity,(*) is satisfied by n - 11:Heoce 

the minimum number of bombs needed to destroy the target cOmpletely is 11. 
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--Ex~mple.7' 6 , A department in a works has 10 machines which may need 
adjustment from time to time during·the day~ Three of these machines are old, each 
having a probability of 1111 of needing adjustm~ duri{rg the day, and 7 are new 
having corresponding probabilities of 1/21. . ' 

Assuming that no machine needs adjustment twice on the same day, deter. 
mine t/le probabilits that on a particular day'. 

. (i) just 2 old and no new machines need adjustment. 

(ii) l[just 2 nrachines need adjustment, they are of the same type . 
. ' . (Nagpur Univ. B~E., 1989) 

Solution. LetPI = Probability that an old machine needs adjustment 
= 1111 

qi = 1 - PI Z 10/11 
and P2 .. Probability that a new machine' needs ~ajustment = 1121 

l/2 ,=- 1 - P2 ... 20/21 
, , , 

Then Pj(r.) =-..P.robability that 'r' old machines ~eed a~justment 
.. " .. }C,p'itrl-, ... 3C, (l0/11)3-, (1/11)' 

an(J P2(r) = .Pi'~bability that 'r' new machine need ~dj!Jstment 
~. ... 7C,P2 qi-' == 7C,.·(1121)' (20121)7-, 

(i) The probability that just two old machines and no new machine need 
.~ajustment is given (by the compound probability theorem) by the expression: 

. ,PI(2)' 1'2(0) = 3C2(1/11)2. (10/11) '(20/21)7 - 0·016 

;: (iinSimiiarly the probability that just 2 new machines and no old machine 
-,rie¢tt 'a<ljustment is '. ' 
~ ... "'> , \ 3 1 ,t 2i 5. 

PI(O) . P2(2) = (10/11) . C2 (1121) '. (20/21) = 0·028 
.. &4 \ ~ 

.' 'T,he probability that "lfjust two machines need adjustment, they are oftbe 
same type" is the same as the probability that "either just 2 old and no new or just 
.2. I).ew and no old machin~s need adjustment". 

. :. Required probability = 0·016 + 0-028 = 0·044 
. . 7; 2· 1 l\'1oments. The first four moments about origin of binomial dis-
, '~~!i~'t.!ion ~re obtained as follows: 

::~I' ,;. E(X) ... i:, ; ( n )llcf-'% .. np i: (n - 1 ) JI-Icf-x. 
x-o X x-I x-I 

f 
=' np(q + p),,-I = np ( :., q + P = 1) 

Thus the meaD ofthe binomial distribut~on is. tip. 

• ( n) n (n - I) n, n - 1 (n - 2) 
x ,-;' x-I -;'x:"I' x-2 

n'n-I n-2(n ..... 3) , ' - -' -- . -- ,aQd"sooD. 
x x,:,1 x-l x.-3, 

I' .. 
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1'2' .. E(r) s i: x2 ( n ) pX c/' - x 
x- 0 ~ X 

If 11 (n - 1) In - 2 \. . 
= x ::)x (x - 1) + xl x (x _ 1) . l x _ 2 J pX q'7 x 

c n (n - 1) p2 [x ~ f (; = ~) pX- 2 q"-x] + np 

= n(n - l)i(q + p)If-2 + np = n(n - l)pL + np 

1'3' ... E (X3) = i: x3 ( n) pX c/' - x 
x _ 0 x. 

/I 

'" I !x(.\"- l)(x - 2) + 3x(x - 1) + xl~c/'-x 
x - 0 

=n(n-l)(n-2)p3 i (n-3)px-3c/'-X 
3 x - 3 

x -

7'" 

+ 3n (n - 1)/ r (n - 22) px-2 q"!.ox + liP-
x-2 x- , 

= n(n - l)(n - 2)i (q + p),,-3 + 3n(n - 1)/ (q + pt-:. 2 + "I? 

= ~ (n - l)(n - 2) l + 3n (n - 1) p2 + np 

Similarly 

X4 = x (x-l)'(x -2)(x-3) + 6x (x -l)(x..!. 2) + 7x (x-I) +x 

, Leti. Ar(x-l){x -2)(x-3)+Bx(r-l)~-2)+Cx(x-l)+x 
, By giving to x the values ~1, 2 and 3 respe~tively, we find the values of 

arbitrary constants A, Band C. Therefore, , 

1'4' ... E (X,4) '" i: X4 ( n) pX P~-x 
x _ 0 x . 

= n (n -1) (n -2)Jn _3)p4 + fur (n -1) (n -~) l + 7n (n -1)/i"+'np 
. ~~~~.~ 

Central Moments of Binomial Distribution: ,_ 

1'2 = I'l - 1'1,2 = n2 p2 - n/ + np - n2 / = np(l-p) = npq 

" ' 3' , 2 .,3 r3 '" ~l3 - 1'2 1'1 +. 1'1 

= (n (n -1) (n - 2) l + 3n (n _1);2 + np\- 3 (n (n _1)p2 + tip) np + 2 (np)3 
2 2 -

'" np [- 3np + 3np + 2p - 3p + 1 - 3npq] 
, I 

= np [3np (1. - p) + '2p2,_ 3p"+ 1 - 3npq] 
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. = np [2i - 3p + 1] .. np (2i - 2p + q) = npq (1 - 2p) 
= npq [q + p - 2p] = npq (q - p) 

114 ... 14' - 4"'3' "'1' + 6"'2' Ill' 2 - 3"'1,4 = npq [1 + 3 (n - 2) pq] 

[On simplification] 
Hence 

... "'; ... n2 p2 q2 (q _ p)2 .. (q _ p)2 = (1 - 2Pi ... (7.4) 
~l "'~ ;j3 p3 cI' npq npq 

Ul npq ! 1 ... 3 (n - 2) pq} 1 + 3 (n - 2) pq 1 - 6pq 
~2 .. ~ = 2 2 2 == ... 3 + '. . .. (7·5) "'2 n P q npq npq 

Yl ... Vjft"-... ~;;J .. liul! Y2 = ~2 - 3 = 1 - 6pq ... (7·5 a) 
v npq npq' npq 

Example 7·7 _ Comment on the following: 
Tile mean of a binomi(#distribution is 3 and variance is 4'. 
Solution. If tbe given binomial distrib'!.tion bas. para meters nand p, then 

weare given 
Mean= np .. 3 , 

'an~ Va~a~ce ... npq," 4 

Dividing (**) by (*), we get q .. 4/3, 
wbicb is impossible, since probability cannot exceed unity. Hence tbe given 
.sta,e.ment is wrong. . 

Example 7·8. Tlte mean and variance of binomial distrwution are 4 and! 
r~speftively. Find P (X ~ l). (Sardar Patel Univ. B.Se. 1993J 

.Solution. LetX - B (n,p). Then we are given 

and 
Mean .. E (X) ... np .. 4 
Var(X) .. npq = j 

Dividing, we get 
q ... ! 

3 

Substituting in (*), we get 
\ 4 4 x 3 . 

n .. - - -- .. 6. 
p' 2, 

p=~ 

'P~~ 1~ .. 1 - P (X .. 0) .. 1 - t/' .. 1 - '(1/3)6 = 1 - (1/729) 

.. 1 - 0-00137 .. 0·99863 

Example7· 9 If X - B (n, p), show that: 
2 

E (! "'- p) ... I!9.. Cov (! !!-= .. !\.. _ I!9. 
n n' n' n) n 

(Delhi Univ. B.Se., 1989) 
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(i) 

Solution. Since X - B (n, p), E (X) '"' np 'and Var (X) = npq 

E(!) = 1. E(X). ... p; var(!) = 1.. Var(X) = 1?!1. 
n n n ~ n 

E (~ - p f -E 1 ~ -E (~) r -Var (~) - ~ 
(ii) Cov (~, n ~ X) = E [{ ~ _ E ( ~)} {n ~ X _ E (n ~ X) }] 

= E [ (; - p) { ( 1 - ~) ~ (1 - P)} ] 
\ -E [(;-p) {-(;-p)}] 

= - E (;~ - p f = - Var ( ~) = - ~ 
7· 2- 2 Recurrence Relation forthemomentsofBinomial Distr,ibutioli. 

(Renovsky Formula) 
By def., 

j.l, = E· IX ~ E(X)}' = i: (x ~ np)' (n )Jl(-x, 
x-o x 

-Differentiating with respect to p, we get 

-.. 6. • - nr x - np J p If • dj.l, ~ (n) [ ( \1'-1 xd'-x 
dp x-o' x 

-+ (x - npY' \xjl-1 (-X - (n - x)]I (-X-1f] 

= _ nr i: ( n ) (x _ np)'-1pX(-X 
x-o X 

+ i: (n ') (x _ np'f pX (-X {~ _ !!....::..!} 
x-o ~ p q 

.. - nr i: (x - np),-lp(x) + i: (x _ np)'p(x)'(x - tp) 
x-o x-o pq 

ft 1 ft 

.. - nr 1: (x'- np),-1 p (x) + - 'I (x - np)'+1p'(~) 
x.o pq x-o 

g j.l, 1 
dp' = - nrllr-1 + pq 1lr+1 

=> j.l,+ 1 =~q .[ nr j.l,-1 + d; ] ... (7' 6) 

Putting r - 1,2 and 3 successiveiy in'C,.6), we get 
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[ 
d~l] ('.' J.lO = 1 and J.ll·" 0) 

J.l2 c pq, nJ.lo + d~ = npq' 

J.l3 .. pq ,[ 2n J.ll + d J.l2 J = pq' d(npq) ~ npq.!!.... /p (1 - p)l 
dp dp dp r 

d' 2 
- npq dp (P - p) = npq,(1 - 2p) = npq(q - p) 

and J4 .. pq [3nJ.l2 + :] i pq [3n. npq + ~ 1 npq (q - p) t] 
"= pq [3n2pq + ;~ !P(1 - p) (1 - 2P)I] 

- pq [ 3n2 pq ': ,n ~ (p - 3i + 2l)] 

- pq (3n2 pqt n (1 - 6p + 6i) ) - pq [3n2 pq + n (1 - 6pq) J 

- npq [ 3npq + ~.,... ?pq J = npq (1 + 3pq (n - 2) ] 

" . Example 7·10 Show that the rth moment J.l,' about tIre origin of the 
,binomial distribution of degree n is given by : 

,. , 
J.l,' - (p a ~) (q + p) ~ ... ( *) [Patoa Unlv. B.sc. (Hons.), 1993J 

Solution. We shall prove this result by using the principle of mathematical 
induction. We 'baye 

(q + p)" .. 1: (n) pXq'-x ~ ..i.(q+p)". 1: (n )q'-Xx~-l 
x-o X a p x-o x 

':. 4,-f(q+P)".'P 1:'( n )q,,-XxpX-l_ i: (n) pXq'-x x .. J.l1' 
up x-o ,x x-o x. 
Thus the result (*) ,is true for r = 1. " 
Let us now assume that the result (*) is true for r - k, so that 

(p ~ap j'(q+pr. '" - <~o(; )p'qo-<x' .. ~") 
Differentiate (f*) partially w.r. to p and multiply both sides by p to get: 

11 (ip) [tP a~ f (q + Pf]- <~o(; ) U-<x'" - E(Xh') 
k+ 1 

=- (p a~ ) (q + pf .. J.lk+l" 

• Hence if the result (*) is true for r '"' k, it ii also true for r .. k of' 1. It is 
.Jrea,dy shown to be tme for k • 1. Hence by the principle of mathematical 
jdci~on,.'(.l is true for an positiv~ integral values Qf r. 
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7· 2· 3. Factorial Moments of Binomial Distribution. The I1h factorial 
JIlOment of the Binomial distribution is: --'< • 

nil" 
~(r)'= E(x(r)I- I x(r)p(x)= I x(r) ,n!! , P~4'-x 

x-o x-o x.(n-x)., 
II ( ) , ., 

= (r) r I n-r. ...x-r,/l-x=n(r) r( + t-r 
" p x.r (x - r) ! (n - x) ! p ':t P q P 

= n (r) p ... (1,' 7) 

~(1)' = E (x (1)1 ... np .. Mean 

~(2)' = E (x (~)l = n (2) p2 = n (n - 1) i 
~(3)' = E (x (3)1 .. ,,(3) l .. n (n - 1) (n -' 2)i 

N ,,2, 2 2 2 2 2 
ow ~ (2) .. J.l (2) - J.l (1) + ~ (1) = n P - np - n p + np = npq 

, 3 ' , 2 ,3 2 ' J.l(3) = J.l(3) - ~(2) ~(1) + J.l(l) - J.l(l) 

=n(n- l)(n- 2)p3-3n(n-l)inp+2n3p3_2np= -2npq(1 + p) 

[On simplification] 

7· 2· 4. Mean Deviation About Mean of Binomial Distribution. 
The mean deviation l'\ about the mean nl! of the binomial distribution is given by 

l'\ = i: Ix - npl p(x) = i: Ix - npl (n)' pX 4'-x, 
x-o X ... 0 x 

(x being an integer) 

I - (x;- np) ( n) pX'q"-X + i: (x _ np) (xn) pXq"-X 
%-0 X x- lip 

= 2 i: (x - np) -(:) pX 4'-x * 
x-trp 

~ 2 .~ (x -;" np) (-:) pX q"-X, 

where J.l is the greatest integer contained in np + 1. 

2:[ n! .,.%,/I-x+1' n! " x+l .. .JI-X] 
= : (x - 1) ! (n - x ! p ':t - x! (n -. x-I) ! P ':t" 

" ( ) n x II-X 
I % P q' - np 

.1'-0 X 
• 

" () n x 11-.1' 

I (% - np) % p q - 0 
.1'.0 . 
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II _ n! x+ 1 II-lC 

= 2 1: ['x-l - Ix]. where Ix = '( _ _ 1)' p q 
x-~ x. n x . 

=, 2 [,~ - 1 - III r... 2 I~ - 1 

This is obtained by summing over x ,and using I" • 0 

n ! 1 
:.Tl = 21 .... -1 = 2 ( 1) '( )' . plAq'-IA+ 

I.l - • n - I.l . 

_ 2npq (: = ~) p .... -1q"-~ 
7·Z·5. Mode of the Banomial Distribution. We have 

... (7'8) 

p&~) 1) = (-; ) pXq'-x / (x ~ 1 ) pX-1e/-H1 

n!' Jlq"-x / n! JI-1q'-H1 
- (n-x)!x! (x-1)!(n-x+1)! 

(n - x + 1) P xq + (n - x + 1)p - xq 
- = , xq xq 

= .1 + (n + 1) P - x (p + q), _ 1 + (n + 1) P - x ... (7-9) 
xq ~q 

Mode is the value of x for which p (x) is maximum.­
We discuss the following two cases: 
Case I. When (n + 1) p is not an integer 

, Let (n + 1)p - m + f,wherem isanintegerandfisfractionaisuchtbat 
o < f < 1. Substituting in (7· 9);we get 

p (x) 1 (.m + [) - ,x 
- + p (x - 1)' xq 

... (') 

From (*), it is obvious tbat , 
p(x) 

p (x _ 1) > 1 for x = 0, 1,.2, ... , m 

and pW I 
P (x _ 1) < 1 for x = m + 1, m + 2, ... , n 

e.ill 2..ill ' , p (m) 
=> p(O) > 1, p(1) > 1, ... , p(m _ 1) > 1, 

nd P (m + 1) 1 P (m + 2) 1 P (n) 1 
a p (m) < 'p (m + 1) < , .•. , p (n - 1) < , 

... p (fJ) < P (1) < p (2) < ... < p (m - 1) < p (m) > p (m, + 1) > P (m + 2) 
> P (m + 3) .,. > p (n), 

'. -Thus ijl.this-case_there exists unique modal '!1Itue for pinomial distribution 
1~'iriS:m, thc'integralpartof(n + l)p. 
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Case II. When (n + 1) p is an integer. 
Let (n + 1) P - m (an integer). 
Substituting in (7, 9), we get 

p (x) = 1 + m - x 
p (x - 1) xq 

From (**) it is obvious that 

(x) } > 1 for x = 1, 2, ... , m - 1 
,p ... 1 for' x ... m 

p(t - 1) 
< 1 for x ... m + 1, m + 2, ... , n 

Now proceeding as in case 1, we have: 

7-13 

... (**) 

p (0) < P (1) < ... <p (m -1) ... P (m) >p (m + 1) > P (m + 2) > .•. > p (n) 
Thus in this case the distribution is bimodal and the two modal values are 

m and m - 1. 
Example 7· 11. Determine the binomial distribution for which the mean 

is 4 and varianCe 3 qnd find its mode. (Madurai Kamraj Univ B.Sc. 1993) 

Solution, Let X - B (n, p), then we a re given that 
E(X)=np-4 .. (*) 

and' Var (X) .. npq .. 3 .. (**) 

Dividing (**) by (*), we get 

q-~ => p-l-q-~ 

Hence from ,(*), n - ! - 16 
p 

Thus the given binomial distribution has parameters n = 16 and p = 114. 
Mode. We have (n + 1) P = 4'25, ·~hich is not an integer. Hence the 

unique mode of the binomial distribution is 4, the in~gral part of (n + 1) p. 
Example 7·12. Show that for p = O· 50, the binomial distribution has a 

maximum probab~lily.atX .. ~ n, ifn is even, and atX .. ~ (n - 1) as well as 
X .. ~ (n + 1), ifn IS odd. (Mysore Univ., B. Sc.1991) 

Solution. Here we have to find the mode of the binomial distribution. 
(i) Let n be even = 2m, (say), m .. I, 2, ~ .. 

:. Ifp .. 0·5, then(n + 1) P - (2m + I) x (t) .. m + 0·5 

Hence in ibis Qlse, the distribution is unimodal, the unique qtode being 
at X .. m = n12. 

(ii) Let n be odd = (2m + 1), say. Then 

(n + I)p OK (2m + 2) x t = m + I (I,nteger) 

n-l 1,.n.+1 ---+ 
2 2,' 
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Since (n + 1) P is an integer, tbe distribution is bhnodal, tbe two modes 
being ~ (n + 1) and ~ (n + 1) -1 - ~ (n -1 ). 

7·2·6. Moment Generating Function of Binomial Distribution. Let 
X. be a variable following binomial distribution,' then 

Mx(t)=E(e'x) = I iX( n )Jlq"-X_ i (pe'tl- X (n )_ (q+ pe')" 
x-o x x-o x 

... (7'10) 
M.O.F. about Mean ofainomial Distribution: 

~1e'(X-"p)} = E(e"'e- tnp ) _ e- trip . E(e'x) '" e- tnp . Mx(t) 

= e -tnp_ (q + pi)" = (qe -pt + pet'!)" ... (7'11) 

[ { p2p ti ti }' 
= q l--:pt+ 2! - 3! + 4! - ... 

{ U li '}f + p 1 + tq + 2! + 3'! :-... j 

[ t2 ,t3 2 2 • l 3 3 1" 
= 1 + 2! pq + 3! pq .(q - p ) + 4! pq(q + p ) + .. j, 

= [ 1 + {~2!.pq + ~3! 'pq(q _ p) + ~4!pq(1 -,3pq) + ' .. -}r 
[ 1 + ( ~ )" { ~2! . pq + ~3! pq (q _ p) + ~4! pq (1 _ 3pq) + ... } 

{ 2 r }2 
+ ( ;) ~ ! pq + j! pq (q .. - ,p) +".. + 

Now 
t2 

:J.l2 = ,Coefficient of 2! = npq 

3 

J.l3 = Coefficient of ~! = npq (q - p) 

l ' 
J.l4 = Coefficient of 4! II: npq (1 - 3pq) + 3n (n - 1) i l 

= npq (1 - 3pq) + 3n2 i l - 3ni l 
= 3n2il + npq (1 - 6pq) 

Example 7·13 X is binomially distributed with parameters n and p. What 
is tlte distrbut;on of Y = n - X?' [Delhi Univ. B.Sc. (l\laths Hons.), 1990] 

Solution. X - B (n, p), ,represents tbe number of successes in ~ hide;­

pendent trials witb constant probability p of sllccess for eacb trial. 
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:. Y .. n '- X, represents tbenumber offailures in n independent.trial with 

constant probability 'q' offailul;e for each trial. Hence Y = n - X - B (n, q) 

Aliter SinceX -B(n,p); Mx(/) = E(lx)=(q + pet)" 

.. My(/) .. E (iY) .. E (l("-~ 

= e"'· E (e- tX) .. eN Mx (- t) 

_ e"'· (q + pe-It 
- [e' (.q + pe-jf - (p + qe'f 

Hence by uniq'ueness theorem of m.g.f., Y .. n - X - B (n, q) 
9 

Example ',14. Tlte m.g.f. of a r.v. X is (~ + ~ l) . Show lliol : 

sr. 9-r 

P (J! - 20 < X < J! + 20)'. r71 ( ~ ) (~) (~) 
,[Delhi Univ. B.Sc. (Maths Hons.), 1989] 

9 

Solution. Since Mx (I) - (~ + ~ el
) = (q + pe' f ' 

by uniqueness theorem of m.g.f. X - B (n ... 9, P = j) 
212 

Hence E (X) - J!x .. np .• 3; ox· npq .. 9 x 3' x 3' = 2 

J! :t 20 .. 3 :t 2 x .J2 .. 3 :t 2 x 1·4 = (0' 2, 5' 8) 
•• P (" - 20 < i <: " + 20) - P (0'2 < X < 5'8) - P (1 s X s 5) 

s s 
- 1: P (x) = 1: "CxpX q'-x 

%-1 x-I 
5 

.. 1: 9Cx (lI~t (2/3)9-% 
%-1 ,·2·'. Additive Property of Binomial Distribution. Let X - B (nt, PI) 

and Y - B (n2, P2) be independent random variables. Then 

Mx (t) .. (ql + PI l)"" MY{t) - (q2' + P2 l)"z> ... (*) 

What is the distribution of X + Y? 
We have 

Mx + Y(/) = Mx (I) • My (I) [ •• ' X and Yare independent] 

- (q1. + PI e/)"1 • (lJ2 + P2 e/)"2 ... (**) 

Since (**) cannot be expressed in the form (q + p i)", from uniqueness 
theorem of m.g.f.'s it follows that X + Y is not a binomial variate. Hence, 
in generallhe sum of two independent binomial variales is nol a binomial variate. 
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In other words, binomial distribution does !lOt possess the additive or reproductive 
property. 

However, if we take Pi = P2 = P (say), then from (**), we get 

Mx+y(t) - (q + pe~"I+"Z, 
which is the m.g.f. of a binomial variate with parameters (nl' + n2, p). Hence, by 
uniqueness theorem of m.g.f."s X + Y - B (nt + m,p). Thus the binomial 

distribution possesses tile additive or reproductive property if Pi .. P2. 
Generalisation. If Xi, (i • 1,2, ... ,k) are independent binomial variates 

witll parameters (ni,p), (i - 11. 2, ... , k) tllen tlleiqum ~ Xi - B ( ~ ni, p). 
i-l i-l 

The proof is left as an exercise to the reader. • 
Example 7· 15. If tile independent random variables X, Y arf# binomially 

distributed. respectively witll n • 3, P .. 1/3, and n = 5, P = 1/3, write down 
tile probability that X + Y ~ 1. 

Solution. We ar~ given 
X -B (3,t) and Y -B (5, ~). 

Since X and Yare independent binomial random va'riables, with 
Pi = P2 = t, by the additive property of binomial distribution, we get 

X' + Y - B (3 + 5, t), i.e., X + Y - B (8, t) 
.. P(X+Y=r)=8 C,(j)'(j)8-, ... (*) 
HenceP(X + Y ~ 1) - 1 - P (X + Y < 1) 

= 1 - P (X + Y = 0) 
= 1 _ (1)8 

3 

7· 2· 8. Characteristic Function of Binomial Distribution. 

cpx (t) F E (ix) = i: eilx p (x) = i· itt (,n ) pX q"-x 
x-o x-o X 

= i: itt ( n ) (pi't q"-x ... (q + pi't ... (7·12) 
x-o x 

7· 2· 9. Cummulants of the Binomial Distribution. Cumulantgenerat­
ing function is 

Kx (t) = log Mx (t) = log (q + pe')" = n log (q + pe~) 

_ [ ( L 1... 1- )] - n log . q + p ~ 1 + t + 2! + 3! + 4! + ... 

[ ( P r t4 
)] = n log 1 + P t + 2! + 3! + 4! + ... 
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[ ( t2 r t4 ) Ii ( t2 r )2 
-n p t+ 21 + 31 + 4'!+ ... - 2 t+ 21 + 31 + ... 

3 4 

+ ~ (t + :! + I! + ..• ) - ~ (t + ~2! + I! + ... ) + ... J 
Mean = Kl = Coefficient-oft inKx(t) .. np 

J.l2 = K2 = Coefficient of :! in Kx,{t) z n (p _p2) = np (l-p) = npq 

The coefficient of r iII Kx (t) 

=. n [L _ '-. 2 . J... + i] = !!£. (1 _ 3p + 2p2) 
3! 2! 2! 3 3! 

:. K3 = Coeffi~ient of .I! in Kx (t) ... np (1 - 3p + 2p2) 

... np (1 - p)(1 - 2p) = npq(1 - p - p). = npq(q - p) 

J.l3" K3 - npq(q -p) 

The Coefficient of t4 in Kx (t) 

_ [L_'-(.i !) i.~_Ll 
-n 4! 2! 3!+4 +3 2! 4~ 

nn 2 3 = t! tt - 7p + 12p - 6p ] 

4 

:. K4 = Co efficient of ~! in Kx(t) .. np (1 - p) (1 - 6p + 6i) 

= npq [1 - 6p (1 - p)] = npq (1 - 6pq) 

:. "'4 = K4' + 3 K~ - npq (1. - 6pq) + 3n2 i l/ 
- npq (1 - 6pq + 3npq) = npq [1 + 3pq (n - 2)] 

7·,2· 10. Recurre~ce Relation for Cumulants of Binomial' Distribu-
tion. By def." . 

K, = - log Mx(i) - n - log (q + pe!) [d' 1 [d' 1 
d{ ,.0. dt' 

d K, [ d' d . , I [ d' (- 1 + e') 1 - = n -. - log (q' + pe), = n _. , 
dp ,d{ dp d{ q + pe ,.0 ,.0 

[ 
d, ... l 1 

K, ... l = n d{ ... l log' (q + pe~ 

[ d' d '~]O [ d' ( pe' ) ] = n -. - log (q + pe') .. n' - . 
U/~ U q+~ ,.0 ,.0 
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- n [~t: ( 1 - q +9 pe' ) 1.0 .. - nq [ ~~ ( 1 +1 pe' ) 1_0 
Hence 

Kr+l_pqdKr=_nq.[·dr( 1)] -npq[d:(~~-l)l 
dp d{ q+ pel. 1-0 dJ. q + pe' 1-0 

._ ._ nq [ d r {I + pe' - p } 1 
d{ q + pe' 1-0 

.. _ nq [d r {q + pe: } 1 . _ nq [d r (1)] .. 0 
d{ q + pe I .. 0 • d{ 1_ o· 

dKr ... (7'13) 
Kr+l .. pq dp 

In particular, 
dKI d . 

K2 ... pq' dp = pq . dp (np) = npq ('.' KI = mean • IIp) 

d 'K2 d (npq) . 
K3 ,., pq' dp ... pq' dp = npq (q - p) 

dK3 d ( I K4 = pq . ap = pq . dp npq (q - p) 

.. npq ~ {p (1 - p) (1 - 2p) I 
= npq . ~ (p - 3i + 2p3) D' npq (1 - 6p + 6p2) 

= npq [ 1 - 6p (1 - p) J = npq (1 - 6pq) 
7· 2· 11 • })robability Generating Function of Binomial Distribution 

P(s) = i: P(X = k) s"' .. i: ("k) (pst q"-k ':' (ps + q)" 
... ·-0 ... -0 ... (7-13 a) 

The fact that this generating function is ntb power of (q + ps) shows tbat 
p(x). = I b (x ; n, p)'L is the distribution of the sum S" .. Xl + x~ + .. , + X" of 
" random variables. ith t~e common generating function (q + ps). Each variable 
X, assumes the valuc'Owitb prObability q and 1 with probability p. 

Thus 16 (~; n,p)} .. I b (k; l,p).r .. :(7· 13b) 

I,.et X and Y be ,two inde~ndent random variables having b (k; m,p) and 
b (k ; n, p) as their distributions, then 

Px (s) .. (q +_ps)m and Py (s) .. (q + ps)" 

Px + y(s) = (q + ps)'" (q + ps)" =. tq + ps)m H 

.. [bSk;m,p),}.*t:b'(k;n,p)} - [b(k;m + n,p)'} ... p·13c) 
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Also 11(1)' = [n (q + pS)"-:1 pls-l - np 

11(2)' = [n(n - 1.) (q + ps)"-2i]s_~ - n (n ,...1)i 

11(,)' = [n (n - 1) ... (n - r + 1) (q + ps)"-' p' 1s-1 

= n (n - 1)..: (n - r + 1) p' 
Example 7·16 Show that 

1 

E (X ! a ) r. { f"'l G (t) dt, a > 0 

where y. (I) is tlte probability generating {unction· of -x. 
Find it wilen X - B (n,p), and a .. 1 

'\ 

"19 

and so O!l. 

[Delhi Univ. (Stat Hons.) Spl Course, 1988] 
1 1 

Solution. R.H.S. = f t a-I. G (t) dt == f t a - 1 (Et{) dt 
00' 

• { {,.-' (:P>f) l d, • : H f<.-ld'] 
'I (1) .. :: px' (x + a) -.E X + a 

" If X B (n,p), then G (I) = l:: t px = (q + pt)" 
. x-o 

Hence taking a = 1 in (*) and using (**), we get: 

. 1 (q + pt)" + 1 1 1 _ " + 1 
E . - + t)" dt - ' - q 1 1 

[ (X + a)] - {(q p -I (n + l)p 0 - (n + l)p 

... (**) 

7· 2· 12. Recurrence Re'lation for the Probabilities of Binomial DiS· 
tribution. (Filting of Binomial Distribution). 

We have 

p (x + 1) 
p(x) 

( n ) x+lq"-x-l 
X + 1 p .. ....:....------:.----

. ( ; )i,x q"-x 

n - x e. 
=x+l'q 

p(x;.+ 1) .. -_. "'. p(x), { n - x D} 
. _ x + 1 q 

(un simplifiCation) 

... [1. 14) 

which is the required re,currence formula. . 
This formuJ~ provides us a very convenient ~etllod ofgraduating ,he given 

data by a, binomial distributi()n. The ohly probability we need,to calculate is p (0) .. .. .. 
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which is given by p (0) = if, where q is estimated from the given data by equating 

the mean X'" of the distribution to np, the mean of the binomial distribution. Thus 
A _ 

P ... x In. 
The remaining probabilities, viz., p (l),p (2), ... can now be easily obtained 

from (7· 14) as explained below: 

p(l) ... [p(x + ~)]x-o'" (; ~~ . ~L_o p(O) 

p(2) co [p(x + l)]x-l = (n - xl . R) p'(l) 
x + q x-l 

,p(~} .. [p(x + 1)]x-2.= (; ~~ . ~L_2 p(2) 

and soon. 
Example 7·17. Seven coins are tossed and number of heads noted.-Tlle 

experiment is repeated 128 times and the following distribution is obtained: 

No.o/heads 0 1 2 3 4 5 6 7 Total 
,. 

Frequencies 7 6 19 35 30 23 7 1 128 
Fit a Binomial dtstribution assuming 
(i) The coin is unbaised, 
(ii) The nature of tl(e coin is not known. 

(iii) Probability of a head for fOllrcoins is 0·5 and for tlte remainin~ three 
coins is 0·45. 

Solutioll. In fitting Binomial distribution, t;irst of all. ihe mean and 
variance of the data ar~ equated to np and npq respectively. Then tbe expected 
frequencies are calculated from these values of n. and p. Here n = 7 
and N • 128. 

Case I. When the coin is unbaised 
p = q ... ~, (Plq = 1) 

Now p (0) ~ t/' -= (~)7 ... (11128) 

[(0) '"' Nt/' • 128 q)7 .., 1 

Using the recurrence formula, the various probabilities, viz., p (1), P (2), ... 
c~n be eaSily calc;ulated as shown below. 

·x n-x n -x.1!. Expected, frequency --
r+l "X + 1 q J f(x) = Np (x) 

0 7 7 f{0) =Np (0) = 1 

1 3 3 /(-1) ... l'x?'=7 
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2 
s s 1(2) ~'-7 x 3 .. 21 
3 3 , 

3 1 1 1(3) .. '21 x i - 35 

4 
3 3 1(4) - 3_5 xl ... 35 
s 5' 

5 
1 1 /(5) - 35 x ~- - -21 
3 3 5 I; 

1 1 1(61 .. 21 x 1. - 7 (j. 
7 ,7 3 

7" ~ 1 
1m - 7 x "1 ... 1 . 

Case II. When', the' nature of the coin ~iS' not known,. thell 

1" 433 
np = - ~ t. x' - - .. 3·3828' n .. 7 N .- /, ,~ 12° ., 

,- 1 '? 

p = O· 48326 and q .. O· 51674, (P/q ... O· 93521) 

[(0) = Nq7 '9 1;28 (0' 5~67)7 - .I' ~93 (~sing logarithms) 

x n-x !! -' .rt" .l!. Expected frequency --
x + 1 x' + 1 q I(:t) .. Np (x) 

0 7 6·54647 1(0) =Np. (0) .. 1· 259-3 = 1 

1 3 2: 80563, I(t) =; 1· 2593 x 6· 54647 ... 8· <l/f,3S = 8 
-; , 

2 s 1·55868 I(2) = 2· 80563 >: 8· 2438 - 23· 129 = 23 
3 

3 1 0·93521 [(3) = 1·55868 )(1,23"'129 = 36'05 = 36 

4 3 , O· 5.6r"13 f(4) = o· ~521 x !6' 05'-= 33· 715 = 34 
5 

I " 
, t 

5 r 0'31174 [(5) = 0·56113 x 33·715 = 18'918 ~ 19 
3 , 

6 1 0'13360 [(q) =.0·31174 x. 18·918 =' 5.·~97 ~6 
I , 

• 7 - , , 
7 1(7) =·0'13360 x 5·897.0·788 = 1 .. . 

The probability generating fUllctions-(p.g.f.), say P:.r(s) for tbe'4 coilL'Iand 
Py (S) for the remaining 3 coins are given;by, ~ 

Px (s) = (0· SO .+ O· 50 S)4, Py{s) = (0' 55 +r o· 45s)3 ... (~.f: 7' 1'3 (a)l -
Since all the throws a fe independent, the p.g.f. Px + y(s) for the whole 

experiment is- given by 
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... le/. 7· 13 (b)] 

= (0' 50 + O· 50 st (0, 55 + O' 45 s)3 

= (0· 0625 + O· z:; s + O· 375;' + O· 25 s3 +. o· 0625 i) 
x (0, 166375 + O· 408375 s + O· 334l~ s2 + O· 091125 i) 

Now [(xJ • N·x coeIficient of f in Px + y (t) 
.. '[(0) .. liS ~ . 0625 x ·16637 ... 1'13310 

[(1) ... 128\' 25 + . ,166375 + . 408375 x • 0625 t - 8· 5910 
[(2) = 128 . 28396 ~ ... 36' 3470 [(5) .. 128 1'14602 ~ - 18·6934 
[(3) .. 128' . 1841p,} .., 23· 5669 f(6) - 1281' 04366} .. 5·5889 
[(4) = 1~ . 260570} = 33· 3529 [(7) ,= 128 . 005695} = . 72896 
Example ,. 18. Let X and Y be independent binomial variates, eac/l with 

p,arameters n a1/d.p. Find P (X ~ Y '7' k). (~alcutta Univ. B.se., 1993) 
Solution. Since,each of the variablesX and Y takes the values O,I,2, .. ,n, 

Z =X - Y takes on; the values - n, - (n - 1), ... , - 1,0,1 ... , n 

" P (Z = k)... ! P (X = k + r n Y - .r) 
r-O­
n 

!= ! P (X - k + r)· P (Y - rf ('.' X and Yare independent). 
r-O 

- r~o (k: r) pk+r.(-k-r (;) pr,,(-r 

.. r~o ( k 1 r) ( :) pZ,+k l~-2r-k 
wherek--n, - (n .... l), ... , -2,--f,0,1,2, ... ,'n;andq-. I-p. 
In particulal, we have: . -

P(Z .. 0) = i (n)2. pz, q2ll-Z, 
r-O r 

P(Z .. - n), = r~o ( _ nn+ r) {:) p2r-n'l"-:-Z, - p"q", 

because ·w~ get the result w~ell r ~ n and for other values of r < II, 

( n J is not defined and hence taken as O. 
- n + r • 

. Example ',19. Fin.4 the m.gj. of standard 'binomial variate (X - np),..r;;pq 
and' obtain its ,limiti'ng form as n ~ 00. Also interpret the result. 

[Delhi UJiiv. B.Sc. (Stat. Hons.) 1990,8Sl 
Solution. WeJcnow. that if.X' - B-(I1;p), then 

Mx (t) - (q + p e~)" 
The m,gL of standard binomiarvariaie.. 
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X-np X:""JA. 
Z ~ _~ - - , (say) vnpq a 

2 where I.l '" np ~nd a .. npq, is given by 
Mz(I) .. e-,.tlo Mx (I/a) 

== e - IfPtl.fiijij • (q + p etl.rn;;q)" 

.. [ e .,-ptlv;;pq (q + p e'1v;;pq) r 
IS [ qe -ptlv;;pq + petllv;;pq r 
. [q {t -_~ + il + 0' (n- 312)} 

vnpq ~npq 

[from'(**») 

+ p {t + ......9!..- + il + 0" (n - 3/2 } ] " 
.Jnpq 2npq 

wbere 0' (n -312) and 0" (n -3/2) involve terms containing n3/2 lind high~r 
powers of n in the denominator. 

:. Mdl) = [ (q ~ p) + ~:;: (p + q) + 0 (n- 312) r 
- [ 1 + ~ + 0 (n- 3/2) r 

wbere 0 (n -3/2) involves tern\s with "3/2 and higher powers of n in the 
denominator. 

:. log Mz(t) a" Jog [1 + ~: + 0 ("_3/2)] 

2 

• n [ { ~ .. 0 (.-312) } - H ~ + 0 (n-"1} + _ .• J 
= £. + 0'" (n - 1(2) 

2 
where 0'" (n -1/2) involve tenns with "112 and higher powers -of n in the 
deaominator. Proceeding to the limit as n - 00, we get 

Jim 12 
n _ 00 lo~ Mz (I) - "2 

=> 

Interpretation. (**) is the m.g.i. of standard normal variate [c.t Remark 
10 § 8· 2· 5J. Hence by uniqueness theorem of moment genera~ing fuDCtio~ 

\ 
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standa.rd binomial variate tends to standard normal variate as n - 00. In other 
-words, binomial distribution tends to normal distribution as n - 00. 

Example ,. 20. A drunk performs a random walk over positions 0, ~ 1 .. ., 
:!: 2, ... , as follows. He starts at O. He takes succe~sive one unit steps, going to the 
right witlt probability p and to the left with probability (1 - p): His steps are 
ind~pendi!nt. Let X denote his position afte; n steps. Find the distribution 01 
,(X + n)/2 andfind E (X). (I.I.T. B.Tech., Dec. 1991) 

Solution. With the ith step of the drunk, let us associate a variable}(" 
defined as follows: I 

steps. 

Xi :;= 1, if he takes the step to the right 
= - 1 if he takes the step t9 the left 

Then X - Xl t X2 + ... + Xn, gives the position of the dnmkard after" 

Define 
Then 

Yi -~i / + 1)12 
Yi ;= (1 + 1)/2 = 1, with probability p 

= ( .... 1- + 1)/2 = 0; -With probability 1 -' P = q, (say). 
Since tbe n steps of drunkard are independent, Yi'S, ,(i = 1,2, ... n) are 

Li.d. Bernonlli variates with parameter p.. 
n 

Hence I Yi - B (n,p) 
i- 1 

~ 1: fi" 1: (Xi + 1) = .!. [ 1: Xi + n] ... X _~ n - B (n, p) 
i-I i-I 2 f i-I 2 

n 
wbere X = I Xi, ,is the position'ofthe drunkard after n steps. 

; - 1 

Since (X + n)/2 - B (n,p), we have 

I E [ X ; n] = np ~ ~ E (X + n) = np 

? E (X) + n = 2np ::;. E (X) = 'n (2p. - 1) 
Example ,. 21. SlIppose that tIre r. v. X is uniformly distributed on (0,1) 

i.e.,fx (x) .. 1; 0 $ x $ 1. f: ... (*) 
ASsllme that. tile conditional distributional Y I X .. x "as a binomial dis· 

tfWution witllparame(ers 11 and p = x, i.e., 

P( Y = ylX = x) = (; ) x' .(1 - X)"-'; y - P,I,2, ... ,n 

Find (a) ~ (Y) 

(ttj 

(b) Find the disiribution ofY. (punjab P.C.S., 1990) 
Solution. (a) We are given that the conditional distribution of 

fiX· ... x -B(n,x) 

":'. E(fIX - x) = nx 

... (ij 

... (ii) 
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We have: 
E(Y) = E[E(Y\X)] = E[nX] ... nE(X) [On using (ii») 

1 1 

NowE(X) '!' f xf(x)dx 0: f xdx =~. 
o 0 

1 
:. E (Y) ... n x q) ... 2'n 

(b), Webave:fx,Y (x,y) ~ fx(x) ''/YI'X (y\x) 
Since X has (continuous) uniform distribution on (0,1) marginal distribution 

off is given by. 
... 1 

fy(y) = f f(x,y) dx = f fylX(Y Ix) . fx(x)dx 
-GO 0 

1 

= f"Cy . x(1 - x)"-y . 1 . dx 
o 

1 

= "Cy f r' (1 - x),,-y dx 
o 

(using (*) and (**)] 

= "Cy'~(y+ 1,n-y+ 1)= ,(n~ )' y. n y. 
r(y+ l)r(n- y+ 1) 

r (n + 2) 
n ! .y! (n - YH 

x 
y! (n - y) ! (n + I)! 

1 
y = 0, 1, 2, ... , n 

Since Y takes tbe values 0, 1, 2, ... , n each with equal probability 
l/(n + 1), Y bas discrete uniform distribution. 

Remark We could find E (Y) on using the distribution of Y in (b). II, 1;' 
E (Y).. I Y p (y) ... -- I Y 

y-O n + 1 y~O 
1 n 

= n' + 1 [0 + 1 + 2 + ... + n] .. 2" 
as in Part (a). 

Example 7· 22. If K (t) is tire cumulative function about the origin of 
tile Binomial Distribution of size n, show that 

:, K (t) ... n \1 + e.l. (ar) r \ where z = Jog.. (P/q) 

(b) By exPflnding tile R.H.s. in powers oft by Taylor's Theorem, show that 
d,-l 

lC, = n ~l' where lC, is the nit cumulant. 
dz'-
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(c) Hence or otherwise obtain the recurrence relation 
dK, 

K,+ 1'" pq. dp' r > 1 

[Baroda Univ. B.Sc. 1993; Delhi Univ. B.Sc. (Stat. Hon~.) 1992] 
dK, 

(d) Prove that K, + 1 - liZ' where z = loge (plq) 

Solution. For binomial distribution with parameters nand p, we have 

K (t) = log M (t) = n log (q + pe') 
-1 

!!..K(t) _ npe' I - n (1 + 9. e- l ) 

dJ q+pe p 
(a) 

if z - loge (P/q) => (P/q) - ~ => (q/p) - e- z , then 

!!.. K(t) - n[ 1 + «!-(z+l)r 1 ••• (.) 
dJ 

K, - [~; K (t) ] ... [~;~ ~ • ! K (t) ] 
1-0 . 1-0 

(b) 

By summetry of the function ~ + ';(1 + ~ + ~ in t and z we JIave 

d [ ~+I ) d ( ~+I ) 
dt 1 + ~+I .. dz 1 + ~+I 

d,-1 £+1) d,-1 ( ~+I ) 

=> dJ,-1 1 ,+ £+1 - dz,-1 'I + '~+I 
Substituting in (*,*), we get 

K - n -- - n __ '. __ '_0-[ d'-1 ( if+ I
)] d'-J ( if ) 

, U- 1 1 + eZ+ 1 1-0 dz,-1 1 + if 

- n --1 (1 + e-z)-1 - n --1 1 + 9. 
d,-1 d,-1 ( )-1 
U- dz'- P 
d,-1 . p -n-­dz,-1 

dK, _ n.!!.. (d'-1 p ) _ n.!! (d'-1 p ) dz 
(c) dp dp dz,-1 dz dz,-1 dp 

d' 1 -n~·-
1 dz' pq 

--·K,+1 
pq 

l·.· z = loge (plq)) 

[From (**.)) 

prakash
Rectangle
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(d) dK, _ dK, . !!£. .. d~, I dz .. dK, / -.!. _ .. ,dK, 
dz dp dz dp. dp dp pq pq dp 

d K, [c.,. p,art (c)] 
dz .. K,.1 

Example 7'13. If b (r; n,p) = ( : ) p' t/-' is the. binomial prob­

ability in the usual notation and if 

get: 

k 

B(k;n,p)=P(X s k) = I b(r;n,p), 
,.0 

then prove that 
q 

B(k;n,p) .. (n - k){ ~ )! I'-k-l'a - t)k dt, q = 1 - P 

k k 
Solution.B(k;n,p) & I b(r;n,p) .. I (n )pi/'-' 

,.0 ,.0 r 

Differentiating w.r. to q and n~ting that q .. 1 - P => !!!I.d - - 1, we 
L ' • rp 

~ ·B (k; n,p) ... ,~o[ (~) (rp,-1 (-1)" t/-' + pl:. (n,.. r) t/-,-1 J] 
_ ~ [n!(-r) ,-1,,,11-' + n!(n-r) ,,,11-,-1] 
~. 0 r! (n - r) ! p 'I r ! (n - r) ! p 'I 

~ [ n(n-l)! ,-1,,-, 'n(n-l)!' , "-'-1] 
- ,.0 -(r-l)!(n-r)!p q + r!(n-r-,1\!pq 

k 

.. ,: o[ n' (n;1 )p' t/-,-1 L- n ( ;= np,-1 ¢-J 
k 

:& I .[n It, - t,-I}] 
,.0. .•• (**) 

h (n - 1) , ,,11-,-1 
W ere t, .. r P 'I I . • •• (* **) 

.. n [ (to - 1;-1 ) + .('1':" to) + (t2 - tl) + ... + (tk ~ Ik-l ) ] 

- n tk [';: t_ i • 6, Fro~ < •• *)] 
, d B (k ) ( n - 1) k if -k-l 1 :. dq' , "-,p - n k" p' , p ~ - q 

On integration, we get 



F,!Indamentals or Mathematical StHtist~ 

q 

.1i.(k;1.I,p)" n' (n k 1 }{ (l-,u)". ,j'-k-I duo 

But 11 • ( n ~ 1 ) - k ~ (~(: ~ ~ k~! = ;/(~~--k~)! .. (n - k) (,~ ) 
q 

•• -B (k; nIP) .. '(n - kj ( Z )! (1 - 4:'u,,-k-I du 

as desired. 
Remarks. I. We further get: 

A(k 1 _ k) .. r(k + 1) r(n - k) .. k!(n-k-1)! 
p +, n r(n + 1) n ! 

~'~(K + ;,n _ k) .. k!(n~~-J)! .. (n - k)"( ~} 
Hence the result ma~ be written as : 

1 q • 

B (k; n,p) =P(Xs. k) = ~ (k+ 1, n -k)!( l_u)k ",-k-I du 

This result is of greal practical ulility. It enables us to represent the cumula­
tive Binomial 'probabllilies (whicb are generally quite te~ious and time consuming 
to compu~e) in tenus oflncomplet~ Beta Functions wp.bich 'are tabulated in Kat! 
Pearson's'Tables of,the Incomplete Beta Functions. 

2 Let us now work out tHe proba bility : 

p{x ~ k)'" ,i (n ).p' t/'-' 
,.Ie r 

Differentiatil!g w.r. to p, and proceeding similarly;we shall get: 
d ' II. 

d P(x ~ k) .. - n I (T, - T,-l) (Try it) 
P ,.Ie 

where Tc = ( n ~ J ) p' t/'-,:-l, (T" •• 0) 

dp(X) (n-I) Ie-l( '),,-le( ) ~"dp ~k=nTIe-l=n ,k-,I p l....:p ·.·q-l-p 

On integration, we shall get:, ~ 
, p 

p (X ~ k) - n ,( ~ : ~ ) f ule - 1 (1 - uf- Ie du 
• .0 

p 

P(X ~ ,k) •• ~ (k, 11 ~ k + 1) ! ,i-I (1 - u),,-Ie du 

This is quite an important result and sho~ld be committed to' memory. We 
shall use it in 'Order Siatist;cs' • 

This result can be.stated 8S follows : 
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If X - B (n,p) and Y has Beta distribution with parameters k and 

" _ k + 1 (c.f. Chaptl'r 8), then 
P (Y s p) = P ()( II: k) = 1 - P (X s k - 1) 

==> Fdp) = 1 - Fx (k - 1) 
EXERCISE 7 (a) 

I. (a) D$!Scrlbe the PrQbab'i1ity model' from which the biilomiai distribu­
tion can be,generated. tIe~ce find the first four central moments. 

(b) Ifp is the probability of 'success' ata single trial, 9btaiJl'the probability 
ofr 'successes' out of,n independent trails. Determine ,the mode of the resulting 
distribution. 

Z. (a) Define the binomial distribution with_parameters p and n, and 
give a situation in real life where the distribution is likely to be realized. Obtain the 
moment generating function. of the binomial distribution and hence Of otherwise 
obtain the mean, variance .. skewness and kurtosis of the distribution. 

(b) Obtain the Moment Generating Function of the Binomial.Distribution. 
Derive from it the result that the sum of two binomial variates is a binomial variate 
iftbe variates are independent and have the same probability of success. 

3. The mean and variance of a -binomial variate X wit)) para'meters 
nand p are 16 and·8. Find 

(i) P (.r - -0), (i.) P (X • 1), (iii) P (X II: 2). 
4. For a BinomIal distribution the mean is 6 and the standard deviation is 

..J2. Write out al~ the terms of the distribution, 

. Ans. n - 9, p ~. 2;;, 'q • 1/3; P (r) - (113)9. ( ;) 2'; r - 0, 1: 2, ... , 9 

S. (d) A perfect cube is thrown a large number of times insets o"'~. The 
occurrence of a 2 or 4 is called a success. In what proportion of the sets would you 
expect' 3 successes. 

Ails '1.7·31 % 
(b) In eight throws of Ii die,S or 6 is considered-a success. Find the mean 

number of successes and the standard' deviation. (Ans~2' 66, l' 33) 
(c) A'man tosses a fair coin 10 times. Find the probability· that he will have 
(,) heads on the firSt five to~ and tails on the next five tosses 
(ii) heads on tosses 1,3, 5, 1~ 9 and tans on tosses 2,4,6,8,10. 
(iii) 5 heads and 5 tails 
(iv) at least 5 heads 
(v) not more than 5 heads. [Madras Univ.B.SC.'(Maili Stat) Nov. 1"1] 

Ans. (,) (1I2)Jo, (iI) (112)10, (ii.) 10Cs ( Ja )10 

10 10 S 10 
(iv) I 10C% (1') (v) I 10C% (1) 

%-s 2 %-0 2 

•• (a) In 256 sets of twelve tosses of a fair coin, in how many cases may 
one :expect eight heads and four tails? 

(Ans.31) (Delhi Univ. B.Sc. OdI;'Z), 
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(b) In 100 sets often toss~ of an unbaised coin, in how many cases shoUld 
we expect 

(I) Seven heads and three tails, (ii) at least seven heads? 

Ans. (i) 12, (il) 17 
7. (a) Ouring war 1 ~hip out of 9 was sunk on an average in making a 

certain voyage. What )Vas the probability that exactly _~ out ora convoy of 6 ships 
would arrive safely '1 (Madras·Univ. B.sC;~ 1992) 

Ans. 6C3 (8/9)3 (1/9)3 

(b) In..the long run 3,vessels out of-every 100 are suRk.- If 10 vessels·are OUt 
what is fhe probability that ' 

(I) exactly 6 will arrive safely, and 
(ii). at least 6 will arrive safely '1 
Bint. The probability 'p' that a vessel will arrive safely is 

P - 97/100 = 0·97 and q - 0·03 
The probability that out of 10 vessels, x v~s.els will arrive safely is 

p (x) .: 10 C"Jf q10-x _ 10 C" (0· 97)" (0. 03)10-" 

(I) Required probability - p (6) _ 10 C6'(0· 97)6 (0·'03),,· 

(ii) Required probability- P (X -= 6) 
8. (a) A student takes a tnie-false examination consisting ofl0 questions. 

He is complet.ely unprepared so he plans to guess each answer. The guesses are to 
be made at random. For example, he may toss a fair coin and 'use the outCome to 
determine his guess. 

(i) Compute the probability that be guesses correctly.at least five times. 
(ii) Compute the probability that he guesses correctly at least 9 times. 
(iiI) What is the smallest n tbatthe probability of guessing at-least n correct 

answers is less than 1/2. (Dibrugarb:Univ. M.A., 1993) 

An~. (i) 319/512; Oi) 1l/10~~; (iii) 6. 
(b) A inultiple 'choice test consists .of 8 questions and 3.answers H) each 

question; of which only one i.<; cotreCt. If a stude"t answers each question by rolling 
!l balanced die and cl1ecking the fi~t ans~er ifhe gets 1 or2, tbese~nd answer if 
he gets 3 or 4, and the third answer if h~ gets 5 or 6, find tbe probability of getting: 

(i). exactly 3 correct answers, 

(ii) no correct answer, 
(iiI) at least 6.correct answers. [Gaubati Univ. M.A. &ron.), 1993) 

9. (a) The incidence of occupational disease in an industry i~ such that tbe 
work~rs have it 20% chance of suffering from it. What is -the probability that out 
of six workers chosen at random, four or more will suffer from the disease. 

Ans.52/312S 
(b). (~) In -a- binomial distributio~ consisting of 5 independent trails, 

probabilities of 1 and 2 successes are O· 4096 a!ld O· 2048 respectiyely .. Findthe 
parameter p of the distribution. (ADs. o· 2) 
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10,. (a) With the usual notations, find p for ,a binomial random variable X 
jfn ., 6 and if 9P (X - 4) OK P(X - 2). (ADs. 0''25) 

(Myso~ Univ. B.Se. April 1992) 
(b) X is a random variable following binomial distribution with. mean 

2·4 and variance 1· 44. Find P (X :! 5), f (1 < X !i 4). 
ll. (a) In a certain town 20% of the population is literate, and assume that 

200 investigators take a sampl~ of ten individuals each to see whether t~ey are 
literate. How many investigatq~ w~)Uld you expect to report that three people or 
less are literates in the sample? (Shivaji Univ. B.Se., Oct. 1992) 

(b) A lot contains 1 percent of defective items. What should be the number 
(n) of items in a random sample so that the probability of finding at'least otie 
defective in it, is at least O· 95 ? (Ans., t>8) 

12. (a) If on the average rain falls on ten days in every thirty days, find 
the probability 

(t) that rain falls 01\ at least three days of a gIVen week, 
(ii) that first three days of a given week will be dry and the remaining wet. 

7 

Ans. (I) I 7Cz (l/3t (2/3)7 -z, (il) (213)3. (1/3)4. 
z-3 

(b) Suppose that weather records show that on the average 5 out of31 days 
in October are rainy days. Assuming a binQmial distribution with each day of 
October as a n independent trial, (i,1Id the probability that the next October will have 
at most three rainy days. 

Ans. O· 2403 
13. The probability of a man hitting a ~rget ~s 1/4'. (I) If he, fires 7 times, 

what is the probability p of his hitting the target at least twice? (il) How many 
ti.mes must he fire so.that the probability of his hiu,,,g the target at least once is 
greater than 2/3? [ADs. (i) 4547/8192, (it) 4 ] 

Hint. (ii) p - ~, q - ~ . We want n such that 

1 - ".II > ~ => ".JI < !. => (.!)" < .!. => n' _ 4 If 3 If 3 4 3 '. 

14. (a) The probability of a man hitting a taJ'getis 1/3. How many times 
must be fire so that the probability of hitting the target at least once is more than 
90%. Ans. 6. ' (Shivaji Univ. B.se., 1991) 

(b) Eight mice are selected at random and they are divided into 'two groups 
of 4 each. Each mouse in group A is given a dose of cel1;ajp poison 'a' which is 
expected to kill one in four; each mouse in group B is given a dose of certain poison 
'b' which is expected to kill one or two. Show that nevertheless, there may be 
fewer deaths in group A and find the probability of this happening. 

ADs. 525/4096 
15 (a) A card is drawn and replattd in an ordinary deck of 52 cards. How 

many times must a card be d~wn so that (I) there, is at least an even chance of 
drawing a heart, (it) the probability of drawing a heart is greater than 3/4 ? 

ADs. (I) 3, (il). 5 
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(b) Five coins are tossed. Wbafis the variance Of the number of heads per 
toss of the five coins: 

(i) if each coins is unbiased, 
(ii) if the probability of a head appearing -is o· 75 for each coin, and 
(iit) if four coins are unbaised and for the fifth the probability of a head 

appeaong is'O' 75 ? 
Hint- (iii) Use generating function. [See Ex. 7· 17 (iii») 
16~ An owner of a' small hotel with five rooms is considering buying 

teievision sets to rent to room occupants. He expects that about half of his 
customers would be willing to rent sets, and finally he buys three sets. Assuming 
100% occupancy at all times: 

(t) . What fraction of the evenings will there be more request than T.V. sets? 
(ii) What is the probability tbat a custo-mer who requests a television set 

will receive one? 
(iit) If the owner's cost per set per day is C; what rent.R must he charge in 

order to-break even (neither gain nor lose)-in the long roll ? 
Hint. (i) Let the random variable X denote the daily number of re-

quests. Then required probability is 
. 5 5 

P (X i!: 4) .. P (X ... 4) + P (X • 5) .. (!) u) + n) (4) 
(ii) Tlie customer can get a T.V. in the following mutualh exclusive ways, 
(a) There are no other requests that night. 
(b) There is one other request. 
(c) There are two other requests. 
(d) There are three other requests and his request precedes at least one of 

them. 
(e) There are four-other requests, and his request preceedes at least two of 

them. 
The probability of the desireCl event 

.. (0· 5t {I + ~Cl + 4C2 + 7' . 4C3 + j 4C4 } 

(iit) Mean reve'nue 
_ (0·5)5 -0 + 5C1 (0'5)5 R + SC2 (0-5)5 2R + j5C3 (0-5)S + SC4'(O'5)5 + 5C5 (0'5)~13R 

.. 73 R 
32 

The break-even rental is the value of R for which 

'73 R _ 3C => R;= 1· 315 C 
32 

17. A manufacturer claims that at most 10 per cent of his product is 
defective. To test this claim, 18 units are inspected and his claim is accepted if 
among these 18 units, at most '2 are defective. Find the probability that the 
manufacturer's claim 'wi)1 be accepted if the actual probability that a unit is 
defective is 

(a) O· 05 (b) O' 10 (c) O' 15 a'ld (d) O' 20. 



'fheOretical Discrete Probability Distributions 7·33 

Ans. (a) O· 9410 (b) o· 9326 (c) O' 4445 (d) O· 2715 
18. (a) A set of 8 symmetrical coins was tossed 256 times and the 

freql~encies of throws observed wetr as follows : 

Number of heads : 0 I 2 3 4 5 6 7 '8 

Frequency of throws: 2 6 74 63 64 ?O 36. 10 .I 
Fit a binomial distribution and find mean and standard deviation of fitted 

distribution. 

(b) A set of 6 similar coins is tossed 640 times with the following results: 

Number of heads : 0 t 2 3 4 5 6 

Frequency: 7 64 140 210 132 75 12 
Calculat~ the binomial frequenci~s on the assl,lniption that the coins are 

symmetrical. 
19. (a) Th~ folJowip,gdata due to Weldon shows the results of throwing 

12 dice 4096 times, a throw of 4,5 or 6 being called 'a success (x). 

x: 0 I 2 3 4 5 6 7 8 9 10 II 12 Total 

f: - 7 60 198 430 731 948' 847 536 257 71 II - 4096 
Fit the binomial distribution and calculate the expected frequencies. ·Com­

pare the actual mean and S.D. with those, of the expected'ones for the distribution. 

Ans. Expected freq. : I" 17, 66, 220 495 792, 924, 792, 495, 
220, 66, 12, 0; mean = 6, variance = I· 71. 

(6) In 103 litters of 4 mice, the number of litters which contained 0, I, i, 3, 
4 females are recorded below: 

Number offemale mice o I 2 3 4 Total 

Number of litters 8 32 34 24 5 103 
(l) If the chance of obtaining a female in a single trial is assumed constant, 

estimate the constant but unknown probability. 

(ii) If the size of the'litter 4 ~ad not been given, how could it be estimated 
from the dllta ? 

20. X is random variable distributed according to the Binomial law : 

b (x; n,p) = ( :) opx (--x; x _ 0, I, 2~ ... , n 

Obtain the recurrence fomlUll! : 

n - X n 
b(x + 1 ;n,p) = --·c...·b(x;n,p) 

x t 1 q " 
Use this as a reduction fomlula and,geUhe theoreticaHrequencies when an 

unbaised coin-is tossed 8 times and the experiment is repeated 256 times. 

(Madras J]niv. B. Sc. April 1992) 

21. (a) .By d,ifferentiating t~e following identity with respect to p and then 
multiplying by p, . 
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x~o (:) p%q.-% - (q + p)",q - 1 - P 

prove that "'1' .. np and "'2 - npq. 
11. (a) Let X - b (x; n,p) and r be a non-negative integer. If the rth 

moment about the origin is denoted by."",' - E (X'), prove that 

, , (1 ) d "': "',.1 - np"" + p - p dp 

[Delhi Univ. B.Sc. (Hons. Subs.), 1993, '88] 
(b) Show that for the binomial distributionB (n,p), 

"'r+l ... pq (nr""'_1 + ~""')' .p + q .. 1, 

where symbols have tbeir usual meanings. 
[Delhi Univ. B.Sc. (Stat. Hons), 1989] 

(c) If X - B (n, p), obtain the recurrence relation for its central moments 
and hence find values of PI and fb 

[Calcutta Vniv. B.sc. (Hons.), 1991] 
13. (a) The following results were obtained 'when 100 batches of seeds 

were allowed to germinate on damp filter paper in a laboratory : 
1 89 

fh - 15 and ~2 - 30 

Determine the binomial'distributiolJ and calculate the frequency for X .. 8, con­
sideringp > q. 

Hint. We have PI ... (qn-;:)2 - I~ ... (i) 

A 3 1-6pq 89 ..,2- + a-
npq 30 

and ... (ii) 

From (t) and (ii), we can find the value of n,p an~ q 

(b) Between a Bfn~ial distribution with n .. 5 and p - J and a distribu-

tion with frequency function " ' 

!(x) - 6x' (1 - x), 0 $ x $ 1; 
determine which is more skewed. 

14. (a)x ... r is the unique mode of Binomial Distribution having mean 
np and variance np (I - p). Show ~t 

(n + l)p - 1 < r < (n + l)p ' .. '. ':, 
Find the mode of the binomial distribution with p - ~ and' n - 7. 

[Delhi Univ. B.Sc. (Stat. Hons.) 1991, '84] 
Ans. 4, 3 (Bimodal), 
(b) Show that jfnp be a whole number, the'mean of the binomial distribution 

coincides with the greatest tenn. 
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(c) Compute the mode of a binomial distribution b (7,~"). 

[Delhi Univ. B.Sc. (Maths. Hons.), 1989] 

Ans. I, 2 (Bimodal). 

(d) Define Bernoulli trials and state the binomial law of probability. Find 
the bounds for the most probable number of successes in a sequence of II 
Bernoulli tri.l}I,.s. 

One workers can manufacture 120 articles during a shirt, another worker 140 
articles, the probabilities of the articles being of a high quality are 0·94 and 0·80 
respectively. Determine the most probable ~umber of high quality articles 
manufactured by each worker. [Calcutta Vmv. B.Sc. (Maths. Hons.), 1988] 

25. Show that if two symmetrical binomial distributions (p = q = 'h of 
degree /I (and of the saf!le number of observations) are so superimposed that the 
rth term of one coincides with the (r + 1 )th term of the ot)ler, the distribution 
formed by adding superimposed terms is a symmetrical binomial of degree 
(/I + 1). [Bhagalpur Univ. B.Sc., 1993] 

26. (a) Let X denote a binomially distributed random variable. Show that 

(K:::.!lI!) (~)2 E _ r- = 0, E _ r- = 1, and 
"Inpq, "IlIpq 

(b) Obtain the characteristic function of the standard binomial variate 

(X - lip )/~ IIpq, wh~re X is the number of successes obtained in II independent 
trials. each with constant probability p of success, q= 1 - p. Obtain the limit of 
this function as Il"'-? 00. [Delhi Univ. B.Sc.{Maths. Hons.), 1991] 

(r) If X - B (II, p), prove that 

d 
Kr+ I = pq . dp (Kr), 

where Kr is the nh cumulanl. 

Hence deduce the values of K2 'and K3' 

[Delhi Univ. B.Sc. (Stat. Hons.), 1991, '87] 

27. (a) If X and Yare two independent iucntically distributed binomial 
variates, obtain the probability that the absolute difference I X - Y I equals a 
given value, say r. 

(b) (i) If X and r are independent binomial variates, with parameters PI and 
hand indices III and 112 respectively, obtain the probability that X + Yequals 
',.'. 

(ii) In the above if PI = 172, what is the distribution of X + Y? 

[Poona Univ. B.Sc., 19881 
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(c) If X and Y are two independent binomial variates with parameters 
nl ... 6, p .. 1/2 and n2 '"' 4, P - 1/2 respectively, evaluate, 

(i) P(X + Y.", r), (it) P(X + Y ~ 3) 
(Gujarat Univ. B. Sc. Oct. 1992) 

Hint X + Y - B (6 + 4, 1/2) - B (1,0,1/2) 

Ans. (i) P(X + Y - r) - p (r) - IOCr (112t; r - 0, 1, ... , 10 
(ii) P(X + Y ~ 3) - 1 - [p(O) + p(1) + p(2)] = 0,945 

(d) If X and Yare two independent binomial vanates' with parameters 
(nl =, 3,p- '!' O· 4) and (n2 .. 4, P si O· 4) respectively, find': 

(I) P(X fa Y}, (it) P(X + Y $ 2), (iii) PC)( - 31X + y .. 4) 
Hint. X + Y - B (3 + 4, O· 4)· .. B (7, O· 4) 

3 3 

(i) P (X. 'Y) • I P (X - r n y. r) - I P (X - r) P (Y - r) - 0·2871 
,.0 ,..0 

(ii) P(X + Y $ 2) = ~ (7) (0' 4r(0' 6)7-r .. 0·420 
r-O r 

( ... ) P(X- 31X Y_ 4) _ p(X-3nX+ Y- 4) _ p(X-'3ny- 1) _ 1\.114 
m + P(X+Y-4) P(X+Y-4) \r 1 

28. (0) Obtain the moment generating function of Binomial distribution 
with n = 7 and p - o· 6. Find the first three momentS of the distribution. 

[Poona Univ.H. Sc.1992) 
Ans. ( O· 4 + O' 6 e' f : me,an - 4· 2, 112 - 1· 68, f.l3 = - 0'· 336. 
'(b) Suppose that the m.g.f. of a random variable X is' of the foml 

Mdl) = (0' 4 e' + O· 6 )~ 
What is the m.g.f. of the random variable Y = 3X + 2? Evaluate £ (X). 

ADS. £ (X) '= 3· 2, ,My (I) .. e'2J (0· 6 + O· 4 i')8 
(c) Obtain the moment genera:ing function of the binomial distribuiion. 

Hence or otherwise obtain the mean, variance and skewqess of the distribution. 
29. Show that the factorial moment generating function W (I) of the 

binomial distribution b (x ; n, p) is (1 + pi)" . Hence or otherwise show that 
Jl(r)' = n(r) pr 

3il1t. Factorial moment generating function W (I) is defined as 

(0(1) ... £(1 + trY = l: (1 + I)"p(!),= l:"Cxlp(1 + I)l" cf'-x 
x x 
r 

Il(r)' = co efficient of ~, in W (I) ... nCr r ! p~ = n(r) pf 
. r. 

30. Show that 
(i) b (n,p; k) = b (n, 1 - ,P; n - k) 

" " (ii) l: b (n,p ; k) .. 1 - l: b (n, 1 - p; k) 
k-r k-"-r+l 

(iit) b(n .. +'l,p;k) = p.b(n,p;k -1) + q.b(n,p;k) 
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Hint. (i) b(n, 1. - p; fJ - k) = (n ~ k) (I - p)1I -k p't -In -kJ 

n n n - r 

(ii) I. b (n. p; k) = I. b (n. 1 - P ; n - k) = I. b (n. 1 - P : k) 
k=r k=r - k=O 

31. For a binomial distribution, let 

wh~r~ ') = 1 - p. 
prove tpat 

Fn (y) = ± (n) pX q" -x, 
x=o x 

(i) F" + I (y) = p F,J,J' - I) + q F,t (y) 

(ii) Cov (X. n - X) = - npq (Bombay Univ. B.Sc., April 1990) 
32. (a) Random variable X follows binomial di'stribution 'with parameters 

II = 40 and p = i· Use Chebychev's inequality to find bounds for 

(i) P [ I X - 10 I < 8] ;. (ii) P [ I X - 10 I > 10.1 
Compare these values with the actual values (Hint : Use Normal 

approximation for the Binomial). (Madras Univ. B.Sc. (Main Stat.), 1988) 
Ans. (i) 11:3/1.28 (lower bound), (ij) 0.075 (upper bound). 

(b) X follows binomial distribution with n= 40, p = t . Us_e Chebyc'hev's 
lemma to 

(i) find k such that 
P { I X - 20 I > 10k} ~ 0·25. and 

(ii) obtain a lower limit for P {I X - 20 I ~ 5}. 
JDelhi Univ. B.Sc. (Maths. Hons.)~ 1984] 

Ans. (i) 2..JlO, (ii) 3/5 
(c) How many trials must be made of an e.vent with binomial probability of 

success:t in each trial, in'order to be assured with probability .0J at least 0·9 that 
the relative frequency of success will be be(ween 0·48 and 0·52? . (Ans. 6250), 

Hini. Use Chebychev's Inequality. 
33. (a) Show that if a coin is tossed 11 times,tl1e .probability of not more 

th~n k heads is : 

[(~) +(~) + ... + (~)] GY' 
[South Gujarat Univ. B.Sc., 1988] 

(b) If X has binomial distribution with paramctes n -and' p. then prove that 

P [X is even] = ~ [1 + (q - p)n]. [Delhi Univ. B.Sc. (Stat. Hons.), 1988] 

34. If the probability of hitting a target is 1/5 and if 10 shots are lired, what 
is the conditional probability of the target being hit at least twice assuming that 
at least one hit is already scored? 

[Nagp'ur Univ. B.Sc., 1988, '93] , 
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Hint. LetX doitote the number of times a target is hit-when 10 shots are 
fired. TbenX - B (10, O· 2). Toe required probability i~ : 

P (X 21 X 1) = P [(X i!: 2) n (X i!: 1)] ... P(X i!: 2)' 
i!: i!: P (X i!: 1) P(X i!: 1) 

.. 1 - [P(X .. 0) + P(X = I)J = 0·625 = 0.6999 
1 - I f (X .. 0)] O' 89~ 

35. (a) LetX be a B (2,p) and Y be a B (4,p). If P (X i!: 1) ... 519, 
find P (y, i!: 1) [Kerala Univ. B. Sc., 1989] 

H~nt. P(X it 1)." 1 - P(X .. 0) .. 1 -l .. 5/9 = q .. 'f/3,p .. 113. 

P (Y i!: 1) .. 1 - P (Y - 0) .. 1 - l .. 65/81. 

36. Let B denote the number of boys in a family ",ith five c~ilc;lren. If p 
denotes the probability that a boy is there in a family, find the least value ofp such 
tbat ' 

. P (B c: 0) > P (B - 1) (Sbivaji Univ. B. Sc., 1990) 

-Ans. t{ > 5pq4 ~ q >. 5p ~ P < -k. 
37. (a) Suppose X - B (n,p). with E (X), .. 5, Var (X) - 4. Find 

nand p. (Ans. n os 25, p - 1/5) 
(b) LetX - B (n,p). For whatp is variance (X) maximised if we assume 

n is fixed. 
Ani>. VarX - npq - n(p - /) - {(P).(say);f'(P) - 0, f"(P) < 0; p - 112 - q 
38. (a) X -B(n - 100,1'.- 0'1). Find P(X $ I4x - 3 ox) 

Ails. 1''' to, 0 .. 3, P(X s 1' ... - 3'0.1') .. P(X s 1) .. 10·9 X (0'9)99 

(b) If X - ~ (25, O· 2), find P (X < I4x - 2 ox) 
_ [Delhi Univ. B.A. (Stat. Bons.) Spl. Cou'rse 1989] 

39. For one l1alfofn events, the chance of success isp, and the, chance of 
fl\i1ure is q, whilsrfor tbeother half the chance of success is q, and,the chance of 
failure is p. Show that the S.D. of the number of successes is the same a,~ if the 
chance of success werep ina)) the cases i.e. ,fnpq, but that the mean of the number 
of Successes is n/2 and not np. (Delbi Univ. B.A. 1992) 

Hint. X - B (n/2, p) and Y - B (n/2, q) are independent. Let 
",'~ X + Y. Now prove that Var (Z) ... npq llnd E (Z) - n12. 
, 40., The diScrete density of X is given by Ix (x) ' .. x13, for x-I, 2 and 

fr.lx (y I x) is binQmial with parameters x and 4 i,.~., 
Frlx (y Ix) - P (Y .. y IX - x) .. (;). U f ; 

fory - 0, 1, _.,x and x .. 1,2. 
(~) Find E(X) and Var(X); (b) FindE(Y)· 
(c) Find the joint distributior. of X and Y. 
!lJint. Proceed I. in Example 7· 21. 
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Ans. (a) E (X) - 5/3, Var (X) - 2/9, (bJ E (Y) - 5/6. 
JC 

(c)f(x,y) - (;) ,,(~),.(~); n -1,2,;y .. O,I, ... ,x. 

41. Two dice are thrown n t~mes. Let.X denote .t)le number of throws in 
which the number on the first dice exceeds the number on the second dice. What 
is the distributi~n of X? 

Ans. X - B (n,p - 15/36) 

Hint. P is the probability that the number on the first dice exceeds the 
num.l?er on the second ~ij::e In a throw of two dice. 

42. LetXI - B (n,PI) and X2 - B (n,P2)' 
If PI < P2, prove that: 

P(XI s k) ~ P(X2 S k) for k - 0,1, ... ,-n. 
Hint. Use Example 7· 23. 
43. If X - B(n,e), show that 

P (X s k) = t.. j ( III + I dy 
plq \1 + y) 

CI) k 

where ,,-I = J !Y I dy = ~ (k + 1, n - k) 
-0 (1 + y)"+ 

d (X k) (n - 1) k,.ll- k -I () Hint. d P s - n k . P . 'I. .. Ak, say 
q ~-

[See Example 7· 23] 

Find: (RHS).;=t...: (j .ill+1 dY]=t.. (Plq)k II+I(~) 
q q plq(l+y) [1 + (Plq)] q 

1 _ k ,.II-k-l . A 
= ~ (k + 1,' n _ k) . P . 'I = k 

(On simplification) 
44. If X B (n,p) and Y has beta distribution with parameters k and 

n - k + 1, (See Chapter 8), then prove that 
P (Y sp) = P(X ~ k) i.e., Fy(p) = 1 - Fx(k -1) 
45. If a fair coin is tossed an even number 2n times, show that the 

probability of obtaining more heads than tails is 

· 4 {I -~C, (~( } . 

Hint. X: No. of heads; Y = No .. ottails; No. of trials = 2n 
P (X> Y) + P(X <: Y) + P(X = Y) = 1 

~ 2 P (X > y)- = 1 - P (X = y) 

['.' By symmetry,p .. q = ~ ~ p (X :> y) - .J! (X.'< nl 
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= 1- 2nC"p'" q" = 1 _ 2nC" q)2n 

=> P(X> Y) = ~ [1 _ 2nC" (~)2n] 
7· 3' O. Poisson Distribution (as a limiting ~ase of Binomial Distribu_ 

tion). Poisson distribution was discovered by the French mathematician and 
physicist Simeon Denis Poisson (1781-1840) who published it in 1837. Poisson 
distribution is a limiting case of the binomial distribution under the following 
conditions: 

(I) n, the number of trials is indefinitely large, i.e., n - 00. 

(ii) p, the constant probability of succ~ss for each trial is indefinitely small, 
i.e., p - O. 

(iii) np = A, (say), is finite. Thus p = A/n, q = 1 - Ain, 
where A is a positive real number. 

The probability ofx successes in a series of n independent trials is 

b(x;n,p) = (;)Jfq"-x;x = 0,1,2, ... ,n ... (*) 

We want the limiting form of (*) under the above conditions. Hence 

lim b(x;n,p) = lim '( n ~ )' (~)X . [1 _ ~]"-X 
n-CD n-CD x. n x. n n 
Using Stirling's approximation for n ! as n - 00 viz., 

lim n! - .f2i[ e .. 11 ,,"+0/2),_ we get 

[ 
.f2i[-i..II+(1I2) ](A)X[ A]"-X lim b X' n = lim 1[ e n - 1 _ -( , ,p) ,.~ -(II-X) ( )"-x+(1I2) n n 

n-CD n-GO ~.v.{.1[e .' n-x 

---' [1 _ ~]" tim [1 _ ~]-H(ll2) 
n n-oo n 
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But we know that 

" 

and ... (**) 

lim (1-~) n-oo n 
-A .. e , 

a 

:: 1, a is not a function of n 

Therefore 
,lim ).X e- A • 1 e- A • ).X 

b (x; n, p) = -- . -- = I; X .. 0,1,2, ... ,00 ; 
n - 00 if.x! e- x '1 x. 

[Using (**)] 
which is the required probability function of the Poisson distribution. ')."is known 
as the patameter of Poisson distribution. 

Aliter. Poisson distribution Can also be derived without using-Stirling's 
approximation as follows: 

b(x;n,p) = (;)~(1 _p)"-X = (;) [Gf(1 ~p)" 

.n(n-I)(n-2) ... (n-x+l). (~r [1--.1,r 
x! [1 _ fl x n 

, n/ 

.II -~][ I -~l'" [ I -~l k' [1 _ ~]" 
{ ).]X n 

x! 1-;; 
l,im e-A).x [From (**)] 

.. b(x;n,p) =-.-.-;x EO O,1,2, ... 
n-oo x.' 

Definition. A random variable X is said to follow a Poisson diStribution 
if it assumes only non~negative values and its probability mass function is given by 

e~A).X 
p (x, "A.) = P(X = x) = --.-; x .. 0,1,2, ... ;). > 0 

x. 
- 0, otherwise ... (1. 14) 

Here)' is known as the patameter of the distribution. 
We shall use the notation X - P ().) to denote that.i is a Poisson variate 

with patamter"A.. 
Remarks 1. It should ~not~«(tbat 
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L P(X = x) = e-). L )..Je/x ! = e-).e~ 
Je-O Je-O 

'2. The corre:;ponding distribution function is: 

F (x) = P (X s x) = L p (r) = e-). L )[ /r! ; x = 0,1,2, .... 
,-0 ,-0 

3. Poisson di:;tribution occurs when there are events which do not OCCUr as 
outcomes of a definite number of trials (unlike that in binomial) of an experiment 
but which occur at random points of time and space wherein our interest lies only 
in the number of occurrences of the event, not in its non-occurrences. 

4. Following a,~ some instances where Poisson distribution may be suc­
cessfullyemployed· 

(1) Num1;Jer of deaths from a disease (not in the foml of an epidemic) Such 
as heart attack or ca ncer or due to snake bite. 

(2) Number of suicides reported in a particular city. 
(3) The number of defective material in a pac~ipg man"factured by.a good 

concern. 
(4) Number of faulty blades in a packet of 100. 
(5) Number of air accidents in some unit of time. 
(6) Number of printing mistakes at each page of the book. 
(7) Number of telephone calls received at a particular telephone exchange 

in some unit of time or qmnections to wrong numbers in a telephone exchange. 
(8) Number of cars passing a crossing per minute during tbe busy houlS of 

a day. 
(9) The number of fragments received by a surface area 't' from a fragment 

:atom bomb. 
(10) The emission of radioactive (alpha) particles. 
7· 3· I. The Poisson Process. The Poisson distribution may also be obo 

ta ined independently (i.e., without considering uas a' limiting form of the Binomial 
distrjblltion) as follows: 

Let X, be the number of telephone calls received in time interval 't' on 8 

telephone switch board. Consider the following experimentaJ conditions : 
(1) The probability of getting a call in small time interval (t, t· + tit) is 

).. dt, where).. is a positive constant and tit denotes a small increment in time 't'. 
(2) The probability of getting more than one call i~ this time inten'll is very 

small, i.e., is of the order of (tlty. i.e., 0 [(dt)2] such that 

lim 0 (dt)2 
dt-O tit -0 

(3) The probability of any particular call ~Jhe time interval (t, t + tit) is 
htdependent of the actual t,ime t and also of all preVious calls. 

Under these conditions it can be shown tbat the-probability of geningx calls 
lo time 't', say, Pz (t) is given by , 
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e- k / (A tf 
Px (t) = , ; X = 0, 1, 2, ... , QO 

x. 
which is a' Poisson distribution with parameter A t. 

Proof~ Let Px (t) - P {of getting x calls in a time interval of length' t'}. 
Also P {of at least one call during (t, t + dt)} = A dt + 0 [(dt)2] 

and P {of more than one call during (t, t + dt)} = 0 [ (dt)2]. 
The event of getting exactly x calls in time t .., dt can materiali!\e in the 

following two mutually exclusive ways: 
(I) x calls in (0, t) and none during (t, t+' dt) and the probability of this 

event is Px (t) 11 - [ (A dt + 0 (dt)2 ]J, 
(ii) exactly (x - 1) calls during (0, t) and one call in (t, t + dt) and the 

probability of this event is Px-l (tHA dt). 
Hence by the addition theorem of probability, we g~t 

Px (t + dt) = Px (t) {1 - A dt - 0 (di)2} + Px-II. (t) A dt . 

.. Px (t)(1 - A dt) + Px _ dt) A dt + 0 (dt)2 Px (t) •.• (1) 

Px(l+dt)-Px(t) ~P() ~P (t)~ 0(dl)2 p () 
~ dl .. - II. X 1 + N x-I t + dt x t 

Proceeding to the limit as dl - 0, we get 

lim Px(t + dt) - Px(t) = _ AP () AP () 
dl _ 0 dl x 1 + x-I 1 

• . Px' (t) - - A Px (t) + A Px- dl), x ~ l' ... (2} 
where (,) denotes differentiation w.r. to 't'. 

Forx .. O,Px-dt) - P-dl) .. pi (-1) calls in time 't'} • 0 
Hence from (1), we get 

Po.(1 .., dt) = 1)0(1) 11 - Adt} +·0 (dt)2 
which on taking the limit dt - 0, gives 

p, • ( ) ~ ( ) Po' (t) ~ o 1 = - II.PO 1 ~ Po (!) = - II. 

Integrating w.r. to. 't', we get 
log Po (I) = - A I +. C, 

where C is an arbitrary constant to be determined from tfie condition . 
. Po(O) = 1 

Hence log 1 .. G ~ C-'" 0 

.. log Po(t) = - AI ~ PO{I)" e- k / 

Substituting this value of Po (I) in (2), we get, with x .. 1 

Pl' (I) .. - A Pl (I) + "A,e-k/ 

=> PI' (I) + A PI (t), = "A,e-k/ 

This is an ordinary linear differential equation whose integrating factor is 
tft. Hence its solution is 
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;.' P'dl) - )... f ;., e-)..' dt + CI - )...1 + CI, 

·where C I is aD arbitrary comtant to be detennined from P~ (0) - 0, wbicb gives 
CI - O. 

.. PI (t) - e-)..')...t 

Again sUbstttuting this in (2) with x - 2, we get 

l'2 (I) + )"'P2 (t) - .)...e-)..' )...t 

Integrating factor of ~.is equation is e)..' and its solution is 

l'2(t);" - )...2 f te-)..' e)..' til + C2 _ )...~r + C2 

where C2 is an ~rbitrary constant to be determined from P2 (0) - .0, which gives 
'C2 .. O:'Henee 

P2(t) _ e-)..' ()...;)2 

Proceeaing similajlY step by step, we shall geJ 
e-)..' ()...tL 

Pit '(I) -. , ; x - 0, 1,2 •... , 00. x. 
7· 3' %. Moments of the Poisson Distribution 

• 
~l' - E (X) - I x p (x, )...) 

.e-o 
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CD 

fA4' - E (x') - I X4 • P (XI ),.) 
x.o 

00 -l;...i 
- I {x(x - 1)(x- 2)(x- 3) + 6x(x- 1)(x- 2)+ 7x.(x- 1)+ x}_e_,_ 

".0 x. 

[
CD ),.x-4 ] [CD ),.x,..3 ] 

- e-)'),.4 x:4(x-4)! + 6e-)'),.3 X:3 (X _ 3)! 

[
CD ( ),.x-2 ] 

+ 7 e-). ),.2 x: 2 (x _ 2) ! +),. 

_),.4 (e-). e+).) + 6),.3 (e-). e+).) + 7),.2 (e-). e+).) +),. ... ),.4 + 6),.3 + 7),.2 +),. 

The four central moments are now obtained as follows : 
~~ - ~2' - t11,2 - (),.2 + ),.) - ),.2 = ),. 

Thus the mean and the variance of the Poisson distribution are .cae\! equal to 

Also 

Hence the Poisson distn"bution is always a skewed distribution. 
Proceeding to the limit as),. ~ 00, we get 

~1 - 0 and ~2 - 3 
'·3· 3. Mode of the Poisso .. Distribution' 

e-). ),.X 

p(x) _ x! • ~ 
P (x - 1) e-). ),.%-1 x 

(x - I)! 
We discuss the followiug cases : 
Case L When)" is not an integer. 
Let us suppose that S is the intergral part of A. 

••• (7, IS) 

.. (7·16) 
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£ill p(S - 1) p(S) 
pf,0) > 1, ... , p (S _ 2) > 1, p (S = 1) > 1, 

p (S + 1) p (S + 2) 
p (S) < 1, p (S + 1) < 1, .•. 

Combining the above expressions into a single expression, we get 
p (0) < P (1) "< p (2) ... < p (S - 2) < p (S - 1) < P (S) > p (S + 1) > 

p (S + 2) > ..• , which shows that p (S) is the maximum value. Hence in this case 
the distribution is unimodal and the integral part of').. is th~ unique modal value. 

Case II. When ').. .. k (say) is an'integer. Here we have 

e..ill £..ill p(k - 1) 
p (0) > 1, p (1) > 1, ... , p.(k _ 2) > 1 

p (k) _ P (k.+ 1) p (k + 2) 
and p (k _ 1) - 1, p (Ie) < 1, p (Jc + 1) < 1, ... 

:. p (0) < p (1) < P (2) < ... < p (k - 2) < p (k - 1) - p (k) > p (k + 1) > p (k + 2) ... 

In this case ''Ie have two maximum values, viz., p (k - 1) a.nd p (k) and thus 
the distribution is bimodal and two modes are at (k - 1) and k .. i.e." at.(;" - 1) 
and A, (since k .. ')..). 

'·3· 4. Recurrence Relation for the Moments of the Poisson Distribu. 
tion. By def., 

QO 

J'r. = E {X - E (X) ~' ,'" I (x - ')..)' p (x, )..) 
x-o 

.. -A')..X 
- ~ (x - ')..)' ~--, 

x .. 

Differentiating with rc&pect to ~ we get-

dJ', ~ .. ( 'I.),-l( l)e- A ')..x ~ .. (x-')..)'( 'l.x-l -A 'l.X-AI 
-:TIr- r x-,.. - --+ -- x,.. e -,..e 
d,.. xl xl' x-o x-o 

.. A x" , 
__ r ~. (x _ ')..),'C'l.e- ).; + ~ (x - ')..)'!')..X-,l-e-A(x -' )..)1 

.LJ xl ~ xl x-a x-'o 
.. -A x CD '-A x 

__ r ~ (x _ ')..)'-1~ +! ~ (x:... ')..)'+1 • ~ 
x! ').. 0 x! 

.1'-0 .1'-

dlfAr 1 
d;" - - r J',-l + X J',+l 

d J', 
fAr+ 1 - r ').. fAr-l + ').. d ').. 

Putting r - 1, 2 and 3 successively, we get 
d J'l 

J'l - , 1'0 + ').. d ').. • ').. 

•.. (7·17) 
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d~ d~ 2 
1-43 = 21..1-41 + A d A = A, 1-44 = 31..1-42 + A d A = 3 A + A 

7· 3· S. Moment Generating Function oftbe Poisson Distribution 

Mr(t) = ~ efX.e~)..A% = ~ e-)..(Ae't 
, ~ xl ~. xl 

%-0 %-0 

-).. {1 ~ t (Al)2 ) -)..).. e' ).. (e' -1 ) =e +fl.e+2!+'" =e 'e se 
... (1. 18) 

7· j. 6. Characteristic Function oftbe Poisson Distribution 
.. .. -).. 1..% .. (A it,.x 

~x (t) = 1:. eibc • p (x) = 1: eibc ~ .• £).. 1: _e_, 
%-0 %-0 x! %-0. x! 

).. "I it it 
= e- ell.e = eA,(e - I) 

7· 3· 7. Lumulants oftbe Poisson Distribution 

Kx(t) - Jog Mx(t) - Jog [e)..(e'-l)] - A(e' - 1) 

.[ ( , r t3 t r ) ] .-1.. l+t+2!+3!+"'+rl+ .. -1 

,[ rn r (] 
-A t+ 2 !+31+"'+;:1+'" 

Kr - rth cumulant = co-efficient of (, in Kx (t) - A 
r. 

1Cr - A; r ., 1,2,3, ... 

... (7· 19) 

• .. (7, 19a) 

Hence aU tbe cumuJants of tbe Poisson distribution are e.qual, eacb being 
equal to A.. In particular, we have . 

M 2 2 
ean - Itl - )., III - Itl- )., 113 - 1t3 - A. and 1'4 - 1t4';' 3 1t2 - A. + 3),; 

1-4~ 1..2 1 1A4)., + 3).,2 1 
~l - - • - - - and ~2 - - - - - + 3 1-4~ ).,3)., 1-4~).,2)., 

Remark. If m is tJle mean and (J is the s.d. of Poisson distribution wi~ 
parameter A., then 

m (J Yl Y2 - )., • Vi: . VPt (~ - 3) 
1 1 

- )., . Vi: . 'vi: . I - 1~ 

7· 3· 3. Additive or Reprodudi~e Ptoperty of Independent Poisson 
Variates. Sum of ~ POissOIl VdTUates is also a POissoll variate. More 
elaborately, ilXi, (i - I, 2, .. ., 11) are independent Poisson variDtes with param-
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., 
ters N; i .. 1, 2, ... , n respectively, then l: Xi is also a Poisson variate with 

i - 1 

" parameter I 'A;. 
i - 1 

Proof. M () i..;(e'-l). 12 
Xi t ... e ; t = • • ..• n 

M .YI +.Y: + .. +X. (t) = Mx, (t) MXl (t) .. , Mx. (t), 
[since Xi ; i = 1,2, ... , n are independent) 

= i'l (e'-I) i'l(e'-I)' ..... e>-"'('e'-I) 

= e().\ +).2 + .,. + A,;)( e' -I" 

which is the m.g.f. of a POisson variate with paramele'r Al + A.2 + '" + A... Hence 

" by uniq~eness theorem of m.g.f.'s, I Xi is also a Poisson variate w~th parameter 
i - 1 

" 
i-l 

Remarks 1. In fact, the converse of the above result is also true i.e., If 

" Xl, X2, ... , X" are independent and I Xi has a Poisson distribution, then each 
i-l ~ 

of the random variables Xi, X2, ... , X" has a Poisson distribution. 

Let Xl and X2 be independent r.v.'s so that Xl - P (Al) and Xl + X2 

- P (At + A2)' Then we want to prove thatX2 -P (A2). 

Proof. SinceXl and X2 are independent, we have 

Mx, +Xz (t) - MXa (t) Mx: (t) 

/).\ + ).2 ) (e' - I) _ i',d e' - I ) • MXl (t) 

MAz (t) _ i"2 (e' - I ) 

~ X2 - P (A2), by uniqueness theorem of m.g.f. 

1. The difference of two independent Poisson variates is not a Poisson 
variate. 

MXa - Xz (t) - MXa + (- Xv (t) - MXa (t) • M( -Xz) (t), 

(sinceXl and X2 are independent). 

MXa - x: (t) - A!Xa (t) MXJ ( .... t) ['.' Mcx (t) _ Mx (ct) ) 
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Moreover the difference {Xl - X2) cannot be a Poisson variate is evident 
from the fact that it may have positive as well as negative values, while a Poisson 
variate is always non-negative. 

,. 3· 9. Probability Generating Function of Poisson Distribution 
00 A k .. k 

P G F f X ~ e- A. k ~ -A (I..s) -A AS A(S - 1) 
• . .0 = ~ --,-' s = ~ e -,- - e e .. e 

k-O k. k-O k. 
. .. (7, 20) 

Example ,. 24 • A car hire firm luzs two cars which it fires out day by day. 
Tile number of demands for a car on each day is distributed as Poisson variate with 
mean 1· 5 .. Calculate the proportion of days on which (i) neither car is used, and 
(ii) some d~mand ;s refused. [Meerut Univ. B;Sc, 1993] 

Solution. The proportion Of days on w/,l~ch there are x demands for a car 

= P \ of x deman~s in a day} 

e- l -S (1, 5)% 
= 

x! 

since the number of demands for a car on any day is a Poiss~n variate with mean 
1·5. Thus 

e- l - S (1. 5f 
P ()( = x) = , ; x c. 0,1,2, ... 

x. 
(I) Proportion of days on which neither car is used is given by 

P()( .. 0) .. e- l- S 

.. [1 _ l' 5 (1' 5)2 _ (1, 5)3 (1. 5)~ _ ] 
+ 2! 3! + 4! ., . 

.. 0·2231 

(ii) Proportion of days on whiCh some demand is refused is 
P ()( > 2) .. 1 - P ()( s; 2) 

= 1 - [P ()( - 0) + P (X = 1) + P ()( = 2)} 

1 -l-S[l 15 ("' 5i l" = -e + .' +--
2 ! 

c 1 - 0·2231 x 3,'625 = 0'19L6 
Example ',15. A manufacturer of cotter pins knows ihat 5% of his 

product is defective.lfhe sells cotter pins in boxes of 100 and guarantees that not 
more tluzn 10 pins will be defective, what is the approximate probability that a box 
will fail to meet the guaranteed quality? • [Kanpur Unlv. 'B.Se. 1993] 

Solution. We are given-n :0 100. 
Let p - Probability ofa defective pin = 5% = O· OS 
• • A. = Mean' number of defective pins in a box of 100 

.. np = 100 x 0·05 = 5 
Since 'p' is small, we .nay use Poisson distnbution. 
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Probability of x detective pins in a box of 100 is 
e-).. AX e- s 5x 

l'(X = x) = --,- = --,-; x = 0,1,2, ... 
x. x. 

Probability tbat a box will fail to meet tbe guaranteed quality is 
10 -s x 10 x 

P~ > 10) = 1 -P(X s 10) = 1 - ~ ~ - 1 - e- 5 ~ ~ 
LJ x! LJ x ! 
x-o %-0 

Example 7· 26. Six coins are tossed 6,400 times. Using the Poisson dis­
tribution, fimi'the dpproximdteprobability of getting six heads r times. 

Solution. Tbe probability of obtaining six beads in one tbrow of six coins 
(a .single trial), is p .' (J"i)6, assuming that bead and tail are equally probable. 

. . A = np - 64® x (J"i)6 .. 100. 
Hence, using Poisson pro.bability law, tbe required probability of getting 6 

beads r times is given by:' 
e-)..·')[ e- loo '(100), 

P (X - r) = --, - = , ; r = 0, 1, 2, ... 
r. r. 

Example 7· 27. . In a book of 520 pages, 390 typo-graphical errors 
occur. Assuming Poisson law for the number of errors per page, find tile probability 
that a random sample of 5 pages will contain no error. 

[p.atna Univ. B.Sc. (Hons:), 1988] 
Solution. Tbe average number of ,typograpbical errors per page in the 

book is given by A = (390/520) = O· 75 . 
Hence using Poisson probability law, tbe probability of x errors per·page is 

• e-).. AX e- 0· 75 (0· 75t 
gIven by: P ~ = x) = --, - os , ; x .. 0, 1, 2, ... x. x. 

The required probability tbat a ~ndom sample Qf 5 pages will contain no 

erroris given by': [P (X .. O)]S = ( e-() 75 / = e- 3' 7S 

Example 7· 28. ~uppose that the number of telephone calls coming into 
a telephone exchangt; between 10 A.M. and 11 A.M. say, Xl is a random variable 
with Poisson distribu.tiql) w.ith par:ameter 2. Similarly the number of calls arriving 
be~een 11 A.M. and 12 noon say, X2 has a Poisson distribution with parameter 
6. If .\'.1 andX2 are independent" what is t~e probability that more than 5 calls 
come in between }O A.M. and 12 noon? [Calicut U. B. Sc. Oct~ J99Z] 

Solution. Let X = Xl + X2. By tbe additive property of Poisson dis-
tribution,X is also a "Poisson variate witlJ palflll}eler (say) A = 2 + 6 .= 8 

Hence tbe pf9bability of x cans in-between 10. A.M. at;ld 12 noon is given 
e-x A% e- 8 gx 

by P ~ .a x) - -" '-,- "" --,-; x = 0,1,2, ... x. x. 
Probability that more tban 5 ~lIs come in between 10 A.M. and 12 noon is 

given by 
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s e-8,SX 
P (X > 5) - 1 - P (X :s 5) ... 1 - ~ --

o x! 
x-

- 1 - 0·1912 = 0·8088 

Example ,. 29. A Poisson distribution has a double mode at x = 1 and 
X ~ 2. What is the probability that x will have one or the other of these two values ? 

Solution. We have proved that if the Poi~sondistribution is bimodal, then 
tlie twO modes are at the points x = )., - 1 and x = A... Since we are given that 
tbe twO modes are at the points x .. 1 and x • 2, we find that )., = 2. 

e-)..)"x e- 2 ~ 
., P(X - x) .. --,- • --,-; x =' 0, 1,-2, ... 

x. X. 

::::> P(X- 1) .. e- 2 2 . 
e- 2 ·22, 2 

and P(X - 2) .., ~ ... e- ·2 

Required probability ... P (X = 1) + P (X ... 2) - 2e- 2 + 2e- 2 = 0·542 

Example ,. 30. If X is a Poisson variate such that 

P(X - 2) - 9P(X - 4) + 90P(X .. 6) ... (*) 
Find (i) A, the mean of X. (il) ~, the co€!fficient of skewness. 

[Delhi Univ. B. Sc. (Maths. Hons.) 1992, '87] 
Solution. If X is a Poisson variate with parameter A, then 

e-)..·)"x . .. 

p (X - x) - " x - 0, 1, 2, ... ;)., .> 0 x. 
Hence (*) gives 

eJ.)... ).,2 _).. '[).,4 ).,6 ] 
2! =e 9 4 !-t:"906"! 

-)..'\.2 __ e_,,_ (3).,2 + ).,4] 

8 
::::> ).,4+3).,2_4_0, 

Solving as a quadratic in ).,2, we get 

).,2 _ - 3 ~ "9 + 16 ... - 3 % 5 
2 2 

Since)., > 0, we get ).,i ,;. 1 ::::> )., ... 1 
Hence mean .. ).,' .. 1, and ~2 = Yariance .. )., = 1 

Also ~1 - Coefficient of skewness ... I ... 1. 

Example ,. 31. If X and Yare independeiu Poisson variates such that 

P (X... 1) = P (X - 2) 
and P(Y - 2) = P(Y ... 3) -... (*) 
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Find the varaince of X - 2Y. 
Solution. Let X - P (A) and Y - P (J.l). 
Then we have 

e- A • AX 
P(X .. x) - " x ... 0,1,2, ... ; A > 0 x. 

e. I' • J.l' 
and P (Y .. y) co " y .. 0, 1,2, ... ; J.l > O· y. 
Using \*), we get 

and 

'\.2 -A 
A '-A II. e 

e =21 
J.l2 e-I' J.l3 e-I' 
-2-=~ 

Solving (**), we get 

A e- A [ A - 2] .. ° and J.l2 e-I' [J.l - 3 ] = 0 
=> A = 2 and J.l .. 3~ since A > 0, J.l > O. 
Now Var (X) .. A - 2, and Var (y) = J.l ... 3 
.. Var (X - 2 y) .. 12 Var(X) + (- 2)2 • VarY, 

... (**) 

... (* •• ) 

covariance term vanishes since X and' Yare independent. 
Hence, on using (** *), we get' 

Var (X - 2Y)' = 2 + 4 x 3 ... 14 
Example 7· 32~ If X and Yare independent Poisson variates with means 

Al and A2 respectively, find the piobabi/ity that 

(I). X + Y ,:; k, (;1) X = Y [Delhi Univ. B. Sc. (Stat. Hons.), 1991] 
Solution. We have 

e- A1 'A1 
P (X = x) .. " x = 0, 1, 2, 3, ... ; Al > 0 x. 

and 
e- A1 • M 

P (Y = y) III Y ! ' Y ... '0, 1,2, 3 ... ; A2 > 0 

k 

(I) P (X + Y - k) .. I P (X ... r n Y = k - r) 
r-O 

k 

... I P (X = r) P (Y = k - r) 
r-O • 

[ '.' X and Y ~re independent) 
k -A1 '\.r -A1 '\.k-r 
~ e 111.1 e . 11.2 

.... ~~. (k-r)! 
r-O . 

k r 1c-r 
.. e - ( A1 + A1 ) ~ ,).;1' A2 

~ r! (k - r)! 
r-O 
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[
,.i ,. ,.i-1 ,.2 ,.i-2 _ '\l'] 

-().I+).z) ""2 ""1·""2 ""1·""2 "'1 
• e k! + \! (k- I)! + 2! (k- 2)! + .•. + ki"" 

e-().I +).z) [i i i 1 l' i 2 2 l' ] 
• k! >':2 + C1 >':2- • A1 + C2·).,2- • A1 + .•. + ~1 

e-().I +).z) 

• k! )( (AI + A2)l~ k • 0, 1,2, ... 

which is the probabi,lity functiQn of Poisson distribution witll parameter 
;'1 + A2. 

Aliter. Since X - P (AI) and Y - P (A2) are i11dependent, by the addi­
tive property of Poisson distribution X + Y - P (AI + A2). Hel\;ce 

, e-().I+).2) )( (A1 + >..zt 
P (X + Y • k) - k ! ; k • 0, 1, 2, ..• 

CD 

(ii) P ()( • 1') - I P (X •. r (j) y. r) 

CD 

= I P (X • r) P (Y • r) 
,-0 

[·.·X and 'Yare independent] 

Example 7- 33. Show that in a Poisson distribution with unit me~ri, mean 
deviJtion about mean is (2M times the standard deviation. 

[patna'Univ. B. Sc. (Stat. Hons.) 1992; Delhi Univ. B.sc. (Stat. HODS.), 1"3]-
, -

Solution. Here we are given A os 1. 
e-).A" e- 1 ·1 e- 1 

P'v. x) ... -- ... --. _. x - 0 1 2, v~ I I I ' " ••• x. x. x. 
Mean deviation about mean 1 is 

CD 

E (IX - II) • i Ix - lip (x) • e- 1 ~ Ix - 11 
, ~ x! x-o x-o 

... e- 1 [ 1 + 2\ + 32! + 1!, + •.. ] 

We have ~...;.n-._ (n + 1) - 1 1 1 
(n + I)!· (n + I)! • n! - (n + 1) ! 
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.. Mean deviation about mean 

-1[' ( '1) (1 1) (1 ,1') ] -e 1+ 1- 2 ! + 2!-3! + 31-4! + ••. 

~ .. e- 1 (1, + 1) - ~ x 1 - ~ x standard deviation, 
e e 

since for the Poisson distribution, variance = mean = 1 (given). 

Example 7· 34. let Xl, X2, ••.. , Xn be identically and independen#y dis. 
, n 

tributed Bin. (1, p) variates .. Let Sn '!F l:: Xj and Mn (t) be tlu! m.g./. of S", Find 
I j-1, 

~: 00 Mn (t), using np = A (const.) [Qelhi Univ. B. Sc. (Maths Bons.), 1989] 

Solution. Since Xi, i = 1,2, ... n are i.i.d. binomial variates B (1, p), 
n 

Sn = l:: Xj, is a binomiaJ.B (n,p). variate. 
j-1 

:. Mn (t) - M.g.f. of Sn .. ('! + p~ f .. [1 + (e' - 1) p r 
Ifwetakenp = A => p'" i../n andlefn .... 00; we get 

1im Mn (t) = lim [1 + (I - 1 ) A ] n _ exp [ A ( et -1 ) ), 
n .... oo n .... oo n 

which is the m.g.f. of Poisson' distribution with parameter A. Hence by uniqueness 
n 

theorem of m.g.f., Sn = l:: ¥i .... p' (A), as n .... 00, with np - A (fixed). 
j-l 

Example. 7· 35. (a) If X is a Poisson variate with mean m, show that 

theexpectat[onofe- kX is exp (-'m (l-e-') J. [Nagpur Univ~ B.Sc.1993] 

Hence show that, if X is the arithmetic mean of n independent random 
variables Xl, X2, ... , X n , leach having Poisson distribution with parameter m, ' 

then e- x as an estimate of e- m is biased, altlloughX is an unhaised estimate ofm.· 
(b) If X is a Poisson variate with mean m, what would be the expectation 

of e- h k X, k being a constant. 

Solution. .. Go 
-III X 

E (e- kX) ' .. }: e- kIt p (x) .. }: -kit em_In e .-- so e 
x! ;c-o x-o 

_In lr -Ie (me- Ie )2 ] 
=e l+me +~2-!<-+'" 

"9 

}: 
x-o 

(me-Ie t 
x! 
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.. (.) 
We have 

n ;-1 n i-1 
E(X ) - E (! ± Xi]-! ± E(Xi) 

Since Xi; i - 1, 2, ... , n is a 'Poisson variate with parameter m, 
E(X;) - m. 

- 1 It 1 
:. E (X ) - - I m ... - nm = m 

n ;-1 n 

Hence X is an unbaised estimate oJ m. 

Now 

- It 

E(e-X ) _ n E(e-X1It ) 
. i-1 

Using (.) with Ie. - lin, we get 
-1/. 

E (e-X1It ) .. e- m( 1-e >, (since Xi is a Poisson variate with parameter m) 

:. E(e-i) .. . n [exp {-m(1_e- lI1t )I ='exp {-m(1- e- lI1t)} In .-1 
... exp {- mh ( 1 - e- VIt )} ". e-'" 

Hence e-x is not an unbaised estimated of e-"', thoughX is an unbiaset; 
estimate of m. 

.. .. 
I -m x 

(b) E (e- kX kX) = ~ e-kl: kx . p (x) = k ~ e-h x e x ~ . 
x-o x-1 

= ke-m ~ (me-ly' = ke-'" me- k ~ ( mit 'f- 1 
~ (x - 1)! ~ (x - I)! 

x-1 x-1 

_ mke-m- k { 1 + me-k.+ (m;~k)2 + ... }. 

= mke-",-k'e'u·1 = mk exp [{ m(e-k - 1)} - k] 
Example 7· 36. If X and Yare independent Poisson variates with '!leans 

m1 and m2 respectively, prove that the probability that X - Y has the val~ 'r: 
is the co-effICient off in 
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exp {ml t + ~ C 1 - ml - m2} 

[Delhi Univ. B.Sc. (Stat. Hons.), 1991, '89] 

Solution. Since X and Y lire independent Poisson variates with means 
ml and m2 respectively, 

P (X = x) =, , ; x = 0, 1,2, ... 00· 

( 

e':''''1 ni~ ) 
x. 

e- IIIz ,m ... (1) 
and P (Y = y) = y ! ; Y = 0, 1,2, ... 00 

00 00 

P (X - Y = r) = I P ()( = r + s n Y = s) = I P ()( = r + -s) P (Y = s) 
s-o s-o 

(r+s)! 
.... [From (I)] 

s-o 
GO , +s s 

-"'1 -",z ~ ml m2 
... e .LJ( )" 

O r+s .s .. 
s-

{ 
(mlt)2 (m1t)r+S} 

= 1 + ml t + 2 '! +... r (r ... s)! + ... 

{ 
(m2Clf (m2C 1 y 

x 1 + m2C 1 + 2' + ... + ---, -, - + 
• S. 

I QC; ,+s s 

.. Co-efficient of { in e"'l t +"'2'- = }: (ml ~ , 
s-o r + s . s . 

Hence from (2), we get 
,-I 

P(X - Y = r) = e-"'I-"'z x Coefficient of tf in emlt+mzt , 
-I 

= Coefficient of tf in c - ml -mz + mit + ml t 

which is the required result. 

... (2) 

... } 

Example 7· 37. If x'is a Poisson variate with mean m, show that 

X .in m is a vari.,ble with mean zero and variance IInity. Find the M.C.F. for this 

variable and show that it approaches /12 as m - 00. Also interpret tire result. 

(De!~i.U"iv. B. Sc. (Stat. Hons.), 1987] 

X-m 
Solution. ~t r 

Vm 

( X - m) 1 .. E(Y) = E Vm = .r,n E(~ - m) = 0 
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( X - m)2 1 2 1 V (y) = E -- = - E.(){ - m) -= - 1'2 = 1 
• {iii m m 

M.GF. of Y = Mdt) = E e'Y) = E[ et(X-m)/Vm)] 

= e- tVii [E (.iX/Vii ) ] 
CI) 

-m x 
= e- tVii ~ ~ . r 

o x! 
x-

CI) ( vVii)x 
- t Vii - m ~ ->--m_e_--,-- e'e -. . x! 

x-o 
_ ~m-tVii [ met/Vii (met/Vii )2 ] 
-e 1+ 1! + 2! + ... 

7·57 

= e-m-t..r,n-.. exp (met/Vii) = exp[-m-t{iii+met/Vii ] 

= exp~-fTl-t.fiii +m (1 + ./m + 2~2m + 3 !~3/2 + ... )] 

121·t2 ] .. exp "2 t + 3! -vm + ... 

Now proceeding to limit as m - 00, we get 

lim My (t) = //2 
m - 00 ••• (*) 

Interpretation. (*) is the m.g.f. of Standard Normal Variate [c.f. 
Remark to § ?·2·5). Hence by uniqueness theorem of m.g.f.'s, standard Poisson 
variate tends to standard ~ormal variate as m - 00. Hence Poisson distribution 
tends to Normal distribution for large values of parameter m. 

Example 7·38. Deduce tile first four moments about the mean of tile 
Poisson distribution from those of the Binomial distribution. 

Solution. The first four central moments of the binomial distribution-are 

\ 
1'1 = 0, Mean = np I 
1'2 = .npq, 1'3 = npq (q - p) and 

I.l4 = npq (1 - 6pql + 3n2ll 
.•. (*) 

Poisson distribution is a limiting form of the binomial distribution uDder the 
following conditions : 

(I) n - 00, (il) P - 0, i.e., q -1; and (iit) np = )., (say), is finite. 
Using these conditions, we geffrom (*) the,..moments of the Poisson distrib~­

tion as 

1'1 = 0 
Mean = lim (np) = A 

I'~ = lim (npq) = lim (np):: lim (q) = A . -1 .. A 
1'3 = lim [npq (q - p) L ': A : 1 (1 - 0) ... A 

J4 = lim r npq (1 - 6pq) + 3. ( np ')2l ] 
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- [A, • 1 (1 - 6'0'1)' + 3 A,2 • 1] - A, + 3 A,2 

Example 7·39. If X is a Poisson variate with parameter m and Y is 
another discr~ variable whose conditional distribution for a given X is given by 

P(Y - r!X - x) - (:)pr(1 ~ p'f-r.; 0 < p < 1, r .. 0, 1, 2, ... , x 

then show that the unconditional distribution ofY is a Poisson distribution with 
parameter mp. 

[Delhi Univ. B.Sc. (Stat. Hons.), 1993, Shivaji U.B.sc. Nov. 199Z] 
Solution. We are given that 

e-"'m% 
P(X - x) - --,-; x .. 0,1,2, ..... x. 

and P(Y - rlX _ x) _ (;)pr (1 - p'f-r;r $ X 

•. P(X - xnY - r) - P(X .. ·x)P(Y - rlX - x) 

_ e-'" mIt (x)pr (1 _ p'f-r 
x! r· 

:. P (Y - r) - The unconditional distribution of Y. 

- %~r [e-;r • (:)pr (l- p'f-r ] 

-.-- [ .t, (:) t ... ( ~~! r-'] 
-_ [ ~ m% x ! r _r] 

- e .£J x! . ~! (x _ r) ! p (1-p'f 
%-r 

-e:~' [ ~ (x ~r)! pr(1 - P'f-r ] 
%-r 

r! }: (x-r)! 
_ e-- (mpY [ CD "c-r (1 - P 'f- r ] 

x-r 

%-r 

_ e-a ( mp Y I CD { m (1 - p ) } 

r! .}: (x - r) ! w;-, 1 
_ e--(mp.1. ~(1-p) e~""(mpY. 0 1 2 

r ! - r I ' r - , , , ••. 
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Hence Y is a Poisson variate with p'arameter mp. 

Example 7·40. If X~and Yare inliependenlPoisson-WlTiates" 5!.aow,tho' 
the conduional distribution of X given X + Y, is binomial. 

(Madras Vniv. B.sc. Main 1991; Delhi Vniv. B. Sc. (Matbs Bons.), U88] 
Solution. LetX 2nd Y be independent Poisson variates with para meters 

,. and 1.1. respectively. Then X + Y is ,also a Poisson variate with parameter 
,. + 1.1.. 

P[X- rl(X+ Y_ n)] _ P(X- rnx+Y- n) _ P(X. rny- n,- r) 
P(X+ Y - n) P(X+ Y- n) 

P(X - r)P(Y- n - r) 
- P(X+Y-n) [sinceX and Y are indepdent) 

-A )t _I' 1.1."-' e -. e -

:. P [X - r I (X + t - n)] -
r! (n-r)! 

~-(A+I") (A.+I.I.)" 

n ! 

- r! (nn ~ r)'!~~x~: 1.1. r.( ~ )"-' 
( n) , ,JI-' . A. 1 

~ r P 'I , where p - A. + 1.1. ' q - - p 

Hence the conditional dis~bution of X given X + Y - n, is a binomial 
distribution with parameters nand p - A.I( A. + 1.1.). ' 

Example 7'41.. If X is a Poisson variate wah parameter m and JAr is the 
rth tentral moment, prove that 

m ['C11'r-1 + ':C2 1.Lr- 2 + .... + 'C, ~ 1 - I'r+ 1· 

[Delhi ,Vniv. B.Se. (Stat. BODS.) 1990] 
Solution Since X - P (m), its probability function is given by 

e-'" . rrf 
p (x) - x I ' x - 0, 1, 2, ... ; m > ° 

By definition, 

I'r+l - E[X - E(X)'f+ 1 - E[X - mT+l 
CD 

- I (x_my+lp(x) 
%-0 ' 

CD tr'" . rrf 
-I(x-mY(x-m)' , 

%-0 X. 

CD ( Y -"'"r. CD - .. "" _ E .x x - me, _ m I (x _ mY • ~ 
%~o xl %-0 xl 



FUbdameatals or Mathematlcill StaUstIC:s 

I- (x - mY c-'" wi' 
- -ml'r 

s-1 (x - I)! 

- (,-"m + 1 r· e:-,·· m"+.1 
-I I -m~, 
1-0 y. 

(x-l-y.) 

-.- m' ·1 (y - m + 1)" 'p(y) - ml'r 
1-0 • .. 

- m I [()' - m)" + "Cd, - m(-I + "C2(, - m)"-2 
1-0 

.+ ... + "~"-I(Y - m) + l]p(y) - mf.l, 

• m[)lr + 'el Pr-l + "e2f.lr-2 + ... + "e,.Po) - ml'r 

• m ret I'r- \ + !c; J'r-2 + .. , + "e,. JIO ). 
F~JIlple 7-42.. 11 X hIl!~ a Poisson distribution with parameter A., show 

that the distribution function 01 X is given'by 

F (x) • r (/+ \) f: e- I ~z tit; x • 0,1,2, ... 

[DeIhl UDiv. M. Sc:. (Stat) 1986] 
SolutioD. IlX is a Poisson variate, then 

-). )..S 
P(X. %) .;.~; x • 0,1,2,... (t) x. 
CoDSicier the incomplete gamma integral; .. 

Is - . \. J ~-I f t!J ; (% is a .positive integer) 
%.\ 

. '1_ e- I f ,- + 1 j ~-I t s - 1 tit 
x! ). (x-I)!). 

e-,).:)..s 
- -.'+ Is -l x! . 

vrltidl is a teductioll formula for I .. 
Re~ted appl~tio .. Qf ( .. ) gives 

e-l.).s e-l. ).S-1 e-l. ).. 
Is - %'! + (% _ 1) I + ••• + 11 + 10 .. .. 

But 10 .. J e-t tit .. I-e-'I .. e-l. 
). ). 

X2 -). ~ 
• I - .. -A + e +-). 
•• ~S" e ...... e 2! + .:. i!,e 

.P(X-O}+P(X, .•. l}+ ••• + PfX.x} 
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- P(X s x) - F(x) 
where F ( .) is the distribution fun::tion of tbe r.v. X • 

• • 
~ F(x) -~f~-'t%dt·- r( 1 l)fe-'fdt 

x' A x+ k 

( .. ' r (x + 1) - x !. since x is a positive integer.) 
Remark. ThIS result is of great practical utility .It enables -us to represent 

the cumulative Poisson probabilities (which are generally tedious to compute 
numerically) in terms of incomplete gamma integral, the values of which are 
tabulated for different values of "- by Karl 'Pearson in his Tables of Incomplete 
r-functions. I 

7·3·10. R~ulTence Formula forth'e·Probabilitles of Poisson Distribu-
tion. (Filting of Poisson Distribution). For a Poi~s~n dis~ribution with 
parameter A, we have 

e-k • ).% 
p (x) - --,-; x - O. 1. 2, .•. , 00 x. 

e-). ).X. 1 

and P (x + 1) - (x + I)! ; x - 0, 1, 2, ...• 00 

p(x+1)_). (1»). () .(7 ) 
. . p (x ) (x + 1) ::::;. P x + - x + 1 p x .. 1 '20 

whicb is the required recurre~ formula. 

This formula provides us a very convement method of graduating the given 
data by a Poisson distribution. The only probability we need to calculate is P(O) 

whicb is given by p (0) - e-)., where). is estimated from the given data. The 
other probabilities, viz .• p (l),p (2) •••• can now ~ easily obtained as explained 
below: 

p(l) - Ip(x + 1)] %-0 - [x : 1 L.o p(O), 

p(2) -[p(x + 1)] 6-1 - [x: 1 L-l p(l), 

p(~, - [p(x + 1)] %-2 - [x: 1] p(2), 
z .. 2 

and soon. 
Example 7·43. After C01Tecting 50 pages of the proof of a book, the 

proof reader furds thai there ar~ on the average; 2 e~rs per 5 pages. How many 
pages would one ~t -to fuuJ with 0, 1, 2, 3 and 4 eTTO's, in 1000 pages of the 
first print of the book? (Given that e-D-4 - 0·6703) . 

[Nagpur UDiv. M.A. (Eco.), 1989) 
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Solution. Let the random variable X denote the nu~ber of errors per page_ 
Then the mean number of errors per page is given by : 

'- ).. - 2/5 .' 0-4 

Using Poisson probab,lity law, probability of x errors per page is given by: 
e-'A).." e-O-4 ( 0-4 r 

P (X - x) '" p (x) - -,- - I ; X - 0, 1, 2, __ _ x _ x_ 

Expected number of pages with x errors per page in a book of 1000 pages 
are : 

e-o-· ( 0- 4 r 
1000 x P(X - x) - 1000 x , ;x • 0,1,2, __ _ x_ 

Using the recurrence formula ( 17-20 ), various probabilities can be easily 
calculated as shown in the following table_ • 

No_ of e"ors Probability _ Expected number 
per page (X) p (x) of pages 

1000p(x) 

0 p ( 0) _ e- C).4 - 0.6703 670-3 = 670 

J 
0-4 268-12 = 268 

P (1) - -- p( 0) '" 0-26812 
0+1 

2 
0-4 

P ( 2) .. 1'+1 p (1) - 0-D531i24 
53-624 = 54 

3 
0-4 7-1298 = 7 

p(3) - --p(2) - 0-0071298 
2 + 1 

4 
0-4 0-7129~ = 1 P (4) - -,-,-" p (3) - 0-00071298 

3 + 1 , 
Example 7-44. Fit a Poisson distribation to the following data which 

gives the number 0/ doddens in a sample 01 clover seeds_ 

No_ 0/ doddens: 0 1 2 3 4 5 6 7 8 
(x) 

Observed frequency: 56 156 132 92 37 22 4 
(J) 

Solution. 

1~ 986 
Mean - N ~ Ix - 500 - 1-972 

o 1 

Taking the mean of the given distribution as the mean of the Poisson 
distribution we want to fit, Vie get).. - 1-97Z, 

e-).. -)..% 
and p (x) - ,; x - 0, 1,2, ___ , a.I x_ 

P ( 0) _ e-).. _ e- !-972 
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.. IOg10 P (.0) .. - 1·972 log10 e - - 1·97+ x '0·43429 

= - 0·856419 = r ·143581 

:. p ( 0) • 0·1392 
Using the recurrence formula (17·20) the various probabilities, 

viz., P ( 1 ), P ( 2 ), ... , can be easily calculated as shown in the following table: 

-- I.. p(x) Expected frequency x --
x + 1 N.p(x) 

-
0 1·972 0·13920 69-6000 

1 0·986 0·27455 137·2512 

2 0·657 0·27006 135·3296 

'3 0·493 0·17793 88·9566 

4 0·394 0·10964 43·8556 

5 0·328 0'()3459 17·2966 

6 0·281 0'()U37 5-6846 

7 0·247 : 0'()0320 1-6013 

8 0·219 0'()0078 0·3942 
Since frequencies are always integers, therefore by converting them -to 

nearest integers, we get 

Observed frequency: 56 156 132 92 37 22 4 0 1 

Expected frequency: 70 137 135 89 44 17 6 2 0 
Remark. In rounding the figures to the nearest integer it bas to be kept in 

mind that the total of the observed and the expected frequencies should be same. 

'EXERCISE 7 (b) 
1~ '(0) Derrive Poisson distribution as a limiting form· of a binomial 

distribution. [Madnas Univ. B. Eo, Dec.,1991] 
Hence find ~1 and ~2 of the distribution. 
Give some examples of the occurrence of Poisson distri'lution in ~ifferent 

fields. 
(b) State and prove the reproductive property of the Poisson distribution. 

Show that the mean and variance of the Poisson distribution·are equal. 
Find the mode of the Poisson distribution with mean value 5. 
(c) Prove that under certain conditions to be stated by you, the number of 

telephone calls on a frunkline in a.given interval of time bas a Poisson distribution. 
[Calcutta Univ. B.sc. (Matbs Hons.), 1989] 

(d), 'Show tbat for a Poisson. distribution, the coefficient of variation is the 
reciprocal of the stand~rd deviation. 
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z. (a) If two independent variables Xl and X2 have Poisson distribution 
with means Al and A2 respectively, (hen show that their sum Xl + X2- is a 
Poisson variate with mean Al + A2. 

Does the difference of tw~ independent Poisson variates follow a Poisson 
distribution? Give reasons. (Sri Venketeswara Univ. B.se., 1991] 

(b) Prove tbat the sum of two independent Poisson variates is a Poisson 
variate: Is the result true for the difference also? Give reasons. 

[DelbtUniv. B.Sc. (Stat. Hons.) 1989] 
(c) If Xl, X2, ••• ,XA: are independent random variables 'following. the Pois­

t 
son law with paJ'!lmeter mt, m2, ••. , mA: respectively, show tb~t I Xi follows the 

i-I 
A: 

Poisson law' with parameter I: mi 
i-I [Ma~.-.s Univ. B. E., 1993] 

3. (a) 
distribution 

Prove the recurrence relation between .... e .moments of Poisson 

""'+1 - A r""',..1 + d':;- ,where ""'., 1: ~ (j-A)' ( d) CD • -A)j 

II. j-O ')-. 

where Il, is the rth moment about the qlean i... Hence obtain the skewness and 
kurtosis o( Poisson distribution. 

[Delhi Univ. B. Sc. (Stat. Hons.) 1989,' 86; Utkal Univ. B. Sc.1993] 
(b) Let X have a Poisson distribution with parameter A > O. If r is a 

non-negative integer and if "",' - E ()( ), prove tbat 

. '\ (. dil") 1l,+I-11. 1l'+'dA 

[r,tadl'llS Uni~. B. Sc. Nov. 19S5] 
4. What do you understand by (i) cumulants, (li) cumulative function. 

Obtain the cumulative function of a Poisson distribution with parameter A. Hence 
or otherwise show tbat for a PoissoJ} distribution with parameter i.., all the 
cumulants are A. 

s. For the Poisson distribution with Rarameter i.., sbow that tbe rtb 
factorial moment Il'(,) is given by Il'(,) - A' 

Sbow further that f.I(2) - i.., iA<·3) . ... - 2 i and 1l(4) - 3 A (A + 2) 
6. (a) If X and Y are independent r.v. s.' so that X - P (A) and 

X + Y -P (A + Il); find tbe dis~ri~ution of Y. 

(b) If X - P (A), find 

(I) Karl Pearson's coefficient o(skewne£s 

(ii) Moment measure of ske~ess. 

[ADs. Y - P ( Il )] 

Is Poisson distribution positively s~~wed or negatively skewed? 
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7. (a) It is ~nown that the probability that an item produced by a certain 
machine will be defective is 0·01. By applying Poisson's approximation, show 
that the probability that random sample of 100 items selected at random from 
(he total output will contain no more than one defective item is 21e. 

(b) The probability of success in a trail is known ~o be 10-4. It is possible 
to repeat the trial independently any desired number of times. Do you think that 
(he number of successes in a series of trials, if the number of trials in the series 
increases indefinitely, will·tend to follow a Poisson distribution? Give your 
reasons. 

(c) The probability of getting no misprint in a page of a book is e-:l. What 
is the probability that a page contains more than 2 misprints ? [State the 
assumptions you make in solving this problem.] [Bombay Uiliv. B.Se., 1989] 

8. In a certain factory turning out optical lenses, there is a small chance 
1/500 for any lens to be defective. The lenses are supplied in a packet of 10. Usc 
poisson distribution to calculate .the· approximate number o~ packets containing 
no defective, one defective, two defective and three defective lenses in a 
consignment of 20,000 packets. 

ADS. 19604, 392, 4 and 0 packets. 

9. Red biood cell deficiency may be determined by eX'lmining a specimen of 
(he blood under a microscope'. Suppose a' certain small fixed volume contains on 
(he average 20 red cells for normal persons. Using Poisson distribution, obtain 
the probability that a specimen from a normal person will contain less than 15 
red cells. 

14 

ADS. L {d-20 (20)Xlx !} 
.(=0 

10. Assuming that the chance of a traffic accident in a day in a street of 
Delhi is 0·001, on how many days out of a trial of 1,000 days can we expect: 

(i) no accident 

(ii) more than three accidents, if there are 1,000 such streets in the whole 
city'! 

11. Patients arrive randomly and independently at a doctor's surgery from 
8·0 A.M. at an average rate of one in live minutes.The waiting room holds 2 
persons. What is the probability that the room witt be full when the doctor 
arrives at 9·0 A.M. (Estimate the probability to an accuracy of 5 per cent.) 

ADS. 53·84 % 

12. An office switchboard receives telephone cails at. the rate of 3 calls per 
minute on an average. What is the probability of receiving (i) no calls in a one­
minute interval, (ii) at the most 3 calls in a 5·mihutc interval? 

ADS. (i) 0·0323, (ii) 0 

13. A hospital switchboard receives an average of ~ emergency caIls in a 10· 
minute interval. What is the probability that (i) there are at the most 2 
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emergency calls in a 10-minute interval, (il) there are exactiy 3 emergency calls 
in a 10-minute interval? 

ADs. (i) 13- 4, (it) (32/3) e- 4 

14. (a) A distributor of bean seeds determines from extel1!live tests that' 
5% of large batch of seeds will not germinate. He sells the seeds in packets of 200 
and guarantees 90% germination. Determine the probability that a particular packet 
will violate the guarantee. 

10 

Ans. 1 - 1: (e- 10 10" IT! ) 
r-O 

(b) In aq automatic telephone exchange the prob~bility that anyone call is 
wrongly connected is 0·001. What is the minimum number of independent calls 
required to ensure a probability of 0·90, that at least one call is wrongly connected? 

is. (a) Fit a Poisson distribution to the following data with respect to 
the number or'red blood corpuscles (x) per cell : 

x: 0 1 2 3 4 5 

Numberofcellsj: 142 156 69 27 5 1 
(b) Data was collected overa period of 10 years, showing number of deaths 

from horse kicRs in each of the 20 army corps. From the 200 corps-years, the 
distribution of deaths was as follows: 

No. of deaths : 0 1 2 3 4 

Frequency: 122 60 15 2 1 

Graduate the data by Poisson distribution and calculate the theoretiCal 
frequencies. 

Given 0·670.3 0·6065 0'5~8 0·4966 

m: 0·4 0·5 0·6 0·7 

(c) Fit a Poisson distribution to the following data and calculate the expected 
frequencies :-

x: 0 1 2 3 4 5 6 7 8 

j: 71 112 117 57 27 11 3 1 1 
16. (a) If X is'the number of occu rrences of the Po;sson ~a riate with mean 

i..;showthat: P (X ~ n) - P(X ~ n + 1) = p(X = n) 
(b) Suppose thatX bas a Poisson distribution. If 

P (X = 2) = i P (X = 1). 

Evaluate (i) P (X", 0) and (if) P (X = 3) [Ans. (t) 0·264.} 
(c) If X has a Poisson-distribution such that , , 

P (X = 1) = P (X ,. 2), find f (X = 4). [Ans 0·09] 
(c) Ifa Poisson variate X is such that 
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P(X-1)-2P(X ... 2), 
find P (X .. 0), mean and the variance. 

(d) IT for a Poisson variate X,. E (X2) - 6, what is E ~ X) ? 

7·67 

(e) If X and Y are independent Poisson variates having means 1 and 3 
respectively, find the variance of3X + Y. 

17. Show that for a Poisson distribution 

(i) M a Yl Y2 - 1, (ii) pr (P2 - 3·) Ill' a - 1 
18. Show that the fu~tion which generates the central moments.~f the 

poisson distribution with parameter A is 

M ( t) - exp{ A (e' - 1 - t)} 
Sbow that it satisfies the equation 

dM(t) • A M() A dM(t) 
til t t + dA 

19. (0) The random variableX has p.d.f. 

f( x) - e- 9 ~; x - 0, 1,2; ... x. 
• 0, elsewhere 

Find the m.g.f. of Y - '1X - 1 and Var (Y). 
(b) Identify the distribution with the following mgfs : 

Mx ( t) • (~)-3 + 0·7 et )10 

My( t) .. exp [3 (e' - 1)] 
Ans. X -B (10'~'7), Y -P(3). 

20. If X has PoissQn distribution with parameter A, then 

P [X is even] - ~ [1 + e-2).] 
. '[Delhi Univ. B. Sc. (Stat. Hons.) 1991] 

21. (a) The m.g.f. ofa rN. isX is exp ~4 (e' -1»). Show that 

P (11 - 2 (1 < X < 11 +' 2a) - 0'931 
Hint. X - P (A ... 4 j; 

Required Probability .• P (0 < X < 8) - P (1 ~ X s 7) .. 0·931 
(b) If X ... P (A .. 100), use Chebychev's inequality to determine a 

lower bound for P (75 < X < 125) [Ans. 0'84] 
22. If X -P(m), showtbatE IX - 11 ... m - 1 +. 2e-/II 

[Delhi Univ. B. Sc. (Maths. Hons.), 1983] 

Hint. EIK-ll= I Ix-tli'/IImX/x!=e-"'+ I(x-,l)'e-'"'mx 

x-o x-2 X. 

_/II -/II; JC [1 1 ] -·e +e '"""m ( -1)'--' 
x-2 x . x. 
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23. If X -P()') and YIX - x - (B (x, p), then prove that 
Y -P().p). 

%4. If the chances .of 0, 1, 2, 3 •.• events from one source are given by a 
Poisson distribution of mean ml and the chances of O. 1.2,3, •.. evenls from another 
source by a Poisson distribution of mean m2. show that the chances ofO. 1. 2. 3 •... 
events from either source are given by 

e 1, ml + m2 , 2 ! ' ... . -(ml+mz) {( ) (ml + m2 )2 } 

Show that the sum of any finite number of Poisson variates-is itself a Poisson variate 
with mean equal to the sum of separate means. 

25. X is a Poisson variate with mean A. 

Show thatE (X2) - )'E (X - 1). 

If A-I. show that E IX - 11 - ~ 
e 

26. Show that the mean deviation about mean for Poisson distribution 
e-"'m" 

p (x) - --I -; x - 0, 1, 2, ... x. 
e-m • mfJ. 

is (2~,l) . Jl ! 

where Jl is tbe greatest integer contained in (m + 1). 

and 

[Delhi Univ. B. Sc. (Stat. Hons.).1988,' 84] 
27. LetX. Y be independent Poisson variates. The variance of X + Y is 9 

P(X - 31X + Y - 6) - 5/54 

Find the mean of X. [Ans. ~ (9 % 3 ..f3) i.e. 1·902 or 7-098 J 
28. If X is a Poisson variate with paramter m, show that 

m' 
p (X < r) < ,; r - 0, 1, 2, ... 

r. 
Deduce that E (X) < e"'. [Delhi Univ. B.sc. (Maths. Hons.), 1989] 
29. (0) The characteristic function of a variate X is 

6 

q>x ( t) .. (~ + ~ it) . [.exp {- 3 (1 _ it) } ]-

Recognise the variate. -

,Hint. 
dent r.v.'s 

[Burdwan Univ. B. Sc. (Malbs. Hons.) 1989) 

X ... U + V, where U - B (6, t) and V - P(3) are indepen-

(b) Identify the variates X and Y where : 

Mx ( t) ... ( 1127) (1 +. 2 e')3 • exp [ 3 (et - 1)] 
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My ( t) - ( 1/32) (1 + e')5 • exp [ - 2 ~ 1 - e') ] 

[Delhi Univ. B. Sc. (Stat. Hons.), 1987, 84) 
Ans. X - U + V; U -B (n - 3,p - 213) and V -P()" - 3 ) are independent. 

y- U\+ V\;U\ -B(n .. S,p~ l/2)an<iV\ -P(),.- 2) are independent 

30. If X and Y are correlated variates each having Pojss('n distribution, 
show that X + Y cannot be a Poisson variate 

[Delhi Univ. B. Sc. (Maths Hons.), 1988; Poona Unlv. B.Sc., 1989) 
Hint. Note that for Poisson variate mean and variance are equal. ~t 

X-P()'), Y -P(~);'(X,Y)correlated. 
:. E(X + Y) - E(X) + E(Y) - ). + ~ 
Var (X + Y) .. Var X + Var Y + 2 Cov (X, Y) 

- A + ~ + 2p Vi:ji, (p of 0) 
Since E (X + Y) .. Var (X + Y); X + Y Cannot be a Po~n variate. 
31. Let X, Y, Z' be independent Pois,soh variates with parameters 

0, band c respectively. Obtain; 
(,) m.g.f. of X + 2Y + 3Z, 
(ii) Conditional expectation of X given, X + Y + Z - n 

(Indian Civil Services, 1985) 
Hint.Mx + 2Y + 3Z (t) - Alx (t)'· My( 2t ~ . Mz"( 3t) 

- c;xp [ a ( e' - 1 ) + b ( e21 '- 1 ) + C ( e31 - 1 ) ] 

P(X - IX Y Z- ) .. p(X-xnx+Y+Z-n), 
x + + n P(X+Y+Z-n) 

_P(X-x)P(Y+Z-n-x) ( .. X'Y.Z ·nde) 
P(X+Y+Z-n) ." are I p. 

e- G • tr e:-("+C)· (b + c)"-7-
- x' x'! (n - x)! 

[ n! ] 
x i'( G+ b+ c) • (a + b + c)" 

.. x'! (nn ~ x)! (a + : + c f . ( a ! ; : c r 
=> X I (X + Y + Z - n) - B { n, p - a/(a t b +-c ) } 

E [XliX + Y + Z - n] - np - "; 
a + +- c 

j2. The joint density ofr.v:'sX and Y is'; 

2/ · f(x,y) = e~ 'Lx!' (.y - x)! J; y - 0,1,2, ..•. ; x - 011, 2, •.. ,y. 
Find the m.g.f. M( thh)' of (X, Y). a~ correlation coefficient between 

X and Y. Show that the marginal distribudons ,of X and Y are Poisson. 
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Hint. M (/1,12) .. y~o x~o i,x+tl
)' X [X! (ye~'X)! ] 

.. e- 2 ;; [e'Z: { f 'ex . (i' r } ] ,.0 y. x-o 

,= e- 2 ;; {[ it (1 + i') f / Y!} 
)'.0 

.. e- 2 • exp I e'2 (1 + i')'} 
M(It. 0)'" e~p[2(i'-l)] => X -P ().. =- 1) 

M(0,/2) = exp[2(l2-1>] ~ Y -P ('" = 2) 

Observe M (11, (2) " M (Ii. 0) x' M (0, (2) ? X and Y are not inde. 
pendent. 

e(X) - 1, Var (X) .'1; E(Y') .. 2 ... VarY. 

i (Xy) = I iP M (/1,12) I · 3 
011 () 12 ' 0 

1,-/2-

( X Y) ... Cov(X, Y) ... 3 - ~~ .. 1I.fI. 
p "" aXay 1 x ,f2 , 

33. The joiRt p.g.f. ofthe r.vo's X and Y is given by : 

, P ( S1, ~2') "" exp [a ($1 - 1) + b (S2 - 1 ) + C (Sl - 1) (S2 - 1)]. 

a,b,c, are all positive. Find p (X, Y) 

Hint. Px(st} - P(s1,1) ~ exp [a(s1-1)J =>X -pea) 

Py ( S2) - P (1, 51)- • exp (b f S2 - 1 ) J => Y - P ( b ) 

E (X Y ) III (a2 P ( S1, $2 ) ) .. c + abo 
. a~a51) J .., s,-s:· 

Cov (X, Y) (c + ab) - Db c 
px y" ax ay .. Va Vb = -.fQii 

34. An insurance comp.ny issues only two types of policy, household and 
molor. Ir bas carried out an investigation into the experience of a group of 
policybolders wbo held one of eacb type of policy over a pzrticular period al'" it 
bas discovered tbat witbin tbat group and over that period tbe mean number oC 
claims per household policy was 0·3 and the mean number of claims per motor 
policy was O·S. AssUme that the number of claims under each type of policy is 
independent of tbe number of claims ugder 4Ie ()ther typ~ o( policy and tbat each 
can be represented by a Poisson distribution. 

(a) If tbe number of claims per policyholder is tbe sum of tbe number oC 
claims uilder each of his two poliCies, state with reasonS how tbe number of claims 
per policy bolder. within that group and over: that period is distributed, and 
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(b) Calculate to the nearest whole number, the petcentage ofpoUcyholdets 
within that group apd overthl\t period who made more housebold claimS than motor 
claims. 

HinL Household claim, X ':" P ( '3) and Motor claim, Y - P ( ·8 ) 

Required Probability = P(X > Y) • i [ i P(Y - r n X· r + s>l 
r-O ,-0 

_ ~ [e-·I(.s)' _., t .J - (1 ·3 w: (·3)'-1 )}1 
LJ r!' e e + + 2! + '" + (r - 1)! ._0 

- -e e -+-- +. + +. +-1 - . 8 - . 3 [{ ·8 ( '8)2 (1 3 ) ( '8 )3 (1 3 0()9 ) . 
1 2! 3!, 2 

( ·8 t ( -09 ·027 ) ] + 4! 1 + ·3 + 2 + 3T + •.. 

35. (i) An event occurs instantaneously and is equally likely to occur at 
any instan~. There is no limit on the number of occurmeces tbat may happen inany 
interval of time, but the expected number in a given time interval is T. Prove that 
the probab~lity of the event occurring exactly r time$ in an interval of the same 
duration is (T" e- T )/,.!. 

(il) An insurance company which writes only fire and accident business 
defines a major claim as one which costs at least ~. 501OQO for an accident claim 
or Rs.I00,OOO for a fire claim. Any excess overtbese amounts is paid by reinsurers 
and hence every major claim is recorded at a cost of Rs. 50,000 or RI. 100,000 
respectively. The company diyides the year into equal monthly accounting periods 
and a report is produced oftbe recorded cost of major claims. The expected number 
of major accident claims is 0·2 per month-and of major fire claims 0·5 pt:r q\onth. 
Calculate the probability that in i particular month the recorded cost of major 
~Iaims is Rs. 2,00,000 or more. 

J6. (a) The number of aeroplanes arriving at an airport in a 30 minute 
interval obeys the Poisson law wi,th mean 25. Use Chebychev's inequality to find 
the least chance, that the number of planes to arrive within a given 30 minutes 
interval will be between 15 and 35. [Sri Venketeswara U. BoSe. 199%] 

(b) Suppose that the number of motor cars arriving in a certain parking lot 
ill any 15 minutes period obeys a Poisson probability Jaw with mean 80. Use 
Cbebychev's inequality to determine a lower bound "for the probability that the 
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number of motor cars arriving in a given 15 minute period will be between 60 and 
100. . . [Madras U. B.s'c. Nov. 1")] 

',4. N'!gative Binomial Distribution. The equality of tbe mean and 
varaince is an important cbaracteristic oftbe Poisson distribution, wbereas for the 
binomial distribution tbe mean is always greater tban tbe variance. Occasionally, 
however, observable pbenomena give rise to empirical discrete distributions wbich 
sLow a variance larger than tbe mean. Some oftbe commonest examples of such 
behaviour are tbe frequency distributions of plant density obtained by quadrant 
sampling wben tbe clustering .of plants makes tbe simple Poisson model inap_ 
plicable'. It bas been shown by different investigators tbat insucb Cases the negative 
binomial distribution provides an exceJlent model because tbis distribution has a 
variance larger tban tbe mean. Bacterial clustering (or contagion), e.g., deaths of 
insects, number of insect bites leads to the negative binomial distribution and the 
distribution also arises in inverse sampling from a binomial population or ~s a 
weighted average of Poisson distribution. This important probability distribution 
is sometimes also referred to as the Pascal distribution after tbe Fre,ncb mathe­
matician Blaise Pascal (1623-1662), but there seems to be no bistorical justifica­
tion. Tbe nega-tive binomial distribution can be derived from empirical 
(;Onsiderations in many ways. Here we consider tbe Binomial probability situation 
with some modifications. 

Suppose we bave a succession of n Bemou!li trails. We assume tbat (i) the 
trials are independent, (ii) tbe probability of success 'p' in a trial remains constant 
from ttial to trial. 

Letf(x; r,p) denote tbe probability tbat tbere arex failures preq:ding tbe 
rtll succ~ in x + r trials. 
. Now, the last trial must be a success, wbose probability is p. In t~ f~maining 

(x +.r - 1) trials we must bave (r - 1) suCcesses wbose probability is given 
by 

(X ; ~ ~ 1 ) p,-l tf ' 

Tberefon< ~y compound probability tbeorem,f(x; r,p) is given by th~ p-roduct 
of these. two probabilities, i.e., . 

. (X + r - 1 J p,-l if 'P •. (X + r - 1) p' tf 
r-l r-t. 

~finitJon. A r~ndom variable X is said to follow a negative, binomial 
distribution if its probability mass function is gi~en by 

Ix+r-l) r r 
p (~) • p (X. = x) = l r _. 1 P tf; x • 0, f, 2, ... 

. = 0, otherwise . ..:(7·21) 
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... (x+r-l)(x+r-2) ... (r+ l)r 

.. (- It(-r)(-r-l) ... (-r-x+2)(-r-x+l) 
x! 

-(-It(":) 
{( -r) pr(_qt;x .. 0,1,2, ... 

p(x) _ x 

0, otherwll\e ... ( 7·21 a} 

which is the (x + 1)111 term in the expansion of pr ( 1 - q rr, a binomial 
expansion with a ~egative index. Hence the distribution is known as negativf. 
binomial distribution. Also 

'" ... 

~ p (x) - pr ~ (-:) (-q t - " x (l - q rr - 1 
x-O %-0 

Therefore p (x) represents the probability function and the discrete vari­
able which follows this probability function is called the negative binomial variate. 

If 1 P 
p - Q and q .. Q so that Q - P = 1, ('.' p + q = 1) 

ilien p(.) - L~:le: (- ~i ;' -O.I.~ ... 
. ••• (7·21 b) 

This is the general term in the negative binomial expansion (Q - P rr. 
Remarks. 1. p (x) in (7·21) or (7·21a) is also'sometimes written as 

f(x; r,p). 
l. Some Important Deductions. 
(a) Geometric Distribution. If we take r • 1 i'l (7'2n we have 

p (x) - if p; x - 0, 1, 2, ••. 
which is the probabiJity function 9.f geometric distribution (c/. § 7·5 page 7·83). 

Hence negative binomial distribution may be reg~rded as the generalisatiol\ 
of geometric distribution. 

(b) Pascal's Distribution. The negative binomial distribution (7·21 a) 
when regarded as one having two parameters p and r is known as Pascal's 
distribution. 

(c)r Polya's Distribution. If we take 

1 1 - ~ J.l 
r - j . p - 1. + ~~' q - 1 -'- P - 1 + ~ ~ in (7·21 a) , we get 

() r(r+l)(r+2) ... (r+x-l) r ,Jl 
p X -_.- x! 'p'., 
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111\ :t 

= (1+ 1l)(1+ 211) ..• [1+ !:S(X-1)]( 1 ) ( Il ) x, 1+/31l 1+/31l 
(x = 0, 1, 2, ... ) ... (7'21 c) 

which is known as Polya'sdi$tribution with two parameters, /3 and Il. 
(4) Second Form or Ge';lr.etric Distribution. Ta king II = 1 in 

Polya's distribution (7'21 c), we get 

, p (x) - 'i""+; '1+'; ; x = .0, 1, 2, ... . .. ~7·21 d) 
_('1 )~Il)X . 

which is geometric distribution (c.f. § ·5) with 
1 Il -

P :a~, q .. 1 - P = '1+'; 
. 7 ... ·1. Moment Generating Function of Negative Uinomial Distribu. 

tion. 
CO> 

Mx(t) .. £(etx ) _ 1: etx p(x) x-o 
.. xio (-:) Q-' (- ~'f 
= (Q - pI f' ... (7'22) 

1'1' - .( !. M (t) ) t- 0 = [ ~ r (- Pe') (Q - pe'f,-l ] t- Q 

.. rP 
:. Mean of the negative biliomial distribution is rP. 

1'2' -I ~ .M (t») ".(7'22 a) 
dJ 1-0 

... rPe(Q- Pe'f,-1 4 (- r- 1)rPI(Q . pe'f,-2(_pi»)t_O 

_ rP + r (r + 1) p2 

:. 1'2" 1'2' - 1'1,2 - r( r + 1)F + rP - r2 p2 • rPQ .. ;(7'22 b) 
As Q > 1, rP < rPQ, i.e., Mean < Variance, which is a distingllis/Jing 

feature of this distribution. 

7·4·Z. Cumulants or Negative Binomial Distribution. 

Kx( t) - log Mx ( t) • - r log-( Q ,- pI) 

__ r 'log [ Q _ P .( 1 + t + ~2, + ,;3, + ~4, + ... )] 

.. - r log [ 1 - P (t + t, + :, + ;4, + ... ) J 

("'Q-P-1) 
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proceed.ing as in § 7'2·8, w~ will get (on repll!cing n wilh -.r and p with, 

~p), I 

M~!ln= Kl = rP 
'1l2 = K2 = r P( 1 + P) = rPQ} ... (7,23). 

Il) - ") - rP ( 1 + 3P + W ) - r'P ( 1 + P ),~ 1 + 2P ) .. rPfl ( Q + P ). 

K4 '" r P (1 + P) (1 + 6P + 6 p2) .: r PQ (1 + 6 PQ ) 

• • 114 '" K4 + 3 K~ = rPQ [1 + 3PQ (r + 2)] 
~irtce Q, .. lip, P .. qQ = qlp, we have in tenus ofp lipd q, 

Mean = rqlp, Variance = rql/' 113 = rq (1 + q )/l 

114 = rq [l + 3q (r + 2)]ll 
2 • )2 

~l = 113 .. (1 + q .. , 
Il~ rq 

~2 = 114 = p2 + 3 q (r + 2) 
Il~ r q 

... (7'23 a) 

Yl = ~ = (1 + q )/>!Tq 

Y2 = Ih - 3 = (/ + 6 q )/rq 
7·4·3. Poisson Distribution as a Limiting Case orthe Negative Binomiai 

Distribution. Negative binomia,1 distributiQR tends to 'Poisson di!>tribution as 
p .... 0, r - 00 such that rP = ),,'(firiite). Proceeding to the limits, we get 

I. () I' (X + r - 1) , rF 1m p x = 1m r _ 1 P '1 

= lim (X + ; - 1) Q-' -( ~ J 
)( 

= Jim (x + r - 1 )( x + r - 2 ) ... ( r' + 1 ) r (1 + P f' (~} 
r-oo x! 1+P 

= r~oo [x\ (1 + X~1)( 1 + ;X~2} 

.... ( Lt. ~ ).1,1"(1 • Pf'{t : pi I 
= -.!. lim [ ( 1 

x! r-oo • pr' (/:p il 
= ~ Ij'm [(1 + ~)]-' lim (1 +.~)-)( 

x! r-oo r r-oo' r ['.' rP = A 1 

;..: _A e- A).! 
=-'e ·1 ... --x! x t, 
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which is the probabi.lity function of tbe Poisson distribution witb parameter 'A'. 

7-4-4. Probability Generating Function of Negative Binomial Distribu. 
tion. LetX be a random variable following negative binomial distribution, the" 

... 
&(s) - E(~) ... t il1t p(x) 

%-0 
... 

... L (-:)l (- qst 
·%-0 [Using 7'21 a)] 

- II (1 - qs rr - [p/( 1 - qs) t ... (7'24) 
Example 7·45. An item is produced in large numbers. The machine is 

known to produce 5% defectives. A quality cOnlrol inspector is examining the 
items by taJcing them at random. !'4Jat is the probability that at least 4 items are to 

be examined in order to get 2 deft!~ive.s ? 

Solution. . If 2 defectives are to be obta ined tben it can ha ppen in 2 or more 
trials. The. probability of· success is 0-05 (or e· .. eJ)' trial. It .is a negative binomial 
situation and lite required probability is 

- P(X - 4). + P(X ~ ~) + ... 

_ i (X - 1) (0.05)2 (0'95 t-2-
%-4 2 - 1 

3 _ 1 _ ~ (~- 1) (0·05)2 (0'95t-2 
2 2 - 1 

- 1 - [( 0-(5)2 ;t 2 ( 0-05 )2 ( 0·95 )] 

- 0·995 
Example 7·46. If X - B ( n, p) tlnd Y .has,negative binomial distribu­

ti:»t withptJrameters r and p, proYe1thDt 

Fx(r -1) - 1 -Fy(~ - r) 
[Delhi Unlv. Spl. Coune (Statistics HOns.), 1987] 

Solution. 

1 - Fy( n - r) - 1 - P (Y s n .... r) - P (Y > n; - ,.) 
... 

- i: (Y;~~I)p.(;[z_y_(n_r+l)J 
II-r+l . 

... 
_pr tl- r + 1 • L (~~~) f 

z-o 

-p' ,.-'" .i./:f.(:) (r-t-k)}' 
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[ ...• ~. (:) (, ~ k) • (. ; ;) 1 
_Iq'-"lri\(~.) ~. (r-';-k)ifj 

k_O z-r-l-k 

[C~~ging the order of summation and noting that·.( ~) - 0; 11 < r ] 

_Iq'-r+l r~~ [(11) ~(t+r-l.-k)t/+r_l-kl 
~ k·~. r-l-k J' k_O ,-0 

t-z-(r-·l-k) 
r-l 

- I q' k~O {( ~) q-k. (1 - q f(r-'k') } 

, 

_ r~l (~) pk . ,-k 
k-O 

- P(X s (r - 1)] - Fx( r - 1) 
Example 7·47. (Banach's Match-box Problem). A certain mathe­

matician always carries two match boxes (in#i!llly containing N match sticks). 
Each time he wants a match-stick he selects a box at random, inevitably a moment 
comes when he {urds a box empty. Show that the probability that there are exactly 
r match-sticks in one box when the other box is found empty is 

(1Nn-r) x {~)2N-r 
Solution. Let the two match bOxeS be numbered 1 and 2. Let the choice 

(lfthe 1st box be regarded as ~ailure and lbat ofsecond box be regarded as a success. 
Since the mathematician selects the ,match box at random, 

p - Probability of selectiog ~nd match box = Vl 
~ q-\-p-VL 

The second box will be found empty if it is s~l~d for the (II + l)st time. 
At this stage, the first box will contain exactly r maic~es if (N - r) matches have 
already been drawn from it. 'Hence the second box will be fO\lnd empty at the stage 
when the first box contains exactly r matcbes if and only if (N - r) failures 
precede the (N.+ 1)st ,success. Thus in a total of,N + 1 + (N - r) 
- 2 N - r + 1, tliais '~be last one must be success ~Dd' out of the remaining 
(1N - r) trials we should have (N - r) failures and N successes. 

• . Probability that second box is found empty when there are exactly r 
matches in first box is 



FundamentalS of Mathematical StaUstics 

_ (2NN- ,) (~.r (~r-r ~ - (2NN-') (~)~-r+l 
Similarly, the probability that first box is found empty, when the second box 
contains exactly, matches is given by 

(iNN- ') (~)~-r+ 1 
Hence the required probability that one match OOX is found empty when the 

'other Contains exactly r . matches is 

Z'x (2NN-') (~)~-r+1. _. (2NN-') (~)~-r 
Remark. The statement that 'he finds the box empty' implies that when 

ht' used the last match·in this box, he did not throw it away, but instead put it back 
in his pocket. Thus there is a. difference between 'the box is empty' and 'the box 
is found empty'. • 

The box becomes empty when the Nth match was taken from it but it is found 
to be empty on1y when it is selected for the (N + 1 )st time. 

El:ample 7·48. X is a ne(ative binomial variate with p.f. 

f(x) = j(k+;-l) lfl,x =·O;~,2, ... 
. . 0' , otherwISe 

Show that the 1nomeni recurrence Jormula is 

~r~l -q [~i + ~~ ~r-l] 
State how the moments of negative binomial variate can be written from the 

corresponding formulas for binomial variate. . 
[punjab Univ. B. Sc. (Maths Hons.) 1990] 

Solution. For Negative Binomial Distributio~ wit.h p~lan~eter k and p, 

M~" z k , q/p - ~, (say). 
CO> 

~r = I (x - ~)'f(x) 

->~.! (x - ; f . (k + ~ d) if . p.] 
Differentiating w.r.to q, we get I. 

~- ~ [+-~f' XVq (x-;)W~;-I)ifP'l 
+ ~ [(x - ; l' (k + ; - I ){ xq>-' i + if· kp'-' . ~}] 
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But 

and 

!!£-~(I-q)--1 
dq dq 

!!.- [X _!:!J.] _ ~ [X _ ic(! _ 1)] _ k .!!£. .. _.!-
dq pdq p ldq l 

d JIro k ( 1;,. )r-I .. - - -!:.. ~ X _.=1 • f(x) 
dq l Jl p 

7·79 

+ ~ (X .; r (k + ~ - 1) (-Il (X - ;) 

--~21'r-r+- ~ x-.::1 ·f(x) 
k 1 ( /,,. )r+ 1 

P q Jl P 

rk 1 
- - -:2 JIro-1 +, - • J1r+1 

P q 

~. J1r+ 1 - q [ dd~r + ~~ Jlr-I]; r - 1,2,3, ... 

7·4·5. Deduction or~oments of Negative Binomial "Distribution From 
Those of Binomial Distrib~tion. ,,-we write 

P - l/Q, q - PIQ such that Q - P - 1, 
then the m.g.f. of negative binomial variate X is given ~y [c.f. § 7·4·1j: 

Mx ( t) - (~ - f l r k ... (.) 

This is analogous to the m.g.f. ofbinomjal variate Y with"parameters nand 
p', viz., 

My ( t) - (q' + p' e'J"; q' ... 1 - p' ... ( .. ) 
Comparing (.) and ( •• ), we get 

q' ~ Q, p' - - P and n •. - k ... ( ••• ) 
Using the fonnulae for moments of binomial distribution, the moments of 

negative binomial distribution are given by 

Mean - ;,p' - (- k) (- P) - k P 
Variance - np' q' - (- k) (- P) Q - k PQ 

J13 - njl q' (t/ - p' ) .. (- k ) ( - P ) Q ( Q +:P) -/c.PQ ( Q + P) 
1'4 - np' t/ [1 + 3p' q' (n - 2)] 

- (-k)(-P)Q[1 + 3(-P)Q(-k-2)] 
- kPQ[1 + 3 PQ(k + 2)] 

Example' 7·49. Prove that the recurrence formulo for negative binomial 
d· x+r lStribution is: f.( x .,. 1; r, p ) . - --1 q J (x; r. p) 

x + 
(Utkal Univ. M.A., 1990) 

Solution. We have 
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I(x;r,p) _ (X; ~ ~ l)p'tl 

I(x + l;r"p) - (; ~ np'tl+ 1 

[(x+ 1 ;r,p) (x+r)! (r-l)!x! ~ 
I(x;r,p) = (r-l)!(x+l)!(x.+;'-I)-!q=x+l q 

x+r 
I(x+l;r,p) - X+t'q'/(x;r,p) 

This recurrence relation is useful for fitting of the negative binomial distribu­
tion to the given data as discussed in the following example. 

Example ',50. Given the hypothetical distribution-: 

No. olcells: 0 1 ? 3 4 5 Total 
(x) 

Frequency: 213 128 37 18 3 1 400 
(f) 

Fit a negative binqmial distribution and calculate the expected Irequencies. 

Solution. 1'1' _ Mean _ 1: (X, _ 473 _ -6825 _ ~ 
l:1 400 - p ... (*) 

, 511 2TIS 
1'2 - 400 - l' , 

1'2 - 1'2' - 1'1,2 - 1'2775 - ( -(825)2 - 0·8117 • 
.. Variance - 0'8117 - ~ 

P 
Solving equations (.) and ( .. ), we get '( 

0-6825 
P - 0'8U7 - 0·8408, q - 1 - p - 0·1592 

r _ p x 0·6825 .. 0·5738 • 3.60451) 
q 0·1592 

10 - p' • (·8408 )3-6045 - 5352 
r + 0 It • oTIq 10' CI rq 10 - 0·5738 x 0'535~ - 0.·3071 

... (U) 

r + 1 4·60456 h -~ . q'/l = 2 x 0,1592 ,~ 0'3Q71 • 0·1126 

r + 2 5·60456 
/3 - 2 + f " q. /2 - 3 x 0·1592 x 0'1126 - 0:0335 

r + -3 6·60456 14 -~ . q'/J .. 4 x 0·1592 x 0'0335 CI O-OOSS 

r + 4 7·60456 Is - 4 + 1 • q'/4 - 5 x 0·1592 x 0·0088 - 0·000213 
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:. Expected frequeilci'es are : 

Nlo Nit Nh 
214·0992 122·8596 45·0308 

:. Observed Frequency: 213 

Expected Frequency': 214 

128 

123 

Nb 
13·3928 

37 

45 

EXERCISE 7 (c) 

NI. 
3·5204 

18 

13 

3 

4 

7·81 

Nls 
0·8524 

1 

1 

1. «(I) Define negative binomial distribution.,Give an example in which 
it occurs: Obtain its moment generating function. Hence or otherwise obtain its 
mean, variance and thiro cent~1 moment. [Gujarat Univ. B.Sc. i9921 

( b) If X denotes the num1;>er of failures preceding the rth success in an 
infi~ite series of independent trials with constant probability p of succes~ for each 
trial, then identify the distribution of X and obtain E (X). What is the distribution 
when r • I? _ [Delhi Univ. B. Sc. (StaL Bons.), 1985] 

2. (a). A well known baseball player has a lifetime batting average of 
0·3. He needs ,32 more hits to make up his lifetime total to 3000. What is, the 
probability that 100 or fewer times at bat are required for him to achieve his goal? 

(b) A scientist needs three diseased rabbits for an experiment. He has 20 
rab1>its availlable and inoculates them one at a time with a serum, quitting if and 
when he gets 3 positive reactions. If the probability is 0·25 tbat a rabbit can contract 
the disease from the serum, what is the probability that the scientist is able to get 
3 diseased rabbits from 20? 

3. A student bas taken a 5 answer mUltiple choice examination orally. He 
continues to answer questions until he gets five correct answers. What is the 
probability that he gets them on or before the twenty-fifth questiolfif he guesses at 
each answer ? 

4. if a boy is throwing stones at' a target, what is the· probability that'his 
10th throW' is his 5th hii, if the probability of hitting the target at any trial is 0'5 ? 

s. In a series of independent trials with constant probability p of success 
in each trial, show that t~e number of successes in a fixed number n ofindependent 
trials follows a binomiafdistribution. Sliow further that the number of the trials 
required for a specilied number r of ~uccesses follows a negative binomial 
distribution. Obtain the mean and the variance of this distribution: 

6. (a) Obtain the Poisson-distribution as a limiting case of'the negative 
binomial distribution. [(Delhi Univ. B.se. (Stat Bons.) 1988] 

( b) Show how the mo",ents of negative binomial variat<: ca~ be written 
from the corresponding formulae for tb'e Ibibomial' variate. 

[Delhi Univ.·B.se. (Maths Bons'.), 1991] 
1. Gonsider a sequencp. Qf Bernoulli trials with cons~~t probability p of 

success in a single trial. Find P (x, k ), the probability that exactly x + k trials are 
requ'ired to get k successes, x.. - OJ 1, 2, .... Show that P. t x.k)- defines the prob­
ability function of the discrete random variable X. Find the moment generating 
functionofX. HencefindE(X) and V(X): 



7·82 Fundamentals of Mathem,tlc:al Statistics 

8. (a) Derive moment generating function of negative binomial distribu. 
tion and hence show that mean < variance 

tion. 

( b ) Deqve negative binomial distribution in the following form : 

!(x) _ (-k)(_PY'Q-k-X. x .. 0,1,2, ... 
X 'Q-l+P 

Obtain (i) moment generating function, mean and variance of this distribu. 

(ii) Coefficient of skewness fh. 
(iii) Give-an example of itS occurrence. '[Gujarat Unlv. B.Sc. Oct. 1990) 
9. Obtain the characteristic function of the negative binomial distribution 

given in the fonn: 
). x 

f(x-;a,A) = (-:-) (1 : a) (1 :la) ; x .. 0,1,2, .•. 

and hence evaluate its first two moments. 
10. (a) Show that for the negative binomial distribution (Q - P f', 

where Q - P .. 1, Gumulant generating f,-,nction ~K (t) .. 

-r log [ 1-P (e' -1)]. HcncededucethatKl = r P, K2 = r .~Q A1soobJainK3and 

[Delhi Univ. B.Sc. (Stat. Hons.) 1986] 
(,b) Show that the mean deviation about mean for tlie negative binomial 

distribution is 

2(1l + 1) (n + ll)plHl q-(" + fA) 
Il + 1 

where Il is the greatest integer containec;l in np + I . 
11. The number of accidents among 414 machine operators was inves· 

ligated for three successive months. The following table gives the distiibution of 
the operators according to the number k, of accidents which happened .. o the same 
operator. fit the distribution of the type 

P (X .. k) = ( - 1 )k (,-kV ) pV if ; k - 0, 1, 2, ... , v> 0, q .. 1 - p, ° < p < 1 

k 012345678 

'Observed frequency 296 74 26 8 4 4 1 ° 1 
.12. If X has negative binomial distribution with parameters (n, P), 

prove that Mx(t) = (·Q-ptr". Hence fin'd m.g.f. of 
Z .. (X - n P )NnPQ al).d deduce .that Z is asymptotically non"al as n ... QO 

Hint. Prove that Mz ( t) - exp ( r /2) as n ... QO [c.f. Example 7'19]. 
13. Let Y have the negative binomial distribution: LetAj be-the number of ,. 

failures between the (j ~ 1 )th and jth success. Then I Aj ~ Y. Find E .( Y), 
i-l 

ai- by obtaining the meawu and.varian~s-oftheAj's. 
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14. Assume that the mutually'independent random variables X;, each have 
the negative binomial distribution with parameters' r;o{ i-I, 2, ... , n), where ri 
are all positive integers, i.e., , 

p (X; - x) _ (r; + ; - 1 ) pri if; x .. 0, 1, 2, .,. 

" 
Tben show that the probability' density function of 1: Xi is the negative binomial 

;-1 

" 
distribution with r - :i: r; i.er, the negative binomial distribution (with lixed p) 

; -1 

is reproductive with respect to r. (Sagar Unlv. M.A., 1991) 
IS. Sup~ose that a radio tube is inserted into a socket and tested. Assume 

that the probability that it tests positive equals P and the probability that it tests 
negative is ( r - P). AsSume furthermore that we are testing large supply of such 
tubes. The testing continues until the first positive tube appears. I(X is the' number 
of tests required to terminate the experiment, what is the probability distributjon 
of X J [(Aligarh U.B.Sc. (Hons.) 1993)] 

16. A man buys two boxes of matches, each containing N matches 
initially and places one match box in his right pock~t and one in his left pocket. 
Every time when he wants a match, be selects a pocket at random. Show that the 
proba"i1ity that at the moment when tbe fi~t box is emptied (not found emptv), the 
otber box contain exactly r matches (r Ia 1, 7, ... ;N) is 

(2N,-_\- ') (~r-'-' 
Using tbis result, show that the prOb~i11ty that the box first emptied is not 

the one first found to be empty is 

( 4 r 0 i O( 2N N ! 1- '). 

which reduces to ( ~) t ~ )~ + 1 or ~ (N 1t f 112 approximately. 

7·5. Geometric ~istribution. Suppose we have a series ofindependent 
trials or repetitions and on each repetition or trial the probability of success 'p' 
remains the same. Then tbe probability that there are x failures preceding the first 
success i~ given by if p. 

Definition. A random variable X is saUl to have a geometric distribution 
if it assumes only non-negative v(llues and its probability mass Junction is given by 

j if p; x - 0, 1, 2, ... , 0 iC psI 
P(X-x)-

0, otherwise ... (7,25) 
Remarks. 1. Since the various probabiliti~s for x .. 0, 1,2, ... , are the 

various terms of geometric progressio'n, hence tbe name geometric di~tribution. 
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z. Clearly, assignment of probabilities in (7·25) is pennissible, since 
~ ~ , 

IP(X-x)- I (p-p(l.,.q+t{+ ... )-~-t 
x-o x-o - q 
7·5·1. Lack of Memory. The geometric distributi'on is said to lack 

memory in a certain sense. Suppose an event E can occur at one of the times 
t = 0, 1, 2, ••. ~nd the occurrence (waiting) time X has a geom,etric dist~bution. 
Thus P(X .. t) - (.p; I - 0,1,2, ... 

Suppose we know that the event E has not occuqed before k, i.e., X ~ k. 
Let Y - X - k. Thus'Y is the amount of additionaltime needed for E' 10 OCCUr. 
We can sh~w t~t 

P(y ... IIK~ k) - P(X- I) -pt/ •.. (7·26) 
which implies that the additional time to wait has the'same distribution as initial 
time to wait. 

Since the distribution does not depend upon k, it, in a sense, 'lacks 
memory' of how much we shifted ,the time origin; If' B' were waiting for the eyent 
E and is relieved by 'c' immediately before time k, then the waiting time 
distribution of 'C' is the same as that of 'B'. 

Proof of (7·Z6). We have .. 
P(X~,)= 2: pt/-p(t{+t{+1+".)_(1IH[ )",t{ 

s-r q 

P(Y IX k)_p(Y~/nX~k)=p(X-k~/nX~k) 
~t ~ P(X~k) P(X~k) 

.. P(X ~ k + I) _ t/+k _ t/ 
P(X~ k) if 

:. P ( y ... t I X ~ k) .. p'( Y ~ 1,1 X ~ ~) - P ( Y ~ t + 11 X ~ k) 

(" .. Y = X - k) 

... t/ - t/+ 1 .. t/ (1 - q) - pt/," P (X .. I) 
7·S·Z. Moments of Geometric Distribution. 

~ .. ~ 

Ill'- I x·P(X=x)- ,Ix·p(.=pq I,x(-1=pq(l_qr2 .. !l 
x-1 x-1 x-1 P 

V (X) ... E (X2 ) - [E (X) ]2 ... E [X (X - 1 ) 1 + E (X) -l E (X) ]2 .. ~ 

E ( (X - 1) X] == I x·( x-I) P (X - x,) = I x (x - 1) p( 
x-1 %-2 

.. 2 

.. 2pt{ x~Jx~x~-:)(-2l= 2pq2 (l-qr 3 .. 2) 

V (X) = Il2 = 2t{ + j _ cl .. ' i +. j = !L 
p2 P p2 p~ P p2 
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f 
1·5'3. Moment Generating Func:don of Geometric Dlstri~ .. . .' 
Mx(t) - E(e'~) - I ellt.(p_p l; (e'qf'-po-qlr 1 

~-o %.0 

- p/( 1 - qe') • ..(7'21)' 

.... 1' - [~ Ai ( t ) ] - [~ p ( l' - qI r·1 ] ,-0 ,-0 

Hence the mean and variance of tbe geometric distribution a~ qlp and 
qli respectively. 

Remark, The p.g.f. of the geometric distribution is obtained on ~placioe 
e' by s in (7,27) and is given by : -

Px ( s.) - p/( i - qs) ••. (1'21 a) 
Example 1·51. Let the two.independent random variables Xl and X2 

/ulve the same geometric distr.ibution. Show that the conditional distribution oi 
,J .. 

Xd (Xl + X2 - n) is uniform. 

[Gujarat Vniv. B.sc. 199Z; Calicut v. B.Sc. (Main Stat), Oct. 1"0]-
Solution. We are given 

J j' 
P(Xl - k) - P(X2 - k) - pq ;k .. 0,,1-,2 •.. 

P[X _ I(X v _ )]. P(Xl - r nXl +,.r2,- n') 
1 r I + ,42 n P (Xl +_ X2 -,;. n) 

P(XI .. ,'n X2 - n - r) = P(Xl+X2-n) 
P (Xl .. ·r n X2 • n - r) -" 

I [P(XI .. ~)nX2,1"',.n-s) 
s-o -. 

= 
, P(XI s. 'r)'P(X2 • ,n - r) 

1'. ., .' •• 

'" . I [P (Xl = s)· P (X2 - n - s) ] 
s-O 

[Since Xl and X2 a~ independent) 

.. P[XI- rl(Xl+X2-n)]-" P('pcf-' _" l( 
I [pif. pq"-S] I (pz if') 
s-o' s-o 
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it/' 1 
- (n + 1) it/''' n' + 'i ; r • o~ 1, 2, ··.11 

Hence tbe conditional distribution of Xli (Xl + X2 .. n) is discrete uniform. 
(cf. § 7·8). . ' 

Example 7·52. Suppose X is a non-negative integral valued rando", 
variable. Show that the distribution of X is gt:ometric if it <lacks memory', i.e., if 
fore~chk ~ 0 and Y ... X - k one has 

P ( Y ... t I X ~ k) >= P (X = t), for t ~ 0 
[Madras Univ. B.sc. (Main), 1988] 

SOhltion. Let us suppose 
P (--X = r) .. p,; r .. 0, 1, 2, .•• 

Define 
qA: .. P (X ~ k) .. PA: + Ph 1 + ... (t) 

Weare given 
\ P ( Y .. t I X ~ k) - P (X - t) .. p, ... (tt) 

We.have 
P(y .. I X k) _ P(Y-tf) X~k) _ P(X-k .. tnX~k) 

, t ~ P(X~k) P(X~k) 
P(X" k + t) PA:., 
----:::-7"";~__._~ = --

P(X ~ k) qA: 

=> p, _ Ph, , [Using ( .. )} 
.' qA: 

fot every t ~ 0 and all k ~ O. In particular, taking k - 1, we get 
Pt.l .. ql' Pt -.(pl + P2 + ... ).p, ... ( I-po'> p, [From (*)] 

=> p,. (1-po)p,-l- (l_po)2 P,-2- .•• -(1-po)' po 
Hence p, - P (X -. t ) - po (1 - po )' ; t - 0, 1, 2, ... 
=> X bas a geometric distribution. 

EXERCISE 7 (d) 

1. (a) If tbe probability tbat a target is destroyed on anyone shot is 
0·5, what is the PrQba\Hty that it would be destroyed on 6th attempt? 

Ans. (0'5)6 
(b) A couple decides to bave children untit they have a male child. What is 

the probability distribution of tbe number of children they would bave ? If the 
probability of a male child' in their community is 1/3, how many children are tbey 
expected to have before the first plale child is born ? 

(Sal-dar Patel U.B.Sc. Nov. 1991) 
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(c) Let X be a discrete random variable having geometric distributioD with 
parameter p. Obtain its mean and variance. Also, show dlat for aDY two positive 
integelS $ and t, 

P[X> $ + tlX > $) • P[X > t) 
1. The following distributioD n:latcs to the number of accidents to 6S0 

women working on highly explOsive shells during S-week period. Show t~t a 
negative binomial distribution, rather tbaD a geometric distribution, gives a very 
good fir to the data. How would you explaint this ? 

Number of accidents: 0 1 2 3 4 S 

Frequency: 4S0 132 41 22 3 2 

·(South Guj~rat Univ.' B~ .991)' 
3. (0) Show that the mean and variance ofth,e geometric d~lttributioD 

p (x) • if p ; x - 0 1, 2, ..• 
are respectively qp-l, qp-2 (Allababad Univ. B.Sc., 1989) 

(b) Show that the mode of the distribution. 

p(x) • (it;x. 1,2,3, ... 

is 1. 
4. Find (i) the probabili~y generating fuI1Ction, (il) the moment generat­

ing function, and (iiI) the cu~ulant generating function for dis~te random 
variableX following the geometric distribution 

P (X • r) • (1 - p) p,-l; r • 1,2, ... 
S. Xl and X2 are i,adependent ran4~m variables with the same distn"bution 

( p ;'k .. '0, 1... Let Y be defiped a$ Jhe largest of Xl and X20 i.e., Y· max 
(XI,X2). Obtain the joint distribution ofY and Xl and the distributioD of Y. 

6. Identify the distributions with the fonowing M.G.F. 

e' (S - 4e'r l • 

Ans. Geometric DistribUtion, p • ~. 
.. Prove the recurrence formula 'for Ceometric Distribution, va., 

p (x + 1) • q.p (x) 
LCtX and Y 'be independent random variables such that 

P (X • r) .. P ( Y • r) .. q' p ,; r • 0, 1, 2, ••• 
p and q are positive numbers such thl'tp + q "!' I,. Find (i) the distribu­

JfX + Yand (it) the con~itio.,al distributioDofX givenX' + Y • 3. 
9. A die is cast until 6 appears. What is the probability that it must be ca~t 

.ore than five times. 
5: 

ADs. P(X > S) - I-P(X s S) - 1- 1: (SI6t- 1 '(1I6) 
%-1' 
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10. 'Forthe geometric distribution with p.m.r: 

f(x) - 2'",%; x - 1,2,3,.:. 

show that Chebychev's inequality gives 

P (' IX - 21 s 2) > ,~ 

while the actual probability is'lSI16. 
[Rajasthan U.iv. B.sc. (Hons.) 199Z] 

11. The conditional distribution of random variable X given Y - y is 

£L ex! and the marginal probability de!'5ity of Y is e-Y, where X is @ discrete 

variable, i.e., x = 0, 1,2, ... , and Y is continuous, y ~ O. 

Show that the marginal distribution of X is geometric. 
. -Y It 

Hint. g(x,y) !'"f(xly) h(y) - ~. e-Y 
x. 

II> 21 do •• 

f( ) f ~'d 1 f -21 ltd 1 x! •• x - y-- -e y y--'--
ox! x!o x! ~+1 

U. If X and Y be two independent random variables, eac)l representing 
tbe number of failures preceding the first success in a sequence of Bernoulli trials 
witb p as probability of success in,a single trial and q as probability of failure, 

showthat P(X - Y) - ~1 .. q 
[Delhi Univ. B.Sc. (StaL HODs.) 1993, '87) 

Hint. We have P (X = r) - P ( Y - or) - if· p; (r - 0, 1, 2, ... ) 

P(X-y)- 1: P(XoprnY-rJ- 1: P(X-r)'P(Y-r) 
r-O r-O 

['.' X and Y ~~ independent r.v.'s] 
II> ~ 

= p2 I'tj' _ p~(1 + t/ + q4 + ..• ) .. ~=~. 
r-O ' I-t/ 1 +q 

7·6. . Hype~eometric Distribution. When the population is finite and 
the sampling is done without rep'-acement, so that the even~ are §tochastically 
dependent, although randoll}, we obtain hypergeometric distribution. Consider an 
urn'withN balls, M of which are white andN - M arered.~upp6set~atwedraw 
8 sample of n balls at random (without replacement) from the urn, ,then the 
probability of getting·k white balls out of n, (k < n) 'is '. 

(~) .( ~ ~ ~) ~ (~). ',' 

Definition. A discrete raiulom variable X is said to follow the hyper­
geometric distribution if it assumes only non-negative values and its probabiliJy 
mass fonction is given 6y 
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(~) (~=-~) . 
p(X-k)-h(k;N,M,o) - (~).;k - 0, 1,2,.~m .. ( .. M). 

- 0, othelWJSe ••• (7,28). 
Remarks. 1. N, M and n are known as the three parameters of hyper­

geometric distribution. 
Z. As it can be shown that 

this assignment of probabilities is pennissible. 
7",1. Mean and Varaince oftbe Hypergeometric Distribution. 

,. ,.. 

E (X) - k~O k4 P (X - k ) .. k~O k { ( ~)( ~ = ~) + ( ~) } 

-r~) i'{ (~.:-:) (~=!')} 
- (~) i.(~)(N ~~; 1 J. 

wherex - k - 1, m - n - 1, M - 1 - A 

M (N - 1) M (N - 1) nM 
-(~)' .. -(~) 0-1 -li 

E {X (X -1) }. k~O k( k -1) { ( ~) (~ = ~) + ( !) } 

-M(ft '~2 {(~:i) (~=!')} 
M( n_ 1 ) (N-2) M'(M-l)n(n;"'1) - (!) I n..-2 -. N(N-l) 

·Since k white balls can be drawn from 'M' w~te balls in ( 1tJ) ways iDd Ollt of die nmaiDioc 

N - AI red balls, (II - Ie) can be chosen in ( ~ : :) ways, the to,tal number of fawurablc cases is 

(~) x(~=:} 
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E(X2 )-E[X(X -1)] +E(X)- M(M-1 )n(n-1) +!!M. 
- N(N-1) N 

2 
.H V(X)_M(M-l)n (n...,.1 ). nM _(nM) 

ence N(N-1) + N N 

• NM(N - M)(N - n>. 
N2 (N - 1)' (On siiilpli~cation) 

7·6·Z,. Fadorial Moments of 8ypergeometric Distribution. The rth 
factorial moment is 

II If 

E[~')] - e, ~,)p~. k). - k~' ~') {(~) (~~ ~)+(~J} 

- ~,/J') {(~~:) (~~~)+(~)r 
_ /Jr) "i {(M ~r) (N -;r) - ()M -:-r») + (N)}, wherej _ k-, 

j_q} (n-r -) n 

_ /Jr)n(') 1I;{(M~r) (N-r)-(M-:-r»)+ (N-r .. )} 
~,) ~ J (n-r)'-J n-r ,.0 

/Jr) n(') 11-' . . /Jr) n(') 

- ~,) ~ h(j;N-r,M-r,n-r)- N'-') ·1 
,.0 

E[ w.t,)] /J')n(') 
A' - N<" .•• (7'28 a) 

nM 
" ... - E(X) - Ii 

x.2)· M(M"': 1)n(n -0 
E[ J- N(N-1) 

a} _ E [x. 2)] + E (X) _ [E (X)]2 _ n • M • N - M . N - n 
- N N H.-1 

(On simplification) ••• (7·28 b) 

Remark. If we sample the n balls with replacement and denote by Y the 
number of white balls in the sample, then Y is a binoniial variate with paramett:rs 
11 and p where 

• ~. Ie(r) (M) _ 1e(1e-1) (1'- 2) ... (k - r + 1)M! 
• Ie Ic!-(M.-le)! 

. .M(M-1 )(M-2) ... (M-r+-l HM-r)! ~Jlr) (M-r) 
(Ie-,)! (M-le)! . • Ie-r 

•• ,.(r)(=)_~r)(!=~) 
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p .. MIN, q .. 1 - P .. (N - M )/N 

E(Y) = np = nM _ E(X) 
N 

2 M N-M 2 
Oy-npq-n'-' ~OX, 

~ N N [From (7·28 b)] 
equ,ality holding only if n - 1. 

7·6·3. Approximation to Binomial Distribution. Hypergeometric diS-

tribution tends to binomi~l distribution as N - go and ~ - p: 

h(k;N.M •• ) - (~)j( ~ ~) + (~lN "OM)! n !(N-n" .. . 
k!(M-k)! (n-k)!(N-M-n+k)! N! 
M(.M-1).(M-2) ... (M-k+ 1) 

- 'k! 

x (N - M)(N - M - 1) ... (N - M - n + 'Ie + 1) 
(n-k)! " 

n! 
x -N"""(-N---t"""') -(N--"';';'2"";")-.. -. (.,....N---n-+----,-1) 

Proceeding to the limit as N - 00 and putting ~ - p, we get 

lim h ( k . N M n) - f ii 1 po if ... p (1 - P )( 1 - P ) •.. (1 - p ) 
N_oo .", k , .k}jmes (n - k) times 

- ~ i (1 - P ),"-1: - D (k ;p, 1 - p) 

70(;,4. Recurrence Relation for the Hypergeometric Distribution. We 
haye 

h(k'N M )'. (M) (N - M)+(N) , , , If. k .' d -' 1c . n, 

'h(k + 1,·N,M,n)" (k~'I) (/~k~l)+'(~) 
h ( k + 1; N, M, n ) . . ( n '- k)( M - k) , 

h ( k; N, M, n ) - (k + 1)( N - M -:. n + k + 1)' 
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which is the Jeq~ired recurrence relation. 
EDDlple 7·53. Explain how you will use hypergeomelric model 10 

estimate rhe number of fish in a lake. 

Solution. Let us suppose that 'in a lake there are N fISh, N unknown. The 
problem is to_~stimate N. A catch of 'r' fish ( all at the same time) is made and 
these fish are returned alive into the lake after marking each with a red spot. After 
a-reasonable period-of~ime, during wJlich tbese marked' fish are assumed to have 
distributed themselves 'at random' in tbe lake, another catch of's' fish (again, aU 
at once) is made. Here rand s are regarded a.s fixed predetermined constants. 
Amongtheses fish caught, there will be, (say), X marke4 fish wbereX is a random 
variable followin&discrete probability function given by ~ypei'geometric model: 

{.r (x IN) - (:) (~ ~ ; ) + ( ~) - p (N ), Say ... (*) 

where x .is. an integer ~uch tbat max (0, s -N + r) s x s min (r, s ) 
and Ix (x, N ) 0: 0 othe~se. 

The'value orR is estimated bY"the pJinciple of Maximum Likelihood (cj. 
Chapter 15), i.e., we find the value N • N ( x ) of N which maximises p (N), 
SinceN. is l! discrete r.v., the prine.ple of maxima and minima in calculus cannot 
be used here. Here we pl'Qceed as follows: 

)"(N)- p(N) _ (N-r)(N-s). 
p(N - 1) NfN - r - s + x) (On simplification) 

:. ).. (N ) > 1 iff 11{ >!! ~ p (N ) > p (N - 1) iff N >!! 
x x .... (,) 

and )"(N)< 1 ift N< r~ ~ p(N) <p(N-l) iff N < rs (';\ x x _~ 

From (i) and (il) we see that p (N) - /.r (x I Ii .. ) reaches the maximum 
value -(as·a function of N) when N is approximately equal to rslx. Hence 
,maximum likelihood -:stimate ofN is given by 

N _ ~ ~ N(X) _ rs 
. x X 

EXERCISE 7 (e) 
1. ( a ) What is a hypergeometric distribution ? Find the mean altd 

variance of this distribution. How is this distribution related to the binomial? 
[Nagarju~a Vniv. M.se.1991; Delhi Voiv. BSc. (Stat. lIons.), 1989] 

_, ( b')· Obtain binomial dj~tribution 8S a limiting case of hyper-geometric 
distribution. [Delhi Volv. B.Se. (Stat. Hons.), 1989,' 87] 

2. Suppose tbat JOCkets of a certain type have, by many tests, been estab­
lished as 90% reliable. Now. modification of the fO~t design is being considered. 
WhiCh of the following sets of evidence throWs more doubt on the hypothesis tmt 
the modified rocket is oilly 90% reliable: 

(i) of 100 modified rockets tested, 96 perfonned satisfactorily. 
(;,) Of 64 modified rockets tested; {i2 perfQrmed satisfactorily? 
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3. A taxi cab company ba~ II Ambassadors and 8 Fiats. If 5 of these taxi 
cabs are in the shop for repairs and 'Ambassador is a.s likely to ~ in for repairs as 
a fiat. what is the-probbaility tllat -

(,) 30ftbeni are Ambassa.dors and 2 are hats ? 
(il) at least 3 oftbem are Ambassadors? and 
(ii,) ailS of them are of the same make? 

ADS. (i) (1;)- (~ ) + ( 2~ ) ; (ii) x ~ 3 C;) (5 ~ x ) + ( 2~ ) 
4. (a) Show bow the hypergeometric disrtribution ~rises. by giving 'an 

example. Obtain the frequency function of a random variable X following t~e 
above Jaw: Derive E (X) and V (X). Show that under certain conditions to be 
siated. the Binomial and Poisson distributions are special cases of the hyper­
geometric distribution. [Dibrugarh Univ. B.Sc.I992] 

(b) Find the factorial moments ofthe bypergeometric distribution. 
[Delhi Univ. B.Sc. (Stat Bons.), 1993] 

5. (a) Suppose that from a popuJation of N elements of which M are 
defective and (N - M) are non-defective. a sample of size n is drawn without 
replacement. What is the probability that the'sample contains exactly x defectives? 
Name this probability distribution. 

(b) Show that. for the distribution derived in (a). 

E(X) - n: and (i,) V(X) - n:; (1 -~) (1 -; =~) 
(c) Show that, upder certain conditions to be stated. the binomial distribu­

tion may be looked upon as a limiting form oftbe probability distribution as derived 
in (a). 

6. (a) 200 students of the F. Y. B.~c. class in a certain College a re divided 
at random into 20 batches of 10 each for the annual practical examination in 
Statistics. Suppose tbe class consists of 40 resident students and 160 non-resident 
students; and let R denote the number of resident students in the first batch. Use 
the binomial approximation to find the probability that R 2 3. • 

Hint. The probability distribution of R is ,hyper-geometric with 
parameters: N - 200. ~ - 10. ¥ - 40 

Since N (- 2(0) is large. the hypergeometric distribution (") can be 
approximated by binomial distribuiion with parameters n - '10. P .. U/N = 
40/200 - 0·2 

:. P (R - r) • CJ) (0'2 Y (O·S )10-,; r • O. 1 •.•.• 10. 

and required probability is : 

P ( R 2 3 ) • 1 - [ P ( R - 0 ) + P (R • 1 ) + P (R • 2 )"] - 0·323 
(b) Find the p~babil!ty that the income-tax official will catcb 3 income-tax 

~turns with iIIegitimate'deducttons. if he randomly selects 5 returns from among 
12 returns of which 6 contain iJlegitimate deductions. 
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An~. ( ~) (~) + (~) - 25/66. 

(e) If X and ~ are mdependent binomial variates with parameters 
(nl,p)and(n2,p) respectively,:findP(X = rlX + r .. n) 

Ans. (~l) ( n ~ r ) + (nl : n2) 
7. From a rlnite population ofN animals in a given region, Ware caught, 

marked and then released again. The animals are caught again one by one until m 
(pre-assigned) marked animals are caught. The total number of animals caught is 
'a random variable X. Find P (X = n), for m s n s N - W + m 

(Shivaji Univ. B.Sc., 1987) 
Hint. P (X = n) = P {Catching (n -1) l\nimals pfwhom( m -1) are 

marked}x P {Catching the marked aqimal 
from the remainingN - (n - 1) animals}. 

(m~I)(~=:) p~-(m-l)} 
= ( N) '. x !N-(n-U} 

n - 1 

= (~ = ~.) (: = ~ ) + ( ~ ) 
8. An urn contains M\:ns numbered 1 to M, where the first k balls are 

defective and the remaining (M - K) are non-defective. Asample of n balls is drawn 
from tlie urn. Let At be the event that the sample of n baJls contains exactly k 
de.~ectives. Find !' (At) when the sample is drawn (i) with re,placement ~nd (ii) 
without replacement. [Delhi Univ. B.Sc. ~faths Hons.), 1989] 

Hint. If sampling is done without replacement, we get hyper-geometric 
probability model. 

. P (Ak) = k n - k . + , n (K) (M - K) (M) 
If sampling is done with rep acement,.thenX - B (n, p - KIM) 

:. peAk) _ (~) (KIM)k. (1 _ ~)"-k _ (~} K (M ~nKt-t 
9. X is a random variable distributed according to hyper-geQmetric law: 

. (~)(n~x). 
P(X-x)-h(x;n ••• b)- (';:b) ;x.O.l.2 •... 

Obtain t!Ie recqrrence fonnula :. -( (n-x)(a-x) . 
h x + 1; n, 0, b ) '.. ( 1 ) (b . 1 ) h (x ; n"o, b ) x+ ··n+x+ 
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10. For the hypergeometric !li.~tfibution 

(N:) C':-qJ 
h (N ; II, P, x) = ; x = 0, I. 2, ... 

Prove that 1-1/ = lip and J.l2 = 

(~) 
n. (N - II) pq 

N - I 
11. Explain how you will use hypergeometric model to estimate the 

number of wild animals in a d'ense forest. 
12. A box contains N items of which 'a' items are defective and 'b' are 

non-defective. (a + b = N). A slmiple of 11 items is drawn at random. Let X be 
number of defective· items in the sample. Obtain the probability distribution of 
X and obtain the mean, of the distribution. 

7·7. Multinomial Distribution. This distribution ("~ '. regarded as a 
generalisation of Binomial distribution. 

When there are more than two mutually exclusive out 
obse(vations lead to multinomial distribution. Suppose ~ 

mutually exclusive and ~xhaustive outcomes of a tri!)\ with 
babilities PI. P2 • •••• Pli' 

The probability that EI occurs xI times. E2 occurs x2 tit. 
occurs Xli times in n independent observations. is given by 

( ) (, ~l XI 
P XI,X2, •••• xli =CPI P2 ···PIi 

trial. the 
~Ii are k 

jve pro-

... and Eli' 

where Lxi = nand c is the number of permutation of the events EI. E2 • ••••• 

To determine c, we have to find the number of permutations of 11 objects L 

which XI are of one kind. X2 of another kind •...• and'xli of the kth kind. which is 
given by 

Hence 

11 ! 
C = ----'-'-....;......--

X.! ! X2 J '" Xli 

, , 
P (x" X2, •.•• Xli) =' I ~. 

XI . X2 '. '" Xli 

X, x, XI 0 < < 
I . P I pt '" P k, - Xi - n 
• 

I Ii 
__ 11_. _ .n Xi 
- Ii • P, • n i=1 

Xi! 
i= I 

Ii 

L Xi= Il 
i= I 

... (7·29) 

which is the required probability function of the multi'nomial distribution. It is 
so-called since (7·29) is the general term in the multinomial expansion 

k 

(p I :I- P2 T '" + P k)", L Pi = I 
i= I 

Since. total probability is I. we have 

( ) [ n! x, x.i Xt]' (p' )" 1 L P X = ~ I. I . . ,. PIP z' ••• P Ii = I + P2 ••• + Pk = . 
( xXI' X2 •••• Xli •• • •• (7.29(a)] 
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7·7·1. Moments or Multinomial Distribution. The moment generating 
function is given by 

Mx(t) - Mx .. x~ ...• Xt( t1, t2, ••. , tk) .. E [ exp L~ f;X; } \ 

_ }: [ , n,! ,p~1 IIi ... ]it exp ( ~ t;x; I 
1& Xl • X2 . . •. Xk . ; - 1 

_}: [ ,n,! , (Pltl''fl ••. (Pktlt'r] 
Xl.X2 .•.. Xk. 

x 

- (P1 e'l + P2 til + ..• + Pk e't )" •.. (7'30) 
where x.. (xt. X2, "', Xk) • [On using (7·29 ( a) ], 

Now MXI (tt) .. Mx ( 't. 0, 0, ... ,0) - (Pl til + P2 + P3 + ••. + Pk) /I • 

.. [(1 - pt) + P1 til r ( '.' 1: p; .. 1) 
; 

~ Xl -B(n,pt} [By uniqueness theorem of m.g.f.) 
Similarly, we shall get: 
Xi - B (n,Pi); i .. 1,2, ... , k. 

~ E (X;) - n Pi and Var Xi, - npi (1 - Pi ); i CI 1, 2, ... , k 

EJXiXj) .. [ ~a~ I.f ,] , i .. j 
a,t,at} 1_' 

... [npiel; (n - 1 )(Pl til + •.• + Pke't r- 2 Pitl~],_, 

- n (n - 1)PiPi 
Cov (Xi ,X;) -E (XiX;) -E (Xi) E (X;) _II (11-1 )PiP;_1I2 PiP; - -IIPiP; 

• (X, Xi) Cov (Xi,Aj) -np;Pj 
.• P "J. OX; OXj .. "npi (t - p;) n Pi ( 1 - Pi ) 

• -.[ (1 _ p~~il _ p)" 
Example 7·54. The trinomial distrJution of two r.v. 's X and Y is 

given by: • 

lx: y (x, y) .. X! Y ! (n n~ x _ y) ! If t/ (1 - P _ q )"-X-, 

lor x, y .. 0, 1, 2, ... , n qnd x + y s n, 
where 0 .s P, 0 s q and P + q s 1. 
( i ) Find the marginol distributions of X and Y 
( ii ) Find the conditional distribution.~ "I X and Y and nbtain 

E(YIX-x)' andE (XIY - y) 
( iii) Find the correlation coefficknt between X I1nd Y. 
[Delhi Vnlv. B.Sc. (Maths Hons.) 1988; sill Course-Statistics ~989;' 85] 
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Soluti~D. The joint m.g.f. of X and Y is given by : 

Mx.y( t1,t2) -E (e'lX+11Y) -}: }: (pllt (qt!l r (1-p-q)"-X-Y 
, x.o ,.0 

- [pe'l .. qe'2 + (l - p - q) r ... (1) 

Mx(td - M(h,O) .. . {l-p) + pell!" ~ X -B(n,p) ••• (ii) 

My ( t2) ... M ( 0, t2) - {(1 - ~) + qi'}" ~ Y - B ( n, q ) ... (iii) 
Observe tbatM ( tt. t2) 01 M ( tl, 0) )( M ( 0, t2) ~ X and Yare not in-

dependent. 
(ii) The condi~ional distribUtion of X given Y - y is given by: 

f ( X I Y CI y) • .txy( x, y) ... fXY (x, y ) [ ... Y - B ( n, q )], 
fy(y) "CyqY(1-q)"-Y 

... x,! (<: ~ :~!x)! (~)X (1 ~:; q)"-Y-X 

x II-Y-" • (n; Y) { lSi) (1 - lSi ) ; x ... 0, I, ... , n 

==> XI(Y. y) -B (n - y, p/(l - q» ... (iv) 

==> E (X I (Y • y» • (n - y,) • p/( 1 - q) ..• (v) 

Similarly, we shall get 

f( YIX-x) .Jxy(x,y) .. f(x,y) [ ... X -B (n,p)] 
fx(x) "C"jf (l-p r-x 

=(n;xH~ r (l-q lll
_

X
-'; y-O,I,.,.n. 

==> YI(X-x)-B(n-x,q/(I-p) •.. (vi) 

==> E [ YI (X - x,) I i= (n - x) q/( 1 - p) 

(iiI) Correlation Coefficient p.lY: 

Since X - B ( n, p), E (X) = np, Var X - np (1 - P ) 

Y -B (n,q), E( Y) .. nq, Var Y - nq,.( 1 - q) 

·E(XY) = a2M(t1, t2) I -n'(n - l)pq 
a t1 a t2 0 

1,-12 -

Cov (XyY) .. E(XY) -.E:(X)E (¥) fa n (n'F.'" 1 )pq_n.2 pq ='-"npq 

••. (vii) 
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\1 
Cov (X, Y) -npq [pq] pxy= :0 ' "'-

•• O'XOy "np (l..,.p) nq (l-q) (l-p) (l-q) 

Note. H~re p + q " 1. 
Example 7·55. If Xl, X2, ... , Xk are k independent Poisson variates 

with prameters AI, A2, ••• , N respectively, prove that the conditional distribution 
P(XI n X2 n ... n Xkl X~ whereX ,.. Xl + X2, + .... + Xk is[ued, ismul­
tinomial. [Lucknow U. B.Sc. (Hons.), 1991] 

Solution. P[XI () X2 n ... n Xk I X .. n] 

= P [Xl = rl n 42 - r7 n ... n Xk'''' rk I X - n] 

P [Xl = rl n X2 = r2 n ... n Xk ,.. rk n X = n] - P(X = n) 

co 
P'[Xl'" rl n ... n.Xk-l" rk-l n Xk = n - rl'" '2 ... - rk-l] 

P (X = n) 

P(Xl-'rl )P (X2" r2l .. .P (Xk-l- rk-l)P (Xk" n -rl- ... -Tk-l) 
, P(X=n) 

( '.' XI, X2, "', Xk are independent) 
Further, since Xi, (i .. 1, 2, •.. , k) are indepen4ent Poisson variates witb 

parameters Ai respectively, X ... XI + X2 + ... + Xk is also a Poisson variate 
with parameter AI + A2 + ... + N I: A (say). 

Hence P (Xl n X2 n ... n Xk I X .. n] 

e- i' l ;..'il e-)oi-I ).!'t;_\, e- At >J-'.-'" -'t-I 
-, --I - ••• t. - •• ( .) , 

rt·. rk-l· n - rl - ••. ,-' k-l . 
= e-).. >.:' 

n! 

[ n! ] 
.. rl! r2 ! .. .rk-i.! (-It - rl - ... - rk-~') ! 

n! '1..!J.'t 
, " ,PI y,- ···Pk rl . r2 .... rk . = 

k k k ~ 

where tl ri = n and i~: Pi = i~l (~) = i tl Ai = 1 

Thus ~he conditional distribution P (Xl n X2 n .,. n Xk I X .. " 
multinomial with probabilities Pi .. ('Ai/A); i = 1, 2, ... , k in k classes. 
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Remark. If Xi 's are identically distributed independent Po~so~ v~tiates 
k J 

with parameter m (say). then At - m; i .. 1.2 •...• k and i.. = l: At = Ian. 

At 1 
•. Pi ... "i ... k 
Hence in this case the conditional distribution OfXl.X2 •...• Xk. given that 

their sum Xl + X2 + ... + Xk .. n. is a multinomial distributiol' with index n 
and the probability in each class being equal to 11k. 

EXERCISE 7(1) 
1. IfXt, X2 •...• Xk have 8 multinomial distribution with the parameters n 

andpi (i = 1.2 •...• k) withl:pi. 1. obtain the joint probability 
P(XI .. Xl n X2 ... X2 n ... n Xk - Xk) 

Obtain the corresponding moment generating function. Hence. or otherwise 
shoW that E (X;) ... npi. V (Xi) ... npi (1 - Pi) 

and Cov (Xi. Xj) ... - npi Pi> (i " j). 
2. Discuss the marginal and conditional distributions. associated with the 

multinomial distribution. If (nl. n2 • ...• nA:) have a multinomial distribution with 
parameters ( n. Pl. p2 • ...• pk) and if Ci. di. i ... 1. 2 •... k are constants. find the 

k k k 
variance ofl: Ci ni and co-variance between l: Ci ni and l: di ni. 

i-I i-I i-I 
3. If the random variables Xl. X2 • •..• Xk h;ove a multinomial distribution. 

show that the marginal distribution of Xi is a binomial distribution with the 
parameters n and pi. with i = 1.2 •...• k. 

4. For the trinomial ~istribution of two r.v.'sX and Y given by: 

'n! x " /f-X-Y I (x. y) = x! y ! (n _ X _ Y ) ! PI 'P2 P3 

where X and yare non-negative integers with ,X + Y :s n and Pl. P2. p3 

are proper positive fractions with PI + P2 + P3 - 1, and 
I( x. y) .. 0, otherwise 

Show that (i) X - B (n. PI) and Y - B (n. P2) 

(ii) XI (Y-y) -B (n-y.PI/( 1-1'2) ) and YI (X-x) -B (n-x.P2"( i-PI n 
/' 

(iii) p (X. Y) ... - [Plf2/( 1 - Pl)( 1 - P2) ('2 
4. If 'n·. dice; ~ach of which ha~ 6 faces marked 1 to 6 are thrown. find.the 

probability of getting a sum's' on them. 
Hint. The exhaustive numbe.r of ways in which n dice can fall is 6". 
Since the total nU,inber of permutations in which six numbers. 

viz .• 1.2 •...• 6 taken en' at a time can add to sis' the coefficient or ~ in the 
multinomial expansion .o.f·(x + x2 + ... + x6 )/f. the required number of 
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favourable cases for getting a sum 's' on a dice is the co-efficient of I in the 
e~ansion of (x + x? + ••. + x6 In. 

:. Required Probability - ;n [co-efficientofx' in (x + x2 + ... x6 t] 

Now identically, we have: 

x + x'- + .,. + x6 _ X (1 + x + .•• + x5 ) ... x (~. __ :6 ) 
and by binomial expansion 

n 
X' (1 - x6 )n = ~ (- 1)k. nCk X'.6k . 

k-O . . . 
and (l-x f" - 1: -"C,( -x)' - 1: "..,-IC, .x' - 1: "..,-IC,,_I .x' 

,.0 ,.0 ,~o 

[ x·(~~:)]n = ± ~ (_I)k. nCk."H-1 C,,_I. X n+6k+, 
k-O ,-0 

To find the co-efficient ofx', we put n + 6k, + r = s i.e., n + r = s - 6k 

Thus th~ co-efficic nt of x' in (x + x? + ... + x6 )n 
($-nY6 

- ~ (-It. nCk.$-6k-1 Cn _ l , 
k-O 

summation being extended over the integral values of k not exceeding 
(s - n )/6. 

• ($-" y6 
Hence required probability a I (-1 t . nCk $-61-1' C,/6" 

k-O 
Remarks. 1. The proba bility of getting a sum's' with a throw of n dice, 

each having 'f faces marked 1 to I is the co-efficient of x' in 

A- [ (,T + x? + .. , + xl)" ] 

2. If n dice have faces/l,h, ... ,1" respectively, then the required prob­
ability of getting a sum's' is the co-efficicnt of x' in 

/1 / f, [(x+x2+ ... +il),(x+x2+ ... +xlz) ... (x+x2+ ... +x'")] 
1, 2 •• • n • 

6. What is the probability of obtaining a sumof15 points by throwing five 
dice toegther? 

Hint. The number of exhaustive cases in throwing of 5 dice is 65• 

The number of'ways in which the 5 dice thrown will give 15 points is the 
co-efficient ofx15 in the expansion of( xl +X2 +.Jf + , .• + x6 )5. 

Fave urable number of cases 

.. = Coefficient of x 15 in (x + x2 + ... + x6 )5 

= I coefficient of x lO ip ( 1 + x + .•. + ~ )5 
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= coefficient of x lO in ( ~ _x6 )5 ( 1 -x r 5 

(1_x6 )s _ (1_ sClx6 + SC2xl2 _ •.• _x30 ) _ (1_5x6 + lOx12 _ •.• -io) 

( 1 )- 5 1 5 5 x 6 2 5 x 6 x 7 3 5 'x 6 x 7x 8 4 
-x = + x+""'2!x + 3! x + 4! x + ... 

5 x 6 x 7 x .•. x 14 10 
+ 10! x + .. ~ 

= (1 + 5x + 15x2 + 35x3 + 70x4 + ... + l00lxlO + ... ) 
:. Favourable number of cases 

= co-effi<,:ient of i lO in ( 1-5x6 + lOx12 _ ••• _x30 ) 

x (1 + 5x + ... + 70x4 + ... + 100lxiO + ... ) 
= (1001 ~ 5 x 70) = 651 

H b . d b b'I' 651 651 ence t e requlfe pro a I Ity - 7 = 7776 

7. Four dice, each marked 1 to 6, are'thrown together. Find the probability 
of a total count being 

(i) Exactly 12 and 
or (il) More than or equal to 20. 

8. Four tickets marked 00,01,10, 11 respectively are placed in a bag.·A 
ticket is drawn at random five times, being replaced each time. Find the probability 
that the sum of the numbers on the tickets thus drawn is 23. 

9. Show that the mode of the multinomial distribution is given by 
x\, X2, ••• Xk, satisfying 

npi - 1 < Xi s (.n :+- ~ - 1 ) Pi; i = ,1, 2, ... , k .. , \" .. 
[In order to establish this, show that 

Pi Xj S pj (Xi + 1) for' 1 S i, j S k] 

7·8. Discrete Uniform Distribution. A random variable X is said to 
have uniform distribution,(;m n points! Xl. X2, ••• , Xn} if its p.m.f. is g,iven by : 

p (X = x;) = !; i = 1, 2, ... , n 
_ . n ... (7'31) 

For example, if X has a uniform distribution on the points 10, 1,2, ... , n l. 
then P (X = i) = _1-1 ; i = 0, 1~2, ... , n· • 

n + ...... ...(7·310) 

Such distributions can be conceived in practice ifunderthe.given experimen­
tal conditions, the different values of the random variable become euqally likely. 
Thus for a die experime~t, and for an expe'rinlent with a deck of cards such 
distribution is appropriate. . 

7·9; Power Series Distribution. A d,iscrete r.v. X is said to 'follow ~ 
generalized power series distribution (g.p.s.d.), if its probability mass fuhction i!> 
given by-
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{ 
ax Et ; x .. 0, 1, 2, ••• ; ax ~ 0 

P(X-x)- f(a) 

0, elsewhere ... (7:32) 
where f( a) is a generatmg function, i.e., 

f( a),.. I ax Et, a ~ 0 
xes ... (7'320) 

so that f(a) is positive, finite and differentiable and S is a non-empty countable 
sub-set of non-negative integers. 

Remarks 1. By taking proper choice of Sand f( a), the g.p.s.d. can be 
reduced to binomial, Poisson and logarithmic series distribution and their truncated 
forms. 

2. An inflated powerseries distribution (p.s.d.), inflated at zero is given 
by 

{
1_a+ ~;;,x=o 

P(X=x)- nit' 
ax t1 

_ a f ( a ) ; x .. 1, 2, ..• 
. .. (7'33) 

where a (0 < a :s 1), is the inflation parameter. 
3. The truncated p.s.d. is given by: 

P (X .. x IS) .. ;( ~/ f( S), xes 

= 0, otherwise 

I -ax Ef nit 
=> P(X .. x S) = fda); xes, where fda) "x;sox t1 

.. 0, otherwise ... (7'34) 
,.,.1. Moment Generating Function ofp.s.d. 

co co 

M.r( t) .. I etx P (X .. x) .. I etx { ax Ef If( a) } 
x-o . x-o 

__ 1_ ~ .. f(ae' ) 
- f( a) £J ax (a e' r f( () ) ••• (7'35) 

x-o 
7·'·2. Recurrence Relation for Cumulants ofp.s.d. The cumulant 

generating function is given by 

Kx ( t) .. log Mx ( t) .. log [f i tee;) ] 
co 

t r 
-}: K, -;t .. log f( a e') - lo~f (a) ... (1) 
,-1 
Differentiating (1) partially w.r.to a and t respectively, we get 
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ao ~ K .£. _ e' [' (Oe') LJ.!2 
r~l a 0 r r! f( 0 E! ) - I( 0) 

..• (2) 

and Lao r{-l. Oe'['(Oe') 
Kr---

r! I( 0 E!) 
.... (3) 

Subtracting (3) from 0 times (2), we get 

ao ~ !... ... ao .• rl _0'[,(0) o Lao Kr i! . L Kr (r - 1) ! I( 0) 
r-l r-l 

Comparing like powers of t on both sides, we get 
0['(0) 0['(0) ° .- KI - I( 0 ) => KI - I( 0) 

... (7·3~) 

d 
and Kr+ I • 0 . dO Kr; r - 1,2, ... (Comparing co-efficient of If,. !) 

Remark. We have 
0['(0) 

Mean - KI -. I( 0) 

Alternatively 
... (7·36. a) 

GO ao. 

~ {If \ 0 ~ If-I 0['(0) 
Mean - ~ x ax 11(0)[ - 1(0) ~ xax - 1(9) 

x-o x-o 
7·9·3. Particular Cases of g.p.s.d. 1.> Binomial Distribution. Let us 

take 0 .. pl( 1 - p ), I( 0) - (1 + 0)(1 and ~ .. {O, 1, 2, ... , n}, a set of 
( n + 1) non - negative integers then 

n 

1 ( 0) - I ax If => ( P + 0)" - I ax If 
xes x-o 

{~)[(l:p)r 
:. P (X = x) ... , " 

- [l+(t:p)] 
_ {(;)pX( 1 _.p)"-X; x = 0,1, ... ,11 

0, otherwise 

which is the probability mass function of the binomial distribution with parameters 
nand p. 
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2. Negative Binomial Distributi~n. Let us take a co p/( j +.p), 
f( 0) .. (1 - 0 r" and S .. ,1°,1,2,.,. ad infinity}, 0' :s; a < 1, n'> O • .. 

Now f( a) .. 1: a ... ax ~ (1 - 9 r" - I a ... ff 
... es " - .... '0 

~ a ... = ( - 1 r ( -; ) to: ( _ 1 t . ( _ 1 r ( n +; -1 ) ... ( n + ; -1 ) 

.. 
" P(X=x)= ~-(n+;-I),.[(P/l+p)rl [1-lp/(l+p)lr n 

... ~O . / .. 
= ~ (n + ; - 1 ) [I ( 1 + P )-< II + .... ); x.= 0, I, 2, ... 

%l1li0 , 

= ~ (-:) (l+p)-(u~J,(_p~~; x=0",1,2, ... 
~.o 

which is the probability mass function of the negative binomial distribution. 
3. Logarithmie Series Distribution. Let f( a) - - log (1 - 9) 

and S .. 1 1, 2,3, ... } . -

Then' f( a) - I a ... if ~ - log (1 - a) .. i 4 ... if, i.e., a ... -! 
.... es ... -1 x 

I a ... ax ... ,ax . ' .. 
:P(X=x) .. f(9) ~[-log~1--'a,)]' 1,.2,3, .... 

0, othen,'Vise 

4. Poisson Distribution. 'Letf( e) .. ea, S .. IO,1,2, ... }. Then 
~ ,..' 

f ( 9) = I aJt- ax => e6 ... I a ... ax i.e., a..... 1, 
... es .... 0 x. 
, a ... ax ax e-a ax 

P(X .. x) .. f( e) .. --a" -,-; x .. 0,1,2, ... 
x!e . x. 

which is the probability mass funclion of the Poiss~n distribution with parameter 
O. 

ADDITIONAL EXERCISES ON CHAPTER VII 

1. Show that,the necessary and sufficient conditions' for two given numbers 
a, b to be respectively the mean and the variance Of some binomial distribution 

2 
are that a > b > 0 and ~b is an i'nteger. 

a-
Show further that when these conditions are satisfied, the binomial distribu­

ti\lIl is uniquely detemlined. 
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2. In a game of taking a chance, a contestant has to give conect answers to 
4 out of 5 questions to win the contest. Questions are given with 3 answers each, 
out of which one is a conect answer. If a contt<stant answers the questions by 
selecting the answers at random, what is the probability that he will win the contest? 

Ans. 10{3s = 0·0412 
3. Suppose the automatic machines of a _plant fait' with probability q, the 

machine failure is independent from machine to machine and the plant stays in 
operation, if aneast half of the machines ron. Consider a two-machine plant and a 
four-machine plant. Show that the value of q for uninterrupted operations, 

(I) whe.n t.he value of q is same in both plants is I' 
(ii) when a two-machine plant is perferred is q > i, and 
(iii) when a four-machine plant is prefen~ is q < I 
4. If b (r ; n, p) - "C, p'. if' -, is the binomial probability in tlie usual 

k. 

notation and if B (k; n, p) a 1: Ib ( r ; n, p ), prove the following results for the 
,-0, 

"tails" of the binomial distribution. 

(I) 1 - B (k'- 1 ;'n,p) S -k n b(k;n,p), k-> np + 1 
- np 

(ii) B~k;n,p) s -E....-k·b(k;n,p),k < np 
np - -,' 

P 

(iii) 1 -B(k;n,p). = n (.11 k 1) {tk (1 - t),,-k-l dt 

s. If a coin is tossed n times where n is very large even number, show that 
the probability of getting exactly ( ~ n - p) heads and (i n + p) t1i1s is ap-

proximately 
1 

( 'tt2." ) '2 e-2/1 

6. If X - B ( n, p), show that 
p (X S 2) ": P [X ~ (n - 2) ], if and only if p .. ~. 

[Calcutta Univ. ~.Sc .. (Hons.), 1989} 
7. If X - B (n,p), show that X is symmetrically distributed about c if 

and only ifp • 112 and c = n12. (Madurai Univ. M.A., 1991) 
8. If X - B (n,p), ~nd Y .. k 2, find con. (X"Y) 

[Delhi Univ. (Stat Hons.) Spl. Course; 1989J 
9. A and B have equal chances of winning a single game, A wants 11 

games and B, n + 1 games- to win a .match. Show that the odds in favour of 

A are 1 + P to 1 - P, where P - (211) ! 2.11 
n!n!2 

Hint. The probability that A wins at least'n games is 



Fundamentals or Mathematical Statistics 

u,c" 4' p" + 2nCfl+ I 4' -I pfl+ I + "'. + 2nC2n p'bi 

Now 2neo .... 2nCI + '" + 2nC,,_l +.2nC" + 2ne,; + 1+ , ... , ... 2nC2n _ 22n 
~ . 

, 2nc 2nc . 2nc 1 [22n 2n'C] " ,,+1+ ,,+3T"'+ 2n- l -." 

,'. 'Probability of A's win - 2~ (~( 22n - 2ne" ») - ~ ( 1 - p) 

:. Proba~i1ity of A's losing - 1 - ~ (1 ~ P) .. ~ (1 + P) 

Hence the result. 
10, (a) The chance of success i'n each Bernoulli trial' is p. If Pie is the 

probability that there are even number of succ~ses in k trials, prove that 
Pie = P + pi - I (r - 2p) ... (.) 

Deduce that Pie - ~ [t + ( 1 _ 2p)k] 

(b) Also obtain the probability generating function of (.) and hence obtain 
an explicit expression for Pk 

(e) Obtain an expression for Pk directly without using (a) or (b). 
11. A spjder and a fly are situated at the comers (0, 0) and (n, n) of a 

rectangular grid. The spider walks only north or east, the fly only soutb or west. 
They take the.ir steps simultaneQusly to an adjacent vertex of the grid. Show that, 
if the successive steps are independent and equally likely to go in each of the two 

2n 
possible direction~, the probabiJity that they will meet is (~ ) ( ~ ) 

[Delhi Univ, B.Sc. (Statistics Hons.) Spl. Course, 1988) 
12. For the binomial distribution, show that the probability that tbe 

number of successes in n trials shOuld not exceed x is given by 

fa> t dy 
( l+y)fl+1 

plq 
a> ,p+q c l 

f t dy 
o (1+.y)ft+1 

where p is the probilbility of success. 
13. Prove the identity _ 

" (n) ,,-I (n) ".-2..2 (n) Ii-Ie ! :(n) (' "'-1t,Jt) P + 1 P q + 2 P q + ••• + k P q.... x P 'I 
, x-o 

p 

f x,,-k-I (1 - x)~ dx 
o 

- 1 

f x"-k-l (1 - x)k dx 
o 
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Hint. For Questions 12 and 13, see Example 7'23. 
14. Let'X be a random variable whose probability function is 

b (x; n,p ). Let Y - Xln be a new random variable. Show thatthe expected value 
ofY is P and 'the variance ofY is pqln. Ifp (y) is the probability function for 
Y, show that p, (y) .. b (ny; n, p). What are the possible values that y can take 
on? 

15. Suppose that the number of telephone calls that an operator receives 
from 9·00 to 9·05 hours in a day follows a Poisson distribution with mean 3. Find 
tbe probability that (,) the operator will receive no caIls in that time interval 
tomorrow, (ii) In the. next three days the operator will receive a total of 1 caIl in 
that tiine interval. 

Ans. (i) e-3 (ii) 3 x (e- 3 )2 (1 _ e- 3 ). 

16. A large number of observations on a given solution which contained 
bacteria were made taking samples 1 mt. each, noting down the number of bacteria 
present in each sample. Assuming the Poisson distribution, and given that 10% 
samples contained'no bacteria, find the average number of bacteria per ml. 

Ans. loge 10 or 2·3026 
17. The number of oil ~nkers,say N, arriving at a certail! refinery each day 

bas a Poisson distribution with parameter 2. Present port facilities can service three 
tankelS a day. If more than three tankers arrive,in a day, the tal!kers in excess of 
three mUst be sent to another port. 

(,) On a given day., what is the probability ofl\aving to send tankers away? 
(ii) How much must present facilities be increased to permit handling an 

tankers on approximately 90 per cent of days? 
(ill) What is the expected number of tankers arriving per day ? 
(iv) What is the expected number of tankers serviced daily? and 
(v) -What is the expected number of tankers turned away daily? 
Ans. (i) 0'145, (ii) 4, (iii) 2, (iv) 1·785 and (v) 0·215. 
18. If X is any non-negative integer valued variate and a is any positive 

number, show that 

P (X :it a) s; t- O • E (tx ); t > 1 
Verify the inequality 

P (X :it 2 A) s; (el 4)A when X - P ( A ) . 

19. If X is any non-negative integer valued and a is any positive number, 
show that 

P(X s; a) s; t- O E (tx ), 0 < t s; 1: 
Verify the in~quality : -

P (X s; ~ m) s; (2/e)lIII2, when X - P (m ) 

20. Suppose (X, Y) have the joint p.m.f. 
e-(o+b) tf bY-X 

f(x,y)- I( )1 ,x .. 0,1,2, ... ;y .. ~,x+l, •.. 
X. y-x . 
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Show that the correlation coefficient between X and Y is 
[ a/( a + b ) ]Y: • 

Also obtain the distribution orY - X. 
[Delhi Univ •. (Spl. Course. Statistics Hons.), 1988] 

Hint. Mx, Y (11,12) = ~ ~ elIX + I:y e . • 
II) II) [ -( ... b) tflr-i]' 
~ /~ x! (y -x) ! 

x-o y-x 
x z 

[ 
'" (a e'l ell) II) ( b i:) 1 

= e-(o+b) 1: --x-!-- 1: (, ; (y -:x .. z) 
x-O %'-0 z. 

= exp [ a il + I: + b <: - a - b ] ... (**) 

Mx ( II ) = M (I" 0 ). = exp [ a (il - 1 ) J ~ X - P( a ) 

My ( II ) EO M ( 0, 12 ) ... exp [ ( a + b ) I i:- 1 }] ~ Y -P( a + b ) 

E (XY ) = iP M ( II, (2) I = 0 2 + ob + 0 

d ~I d 12 II -1:- 0 

Cov (X, Y) = E (XY) - E (X) E ( Y) = 0 2 + ab + 0 - 0 ( a + b ) - 0 

Distribution of Y - X. Takinl! 11 + 12 .. 0 ~ It = - 12 in (**), 
M (-12,12) =E( e-/z.Y+lz Y) = E (iY-·\')/Z) = exp [ b (eIZ-l ) 1 
~ Y...,X-P(b) 

21. If X is Negative Binomial variate with parameters (k and Q-l), 
prove that 

'" 
HintP(X ~ m) = 1: (-rk ) Q-k-, (-f)' 

,-m 
'" 

= 2: (k + ~ - 1) Q-k-, P' 
,-m 

II) 

d [ )]" (T T ) T (k+r-l)p,-l -k-, dP P(X ~ m =,~ , - ~'+ 1 ; ~, - r. r Q 

T 1 pm-1 Q-k-m = ~m = . B (m,k) 
Integrating, we get 
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1 P x!"-1 dx 
P (X ~ m) = B (m, k) ! (1 + X )k+m 

(·.·Q-P .. 1) 

(b) If X isN.B.(k,p), showthat' 
1 

P.(X~m) ... B(!,k).fl- 1 (1_y)m- 1 dy 
p 

22. In a sequence of independent trials, the probability of a success on 
each trial is 'p'. By considering the outcome of the first trial, show tliat G, (t), the 
p.g.f. of the number of trials required to achieve the rth success, sa tisfies : 

. G,(t) .. pt G,_dt) + qtG,(t) 

and hence obtain G, (t ) • [Delhi Univ. (Spl. Course Statistics 00ns.),1987] 

Ans. G, ( t) ". [ptl( 1 - qt) ] 
, 

23. Let X and Y be independent random variables with' the same 
(geometric) distribution given by P (X = k) = pc/'; k ... 0,1; 2, ..• 

Let Z= max (X, Y) 
(i) Find the probability distribution of Z. 

(ii) Find the joint probability distribution of X and Z. 

(iii) Find the conditional probability distribution of X given Z .. i. i.e., 
compute P (X ... kl Z. i) for all k,/ .. 0,1,2, ... 

(iv) Find the conditional probability distribution of Z given X = k, i.e. 
compute P (Z = II X .. k) for all k, I ,;. 0,1, i, ... 

Ans. (I) P(Z .. I) .. pl/ [2 -l/ _l/+I]; i .. 0,1,2, ... 

jO,ifl<k 

(ii) P( Z .. /nx .. k) = pel (I-c/'+ 1) if! = k= 0,1,2, ... 
p2 eI + 1 if! > k _ 0; 1,2,.. .. 

(iii) P(X-kIZ"I)- (1-l+ I )/(2-lTl+ 1 )ifl .. k-0,1,2, ... 1
0 if I <k 

k ( I 1+ 1). I k pq / 2 - q - q If > - 0, 1,2, ... 

\

0 if! < k 
(iv) P(Z~l\X-k) .. , 1-~+ljf! .. k .. O,1,2, ... 

Pi, If! > k .. 0, 1, 2, '" 

24. Suppose that Xl, X2, "', X" are mutually independent indicator random 
variables, with P (Xi ,- 1) = p, 9 < p < 1. Show that for 1 s M s N, 

( MIN ) (~) (~ : ~) 
P .I Xi - k ,I Xi '= n.. (N) 

.-1 .• -1 
n 
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15. Suppose one makes (m + n) indepen<Jent trials of an experiment 
whose probability of success at each trial is p. Let q - (1 - p). Show that for 
any k = 0, 1, 2, .•. n, the conditional probability that exactly (m + k) trials will 
result in success, given that the first m trials result in success, is equal to 

( :) i' (-1. Show further that the conditional probability that exactly 

} m + k) trials will result in sUCC('ss. given.that at least m trials result in success 
is equal to 

(m + n) (2.)1/ i (m +. n) (2.)r 
m + k q r. 0 m +" q . , 

26. Let Xl, X2, ... , X" be independent Bernoulli variates with common 
parameter p = P (Xl = 1). Let Sj = Xl + X2 + ... + Xi for 1 s j. s n. 
Show that P (Sj = r I S" ". s) does not depend on p (0 < p < 1) and takes 
the form of a hypergeometric probability for 1 s j s n, 0 s r s s s n. 

Hint. '5" -B (n,p) 
P (Sj = r n'S" = s) = (~) prqj-r.(: =:)ps-rq"-j-S+r 

P(Sj" rl S" .. s) = P(Sj .. r n s" .. s)/P(S" .. s) 

- (~) (: =:)+ (:); 1 sj s n,O s r s s s n 

a result, w~ich IS independent ofp. 
27. An urn contains w white balls and b black balls. Balls are drawn one 

at a time from the urn, without replacement. Find the distribution of the number 
X of draws needed to obtain the k th black ball. Find also the factorial moments 
E [ x< r)] . [Delhi Univ. B.sc. Statistics Hons. (Spl. Course), 1989] 

(k~1)(X:k) ( b-k+1 ) 
P(X - x) = (b + W) x b + W _ x + 1 

x-1, 
• 

ADs. 

(X-1)(b+W-X) (b+W) (0 . I'fi . ) • k - 1 b _ k + b ; n simp I IcahoD 

For E [ X(r)], proceed as in § 7-6·2. . , 

E [ X( r)] .. k (r) (b + W + 1) (r) / (b + 1) (r) 

28. The joint p.m.f. of two discrete r.v.'sXI apd X2 is: 

P(XI'X2)-(nt).~ n2 )pXZ(1_P)"J+"Z-.q 
Xl X2 - Xl . 

withxI S X2 S n2 + Xl'; s Xl, 5 nl. 

Find the marginal distributions ('!XI and X2. 
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Ans. Xl - B (nt, p') and X2 ... B (nl + n2, p) 

19. Two discrete random variables X and Y have the joint probability 
distributi!)n : 

p (x, y) _ I I ( 9 9 !. ) I (-31 )9, where x.y. -x-y. 

o s x s 9, 0 s Y s 9 and 0 s (x + y) s 9 

(t) Show tbat the marginal distribution of X is binomial with parameters 9 
and In. 

(ii) Show tbat the conditional distribution of Y given X .. 3 is also 
binomial with parameters 6 and J,,2. 

30. A Polya process is defined by the quantities : 

[
AI ]l:l(l+b)"'ll+(k-l)b)\ 

PI:(I) - 1 + bf...1 k! Po(l) 

wherePo (I) - (1 + b A I r l/b 

and';'" b are parameters, I is a continuous variable and k may take zeroorpoisitive 
integrai values only. Verify t .. at the distribution satisfies the requirements for a 
probability distribution in K and find the expectation of K and its variance. 

Hint. Let K be a random variable with the distribution, 

P (K ... k) - PI: ( I ); k - 0, 1, 2, ... ,00. 

_(I+bAlr llb 1 *-1 
[

1 b AI ]Vb 
- l+bAI 

:. PI: (I) represents a probability distribution for every fixed b, A and I. 
CD 

M.O.F.ofK - E (I''') - 1: ,e"" Pit (I,), 
It-O 
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_ (1+b).tr1/b i [e .. «,f "'[i] [i+'].[i+'-']j 
k-O (l+b).t)k k! 

GO It 

= ( 1 + b ). t r lib ~ [ e'" b). t ] ((1(b) + k -1 ) 
It.o l+b).t· k 

- ( 1 + b ). t)- lib' 1 Vb .. [ 1 + b ). t - e'" b ). t]- Vb 

[ 1 _. e'" b)' t ] 
l+b).1 

- g ( u ), '(say) _ (lib) _ 1 

g'(u) .. i [1 + b).l-e"'bl..l] • (e"'bl..l) 

E(K) .. Ill' (about origin) ... Mean ... [g' (u)]"'.o 

[ 
1 ] - (lib) - 1 . ... b [1 + b I.. 1 - b I.. 1 ] • (b I.. I) .. .1.. 1 

Similarly 1l2' ... [g" (u) ]",.0 = (b + 1) 1..2 12 + I.. 1 

., Variance = 1l'2 _IlI,2 ... 1..1 (1 + bl..l). 

OBJECTIVE TYPE QUESTIONS 
1. (i) Match the correct parts to make a valid statement: 

(a) Binomial distribution applies to 1. rare events 

(b) Poisson distribution applies to 2. repeated tWo alternatives. 

(c) The mean of a Hypergeometric 3. 1 - 6pq 
distribution "pq 

(d) The moment generating function 4 . ". M ( 1-M) (N -") . ofnegative binomial distribution " "N-1 
(e) The coefficient of kurtosis of a 5. (Q - pe' r' 

binomial distribution 

(j) The variance of geometric 6. 
nM 

distribution 
N 

(g) Variance of Hypergeometric 7. 
q 

d istribu tion fJ 
II. Under what conditions binomial distribution tends to (i) Poisson 

distribution, (il) Normal distribution, (iiI) Geometric distribution. Give practical 
examples (one each) where you would expect binomial, Poisson, negative binomial 
and geometric distribution. 
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III. State the relationship between: 

(i) Mean and variance of Poisson distribution. 

(ii) Mean and variance of negative binomial distribution. 

(iii) Mean and variance of geometric distribution. 

(iv) Poisson distribution and binomial distribution. 

(v) Hypergeometric distribution and binomial distrilJution. 

IV. Name the discrete distribution for which 

(i) Mean and variance have the same value. 

(ii) Mean is greater than the variance. 

7·113 

V. State which of the following statements are True and which are False. 
In case of the false statement, give the correct statement: 

(i) Mean of binomial distribution is ~. and variance is 5. 

(ii) Mean of Poisson distribution is 2 and variance is 3. 

(iii) The sum of two independent Poisson variates is also a Poisson variate. 
The result holds for t~e difference also. 

(iv) For a binomial distribution, 

Mean = Mode = Mediall 

(v) The Poisson distribution is a limiting case of binymial distribution 
when Il ~ 00, p ~ 0, IIp ~ m. 

(vi) Nearly all the distributions are particular cases of Poisson distribution. 

(vii) The sum of tWQ binomial variates is a binomial variate if the variables 
are independent and have the different probabilities of success. 

(viii) Negative binomial distribution may be regarded as the generalis~~ion of 
geometric distribution. 

VI. Fill in the blanks: 

(i) The variance of a binomial distribution is ........ . 

(il) The ~-coefficient of skewness of the binomial distribution is ........ . 

(iii) The moment generating function of Poisson distribution is ........ . 

(iv) The characteristic function of negative binomial distribution is ........ . 

(v) The coefficient of skewness of a Poisson distribution is ........ . 

(vi) Poisson distribution is a limiting case of binomial distribution under 
the conditions ........ . 

(vii) For Poisson distribution all cumulants ........... . 

(viii) Mean> variance for ......... distribution. 

(ix) For the Poisson distribution, the variance and the third central moment 
are ........... . 

(x) Mean < variance for ......... distribution. 
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VII. Give the correct answcr to each of the following: 
(I) The skewness in a binomial distribution will be zero. if 

1 1 1 
(a) p < 2' (b) p = 'i' (c) p > 'i' (d) P < q. 

(ii) The mean and variance of negative binomial distribution: 
(a) are same. (b) cannot,be same. (c) are sometimes equal in limiting 
case. as n ~ 00. 

(iii) The characteristic function of Poisson distribution P (m) is 
(

0 I) m(ei' - J) 0 

(a) enl ,,- • (b) e • (c) enl". (d) none qf these. 
(iv) The coefficient of variation of Poisson distribution with mean 4 is 

1 2 
(aLi' • (b) 4" (c) 4. (d) 2 

(v) The coefficient of kurtosis of a Poisson distribution with mean In is 
(a) lim. (b) -11m. (c) m, (d) 3 + O/m) 

(vi) The mean of a Hypergeometric distribution is 
N (M-=-l2 M(M- J) N M (M - I) 

(a) N (N _ I)' (b) N (N _ I)' (c) N (N _ I) '(d) None of 

these 
(vii) In a Poisson distributio~. the second moment about the origin is 12. 

Then its third moment about mean is (a) 2, (b)'3. (c) 5. (d) 10. 

x 10-x 

(viii) The mean of the binomial distribution IOCx (~) (~) ; x = 0, I. 

2, .... 10 is (a) 4. (b) 6, (c) 5. (d) O. 
(ix) The mean of Poisson variate is 

(a) greater than. (b) less than. (c) equal to. (d) twice, its variance. 
(x) The moment generating function of Geometric distribution is 

(a) p (l - qe'). (b) p/(l - qe'). (c) pe'/(1 - qe'}. (d) None of these. 
VIII. By using the uniqueness property of m.g.f.'s. detcrmine the 

distribution if the M.G.F. is as follows: 
6 

( I I ) (J + e')S 
(a) M (I) = 2 + 2 e' ,(b) M (t) 32 

(c) M (I) (1 ;ie,)3 • (d) M (I) = e3(e' -I). 

I ( 2)-1 (e) M (I) = e(eL 1)14. if) M if)-= '3 r' .r' - '3 

(g) M (t) = 4 (3e-' - 1)-2. (h) M (I) = (3e-' - 2)-3 

Ans. (a) Binomial. n= 6. p = i ; (b) Binomial. 11= 5. P = i; 
(c) Binomial. Il= 3. p = j; (d) Poisson. A. = 3. 

(e) Poisson. A. = ~ . if) Geometric w;tlJ p = 113. 

(g) Negative binomial with r == 2. P = j ; 
(h) Negative binomial with r = 3. p = 113. 

, 



CHAPTER EIGHT 

Theoretical Continuous Distributions 

8·1. Rectangular (or Uniform Distribution. A random variable X is 
said to have a continuous uniform distribution over an interval (a, b) if its prob­
ability density function is constant = k (say), over the entire range of X, i.e., 

1 
k,a<x<b 

f(x) = 
0, omerwise 

Since total probability is always unJty, we have 
b b 

J f(x)dx=1 ~ kJ dx=1 i.e., k=_I­
b-a 

a u 

{ ~' a<x<b 
.. f(x) = -a 

0, otherwise ... (8· 1) 
Remarks. 1. a and b, (a < b) are the two parameters of the uniform dis­

tribution on (a, b) . 
2. The distribution is also known as rectangular distribution, since the 

curve)' = f (x) describes a rectangle over tpe x-aixs and between the ordinates at 
x=a and x=b. 

3. The distribution function F (x) is given by 

{ 
0, if - 00 <x < a 
x-a . 

F(x) = b-:-a.' a $ x $ b ... (8·1 a) 

I, b<x<oo 
Since F (x) is not continuous at x = a and x = b , it is not differentiable at 

these points. Thus ! F(x) =f(x) = b~a ~O, exists everywhere except at the 

points x = a and x = b. and conseqY~ntly p.d.f. f (x) is given by (8·1) . 

f{x) F(x) 

1 
b-a I , ., , 

a b X :x 
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4. The graphs of uniform p.d.f. f(x) and the corresponding distribution 
function F (x) are given on page lH : 

S. For a rectangular or uniform variate X in (- a, a) , p.d.f. is given by 

f (x) = {2'a' - a < x < a 
0, otherwi,se. 

8·1·1. Moments of Rectangular Distribution. 
/, b [ r+ I r+ I ] , J rf( d 'J rd ' b -a 

Ilr= a X x) x= (b-a) a X x= (b-a) r+ 1 
... (8,2) 

In particular 

and 

8·1·2. 

8·1·3. 

Mean=IlI'=-- ~ = b+a , r b2 2] 
(b-a) 2 2 

, 1 [ b3 - a3 ] l' 2 2 112 =-- -- =- (b +ab+a) 
(b-a) 3 3, 

, ,2 1 2 2 b + a 1 2 l )2, 

112=112 -Ill =-(b +ab+a)- -- =-(b-a) 
3 2 12 

Moment Generating Function is given by 
b 

J t:c /"- ea, 
Mx(t)= e f(x)dx= t(b-a) 

a 

Characteristic Function is given by 
b ib, iat J in e -e 

<Ilx (t) = e f(x) dx= . (b ) 
It -a 

a 

8·1·4. Mean Deviation about Mean, " is giyen by 
b 

,,=£1 X-Mean 1 = J 1 x-Mean If(x) dx 
u 

I Jb I a+b I = (b-'a) a x--2- d,x 

(b-a)12 

- (b _ a) J I t I dt 
" -(b-a)12 

b'-a 
tdt=--

4 

[ a+b] t=x--2-
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Examp,le 8·;1 ~l X ,;~ ",,(101 lilly di.w·;lmt/',/ w;tlt llleao '/ 01/(1·\'(/,.;0;/('('-Y.l. 

fi"d P (X < 0) . '[Delhi Univ. B.A. '(Hons. Spl. Course-Statistics), 19891 

Solution. LetX -u la. b I. so thatl' (.\) = -, _1- : 0 <:'X < /J . We are given: 
)-a 

b+i, 
Mean=--= 1 

2 
b+.(1=2 

I ? 4 
Var (X) = - (b - ar = -

12 3 
=> 

? 
(b-ar=16 b-a=±4 

" ", 
Solving, we get: a = - I and b = 3; (a < b) . 

I 
P (x) ="4; - I < x < 3 

, \ I 

( 

f I () I 
P (X < 0) = p (x) dx = - I x I =-

4, _I 4 
-1 

Example ~·2. Subway trai"s all a certaill/ille ru" every' halflwllr beflreell 
mid-night alld six in the mOrtling. What is the probability that II flllIlI entering tlte 

510lioll lit a random time.. during this period }vill have to ·wait at least fll'eflfy 
~~? . 

Solution. Let the r.v. X denote the waitin~ time (in minutes) for the next 
train. Under the assumption that a man arrives a\ the station at random, X is 
distributed uniformly on (0, 30), with p.d!, . ; 

I(x) = 30 -
, 

0, otherwise 

{
'J..- ,O·<.x <.30 " 

The probability that heo'Jhas to wait at 'least 20 minutes is 
30 :1-30 • 

-, -: - "I I I 
P (X~ 20) = f I(x)·dx = 30 J.. 1 ,.dx= 30 '(30 - 20) =3 -: 
~ , • 20~ .. ,. .. ,2p,.. :,' !I' '.,-" 

Example 8·3. If X has a uniform distribution in [0. [J . find the ejistr.ibll 

lion (p.d./.) 01-2 log X. [den,ti/)' the distribution also. 

, .lDelhi'Univ. B.~c. (stat; Hons.), 1989,' 86] 
Solution. Le! t'''7 -'~Jog X . .:rhen tJ1e distrib!1ti~n function.G of X is' 

, 'GY(i)'=P(YS',);)=P(-210gxi y). •• , •. 1 \,,' ' '\ 

=P(logX~-y/2)=P(X~e-YI2)= I-P(XS',e-~/2). 
wt "'f ~y/2 '., ~. -)"'2 • 

e e 

f 1'1 .. 'J.;/2 - \ "~ •• ! 
=]-£f~)~=l- l.~=),-e·-~ 

0' 0 
d' . .'. 1 vl2f,,- •• ,f,. ')J!!:"" ~ t~ • , I. \5.' 

grey) =- G (y) =- e-' ,0 <y < 00 

dy 2 ","~ • . .. (*) 

[ '.' as X ranges ill (0. I), Y = - 2 log X railges~from 0 to 00 j 
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Refllark. This example illustrates that if X-U[O, 1'1,. tlien Y=-2 
log X. has an exponential distribl}tion with parameter e =~. [cf· § 8·61 0 

Y = - 2 log X ha~ chi-square distribution with II = 2 degrees of freedo~ 
[ cf. Chapter n, § 1-3·2 I. . , '. 

Example 8·4. SholV that for the rectallglilar distribution: 

I 
f (x) = 2a ' - a·< x < a 

the lII.g./. about origin is 1- ( sillh at ) . Also show that nwmellts of evell order ar,e 
at 

a2n 
givell by J.12n = (2n + 1) 

Solution. M.G.F. about origin is given by 
II a 

Mx (t) = E (e'X) = J e,·t f (x) dx = ;a J e'x dt 
-tJ -(.I 

=...!...I e'x I a 
2a I -a 

Since there are no terms with odd powers oft in M (t) , all moments of odd 
order about origin vanish, i.e., 

'\1'2n+1 (about origin) =0 
In particular J.1i' (about origin) = 0, i.e., mean = 0 

Thus \1/ (about origin) = \1r (since mean is origin) 

Hence 1J.12n+ 1= 0;" = 0, 1,2, .:. 
i.e., all moments of odd order about mean vani~b.. The moments of even 

order are given by . 

. t2n. a2n 
\12n = coefficient of (211) '! 10 M (t) = (2n + 1) 

Example 8·5. If XI and X2 
(O. II. Jind the distributiolls of 

are independent ,~ectangular variates on 

(i) XI/X2, (ii) XI X2, (iii) XI + X2, and 

Solution. We are given 

fx. (XI) = fxz (Xl) = 1 ; 0 < XI < 1, 0·<.~2 < 1 

Since XI and X2 are independent, their joint p.d.f. is 

f(XI, X2) = f(XI)f(X2) = I 
(i) Let us ~ransform to 

(iv) XI -X2 
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v 
.'. 

XI 
II'~ -. I' =X2 i.e .• XI = /tI'. Xl = I' 

X2. 

J = d (XI. X~ = I I' 0 I = I' a (II. v) II I 

XI = 0 maps to u = o. v = 0 

" 

u 

XI = 1 maps to uv = I (Rectangular hyperbola) 
X2 7' 0 maps to v = 0 and X2 = I maps to ,,= I . 

The joint p.d.f. of U and V becomes 
g (u. v) =!(XI.X2) IJ I = v: 0< u <00. 0 < v <00 

To obtain the marginal distribution of U. we have to integrate out v. 
In region (I) • 

I I 211 gl(u)--;! vdv= ; o=~.O'sUS;,1 

In region (/1) • 

gl (it) = J v dv = Y... = ~ . I < u < 00 

II.. 1 2\I/U 
2 0 2 u o ' 

H~i1te the distribution of U = XXI is given by 
- 2 

g (u) ~ ~ • Q:S; u S; 1 

I = -. -~ . "<;.u < 00 

2 u-

(ii) Let" = XI X2. V = Xl. . " I.e .• ' Xl = 1',X2=-

J= 
o 
I " v ,,2 

v 

= - v 

XI = 0 maps to ,,= O. XI = I maps to v = I I 

-'"2 = 0 maps to 1/ = O. and X2 = I maps to II = " 

85· 
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Moreover, I' =.!..!... ~ \' ~ II 
Xl 

(since 0 <X2 < I), 

The joint p.lIJ, of U and V is 

g (II. I') =f(xi. x~) I J I =..!. ; 0 <.11 <;: 1,0 < v < I 
I' 

I I 

g (/I) = J ..!. til' = [ log II I = -log Ii, 0 < Ii < I v ~ 
u u 

, (iii) and (il'). Led, = XI + X2 , 

v 

~----~~~----.u 

V=XI -X2 

XI = Ij ~ 1/ + V = 0 
, _U+V i.e.tv=-u 
,.e.,xl - 0 

I I 

2 . 'X2 = ~ 1/ - V = 0 
u - v t.e., v;= u 

x2=T. ~l'=~l ~u+v=2 
X2= r~u-v=2 

dJ 2 2 I.. 
an = I I =-'2 

2 - 2 
.. g(u, v) =f(xJ, X2) I J I ~~, 0 < Ii <2, ':""1.,( v <'r 

.In region (I). (see figure below) 
U ., 'u 

gJ(u) = J . ~ dv = 1 I v I = U 

-1/ 
-II 

and in region (II) , 
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2-u 1-u 

g2 (u) = J k dv = k I v I 
u-2 

=2-u 
11-2 

{ II, 0 < U < I 
., g (II) = 2;- LI, I < u <::: 2 . 

For the distribution of v, we split the region as: OAB and OAG " 
In region OAB : 

h() J 2-~'ld 1[2 
I v = " "1 u = "1 - v - v ] = 1 - v, 0 < v < 1 

In region OAC : 

h2 (v) = J ::~. t du = t [ 2 (I + v)) = 1 + v, - 1 < v < 0 

Hence the distribution of V = XI - X2 is given by ! I-v, 0 < v< 1 
h (v) = , 

1 + v, - 1 < v <0 
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Example 8·61 If X is,(f. random variable 'With a continI/oils distribution 

function F, then F (X) has a uniform distribution on [0, J J. 
[Delhi Uqiv. B.Se. (Stat. Hons.), 1992, 1987,' 85] 

Solution. Since F is a disiri"bution function, it is non-decreasing. Let 
y = F (X) , then the distribution function G·of Y is given I>y 

GrCy) = P ('y ~ y) = P [ F (X) ~ Y ] = P [ X ~ r I (y) ], 

the inverse exists, since F is non-decreasing and given to be continuous. 
.. Gy(y) = F f r I (y)], . " 

since F is the distribution function of X . 
.. Gy(y) =)' 

Therefore the p.d.f. of Y = F (X) is given by: 
d ' 

gyM .... dy [ Gy(y) ] - 1 

Since F is a d.f., Y takes the values in the range [0, 1]. 
Hence gy(y)=: l,O~y~ 1 
=> Y is a unifonn variate on [0; 1.] . 
Remark. Suppose X is a random vari&l;>le with p.d.f., 

e- x , x 2: 0 
/x(x) = 

then . F(x) = 

'0, otherwise 
'O;if x < 0 

l-e- x ,ifx2:0 

Then by above result F(X) = 1 - e'x is unifonnly distributed on [0, 1]. 
Example 8·7. If X and Yare independent rectangular.variates/ortherange 

-a to a each, then show that the sum X + Y = U, has the probability density 
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2a+1I , 
lP(u) = --.,-. - 211SltSO 

4(,-

211-L1t . 
IP (/I) = --.,- • () SitS 2a 

4(,-

Solution. Since X and Yare independent rectangular variates, each in 
the interval (-1I, a), we have' 

and 

l ~·-a<x<a II (x) = 2a 

0, elsewhere 

1 ~, -a<)'<a 
h (y) = 

0, ·elsewhere 

H~nce by cOqlpound probability theorem, the joint probability differential of, 
X and Y is given by l 

, I ! 

U. 

dP (x, y) =/1 (x) h (y) dx od)' = 4a2 dx d)" - a < (x, )') < a 

Let us define new variables U and V as follows: 
u=x+y, v=x-y 

u+v u-v 
x=-- and y=--

2 - . 2 
=> 

Jacobian of the transformation J is given ~y 

ax ax 
J-~- au av 

-a(u,v) - ~ ~ = 

au -av 

I 
2 
I 
2 

Thus the probability differential of U and V becomes 
I I 

I 
2 
I 
2 

dG (u, v) =-2111 du dV=-2 du dv 
4a Sa ... (*) 

Integrating w.r.to. v over specified range, we can find the distribution o( 
I , 

Let us consider the region to the left of v - axis, i.e., to' the left of the lin~ 
AC . In this region, the values of v are bounded by the lines x = - a and y = - a. : 

For"fixed values of u , ' 
u+v 

v=-:.(u+2a) x=-a => -2-'= -a => 

and 
U:-V 

v= (u+ 2a) y=-a => -2-=-a => 

prakash
Rectangle

prakash
Rectangle

prakash
Rectangle

prakash
Rectangle
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y 

(0,0) 

(-a • O)I-------?lr-----t;:-;;~ X 
(0,0) 

(0,-0) 

Thus integrating (*) w.r.to. v between the limits- (u + 2a) and (u + 2a), the 
distribution of U beco.mes 

1 u+20 I'. Illu+2a -u+2a d gl(u)du= ( 2 )-2· dudv =-2 V ( 2)' dU=--2- U 
-u+a8a 8a -u+a 4a 

In the region to the left of v -axis, i.e., below the line AC, u varies from the 
points (x = - a, y = - a) to the point (x = 0, y = 0) and since u =x + y, in this 
region u lies between (- a - a) and (0+ 0), i.e., between - 2a to O. 

u+2a 
gt (u) du = --2-' - 2a SuS 0 
. 4a 

In the region to the right of v-axis, i.e., above the line AC, the values of v 
are bounded by the lines x = a and y = Q' and for fixed values of u, 

u+v 
v =2a-u x=a => -2-=a => 

u-v 
v=-(2a-u) y=a => -2-=a => , . 

In this region It varies from the point (x = 0, y = 0) to the point (x = a, 
y = a), i.e., u = x + y varies from 0 to 2a. Thus integrating (*) w.r.to. v between 
the limits - (2a - u) to (2q - u) , we get the distribution of.U as 

gt (u)du=;1 2o(::_U ) ~2 dudv=~21 v 120(::_u ) du 
- ..... -u Sa Sa - ..... -u 

2a-u = --2- du, 0 SuS 2a 
4a 

For an alternative and simpler solution, see Remark 5 to § 8·1· 5 , (Triangular 
Distribution). 

Example. 8·8. On the x-axis (f! + 1) points are taken independently be­
tween the origin a"d x = 1 • all positions being equally likely. Show that probability 
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that the (k + I) th of these poi/lls, collllted from the origill, lies ill the illlel1'al 
x - ~ dx to x + ~ dx is· t, I .-

. . '. (~J (1/+ I~i (l-x)~-1; ~ 
Verify that illtegrai of this expressiol/ from x ::: 0 to x::: I is Itllity. 

Solution. Here X is given to be a ran,dom variable uniformly distributed 
on [0, II. ' . .. fx (x) = I. 0 ~ x ~ I 

Now P (0 < X < x) = J.~f (x) dx = J ~ I . dx = x 

P(X>x) = I - P(~~x) = I-x 

( 
dx' dx ) x + dx 

Also P x-2. <,X <x+2' = J x-f f{x) dx:::dx 

... (1) 

... (2) 

... (3} 
Required probability 'p' is,given by , 

P ::: P { out of (n + I) points, k points lie in the closed interv~1 [ 0, x - ~ ] 
and out of the remaining {n + I - k) points, (Ii - k) points lie in 

[ dx I]: d . I' ..( dx dx )} 
I X + 2" ' an one POl."t les III x - 2' , .. t: + J' 

1 ~[(n;1 )xk]x[(n:~;k)(.1_x)"-k]Xdx, 
on. usi,llg (1), (2) and (3) respectively. 

::: (n+I)! 1 (n+l-k)! (I_ ... ·)'n-k dx 
. . p k! (n + I - k) !' . (n _ k-)!' x 

. =[~I(n+l)l(l_x)n-kdx 
To prove that t~e area of this expression from x = 0 to x = I is unity, use 

Beta-integral 
I 

J m-I' "-I \ rmrn 
x (I-x) dx=;B(m,n)=r(m+n);m>O,n>O. 

o 
8·1·5. Triangular Distribution. A random variable X is said to have a 

triangular distribution in the interval (a, b), if its p.d,( is given by: 

(
2 (x - a)/! (b - a)(c - a)}' ; a < x ~ c 

f(x) = 
2(b-xV{(b-a)(b-c)} ;c<x<b 

Remarks. I. We write X -Trg. (a, b), with peak atx = c . The graph of the 

p.d.(.,is shown in the dia~m on page 8'11 . 
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2. The distribution is so called becau~e the graph of its p.d.f. is a triangle 
with peak at x =·c. • : '.' . 

c 

o (c,O) 
i 

3., .The m"g.f. ofTrg (a, 11) variate, with peak atJ' = c is given by: 

~x(t) = j . ;'X f!X}(Jx=[J + j). ~IZ f~~'~' ' 
Q Q C 

C • • b 
2 fIX 2 fIX = (b-a)(c-a) e (x-a)dx+(b_a)(bo-",c) e .. (b-x)dx 

Q C 

2 {eU/ eCI ' bl } 

~? '(a~b)(a-c)+(C-a)(C-b):(b:'a;(b-':c) ;a<b<c 

(On integration by parts) . . .. (8·2b) 

4. In particular, taking a = 0 , c = I and b = 2 , in (8· 20), the p.d.f. of the 
Trg (0, 2) variate with peak at x = I is given by: ' . jx; O~x~1 

f(x)= 2-x;l~x~.2 
0" otherwise ... (8·2 c). 

and its m.gJ. is, ' ·Mx(t). (e' -tiIP, . ".(~'2d) 
which is left as an exercise to the reader. ~ 

5. In particular, replacing a by - 2a, b by 2,{l and c by' 0, the p.d.f. 'of 
triangular distribution 00 the interval (- 2a, 2a) with peak at x = 0 'IS given by.: 

j(2a+X)l4a2 ; -20 < x < 0 
f(x) = . 

(2~ -x)/4a2 ; 0 < X <! 2,a ... (8'2e) 

The m.gJ. of (8·2e) is given by : 
2.-

Mx(t) - f elZ f(x) dx ' 
-2.-

=~ [ J e1x • (20'+x)'dx+ j'l"-'(20-X)dx] 
4a -20 0 
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= ~2[ elx { 2a:-x _~}] 0 + ~2'[elx{ 2a;x +7 }Jla 
-la 0 

[On integrating by parts] 

=_1 [_1+~{ i al + e- 2al f] 
4a2 ?-?-

_ 1 {lal _ lal 2 } _ eal - e -'-al . . [ ]2 
--- e +e. - -

4a2 i'- 2 at ' ... (8.2f) 

Aliter. We may obtain (8'2f) directly from (8·2 b) on replacing a by 
-2a, b by 20 and e by p .. 

Example 8·9. If X and Yare i.i.d. U [ - a, a ] varil(ltes, find the p.d./. of 
Z = X + Y and identify the distribution. 

Solution. Since X and Y are Li.d. U [ - a, a 1., we have: [ef. § 8·1·2.], 

Mx (t) = My (t) = (eal - e- al )1(2 at) ... (*) 

[ 
eat e- al ]2 

Mx+y(t)=Mx(t)My(t)= ~ :' 
···t**) 

since X 'and Y are ind~pendent. 
But (**) is the m.g.f. ofTrg (- 20,20) variate with peak atx = 0 

[eJ: Remark 5, equation (8·2f)] 
Hence by uniqueness'theorem of m.!!:.f., Z=X + Y-Trg (-2a,2a) with 

p.d.f. as given in (8·2 e), Remark 5. 

Aliter Mx+y(t) = ~ 2[ i at _2+e- 2at ] 
4a- t [From (**)] 

2 [[201 eo.I. ela/] 
=? (-20-0)(-20-20) + (0+20)(0-20) +-(2a-. ...,-'0)'-(2-a-+-2a-) 

which is of the form (8·2 b), [ef. Rem~!k 3] , with a replaced by -?p. and b 
replaced by 20 and.e by O. Hence X + Y-Trg (- 20,20) withp.d.f.p (x) given in 

(8·2e) . 
Remarks 1.' The distribution of X + 'r has also been obtained in Example 

8·7. 
2. Similarly we c~n find the di.,tribution of X - Y. 

Mx- y( t) = Mx (t). My(- t) =[ eat ;~-al J 
=> X - Y-Trg (-20, 2a), with peakatx=O. 

EXERCISE 8 (a) 

[From (*)] 

1. The bus company A schedules a north bound bus every 30 minutes at a 
certain bus-stop. A man comes to the stop at a random time. Let the random variable 

, X count the number of minutes he haf> to wait for the next bus. Assume X has a 
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uniform distribution over the interval (0, 30). Tbis is how we interpret the statement 
that he enters t~ station at the rand0"lo time]. 

(i) For each k = 5, 10, 15, 20, 30 compute the probability that he has to wait 
at least k minute~ for the next bus. 

(U) A competitor, the bus company B is al10wed to schedule a north bound 
bus every 30 minutes at the same stiltron but at least 5 minutes must elapse between 
the arrivals of the competitive buses.' Assume the passengers come at the bus stop 
at random times and always board the first bus t~~t arrives. Show that the company 
B can arrange its schedule so that it receives five times as many passengers as that 
of its competitor. 

2. (a) A random variable X has a uniform 4;~tribution over (- 3, 3) , 
compute 

(i) P (X = 2), P (X < 2) , P ( I X I < 2), an~ P (I X - 21 < 2) 
(ii) Find k for wh~ch P (X> k) = l/3 . [Gorakhp~r Univ: B.S~. 1992) 
(b) Suppose.that X is uniformly distributed over (- a, + a), where a> 0 . 

Determine a so that 
(t) P(X> 1)= 1/3, (it) P(X< 112)=0·3 and 
(ii) P(IXI<I)=P(IXI.>I). 
Ans. (i) a = 3, (il) a = 5/6, (ii,) a = 2 . 
(e) Calculate the coefficient of variation for the rectangular distribution in 

(0, b) given that the prQbability law 6f the-distribution is 
t 

P(X~t)=-
b 

(d) If X is uniformly distributed over [I, 2], find z so that 
I I 

P(X>z+J.lx)="4 (Ans. Z=4)' 

3 (a). If a random variable X has the density function/(x), prove that 
x 

y=J/(x)dx 

has a rectangular distribution over (0, I). If 
lex) ="1,(x-I), I ~x ~ 3 

. = 0, otherwise 
determine what interval for Y 'will correspond to the interval 

1·1 ~X~2·9. 

Ans.)' = F(x) = (x - 1)2/4; I ~ x ~3 ; 0·OO~5 ~y ~ 0·9025 
(b). Show that whatever be the distribution function F (x) of a r. v. X, 

P [a ~ F (X) ~ b) = b - a, Q ~ (a, b) ~ I . 
[Delhi Univ. B.Se. (Stat. Hons), 1986] 

Hint. Y = F (X) -tJ [0, I ] . 
4. (a) For the rectantular distribution, 
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= 0, otherwiJicr., 

show that. the ,moments of odd order are zero, and Jl2r = a2r /(2r + I) . 

• [l\1.11~urai ~amraj Uoiv. n.sc •. 19911 
(b) A distribution is given· by. 

I . 
f(x) dx = 2a d x, -. a So x So a 

Find the first four central moments and obtain ~1 and ~2. 
[Delhi UoivB.Sc. Oct., 1992; Madras Univ: ~.Sc •• 1991) 

(c) For a rectangular distribution 
dP = k· dx, I So x So 2, 

shoW. that Arithmetic mean ~Geometric mean> Harmonic mean. 
·'[Vikram Uoiv. B.Sc. 1993) 

(d) If the random variable X follows the rectangular distribution with 
p.dJ., 

f(x) = I1e,OSoxSoe, 
derive the first four moments and the skewness and kurtosis conffiCients of the 
distribution, 

(e) Let X and Y be independent:variates which are uniformly'distributed 
over the unit interval (0, I). Find the distributJQn function and the p.dJ. of random 
variable Z = X + Y. Is Z a uniformly distributed variable? Give reasons. 

[Delhi Uoiv.' B.Sc. (Maths. Hoos.), 1986) 
S. Let XI and X2 be independent random· variables unifromly distributed 

over the interval (0, I). Find'~ . 
(I) P (XI +X2 <0·5)1 (ii) P,<XI-X2 <.0·5), 

(iiI) P(Xr+X~<0·5), (iv) P(e- x1 <0·5), and (v)P(cos'ltX2<0·5). 
Ans. (i) 0·125, (ii) 0·875. (iii) 0·393, (iv) I -log 2, and (v) 2/3 . 
6. A random variable X is uniformly distributed over (0, I), find the 

probability density functions of 

(i) Y=X2+1,and (ii)Z=I/(X+I). 
7. (a) If the random variable X is uniformly distributed over (0, -i 1t), 

compute the expectation of the function sin X., Also find the distribution 
of Y = sin X, and show that the mean of ihis distribution is t~e same as the above 
expectation. 

Aos. 2/11., fy (y) = 2/(1t ~), d <)' < I. 
(b) If X -U [ -1t/2,1t/2 ] distributed, find die p.d.f. of' Y = t3:n X . 

lDelhi Uoiv. B.A. Hoos. (Spl. Course-Statistics). 1989] 
8. (a) Show that for the rectangular distribution.: 

dF=dx, 0 Sox < 1 
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jJ'J (~bout origin) = 112. variance = 11.12 an,d mean deviation a,bout mean 
::: 1/4. [Madras Univ B.Se;, Sept.1991; Delhi U. B.Sc. Sept. 1992] 

(b) Find the characteristic function of the random variable Y = log F. (X) 
where F (X) is the distribution function of a random variable X . E,vaIl1l}\e' th~ rth 
moment of Y . ., 

9. If,X - V [Q. I~) , fin~ the distribution of Y = J/X. find E (I ~~ , if it 

e;ists. 

Ans. gy(y) = Ill; I Sy<oo; E(Y)=E(lIX) do.esnotexist. 
10. LetX be uniformly distributed on [-1. 1 J. Find the distribution function 

l . 
and hence the p.d.f. of Y = X . [Delhi Univ. B.Sc. (Maths. Hons.), 19881 

11. Letfx (x) = 6x (1 -x); 0 S'x S 1 . Find y as a function of x such that 
Y has p.d.f. 

g (y) = 3 (1 -..JY); 0 ~ y S 1 
[Delhi Univ. ~.A. Hons. (Sp~. Course-Statistics), 1988] 

x 

Hiitt. F,(x) = J f('X) dx = 3x2 - h 3 - V [0. 1.1 
o 
y 

G (y) = J g·U~·dy ~ 3y - 2/12 - V.[ 0, I ] 
o 

Setting F (x) :;: G U'), we get y = x~ .1 

12. The variates a and b are independently anG uniformly distributed in 
the intervals [0.6] and [0. 9] respectively. Findl the probability that 2- - ax + b = 0 
has two real roots. 

J il4 

Ans. P(b sJ/4) =! J 6 ~9 dadb= ~/3 . 
.. =0 b=O 

13. Find the probability ,that the roots of the equation x2 + 2b x + C = 0 
should be real, given that b -V [ -.a, a] and C -V [ - ~, ~ ] are independent. 

Ans. Probability = F (b2 '~~~I - p(~2'$: c) = I - P ( I b I S ..Jc) 

= j [1 (-.C)(~:) dbldC 
._~_{C2al2.~ 

14. If a, b. c are r.andomly chosen between O'and I. find the probability 
that the quadratic equation ci.x2 + 6x + C = 0 has real roots. 

I ~ l\r.i;;; .\~ ~t t ·~·I. '<';;!\ 

Ans. Prob~~~litX=';Jb.2;:::.4qc),= 1- 1- J:t.J" ~ .'dadcdb'='~V·,.tH ,. 
.. .: ... ~ . IrO'O-b=O' I , ....... ('\nf ll ., 

15. (a) SUI1rOSe X· has a rectangular distribution on (-I ~ 'I')'. jcdrii~ote:" 
p[ IX-E(X)1 .' .' h b d' b C ;::: 2 and compare It w.lth t e upper o!ln given y hebyshev's 

Ox ". 
inequality. • . . 
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'(b) Compare the upp'er bound of the probability, 
p! rx - E (X) I ~ 2 VV (X) } , 

obtained from Chebyshev's inequality with exact probability if X is uniformly 
distributed over (- 1,3). " " . 

Ans. (b) Probability S 1/4, Exact Prob~~i1i.ty: =0 
16. Two independent variates are each uniformly distributed within [he 

range - a to + a. Show that their sum X has a pro~bility density given by 
, 2a+x 

!(x) = -2-' -2aSxS;O 
4a 

2a-x = 4d- ' OSxS2a 

Verify that the m.g. f. calculated from the value of! (x) is equal to 

( ~t sinh at J 
17. The random variables X and Y are independent and both hav.e the 

uniform distribution on [0, 1]. Let Z = I X - Y I . Prove that. for real 0, 

<9(Z,O)=2[ 1 +iO-ei O]/2. 
Hence deduce the general expression for E (Z')' . 

I I 

Hint. <9(O;lx-YI)=I I i°l;t-yl!(X,y)dxdy 
o 0 

= 2! (1 e''''-') dy )~ 
Y 

ADs. 2/[ (n + 1) (n + 2)1 

+ 
"'\~ 

~---:--7f'{1,) ) 

" x 

18. If X and Y are independently and uniform'Ii ~istributed random vari­
ables in the interval (0, 1), show that the distribution of X + Y is given by the 
density function 

. \z !(z)= ~-z 
OSz<1 
ISzS2 
elsewhere 
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[Hint. See Triangylar distribution) 
19. Ship A makes radio signals to the base and the probability of the 

interval between oonsecutive signals is imifonnly distributed between 4 hours and 
24 hours and is zero outside this range. Ship B makes radio signals to the base and 
the probability of the interval between consecutive signals is uniformly distributed 
between 10 hours ~nd 15 hours and is zero outside this range. 

(I) Ship A has just signalled. What-,iS the probability that it will make two 
further signals in the next 12 hours? 

(ii) Ships'A and B have just signalled at the same time. What is the 
probability that Ship A will make at least two further signals before ship B t:'ext, 
signals? [Institute of Actuaries (London), April 1978] 

20. If X -U [ O. I). prove that for b < c fixed. Y = (c - b) X + b is 
uniform on [ b. c ] . 

8;2. Normal Distribution. The norniill distribution was first discovered in 
1733 by English mathematician De-Moivre. who obtained this continuous distribu­
tion as a limiting case of the binomial distribution and appli~d it to problems arising 
in the game of chance. It was also known to Laplace. no later than 1774 but through 
a historical error it was credited to Gauss. who first made reference to it in the 
beginning of 19th century (1809). as the distJ:il~ution of errors in Astronomy. Gauss 
used the normal curve to describe the theory of accidental errors of measurements 
involved in the calculation of orbits of heavenly bodies. Throughout the eighteenth 
and nineteeth centuries, various efforts were made to establish the nonnal model 
as the underlying law ruling all continuous random variables. Thus. the name 
"nomUlI" . These efforts. however. failed because offalse premises. The nonnal 
model has. nevertheless. become the most important probability model in statistical 
analysis. . 

Definition. A random variable X is said to ahve a flomwl distribution with 

parameters J.l' (called "mean") and ~ (cal{ed "variance") if its density/unction 
is give,. by the probability law: 

f(K;~.,,)- ,,~~. exp [-W~~ n 
1 (2/2.2 

or f(x;Il.cr)=cr~?:1t e- x - l1) (J 

-oo<x<oo. - oo<Jl<oo.cr>O ... (8·3) 
Remarks. 1. A random variable X with mean Jl and varianl=e cr2 and 

following the normal law (8·3)- is expressed by X -N (Jl. cr) 
2. If X -N (Il. cr~). then Z = X ~ Jl. is a standard' normal variate wi(h 

E (Z) = 0 and Var (Z) = 1 
and we write Z -N (0, I) . 

,r 

3. The p.d.f. of standard normal variate Z is given by 
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( ) I - '!/2 . 
<p Z =~-e' ,-oo<Z <00_ 

... .. ..I • .. 

an~ the corresponding distribution, function? denoted by ~(z) is giv~n by 

<I> (~) = p (Z ~ z)-= r <p-(u) 'd/l 

. I 1~' ,,-,//? d =-- e-u 

..J2it ,.. .. 
We shall prove below. two important- results on the distribution function 

<i>:!J ots.t~ndard nor!"lal varil!te. 
Resulf 1. <I> (- z) ~ I - <I> (z) 
Proof. <I> (- z) = p (Z ~ - z) = p (Z ~ z) (By symmetry) 

= ! -PfZ.~z) 
= 1,-<1> (z) 

='p I ZI~ b-_Il~_p'(Z~~' 
(J ) cr 

. -

= <I>(¥. )-<1>('7) 
4. The graph off (x) is a fa]1)ous 'bel!::.shaped' curve~ The top· of the bell 

is.airectly above the mean i!. For large values of d, the curve tends to flatten out 
and for·small values of cr, irhas a sharp peak.' 

8·2·1. Normal Distribution as a Limiting form of Binomial Distr'm6tion. 
Normal distribution is another limiting form',of the binomial distribution under the 
following conditions: . 

(i) tI, the number of tri~ls'iS indefinitely large. 'Ce;. 11 ~ 00 and 
(ii) neither p nor.q is very small. 
The probability function of the binomial distribution with parameters 11 and p 

is _given by 

,~ (n )~-x n-x h:! t' n-x 
p (x) = x p q ~ x! (n--i)! p q ;x.=.O. I. 2.r .... ·n 

... (*) 

Let uS,now consider tlJe s,tand~rd binomial variate-: 

X - E (X) ~ - np ., 
Z= ~V(X) = np'q' ;X='0.-I."2, .• ,. 11 ... (**) 

When 
-liP 

X= 0, Z =r==:-= - ..J"p/q , vnpq '. 
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/1-/11' ~ 
and when X = /I. Z = ---r--- = 'I"q/p 

'I/lpq 

819 

Thus in the limit as·/I ~ 00, Z takes the values from - 00 to 00. Hence the 
distribution of X will be a continuous-distribution over the range - 00 to 00. 

Wt; want the ·limiting form of (*) under the above two conditions. Using 
Stirling's approximation to r! for large r, viz., 

lim r!-:::. fu e- r /+(112), 
r~oo 

we have in the limit as II ~[oo and c~:;;U~:tl~, :!~xoo,: -< 1 
Ie (') I" ..... 2 It e II 2 P q 
Imp x = 1m I I 

,r;;--2 -x x+- '~2 -In-x) ( )n-x+-..... Llt e x 2 ..... Llt e II-X 2 

[ 
I I 1 _I' I I (np)x+"2(nq)n-u_2 

- 1m . I I 1fit ...Jnpq ,..x+- ( )n-x+-
A" 2 II-X 2 

[ 
~+1 

r 1 !1£. 
= 1m ~2 It ~npq { X ) 

From (**), we have 

Also 

X 
X=,!p+Z...Jnpq => -= I +Z ...Jq/(lIp) 

np 

n -X= n -liP -Z...Jnpq = IIq -Z...JlIpq 

n-X,~ I 
.. --= 1 -Z ..... p/(nq) , Also dz =-r==dx 

nq 'Inpq 
Hence the probability differential ofthe distribution of Z, in the limi't is given 

from (***) by 

d G(z) = g (z) dz = nl~oo [ ...Jd It x ! ] dz __ ,(8·4). 

[ X J+1[II-xJ-x+1 
where N=' - --

np nq. 

lo~ N= (x+i) log (X/lip) + (II-X +~) log'{ (11-x)/nq], 

=(np+z ...Jnpq +1) log f 1 +'Z ...J(q/np)') T, 

+ (lIq - z .;Jnpq + i) log [ 1 - z ...J(p/nq) ] 

= (np + z ...Jnpq +1) [z . -.Jr.-( -q/-:-n-p--:-) - i i (q/np) +1 Z3 (q/np)3/2 -,-'j. ] 
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lim logN = Z2 
n~oo 2 

Substituting in (8·4), we get I _ .2/1 

d U(z) = g (z) dz = fu e • - dz, - 00 < z < 00 

... (8·4 a) 

Hence the probabii'ity function of Z is 

) I -}/2 
g(z =fue' ,-oo<z<oo 

... (8·4 b) 
This is the. probability density (unction of the -/lOrma{ distribution with 

mean 0 and unit variance. 
If X i~ normal variate with mean Jl and s.d. 0' then Z = {K-'!l)/O' is stand· 

ard normal variate. Jacobian of transformation is 110'. Hence substituting in 
{8-4 (b).l, the p.d.f. of a normal variate X with E (X) =!l ' Var (X) = 0'2 is given 
by 

1 I [(.\_Il)z/2oz - 00 <x < 00 i 
/x(x) = 00' :'hh1t . ' I 

, ot erwlse . 
Remark. Normal distribution can also be obtained as a limiting case of . 

Poisson Distribution wit~ the parameter A. ~ 00 • , 

8·2·2. Chief Characteristics of the Normal Distribution and Normal 't 
Probability Curve. The normal probability curve with mean J.l and standard ~ 
deviation 0' is given by the equation 

I " 
f(x) = 0'~21t e-(\'-Il)'/20', -00 <x< 00 

and h:\s the following properties: 
" 
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(i) The cl,lrve is bell shaped and sYrfimetdcal abOut the line x = J.l. 
(ii) Mean, median and mode of the distribution coinc!de. ~ 

8·21 

(iii) As x in~reases numerically,f(x) decreases rapidly, the maximum 

probability occurring at the point x = J.l, and given by [p (x)] max '= _ ~ . 
a"'l2 n 

(iv) ~I.:;;: 0 an<;l~2'= 3. 
(v) J.lZr-l: I = 0, (r = 0, 1,1, ... ), 

and 'J.lzr = 1.3.5' ... (2r - I )aZr, (r = 0, 1, 2, ".). 

(vi) Since f(x) being the probability, can never be negative. no portion 
of the curve lies below the x-axis. 

(vii) Linear combination of !r:ld,ependent normal' variates is a.1s.Q a nomlal 
variate. 

(viii) 

(ix) 

x-axis is an.asymptote to the curve. 
The points of inflexion of the curve are gi'yen by 

-t. 

, . 

L' '.1 [ 1 J x == J.l ± a,f(x) = -- e- I12 , 

1 - ..crfi~ 
'I 

I. 
1. .--,---...... 

X=JI 
(Normal Proba,Qility Cuve) 

(x) Mean dev.ia.tio,n <\bout mean"is.} 'Q3 _'QI 2 

,.j 2/n a =::: ~ a (approx.) Q.D. 2 -:: '3 a· 

We have (approxim~tely> 

QD MD SD 2a 1 a '(J" ~3:15:1 . . : . . .: . .:: ,3 : 5 '. .. 

=::} Q. D. : M.D.: S.D. :: 10: 12 ': 15 
.. I 

(xi) Area Property 

P (J.l - a < X < J.l. + a) = 0·6826 
P (J.l:- 2 a <: X < J.l + 2 a) .= 0·9544 
P (J.l - 3 a < X < J.l + 3 a) = 0·9973 
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The fo!19wing~ table giyes Ith~ area under the normal ,probability curve for 
some important ~;)Iues of stan.dm:d normal ~ariat~Z • 

Distallcesiro/li the'lIletm ordinates 
ill terflls of± 0 

Z=± 0·745 

Z=± 1·00 

Z=± 1·96 

Z=±2·0 

Z=±2·58 

Z.=,±,lO 

Area under the curve 

50% =0·50 

68-26% = 0·6826 

95% =0·95 

95·44 % = 0·9~44 

,.99%::;0·99 

99 .. 7.3% = 0·9973, 
(xii) If X and' Yare independent standard nonmil variates, then it can be 

easily proved that U = X + Y and Y r X -, Y ~re Jndepeodently distributed, 
U -N (0, 2) and V -N !Q, 2>'~ 

We state (without proof) tbe converse of this result which is due to D. 
Bernstein. . 

Ber~tein's Theorem. If X and ~Y are independent an4 identically dis­
tributed random variables with finite varail\ce and-if U = X + Y and V = X - Y are 
independent, then all r_v.'s X, Y; U and V are nonnalIy distributed. 

(xiii) We st~te below another result which characterises the nonnal dis­
tribution. 

If XI, X2, ... , Xn are i.i.d. r.v.'s with finite variance, then the common 
distribution is nonnal if and only if : 

n n 

pr L Xi and L (Xi - X. ~2 
i= I i= I 

.ire independent. [For 'If part', see Theorem 13.5] 
In the following sequences we shall establish some of these properties. 
lU·3. Mode of ,Normal Distribution. Mode is the value'of x for which 

f(x) is maximum, i.e., mode i's the solutiQp o~ 
f' (x) \ = 0 and f" (x) < 0 

For nonnal distribution with mean J.l and standard deviation cr', 
, 1 ~ 

,. Jogf(x)'=c": ~(x-J.li, 
I 20-

where c = log (I 1...ffTt 0) , is a constant. 
Differentiating w.r.t. -,", we get 

1 1 ... I, 1 
f(x) . f' (x) = -'cr (x - J.l) ~. f' (x).= - cr ,(x. - J.l)!'(x) 
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and f" (x) =--\ [ L/(x)4- (x-j1)f' (X)] =,-.1(~) [1'- (X-pi], 
o 0 0 •• (8'6) 

Now f' (x) '* 0 => x -I-' - 0 i.e., x - I-' 
At the point x. - 1-', we have fio~ (8-6) 

f" (x) -- 12 [f(x)J -- ~. -~2 <0 cr .e-I' cr Oy.l.~ 

Hence X" 1-', is the mode of the normal distribution. 
8·2·4. Median of Normal Distribution. IfM is the median ofthe norma) 

distribution, we have . ~ 

M '.' 1 { . '1 ',!I." .; 1 f /(x) dx - '2 => 0 '12lt f exp { - (x -:I-')~/2.cl;} dx'''-'2 
-co _CD " 

.. From (8·7), we'get 
M· 

!+ _~ f eXp {-(x-I-')"2/'i.ci}dx .. ! 
2 ov2lt 2 

I' 

M, .' 

oJ~lt. { exp {-(x.-1-')2h~Jdx ~o => I-'-M 

Hence for the normal distribu,tion, Mean = Median., 
Remark. From § 8·2·3 and § ~8'2l4, we find that for the normid distribu­

tion mean, median and mode coindde. Hence the distribution is symmetrical. 
8·2·5. M~G.F. of Normail Distribution •. The m.g.f. (abOut origin) is f?iven 

by 
CD CD 

Mx (t) - f i.e / (x) dx ~ o,,~ It J e~ expo { - (x -1-')2/2 0 2 } dx 
-CD _CD 

[ X-I-'] . z~--

o .. 
- e. ... , ,,; It f exp { .:.-t (~-2toz)'} dz-=- (-

_CD 
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Hence 
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'" 
1'1' .1' J . [ I I ( )2 2 2/] (j . .. e '..f2ji ·exp -2: z-o t -0 I z 

_00 

00, 
1 1 1 

.. e'" 1 +I 0 12 X -- J exp {_.!. (z _ (] t)2 } dz 
";2 1( "2'"'' 

-00 

. . 1 1 

Mx (t) .. eI"'+ 1'0 12 
.' I 

, , .. 
Remark. M.G.F. of Standard, Norm'al Variate. 

dard nonnal variate is given by 

... (8'8) 

If X -N (fJ.' ( 2) ,tJlenslan-

Z = (X - fJ)/o 

Now Mz (t) = e-I'llo Mx (t/d) .. exp (oLfJ t/o>: eJ.(p' ~t -+ ~2 • ~ (
' 2 2 ) 

= exp (t2/2) \ ... (8'8 a) 
8·2·6. Cumulant Generating Furiction (c.g.f.) o.fNormal Distribution. 

The c.g.f. of nonnal distribution i~ given by 
11 r02 

Kx(t) = logeMx (t) .·Ioge (#,+,,0;12 )".-'!JI +.;~ 
2 

Mean = Kl .. Coefficient of tin Kx (t) .. I' 
2 

Variance .. K2 = Coefficient o( ~ ! in K.r (t) .. 0 2 

, , 

and K, - Coefficient of l, in Kx (t) .. 0 ; r - 3, 4 ... r. 

Thus 

Hen~ 

I 
... (8,9) 

8·~·7. MomentsofN~)I:maIDistribut\C!q. Od~ order m.om~nts about 
mean are given by 

00 

- .. 
GO 

1 f 211+ 1 [ 2 • 2} 
• 042'1(' (x - I'~' exp, - (~- 1') ~2 0 dx 

-GO 

00 

1'211+ 1 = .,;; 1( J, (0 z)2II+ t exp (:...;/21 dz 
-tIO 
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.dl"+ I ooJ = 'T21t z2n + I 'exp (- i /2) dz = 0, ... (8·10) 

2 

since the integrand z2n+ I e- z /2 is an odd function· of z. 
Even order moments about mean are given by 

00 

~2" = J (x - ~)2n f(x) dx 
00 

= ~~ n. J (0 z)2n exp (- in) dz 

dl"OO 
=::n:it J -i" exp (- z~ 12)'dz 

-00 

(since integnnd is an even function of z) 

2 a- " _/ dl Z -.2n
OO [2 ] ~2n ="T21t ! .(21) e T2i 2" = 1 

fn 2n 00 I 
2.0 J -I (II+-l -I d =~ e t 2 t 

7t 0 

2" a211 
111/1 = ----r--- . [(11 +~) 

-. V7t " 

Changing 11 to (11 - I), we get 
2/1- I 0211- 2 

1121,-2 =' ~ [(11-*) 7t • 

112 2 '[(II + *) 2 
.. _n_=20. r( ;)=2a (1I-1)[···[(r)=(r-I)[(r-I)] 

112/1 - 2 II ··2 

~ 1l2n = a2 (211 - l) 112n - 2 ... (8·11) 
which gives the recurrellce relation· for the mo~ents of-normal distribution·. 

From (8·11), we have . 

11m = [ (211 - I) a 2 l [. (2n - 3) a2 11l2n _ '" 
= [ ( 211 - l) dl1 [ 211 - 3) dl] [ (211 - 5) a21112n - 6 . . . . . . 
= [(2n- i) d-] [(211-'3) d-) [(211 _oS) d-) ... (3 ( 2) (I ( 2) .110 

= 1.3.5 ... (211 - 1) 02n ... (8·12) 
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From (8 10) and (8·12) we conclude that for the 1I0r/ll(/1 distriblltioll aff odd 
order moments abollt meall vallis" l/lld ~"e evell order moments abollt meall are 
gil'ell by (8·12). 

Aliter. The above result can also !:?~ obt.lined quite conve[li~ntly as follows; 
The m.g.f. (about mean) i;i given by . 

Er/(X-~) J=e- 1I1 E(e'X)=e- II' Mx(t) 

where Mx (t) is the m.g.f. (about origin). 
, , , , 

. -"I "I+(n-/} (0-/2 :. m:gJ. (about mean) = e .. e" = e 

[ 2 2 (r. 0 2/2)2 (p aZ/2l (p 0 2/2)" ] = 1+«( 0/2)+ 2' + 3' +.,,+ ,+ ...... (8'13) 
. . II . 

Thecoefficientof4 in (8,13) gives).1r; tlTe hh moment about mean. Since 
r. 

there is no tenn with odd powers of t in (8,13), all moments of odd order about 
mean vanish. 

!.-e., 

and 

~2n+I=O;n=O, 1,2, ... 

).12n == Coefficient of ~ in (8.13) = aZ" x (2n) ! 
(2n) ! 2" n ! 

= aZ" . [ 2n'(211 - I )(2n ...., 2)(2n - 3) ... 5. 4. 3. 2. LJ 
2" n! 

= ~ [ L.3.5 ... (211 - I") I [2.4.6 ... (2n - 2) . 2n J 
2".n! ' 

= ~ [1.3.5 ... (2n - I) r2" [ 1.2.3 ... nJ 
2" . n! 

= 1.3.5 ... (2n - I) ~ 
Remark. In particular, we have from (8·10) and (8·12) , 

).13 = 0 and III = I . <i' ,J.4 = I· 3 0-4 

lit Il4 30-4 
Hence PI =9-=0 and P2=2"=-4-=3, 

).12 III 0 

the results which have already been obtained in (8·9) . 
. 8·2·8. A linear' combination of independent normal variates is also a 

normal variate. Let Xi, (i = I, 2, ... , n>. be II independent nonnal variates with 
mean).1i and variance cif respe~tively. theil ~ 

Mxj·(t) =exp l).1i t:+ (t2 cif/2) 1 ... (8·\4) 

" The m.g.f. of their linear combination 1: aj Xj, where ai, a2, ... , a" are con-
i= I 

stants, is gi ven by 
Ml: a;Xi,(t) = Ma, X, + a2X2 + .. T a;,Xn (I) 
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- ,Mill Xl (I) • M II2 X2 (I) .•. M II"X" (I) 

('.' Xi'S are independent) 

- MXl (a1~) • Mx2 (a2 I) '" Mx. (a" I) .•• (8'15) 

['.' Mex (I) .. Mx (el» 

From (8'14), w~'have 
"2 2 2 • 

MXI (ai I) • e"a;f.,-a; (Jln 

:. (8'15), gives 
222 222, 222 

M Ia;XI (t) - [ tt'lill I., "l al/2 X i!'2 1121.., "I a i/2 X ••• x ella "" I., "" a;.t2 ) 
I 

-exp[L~l ai~i)l+rL~~ arat)/2} 
" whicb is tbe m.g.f. of a nonnal variate with mean 1: ai wand variance 

i-1. 

" I a1-01. Hence by uniqueness theorem of m.g.f., 

1: aiX - N 1: ai!Ai, 1:, a,1 c:fi • II [ II " ] 

i~l ;-1 ~.l ' • •. (8'15 a) 

-Remarks 1. If we take al - a2--1, a3. a4 - •.. pO, then 

If we take al -1, a2 - -1"a3.- a4 • ••. - 0, then 

XI-X2 -N(111-112,ai+~) 
Thus we see that the sum as well as the difference. of two independent nonnal 

variates'is also a nonna} variate. This result provides a sbaIp conmst to the Poisson 
distribution, in wbich case tbough the sum of two independent Poisson variates is 
a Poisson variate, the difference is not a Poisson vanate. 

Z. If we take 

al - a2 - .•• - a" • 1, then we get ... (8'15 b) 

i.e., tbe sum of independent DOnnal vanates is also a nonnal' variate, wbich 
establishes tbe additive property of tbe nonna} distribution. 

3. If Xi; i-I, 2, ... , n are identically and independently distributed as 

N (11, 0 2) and ifwe take al - a2"'- ...• a" - lin, 

tben - 1: Xi - N - 1: 11, - 1: 0 t " {t" 1" 2} 
ni_l ni_l n2 i_l 
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" 1 . 
X -N(~,02/n), where X "'- 2: Xi 

n i-1 
=> 

This leads to the following important conclusion: 
If Xi, (i ... 1,2, ... , n), are identically and independently distributed normal 

variates with mean ~ and variance '02 , then their meanX is ,,\so N (~" 02/n) . 
8·2'9. Points of Inflexion of Nonnal Curve. At the point of inflexion of 

the normal curve, we should have 
f" (x) ... 0, and f' ' , (x) .. 0 

For normal-curve, we have from (8',6) 

f" (x) ... :-f(~) [1'" (x - r)2 ] 
00, 

f" (x) .. 0 => 1 (x -r)2 -0 
o 

=> x=~:t:o 

It can be easily verified that at the points x = ~:t: 0,[' , , (x) .. O. 
Hence the points of inflexion of the norjnal curve .a~ given by x ... ~ :t: 0 and 

f (x) = 0 ~ e- 1I2 i.e., they ar.e equi-distant (at a distance 0) from the mean. 

8·2'10. Mean Deviation from lIle Mean for Normal Distribution. 

M.D. (about mean)'. f I x!... ~ I f(x)'dX 
-OIl 

aD 

20' f -//2 -.flit. Izle dz, 
l"[ 0 

2 

since the integrand.1 z I e- z 12 is.an even function ofz. 

Since in [ 0, 00 ], I z I- z, we have 
OIl 

2 

M.D. (about mean) - "?:/l"[ of z e- Z /2 dz 
o 
OIl 
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"" 
= ¥2ht 0 I ~-: 10 
.. ..J2ht 0 

4 
= '50 (approx.) 

,8'29 

8·2·1t. ,Area' ProptrtY-(Nonrial Probability Integral). If X - N (J.l, 0 2), 

then the probability that random value of X will lie between X = J.l and X -= Xl is 
given by 

Put 

X. x. 
1 2 2 

P(J.l<X<Xl)=f·/(x)dx=--fe-(X-I')/(2a )dx 
0..r21i 

I' I' 

X-J.l . 
-. --Z,I.e.,X...,.J.l=oZ 

o 
XI-J.l 

WhenXFJ.l,Z=O and when X=Xl,Z=--"zl,(say). 
o z. z. 

1 f 2/2 .. P(J.l<X<Xl) .. ~P(O<Z<Zl)=..r21i' ~-z .dz=!IP(z)dz 
o 0 

where IP (z) = ~ e-//2, is the probability function oJ ~tandard nonnal variate. 

The definite integral f IP (z) dz is known as normal probability integral and 
o 

gives the area under standard nonnal curve between the ordinates at Z = 0 and 
Z .. Z!. These areas have been tabulated for different val\1~ of.zl, at intervals of 
0·01 [c.r.. Appendix, rable IV). 

X=,.,.,.2rs- X=p.+j"& 
Z='2 Z=3 

In particular, the probability that a random 'value of X lies in the interval 
(J.l-o, J.l + 0) is given by 

I'+a 

P(J.l-o<X<'J.l+o)-f f(x)dx 
I'-a 
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and 

Similarly 
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1 

P(-l<Z<l)- f cp(z)dz 
-1 

1 

'!' 2f cp(z)dz 
o 

- 2'x'0:3413~-0-6826 

2 

[ X-I'] z·--
10 

(By symmetry) 

(From· tables) ... (8'17) 

P (I' - 2 0 < X < I' + 20) - P (- 2 < Z < 2) • f cp (z) dz 
'-2 

2 

- 2 f cp (z) di •• 2 x 0'4772. 0-9544 ... (8,18) 
o 

3 

P(o -3'0 <X <:1' + 3 0) .P(-3 < Z < 3). f cp~z)dz 
-3 

3 

• 2 f cp (z) dz. 2)( 0·49865 - 0·9973 ... (8'19) 
o 

Thus the probability that a nonnal variate X lies outside the range I' 2: 3 (J 

is given by 
P( IX -1'1·>3 a) .P( IZI> 3) -1-P(-3 s'Z s 3)-0-()()27 
Thus in all probability, we should expect a nonnal variate to lie within the 

range I' 2: 3 0, though theoretically; it'may range from - 00 to 00. 

Remans. 1. The total area ·under normal probability curve is unity, i.e., 
... lD 

f !(x)dx-f cp(z)dz-l 
-0' _CD 

Z. Since in the normal probability tables, we are given the areas under 
standard normal curve, i.n numerical problems we shall. deal with the standard 
nonnal variate ~ ~ther than the variable X i!Self. 

3. If we want to find area under normal curve, we wilL somehow or other 
try to convert the given area to the form P (0 < ~ < Zl), since the areas have been 
given in this form in the tabJe~. 

8·Z·U. Error Function. If X -N (0,02) , then 

!(x) __ 1_e,-ina2 -00 <x < 00 

(J.fi:it ' . 

Ifwetakeh2 .A· then !(x).~e-/,zi 
) 20r vn 
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The probability that a random value of the variate lies in the range ± x is 

given by 

:x ~ 

J h J _1,2,2 
p= f(x)dx=-:r; e . dx 

Taking , 
'" (y) = 1;; J e-/ d,y, (*) may' be re-written as 

o 
x • 

2 J hI I 
P = '" (Ju) = Tn e- x (hdx) 

'0 

... (*) 

... (**) 

The function", (}') , known as· the error function,. is'offundamental impor­
tance in the theory .of errors ill Astronomy. 

8·2·3. Importance of Nor.mal Distribution. Nonnal distribution plays a 
very important role i~ statistical theory because of the following re~ons : 

(t) Most qfthe distri~u.tions occurring in practice, e.g., .~inomial. Poisson, 
Hypergeo~etric. distri~lltions. etc., can be app,ro?,imated by nonnal distribution. 
Moreover, many of the samplhlg distribu~ions. e.g., Student's 'I' , Snedecqr'sF, 
Chi-square distributi'ons, etc:, tend t6 ncnnaJity for large samples. 

(ii) Even if a variable is not nonnally distributed, it can sometimes be 
brought to nonnal fonn by simple transfonnation of variable. For example, if the 
distribution- of X is skewed, the distribution of...[X might come out to be nonnal 
[d. Variate 'fransfonnations at the endibf this Chapter]. 

(iii) 'If X - N (11,02), tHen 

P OJ. - 30 < X < J..l + 3 0) = 0·9973 
= P~3<Z<~=~99n 
= P (i Z r < 3) = 0·9973 
= P( !:zr > 3) =0·0027 
Thi~ property of the nonn!!1 distribution fonns the basis of entire Large 

Sa1T'D[e theory. 
(iv) Many 'of the distributions of sample statistic (e.g., the distributi'ons of 

sample mean, sainple variance, etc.) tend to nonnality for large samples and as such 
they can best be stud~ed wi'th the help of the nonital curves. 

(v) TJte entire theory of sD!all sample t~sts, viz., t, F, X? tests-etc.! is based 
on the fundamental assumption that the parent populations fr011l which the samples 
h<tve been drawn follow normal distribution. 

(vi) Theory of nonnal curves can be applied to the graduation of the curves 
which are not nonnal. 

(vii) Normal distribution fipds large applications in Statistical Quality Con­
trol in industry for setting control limits. 
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Thc following quotation duc to Lipman lightl) rc\cal, thc populality and 
importance of normal di~tnbuli(ln . ' 

"El '1' 1'.\ "lId.1 "eli('\'c'~ i" litc lall II/ e·/TOIl (lite /Ili/Illal (/1/\ "I. lite n· 
l'erilll(,lIlen IIC'C(l/I.\C litey liti"k il il CI /Il(/Iite/ll(/Ii< allitclI/C'III, lite lIIitlitC'lIll1li, iellll 

"e('({flle lite,\ IIIiIl/.. il is l:1'!,e/'illlelll(/1 j(/CI," 

W.J Youdcn (lIthe National Bureau 'Of Standard, tic,crihc, thc impOltancc 
of thc N(~rll1al <.Iistnbutlon artistically in thc following wonl, . 

THE NORMAL 
LAW OF ERRORS 

STANDS OUT IN THE 
EXPERIENCE OF MANKIND 

AS ONE OF THE BROADEST 
GENERALISATIONS OF NATURAL 

P.HILOSOPHY IT SERVES AS TH.E 
GUIDING INSTRUMENT IN RESEARCHES. 

IN THE PHYSICAL ANI:) SOCIAL' SCIENCES 
AND ~N MEDICINE, AGRICULTURE AND 

ENGINEERING: IT ·IS AN INDISPENSABLE TOOL FOR 
THE ANALYSIS AND THE INTERPRETATioN OF THE 

BASicDATA OBT AINED13Y OBSERV A T,lON AND EXI?ERt~1ENT. 
The above presentation, strik'irlgly enough, ,gi}'es the sbape of the normal 

probability curve. 
8·214. fitting of Normal Distribution. In q~~'er to fit normal di.)jtribu· 

tion to the given data we .first calculate the mean ~. (say), and .sta.ndar<.l devia­
tion cr, (say), from the given data. Thc::n the normal curve fitled to the given data I~ 
given by 

I , , 
f(x) == cr ~2 1t exp , - (I' -Ilt 12 cr-·., - 00 < x < 00 

To calculate the expect$!d normal frequencie~ we tirst find thc <;tandalJ 
normal variates corresponding to the 'Iower limits' of e,ich of the class intervals. 

i.e., we compute 2; == x/ ,- ~ , wher'e.~,' is the rower limit df'the, ith d~IS~ intcrval 
cr 

Then the areas, under the normal curve ;0 the leti of t~l,!.ordinat~, at;, ==';" ~a), 
<p (Zi) are computed from the wl-Jles. FlIlally, the area~ tor the .<;uccesslvc c1;IS~ 
iiltervals are obtained by subtractIOn. \'i;: .. <p (z( + J).., <p (::,). (i == 1,2 .. ,J and.llll 
multiplying these areas by N, w~ get the expected normallrequenl:ies, 

Example 8·10. Ob;aill Ille equal;,,,, of Ilu! mirlllal cun''£' II/(/I/l/ay 'be Jllled 
to the fol/oll'il/g data: 

Class. 

Frequel/cy. 

fi0-65 65~70 70-75 75-):\0 H(h-~5 ·):\5-<)()· l)(J-;.-l)) ,<))-100 

3 21 150 335 326 135 
Also obtail/ Ille expecled I/or/llal./i·eqllel/{;iel 
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Solution. For the gi\en data. \\c ha\'t~ 
N == I ()(JO. j..I ::: 7'0 '045 and a::::) 545 

Hence thc equation of the normal cun e fitted to the gin::n th)ta I~ 

'.-., I()OO "J '("'_79'945)2 1 
!(.,)- r;=; --,,-c.:xPl-' --4- J ,_ 1t X) ) .. ) -)) ) 

Thcorellcal normal frequencies can be obtained as follows, 

'-"'ne/ 
class r , , I,,~,\ 

Belo\ " 
5 
0 
5 
0 
5 
0 
5 

It! 

60 
60-6 
65-7 
70-7 
75··8 
80-·8 
85-9 
9,0-9 
95-100 
10001' 
.o-.;er 

TOlu I 

h(llilldl) 

(X') 

_ 00 

60 
65 
70 
75 
80 
85 
90 
95 
100 

I 
_...1..-

-. 
4<:) alp (z) 

z=~ 1 J --~/) 
= \jJ~ + I - \jJ: 

a = :r:r;; (1" - l/:' 
_It 

_ 00 
~ 

. 
-00 0 0000112 

- 3 663 {)()001l2 0002914 I 
-2745 0003026 0031044 
-1,826 .. 0034070 0147870 

-,0908 0181940 0322050 
0010 0503990 0319300 
0928 0823290 0144072 
1487 0967362 0029792 
2,675 0997154 0002733 
3683 0999887 

--
Exp.:Ch:tI 
frequency 
NA\jJ(:.) 

012 :: 0 
2914 :: 3 

31044 :: 31 
147870 :: 148 
322050 :: 322 
319300 :: 319 
144072 :: 144 
29792 :: 30 
2733 =. 3 

1000 

Example 8·11. For a certain normal distribution, the first mamelll about 
/0 is 40 alld the fourth m()ment about 50 is 48. What is the arithmetic mean and 
stal/dard deviation of the distributioll .;; • 

[Delhi Univ. B.Sc. (Hons. Subs.), 1987; Allahabad Univ. B.Sc. 1990) 
Solution. We know that if Ill' is the first. mQ.ment about the point X = A, 

then arithmetk mean is given by: . . I . 

Mean == ff+ Ill' • 
We are given 
Ill' (about the point X::: 10)::: 40 => Mean = 10 + 40 = 50 
Also we are given 
114' (about the point :<. = 50) ;:: 48, I.e., 

But for a nonnal distri.bution with.standard deviation a, 
114::: 3 a4 => 3 a4 = 48 i.e., a::: 2 

('.' Mean - 50) 

Example 8·12. X is normally distributed and the lIIeli'n'ajK i~"/2 and S.D. 
is 4. (a) Find out the probability ofthefol/owi'ng: 

(i). X ~ 20, (ii) ~::; 20~ <,lod, (iii) 0::; X ~ U 
(b) Find x' , whell P (X > x')::: 0·24. 
(c) Fil/d xo alld :d, whell P (!O' < X < x/)::: (J 50' illld p(X > xl') = a 25 
Solution. «(I) W.e 'have 11 = 12, a = 4, i.e., X -N (12, 16), 
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(i) P (X ~ 20) = ? 

When X = 20, Z = 20 - 12 = 2 
4 

.. P (X ~ 20) = P (Z ~ 2) = 0·5 - P (0 S; Z S; 2) = 0·5 - 0-4772 = 0·0228 
(U) P (X S; 20) = I - P (X ~ 20) 

= 1 - 0-0228 - 0·9772 

(iii) P (0 S; X S; 12) = P (- 3 S; Z S; 0) 

= p (0 S; Z S; 3) = 0·49865 
x' -12 

(b) WhenX=x',Z=-4-=ZI (say) 

(-.' Total probability = I) 

(Z=X~12) 
(From symmetry) 

then, we are gi ven 
J'(X>x')=0·24 ~ P(Z>ZI) =0·24, i.e., P(O<Z<z\)=0·26 

X= 14 Z=7., 
Z=O 

• . From normal tables, 
Zl - 0·71 (approx,) 

xl' -12 .. . . 
Hence -4-=0.71 ~ x{=12+4xO·71=14·84 

(c) We.are given 
P (xo' < X <;X\') = 0·50 and P (X >x{) = 0·25 ... (*F 
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From (*), ob\'iou~ly the p\lintsxo' and XI' an: located as shown in the figure. 

X=X~ X=p. 
Z =-Z, Z=O 

XI' -12 
Z=--4-=:1 (say) 

and when X =xo' • 

WI! have 

.1:0' -12 
Z=--4-=-ZI 

(It is obvious from the figure) 

and 

Hence 

P(Z>:I)=0·25 :=:} P(O<Z<zl)==0·25 
:1 = 0·67 (From tables) 

.' P 
.\1 - - =0.67 :=:} XI'= 12+4x067= 14·68 

4 
'. P 

.\"0 - - =-().67 :=:). X()'= 12-4xO.67=9.32 4 . 

Example 8·13. X is (/ /loll/wI \'{Idate lI'itil mea/l 30 a/ld S. o. 5. Fil!d tile 

flmbabilities tl/llt 

(i) 26~X~40, (ii) X~45. and (iii) I X-30J>5. 
Solution. Here ~ = 30 and (J = 5. 

(I) When X = 26. Z=~-:~ :: 26 -= 30 =-0·8 
(J ;) 
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and when x = 40. Z = 40; 30 = 2 

P (26 :5 X :5 40) = P (- 0·8 :5 Z:5 2.) 
= P (- (Hl :5 Z:5 0) + P (0 :5 Z :5 2) 
= P (- 0·8:5 Z:5 0) + 0·4772 (From tables) 

(From symmetry) = P (0:5 Z:5 0·8) + 0·4772 
=0·2881 +0-4772 =0·7653 

P(X~ 45) =? 

z=o X=45 
Z=3 

When X=45, Z= 45 - 30 =3 
5 

(iii) 

P (X ~ 45) = P (Z ~ 3) = 0·5 - P (0:5 Z:5 3) 
= 0·5 - 0·49865 = 0·001 35 

P(IX-301:55)=P(25:5X:535)=P(-1 :5Z:5I) 
= 2 P (0 :5 Z:5 I) = 2 x 0·3413 = 0·6826 

P ( I X - 30 I > 5)= I - P ( I X - 30 I :5 5) 
= I - 0·6826 = 0·3 I74 

Example 8·14. The mean yield for one-acre p~ot is 662 kilos with a s.d. 
32 kilos. Assuming normal disiribution, how many. one-acre plots in. {l batch of 
1.000 plots would you expect to have yield (i) over 700 kilos, (ii) below 650 kilos, 
lind (iii) what is the lowest yield of the best 100 plots? 

Solution. If the r. v . X denotes the yield (i n kilos) for one-acre plot, then we 
are given that X - N (J.1., cr), where J.1. = 662 and 0" = 32. 

(i) The probability that a plot has a yield over 700 kjlos is given by 
X:.. 662 

P (X> 700) = P (Z> 1·19) ; Z = 32 

=0·5-P(0:5Z:5I··19) 
= (j·5 - 0·3830 
=0·1170 

Hence ina batch of 1.000 plots, the expected number of plots with yield over 
7(X) ki los is 1.000 x O· 117 = I 17 . 

(ii) Required number of plots with yield below 650 kilos is given by 
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1000 x P(X < 650) -1000 x P(Z < -0·38) [ Z - 650 - 6621 
32 

- 1000 x P (Z > 0'38) (By symmetry 
- 1000 x [0·5 -P(O s Z s 0'38») 
- 1000 x [O~5 -0'1480) -1000 x 0·352 
.352 . 

(iiI) The lowest yield, say, Xl of the best 100 plots is given by 
100 

P(X>Xl) - 1000 - 0-1 

When 
XI-I' xl-662 

X -Xl, Z - a -. 32 - Zl (say) 

such tbat P (Z > Zl) - 0-1 => P (0 s Z S Zl) • 0'4. 

••• (*) 

~ ,zl - 1·28 (approx.)' [From Norma).Probability Tables] 
Substituting in (*), we get 

Xl- 662 + 32.z - 662 +32x 1·28 
- 662 + 40·96 - 702·96 

Hence the best 100 plots have yield over 702·96 kilos. 
Example S·t5. There are six hundred Economics students in the po~t­

graduate classes of a u,niversity, and the probability for any student to need a copy 
of a particu14r book from the university library on any clay is 0·05. How many 
copies of the book should 'be kept in the university library so that the probability 
may be greater than 0·90 that none of the students needing a copy from the library 
has to come back disappointed? (Use normal approximation to the binomial 
distribution). [Delhi Univ. M.A. (&0.), t'S'J 

Solution. We are give<n : 
n - 6OO,p - OO{)5, J,l- np - 600 x 0·05 .30 
~ D npq - 600 x OO{)5 x 0·95 - 28·5 => o-.;zs:s - 5·3 

We want Xl such that 
P(X <Xl) > 0·90 

P(Z <Zl) > 0·90 [ XI-30] =:0- Zl---
5·3 

=:0- P (0 < Z < Zl) > 0·40 
=:0- Zl> 1:28 [From Normal Probabi1ity Tables] 

=:0-
xl-30 128 --> • 

5·3 
=> Xl> 30 + 5'3 x 1·28 

=:0- Xl > 30 + 6·784 =:0- Xl> 36·784-:. 37 

Hence the u~yersity ;Jibrary .should. keep ~t least 37 copies of the book. 
Example 8·16. The marks obtained by a number of students for a certain 

subject are assumed to be approximately normally distributed with mean value 65 
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and with a s~andard deviation of 5. If 3 students are talcen at random from this set 
what is the probability that exactly 2 of them will have marks over 70 ? 

Solution. Let the r.v. X denote the marks obtained by the given set of 
students in the given subject. Then we are given that X. = N ('" 0 2) where 
I' = 65 and 0 - 5 • 1)e probability 'p' that a randomly selected student from the 
given set gets marks over 70 is given by 

When 

p-P(X> 70) 

X-70 Z=X-I' _ 70-65 ~1. 
, 0 5 

p-P(X>70)-P(~> 1) 
- 0·5 -P(O s;Z s; 1) 
... 0·5 -0·3413 ... 0·1587 [From Normal probability tables] 

Since this probability is same for each student of the set, the required 
probability that '-out of 3 students selected at random from the set, exactly 2 will 
have marks over 70, is given by the binomial probability law:. 

3C2i. (1-p) .. 3 x (0,1587)2 x (0'8413) - 0·06357 
Example 8'17. (a) If 10gIO X is normally distributed with meant 4 and 

variance 4, find the probability of 
1'~OZ <% < 8~1~0Q00 

(Given logip 1202 - 3{)8, 10gIO 8318 - 3·92). 
(Q) loglo X is normally distributed with mean 7 and variance 3, 10glOY is 

normally distributed with mean 3 and v{lrian~e unity. If the distr;putio"s of X and 
'yare independent, find the probability of 1'202 < <-r/y) < 831800Q0. 

(Given 10glf) (1202) .. 3{)8, 10gIO (8318) .. 3·92 J .. 
Solution. (a) Since logX is a non-decreasing function of X, we have 
P (1'202 < X < 83180000) ... P (logl0 1·202 < log~o X < 10g1O 83180000) 

~ P (0'08 < IOg10X < 7·92) 
.. P (0·08 < Y < 7'92) 

where Y = 10glOX - N'(4, 4) (given). 

When y .. 0{)8 Z .. 0·08 - 4 = - 1·96 , 2 

and when . Y = 7-92, Z .. 7·92 -4 -1.96 
2 

.. Required ~robability ~ P (0·08 < Y < 7'92) 
.. P(-l'96 <Z < 1'96) - 2P(0 <Z < 1'96) 

.. 2 x 0·4750 - 0·9S00 
(b) P[ 1·202 <(X/y) <83180000 ] 

(By symmetry) 

.. P [.log1O 1·202 < log10 (Xly) < log10 83180000 ] 
,= (0{)8 -< U < 7-92) 

where U - IOg10 (XIY) -log1OX -IOgl0 Y 
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/:S"ihce IOg10X - N (7,3) and logto Y - N (3,1), are independent, 

10glOX- log10 Y - N (7 - 3, 3 + 1) (c.f. Remark 1, § S'2'S) 

~ U - (Jog10X - logto 1') - N (4,4) 

:. Required probability is given by 
p"-P(O-oS < U < 7'92), where U-N(4, 4) 

- 0·95 [See part (a)J 
Example 8·18. Two independent random variates X and Yare both 

normally distributed with means 1 and 2 and standard deviJJtioioS 3 and 4 respec­
tively. If Z = X - Y, write the probability density function oJ Z. Also state the 
",ediJln, s.d. and mean of the distribution ef z. Find Prob. { Z + 1 sO} . 

Solution. Since X - N (1, 9) ~nd Y -N (2, 16) are independent, Z - Y - Y -
N(1-2,9 + 16), i.e., Z -X - Y - N (-1,25). Hence p.d.f; ofZ is 

, [2 ] . P(Z)-5"~1texp _~(Z~l) . ;-oo<'z<·oo. 

For the distribution of Z , 
Median - Mean - - 1 and s.d. -..ns ~ ~ 

P (Z + 1 s 0) - P (Z s - 1) 

-~(U sO); [ U _ z; 1 -N (0, 1) ] 

-O·~ 
Example 8:19_ Prove that for the normal distribl#;On, the quartilt: 

deviotion, the mean deviation' and standard deviJJtion are approximately 
10: 12 : 15. [Dibrugarb Univ. B.Se. 1993] 

Solution. l..etX be a N (I' , ( 2). If Q1 and Q3 a~ the first andtbird quar-
tiles respectively, then by definition .-

P (X <Q1) - 0'25 and P (X > Q3) .. 0·25 
The points Ql' and Q3 'are' located as shoWn in the figure given below. , . 
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Q3-Il 
X - Q3, Z - --- Zl, (say), a 

and when X. Ql, Z - Ql; Il - - Zl (This is obvious from the figure) 

by 

Subtracting, we have 

Q3-Ql 2z 
---::'-- 1 

a 
The quartile deviation is given by 

Q3-Ql 
Q.D. - 2 ca,zl 

From the figure, obviously, we have 
P (0 < Z < Zl) - 0·25 => Zl - 0·67 (appro",) (From No\mal Tables) 
.. Q.D. -azl-0·67a-!a· 

3 

For normal distribution mean deviation about mean (c.f. § 8·2·10) is given 

4 
M.D. - "2/n. a - Sa 

Hence 0.0. : M.D. : S.D. : : t a : ~ a : a :: t : j : 1 : : 10 : 12: 15 

Example 8·10 (a). In a distribution exactly nor,,",~ 7% of the items are 
under 35 and 89% are under 63. What are the mean and stando.rd deviation of the 
distribution? • [Kerala Univ. B.Se., May 1991] 

(b) Of a large group of men, 5% are under 60 inches ill height and 40% are 
between 60 and 65 inches. Assuming a normal distribution, {wi the mean height 
and standard deviation. [Nagput Univ. B.se., 199iJ' 

Sol,ulioo. If X - N("" ~), then we are given -

P ()( < 63) - 0·89 => P ()( > 63) - 0·1-1 and P(){ <35) - 0·07 
The points X - 63 and X - 35 are located as shown in Fig. (,) below. 
Since the value X - ~5 is located to the teft of the ordinate at Jt "" "" the 

corresponding value of Z is negative. 

WbenX - 35, Z _ 35 - Il _ - Zl, (say), 
a 
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ami when X = 63. Z = 63;!l = :1. (say). 

Thus we have. as is obvious from tigures (i) and (ii) 
p.(O <~ < n) = 0·39 and P(O< Z <:d =043 

Hence from normal tables. we have 
Z2 = 1·23 and'':1 =r 1·48 

63-;j.l= 1.23 and 35-g=_148 
cr . cr 

Subtracting. we get 

28=2.71 => cr=~= 10.33 
cr 2·71 

J.1 = 3,5 + 1·48 x 10·33 = 35 + 15·3 = 50-3 
(b) We are given 

p (X < 60) = 0·05 and P (60 < X < 65) ~ 0.40 
i.e.. P (X < 65) = 0·45 

841' 

Since the total area to the left of the ordinate at X =!l is 0·5. both the,points 
X = 60 and X = 65 are located to the left of X = Il and consequently the cor­
responding values of Z are negative. 

z=-zz z=-z, 
Let X - N (Il. a2) . 

WhenX=65. 65-!l 
Z= I =-ZI (say). 

cr 
60-1J. 

Z = = - Z2 (say). 
cr 

and when X = 60. 

0-05 
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Thus wc havc 
P (0 < Z < :!) = 0-45 and P (0 < Z < :1) = 0 05 

:! = 1·645 and :'1 = 0·13 (approx.) (From NormaIT,lblcs) 
60 - 11 • - 65 - 11 Hell\:e =- 1·6'l) ... t*): and =-0·13 ... (**) 

cr ' cr 

D' '.1' • 60 -11 1·645 J 9825 6" 4" 1\'lu11l<l we <let = -- ~ "= --- = .J' , 
e' e 65 - 11 0·13 ,... 303 ... 

60 - 65-42 
:. FrOli)(*),wehave cr= -1.645 =3·19 

Remarks. If we sl1bstitute the value of 11 in (**). we get cr = 3· 23 which 
is only an approximate value since the value of :'1 = 0·13. seen from the table. is 
not exact but only approximate. On the other hand. the value of::2 = I ·M5 is exact 
and hence use of (*) for estimating cr gives better approximation, 

Example 8·21 /ftlle skulls ar.e classified as A. B alld C accordillg as the 
lellgtll-breadth index is ullder 75, betweell 75 alld SO, or over SO,filld approximate. 
ly (assuming that the distribution is 1I0rmal) the meall alld stat/dard del'ia(ion of a 
series it! which A are 58%, B are 380ft? alld Care 4%, being givell that if , 

I J 2 /(t) =1[; exp (-x /2) dx. 
1t 0 

then /(0·20) = O·OR and /( 1·75) = 0-46 
[Delhi Univ. B:Sc., 1989; Burdwan Univ. B.Sc., 1990) 

4iolution. Let the. length-breadth inoex. ~e denoted by the variable X, then 
we are given 

P (X < 75) = 0·58 and P (X> 80) = 0·04 ... (1) 
. Since P (X < 75) represents the. total area to the left of the ordinate at the 

puint X = 75 and P (X> 80) .represents the total area to the ri!~ht of the ordinate 
at the point X = 80. it is obvious from (I) that tht' points X = " j and X = 80 are 
located at the positions shown in the figure below. 
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, . 
I J' . Now \J2it exp (- x- '2) dx represent~ the area under standard normal 

o 
curve between the ordinates at Z = 0 and Z = I. Z being (/ N (0. I) variate. , 

Hence 
and 

f(t) = 'J~ 1[ J exp (-x~l2) dx = P(O~ Z < I) 
o 

lc0· 20) ;;:: P (0 <, Z < 0·20) = 0·08 
f(1 ·75) = P (0 < Z < 1·75) = 0-46 

... (2) 

Let 11 and (J be the mean and standard deviation of the distributicn. Then 
X -N(Il, d). 

When X=75, 
75 -11 

Z = = ZI (say), 
(J • 

80 -11 Z= . =Z2 (say). 
(J 

and when X = 80, 

Thus from the figure, it is obvious that 
P (X < 75) = 0·58 ~ P (0 < Z < zl)·=0·08 

. . Using (2), we have 

75 -11 
ZI = =0·20 

(J 

. Also P (X :.. 80) = 0·04 ~ P (0 < Z < Z2) = 0-46 
:. From (2), we get 

80 -11 
Z2= = 1·75 

(J 

Solving the equations (3) and.(4), we get 
11 = 74·4 (approx.) and (J = 3·2 (appro'x.) 

... (3) 

... (4) 

Example 8·22. In an ·examination it is laid down that a. st'udelll passes if 
he secures 30 per cent or more marks,. He is placed in the first, second or third 
division accordi1lg as he se~ures 60% or more mar~s, between 45% and 60% marks 
and mark.s between 30% and 45% respe,c!ively. He gets distinction in case he 
secures 80% or more marks. 't is noticed from the res~lt that 10% of the students 
failed in the examination, whereas 5% of them obtained distinction. Calculate the 
perce1ltage of stude1l!s placed in the second division. (Assume l~ormal distr:ibution 
of marks.) (Aligarh Upiv. B.Sc., 1991] 

Solution. Let the variable X denote the marks (out of iOO) in the examina­
tion and let X - N (11, cJ2). Then we are given 

P (X ,< 30) = 0·10 and P (X ~ 80) = 0·05" 

Thus fro~,the ·figure on next page, we have 
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WhenX=30, 

and when X = 80, 

30-1l Z= ,=-ZI (say), 
<1 

80-11 
Z = ----t:; = Z2 (say). 

<1 

and 
P (0 < Z < Z2) = 0·5 - 0·05 = 0·45 
P(O<Z<ZI)=P(-ZI <Z<O) 

= 0·50 - 0·10 = 0·40 
:. From normal tables, we get 

ZI = 1·28 and Z2= 1·64 

Hence 30-1l=_1.28 
<1 

11- 30 = 1.28 and 80- Il = 1.64 
<1 <1 

Adding, we get 

~ = 2·92 ~ <1= 2~~2 = 17·12 

.. 1l=30+ 1·28,x 17·12;=30+21·9136=51·9136= 52 

(By symmetry) 

The probability 'p' that a candidate is placed in the second diviswn is equal 
to the probability. that his score lies between 45 and 60, i.e., , 

p = P (45 < X < 60) = P (- 0·41 < Z < 0·47) 

= P (- 0·41 < Z < 0) + P (0 < Z < 0·47) 
= P (0 < Z < 0·41) + P (0 < Z < 0·47) 

[ X-52 ] 
Z= 17.12 

(By symmetry) 
= 0·1591 + 0·1808 = 0·3399 = 0·34 (approx.) 

Therefore, 34% candiates got second division in the examination. 
Example 8·23. The local authorities in a certain city instal ,10,000 electric 

lamps i1l the streets of the city. If these lamps have 011 ave rage life of I. OO(Y burning 
hours with a standard deviation of 200 hours. assuming normality, what number 
of lamps might be expected to fail (i) in tiiefirst 800 burning hours? (ii) between 
800 and 1.200 burning hours? After what periQd of burning haul'S would you expect 
that (a) 10% of the lamps wouldfail? (b) 10% of the lamps would be still burning? 
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[In a normal curve, the area· between the ordinates corresponding to 

! -X _ 0 and X -X _ 1 is 0·34134 and 80% of the area lies between the or-
o 0 

. X-X 
dinates corresponding to --- % 1·28 ]. o 

Solution. Ift~~ variabl~X denotes the life of a bulb in burning hours, then 
we are given that X - N (!" ~), where !,·~·1,000 and 0 - 200. 

(i) The probability 'p' that bullifails in.the first 800 burning hours is given 
by 

[ 
. _ 800 - 1000 ] p -P(X <800) -P(Z < -1) =P (Z> 1) Z 200 

- 0·5 -P(O <Z < 1) ... 0·5 -0·3413 - 0·1587 
Therefore out 0(10,000 bulbs, the numbe~ of bulbs which fail in the first 800 

hours is 

-~ 
(it) 

.10,000 X. 0·1~87 - .iSS7 
Required probability - P (800 <X < 1200) .. P(-1 < Z <1) 

- 2 P (0 < Z < 1) - 2 x 0·3413 - .. 0·6826 

Z =-1 X =y. Z=1 
Z:O , . 

H~~~ the expected number of blubswith life between 800 and 1,200 hours 
of burning life is: 10,000 x 0·6826 - 6826 

(a) Let 10% of the bulbs fail after Xl" hours 01 ourning life. Then-we have 
to find Xl such.that P (X < Xl) - 0·10 

. Xl :""1000 
WhenX"'XI, Z - 200 --zt{say). 

.• P.(Z<-'-zl)-O,1O => p·(Z>zl)-0·10 
=> ;1' (0 < Z < Zl) - 0·40 •.. (1) 
We are given that 
P (-1·28 <Z ,:,1·~) - 0 .. 80 => 2P(0 <Z < 1·28) - 0·80 
=> P"(O <,z < 1·28) - 0·40 ... (2) 
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Z"·Z, .. 

• '. From,(1) and'(2), we get 
zl-1·28 

Hence Xl - 1000 __ 1.28 => Xl _ 1000 - 256 _ 744 
200 

Thus after 744 hours ofbuming Ufe, 10% of the bluhs wi)) fail. 
(b) Let 10% of the b]uh<; be still burning after, (saY);~2 hours of burning 

life. Then we have • . 

i.e., 

X:}A 
l=O 

. \ ~ 

P (0 < Z < Z2) - 0·40 

0·10 

[ 
X2- 1OOO ] 

Z2- 200 

Z2~ 1,,28 , .~ [From (2)] 
x2-1000 •. ~ 

200 -1·28 => x2,·1000 + 256 -1256 -

Hence after 1256 hours ofbuming life, 10% of the bluh<; will be still burning. 

Example 8·14. Let X - N (~! c?) . If c? _ ~2, (~> (0)', express 

P (X < -~ IX <~) in terms of cumulative distribution.functionofN (0,1). 
[Delhi UDiv. B.sc. (Maths. HODS.) .,"; (Stat. Hons.) •• 993] 

( •• : ~ > 0) 
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_ p (Z < - 2) 
- P (Z<O) 

_ P (Z> 2) . 
- (1/2) , 

(Z=X~~=X~~) 

(By symmetry) 

= 2 [ I - P (Z ~ 2).] = 2 [ I - cI> (2) J 
where cI> (.) is the distribution function of standard normal variate. 

Example 8·25 Call X and - X have the same distribution? 
If so, when? J [Delhi Uni". B.A., (Spl. Course Statistics), 1989] 
Solution. Yes; X and - X can have the same distribution provided the 

p.dJ.j(x) of X is symmetric Ilb04t origin i.~., jff(-x~ = f(x) . 
For example, X and ...,. X have the same distribution if: 
(i) X - N (0, I) 

(ii) X has standard cauchy di~tribl!tio'l [c.f:_ § 8·9] 
1 I f(x)=-.---; -oo<x<oo 
1t (I + x2) 

(iii) X has standard Laplace distribution [c.f. § 8;7] 
p.cx)=te-IXI; -oo<x<oo. 

and so on. Obviously X and Y = - X are not ide'ltical. 
Remark. This example illustrates that if the r. v.' s. X and Yare identical, 

they have .t~e sarQe.distributions. However if X and Y h.ave the suo .Ie distribution, 
it does not imply tllat they are identical. 

Example 8·26. If X. Yare 'independem normal varia.es with means 6, 7 
and variances 9, 16 respectively, determi;le A such that 

P (2X + Y ~ A) = P (4X - 3Y~ 4 A) 
[Delhi Univ. B.Sc. (Stat. Hons.), 1988; B.Sc., 1987] 

Solution. Since X and Yare .independent, QY § 8·2·8 [c.f. equation 
(8·15a)], we have 

u= 2X + Y-N (2 x 6+ 7,4 x9 + 16), i.e., U- N(19, 52) 

V=4X.,..3Y-N (4x6-3x7, 16x9+9x 16), i.e., V-N(3,288) 

( A-19l P (2X + Y ~ A) = P (U ~ A) = P Z ~ & ,where Z - N (0, :) 

( 
41..- J P(4X-3Y~4A)=P(V~4A)=P Z~]"2""F ,whereZ-N(O, I) 

P(2X+Y~Iu)=pl(4X-3Y)~ 1..·1 

( 1..-19) [ 41..-3 J ~ P Z5 & =P Z~l21:r 

A-I _ 4A-3J 
=> ----:rs2 - - ~ . ' 
[Since P(Z~a)=P Z~b)' => a=-b, " 

and 

and 

Now 

because normal probability curve- is symmetric about Z = 0 ]. 
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Example 8·27. If X alld Yare illdepelldeflt normal variates possessing a 
common mean 11 such that 

P (2X+4Y.$ 10) + P (3X + Y$ 9) = I 
P (2X - 4 Y $ 6) + P (iY - 3X ~ 1) = I. 

determine the values of ~ and the ratio of the variances of X and Y. 
Solution. LetVar(X1)=c:n and Var(Y)=cr~ 
Since E (X) = E (Y) = J,l. (Given) and X and Yare -independent by § 8·2·8 

[c.f. equation (8·150)]. -He have 
2X + 4 Y - N (2).l + 4).l. 4crT + I ~). i.e., N (6).l. 4crr + 16~) 

3X + Y - N (3).l + 11. 9crT + cr~) •. i.e .• N (411.9 crT + (J~) 

2X - 4Y - N (2).l- 4).l, 4 crT + 16 ~), i.e., N (- 2J,l, 4 crt + 16 cr~) 

Y - 3X - N (11- 311. ~ + 9crt>, i.e., N (- 211. 9crT + cr~) 
Let us further write: 

4 crt + 16 cr~ = (:xl and 9 crt + cr~ :;: ~2 ... ( I) 
If Z denotes the Standard Normal Vari~~e, i.e, if Z - N (0, '1)'. we get 

P (2X + 4Y $ 10) + P (3X -+ Y $ 9) = 1 

p[ Z$ 1O~61l]+p,( Z$T )= I 

P[Z$:1O~6"1l =11_P( Z$9-jl411 )=p( z~9~p41l) 
10-611 = _ (9-4 11 ). 

ex P ... (2) 
(Since norma distrioutlon is symmetric about Z = 0). 

Similarly 
P (2X .... 4Y$6) +P.(Y -3X~ I) = I 

p[Z$~J+prz~l+~~I=1 
p(z<6+:~J=i:P(Z,~)=p(Z<I+:~1 

~_!.±l!! 
(l - P 

Solving (2) and (3). we get 
~._6+21J.:_1O-6f.l 
p -1 +?Il- 411-9 

... (3) 

... (4) 
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(6 + 211)(411- 9) = (10 - 611)(1 + 211) 
5112 - 211- ,16 = 0 (On simplification) 

2 ± "'4 + 320 2 ± 18 
).1= 10 -~ 

11=2 or -1·6 
Substituting 11 = 2 in (4), we get. > 

a. \0 
~=5=2, i.e., 

From (l), we get 

4::: 4 ai + L6 O'~ = 4 + 16 A. [Taking A. = 0'0'2221 ] 
90'T+0'~ 9+A. 

4(9+A.)=4+16A.:::> A.=32=~ 
, 12 3 

Again putting 11 = - }·6 in (4), we get 

(.!i )2 = a? = 4 + 16 A. A. = 1280 = 64 
II ~2 9 + A. ~ 1740 87 

Example 8·28. If two normal universes A and B have the same tbto"l 
frequency but the standard deviation of universe A is k times that of the universe 
B, show that maximumfrequenc)' of universe A is Ilk times that of universe B. 

Solution. Let N be the same totai frequency for e~ch of the two uni verses 
A and B. If 0' is the standard deviation of universe B, then the standard deviation 
of universe A is k 0'. Let).1.1 and 112 be the means of the universes A and B 
respectively. 

The frequency funqtion of universe A is given by 

and the frequency function of universe B is given 9Y 
.' 

fs <x: a O':z " exp I-(x - "'2):12 c1-} 

Since, for a nonnal distribution, the maximum frequency occurs at the point 
x = mean, we have 

[fA (x) JmiIX = Maximum frequency of universe A 

= [fA (x)] 
t= III 

[ N { 2 '2 .2l1 N = kO'~21t exp -(X-Ill) 12k 0' t=lIl= kO'-J21t 

Similarly 
[fB (x) ]mw< = L(B (x) h", liz 
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= [ o!h n exp : - (x ~ 112)212 0 2 

[ II (x) ["m I 
[/11 (x) [,,"" - k 

EXERCISE 8 (b) 

I. "If the Poisson and the Normal distributions arc limiting cases of 
Binomial distribution, then there must be a limiting relation between the Poisson 
and the Normal distributions." Investigate the relation. 

2. (a) Derive the mathematical form and properties of normal distribution 
Discuss the importance of normal distribution in Statistics. 

(b) Mention the chief characteristics of Normal distribution and Normal 
probability curve. [Delhi Univ. B.Sc. (Stat Hons.), 1989] 

3. (a) Explain, under what conditions and how the binomial distribution 
can be approximated to the normal distribution. 

(b) For a normal distribution with mean '11' and standard deviation o. 
show;that the mean deviation from the mean '11' is equal to 0 ...J(2/n). What will 
be the mean deviation from median? 

(c) The distribution of a variable X is given by the law: 

r I ( t _ I 00 ,\2 ] 
!(x)=constanrexp-l-z =-----5- J :.-oo<;x<oo 

Write dpwn the value of: 
(i) the constant. 
(ii) the mean. 
(iii) the median. 

(I') standard deviation, 
(\'i) the mean deviation. 
(~'il) the quartile deviation of 

the distribution. 
(i\') the mode, (Gujarat Uni\'. n.sc. April 197M) 

Ans. (i) 5 ~, (ii) 100, (iii) 100, (iv) lIlO, (v) 5 (vi) "(2In) x 5 _- 4, 

(viI) i x 5 .. 3·33 (approx .) , 

(d) Detinc Normal probabi lity distrihution. If the mean of a Normal popula-
tion is 11 and its variance 0 2• what are its (i) mode. (ii) Median. (iii) ~I and ~2 ? 

(e) For a normal distribution N (11. q2) : 

(i) Show that the mean. the median ar)d the mode coincide. 
(ii) Find the recurrence relation between 11211 and 11211- 2. 

(iii) State and prove additive. property of normal vuriates. 
(iv) Obtain the points of intlexion for the norm.,.1 distribution N (11. 0\ 
(v) Obtain mean deviation about mean. 

[Delhi Univ. B.Sc. (Stat. Hons.), 19881 
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(j) Show that any linear combination of" independent norlllal variates is 
also a normal variate. [Delhi Univ:B.Sc. (Stat. Hons.), 1989] 

(g) Show that for the normal curve: 
(i) The maximum occurs at the mean of the distribution, an~ 
(ii) the points of inflexion lie at a distance of ± (J from the mean, where (J 

is the standard deviation. [Delhi Univ. M.A. (Eco.), 1987] 
(h) Describe the steps involved'in titting a normal distribution to the giveR 

data and computing the expected frequencies. 
(i) Explain how the normal probability integra! 

~1 

.J <p (z) dz , 
o 

. is used in computing normal probabilities. • 

4. Write a note on the salient features of a nonna.J distlibution. N (~, (J2) 

denotes the normal distribution of each of the random variables XI, X2, X3, ... , Xn, 

where Il is the mean and (J2 the variance. Prove the following: 
(i) If X), X2, ... , Xn are independent, then XI + X2 + ... + Xn has the dis-

tribution N (n Il, n ~) . 
(ii) k X, where k is a constant has the distribution N(k~, k2 ~) • 
(iii) X + a, where a is a constant has the distribution N (~+ a, ~) 

(iv) In (i) if X = XI +X2+· .. +Xn then 
n 

rn (X - Il) has the distribution N (0, 1) . 
(J 

S. (a) Show that for a normal distribution with mean Il and variance ~ . 
the central mOl1)ents satisfy the relation 

1l2n = (2n - I) 1l2n - 2 ~ ; 1l2n + I = 0 
[Delhi Univ. B.Sc. (Stat. H~ns.), 1987] 

H h h (2 n) ! (I --2 n d . ences owt at 1l2n=--,- 2(Y) an 1l2n+I=0;n=I,2, ... 
n. 

[Delhi Univ. B.Sc. (Stat Hons.) 1985] 
(b) State the mathematical equation of a normal curve. Discuss its chief 

features. 
(c) Find the moment generating function of the normal distribution 

(m, (J\ and deduce that 

1l2l1+ 1= 0, 
1l2n= 1·3·5 ... (21l-1)~, 

where Iln denotes the 11th central moment. 

[Delhi Univ. B.Sc. (Stat. Hons.) 1990,' 821 
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(d) Show that all central moments of a normal distributIon can be expressed 
in terms of the standard 4eviation and obtain the expression in the general case. 

[Aligarh Univ. B.Sc.1992] 
(e) The normal table gives the values of the integral: 

<p (x) = ~d 1t L exp ( -! p) dl 

for different values of x . 
Explain how to use this table to obtain the proportion of observations of a 

normal variate with mean Il and S.D. (J, which lie above a given value 'a' , 

(I) where a > Il . (ii) where a < Il '. 
6. (a) If Xl and X2 and two independent-normal variates with means 

III and 112 and variances or and ~ respectively, sho\V that the variables 
U and V where U = XI + X2 and V = XI - X2 • are independent normal variates .. 
Find the means and variances of U and V. 

(b) If X I and X2 are independent standard normal variates ootain the p.d.f. 
of (XI - X2)/...{f. . 

ADS. U,; (XI - Xz)/...{f - N (0. I) 

(c) Suppose XI-N(O.I) andX2-N(0, I) areindependentr.v.'s. 

(I) Find the joint distribution of (XI + X2)/...{f and (Xl - X2)/...{f. 

(it) Argue that 2 XI X2 and X~ - xr have the same distribution. 
Ans. (i) U = (XI + X2)/...{f and V = (XI - X2)/...{f are independent 

N (0. I) variates . 

(ii) Hint. x~-xr=2[ X2i-XI][ X2iXI ]=2(UV) 

'= 2 x [Product of two independent SNV 's ] 

2 XI X2 = 2 x [Product of two independent SNV 's ] 
Hence the result. 
7. (a) Let X be normally distributed with mean 8 and s.d. 4. Find 
(i) P(5SXSlO). (il)P(lOSXSIS). (ii)P(X;::'15), (iv)P(XS5). 

Ans. (i) 0·4649 (it) 0·2684 (Ui) 0·0401 (VI) 0·2266 . 
(b) The standard deviation of a certain group of 1.000 high school grades 

was II % and the m~n grade 78%. Assuming the distribution to be normal. find 
(I) How many grades were above 9O%? 
(ii) what was the highest grade of the lowest 1O? 
(iiI) What was the interquartile range? 
(iv) Within what limits did the middle 90% lie? 
Ans. (I) J 38, (ii) 52, (iii) QI = 70·575; Q3 = 85.'425, and (iv) 60 %to 96·2% 

(c) If X is normally distributed with mean 2 and variance I, find 
P (I X - 41 < I) . Ans.0·6826 [or ell (1) - ell (-1)] 

prakash
Rectangle
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(d) If X -N (Il = 2, 0 2 = 2) , fin~ P ( I X-I I ~'2) in terms of distribution 

function of standard normal variate. 
Ans. Probability = P (- 1 ~ X ~ 3) = «I> (IAI2) - «I>.(-:wi) 
(~) If X ~ N (30,52) and Y - N (15. 102). show that 

P (26 ~ X ~ 40) = P (7 ~ Y ~ 35) . 
Hint. Each Probability = P (- 0·8 ~ Z S 2) whe~·Z - N (0, i) 

(j) If X -N (30.52). find the probabilities of 

(I) 26SX~40. (ii)IX-301>5, (iil)X~42, (iv)XS28 
[Bihar p.e.s., 1988] 

Ans. (i)· 0·7653, (ii) 0·3174, (iiI) Q.0082, (iv) 0·3446 
8. (a) In a nonnal population with mean lS'()() and standard deviation 

3.5, it is known that 647 observations exceed 16·25. What is th~ total number of 
observations in the population? (Sri VeDkateswara Ualv. BoSe. 'Apm 1990) 

Hint. LetX-N(J.1, 02) where J.l= 15 and 0= 3·5 . 

If N is the total number of observations in the population, 
then we have to find N such tb~ . 

NxP(X> 16'25)=647 
(b) Assume the Olean lteip,ts of soldie~ to be 68·22 ~nches with a variance 

of 10·8 (ini. How many soldieiS in a regiment of I,OOO.would you expect to be 
over 6 feet tall? "(Given that ,:he area under the standard nOl'lJ1al curve between 
x=O and X=0·3SisQ.1368 andbetweenX=O and X= 1-15 is ()'3746). 

Ans. 125 [0snwii8 Unlv"M.A.,l"Z~· 
9. (0) . If 100 trueeoins are thiown, how Would you obtain an approximation 

for the probability of g~tting (I) 55 heads, (iI) 55 or more heads, using Tables of 
Area of normal probability function. . . 

(b) Prove that Binomial.distribution in certain cases becomes n~al. 
A six faced dice is thrown 720 times. EXplain how an approximate value of 

the probability of the following events can be found out easily. (Finding out the 
numerical values of these probabilities is not necessary) : 

(I) 'six' comes for more than 130 timeS 
(iI) chance of 'six' lies between 100 ~d 140. 
10. (0) The number (X) of items of a certain kind demanded by customers 

follows the Poisson law with parameter 9: Wh~t stock of this item should a retailer. 
keep in order to have a probability of 0·99 of meeting all demands made on ~im? 
Use normal approximation to the Poisson law. 

(b) Show that the probability that the number of heads in 400 throws of a 
fair coin lies between 180 and 220 is -:::. 2F (2) - I, where F (:c) ~enotes the 

standard nonnal distribution function. 
11. In an·intelligence test administered to 1,000 childre~, the average score 

is 42 and standard deviation 24. 
(I) Find the number of children exceeding the score 60, and 
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(ii) Find the number of children with score lying between 20 and 40. 
(Assume the normal distribution.) Ans. (i) 227 (iii) 289 

12. The mean LQ. (intelligence quotient) of a large number of children of 
age 14 was 100 and the standaru ueyiatiqn 16. Assumi ng that the distribution was 
norma I. ti no 

(i) What % pf the children had I.Q. under 80? 
(ii) Between what limits the I.Q.'s of the middle 40% of the children lay? 
(iii) WI . .!t % of the children had tQ.' s wiihin the range Il ± I 96 (J ? 
Ans. (i) 10·56%, (ii) 91·6, 108·4, (iii) 0·95 
13. (ti) In a-university examination of a particular year, 60% of the students 

failed when mean ofthe.marks was 50% and s:d. 5%. University decided· to relax 
the conditions of passing by lowering the pass marks, to show its result 70%. Find 
~he lJlinimum marks for a student to pass, supposing the marks to be normally 
distributed and no ch~Qge iJl tht< performance of students takes place. 

Ans. 47·375. 
(b) The width of a slot on a forging is normally distributed with mean 

D·9oo inch and standard deviation 0·004 inch. The specifications are 0·900 ± 
0·005 inch. What percentage of for~ngs wiH be defective 1 

Hint. Let X denote the width (in inches) ofthe slot. We want 
100 x P (X; lies outside specification limits). 

= 100 [ I ..., P (X lies within specificat\o{llimits) ] 
= 100 [ I - P (0·895 < X < 0·905) ] . 

14. (a) The monthly incomes of a group of 1O,00Q persons were found to 
be normally distributed with mean Rs. 750 and s.d. Rs. 50, Show that of this group, 
about 95% had income exceeding Rs. 668 and-only 5% had iqcome exceeding Rs 
832. What was the10west incotpe among the richest 1001 

Ans. Rs. 866·3. 
(b) Given that X is noqq~lly distributed with mean 10 and 

P (X> 12) = 0·1587, 
what is the probability that X will fall in the intervai (9, 11)1 

Take <I> (I) =0·8413 and <I> (,-t)=O·3085 

x 

where <I> (x) == 'lid 1t J exp (- u2/2) du 

Ans.0·3830 
(c) A nQrmal distribution has mean 25 and variance 25. Find 
(i) the limits which include the middle 50% o~ the area under the curve, and 
(ii) the values of x corresponding to the points of inflexion of the curve .. 

Ans. (i) Limits which include the middle 50% of the are\ll,lnder the curve are: 
QI = Il- 0·6745 (J = 21·7275; Q3 = Il + 0·6745 (J = 38·2725 

(ii) (30, 20) 
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15. (a) In a distribution exactly nonnal 7% of the items are under 35 and 
89% are unde~ 63. What are the mean and standard deviation of the distribution? 

ADS. J& - 50·3, (J" 10·33 • 
(b) In a Ilormaldistribution, 31% of the items are under 45 and 8% are over -

64. Find the mean and variance of the distribution. 

mean, 

Given that area between mean-ordinates and ordinate at any (J distance from 

z _ X - J& : 0·496 1.405 
(J 

Area 0·19 0·4'2 
[Delhi Univ. B.Se., 1987; Madras Univ. B.Se., 1990J 

ADS. J& - 50, (J - 10 
~6. (a) A minimum height is to be prescribed for eligibility to government 

services such th!l~ 60% of the young men will have a fair chance of coming up to 
that standard. The heights of youngmen are normally distributed wi~h mean 60·6" 
and s.d. 2·55". Determine the minimum specifi~~i<;)n. 

ADS. 59,9". 

Hint. We want Xi S.t. P'(X > Xl) - 0·6 
xl-60·6 

WhenX-xt, Z- '2.55 --zl,(say)····(~l 

[Note the negative sign, which is obvious from 
the diagram] 

Obviously P (0 < Z,< Zl) - 0'10 ~ Zl - 0·254 
Substituting in (*), we get 

Xl - 60-6 - 2·55' x 0·254 - 60-6 - 0-65 .. 59·95" 
(b) The height measurements of 600 adult males are llmnged in ascending 

order and jt is observed'that 180th and 45Ot~ entries are 64·2" and 67'8" 'respec­
tively. Assuming t}illt the sa,mple of heights is drawn fro~,~ nQrmal population, 
estimaJe the mean and s.d. ofthe distribut.ion, 

ADS. 67'78", 3~ , 
17. (a) Marks secured by students in sections I and II of a class are 

independently nOI)1lally distributed with means ~O a~d 60 respectively and varian­
ces 10 and 6 respectively. What is the probability that a rand6mJy chosen student 
from sectif.'n II scores more marks than a randomly chosen stud en! from section I? 
What percentage ~f stud~nts are expected to secure fi.rst div~ion (i.e., 60 marks 
or more) in section I? Write down your results in terms of the sta,ndard normal 
distribution fucntion. 

IDnt. X-N (SO, 10), Y - N (60,6) are i,dependent r.v.'s. 

U - Y - X -N (10,16). We wantP(Y>X) -P(U>O~ ~ 

(b) In an examination, the mean and standard deviation ,(s.d.) of marks in 
Mathematics and Chemistry are given below 
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Chem. 

Mean s.d. 

45 

SO 

10 
15 

Assuming the marks in the two subjects to be independent normal'vaiiates, 
obtain the probability that a student scores total marks lying between 100 and 130. 
[Full marks in each subject are 100]. Given that 

F (0,28).0-1103, F (1·94) • 0'4738, 
z 

where 
1 . 

F(z) - V2ii f exp (-!XZ) tU. 
"0 . 

[Bbagalpur Ualv. B.Sc., 1990) 
18. (a) One thousand candidates in an examination were grouped into thlte 

classes I, II, ill in descending older of merits. The numbers in the first two classes 
were SO and 350 respectively. The h .ighest and the lowest marks in dass II were 
60 and SO respectively. &suming die distribution to be normal, prove that the 
average mark is approximately 48·2 and standard deviation, approximately 7·1. 
The following data may be used: 

The area A is measured from the mean zero to any ordinate·X. 

X A X A. 
(J 

0·2 
0·3 

0·4 

0-079 

0'118 

0'155 

(J 

1·5 
1·6 

1·7 

0·433 

0·445 

0·455 

(b) In an examination marks obtained by the students in Mathematics, 
PbysicS and Chemistry are distributed normaUy about the means SO, 52 and 48 with 
S.D. IS, 12, 16 respectively. Find the probability -of secUring total marks of 

(i) ISO orabove, (it) 90 or below. 

[ "21 j exP.(-?/2)dz-0'1942, "21 j exp(-?/2)dz-0-0224] 
It 1.2 ,O' It 2-4 

AIls. 0'1942, 0.0224' [Agra UDiv. B.Sc., 1988) 

19. In a certain examination the percentage of passes and distiDCtions were 
46 and 9 respectively. Estimate the average marks obtained by the candidates, the 
~mum pass and distinction marks being 40 aDd 75 reSpectively. (&sumo. the 
distribution of marks to be norma1.) (ADs. 11. 36'4, (J. 28'2) 

Also determine what would have ~en the minimum qualifying marks tor 
a~mission to a re-examination ofthe.failed candidates, had it been desired that die 
~t 25% of them should be given another opportunity of being examined. 

AIls. 29. 
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20. The local authorities in a certain city installed 2,000 electric lamps in 
a street of the city. If the lamps have an average life of 1,000 burning hours with a 
S.D. of 200 hours, 

. (i) What. number of the lamps might be expected to fail in the-first 700 
burning hours, 

(ii) After what periods of burning hours would we expect that 
(a) \0% of the lamps wQuld have faile<\, and 
(b) 10% of the lamps would be still burning? 

Assume that lives of the lamps are nonnally distributed. 
You are given that F(f'50) = 0·933, F(1·28) = ·900, 

, 1 

I 1 -.' F (t> - -Iii e-~ dz where --
Ans. (i) 134, (ii) (a) 744. (b) 1256. [Allahabad Univ. B.Se., 1987] 
21. (a) The quartiles of a nonnal distribution are 8 and 14 respectively. 

Estimate the-mean and standard deviation. 
Ans. ~ = 1I. G = 4·4 . . 
(b) The third decile and the upper quarti~e of a nonnal distribution are 56 

and 63 respectively. Find the mean and varaince of the distribution. 
Ans. ~ = 59·1. G = .5·8. 
22. (a) 5.000 variates are normally distnbuted with mean 50 and probable 

error (semi-interquartile range) 13·49. Without ~sing tables. find the values of the 
quartiles, median. mode standard deviation and mean deviation. Find also the value 
of the variate for which cumulative frequency is 1250. 

[Meerut Univ. B.Se., 1989] 
Ans.Q.=36·51 Q3=63·49. G=20. M.D.~16 •. x.=36·5I. 
(b) The following table gives frequencies of occurrence of a varaible X 

between certain limits: 

Variable X 

Less than 40 . 

40 or more but less than 50 

50 and more 

Frequency 

30 

33 

37 
The distribution is exactly normal. Find the distributio.1) !ltld also obtain the 

frequency between X = 50 and X = 60. [Kurukshet~ Univ. M.A. (Eeo.) .. 1990] 
Ans. Hint. 50 -'- ~ = 0·33 G; 40 -,~ = -,0·52 G 

~=46·12. G= 11·76 
N.P(50 <X < 60) = 100 x. 0·2517-:. 2~ 

23. (a) Suppose that a doorw.ay being constructed'is to be used'by a class 
of people whose heights are normally distributed with mean 70" and standard 
deviation 3" . How long may the doorway be without causing more tharl 25% of the 
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people to bump their heads? If the height of the doorway is fixed at 76", how many 
_persons out of 5,000 are expected to bump their heads? 

[For a normal distributionthe quartile deviation is 0-6745 times standard 

deviation. For a standard normal distribution Z == X - X, the area under the curve 
cr 

between Z == 0 and Z == 2 is 04762. I 
(b) A normal population has a coefficient of variation 2% and 8% of the 

population lies above 120. Find the mean and S.D. 
Ans. ~ == 122, cr == 2-44 
24. Steel rods are' manufactiJred to be 3 inches in diameter but they are 

acceptable if they are inside tht; limits 2·99 inches and 3·0 I inches. It is obserVed 
that 5% are rejected as oversize and 5o/cf are rejected as undersize. Assuming that 
the diameters are normally distributed. find the standard deviation of the distribu­
tion. Hence calculate. what would be the proportion of rejects if the permissible 
Ii~its were widened to-2·985 inches and 3·015 inches. 

[Hint. Let X denote the diameter of the rods in inches and let X -N (~. a2) . 
Then we are given 

p (X> 3·0 l) == 0-05 and P (X < 2·99) == 0·05 

3·01 - ~ == 1-65 and -2·99 -IJ. = _ 1.65 
cr cr 

.solving we get ~ = 3 and cr = I !5 

The probability that a random value of X lies within the rejection limits is 
P (2:985 < X < 3·015) ,= P (- 2·475 < Z < 2·475) = 2 x P (0 < Z < 2-475) 

= 2 x 0·4933 = 0·9866 
Hence the probability that X lies outside the rejection limits is 

1 - 0·9866 = 0·0134 
Therefore. the proportion of the rejects outside the revised limits is 0·0134, 

i.e .• 1·34%]. 
25. Derive the moment generating function of a random variable which has 

a normal distribution with mean ~ and. variance cr. Hence ~r otherwise prove 
that a linear combination of independent normal variates is also normally dis­
tributed. 

An investor has the choice oftwo of four investme-nts XI. X2. X3. X4. The 
profits from these may be assumed to be ind~pendetnly distributed. ;lnd 

the profit from XI is N (2. I) • 
the profit from X2 is N (3.3) , 
the profit from X3 is N (I, 1) . 
(he profit from X4 is N (2 ~ • 4) . 

(Profits are given in £ 1000 per annum). 
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Which pair should he choose to maximi'se his probability of making a total 
annual profit of at least £ 2000? (London Univ. B.Sc. 1977) 

26. (a) State the important properties of the normal distribution and obtain 
from the tables the inter-quartile range in terms' of its mean f.l and standard 
deviation cr . 

Find the mean and standard deviation as well as the inter-quartile range of 
the following data. Compare the inter-quartile range with that obtained from mean 
and standard deviation on the assumption of normality. 

X (central values) .. , 0 i 3 4 5 6 

r(frequency) ... 5 9 15 32 21 10 8 

(b) The following table gives Baseball throws for a distance uy 303 first 

year high .sch?ol girls: 

Distance in feet Number of girls Distance in feet Number of girls 

15 and under 25 1 85 and under 95 44 

25 and under 35 2 95 and under 105 3] 

35 and under 45 7 105 and under ] ] 5 27 

45 and under 55 25 ] 15 and under t25 11 

55 and under 65 33 125 and under 135 4 

65 and under 75 53 135 and under 145 

75 and under 85 64 
(i) Fit a normal distribution and find the theoretical frequencies for the 

classes of the above frequency distribution. 
(ii) Find the expected number of girl~ throwiQg baseballs at a distance 

exceeding 105 feet on the basis that the data fit a normal distribution. 

27. (a) The table given below shows the distribution of heights among 
freshmen in a college: 

Jieight in 61 62 63 64 65 66 67 68 
inches 

Frequency 4 20 23 75 114 ]86 212 252 

Height in 69 70 71 72 73 74 
inches 

Frequency 218 175 149 46 ]8 8 

By comparing the' proportion of cases lying between f.l ± (2/3) cr, if.l ± cr, 
II ± 2 cr and J.I. ± 3 cr, for this distribution and for a normal curve, state whether the 
distribution may be considered normal. 

( b) Fit a norml!1 distribution to the following data of heights in cms of 200 
Indian adult males: 
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Height in Frequency 
(cms) 

144-\50 3 

150-\56 12 

156-162 23 

162-168 52 

168- 174 61 

174-180 39 

180-186 10 

(c) Two hundred and fifty-five metal rods were cut roughly six inches over 
size. Finally the lengths of the oversize amount were measured exactly and grouped 
with I-inch intervals, there being in all 12 groups. The frequency distribution for 
the 255 lengths was 

Central value: x 1 2 3 4 5 6 

Frequency: f 2 10 19 25 40 44 . 
x 7 8 9 10 II 12 

f 41 28 25 15 5 1 
Fit a normal distribution to the data by the method of ordinates and calCulate 

the expected frequencies. 

28. (a) Let X - N (~, a2). Let 

~ (x) = P [ X:S; x ] , 

calculate the probabilities of the following events in terms of ~ : 

(I) (X X + ~ :s; t, where a, ~ are finite constants. 

(ii) -X~t 

(iii) I X I > t [Poona 'Univ. B.E., 1991] 
(b) Determine C such that the following function becomes a distribution 

function: 

2 

29. (a) Determine the constant C so that C.e- 2x +x,_oo<x<oo, is a 
der.sity function. If the random variable X has the resulting density function, then 
find (I) the mean of X, (ii) the variance of X. and (iii) P (X ~ 114) . 

Ans. (i) 0·25 (iI) 0·25 (iii) 0·5 

(b) Iff (x) = k ·exp. 1- (9 x2 - 1,2,x + 13) } • is the p.d.f. of a normal distribu­
tion (k, being a constant) find tho m,.an and s.d. of the distribution. 
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(c) If X is a normal ·:ariate with p.d.f. f(x) = 0·03989 exp (- 0·005 x2 + 
0.5 x - 12·5), expressf(x) in standard form and ~ence find the mean and variance 
of X . [M.S. Baroda Univ. BoSc., 1991] 

(d) Let the probability function of the normal distribution be 

P ( ) _ k - 1/8 .. 1 + 2t < <' x-e ,-00 x 00 

Find k, ~ and ri. [Delhi Univ. B.Sc. (Stat. Hons.), 1985] 
(e) X" X2, X3, X4 isa random sample from a nonnal distribution with mean 

100 and variance 25 and X = ~ (XI + X2 + X3 + X4) . 

State the distribution, expected value and variance of each of the following: 

(i) 4 X, (il) XI - 2 X2 + X3 - 3 X4 , 
4 

(iiI) 2~ L {Xi- 1oo}2 [Bangalore Univ. B.Sc., 1989] 
i=1 

ADs. (b) Mean - 2/3, (J _ -L_ 
3"2 

30. If X is a nonnal variate with mean 50 and s.d. 10, find P (Y:S; 3137), 

where Y=X2 + 1, 

[ 
0·6 1 ~; Jt ! e-i12 dx = 0·2258 

[Delhi Univ. B.Sc. (Hons.), 1990] 

Hint. Required Probability = P (X2 + 1 :s; 3137) = P (- 56 :s; X:S; 56) J. 
Ans.0·7258 

31. LetX benonnallydistributedwithmean~ andvariancea2. Suppose 
ci- is some function of~, say ri = h (~). Pick h (.) so that P (X:S; 0) does not 
depend on ~ for ~ > 0 . 

Ans. P (X:S; 0) = P {z:s; - J.I.I..Jh (~» = P (Z:S;"7 1) ; independent of ~ if we 
takeh (~) = J.1.2 • 

31. (a) If X isastandardnormalvariate,fmdEIXl [ADs.V2l,.; = -4/4] 

(b) X is a random variable nonnally distributed with mean zero and valiance 

ci- . Find E I X I [Delhi Univ. B.Se. (Stat. Hons.) 1990) 
Hint. E I X I = Mean Deviation about origin 

= M.D. about mean ('.' Mean = 0) 

Ans. ..J(2/Jt). (J = ~ (J 

32. (a) X is a nonna! variate with mean 1 and variance 4, Y is another 
nonna! variate independent of X with mean 2 and variance 3. What is the 
distribution of X + 2Y? [Punjab Univ. B.Sc. (Hons.) 1993] 

Ans. X + 2Y - N (5, 16) 
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(b) If X is a aormal variate with mean I and S.D. 06, obtain P [X> 0], 
P ( I X - I I ~ 0·6 1 and P [ -- 1·8 < X < 2·0 ] . What is the distribution of 4X + 5 ? 

34. (a) Let X and Y be, two independent random variables each with a 
distribution which is N (0, I). Find the probability den.sity function of U = a I X 
+ a2 Y, where al and a2 are constants. 

(b) Show that if XI, X2 are mutually independent normal variates having 
means '~I, ~2 ~nd standard deviations (JI, (J2 respectively, then U = al XI 
+ a2 X2 is also normally distributed. 

34. (c) If Xi, (i = 1,2, ... , n) are independent N (~i, crt) variates l obtain the 
/I 

distribution of L a; X; 
;=1 

where a;, i = 1,2, ... , n are constants. Hence deduce the distributions of: 
(i) XI + X2 
(ii) Xl- X2 

/I 

(iii) X = 1. L Xi; if X;' s are U.d. N (~, (J2) • 

n ;=1 

How do the results in (i) and (ii) compare with those in Poisson distribution 
and result in (iii) compare with Cauchy distribution? 

[,Delhi Univ. B.Sc. (StaL Hons.), 1991] 
Hint. For Cauchy distribution, see 'Remark 4, § 8·9·1 . 
35. (a) If X is nonnaI' with mean 2 and standard deviation 3, describe the 

distribution of Y = i X - I. Explain, how you would finq P ~Y ~~) from the tables. 

HinL (a) We are given that X -N (~,~) where ~ = 2, (J = 3, The dis­

tribution of the new variable Y = aX + b' is also nonnal with 
E (Y) = E(aX+ b) =aE (X) + b ='a ~T b} 

and Var (Y) = Var (aX + b) = a2 Var (X) = a2 (J2 ... (*) 

Hence Y = ~ X'- 1 - N (~l, crt), where ~l and <1i ar~ given by (*) with 

a =1 and b =-1, i.e., 

~I = i . 2 - 1 = 0 ; crt = (i)2 . 9 ='~ . 

Thus Y -N (~I, crt) , where'~1 == 0, (JI = ~ . 
P(Y~~)=P(Z~ 1)=0·5-P(0<Z< 1)=0·5:....0·3413=0·1587. 

(b) If X and Y are independent sta'ndard nonnal variables and if Z = aX + 
bY + c where a, band c are contants, what will be the distribution of Z? What is 
the mean, median and standard deviation of the distribution of Z ? 

Find P (Z:S; 0, 1) if a = 1, b = - I Ilnci C = 0 . (I.I.T. B. Tech~ 1992) 

Hint. Z - N (c, rl- + b2) 

If a = 1, b = - 1, c = 0 then·Z": X - Y - N (0, 2) 
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:. P(ZSO.I)=P( US 14"142} U=Zi/-N(O, I) 

36. Let X be a random variable following normal distribution with mean 
Jl and variance cr'- and let r be a non-negative integer. 

If ~,' = E (X') and if ~2' = [ E (X - ~)2'], prove that 

;\' 2 ' (---.2 2) , ~d~,' (I, ~,+l= ~~'+1+ <r-~ ~, +0- dcr 

(ii) ~2'+2 = cr'- ~2' + rr d:~, [Madras Univ. B.Sc. (Main), Oct. 1989] 

Hint. (i) 

d ~ , ooS· x' I 2} 
d~ = -_00 ...J21t cr'- exp 1 - (x -~) 12 cr'- dx 

+ j x' (x -IJl exp { _ (x _ ~)2/2 cr'- } tU 
_00 ...J21t cr4 

37. Prove that if the independent random variables X and 
probability densities, 

h ,,11k kl 1 Tn e- ;r and rne- Y,-oo«x,y)<oo 

then the random variable U =.X +- Y has the probability density, 
I -I,} m. e ,~oo<u<oo 

where 
I I I 
p= hl + t2 

Y have the 

38. If[ .1: Ci~;]2 =9 ,1: ciof, find p[o~ Y~2 .1: Ci~i)' 
I'd 1=1 1=1 

n 

where Y = 1: C; Xi, X; being a nonnal variate wi~h mean IJ; and variance of . 
;=1 

-(Allahabad Univ. B.Sc., 1988) 
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Bint. II II II 

We know Y = 1: Ci Xi - N (Il, ( 2), where Il = l: Ci Ili and cr = 1: c1 aT 
i= 1 i=1 i=1 

Since (7 Ci Ili J = 9 ( 7 cr aT )- we have 112 = 9 ~ or ~ = 3 

If we write Z =!..::.!!, then Z - N (0, I). 
a 

n 

p (0 ~ Y ~ 2 l: Cj ~j) = P (0 ~ Y ~ 2 J.1) = P (- 3 ~ Z ~ 3) = 0·9973 
i=1 

39. (a). Find the mean deviation about mean for the nonnal distribution 
N(J.1,~). 

(b) If X - N (J.!.,~), tind.the mean and variance of 

1 [ ]2 Y-2 (x-p)/o [Punjabi Univ. M.A. (Eco.), 1991] 

Ans.E(Y)= 1/2, Var(Y)= 1/2 
Remark. Also see EXanlple 8;30, on Gamma distribution. 
(c) Derive nonnal distribution as a limiting case of binomial distribution, 

clearly stating the conditions involved.· [Delhi Univ. B.A. (Stat. Hons.), 1981] 
40. Iff (x) is the density function for the normal distribution with mean 

zero and standard deviation a, then show that 
+00 

J If(x)]2 dx= 2 olTn 

Hence s~ow that if the nonnal distribution is grouped in intervals with total, 
frequency NI, and N2 is the sUJD of the squares of the frequencies, an estimate ofl 

~ , 
a is I ! 

2 N2 'lit (Gujarat Univ.B.Sc., 1992): 

Hint. J.. [f (x) ]2 dx.-=]J ~2 ~ 0' exp (-x212~) r dx 

= _1_ j e-il(l dx = _1_ ~ 
21t~ . 21t~'(l/0) 

-00 

=~ ( ... ooJ e-ii dx=~/al 
2 a 'V7C' -. 
OOJ 2 N2 

N2= {Nd(x)} dx= 2 ita 
41. Obtain the 'nonnal distribution as a limiting case of Poisson distribution 

wh~ the parameter A. ~ 00 • 

. 42. (a) If X is N (0, I), prove thatthe p.d.f. of I X I is 
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h (x) = h'21n exp (-i /2), x ~ 0 
0, otherwise 

8·6~ 

(b) Let X - N (0, 1) and Y - N (0, 1) be independent random variables. 

Show that X + Y is independent of X - Y. 
. 43. If X - N (11, 92) and Y - N (Il, 122) are independent, and if 

p (X + 2Y S; 3) = P (2X - Y~ 4). deteTl1)ine Il . 
[Calcutta Univ. B.Sc. (Maths Hons.), 1989] 

44. If X - N (0, I) and Y - N (0, I), prove that 

(t) Var (sin X) >Var (cosX)' 
(ii) E I X - YI S; ..J8In 

[Delhi Vniv. B.A. Hons. (Sp'. Course-Statistics), 1988] 
l 

Hint. (I) X - N (0, I) => <px (I) = E [cos IX + i sin IX) = e- t12• 
. l 

=>E(cosIX)=e- '12 and E(sin IX) =0. 
Taking . 1= 1 and 2, we g~t: 

E (cos X) = e- I12 ; E (cos 2X) = e- 2 ; E (sin X) = E (sin 2.X) = O. 

2 2 [1+COS2X] 2 Var(cosX)=E(cos X)-(EcosX} =E 2 -[..Ecos.X) 

= i (1 - e- 1)2':. 0·99 

Similarly Var (sin X) = e[ 1 - c;s 2X] - [ E sin X]2 = i (1 - e-2)':. 0·43 

(it) Use I X - Y I S; I X I + I Y I and E I X I = ElY I = ..J21n-
or X - Y - N (0, cr = 2); E I X - Y I = ..J2In CJ = ..J4/n < ..J(8/n) 

45. Let X and Y be independent N (0, 1) variates. Let X = R cos 9, 
Y = 'R sin e . Show that-Rand e are ind~pendent variates. 

[Delhi Univ. B.A. Hons. (Spl. Course Statis,ics), J985) 
46. If X -/N (0, 1), find p.d.f. of I X I. Hence or otherwise evaluate 

E I X I . [Delhi Univ. B.Sc. ,(Maths. 80ns.), 1980] 
Hint. Distribution function Gr (y) of Y = I X I is given by; 

Gr(y)=P(YS;y) =P (IX I S;y) =P(-y S;XS;y) 
= I! (X S; y) - P (X S; - y) 

Gy (y) = FxCy) - Fx (- y). 
where F ( .) is the distributiQn f~"ction of X. Differentiating, the p.d.f. of Y = 
I XI is given by . 

gy(y} =/x (y) + Ix (- y) = 21i (y) 
• 2 

=> gy (y) = v2In . 'e- Y 12 ; Y ~ 0 [By symmetry, since X -N:(O;I) ] 

8·2·15. The log-normal Distribution. The positiv<: r.v. X is said to have. 
a log-normal distribution it loge X is normally distributed. 
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Let Y = logeX -/I.' (11, ( 2) • 

For x>O, 
Fx(x) = P (X~x) = 'p (logX~ log x) = P(Y~ log x) 

(since log X is monotonic increasing function) 
IOjX 

= a 4J~ 1t exp { - ()' -11)2/2 0 21 dy 
[since Y - N (11, ( 2) ] 

x 

= ai:n J exp {- (log u - 11)212 0 2 f du 

For x ~ O~ 1t 0 u 
(y = log u) 

Fx(x) = P ({($.x) =0 

Let us defile 

f; ( ) ~2' exp {- (log u - 11)2/2 0 2 f ,u > 0 
x u = uO 1t 

0, u~O 
l: 

... (8·18) 

Then Fx (x) = J fx (u) du for every x and hence fx (x) defined in (8,18) 

is a p.d.f. of X . 

Remark. If X - N (11, ( 2), then Y = C is called a log-normal random 

variable, since its logarithm log Y = X, is a normal r.v. 
~oments. The rth moment about origin is given by 

11r' = E (X') = E (eT Y) [ '.' y'= log X => X = eY ] 

= My (r) (m.g.j. of Y, r being the parameter) 

= exp { w+ ~ ? d } ['.' Y -N (11, d) ] 

Remarks. 1. In particular if we take 11 = log a, a> 0 i.e., 
log X -N (log a, ( 2), tllen 

... (8,19) 

~lr' = E (X) = exp { r . log a + ~ ? 0 2 } = aT . exp { r2 0 2/2 f ... (8.19 a) 

z 2 2 .Z 

:. mean = Ill' = a f!" / and 112' = a i" 
, ,2 2 "Z ,i 

112=112 -Ill =a e (e -I) 
2. it arises in problems of economics, biology, geology, and relibility theory. 

In particular it arises in the' study of dimensions of particles under pulverisation. 
3. If XI, X2, ... , Xn is a set of independently identically distributed random 

variables such that mean of each log Xi is 11 and its variance is 0 2 , then the product 
XI X2' .•.. Xn is asymptotically distributed according to logarithmic normal distrihu­
tion and with mean 11 and variance n cr 
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EXERCISE 8(c) 
I. (a) Let X be a non-negative random variable such that Jog X = Y. (say). 

is normally distributed with mean 11 and variance cr2 • 

(i) Write down the probability density function of X. Find E (X) and 
Var (X). 

(iii) Find the median and the mode of the distribution of X . 

(b) If X is a normally distributed with zero mean and variance cl- find 
the density function of U = ~x Locate the mode of the distribution. 

~ A~: V:;&:J:~ e:C: :~::~u:_:::r ::~n: 
Find E (X) and Var (X) . . [Punjab Univ. M.A. (Reo.), 1991]. 

3. A random variate X h{a~:~;~%)ln x> 0 

f(x)= x"l2n • 
O. elsewhere 

Calculate the mean. mode •. standard deviation and coeffICient of skewness. 

Ans. -.Ie. lie. Ve (e -I). and (1- e-3n.)/ve=r 
4. The random variable X has mean m and standard deviation s. If 

f = log X is normally distribu~ with mean M and standard deviation S, prove 
that 

5. Given that Xi are independent logarithmic normlll variates with 
parameters Ili and CJj; i = 2 •... , n. find the sth raw moment of the variable 

y= n (ajXi).; i= 1; 2, ... , n 

6. Show that the log-normal distribution js posilively skewed i.e., mean > 
median> mode. 

Ans. Let Y = log X - N <11, cl-) 
i . 1 

E (X) = ~+CJ n ; Median = ~; Mode = ~-CJ 
7. If X and Yare two independ.!nt log-normal variates. then XY and 

X/f are also log-normal variates. 

Hint. Let log X -N (Ill. crt); log Y -N (1l2. crl) ; U = XY and V = (X/f) . 

. Io~ U = log X + log· Y -N (Ill + 1l2, crt + crl)} ( X d Y . d d) 
--2 --2 '. • an are 10 epen ent 

-log V~logX -log Y.,.N (~I- 1l2, 01 +(2) 

8. If X -N (0, cl-), obtain the distribution of (/ Find out the mean of the 

distribution. [De~ Univ. B.Sc. (Stat. Hons.), 1985] 
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9. I f X -N (11, (}"2), tind the p.d.f. o( Y = eX, using the result Ihm 

E (/x) = tf'+/Ci/2 . 

Find the coefficient of variation of Y. [Delhi Univ. I\I.A. (Eco.), 19911 
8·3. Gamma Distribution. The collfillllOIlS ralldom mr;able X which ;~ 

distributed according to the probability law : 

f(,x) = le-~z~)-I ;A.>O,O<x<oo 

0, otherwise ... (8'20) 
is kllown as a Gamma variate with parameter A. and referred to as a y (A.) 
variate and its distribution is called the Gamma.distribution. 

Re~arks. 1. The function f(x) defined above represents a prob~bility 
function, since 

GO GO 

J f(x) dx = r(IA.) J e- x xA- 1 dx:: f(IA.) . f(A.) == 1 
o 0 

2. A continuous random variable X having the following p.d.f. is said to 
have a gamma distribution with,two parameters a and A.. 

. a A _ ax .. _ I' } 
.!(x)=rA. e X ;a>O,.A.>O; O<x<oo . 

L = 0, 'otherwise 
We write X - Y (a, A.) 

Taking a = 1 in (8·20 a) we get (8·20). Hence we may write 
X ,(1..) = (I, A.). 

. .. (8·20 a) 

3. The cllmn/ative distribution functioll, call.ed i.ncomple~e gamma fun-
ction is 

Fx (x) =1 If(U) dU·=·r'A. J e- U uA- 1 du,x >0 
o 0 

0, otherwise ... (8·20 b) 
8·3·1. M.G.F. of Gamma Distribution. M.G.F. about orig!n is given by 

GO GO 

Mx (t) = E (e'x) = J e'x f(x) dx = _1-J eU e- x xA- I dx 
o r (A.) 0 

"'" __ I-J -(I"'I)r A-I __ I_...IJ& 
- r (A.) 0 e x dx - r (A.) . (I _ tl' I t I < I 

.. Mx(t)=(I-t)-A,ltl<1 ... (8·21) 
8·3·2. Cumu~ant Gcpcrating Fucntion of Gamma Distribution: The 

cUllluhll1t generating fucntion Kx (t) is given by 

Kdt) = log Mx (t)-=·log ('1 - t) -). = - A. log (1-' t) ; II.I < 1 
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Hence 

= A [I+~ +f+~+ ... ] 
Mean .. Kl .. Coefficient of.1 in Kx.(/) = A 

2 

f'l2 .. K2 .. Coefficient of ~ ! in Kx (I) = A 

3 

K3 .. Coefficient of ; ! in Kx (I) = 2 A 

4 

K4" Coefficient of ~! in Kr (I) = 6 A 
.. 

2 '2 
~ = K4 + 3 K2 .. 6 A + 3 A 

2 2 Jl3 4 A. 4 Jl4 6 
fJl = -- .. -- '" - and fJ2 = - = 3 +-

Jl~. A3 A. . Jl~ A 

8·69 

RemarkS 1. Like Poisson distribution, the mean and variance of the 
Gamma distribution are also equal. However, Poisson distribution is discrete while 
Gamma distribution is continuous. 

%. Limiting fonn of Gamma distribution as A - oc • We kilow that if 
X-Y(A), then E(X)=A=Jl, (say),andVar'(X)-A=,i, (say).Thenstandard 
gamma variate is given by 

X-u. X-A 
Z=--' ---o v:r. 

Mz (I) = e-J.l.llo Mx (110) = e-fl. I/ o (I-tlor).· (From (8'21»). 

-I).IVA ( 1 I )-). 
.. e -V'i: 

~ Kz (I) = - i"~ . 1 - A log ( 1 - .k ) 
=-V'i:I+A( .k+;~ + 3~12+"') 

P .. -V'i: 1+ V'i: I-+-- -t= 0 (A -.112) 
2 

wbereO(A -112) are tenns containing~ and higber powers of A in t~e.denominator. 

lim ,z' lim M (I) = el12 
'f A. -. 00 Kz (I) =- I =Ot A -110 00 Z , 

which is tbe m.g.f. of a Standard' Nonnal' Variate: Hence' by uniqueness theorem 
orm.g.f., Standard Gamma variate tends to Standard Normal Variate as A - oe. In 
other words, Gamma distribution tends to Nonnal (Jistribution for large value~ of 
parameter A • 

3. For tbe two parameter gamma distribution (8'20 a), we have 
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-A 

Mx(t) = ( 1-;) ; t<a. 

Proof is left as an exercise to tbe reader. 
Kx (t) - - A log ( 1 - tl a ); t < a 

_.[;.~(;)2 .~(;) •... j 
Mean - k1- Ala 

Variance .. k2 .. AI a2 - Mean! a 
Hence Variance> Mean if Ii < 1 , 

Variance - Mean if a .. 1 , 
and Variance < Mean if a > 1 . 

. •• (8'21 a) 

... (8'21 b) 

8·3·3. Additive Property of GalDlDa Distribution., The sum of inde­
pendent Gamma variates is also a Gamma variate. More precisely, if Xl, X2, ... , 
Xl are independent Gatnl1Ul variates with parameters A1, A2, ... , A,t. respectively 
then Xl + X2 + ... + Xl is also a Gamma variate with parameter A1 + A2 ~ '" t 
N,. 

Proof. Since X; is a y (A.;) variate, 

Mx; (t) - (1- tt>..; 
The m.g.f. of tbe sumX1 + X2 + ... + Xl is given by • 

Mx 1 +xz + .,. +x. (t) - MXI (t) Mxz (t) ... Mx. (t) 
(since Xl, X2, ... ,Xl are independent) 

- (1- trAI (1 - tt AZ ... (1 - tr~ 
_ (l_tr(A'+Az+",+~) 

wbi~b is the m.g.f. of a Gamma variate with panmeter A1 + A2 + ... + A,t • Hence 
tbe result follows by tbe uniqueness theorem of m.g.f.'s. 

RelDark. If genenl, if Xi "1 (a, Ai), i·. 1; 2, ... , n are independent r.v.'~. 

tben i Xi - y (a, i Ai). . 
i-1 i-1 • 

8·4. Beta Distribution ofrInt Kind. The continuous random variable 
which is distributed according to the probability law 

f(x) -I B (!, v) .~-1 (1 ,-x),,-l; (Il, v) ~,o, 0 <x < 1 

0, otherwase ••• (8·22~ 
(where B (Il, v) is the Beta function), is /mown as a BeUJ variate of the rust IdJid 
with parameJers Il and v and is referred to as ~1 (Il, v) variate and its distributi61l 
is called Beta distribution oftbe first ~,nd. 

KelDans. 1. The cumulative distribution function, often caUed thelncom­
plete Beta Function, is 

prakash
Rectangle

prakash
Rectangle

prakash
Rectangle

prakash
Rectangle

prakash
Rectangle
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f I J.l-I \'-1 
F(x)= 0 B(Il,v)U (I-u) du;O<.\:<I,(Il,v»O 

j ?,x<O' 

I, x > I ... (8·22 a) 

2. In particular, if we take Il = I and v = I in (8·22) we get: 

. !(x) = ~(;, I) = I, O<x< I ... (8·22 a) 
which is the p.d.f. of uniform ~istribution on [ 0, I J . 

3. If X - ~I 0.1, v), then it can be easily proved that I - X - ~I (v, Il) . 

8·4·1. Constants of Beta Distribution of First Kind. 
1 1 

Il:=f x'!(x)dx= I f xJ.l+,-I·(I-x)v-l dx 
o B (Il, v) 0 

= I B ( + r: v) _ r fl + r) r(v) r (fl + v) 
B (Il, v) Il , - r (Il + r+ v) . r (Il) r (v) 

_ r(1l +- ,.) r (1.1 + v) 
- r (Il + r+ v) r (Il) ... (8·22 b) ... 

In particular 
, nil + I), nil + v) Il r(fl) rell + v) ~ 

Mean==1l1 =r(IJ.+v+.I)· r(ll) -(Il+v) r(ll+v) r(ll) Il+v ... (8·22 e) 

['.' r(k) =(k-I) r(k-I)] 
, _ r(1l + 2) . r(1l + v) _ (Il + I) fl r 01) r (fl + v) 

112 - r(ll+v+2) r(Il)" - (Il+v+ I) (J.t+v) r(ll+v) r(ll) 

== fl (I + fl) 
(Il+v) (Il+V+ I), 

,_, ,2_ Il(l +Il) (~J2 . 
1l2-1l2 -:-Ill -(Il+v)(Il+v+l) Il+v 

r " 2 Il [(Il+Y){J.I.+ l)-Il{J.I.+V+ 1)] 
(Il+v) (J1+v+ I) 

Hence 

_ Ilv 

- (Il + v)2 O..l:'+' V + l) 
Similarly, we have' 

... (8·22 d) 

, " ,3 . lllv (v -Il) 
1l3=1l3 -31l2"1l1 +21l1 =(J.I.+v)3(Il+v+1)(Il+V+2) 

and I.l4 = 1.l4' - 41l3' Ill' + 61l2' 1l1'2 .... 31l11'4 

~ Il v {Il v Ot+ ~-6) + ~ (1l+·V)2J 

so that 
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131 = ~~ = ~ ~v.= ~~~J!1-.! V ~ 
f..l~ I-! V (11 + V + 2t 
11-1 3(Il+ v +l) IlV(Il+v-6)+2nl'+v)~: 

13~ = ~~ = - ---~~ (11' ';'v + 2) (11 + V + 3) 

The harillonil: mcan H il; givcn by 
• I / I III I I '1-"') \'-1 - = -I (x) dr =--- ,"' - (I -x) e/l: 

J-I () x B (11. v) 0 

= 1 , B ( _ 1 v) ~ r 0.1 - I) r(V) r (11 + v) 
B(Il. v ) f..l. r(ll+ v .,..l) . r(ll)r(V) 

_ ~I) (11 + v-I) r OJ. + v-I) _ ~ + v-I 
- r (1.1 + v-I) (1.1- I) r (1.1 - I) - 1.1 - 1 

H= 11-1 
l.1+v-1 

... (8·22e) 

8·5. Beta Distribution of Second' Kind. The ~olltilluOLls ralldom vaT/. 

able X ~r/lich is distributed accordillg 10 the probability law: 

{
I ~-I 

f( ) - -B( . 11+V ;(I.1,v»O,O<x<oo 
x - 1.1, V) (I + x) 

0, otherwise • . .. (8.23) 
is klloWII as a Beta i'ariate of secolld Killd with parameterS ~l and v and is 
denoted as 132 (1.1. v) variate land its distribution is calIed Beta distributed of second 
kind. 

Remar)<. Beta distribution of second .\0;:;14 is transformed'to Beta distribu. 
tion of first kind by the transformation 

1 1 
1 +x=- ~ y=--

)' 1 + x ... (*) 

Thus if X -132 (1.1. v). then Y defined in (*) is.a 131(1.1. v). T.,\'; proof is left , 
as an exercise to the reader. ' 

8·5·1. Constants of Beta Distribution of Second ~illd. 
CD .. 

1 ~+r-I 

Jl/= ~ xr f(x)dx= B(I.1. v) r.O +~jl1+~dx 
OQ (J1 + r) - I 

I J x .dx 
.=. B(I.1. v) 0 (I +x)l1+r+v-r 

1 
= B(I.1.V),·B(I.1+r,v,-.r) ... (1 

_ r (1.1 + r) r (v .,.. r) r(11 + v) _ r (Il + r)(r (v - r) 
- I;' (11 + v)" . r; (1.1) r (~) - r (Jl) ~ (v) 
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In particular 
,_!:..i!!+I)r(v-I)_ 1lr(1l) r(v-I) ~ 

~I - r(ll)r(v) -r(Il)(v-l)r(v-l) v-I 

,,_r{I.H·2)r(v-2)_ (1l+1)llr{Jl)r(v-2) __ 1l{J:l+l) 
Il- - r(1l) r (v) - r (Il)(v - I)(v -. 2)·r (v - 2) - (v - 'I)(v - 2) 

P2=1l2 -Ill ='(V-I)(v-2)- v-I 
, ,2 1l,(Il+ I) (~J2 

=~[ (v-I)(Il~ 1)-Il(V-2)]= 1l(Il+v,- I) 
. v - I (v - I)(v - 2) (v - 1)2 (v - 2) 

The harmonic mean H is given by 

HI = E(-Xl )= j ! .f(x) dx = B (I ) j ... ·x"-:+v dx 
o x J,l, v 0 (I + x) 

I .. x"-I-I '1 
= f - dx = : B (J4 - 1, v + 1), J4 > 1. 

B(Il, v)'o (I +x)Il-I+V+1 B(Il, v). I , . 

r(ll-l)r(v+l) r(1l+ v) r(1l-I)vr(v) .v 
r{Jl+v) , T(v)t(v) {Jl-I)r{Jl-1)r(v)'1l-1 

Hence .H = 1!.=.! 
v 

Example 8·29. The daily consumption o/milk in a cny, In excess 0/20,000 
gallons, is approximately distributed as a Gamma variate with the parameters 

v = 2 and A. = IO,~' The city has a daily stoqk 0/30,000 gallons. What is the 

probability that the stock ~s insufficient on a particular day? 
[Madras Univ.·B.Sc. (Stat. Maio), 1990] 

Solution. Jf the r. v. X denotes the daily con~umption of milk (in' gallons) 
in a city, then the r.v .. Y=X - 20,000 has a\gamnia distribution with p.d.f. 

(y.) _ 1 '2-1 e- y/lO,OOO _ Y e-·y/IO,OOO , 0 <y < OC) 

g - (10,000)2 r (2) y - (10,000)2 ' , 

'[ See 8·20 (a) ] 
Since the daily stock of the city is 30,000 gallons, the required probability 

'p' that the stock is insufficient on a particula,r.day is .givC(n by 
p = P (X> 30,(00) = P (Y> 10,(00) . 

GO ... 

-f g(y)dy. f >:e-Y/1~.~ tty 
10,000 10.000 (10,000)2 .. 
= J ze-ldz 

I 

Integrating by parts, we get 

\. 

[Taking z = y/lO,OOO ] 
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p= I-ze-~~~ + j e-: dz=e-I-I e-: I~ 
I 

=e-I +[1 =21e 

Remark. Since v = 2, the integration is easily done. However. for general 
values of A. and v .. the integral is evaluated by using tables ofIncomplete Gamma 
Integral. [see Tables of Incomplete Gamma Fucntions. K. Pearson; Cambridge 
University.Press] of the form 

af e-x.XO- 1 

r .dx. 
o n 

which have ~een tabulated for different values of (X and n. 

Example 8·30. if X -N (1.1.. cr). obtain the p.d.t of: 

U=1( X~I.I. J 
Solution. Since X - N (1.1.. cr) . 

I 1 2 1 
dP(x)=~e:-(x-P)1 CJ dx.-oo<x<oo 
. '12n 0' 

Let u = ~ ( x ~ 1.1. J ~ x ~ 1.1. = V2U 
0' .-. dx=Fu du 

, Hence probability differential of U is 

dG() I -u 0' d I -u -1/2 d 
u =~2~ O'e '~2u u=2Tn e u u 

=*'e~u U- 1/2 du, 0 < u < 00 

the factor 1 disappearing from the fact that total probability is unity . 

.• dG (u) ='~~1) e- u u(1I2)-1 du, 0 < u < 00 [.,' r (1) =...m] 

'2 

Hence U =~ ( X ~ 1.1. J is a y(1) variate. 

Example 8·31. 1how tliat the mean value of pos~tive square root of a 
1(1.1.) variate is nl.l. + 1)1r (1.1.) • Hence prove that the mean deviation of a normal 
variate from its mean is "2/n 0', where 0' is' the standard deviation of the 
distribution. [Delhi Univ. B.Sc. (Stat. 8005.), 1986] 

Solution. Let X be a Y(I.I.) variate. Then 
e- x xP- 1 

f (x) = r <Il) ; 1.1. > 0, 0 < x < 00 
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- - r~+~ 
__ E(...fX)=f x '/2 f(x)dx=-'-·f e-.,l xll+(I/2)-l dx = 2 

o r(ll) 0 r(ll) 

If X - N (Il, cr2), then 

U = ~ ( X ~ Il J is a y (t) variate. (cj. Example 8·30) 

I X -Ill = f2 cr U1/2, where U is a y (t) variate. 

Hence mean deviation about mean is eiven by 

E IX -I'I-E (..f2 a U V2 ) -..f2 oE(U V2) 

rq+t) f2 cr 
= f2 cr r'(!) = Tn ~ -J2I1t cr 

2 

Example 8·32. If X and Yare independent Gamma variates with 
parameters Il and v respectively, show that the variables 

U=X+Y Z=2-, x+y 
are independent and that U is a y (Il + v) variate and Z is ~ PI (Il, v) variate. 

[Delhi Univ. B.Sc. (StaL 8005.), 1991] 
Solution. Since X is a y (J,l) variate and Y is-a. Y (v) variate, we Have 

fl (x) dx = r ~J,l) e - x .xl' - I dx ; 0 < x < 00, J,l > 0 

h (y)dy = r(IV) E- Y ,.v-I dy; O<y <00, v> 0 

Since X and Y are independently distributed, their joint probability dif­
ferentia' is given by the compound probability theorem as 

dF (x, y) - /1 (.r) /2 (y) dx dy - r ",,1 r v e-(1t+ y) x!" -1 l,-l dx dy 

x 
Now u = x + y, z := --, so that x = uz, y = u - x = u (I - z) 

x+y 
Jacobian of transfonnation J is gi.ven by 

a~ . ~ l-z 

J-~- ~au au = - a (u,z) - ax ~ 

az az u -u , 

=-u 

As X and Y range from 0 to 00, u ranges from 0 to .... and z from 0 to I. 
tience the joint distributioq of U and Z is r 

d G (u, z) = g (u, z) du 4z = r(J,l)Ir(v) e- u (yzf- I [u (I _Z)]V-I I J I du dz 

= I -u p+v-I 1'-1(1 )v-I d d 
r(J,l)r(v).e u z -z u z 
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= e . II dll Z ~ - I (I '- z) v - I dz ( 
-/I ~+v-I J( I ) 
r (I-L + v) B (I-L, v) 

= [ gl (u) du 1 r ~2 (z) dz I , (say), 

h ( ) I' -/I ~+v-I 0 
were gl u = r (I-L + v) e u , < Il < 00 

and g2 (z) = B (~, v) z~ - I (I - z) v - I . 0 < z < I 

From (*) anq (**) we conclude that U and Z are independetnly distribl 
U as a Y (I-L + v) variate and Z as a /31 (I-L,v) variate. 

Example 8·33. If X alld Yare illdepelldelll Gamma variates 
parameters Il alld v respectively. show that 

U=X+ y,Z=~ 
are illdepelldelll alld that U is a Y (Il + v) variate alld Z is q /32 (Il, v) variat, 

[Rajasthan Univ. B.Sc. (Hons.), 1 

Solution. As in example 8·32, we have 

dF (x ).) = ." I " e-(X+)) ~-I ).v- I dx d)' 0 < (x ).) < ,00 , r (Il) r (v) , , 

Since u = x + y and z = :! , 
y 

x u u 
1 +z= I +-=- ~ y=--

y Y I+Z 
J _ a (x, y) _ - u . 
- a (u, z) - (I + d 

and x=~=u( 1_._1_) 
H·z I +z . 

As x and y range from 0 to 00,. both u and Z range from 0 to 00: H 
the joint probability differential of ral)dom variables U and Z becomes 

dG (u, v) = r(ll>'r (v) e- u (,I'~Z r- I 
( I :·z J- 1 I.~I dudz 

[ -U~+V-I \[ I JI-I ) 
= e u . duJ <. dv' r (I,U v) B (11, v) . (I '+ z)~+v ' 

0< u<oo,O<\. 
Hence U and Z are independently 4istributed, U as a Y (Il + v) va 

and Z as a /32 (11, v) variate. 

Remark. The above two examples lead to the following important rel 

If X is a Y (1;1-) variate and Y. i!'. al'l indePendent Y (v), variate, then 
(i) X + Y is a Y (Il + v) varia~e, i.e., the sum of two independent Gal 

variates is also a Gamma variate. • . 
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(ii) ~ is a /32 ()1. v)- variate. i.e .• the ratio of two independent Gamma 

variales is also a gamma variate. 

( ... ) X . A ( ) ',-
III X + Y IS a pi )1. v v"nate. 

Example 8·34. LeI X l//ld'Y Illll'e jO;III p.d./. 
e-(' H) .(1 r.f 

g (x. y) ;= r4 r5 ,.0 O. Y > 0 
= 0, elsewhere. 

Find(i)p.dJ.ofU= x~ Y' (ii)£(U) and (iii)£[ U-£(U)]2 

(Allahabad Univ. B.Sc. 199Z) 
x 

Solution. Let u = -- and v = x + y 
,x+y 

=> x=uv,y=v-x=v-uv=v(l-u) 
Jacobian of transformation is 

ox ox 

J = 0 (x. y) = ou ov 
v 

~ ~ = o (u. v) J -v 
Ott OV 

Hence joint p.d.f. of U and V becomes: 
P (u, v) = g (x. y) . I J I 

1 _ v ()3 ( ]4 = r4 rs e ' uv [v \ - u) X v 

u 
=V 

1-u 

\ -v 8 3 (\ 4 0 = r4 rs e . v . u - u); ~ u ~ \ ; v> 0 

where 

[ '.' u = _x_ <:" I and since x > 0, )' > 0 
x+y 

. we have 0 < u < I and v = x + y ~ 0 ] 

"[ -I -v 8J[' f9 3 4] = f9 e . v r4 rs U (\ - u) ; 

p. (u, v) = PI (v) . P2 (u) • 

() \ -v 8 0 
PI V = r 9 e v; v. > 

. . . f9 ~ 4 
P2 (u) = r4 rs u· (\ - u) ; 0 < u < \. 

O<u< \, ·v>O 

...(of) 

... (**) 

From (*), we conclude that' U and.y are ·independently distributed and 
from (**). we conclude that 

U= X~ y -~d4,S) .. 
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i.e., U is a Beta vari.ate of first kind with parameters (4, 5). 
Aliter. We have 

1 -(x+\') 3 4 g(x y)=--e 'x y , r4r5 

[ I -x 3][ 1 -,. 4] = r4 e x r5 e ' y 

=gl (x)g2 (y) ;x>O,y>O 
=> X and Yare independently distributed. and X-y(4) and Y-y(5) 

Hence 

Now 

X U=-- - RI (4 5) X+Y ... , 
1 1 

E (U) = J u. p2(u) du = B (~ 5) . J u4 (1- ut du 
o ' 0 

1 = B (4, 5) . B (5, 5) 

,. f'9 r5 r5 f'9 .4 r4 4 
=r4r5 x no =r4.9f'9='9 

1 

2 -..-.!.-J 2 3 4d E(U)-B(4,5)0 u.u (l-u) u 

[Using Beta integral] 

1 f'9 r6 r5 
= B (4, 5) x B (6, 5) = r4 r5 x""'fi'l'" 

5x4 2 =--=-
IOx9 9 

E [U -E (U) ]2= E (U2) - [E (U)]2 =1_~.=.1. 
9 81 81 

Example 8·35. A random sample of size n is taken from a population with 
distribution: 

1 -xla(X JA-
1 dx '1 dP(x)=-e - -' O<x<- a>O ",>0 

r(X) l a a ' ',' 

Find the distribution ·of the mean X. 
Solution. .. 

Mx (t) = E (lx) = J en f(x).dx 
o 

[Delhi Uolv. M.Sc. (OR), 1990] 

1 ,"1 tt -xla(xJA-1dx =-- e e - -
r (X) 0 a a , 
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.. ' 
[.: McK(t) -Mx(ct)] 

CI Mx, (tIn) Mxz (tIn) ••. Mx. (tIn), 
(sinceXl,X2, ... ,X" are independent). 

Hence on using (.), we get 

M~(I)-[( 1-:( r -( 1<;. r 
which is the m.g.f. of a Gamma distribution (c.f. Remark: 3, § 8'3'2)~ Hence by 

uniq,ueness theorem of mg.f., X r (n! a, n A) with p.d.f. 

( -) (nlat" -ttil"(-rA- l 0 -
g x - r (i.. n) ex, < ~ < 00 

Example 8·36. A sample of n values is drawn from a population whose 
probability density is ae-Cl , (x:e 0, a > 0). If X is mean of the sample, show 
that na X is a y (n) variate and prove that 

Solution. 

- 1 -E (X) -- and S.E.ofX 
a 

• CD 

1 
-am 
(Marathwada Unlv. MA., i991) 

Mx(t)-f e"'f(x)dx-aje-< .. -tPdx 
o 0 

I 
e-< .. -t)% ICD a 

-a --- (a>i) -(a-t), 0 a-t' 

X- (Xl +X2 + ... +Xttl IV v }(,,) an -an -a\Al+,42+ . n ' 

M..,.x(t) .. M",(X,+XZ+ ... +x.) (t) - XI+XJ+"'+x. (at) 
- Mx, (at). MX2 (at) ... Mx. (ath,. 

(sin~ the sample values are independent). 
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ft ft 

:. M.:f(t) .. ,n Mx; (at) -'[ MXi(at)] .·1 
(since Xl, Xl, •.• , Xft are identically dis'tributed). 

:. M • ..f(t) - ( 1 ~ t r ... (1- tr", which is the mg.f. of a y (n) variate. 

Hence by uniqueness theorem of m.g.f., anX is a y (n) variate. 
Since the mean and variance of a y (n) variate are equal, each being equal to 

n, we have 

E(anX )=n - - 1 
~ an E (X ) '" n, i.e., E (X ) = -. a 

- ,2 2 - ) . (X- ) 1 and V(anX ) - n ~ a n V(X -n I.e., V --=-::2 
na 

- _~ 1 
Hence standard error (S.E.) of X - v V (X F ' .1-

avn 
Example 1·37. Let X - Pt{Il, v) and Y - Y ().., Il + v) be independent ran­

iJom variables, (Il, v, ).. > 0) • Find a p.d.f. for XY and identify its distribution. 
[Delhi Unlv. B.sc. (Stat.' BODS.), 1917]' 

Solution. SinceX and Y are independently distributed, their joint p.d.f. 
is given by 

1 )..",+V 
f(x'Y)=B( ).X",-l(l'-x)V-l xr ( )e-).Yy"'...,-l j 

. Il,v" Il+v 
o 1< x'< 1, 0 < Y < 00 

Let us transform to the ~ew variables U and Z by the transformation 
XY-U,x-z i.e, x-zandy·u/z 

Ja~ol.?ian oftransformationJ is given by 

by 

J- a «x,y) .l~ -! --J: 
a u,z) -;;: z 

Thus the joint p.d.f. of . and Z becorqes 

g(u,z)", B (Il':;;:~ +v)' (z)"'-~(1_z)V-1 e- h / Z .(; f+V_1IJI; 

.0<u<00,0<z<1 
Integrating w.r.t. z in the ,ange 0 < z < 1, the marginal p.d.f. of U is given 
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Thus 
'l1&+V I&+v-l 0 

8(U)_fl.· u f il(-l e-h(l+1)(_dt) 
r (J1) r (v) 

CD 

CD 

)..I&+v Ul&+v-l e-)..u f -).. .. v-l 

- r (J1) r (v) e 'I ' dt 
o 

)..1& +V UIl +V-l e-h r (v) - --r (J1) r (v) ().. U)V 

_~ e-).."ul&-l O<U<co r (J1) • , 

Hence U -XY is distributed as a gamma variate with parametelS ).. and 
..... i.e., XY -y ().., J1) • 

Example 8·38. Letp -Ih (a, b) whereaandbarepositiveintegers.After 
one observes p, one secures a coin for which Ihe probability ofheads is p. This coin 
is flipped n times. Let X denoie the number of helJds which resull. Find P (X - k) 
for k - 0, 1, 2, "', n. Express Ihe answer in lerm,s 0/ binomial c(}-ejfu:ients: 

Solution. Since p -Ih (a, b), its p.d.f. is given by 

P I;") ,1 0-1 (1 )"-.1 0 1 
V' - B(a,b):P . -p ,<p< 

P (X - k I the probability of success in a single trial is p) 

( n) k .J'.-k • 1 -\kP't ,q--p 

P(X-k)- f P(P)P(X-klp)dp 
I) 

1 

-f 1 0-1(1_ )"-1 (n) k(l_ ),,-kdp 
o B (a, b.)·P p. k P P 

_ (Z) Ii o+k-l(l_ ),,+"-k-l d 
B(a b) p P ip 

~ 0 

( ~) B(a + k, n + b - k) 

- B (a; b) 

Webave 
••• (1) 

1 r (m + n) (m + n -1) ! mn (m + n ) 
B (m, n) - r (m) r (~) -'(m -1) ! (n -J) ! - m + n m .•• (2) 



P(X-k) .. (a+k)(~~b-k) ('J+.a+b) 
(n+a +b) a +k 

(,~) (,a:b) ab(n+a+b) 

- (n+a+b) "(a+b)(a+k)(n+b-k) 
a+k, 

Example 8·39. Given the Incomplete Beta Function, 
11 

Bll (/,m)- f ~-l(l_x)"'-l·dx 
o 

and 111 (I, m)- Bll (~ m)IB (!, m), show that 
111 (I, m) -1-11-11 (m, I). 

Solution. We have 
11 

111 (I, m)B (~m) -Bll (~m) - f ~-.1 (l_x)",-l dx 
O. 

1 1 

- f ~-1 (l_x)",-1 dx- f ~-1 (l_x)_-1 dx 
o 11 

1 

-B(/,m)- f ~-I(I_x)m-ldx 
11 

In the integral, put I-x - y, then 
o· 

11l(/,m).B(/,m).-B(/,m)- f (l_y)'-1y"'-1(_dy) 
1-11 
1-11 • 

- B(/,m)- f y"'-I(1_y)'-1dy 
o 

• 

-B (I, m) -Bl-ll (m, I) -B (I, m) -h-ll (m, I)B (m, 1) 
[From (.)] 

Since B (I, m) - B (m, I), we get on dividing throughout by B (I, m) 
111 (I, m) -1-h-ll (m, 11 

EXERCISE 8(d) 

1. (a) Suppose the frequency function of a random variable is given by lJ! e-ll· 
f(~) - """"ki""""' for x, > 0 

0, otherwise 
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where k is non-negative integer. 

(i) Find the moment generating function of this distribution. 

(ii) Determine the mean and variance of this distribution. using moment 
generating functio~. 

(b) If X is a Gamma variate with parameter A., obtain its m.g.f. Hence 

deduce that the m.g.f. of standard gamma variate tends to /12 as A. ~ 00. Also 
interpret the result. [Delhi Univ. B.A. (Stat. Hons.), 1988, '82] 

(c) X and Yare two independent gamma variates, with parameters / and m. 
prove that (X -+ Y) is a gamma variate with parameter (/ + m). 

(d) If XI. X2, ..... Xn are independent and identically distributed gamma 
random variables, what is the distribution of XI + X2 + ... + Xn ? 

[Delhi Univ. B. Sc. (Maths. Hons.), 1988] 

(e) Cosider a random variable ,X with the following p.d.j. 

j(x) = 1 xa - I e-xlP . 0 < x < 00' a A > 0 f(a) ~a ' , • .., 

Find the moment generating function of X. 

Let the random variable X with above p'.d.f. be.defined as X - Ga (a. ~). 
Then prove the following theorems: 

Theorem 1 : if X and Yare independent and X - Ga (al> ~) and 
Y - Ga (a2, ~), tl1en X + Y - Ga (al + a2,' ~) 

Theorem 2 : If X and Yare independent and X - Ga (al> ~) and X + Y-
Gu (al + a2, ~). then Y - Ga (a2. ~) (Mysore Univ. B.Sc. 1993) 

2. (a) Define the Beta variate of first kind. Obtain its mean and variance. 
Also define. the Beta variate qf second kind and state its relation. with Gamma 
variates. (Nagp1,lr Univ,. B.Sc. 199~) 

(b) Write down the Beta probability functions of the first kind and the 
second kind with parameters II and v. Show that a Beta variate of the first kind 
can bc obtained by a tfansformation of a Bcta variate of the second kind. 

(c) If .r.~as a Beta, distribution,. can E (I/X) be unity? 

" m+II-J 
Ans. X - B (m, n) ; E (IIX') = I > 1. No. 

11-

3. Let X - 'Y (A., a) and Y - 'Y (A., b), pe ipdependent random variables. 
Show that: 

E [X : y] = E (~CfJ Y) 

Hint. Since X - 'Y (A., a) and Y - 'Y (A., b) are Independent. U = XI (X + Y) 
and V = (X + Y) are independent. Hence 

E(UV)=E(U)E(V) => E(X)=E[X: y].E(X+ Y). 
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4. (0) If X - yeA, J1) and Y - yeA, v) are independent random variables 
show that ' 

X 
Y - P2(J1, v) 

(b) X and Yare independent Gamma variates find the distribution of 
XI(X+ 1'). 

·(c) If X is random variable having as its rth moment 

(k+r)! 
J1',. = -k"'! 

k being a positi~e integer. show that its probability density function is 

{

xI.: ._~ ki e " x >0 
j(x) = . x < O. 

o 
(d) If the r.\'. X is such that 

. E(X") = (n + k) ! k"l k !; n = 1, 2: 3, ... 
k being a positive integer, find the p.d.f. of X. 

Ans. X -y(±,k + 1) [Del.hi Univ. M.A. (Econ.), 1987) 

5. If X and Yare independent Gamma variates with parameters J1 and 
v respectively, show that the variables X _ Y 

V = X + }' and V = --' -

arc independent ·variables. 
X+Y 

6. If X and Yare independent Gamma variates with parameter A and II 
respectively, sliow that the variables: . 

X 
(0) lJ = X + }' and V = X + Y 

are independently distributed and identify their distributions. 
[Delhi Unh'. B.Se. (Stnt Hons.) 1991J 

(b) U = X + Yand V = Xlf are independently distributed, lJ - y(A + 11) 
and V - ~2 (A, J1). 

7. A simple sample of 11 values xl' x2, ... , x" is drawn from the I 

population: 

dP(x) = _I_ e-:< x n- I dx,OSx<oo 
[(/1) 

If x is the mean of the ~ample, find the distributioll of n x . HellCe find the 
mean and variance of the distribution. 

8. (0) show that for a yeA) distribution, 
Me<l11 - Mode 1 1 113 

o = Ii = '2 0 3 . 

Show that the excess of kurtosis of the distribution is 6/A. 



.r"tklll COllfjllui.us I)istributioll~ 
'J'he< ' 

885 

<hI Show that thc mcan valuc ofthc'positive square root of a y CA.. /I) variate 
I .r-

io; r (11 + i ) / I \' A. r (1/) I ' 

Hence prove thai the mean dcviation of aN (J.!. (}"2) variate from its mean is 

6{211t 
[Gauhati Univ. M.A. (Eco)., 1991; Delhi Univ. B.Sc. (Stat Hons.), 1989] 

I' 

Hint. Proceed as iQ Example,IL31. 
9. Show that the mean value of the positive square root of P(J.!. v) variate 

r ( J.! + t ) nJ.! + v) 

r(1l) 1 J.1 + v + t J 
10. (a) For the distribution: 

1 x"-I 
dP(x)=B(Il.V) (I+X)I1+ V ; O<x<co.v>2 

h ' . 1l(J.1+~ show t at vanance IS 2 • 
(v - 1) (v -~) 

Find also the mode and Il/ (about origin). Also show that harmonic mean is 
(~-I)/v . 

(b) Find the arithmetic mean, harmonic mean and variance of a Beta 
disttibution of first kind with paran:teter Il and v. Verify :hat A.M. > H.M. 

Also prove that if G is the geometric mean. then' 

logG- 1 a ~(IA,v)_,."a [.logV2-1ogF(IA+V>] 
, B (lA, v). a v u v. 

11. Given the Beta distribution in the following form : 

p(x)= B(q+ ~'A+ 1) .xU(I-xl;a>-l.A.>- t.O~x~ 1 

Snd its variance. • 

Also find the dist~ibution of (I) i, (ii) 1 ~X . 
12. If X is a norma) variate with mean Il and standard deviation ()" • 'find 

be mean and variance of Y defined ,by 

\ Y = ~ ( X ~ Il j (Meerut Univ. B. Sc., 1993) 

8 6. The Exponentiai Distribution. A conti nuous random variable X as­
tilling non-negative values is said to have an exponential distribqtion witq 
Ilrametcr e > 0, if its p.d.f. is given by 

f (x) = . e • ~ :-{e -ex >0 

O. otherWIse ... (8,24) 

prakash
Polygonal Line
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The cumuLive distribution funCti911 F (x) is given by 
\ \ 

F (x) = J f(lI) till = 9 J exp (- 9/1) till 
o o 

F (x) = { I - exp (- ~ x), x ;:: 0 
0, otherwise ... [ 8·24 (all 

86·1. Moment Generating Function of Exponential Distribution 
~ 

Mx (t) = E (e'x) = 9 J e'r e- 9 .t dx 
o 

~ 

= 9 J exp {- (9 - t) x I dx = (9 ~ t) , 9> t 
o 

=(I-~JI = r~(~J 
Il: = E (X') = Coefficient of :r! in M,x (t) 

r! 
=-; r= 1. 2, ... 

9' 

M ' I eatl=ll\ =-" r:- 9 
• . ,,2 2 I 1 
Varlance = 1l2,= 112 -Ill .= 92 - 92 = e2 

Theorem. IfXj, Xi, ... , Xn a"fdndepenaehtran90m variables,Xj havingan 
exponential distribution with parameter 9j; i = 1,2, ... , n; then Z = min 

n 

(XI. X2. '''! Xn). has exponential distribution with parameter l: 9i,. 
j = \ 

[Delhi Univ. B.Sc. (Stat. Hol,l~.), ~986J 

Proof. Gz (z)= P(Z ~z) = I-P(Z ;>z) 

= 1 - P [ min (X I, X2, ... , Xn) > z ] 

= 1 - P [Xj > Z,j * i = 1,2, ,,'/ n] 
n n 

=1- n P(Xj>z)=I-.n [1-P(Xj~z)1 
j=\ j=\ 

n 

= 1 - n [1 - Fx, (zll 
• 1= \ • 

where F 'is the distribution function of .X'; . 

[c.f. 8·24 (a)] 
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= l' I-exp { (-'i~le,):}. :>0 

O. ()therwi~e 

1 
( i e,) exp {(- i ei )::} , 

gz(::) = ,=1 ~=I 

0, otherwise 

z>o 

/I 

~ Z = min (X" X2, ... , X,,) is an exponential variate with parameter l: 9;. 
;-1 

Cor. If Xi ; i = 1,2, ... , II are identically distributed, following exponential 
distribution with parameter e, then Z = min (XI, X2, ... , X,,) is also exponentially 
distributed with parameter lie. 

Example 8·40. Show that the exponential distribution "lacks memory", 
i.e .• if X has an expollemial distribution, then for every comtant a ~ 0, one has 
p(Y~x I X~ a) = P (X ~x) for all x, where Y= X-a. 
[Delhi Univ. B.Sc. (Stat. Hons.), 1989; Calicut Univ. B.Sc. (Main Stat.), 199'1] 

Solution. The p;dJ. of the exponential distribution with parameter 9 is 

f(x) =9 e~9x; 9 >0, ° <x < 00 

We have 

P(Y~x()X~a)=P(X-a~x()X~a) (.,' Y=X-a) 
= P (X~a +x()X~ a) =P (a ~X~a+x) 

a+x 

= 9 J e-9.< dx = e- a9 (1 _ [9.<) 

a 

and 
(I 

IX ) p(YsxnX~a) 1 -6% 
P(Ysx ~a = P(X~a)' - -e ... (*) 

% 

Also f -6%dx 1 -6% P(Xsx)= 9 e --e 
o ... (**) 

From (*) and (**), we get 
P (Y~x I X~ a) = P(X~x) 

i.e., exponential distribution lacks memory. 
'Example 8·41. X and Yare independent with a common p.d.f. (exponen­

tial): 

f(x) = { [x, X ~ ° 
O,x<O 

Find a p·.d.f. for X - y, [Delhi Univ. B;Sc. (Stat. HODS.), 1988, 'as] 
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Solution. Since. X and ]' are independent and identically distributed 
(i.i.d.), their joint p.d.f is given by 

Let 

_ {e-(x+y); x> 0, y > (} 
fxy (x, y) - 0 

{
u = x- y 

v=y => 

otherwise 

{
x= u+v 

y=v 

J= 8(x,y) =11 11=1 
8(u,v) 0 1 

Thus the joint p.d.f. of U and V becomes 

g(u, l'l = e-(u+21'): v> 0, -00 < u <00 

... (1) 

(l)=> 
Thus 

u=x-V=>V=x-u 
v > - u if - 00 < U' < 0 
I' > 0 if u > 0 and 

For - 00 < U < 0, 

'" '" 
g(u) = f g(u, 1') dl' = f 1 I

"" -")" 
-(u+21') I -u e ~ 1 u e (v=e -- =-e 

-u -u 
and for u > 0, 

g(u) = j g(U'V)dv='-'I~;[ =I'-" 
Hence the p.d.f of U :::: X - ]' is given by 

_ji eu ,_oo<II<O 

g(u) - I -u 0 
-e ,11 > 
2 

These results can be combined to give 

1 -iui 
g(u) = '2e . - 00 < 11 < 00 

-2 2 
-u 

which is the p.d.f. of standard Laplace distribution (c.f § 8'7). 
Alite!'. 

w. w . 1 e-(I-I).~ I'h I 
Mx (t) = f e'·t f(x) dx == f e-(I-t)·t dx = = -, I <I 

o 0 -(I-I) 0 1-1 
:. Characteristic function of X is 

1 
q>x (I) = 1 ~ il = CPr (I), 

(since X and]' are identicallv distributed.) 
:. cPx_ y(/) = q>x+(-y) (t) = q>X(t) q>_y(/) (.; X, ]' are independent) 
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I 1: 
= CPx(t)· cpy(-/~ = (i-it) (l+it) = i+/2 

which is the characteristic function of the Laplace distribution, (c.f. § g'7) 

I _1111 
g(u) = '2e ,-oo<u <00 ... (*) 

Hence by the uniqueness theorem of characteristic functions. U = X - Y has 
the p.d.f. given in (*). 

8·7. Lal)hlCe (Double Exponential) Distribution. A continuous random 
variable X is said to follow stapdard Laplace distribution if its p.d.f. is given by 

I -Ixl 
J(x) = '2 e , -00 <x <00 ... (8'25) 

Characteristic function is given by 
00 00 . f eitx J(x) dx =.!.. f eitx e-Ixl dx 

cpX</) = 2' 
-00 -00 

<JJ 

J f -~d ='2.2 coslX.e x, 
o 

Since the integrands in the first and second integrals are even and odd 
function of x respectively. 

=> 

00 

cpt..(l) = f e -;;: cos Ix dx 
o 

00 

=1_/2 f e-X coslxdx (on integration by parts) 
o 

= 1 - 12 cpX</) 

I 
CPx(/) = 1+/ 2 ... (8'25 a) 

The mean of this distribution is zero, standard deviation is.J2 and mean 

deviation about meaJ~ is I. 
Relllllrk. Generalised Laplace Distribution. A continuous r. v. X is said to 

have Laplace distribution with two parameters ).. an4 11 if its p.d.f. is given by 

1 
[(x) = - exp [-lx-JlI)..), - 00 <x < 00;).. > 0 

2)" . ... (8·2~) 

X -11 
Taking U = -)..-. in (8'26) we obtain the p.d.f. of standllrd Laplace variate 

given in (8'25). 
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Moments. The rth moment about origin is given by 

, = E(Xr) = _I JeT> x' exp (-IX- J.l1)dX 
J.l, 2A. A. . 

-00 

1 fOO ,. ='2 (ZA.+J.l) exp(-Izl)dz, 
-w 

z---[ _ X-~l] 
:1,. 

= ~ I [k~£~ }ZA.)k J.lr - k] exp(-Izl) dz 

= i ,~,[ (;;}! ~'-' lz' e.'J'{ -Izl) dz ] 

= ~ f [(r) A.k J.l,-k {fO 
Zk /-Izl) dz 

2 k=O k 
-00 · +' .-," dz}] 

= ~ f [(r) A.k I:\-,-k {( _I)k f«l e-z Zk dz 
2 k=O k 

o 

+l >z· dz}] 

=± k~O[(~)A.k J.lr- k f(k+l) {(_l)k + I}] 

~ J.l'r =± k~O[(nA.k J.lr- k k!(I+(-l)k}] ... (8·26a) 

.. Mean = J.l'r = J.l1' = J.l and J.l2' = J.l2 + n2 

.. cr~\ = J.l2' - J.l1 '2 + 21,.2. 

Similarly we can obtain higher order moments front (8·26 a) and hence the 
values of PI and P2 can be obtained. 

The characteristic function·of (8'26) can·be obtained exactly. similarly as we 
obtained the characteristic function of standard Cauchy distribution, c,f.§ 8.9. 

8·8. Weibul Distribution. A random variable X has a Weibul distribution 
with three parameters c (> 0), a.(> 0) and J.l if the r.v. 

y = (X: J.l J ... {I) 
has the exponential distribution with p.d.f. 

py(v) = e-Y, y > 0 ...(ii) 
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The p.dJ. of X is given by 

Px(,)~ .. (,-,[x~~ f' e>p [-[ x~g i ]. x>~,,,>O .. (;;;) 
The standard Weibul distri6ution is obtained on taking ex = I and 11 = 0, so 

that the p d.f. of stalldard Wei/JUt distributioll which depends only on a single 
parameter c is given by 

px (x) = ex' - I. exp (-x' ); x > 0, c > 0 ... (iv) 
8·8· I. Moments of Standard Weibul Distribution (iv) 

For standard Weibul distribution, (ex = I, ~ = 0), from (i), we get Y =)f 
which has the exponential distribution (il). We have 

ll'r=E (Xr) =E(yl/c)r =E(yrlc) 

-
= I e- Y • lie dy 

o 

~'r=r( ~+ I) 
Moan ~E(X)~ r( ~~ J 

and Var (X) = E (X2) = [E (X) ] 

[ '.' y ha~ p.d.f. (it)] 

... (v) 

= r(~+1 J-[r(~+llr 
Similarly, we can obtain expressions for ~igher order moments and hence 

for ~I and ~2. For large c, the mean is approximated by 

E (X) -::. 1 _ J.. + _I (1t2 + i ) 
C 2c2 6 

= I - 0·57722 c:- I + 0·98905 c- 2 

where Y= 0·57722 is Euler's constant. 
The distribution is named after Waloddi Weibul, a Swedish physicist, who 

used it in 193~ to represent the distribution of the breaking strength of materials. 
Kao, J.H.K. (1958-59) advocalelj tl)e.use ohhis distribution in reliability studies 

. and quality control work. It is also used as a tolerance distribution in the analysis 
·of quantum response datb. 

8·8·2. 'CbaracterisationofWeibul Distribution. Dubey, S.D. (1968) 
has obtained the following result : 

•• Let Xi (i = 1,2, ... , n) be U.d. random variables. Then min 
(XI, X2, ... , XII) has a Weibul distribution ifand only if the common distribution of 
Xi'S is a Weibul distribution.". 

Proof. Let Xi, (i= 1,2, ... , n) be U.d. r,v. each with Weibul distribution 
(iiI), and let Y = min (X), X2, ... , XII)' Then 

Pl(Y> y}= P [ min (Xl, X2, ... , XII) > y] 
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= P [.~ Xi> Y] ,= I 

" . 
= n p (X, > y) = [ P (Xi> Y) J" 

,=1 ... (*) 

SinCeXi'S arei.i.d. r·.I'. 's. 

Now P (X, > y) = I c ,,- '(' ~ ~ r e<p [ -( 7)' 1 dx 

[I=(~n 

=e<p[-(7rJ 
Substituting in (*), we get 

PlY> Y)=[ e<p {-( 7) H 
=exp [ -n( 7 r 1 
= exp [ - { no', ~ - ~) r 1 

This implies that Y has the same Weibul d.istribution as Xi'S with the 
difference that the parameter a is replaced by a ,,-IlL' • 

8·8·3. Logistic Distribution. A continuous r.v. X is said to have a Logistic 
distribution with parameters a and 13. if its distribution function is of the form: 

Fx (x) = [ 1 + exp 1.- (x - a)l131 f I , 13 > 0 ... (8·26 b) 

= 1 [ 1 +tanh H (x - a)/13 }] ; 13 > 0 ... (8.26 c) 

(See Remark I on page 8-94)'. 
The p.d.f. of Logistic distribution with parameters« and ~ (> 0) is given by 

d 
f (x) = dx (F (x» 

.= i [ 1 + exp 1- (r.- a)/13 } r2 [exp 1- (x - a)lp } ] ... (8.26 d) 

= 4113 sech2 { ~ (x - «)/13 } ... (8.26 e) 

The p.d.f. of standardlLogiftic variate Y = (X - a)/I3, is given by: 
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f' I dr I gdy) = (.1'). -
dy 

=e-'( \ +e-.')2 ;-oo<y<oo 

= ~ sech1 ( ~ y ; ~oo < r < 00 

The distribution funclion of is : 

8,93 

... (8·26f) 

.. ,(8·26 g) 

Gy(y)=(\ +e-'r l ; -oo<y<oo , .. (8·26 h) 
Logistic ui~tribution is ex.tensively u~ed as growth function in population and 

uemographic stuuies and in time series analysis. Theoretically, Logistic distribu­
tion can be obtained as : 

(i) The limiting distribution (as 11 ~ 00) of the standardised mid range, 
(average of the smallest and'the largest sample observations), in random samples 
of size 11 

(ii) A mix.ture of extreme value distributions, 
Moment Generating Function. The m,gJ, of standard Logis(ic variate 

Y is given by: .. 
J.1Y (t) = E ( e'Y )=J .. e/) ,g ()') dy 

.. 
= f e/)·. e-Y (I + e-Yr 2 dy 

.. ( )-2 = _~ /Y e-Y 1 ;eY dy 

Put z=(l +eY)-.1 => eY:;:l-l = l-z , z z 

:. My(t) = j (l-Z J'. (-dz) = J Z-I (l-z)' dz 
.1 z 0 

= P (l - t, l' + t), I - t > 0 
= r (l - t) r (l + t)/r 2 
= r(l - t) r(l + t) 
= '7tt cosec 7tt ;t< 1 

7t2 t2 744 = 1 + -6- + 360 1t t + 

(See Remark 2 below.) 
:. E(y)=Coeffi.,ient of t in (II<) = 0 
=> Mean = 0 

... (8·26 r) 

.. ,(*) 
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1 1 

1J.2 = E (y2) = Coefficient of ~-( in (*) = ~- • 

1J.3 = E(y3) =0 

IJ.~ = E (r) = Coefficient of ~~! in (.*) = 175 1t~ 
Hence for standard Logistic distribution: 

Mean = 0, Variance = 1J.2 = 1t2/3, 

1J.2 \J.4 7 x 9 
~,=...l.3 = O. ~2=-=--:;=4!2 

·1J.2 IJ.~ 15 
Remarks 1. We havt(: 

. h (-< I -2< 
tanh x = ~ = e ~ e = - e 

cosh x eX+e- x I +e- lx 

~ I+tanhx= 2 2 ~ -21 [1+tanhxl=(I+e-lxr' 
I +e- < • 

2. 

Proof. 

3. We have: 

g(Y)=e-'( 1+ ~ r =e"( I +e" J' =g(-y) 

~ The probability curve of Y is symmetric about the line y = 0 . 
Since p.d.f. g (y) is symmetric about origin (y = 0). all odd order moments 

about origin are zero i.e., 
J.1'tr+ 1 = E( y17+11';::0, r=O, 1,2, .,. 

In particular 
Mean = J.11'=0 

IJ.,' = rth moment about origin 
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= l1h moment about mean 

= 11,. 

=> 112, + 1= 11'2r+ I = () 

895 

i.e., all odd orderlllolllellts about mean of the standard logistic distribution are 
zero. 

In particular 113 = 0 => ~I = 0 

4. The mean and variance ofthe logistic Variable (X) with parameters (X 

and ~ are given by. : 

E(X)=E«X+~Y) 

= (X+~E(Y) 

(-., y=X~(x) 

=(X 

Var X = Var «x +. ~ Y) = ~2 Var (Y) = ~21t2 /3. 
5. We have: 

G(Y)=·(I+e-Yr·1 = [1:fJ-·1 -~ 
.. 1 + e;~ 

eV I 
=> 1-G(y)= 1---=--

1 +ev 1+ eY 

~ 
:. G (y) . [ 1 - G (y) ] = (I + eY)2 = g (y) 

Also 
G (y) 

I-G (y) 
,_ [G (y) ] 

) - loge I _ G (y) 

... (826j) 

(cf. Remark 3) 

... (8·26 k) 

6. Mean deviation for the standard Log,lstic distributjon i~ 

[ .l!.l ] _ ~ [(- 1); -\ ]_ 
2 ,,1- 2 + 3 - 4 +... - 2 ,:\ .i. - 2 loge 2 

Proof-is left as an exercise to the reader. 

~X.~RCISE See) 
1. (a) Show that for the exponential distribution 

p(x)=yo.e- xta , O$;x<oo; (J~O, 
mean and variance are equal. Also ~btain the interquartile range ofthe distribution. 

[Delhi Univ. B.Sc. (Stat. Hons.), 1985, 1982] 

(b) Suppose that during rainy season on a tropical island the length of the 
shower has an exponential distribution, with parameter').. = 2. time being measured 
in minutes.What is the probability that a shower will last more than three minutes? 
If a shower has already lasted for 2 minutes. what is the probability that it will last 
for at least one more minute? [Madras Univ. B.Sc. (Main Stat) 1988] 
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2. (a) [f XI. X2 . .... X" are intlependent1random variables having exponen-

" tial distribution with parameter A. obtain the distribution of Y == r X,, 
I - I 

(h) Obtain the moment generating function and the tumulant generating 
function of the distribution with p.tl.f. 

f(x)".!. e-xlo ; 0 <x < 00, <1 > 0 
(J 

[Madras Univ. B.Se. (Main Stat.) Oct. 1992] 

Hence or otherwise obtain the values of the contants ~I, ~2, YI and Y2. 

(c) A continuous random variable X has the probability density function 
f(x) given by 

== A e- II'; x> ° 
f(x) == 0, otherwise 

Find the value of A and show that for any two positive numbers.s and t, 

P[X>s+tIX>s ]=P[ X>t]. 
3. If XI and X2 are independent and identically distributed each with 

frequency function e - " x > 0, find the frequency function of XI + X2 . 
(b) If XI, X2, ... , X" are indepen<Jent r.v.'s X, having an exponential dis­

tribution with parameter ei, (i == I, 2, ... , tI), then prove that Z == min (XI, X2, 
II 

... , XII) has an exponential distribution with parameter r e; 
i= I 

[Delhi Un.iv. B.Se •. (Stat. Hons.), 1990, '88, '86) 

4. Let X and Y have common p.d.f. (X e- aA ,0 < x < 00, (X> O. Find the 
p.d.f. of 

(i) X\· (ii) 3 + 2 X, (iii) X - Y, and (iv) I X - Y I 

Ans. (i) ~x-21~ exp(-(Xx I/3), (it) % e- a (x-3)12 , x>3 

( ... ) (X -al.1 [I .1 
lit "2 e , a x, anu (iv) (Xe-ax,x>O. 

5. (0) X and Yare independent random variables each exponentially 

distributed with the same parameter e. find p.d.f. for XX y and identify its 
. + . 

distribution. [Delhi Univ. B.Sc. (Stat. Hons.), 1989) 
(h) The .density functions of the independent random variables X and Y 

are: 

'fx(x)::::A(,-AI ,x>o,A>ol fdY)=Ae- A) , y>O,A>O 
= 0 , x ~ ° = 0 ,otherwise 

Find the density function of the random variable Z = X/V . 
6. (a) 'for·the. distribution given by the density function 

f (x) = ~ e -I II , - 00 < x < 00 , 
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obtain the moment generating function. 
(b) Find the characteristic function of standard Laplace distribution and 

hence find its mean and standard deviation. 
[Delhi Univ. B.Sc. (Stat. Hons.), 1990) 

7. (0) If X has exponential distribution with mean 2, find P(X < I) I X < 2) 
Ans. P(X < I) [P(X < 2) = (l - e-9)/(1 - e29) where e = ll2. 

[Delhi Uni\'. B.A. (Spl. Hons. Course-Statistics), 1989) 
(b) If X-Expo (A.) with P(X ~ I):;: P(X> I), 

... (*) 
find Var X. [Delhi VIIi\'. B.Sc. (Maths Hons,.), 1985) 
Hint P(X S. I) + P(X > I) ~ I :.> P(X ~ I) = 112 [Using (*)] 
Ans~ 'hlf ~\) = 1IA. 2 = II (log e-"'p 
8. (0) Show that Y = - (1IA.) log F (.\) is Expo (A.)' 

(Delhi 1,1nh'. B.A. Hons. (Sill. Course-StatisticS), 1985) 

Hint J1y(/) = E(e IY) = E exp [-± log F(X~] 
=E(F(.\ytlA.] = E(Z-tlA.] where Z = f (..4) - U [0, 1] 

(b) If XI' X2' X3 and X4' are i.i.d. N (0, I) variates, show that. Y ~ Xl X2 -

X) X4, h~IS p.d.f. 

1 
Iry) = - exp [- 1 y I], - 00 < y < 

2 
(Indian Civil Sel'Vices, 1984] 

Hint. Show that CPy(/) = 11(1 + (2) => Y has Standard Laplace distribution. 

00 00 

Use: 
J J e"(ax2 + 2h\)'+b,v2) d"C,dy= 1t 2 

-00 -00. Jab-h. 

9. 200 electric light bulbs were tested and the average life tiiue of the bulbs 
was found to be 2~ hours. Using the summary given below, test the hypothesis 
that the lifetime is exponentially distributed. 

Lifetime in hours: 0-20 2()...4() 40-60 60-80 80-100 
Number of bulbs : 104 56 24 12 4 
[You are given that an exponential distribution with parameters a. > 0 has 

the probability density function: 
p(i) = a. e-a.x, (x 2: 0) 

= 0, (x < 0) 
[Institute of Actuaries (London), April 1978] 

10. Find the first four cumulants of the Laplace distribution defined by 
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j'(X) = 2\. [ exp 1'-1 X - IlI/All- 00 < X < 00, A> 0 

and hence find the values of 11/; cr, Yi and· Y2 . Calculate also the semi-interquartilc 
range (~.I.R.) _ 

Ans. Kl = 11, K2 = 2 'A?, 1\3 '" 0, K~ = J 2 A 4 ; III = 11. (J = fi) .. Yl = 0, Y2 =.3 and 
S.I.R. = A loge 2 

11. The Pd;. (:; :'2~ ~xr;,; ;h:;t~:: ::~bmtY law 

Find m.g.f. of X. Hence or otherwise, find E (X) and Var (X) . 
[Delhi Univ. B.Sc. (Stat. Hons.), 1986) 

12. Xi, i = 1,2, ... , tI are i.i.d. r.v.'s having Weibul distribution with three 
parameters. Show that the variable Y = min (XI, X2, ... , Xn) " also has Weibul 
distribution and identify its parameters. . 

[Delhi Univ. B.Sc. (Stat. Hons.), 1984) 
13. Obtain the moment generating function of Lo~istic distribution and 

hence find its mean and variance. -[Delhi Univ. B.Sc. (Stat. Hons.), 1993) 
14. (a) Obtain the p.d.f. g (y) and the distribution function G (y) of the 

standard logsitic variate and prove'that : 
.(1) .g (y) is symmetric about origirr. 
(ii) g (y) = G (y)[ 1 - G (y) J 

( ... ) _I [ G(y) ] 
'" y - oge 1 _ G (y) 

(b) .Obtain the m.g,f. of standard logistic variate and hence prove that: 

Mean =0, 

~1=0, 

Variance = rt2/3 , 
R 21 , 
..,2 = 5 ; 1l2r\+ I = 0 

and mean deviation about mean = 2 log3 2. 
8·9. Cauchy's Distribution. Let us consider a roulette wheel in which the 

o 

probability of the pointer stopping at any 
part of the circinriference is constant. In 
other'\vords, the prooability for any value 
of 9 lies in the intervaf [-rt/2, rt/2 J is 
constant and consequently 9 is 'a rectan­
gular variate in the range [-·rt/2, rt/2 ) 
with probability differential given by 
dP (9) = (lIrt) d 9, -rt/2::; 9::; rt/2} 

= 0, otherwise 
... (8·27) 

Let us now transform to the vari­
able·X by the substitution: 
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x = r tan e => dr = r sec! e d e 
Since - nl2 $ e $ n12, the range for X is from - 00 to-oo. Thus the prob­

ability differential of X becomes: 
I dx I dx n dx 

dF(x)=-.--,-=-. J ' ~ I =-.--;-oo<X<oo 
n r sec- e n I r\ I + (x-Ir) I n r2 + x2 

In particular if we take r = I, we get 
I I 

I(x) =-. --J' -oo<x < 00 

n I + x- . 

This is the p.dJ. of a standard Cauchy variate and we write}(- C (1~) 

Definition. A random variable X is said to have a standard Cauchy 
distribution ifits p.d.! is gi\'ell by 

1 
fx (x) = 2 ' - 00 < x < 00 

n(l+x) ,.,(8·28) 
and X is termed as a standard Cauc~y variate. 

More generally, Cauchy distribution with parameters A. and J.1 has the 
following p.d.f., 

A. 
gy (y) = 2 2 ' - 00 < y < 00.; A. > 0 

1t [A. + (y - Il) ] ~ .. (8·29) 
and we write X - C (A., Il) 

But putting X = (Y - 1l)/A. in (8·29), we get (8·28) . 
8·9·1. Characteristic Function of Cauchy Distribution. If X is a stanClard 

Cauchy variate then \ 

I ooJ eitt 
<px(t)=- --dx 

1t 1 +1 
-00 ••• (*) 

To evaluate (*) consider Lapalce distribution 

II (z)=ie-'d, -oo<z<oo 

Then <pJ(t)=E (J'Z)_~ 
1 + t [From (8·25 a) 

Since <PI (t) is absolutely integrable in (- 00, 00), we have by Inversion . , 
theorem 

00 00 " 

1 -It I .. 1 J -it- ) d 1 J e- 't 
-e =Jl(Z)=- e -<Pl(t t=- --dt 
2 21t 21t l+r 

_00 • _00 

=> 
1 ooJ' - it: 1 .... J. itz 

e- lzI =- _e_ dt =- _e_ dt 
1t l+l 1t l+t2 

_00 .. _00 (Changing (t t~ - t~ 

On interchanging t and z, we get 
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... (**) 

... (8·30) 
Remarks. I. If Y is a Cauchy variate with parameters A and 11. then 

X= Y~!l ~ Y=!.1+AX 

= ei ~ , - A I , I • A > 0 ... (8· 30 a) 

2. Additive Property of Cauchy distribution. If XI and X2 are inde­

penclem Cauchy variat.es with parameters (AI. Ilt) and (1..2. 112) respectively, then 
XI + Xl is a Cauchy rariate with parameters (A? + 1..2• J.lI + 112) . 

Proof. <Px, (t) = exp I i Ili t - Aj 1/11. U = 1.2) 

<Px, +x, (t) = <px, (t) <PX2 (t) (Since XI. X2 are independent) 

= exp [ it (Ill + 112) '- (AI + 1..2) I t I ] 
and the result follows by uniqueness theorem of characteristic functions. 

3. Since <p'X (f) in (8·30) [where (') denotes differentiation w.r.t. t] does 
not ex ist at t = O. the mean of the Cauchy distribution does not exist: 

4. Let XI. X2, .... XII ~e a sample of n independent observations from a 
/ _ 1 n 

stlmdard Cauchy·distributi"on and define X =- L Xi. Then 
n i= I 

n 

<pX (t) = <PH, (tll1) = n [<px, (tin) ] 
i= I 

= [<Px, (tin) ]" (since Xi' s are U.d.) 

= [ [I 'In I ]n = (-I' 1= <px (t) 

Hence by uniqueness theorem of characteristic functions. we have: 

. 'Tile arithmetic mean X of a sample XI, X2, ... , Xn of independent obser­
l·lIfioll.\' /i'O/l/ a standard Cauchy distribution is also a standard Cauchy variate. 
Il'rother words. the arithmetic mean of a random sample of any size yields exactly 
as much information as a single determination of x." 

This implies that the sample mean Xn of a random sample of size n, as an 
e'itimate of population mean does not improve with increasing n, which contradicts 
Ihe Weak Law of LaIge Numbers (WLLN). 

H 9 2. Moments of Cauchy Distribution. 
GO GO 

f Af y d 
E (y) = yf(y}dy -; A2 + (Y_l')2 y 

-GO _GO 
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00 

Although the integral J ~ dz, is not cQmpletey convergent, i.e., 
_00 I.. +z -

lim n' . . n 

J Z d d .., . I I . hm J Z d n ~ 00 -2--2 Z oes not eXIst, Its pnnclpa va ue, VIZ., -2--2 Z 
, I..+z n~oo I..+z n ~OO-n -n 

exists and is equal to zero. Thus, in the general sense the mean of Cauchy 
distribution does not exist. But, if we conventionally agree to assume that the mean 
of Cauchy distribution exists (by taking the principal value), then it is located at 
x = J.l. Also, obviously, the probability curve is symmetrical about the point 
x =.J.l. Hence for this'distribution, the mean, median and mode coincide at the point 
x=J.l. 

00 OIl? 2 

J.l2=E(Y-J.l)2= J (v- J.l)2 fey) dy =~ J }Y -11) 2 dy, 
_OD 1t_ 00 1.. +(Y-Il) 

which does not exist since the integral is not convergent. Thus, in general, for the 
Cauchy's distribution Ilr, (r;:: 2) do not exist. 

Remark. The role of Cauchy distribution in statistical theory often lies in 
providing counter examples, e.g. it, is often quoted as a distribution for which 
moments do not exist. It also provides an example to show that 

q>x + y (t) = q>x (t) q>y (t) 

does 1Iot imply that X an~ r are. independent. [See Remark to Theorem 6·23] 
Let Xl, X2, .... XII be a random sample of size n from a standard Cauchy 

n 

distribution. Let X = ~ X, /" SInce E (X,) does not eXist ('.' mean of a Cauchy 
i= I 

distribution does not exist). E (X') does not exist either and the definition of an 

unbaised estiamte does not apply to X . 
Cauchy'distribution.also contradicts the WLLN [See Remark 4, § 8·9·1]. 

Example 8'42: Le.t X hal'e a (ltalldard) Cauchy distribulion. Find a p.d.f 

for X2 and identify itl' di.lt"ibul~(}1I. [Delhi Univ. B.Sc. (Stat. Hons.), 1989;·'87] 

Solution. Since X has 11 standard Cauchy distribution, its p.d.f. is 
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1 1 
f(x)=- --,.-oo<X<oo 

n 1 +x-

Th' Jistribution function of Y = X~ is 
Gy(r) = P(Y~y) = P(X2 ~)") = P(-1i ~X~..JY) 

v~ ~ 

= J f(x)dr=2 l J dx, 
-..JY n 0 I +x-

;::~ ian-I ({)-), 0<)"<00 
n 

The p:o.f. gy (y) of Y is given by 
d I 2~.-L 

gy (y) = dv { Gy \Y) ] -; . (1 + y) • 2 "f 
1 ~ 1 y(I12) - I 

-i'l +Y=B(i. ~'(I+y)(I12+I/2)'Y> 0' 

This is the p.d.f. of Beta distribution of second kind with parameters 
Itl)' X1_A.(11) 
~ 2'2 ,I.e., t'2 2' 2 

Remark. Here}, = g (x) = x2, gives g' (x) = 2x whi.ch is sometimj::s >U ali" 
sometimes < 0. Hence Theorem 5·9 can not be used in this case. 
-'"'- . Ex~mple 8·43. Let X - N (0, 1) and Y - N (0, I) be illdepelldent rail· 

dom vai:ia!Jl!s. Find the distribution ofXIY and identify it. 

[Delhi Univ. B.Sc. (Stat. Hons.), 1990; Nagpur Univ. B.Sc., 1991J 
Solution. Since X and Yare independent N (0, I), their joint p.d.f. is 

given by 
1 1, .lY2 

fxy (x,),);:: fx (x).fy (y) = -. e,-(x +y 
2n 

Let us make .the following transformation of variables 
u = xly, v = Y so that x = uv, )' = v 

Jacobian of transformation J = v. 
Hence the joint p.d.f. of U and V becomes 

guv(u, v) = 21n' exp {_(u2 i+ v2)/2} 1 JI 

1 '{ 2 '1 I = 2 n exp - (I + u ) v 12 1 vi, - 00 < (u, v) < 00 

The marginal p.d.f. of U is , .. . 

gu(u) = 21n f exp {- (l + u2) v2 /211 v 1 dv 

IJ- ~ 1 
= 1t 0 e-' q + u2) [<2 (1 + u2) ~ = t) ] 

___ 1 I e-'I- 1 
- 1t (1 + "2) - . 0 III 1t(1 .-"2) • - 00 < U'< 00 



'('beontical €ootiouous Distn"utioDS 8·103 

which is the p.d.f. of a standard Cauchy disttibution. 
Thus the ratio of two independent standard normal variates is a standard 

Cauchy variate. 
Example 8·44. Let X and Y be i.i.d. standard Cauchy variates. Prove that 

!the p.df. of XY is :, 22 {lOf I x I } . 
,.;. x - 1 [Delhi Unlv. MSc. (Stat), .991] 

Solution. SinceX and Y are independent stand~rd Cauchy variates, their 
joint p.d.f. is given by 

1 1 
f(x,y) = ,.;2' (l-+~"""-) (-1-;+-1~);:-00 < (x,y) < 00. 

Let u - xy and v - y. Then Jacobian of transformatioJ.l is given by 

J = a (x, y) -1 ~ -:2 ... 1. ( '.' y - v, x _!v ) 
a·(u, v) 0 1 v 

Thus the joint p.d.f. of and V is g~ven by 

" 1 1 1 
g (u, v) - 2 (. 2). . -I vi 

,.; . 1 + !.. (1 + v2) 
v2 

=.1.. .Ivl '-oo«u v)<oo 
,.;2 (u2 + v2) (1 + v2) , , 

Integrating w.r.to v ovt:r the range - 00 to 00, the marginal p.d.f. of U is 
given by .. .. 

I iI Ivl . gt{u)... g (u, v) dv =2 22 2 dv 
_GO 3L _GO (u + v-)(1 + v-) 

(Since the integrand is an even function of v.) 
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EXERCISE 8(1) 

1. (a) Show thata function 

f(X; Jl. A) - 2 k 2; - go < x < Qo 
A + (x-Jl) 

represents a frequency function of a distribution for a suitable value of k. 
Determine k and obtain median and quartile.~ of the distribution. ,Hence interpret 
the parameters A and Jl of the distribution. 

(0) If X is a Cauchy variate with parameters A and Jl. find the charac­
teristic function cpx (t) • Discuss briefly the role ofCauclJy distribution in Statistics. 

, [Bombay Univ. B.Sc. (Stat.), 1993] 
(c) "The role of ~uchy distribution often lies in providing counter ex-

amples." Justify. [Delhi Univ. B.se. (Stat. HODS.), 1991, '88] 
(d) Discuss briefly the role of Cauchy distribution· in statistics; 
If Xl. X2 • .... ¥n are independent standard Cauchy variates. show that the 

meanX = (Xl +X2+ ... +Xn)/n. is also a Cauchy variate. 
~Ihi Univ. B.sc. (Stat. HODS.), 1986] 

2. (0) 'f X and Y are independent random variables following Cauchy 
distribution with parameters (Al. Jll) and (A2. Jl2) respectively. show that 
X + Y follows Cauchy distribution with parameters Al + A2 and Jll + Jl2 • 

(b) Obtain the characteristic function of Cauchy distribution 
dx 

dF (x) = 2 • - ~ < x < go 

1t (1 +r) 
If Xl.X2 ..... Xn are independent Cauchy variates. show that the mean 

X -! l:X is also a Cauchy variate. 
n 
3. LetX and Y be standdrd normal variates. Find the distribution of 

U .. XIIYI· . 
1 1 

Ans. f(u) -- '--2' -go <u < go 
1t 1 + u 

4. A needle spins about the point (0. b) of the x -y plan~ with b> 0 and 
comes to a stop thereby making an angie cp with Y ~xis. The direction of the needle 
then intersects the x~xis at a point (X. 0). Assuming cP is a r.v. with uniform 
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probability di~tribution on ( - n/2, n/2), wbat is tbe distribution function and 
bence p.d.f. of X ? 

Ans. Fx{x) =1 [tan- l (xlb) +2!2] ,fx(X) =1. ~, -00 <x < 00 
n n x+!-

5. If Xl,X2,X3,X4 are independent standard normal variates, find tbe 

. 'b' f Xl X3 dlstn utlon 0 X2 + X4 . 

"t». X" is tbe mean of n independent random variables distributed like X, 

and X bas a symmetric distribution. If X" bas exactly.tbe same distribution as X 
for all n, tben prove tbat tbe characteristic function of X is 

<l>x(t) ~ e- clll 

for some real constant c > O. 'Identify tbis distribution. 

7. If X -N (1-'1, ot) and Y -N (1-'2,~) are independent random varaibles, 

. X-I-'l 
obtalD tbe p.d.f. of U = -v-- . 

"I -1-'2 (I.I.T., B. Tech. 1993) 
8·10. Central Limit Theorem. Tbe central limit theorem in tbe matbe­

matical tbeory of probability may be expressed as follows: 
"If Xi, (i = 1, '2, ... , n), be independent random variables such that 

E (Xi) .. I-'i and V (Xi) = o~, then it can be proved that under certain very general 
conditions, the random variable S" = Xl + X2 + ... + X", is asymptotically normal 
'with mean I-' and standard deviation.o where 

" " 1-'''' ~ I-'i and 0 2 - ~ at 
i-I i-I 

Tbis tbeorem wa!i fi~t stated by Laplace in 1812 and a regorous proof unde'r 
fairly general conditions was given by LiapounotIin 1901. Below we shall consider 
some particular cases of tbis general central limit tbeorem. 

De-Moivre's-Laplace theorem. (1733). A particular case of central limit 
tbeorem is De·Moivre's tbeorem wbicb state~ a.!! follows: 

"If x,. -J' 1, with probability p 
, . 0, with probability q 

then the distribution of the ra om variable S" - Xl + X2 + ... + X"' where Xi's 
are independent, is asymptotically normal as n _'00." 

Proof. M.G.F.ofXi is given by 

Mx, (t) = E (e'x.) .. ,. 1 P + ,.0 q ... (q + pe~ 

M.G.~. oftbe sumS""Xl =X2 + ... + XII is given by 
Ms. (t) .. Mx, +Xz + ... +x. (t) • Mx, (t) . Mxz (t) •.. Mx. (t) 

.. [Mil (t) ]" (sinceX;'s are' identically distributed) 

- (q+pe~", 
which is tbe M.G.·F. of a binomial variate with paJ'!lmeters n .and p . 
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E (S~) - np - fA. (say), and V(S,,) - npq - 0 2, (say). 

Let 
Z .. S" - E (S,,) _ S" - fA. 

v'~(S,,) 0 

Mz (I)" e-".tlo Ms,. (110) [c.f. Cbapter 6J 
.. e-"ptlViijiq [ q +~.r,;pq r 

[c.f. Example 7'19J + + ~ +0(.-",) r 
wbere 0 (n-312) represents tenns involving n 1'2 and bigber powers of n in tbe 
denominator. 

Proceeding to tbe limits as n - 00, we get 

,,-co ,,-co 2n ,,-~ 2n 
lim Mz (I) _ lim [1 +.t.... + 0 (n-312)]~ ... lim [1 +.t....]" _ el l'2 

wbicb is tbe M.G.F. of a standard nonnal variate. Hence by tbe uniqueness tbeorem 
ofM.G.F.'s 

z .. S" - fA. is asymptotically N (0, 1) . 
o 

Hence S" .. Xl + X2 + '" + X" is asymptotically N (fA., ( 2) as n - 00 • 

RemBrks 1. From tbis tbeorem it follows tbat standard biJ\~mial variate 
tends to standard nonnal variate as n - 00. In otber words, binomial distribution 
tends to normal distribution as n - 00. 

2. Convergence in Distribution or Law. Let I X" } be a sequence ofr.v.'s 
and IF,,} be tbe corresponding sequence of distribution functions. We say that 
X" converges in distribution (or law) toX iftbere exists a r.v.X witb distribution 
function F s;'ch that as n - 00, F" (x) - F (x) at every point x at wbicb F is 
continuous. 

We writeX,,!:.X or X,,!! x. 
3. It may be remarked tbat convergence in probability discussed in § 6'14 

implies convergence in distribution'(or law) i.e., 
p L X" _ X => X" _ X ••• (*) 

Tbe converse is not true 'i.e., X" !:. X, in general, does not imply X" .e. X 
However, we have the following result. 

Let k be a constant. Then 

X" !:. k => X,,!!. k 

Combining (~) and (* *), we get the following result. 
Let k be a constant. Then 

... (**) 

... (***) 
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8'10'1 Undeberg-LevyTheorem. The following case of central limit 
theorem for equal components, i.e., for identically distributed variables, was first 
proved by Lindeberg and Levy. 

Hlf Xl, X2, ••• , X" are independently and identically distributed random 
variables with 

• E (Xi) = 14~ 1 . 
V(Xi) = o~ r l = 1,2, ... , n 

then the sum SII = Xl + Xi + ... + XII is asymptotically normal with mean 
p.= nJlI and variance ri = n~." 

Here we make the following assumptions : 

(i) The variables are indepen~ent and identically distributed 

(ii) E (Xf) exists for all i "", 2, ••. 
Proof. !.etM1 (t) denote the M.G.F. of each of the deviation (Xi - 141) and 

M (I) denote the M.G.F. of the standard variate 

Z .. (S" - 14)/0 
Since 141' and 142', (about origin) ofthe.deviation (Xi- 141) are given by 

141'· E (Xi'" 141)·0,142' • E (Xi- 141)2. o~ 
We have 

M1 (t) = ( 1 + 141'1 + 142' t! + 143' :! + •.• ) 

[ 
t2 1 

-, 1 + 2 ! oi + 0 (t3) J ... (*) 
where 0 (t 3) contains terms with t3 and higher powers of t. 

We 'have 

z. S,,-14. (Xl +X2+ ••• +X,,)-n 141. 
a a 

and since Xi'S are independent, we get 

Mz(t) -14 i'<r;-I&I)lCJI (t) -M.i (Xi-I'I) (t/o) 
I_I ._1 

" ~ -.n '( M(XI-I'I) (t/o) } - [M1 (t/o) r - [M1 (t/Yn (1) r 
',·1 

- [ 1 + ~ + 0 (n-;,/2) r 
[From (*)] 

For every fixed 'i'; the tenns 0 (n- 312) - 0 as n - 00. Therefore, as 
n- 00, we get 

lim Mz (t). lim -[ 1 +.t... + 0 (n- 312) 1" . exp [t2/2], 
n- oo n-oo 2n 
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which is the M.G.F. of standard normal variate. Hence by uiiiqueness theorem of 
M.G.F.'sZ - (S,,-'I-l)/O' is asymptotically N(O, 1), orS" =X1 +X2 + .,. +X" is 
asymptotically N (I-l, 0'2), where I-l .. nl-l1 and 0'2 - nor. 

Note. CL.T. can be stated in another form as follows: 

(i) If Xi,X2, ... ,X" are i.i.d. with mean 1-l1 and variance O'r 
S,,-X1 +X2 + ... + X", then 

(finite) and 

or 

lim .p [a:s S,,-n 1-l1 :s b] .. q, (b) _q, (a) 
If ..... 00 0'1,fii . 

b 

f 1 -ll12 dx .. .f2iie 
G 

for - 00 < a < b < 00 ; q, (- 00) .. 0, q, (00) .. f 

(it) lim p [ a :s S" - E (S,,) :s b ] .. q, (b) _ q, (a) 
If ..... 00 vVar (S,,) 

.•• (8'31) 

••• (8'31-1) 
or, still another form : 

(iit) lim p [a:s X,,-E ~,,) 
If ..... 00 ";Var (X,,) 

. lim [ X,,-1-l1 ] b) ( ) t.e., P a:s ICL:S b = q, ( - q, a 
If ..... 00 0'1 vn 

Remarks 1. We wrote the CL.T. using non-strict inequalities 

P [ a:s (.) :S b ] 

..• (8'31-2) 

It makes no difference whether one or both are changed to a strict inequality. 
The reason is that the limit distribution function (d.f.) q, (.) is a continuous d.f. 

2. In the binomial case, C.L.T. gives good approximationifp is nearly 1/2. 
For p near about ° or 1, the C.L.T. approximation still holds but in that case n has 
to be sufficiently greater than in the case p .. 1/2 approximately. 

8·10·2. Applications ofCel!tral Limit Theorem. (a) If Xl,X2, ... are 
i.i.d. B (r, p) and 

S" .. Xl +X2 + ... +X", then 

" " E (S,,).. 1: E (Xi)" 1: (rp) ... nrp 
i-1 i-1 

" " " v (S,,) • V ( 1: Xi)" 1: V (Xi)" 1: (rpq) .. nrpq 
1 i-1 i-1 

Hence (8'31'1) 

~ }~moo P [ a:s v:;(;'!P) :S b ] .. q, (b) -q, (a),O <p < 1 . 
(b) ICY" is bin9mial variate with parameters nand p, then 
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lim p[a$ V Yn~np) $b]-cf>(b)-cV(il),O<P<l 
n .... oo np -p . 

Proof. LetXl,X2, ... be i.i.d. Bernoulli variates, i.e.,B (J,p), then 
Sn-Xl+X2+ ... +Xn=B(n,p). But Yn-B(n,p) 

Hence using Yn instead of Sn in (8'Jl'I), we get 

lim p [a $ Yn- E (Yn) $ b] =cf> (b)-cf> (a) 
n .... oo vVarYn .. 

i.e., lim p [a $ ~n;;..:t $ b] "" cf> (b) - cf> (a), q = 1 -I 
n .... oo vnpq 

(c) If Yn is distributed as P (n), then 

lim pf. a $ Yn-n $'b]=cf>(b)-cf>(a) 
n .... oo l Vii ,. 

Thus, for instance 

n ~.n Ie 
lim (' ) 1. ~ e n· 1 

n .... 00 P Yn $ n- - '2' t.e., ~o k!" '2 as n - co 

Proof. LetXl,X2, ... be Li.d.P(I). Then 
Sn-Xl+X2+ ... +Xn-P(n) => Yn=Sn 

[ Yn - n ] J Sn - n ] .. P a$' Vn $b =P a$ Vii $b 

- (b) - cf> (a) as n - co 
In particular" let us take a - - co and b .. 0, then 

f( a $ Yrn-n $b ) ,,"i>( Y"in~ $0) "P(Yn $n) 

Also cf> (b) - cf> (a) - cf> (0) - cf> (- co) - 112 
From (*) and (**),'we get 

P (Yn $ n) - 1/~ as n - co 

8·109 

... (*) 
... (**) 

Remark. fhis result could be generalised. In fact, on takiqg a .. - co and 
-baO in (8'31·1), we get 

[
Sn-E (Sn) ] . 

P vVar .(Sn) $ 0 . - 112 => P [ Sn $ E (Sn) ] - 112 as n - co 

8·10~3. LiapounofJ's Central Umit Theorem. Below we shall give 
(without proof) the central limit theorem for the generalised case when the variables 
are not identically distributed and where, in addition to the existence of the second 
moment for the variables Xi, we itnpo:>e so~e further conditions. 

Let Xl, X2, ... , Xn be independent random variables such that 

E (Xi) - J.li J . 
V (Xi) _ ~ ; , - 1, 2, ••• , n . 

Let us suppose that third absolute moment of Xi about its mean viz., 
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pI .. E { IXi-lLi r.} ; i-I, 2, ... , n 
is finite. Further let 

" p3. I pI 
i-1 

If lim _.f ... 0, the <lum X ... Xl - X2·+ ••. + X" is asymptotically 
/I-GIl a 

" " N (IL, ( 2), where IL'" I ~ and if - I at . 
•• 1 i.1 

Remarks. 1. (About Lwpounojf's theorem). If the variables Xi; i ... 1, 
2, ... , n are identical, then 

" " p3~ .I,pl=hp~ and if •. I oteno! 
,.1 •• ·1 

nl13 p p 1 .. .f.. 1 .-.-!. __ 0 as n-oo 
c nl12. 01 01' n1l6 • 

Thus for identical variables, the condition of Liapounofrs theorem is satis-
fied. 

It may be pOinted out here that Lindeberg - Levy theorem proved in 
§ 8·10'1, should not be inferred:as a particular case of Liapounofrs theorem, since 
the former does not assume the existence of the third moment. 

1. Central limit theorem can be expected in the following cases: 
(t) If a certain random variable X arises as cumulative effect of several 

independent causes each of which can be considered as a continuous random 
variable, then X obeys central limit theorem under certain r~gularity conditions. 

(il) If'P (Xl, X2, •.• , X,,), is a function of Xi 's having first and second con­
tinuous derivatives about the point (141, 142, ... , 11n), then under certain regularity 
conditions, 'P (Xl, X2, ... , XII) is asymptotically normal with mean 
'P (141, 142, ... , 14,,). 

(iiI) Under certain conditions, the central limit theorenfholds for variables 
which are not independent. 

3. Relation between CLT and WLi..N. (a). Both the central limit theo­
rem, (CLT) and tJie weak law of large nU1l\beIS hold for a sequence {X,,} of i.i.d. 
random variables with finite mean IL and variance if. 

However, in this case tl1e CL T is a stl'{,nger result tban the Wll..N in the sense 

that the fonner provides an estimate of the P [ I S" -n ILl / n ~.£ ], as given 

below: 

P [ I X" -IL Ie. ] ~ . o/Yn ~ aim 

-P[ I Z I ;umlo]; Z-N(O, 1) 



1beoredcal CODIinUOU DistributiOD5 8'111 

•. I-P[ I Z I s n'n/a.] 

where II> ( .) is the distribution function of standanl nonnal variate. 
However, WLLN does not require the existence of variance (c • .f. Khincbin'es 

theorem]. 
(b) For the sequence I Xn} of independent and uniformly bounded r.v.'s, 

WLLN holds [c.f. theorem 6'32] and CLT holds in this case prov,ded 

Bn '" Var (Xl +X2 + .,. +Xn)'" at + ~ + ..• + ~ - 00 as n - 00. 

(c) For the sequence I Xn 1 of independent r.v.'s, CLT may hold but the 
WLLN may not bold. 

8·10·4. Cramer's Theorem. We state below (without proo1), it useful 
result on the convergense ofsequences ofr.v.'s. 

Cram~r's Theorem. Let {Xn} and! Yn} be sequences ofr.v.'s such that: 
L· p • Xn _ X and Yn .... c (constant), 

then :n !:.! if c .. 0 
.I" C 

For illustrations, see Example 8·46 and Qns. 15 to 17 in Exercise 8 (g). 
Example 8·45. Let Xl, X2, .,. be a i.i.d. Poisson variates with parameter 

A. UseCLTto estimateP (120 sSn s 160), where 
Sn""4l+X2+ ... +Xn; 1.-2 and n-75. 

Solution. Since Xi is i.i.d. P (A), 
E (Xi) cA and Var (Xi)~ A; i-l,.2, ... ,n 
n • 

:. E (Sn) .. ' I E (Xi) ... n A 

n 

Var (Sn)" Var (Xl +X2 + ... +Xn) .. I Var Xi'" n A 
i-I 

Hence by Lindeberg - Levy CLT, (forJarge n) 
Sn - N (n A, n A) - N (~ = 150, if - 150); (n = 75 ; A" 2) 

~ 120 ... 150 160 - 150 ) 
.. P (120 s Sn S 160) -.p '1'150 s Z s v'150 

-P -2·45 s'Z sO'82); Z'-N (0,1) 

-p (-2·45 sZ s O)l+P(O sZ s 0'82) 
.. p. (0 s Z s 2·45) + P (0 s Z s 0'82) 

Exa~p)e 8-46. Let Xl;}6, ... ,X~ ble i.i.d. standardisefl variates with 
E (0) < 00. Find the limiting distribution of: 

_L . [2 2 2.] Zn'" vn [XIX2 +X3.X4 + ... +X2n"-'lX2n] of' Xi +X:z + ... +Xln 
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Solution. Since X; s are i.i.d. standardised variates we have: 

E (Xi) - 0; Var (X;) .. E (Xi) ... 1, i ... 1,2, "', n .•• (*) 

Let Y;-X2i-1X2i; i-l,2, ... ,n 

=> E (Y;) - E (X2i-1) E'(X2i) - 0 ('.' X; 's are independent) 

•. Var (1';) -Eyt .. E (Xt-1xt) =E (Xt-1)E (it)-l 
Hence Y;, i -1, 2, "', n are alSo i.i.d. standardised variates. Hence by CLT 

fori.i.d.r.v.'s, [s,,- .i 1';], we get 
•• 1 ' 

U. S,,-E(S,,) X1X2+X3X4+ ... +X2tJ-1X2tJ ~ Z-N(O,l) 
" .. ";Var (S,,) - , Vii ., 

Also E ~) - 1 (finite), i - 1,2, ... , n. 

Hence by Khinchine's theorem, WLLN applies to the sequence 

! Xt}, i - 1, 2, .. . 2n; so that 

V" .. xi +~;,; .. +~ E. E<A1) -1, as n- QQ. 

Hence b) Cramer's theorem 

lim Un _ 2 Vii [X1X2 +X3X4 + ... +~2tJ-1X2tJ] ~ ~ -N (0,1) 
n-"'Vn Xt+x~+ ... +r2tJ 1 

=> lim Vn [X1X;+X3X4 + ... +X2tJ-1X2tJ] ~ ~ -N (0 114) 
n-'" Xt+X~+ ... +X~ 2' 

[ '.' Z - N (0, 1) => CZ - N (0, C2) ] 

EXERCISE 8(g) 
~ 

1. State and prove the centrallimittheorem for the sum ofn independently 
and identically distributed random variables with positive finite variance under 
con4itions to be stated. 

2. State Undebe~'s sufficient·conditions for the centrallirnit theorem to 
hold for a sequence {Xl I of independent random variables. Show that every 
uniformry boun~ed sequence I Xl} of mutually independent random variableS 
obeys the central limit theorem. 

CommentonthecasewhentherandomvariablesdonotpossessexpectatioDS. 
3. A distribution with unknown mean ~ has variance equal to 1·5. Use 

central limit theorem to find: how large a sample should be taken from the 
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distribution in order that the probability wi1l be at least 0·95 that the sample mean 
will be within 0·5 of the population mean. ' 

4. The life time of a certain brand of an electric bulb may be considered a 
random variable with mean 1,200 houIS and standard deviation 250 houIS. Find the 
probability, using central limit theorem, that ·the average life-time of 60 bulbs 
exceeds 1,400,houIS. 

S. State the Liapounoff form of central limit theorem. 
Decide whether the central limit theorem holds for the sequence of inde­

pendent random variables X, with distribution defined as fo]]ows: 

P(X, -1) -p, and' P(X,KO) = I-p, 

'6. Show that the central limit theorem applies if 

(,) P(Xp':t kQ) -~, (ii)P(Xk-:t~ -~, an~ 

(iii) P (Xk"='0) = l_kl - 2a,P (Xl-;:t kQ) -t k- 2Q, where a <-i 
7. If Xl, X2, X3... is it sequence of independent random variables having 

t~e uniform densities 

f; (Xi) = { 1/(2 - i- l ), 0 .-: Xi < 2 - r 1 
o elsewhere, 

show that the central limit theorem holds. 
8. Let X,. be the sample mean of a random sample of size n from 

Rectangular distribution on [0, 1]. Let 

U,.=Vn (1',.-!). 
,%, 

F(u) = lim P (U,. < u) ,,_00 Show that 

el(ists and determine it. 

" 
. Ans. <I> (m u), where <I> (u) - k f e-xz12 dx 

-CD 

9. Let Xl, X2, ... be a sequence of independent, identica]]y distributed 
non-negative random variables such that E (logXl)2 is finite. ZII" (X1X2 •.• 
,X,,)l/,. . Show that the positive constant· c can be sQ chosen that the random 
variable (cz;.)¥n has a non-degenerate limit distribution functionF (.) and deter­
mineF(.). 

Ans. c = e- Il, F(x) .. <I> (Iogxla), J.I. =E (1ogXl) and ~ = V (It>gXl). 

10. I X,.} is a sequence of i.i.d. random variables. If n is a perfect square, 

thenX,. is a Cauchy variate with density! . ~ , - QO < X < QO • 

. x 1 +x 

OtherWise XII has a distribution function F (x) with mean zero and finite 

variance ~. Discuss the asymptotic distribution of (Xl + X2 + ... + XII)/Vn. 
11. Let {Xi}, k ~ 1 be.a sequence 'of i.i~. variates with 
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f(x) a!e-Ixl, -QO <x < QO. 
2 

Find the-constants a" and btl such that 

{ 1 Xl 1 + 1 X21 + '" + 1 X" 1- a" }/b" ! N (0, 1) 
• [Indian Civil Services, 1982] 

12. Using c.L. T; sbdw that 

lim -" ~ n lim f e .J d e .. - a -- t [ 
"Ie ] 1 " -I ..It-l 

,,_a> Ie_ok! 2 ,,_a> 0 (n-1)! 

(Indian Civil Services, 1984) 
13. Let ( X"' n = 1, 2, .. , } ~ a sequel\ce of independent Bernoulli variates 

such that: P (X" -1) = p" = 1-P(X,,'= 0), n = 1, 2, .. , (q" = 1-p,.). 
Show that if I p" q" = QO, (n = 1, 2, ... , QO), then the CLT holds for the 

sequence! X" '}. What happens if I p" q" < QO . (Indian Ciyil.Services, 1988) 
14. Let Xl, X2, ''', X" be independent and identically distributed r.v.'s with 

E (Xi) = 1'; Var (Xi) = (i ; (0 < 0 2 < QO) ; i;= 1, 2, ... , n an<t E (Xi _1')4 - 04 + 1. 
(a) State weak law of large numbers. 

~) Ifr[~ (Xt+X~+'.,,+x~)-c]-o asn-QO,findc. 

Hint. By Khinchines theorem c .. E xl = 0 2 + 1'2 (finite). 
(c) State the Lnidberg-Levy Central Limit theorem. 

(d) F· d lim P [2 1 (Xl _1')2 + ... + (X" _1')2 2 1] 
In 0 -.'-s so +.'-,,_a> vn n vn 

[Delhi Univ. B.A. (Stat. Hons.), Spl. Course 1986] 

HI'nt. P [ 1. I (Xi_I')2 2 1] p" = - .'- S -0 S .'-vn n vn 

=p[ -vn sI(Xi-l'i-n02svn] 

=p[ -ls i~l [(Xi-I')2- cl]/vn s 1] 
.. P [ -1 s S"/'vn S 1 ] ... (*) 

" " S"... I [( Xi _1')2 - 0 2 ] '"' I Ui 
i-l i-l 

where 

where Ui- (Xi-I')2 -cl, i -1, 2, ... , n; are i.i.d. r.v.'s. 

=> E (Ui) = E (Xi-I')2 -.cl. 0 2 _02 = 0 

Var Ui = Var [ (Xi _1')2 - 0 2 ] .. Var (Xi _1')2 
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4 '22 4 4 
= E (Xi - 14) -( E (Xi - 14) I = 0 + 1 - 0 = 1 

(. '.' E (Xi - 14)4 = 0 4 + 1 (Given) I 

.. E(Sn)= i: E(Ui)=O; var(Sn)=var( i: Ui)= i: Var(Ui)=n 
i-I i-I i-\ 

('.' Ui'S are i.i.d.) 
Sn - E (Sn) ~n L ' 

Hence by C.L.T. ';Var (Sn) = y,( - N (0, 1) as n - 00 . '(**.) ... 
From (*) and (**), we·get 

lim pn I: lim· [-l'S SnlVn :s 1 ] = P (-1 S Z sO, where Z -N (0,1) ,,_00 n-oo ," 
= 2 x P (0 s Z s 1) = 2 x 0·3413 = 0·6826 

IS. Let.Xl,X2, ... ,X./I be i.i.d. N,(O, 1) variates. Show that the iiiniting 
distribution of 

-.In (XI +X2 + ... +Xn)l(X1 +X~ + ... +X~) -N (01 .1) as.n - 00. 

Hi .... t. Use Cramer's Theorem. 
16. LetXl,X2, ... , X2n be i.i.d.N (0,1) variates. Find the limiting distribu­

tion of Zn = Un/V" where 

Un: X2 + X4 +"'+-X2n ,Vn=~1+X2+ ... +X;'. ( XI X3 X2n -.1 ) 2 2 ,2 

Hint. Xi are U.d. N (0,1); i = 1,2, .. , 2n; E (Xf) - Var Xi I: 1 
~ (X2i-I!%2i) ar:.e i.i.d. standard Cauchy variates; i I: 1, 2, .. ,1/' 

I' Un L . ~ 1m __ Standard Cauchy Variate = C (0, 1), 
n .... co' n 

(Being the mean of i.i.d. standard Cauchy variates) 
v: x2' + X2 + + X'2 

lim 2 = I 2 ••• "n !!.~Xf=l? ,,-00 n n' 
(Qy Khim;ltine's WLLN) 

~: = (~ ) / (~n) ~ C (0,1) 

(By Cramer's Theorem) 

17. Let I Xn I be a sequence of i.i.d: r.v.'s with mea~ a and variance 0'2 

and let I Yn I be another sequence of i.i.d. r.v.'s with mean (3 ( .. 0) and variance 

oi·. Find the limiting distribution of: 

1 " - 1 " 
Z" = -.In (X" - a)IY" where. X" - -. I Xi, y" = - I Yi 

. ni.l ni_1 

Hint. U _X,,-E(X,,) .L Z-N(O 1) 
,,- ol-.ln - , (By CLT) 

V" = y" !!. E (y,,) = (3 (Br lVLLN) 
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By Ctamer's Theorem: 

lim U" Vn (X" - a) L Z h Z N (0 1) -.. _ - were -
n - 00 V" a Y" f\ ' , 

-""""'---'- _ - Z-N 0-lim Vn (X,,-a) L a (d) 
n-<II Y" f\ ' ~2 

18. Let n numbersXl j X2, , .•• ,X" in decimal fonn, be each approximated 
\>y the closest integer. If Xi is the ith tcue number and Y; is the nearest integer, then 
U[ ",Xi- Y;, is the error made by the roun<ling process. Suppose that 
Ul, U2, ••• , Ut} are indepen~ent a~d each is u~fonn OJ' (-0·5,0·5). 

(I) What is the probability that the true sum is within 'avunits of the 
approximated sum? 

(a) If n - 300 tenns are added, find 'a' so that we are 95% sure that the 
approximation is within 'a' units of the true sum. 

HInt. Reqd. Prob. 'p' .. P [ I i ~ 1 (Xi - Yi) I sa] .. p.r -a $; i ~ 1 Ui sa] 
Now use Lindeberg Levy C.L;T. for i.i.d. r.vo's 
Ui -U [ -0·5, 0'5] with E (Ui) = 0, Var (Ui) -1/12 

Ans. (I) p = 2 ct> (a VIVn) - 1; 

(ii) p = 0·95 ~ ,ct>( a "12/300) = 0·975 =>. ~ = 1'9!i => a 1",9,8. 

8·11. Compouild Distributions. Consider a tandom variable X whose 
distribution depends on a single para meter 9 which instead of being r:egarded as a 
fixed constant, is also a random variable following il particular distribution. In this 
case, we say that the tandom variableX has,a compound or compos¢ distribution. 

8·11'·1. Compound Binomial Distribution. Lel us suppose that Xl,X2, 
X3, ... are identically and independe"ntJy distributedBemoulli variates with 

P(Xi=l) = p and P(Xi=O)=q=l-p 
For a fixed n, the tandom variableX .. Xl + X2 + ... + X" is a Binomial variate with 
parameters nand p and probability (unction: 

P(X .. r) = (~)pr qo.-r; r = 0,1,2, ... , n 

which gives the probability.o r successes ,in n independent trials with C,onstant 
probability 'p' of success for, each trial. 

No~ sIIppose that n, instead of being regarded as a fl~ed ~onstant, is :also a 
random vari/!.ble following Poisson law with parameter;". Then 

e-). ;..k 
P(n .. k)=~; k=O, 1,2,.,. 

, In such a case X is said to have compound binomial distribution. The joint 
probability function of X aM n is given by 
I P. (X =: r n n:z k) ... P (n = k) P (X .. r I n'~ k) 
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-A,''I.'k-t (k) .e /'I. , .../(_, 

,= ---,;t ,. p f{ , 

since P (X co r I.n ~ k) -is the. p.-obatiiliiy of r 
rsk ==> k~r. 
The margina I d'is'tnbution of X is given by .. 

P (X .. r) = }: P (X = r n n ,= k) 
k":, • • • 

successes in ~ tnils. Obvio~siy., 

.! e"p ~" = - I -, _.>" , .. ~k) Ak(-" e->"(Ap)' ~ (Aq)k-, 

• 'k~' r, k! r! k.,(k-r)! 

_ >.: (A )' 00 (A Y 
.. ~ p ~. Y::.!l,!.. (j ..... ,. - r)' : , .-~,." . '/{ 

r. j. 0 J. ~ =_ " . 

.. e-~ (A p)' ~ e>..q ,e->"p (Ap)' 
, . r! r ~ , 

which is the probability function of a P isson variate with parameter A p. 

Henc~ E (X) - AP and Var.(X) = AP 
We giye below some of the practical situations where we would come a~ross 
compound ainomial distributionl:. '/ 

1. Suppose th~' t~e pro,babi!ity of llnjns~, laying n eggs is given by the 
Poisson distribution e->" X" In! and the probability of an egg developing is p. 
Assuming natuml il)depe~de.nce of ~ggs, the prQt>at~mty of a total of k survivors 
is given by the Poisson,dist~bution with parameter'Ap, 

2. T,he proba~i1ity tha,t a radi!Jactiv~ ~"bstance gives off n Beta particles' 
in a unit of time is P (A),. (if .. 0, 1, 2, ... ). The probability that a given panicle will 
strike a counter and \>e registered is p. Then the' prot>abilitY'of registering'ft Beta 
particlesjn a unit oftim~,is a'~o P ,(~>. '. • 

3. If the proba bility of number of hits by lightning during a ny time interval 
t is P (A t) and if the probability of itS hitting and damaging an individual is p , 
then (assuming stochastic independence) ,the, tl>tal damage during time 't' is 
P(Atp). 

8·H}. ~ompoul),~ ~gi~~,1,l. P'~tril;l"tJqn; Le!:X. IJe a P (A) sO thilt 
',-_ ,e->"A'. . -

, .P (X .. r) •. --.,- i r .. p" 1, 2, ..• ~ , , r. .' 

where A itself is a continuous rando{~,V:'~~ble ~ith' ge?~ral~sed gamma de~ily 
a -0).. \1-1 

g (A)" 'r (v), e _}. __ ~.A? 0, a> 0, v > 0 

J O,AsO' -
Let us consider th~ t~o ~'ime~ional raml'om yt;Sto.r ,~, A) .in w,hich -pne .. 

variablejs discrete-and tile other is continuous. For a constant It> 0 and Al > 0, 
the joint density of X and A is given by 
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P (X .. r n A1 S AS A1 + h) = P (A1 S A S A1 + II) P (X = r 1 A1 S A S A1 + II) 
Dividing both sides by hand proceedi.{'g to t~e limits as h - 0, we get 

lim P(X=rnA1SASA1+h) lim F.'/V IA' A A h) 
h _ 0 ". .' - ,,_ o' 'V1 = r. ,1 S S 1 + ' 

lim E(~1 S ?or ~.~1 + h) 
x h-O' h-

But 

lim P(Ap'ASA1+ h) lim <?(A1+ h)-G(A1)=G'(A).= (A) 
h-O h h-O h 1 g 1 

where Gr.) is ~he distribution fun~tioit,~nd g ( .) is the p.d.f. of A . 

• . lim P(X"=rnA1SASA1+h)_~-),.'A.'i aV ~v-1 -12),., 
•• h - 0 h -- - ----rr-- . f'(V}' 1\.1 e 

Integrating w.r.to A1 over 0 to' CIO and using gamma integral, the marginal 
probability function of X is given by -

'" v " 
P(X) a f -O+12»,.~'+-v-1d~ 

,e r = r (v) r ! e I\. ,I\. 

o . 
aV 'r (t +.v), 

~ r(v),r!' (.l+a)'+v-

.. (_a_)V v (v + 1)'~~ oj> 2J ~ .. (v + r -'i) 
l'+'a (1 +.a)' f! 

. :(~;-;r(-l;tvHl!dr . 
{ r')p (-q) ,r-O,},~,,,, 

where p = aln + ti),_q ... 1-,p "1A1 c+"a) " 
Thus the marginal distribution orx is a negative binoriJial witli parameters 

~~ t 
L _ 

EXERCISE 8 (h) 

, 1". (a) What do you mean by a compourid"-distribution? Obtain the prob-
.. bility function of,compound Poisson distribution and ide"tify. it. 

(b) What is the Compound Binomial distribution? Obtain its probability 
function and- identify the distribution. 

2. If X is a random variable with p.d.~, 

f<X)'" r(n 1+ 1)' e-xX", x 2: d 
wliere n is a positive integer, and the discrete random variable Y has a Poisson 
dis~ribution witil'paramete'r'A, shpw 'that P (X2: A) = f(f ~11). _ , 
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).. . 
Hint. 'P( ') 1 f -'-x "dx X ~ A = 1 - r (n + 1)' e x 

o 
Integrating by parts successively, w,e get the result. 

, .. ~ I 1 

3. I(X has a Poisson distribution: 
e-).. '){ 

P(X=r)= -,-;r=O, 1,2, ... 
r. 
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where the parameter J.. 'is a random variable oftbe continuous type with the tJensity 
" aVo -a)" (v-l) 

function: /(1..) '" r (v}' e A ; A,~ 0, a> 0, v> 0, 

deiive the distribution of X. 
Show that 'the characteristic function'ofX is given by 

<I>%,<O -E (i'K),= qV{I_p,irV, wherep = 1/(1 + a), q = I-p 
- [South Gujarat Univ. M.Sc.l?91] 

4. The conditional distribution of' a, continuous random va'riable·X for a 
discrete random variabl~ Y, assuming' a value n is 

elF'=·n (l-X)"-l dx,9 S;X s; 1 

The distribution of y' is: P (y .. n) ... ( ~ )" ; n to), ,2,3, ... 

Find the marginal distribution' of X . 
~-Y',r -

S. Given/(x Iy) =4andh ()i) .. e-Y, whereX is discrete, i.e., x .. 0; 1, 
x. 

2, ... and Y is continuous, y ~ 0; show that the marginal' distribution of X is 
geometri'c, i.e., g (i) OK q t + 1 • • 

6. The conditional probability that the random variable X should lie within 
the range dx for a given 0 )'S given by . 

o J21t eXp f -~ (x - ~)2102} dx, - 00 <x < 00 

while the probability of 0 itself lying \Yithin the range do is 

1'2, ~xp '{_~02/0~}odolO<0<OO 
00" .-

where 00 is a constant. Sbow that 'the unconditional (i.e., marginal) distribution 
of X 'has the following'probability function: 

1 
-, exp !-(1!0 0)Ix-J,lI t,-oo<x<oo , 

.200 'J\' J' 

7. ~tX-UL·O;l] aiid'YI(X-x) -B(n;x) 'i;e., 

P(Y. = Y Ix = !i) =,(; )r'(l:!.X)~-.Y' y~'O; 1;, 2, ••• , n 

rpind the distribution of Y-. AJSo· find E (Y) • 
ADs.' P(y'- y} -'li(1I +'1). y- o~ I ..... n" Y -u'['o,'li;2. .... 11 f; E(y) -1I1i 
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8·12. .>earson's Distributi.9ns. Givena set of observations from a popula_ 
tion, the first question thar arises in our mind is abo,ut, the ;nature o( t~~ 'parent 
population. A vague idea is 'provi~ed by the frequency polygon (or frequency 
curve) but the information 'is totallr. inadequate and,unreliable,.because the sample 
observations may not cover the entire range of thej)arent distiibuiion~Moreover, 
an unusually high frequency in one c\as~, arising oui 'of sheer chance, may 
completely distort the shape of the frequf?cy curve, 

q,nsequently, to determine tlie frequency curve, we resort to the technique 
ofcurve-fillin~ to the giveit~ata. The failure of the normal distribution. to fit'many 
distributions whic~ are observe~ in pr~<;tice fot·continuous variables ne~essitated 
the development of generalised system of frequency curves. Since a trial and error 
apprOaCh is clearly undesirable, an elastic system of fre.quen~)j curves must l:!e 
evolved, which should incorporate, if not all, at least the most copunon of the 
distributions. Pearso'nian system offrequency curves is ~r:tebfthe most important 
approaches in''lhis 'direction, irr which we decide-about the shape o('the curve on 
,the basis of a 'c,riJeriQn K' calgJlated from the sample observations. 

. Karl Pearson's' first memoir' dealing, with' generalised 'frequency: curves 
appeared in 1895. [n this paper and the subsequent two papers publish~d in 1908 
and 1916, Karl Pearson ,dt<veloped a set of frequ~ncy curves which could be 
obtained by assigning values to the parameters in a certain first order differential 

'/ ' , 
equation. " 

Genesis of Pearson's Frequency~Cul'Yes. -Experience tells us that most of 
the frequency distributions possess the' following obvious and common charac-
teristic: , 1" , , • 

"1~ey rise (f~I)}.~ J<;lW freq~ency to a maximum.{requency and then,again 
fall to the low frequency as the variable X increases. This suggesJS; a unimod~1 
frequency curve y = f(x) with high contact at the extremities of the range, i.e., 

~ = 0 when y = O. Accordingly, Karl Pea rson proposed th;~ followin~diffen;p­
tial equation for the frequency_curve y = [(x)" 

: ,. p , 

!!l y(x-a) 
~ dX ,= F(x) 

, I 

~:.(8·32) 
where F (x) is an arbitrary function of x not vanishi'Ji at·x .. a, the mode of the 
distribution. Expan~ing F (x) by M:lJC;\.lJUril\,s. tpeoJem, we get { (x) .... bo·t bl x 
+ b2 2 + ... and reta'inlng only the fiIs,tthree-terms we'gl{tth~ difJ~re.nti.al equation 
of the Pearsonian system of frequency curves as ". 

dy _ . y(X-a) ~ df(x) =i.,(x)- #. '(x-a)f(x) 
dx bo + b l X + .b2? dx'" bo:+'bbX.+ li2 if ... (8·32 a) 

where a, bo, b! and h2 a!.e.the constants·to be qlc~liJte<!.frqm th~ given data. 

Remark. Equation (8'32 a) can, also ,be' o.blaine4, as a limiJing qrse 'of 

Hyper-geomeJric ~istribution (c.f. A4va~ed st{lt~ti9 Vpl.l[ by J\enda/!) .. . ' 
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8·12·1., ,D!!terminatiQn of the Constants of the Equation in Tenns q,f 
!\foments. Multiplying both sides of (8'32 a) by x," for integral n ,,0 and integrat­
ing over the entire range of the variable X say (a, ~), we get 

~ ~ 

f X' (bo + b1 X + b2K-)f' (x) dx =f X' (x-a)f(x) dx 
a <i 

II II ' 

:::> Ix· (110+ b1x+ /ni)/(x) L -f [nbox·· 1 + (n t-l)blx· +(n+2);b2'Xn+1 ]/(x) dx-

~ ~ 

= J x"'+ 1 f(x) dX -a f X' f(x) dx 
a a 

Assuming high order contact at the extremities so that 
~ I xTf(x) I a = 0 i.e., x T f(x) - 0 as~ - ~ or~, we get 

... (*) 

- [nbo 1l,,-1 +(n +'1) b11l" +0 (n + 2) b21l'nt1] "llil+1~a Il" 

(assuming that X is measured from mean and this we can do without any loss of 
generality). Thus the recu~ence relation \>etweb the moments becomes 

nbo IlII - 1 :+ [ (n ~ 1) b1 - a ] IlII + [ (It + 2) ~ + 1 ] Il" + 1 ~o, ... (* *) 
n = 1,2,3, ... 

Integrating (8·32 a) w:r.to x within·the limits (ct,~) and using (*), we get 
(b1 - a) + (2b2 + 1) = 0 ... (***) 

Putting n = 1, 2, and 3 in (**) and solving th«;se,equations and (* **) with 
the help of detenninants an$f ~sing IlO = 1, 1;11 = 0, we get 

bo = _ 1l2.(4,1l2·14 - 3 Il~) '= _ .02 (4 ~; - 3'~1) 
2(51l214 -9 "d -6 fJ.~) 2 (5 ~2 -6 ~1-9) 

113 (14 + 3 Il~>' 0 {jh (~2 + 3) a = b1 = -
2 (51l214 -.9I:d -61l~) -.- 2 (5 ~2 -6 ~1-9) ... (8·33) 

b2 = _ (4.1l2 114 - 3. ~~ - 6 Il~) ~ _ (2 ~2 - 3 ~1 - 6) 
2 (5 112 14 - 9 Il~ - 6 Il~) , 2 (51h - 6 ~1 - 9) 

where 112 =/02, ~1 = Il~/Il~ and ~2 = ~/fJ.~. 
Thus the Pearsons's system (8·32 a) is completely specified by the first four 

moments. 
8;12·2. Pearson Measure of Skewness. 

Sk Mean- Mode O-a 
ewness = . = --

Standard Deviation Vii2 
"ih (~2 + 3) 

2(5~~.-6~1-9) 
... (8'34) 
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S·U·3. "Criterion K". Equation (8·32 a) can be re-written as: 

~= (x-a)dx 2,1=/(x) 
1 bo+blX+b2X 

Integrating we get 

log (fIe) = f (x - a) 2 dx -I (say), 
bo + blX+ Inx 

where e is the ~onstant of integration. 
.. I(x)=eexp [/J 
Thus 1 depends on I, which further depends on the roots of the equation 

bo + bl ~ + In x'2 - 0 ... (**) 
Now .. 

bo+bIX+b2~-b2[ ~+ ~x+ ~] 

= b [ _ - bl + V bI - 4 bo In ] [ _ - bl - V bI - 4 bo In ] 
2: x 2b2 x 21n 

= 2 X + 2 b ----2-- X + 2 J.... + .1 2 
• 2 V.4 b2 Vl. v4 hi 

b ,[ bl VbI-4boln 1 [. bl VbI -4 Iio b2 ] , 

. • b, ['x+ :b~ -V~ (K -I) ][ x+ ;~ + V,....~-·(-K---l) 1 
where K = bI;(4 bo In), ... (8'35) 

detennines the criterion for obtaining the form of the frequency curve. 
A brief description of various Pearsonian curves for different valves of K is 

given below: 
K=-<Xl KO'D K =1 K=<Xl 

TYPE IV 

1-4----- TYPE I ----+I TYPE VT 

TYPE III TYPE V TYPEJII 

Y "'(f"l ~'). \I 

I cE.' 
\ YP.t: 1I :TYPE VII 
/' NORMAL 

CURVE 
8·12'4. Pearson's Main Type 1. This eurve is obtained when the roots of 

the quadratic equation are real and 01 opposite sign, i.e., when l( < O. 
Shifting the origin to the mode x = a, the equation becomes 
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where Bo - bo, Bl = bl and B2 = b2 • 

~ .!! (logJ) = 1 [~+L] 
dx B2 (a +~) x + a x - ~ 

Integrating both sjdes w.r.to.x, we get 
log/= log (x + a)alBz(o+~) + log (x _ ~)~/Bz(o+~~ + log C 

f- C (x + a)alBz(U+~) (x _ ~)~B~(o+~) 

( X )OIBZ (0 + ~) ( X )~BZ (0 +~) , 

f=yo l+~ 1-'r; ,-asxs~ 

.. . .. (*) 

Let a ~ 
a - ai, ~ - a2, ml = B2'(a +~) and m2 = B2 (a + ~) so that 

ml m2 1 
- - -. B ( )' then (*) may be written as 
al a2 2 al + a2 

"'1 "'z 

f(X)-yo(~+:I) (1-:2) ,-al s xsa2 

which is a standard form of Type 1. 
Determination of yo : 

Qz "'1 "'1 

1 -y~L ( 1 + :1) (1 -:~) dx 

Put 

yo - - 1 
(al + a2)"'1 + "'z + B (ml + 1,'112 + 1) 

... (8·36) 

Remark. It may be noted that Beta distribution is a particular case of Type 
( distribution. 

Determination of moments: 
Qz "'1 IIIz 

~,,' = yo !.l(X + al)" ( 1 + :1): (l- :2) th 

(al of: a2)",1 + "'z, +" + 1 -
- yo '" B (n + ml + 1, m2 + 1), 

aT1 a2 z 
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(a1 +a2t 
= B ( 1 1) "B (n + m1 + 1, m2 + 1) 

"J1'+ ,m2'+ 

S-12·5. Pearson's Typ~,IV. 
imaginary or when 

[On simplifiCl\tion] 
Th;~ curve is obtained when the roots are 

By < 4BoB2, i.e., Q < I( < ,1 
1 df x 
7' dx" Bo +Brx.+B2x2 [Origin at mode] 

d x 

dx (IogJ) = [ (' ~) 2 (BO _ BI, )] 
B2 x+ 2B + B 2 

2 2 4B2 

,(,uy)-y 2(x+y)" , 2y 
• 2 2- ~ 2- 22 

B2[(X+Y) +b] 2B2[(x+y) +b] 2B2[(x+y) +b 1 

Put 

( 
jl' )-". -I • 

Hence f(x) = yo 1 + a~ e-"Ian (x/a); - 00 < x < 00, (m, v) > 0 

... (8·37) 

which is a standard fonn of Type IV with orig~n at ( -':~2 ,0). The curve is 

skew and has unltimited range in ~th the ~irections. 
Determination of yo : 

'" 2 -Itt 

l. .. yo£( 1+Z2) 'e-"tan-I(x/a)dx [Putx=atanO] 

lli'2 

= ayo f cos2no- 2 0 e-"e d 0 = ayo E (2m - 2, v) 
-It/2 

1 
.. yo = ---=------

a F(2m -'2, .v) 

1 (x2 )-". -"tan-I (x/a) 
Hence. f(x).,. 'a'F(2in:"'-2;-v). 1 +~2 e 
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8·12·6. Pearson's T)'~ VI. The curw~ is obtaineq wlJen the roots are 
real and are 01 the same sign. THis is obtained .whf}n Bo, B2 are 01 tire same sign 
or, in other words, w/ren K > 1. 

Let -a1 and -::,,:l:l2' be the roots of,the quadratic equ~tion. Then 
d x x 

- (log J) - " . I 2 .. ~-:-----'-,:--:-----:-
dx Bo +B1X +B2X B2 (x + a1) (x + a2) 

al. 1 .C!2_. 1 
- Bi (a1-a2j . (x + a1) - B2 (a1-a2) . (x + a2) 

•• log/- B «(11 )log(x+a1) - B (a2 )'log(x+a2)+logC 
2 a1 - a2 2 a1 - a2 

~ I .. C (x + a1) ull}Jz (Ul"'Uz) • (x +,g2r Uy}Jz(Ui- Uz) 

Hence the probabilitY density function is: 

1 (xh' yo ( 1 + :1 r~( 1 + :2 r~2 
ft .... (8·38) 

m1 .m2 
where a1" a1; a2-= a2 and - - -- ; a1, a2 > 0-. . a1 a2 

This equation can also be written (on shifting the origin to - a2 or - a2) as 

l(x)~yo(x-a)q2x ..... ql, asx<oo ... (8·38 a) 

a2 a1, 
where q1 = B ( ) , q2"" B ( ) , a - - a1 2 a1-a2 2 a1·-a2 
Remark. The curv~ is bell shaped if q2 > 0 and J-shaped if q2 < 0 . 
Determination' 01 yo : 

G 

[ :rutx .. - a ] 
1-z 

1 • yo J (x -.q)~ ~-ql dx 

1 ~ql _ ~ 

iYO!(l~Z) ~~.1~J-a] '(1:z)2 dz 

1 

, ~-'l1+'1 f z!h 1 .. dz 
-yoa '0 (1_Z)~-ql+2 

aq1 -r2 - 1 .. 
.. • yo= , 

B (i/2 +·1, q1-q2 ...,.-1) 
ql-~-l 

Hence 1 (x) - B ( a 1 1) x-q~ (x -a)~, a sx < 00 
'" ' q2+, ,q1-Q2-

The above discussion covers:\tlmost the whole range of IC but in limiting 
.:ases we get ~imple cases. The following are;more important o~the transition curves 
when one of the main type'chang~ il1to linother. 

8·12·7. Type III. This is a transition type curve and is obtained when 
B2 '1' 0, B1 .. 0 or IC - % 00... • 
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d(l /) x (' .... d) 
dx og = B B"' ongm IS at mo e . 

0+' IX 

B1X+Bo-Bo 1 Bo 
= BdBo+B1X) = B1 - BdBo+B1X) 

X Bo 
logl = -B ~ 210~ (Bo + B1 x) + const. 

1 B1 
z 

'= const. ex/BI (Bo + B1 xrBrslBI 

I (x). = Yo ( 1+;f e-px/a;-asx<oo, 
... (8'39) 

where 
Bo Ba'l - = a and -=p 
B1 Bt 

This gives the Type III curve with origin at mode. The curve is usually bell 
shaped but becomes I-shaped when Ih > 4. ' 

Remark. The distribution can be transformed into the gamma form by USing 

the transformation y = l!.. (x + a), when the curve reduces to 
a 

l(y) .. r (p\ 1) e-Y >", 0 s.y < 00 

8·12·8. Type V. This transition type is obtained when the roots are 
equal, i.~., when Bt = 4 Bo B2 or K = 1. 

2 [x + ih ] _ E,l 
d x 2Bi B2 
dx. (log/).. 2 - 2 

B'[ (x+:;,) j 2B,[(X+2B~,) j' 
1 ( B1) B1 f 

log/- 2B2'log 1:+ 2B2 + 2B~ [ l!!..] +const. 

x+ 2B2 
1 

I .. const (x + ':~2 tz 
exp [ 2B~~ { x + 2B~2 r 1 ] 

I(x)", yoX-P e-qlX, 0 sX < 00 ••• (8,40) 

where X- (x + l!l..) , B12 =-q and ..!.'=-p. \ 
2.B2 2B2 B7, , I 

8·12·9. T~pe D. This, curve is obtain'ed when B1 = 0 !lnd Bo, B2 are of 
opposite sign, i.e., K = O. The equation to the cur.ve'is 

I (x) - yo [ 1 . :~ r -a s x sa;' ..•• (8:41) 
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where 
1 2 Bo-

m--->O a =->--
2B2' B2 

with origin at mean (mode). 
8·12'10. Type VII. This curve is obtained when Bl = 0 and Bo, 132 are 

oltlle same sign, i.e., K = 0 and BoB2 > O. The equation to the curvets 

I(x) 0,.-[ \+~r._m<,,<m 
2 Bci 1 a =- and m----

B2 2J}2 

.•. (8'42) 

where 

with origin being at the mean ( mOde). This curve is usualJy bell shaped., symmetri­
cal and of unlimited range in both ilhe directions. 

8·12·11. Zero Type (Nonnal'curxe). WhenBI = B2 = 0, (18·33).jmplies 
that Ih = 0, and ;~2 = 3 and we have 

d ~ x2 
- (log·/) = - ::;> 'Iogf= 2Bo + log C, 
dx Bo 

where C is the constant of integration. 

. . f .. C exp (x2/2 Bo) = C exp (-x2/2 ( 2), - 00 < x < 00 ••• (8'43) 

where Bo = - ~ and the origin is at mean. This is the normal distribution with 
d . 2 mean zero an \,anance 0 • 

8·12·12. Type VIII. WbenBo = 0, Bl > 0, 

f(x) = 1~m (l+;f,-(lS'xso 
Type IX. WhenBo = O,Bl <0 and K <0 

!(x) = 1:m(1+;f,-asX'so 
Type X. When Bo = 0 and B2 = 0, 

..• (8'44) 

... (8'45) 

f(x)·=.l e- xla; 0 sx < 00, 0> 0 
o ... (8,46) 

This is the p.d.f. of simpte exponential distribution with parameter 0> O. 
Type .'P. When Bo.=.Bl = 0, and K> i 

f (x) = bm -1 (m _ 1) xm -I', b S x < 00 

Type XU. When 5 132 - 6 131 - 9 .. 0, K < 0 

(1+~ r 
I(X)=(OI)m 1 . al ,als~sa2 

a2 (al+ a2)B(1+m,I"-m) (l_~)m 
- a2 
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Example 8·47. Show that for a Pearson distribution; 
~ _ (a +x) t.tt 
f - bo + bi X + In. x2 ' 

the characteristic funCtion' q> obeys the. relation: 

In. e cf P2 + (1 '+ '2b2 + bi e) !!!E.d e + (a + bi + bo e) q> - 0, where e = it. de -
Deduce the recurrence relation for moments. 
Show also that the cumulant g~nerating function 1\1 obeys the relation: 

lnO{ ~J +( ~)} (1 + ';In +b'O)~+ (.+b, +boO.)-O, 
Hence show tbat tbe cumulants obey- the lJ'ecurrence, relation: . 

11 + (r + 2) ~ rK, + 1 + rb~ K, + rbi { (Or;l) K2 ~~-i + ( r; 1 ) K3 K,_.2, 

+ 00. of::( ~ j 1 ) \Kj + 1 K,_ j + 000 + ( ~ = ~ ) K,- 1 K2 } = 0 

Solution. (bo + bi x + b2 x2) !/; = (a + x) f -
, , 

Integrating woroto. x; for the total range of x, assuming that integrais vanish 
at either limit, we get . - . Q 

'" '" . f e9x(bo+biX+~;t2)~,:o't.tt= f e9x(~+x)idX' 
-co _CG 

... ... 

=* [e9x (bo + biX + b22)fL ... ~ f {(f e9x (ho "'blX· ... b2 X2) 
-'" 

_00 

'" '" 
IIr f ,Ur f er •. : ",-E(e)- e Idx- e fdx, 

d. .. er _ i .. 2 er 
~'-J xe fdx and ~ - J % e Idx 
de .'" de2 .'" 

assuming differenlialioD is valid under inlegral sign. 
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b26 ~2 61 + (1 + ~ + bt 6) ~ + (a + bl + #J.o 6) cp - 0 (On simplification) 

/ 

Differentiating n times w.r:t. a, usiJlg Leibnitz Theorem, we get 

8-129 

.•. (1) 

[ d,,+2 ~] [{d"+lcp ~ 1 In e 1 + n . + 1 .1 + + 1 (1 + 21n + bl e) + " • nbl J ue'''+ da'" .de" . de 

+ [ { ~"; (a + b1, + bo a) + { ~"~~ t . nbo } ] = 0 ... (2) 

Putting a = 0 and using the relation [d lt ! ] .. ",,', we get 
da e.o 

nb2 ,,',,+ 1 + (2b2 + 1) ,,',,+ 1 +.nbl ",,' + (bl +'a) ",,' + nbo ,,',,-1 = 0 
Shifting the origin to the J!lean, ,w" get 

[(n +'2) In+ 1) ",,+1 +[ (n+ 1)bl + a] ",,+nbe ",,-1 .. 0 .,.(3) 

d d .1. tf [Ii' (' d" ,)2] Nowq> .. e~ ~ .. e~~ and ~ .. e1jl ~+ ~ 
, da de da2 , de2 da 

( .•• "" -Iogq» 
Substituting these values in (1) and on simplification, we get 

z 
b2 9, [ d2l + (~:) ,] + (1 + 21n + bl e) ~: + (a + bl + bo 9) - 9 de _~ 

Differentiating (4) r times w.r.to. ~ using Leibnitz-Theorem, 'we get 

[~ d' (~)2] (r) [~ d,-1 (.~,)2] 
b2 e de,+2 + de' de + 1 In d9"+1 + dfY-'1 de 

+ (1 + 2ln + bl' a) '1 '+ lr bl' - 0 ~ () ~ de'+ dfY.', 

[ d~ {d'-1 [ ~ ~]}] b2 e der+2 + da,-1 2 de' de2 

rb [d,+,l,,,,, + d~~~ {2~ ~}] 
+ 2 de;+1 da,-2 de' iJa2 

d'+ 1 d',1t 
+ (1 + 2ln + bl a) ¥ + rbl ~ .. 0 
, d 9"+ ,d f1 

Puning a .. 0 and using the relatio~ 
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[~] = Kn,We get don . 
e.o 

! J + (r + 2) ~ } K,. I + ( ~ ) bl K, + rb2 { (r ~ 1 ) K2 . K,_I 

. ( r "" 1 ) ( ·r - 1 ) } 0 (On' 'fi . + 2 K3 K,-2 + .... + r -:i K,_I K2 =. slmp'1i Icatlon) 

EXERCISE 8(i) 

Z. Derive the differential equation 

1 dy x+a 
y' dx -= bo+b\x+~? 

as the limiting form ofihe hypergeometric distribution. 

Show that, for the Pearsonian family of distributions : 

Mean - Mode ·Vft (~2 + 3) 
S.D. = (5 ~2 - 6 ~l - 9) 

Z. (a) State. the.differential equation'for the Pearsonian system of curves 
and obtain the expressions for the constants in terms of moments. Obtain Type 1 
distribution as a particular case of Pearsons's sytem of frequency curves and 
describe method of fittIng it· by moments. 

(b) Describe the.procedure for classifying the Pearson family of distribu­
tions Into various types. Show that all Pearsonian distributions are determined by 
the first four moments. 

Show tha t '~Qrma I', 'Beta' a nd 'Gamma' dis tri1)utions belong to the Pea rson 
family. 

(c) ~s{gn the following disfribution to one of t,he Pearson's types. Give 
the reasons for your answers 

2 . 
(t) dF = K e- x /2 (XZ)(tI/2)-l dl-, 0 < x2 < OQ 

3. What are the reasons for the adoption of the following general form to 
describe the Pearsonian system of frequency curves 

!!"'f()- (x-a)f(x) ? 
x - 2 • 

dx bo+b\x+b2 x 
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Show that the Pearsonian curves can be characterised by a single criterion 
K. Outline the 'yarious types of curves for different values of K . 

4. Obtain Pearson Type III 'curve in its 'usual'fohn 'with nlotle as origin, 
from the basic differential equation 6fthe Pearsonian system'bf curves and establish 
a methOd Of (itting tliis.curve'to the given,data by the method of'moments'. 

Hence of otherWise, show that tor thls·(llstnbUlton ~ f}2 = j U11 ;f L.),. 

S. Derive the Beta distribution as a special case of the Pearsonian system 
offrequency functions expressed by 

d (J9g/) _ x + a 
d.x - b; + b, x-+--:'"b2-x'2 

6. (a) Derive Type 1 Pearsonian frequency curve and examine if the 
distribution given by 

dP= yo (1 _l)(n:W2 d~, -1 S}~S 1 -reduces to that distribution. 
(b) Hl'press the COIL'it~nts yo, a and m 'of the distributiOIl ! 

[ (x), = yo ( 1 ~ :: ) "', -- a" < x < a 

in terms of its ~2 and ~2. 

(c) ,ShoW that nonnal, gamina and bctit distri~utions belong to the Pear­
sonian system. 

7. Sho~ that.tlie nmowing are.meme,bcrs of.the Pearson's sytem.of curve,s 
and s~etch ~1\t;IllJor some 'typical values orthe constants. 

(i) f(x)~~d.exp{ -~.~~},.-~<x<~· ., _ 
(iii) [,(x) = 'a B <i,lm + 1) ( 1--.~ r -Q'SX S a 

(iv) [(x) = -8 (1''1-'-- (1 + !n~ )m, - as x. s a, 
a 2,m-l) 

8. Show that the Pearsonian Type VI curve may be wrillen 
--in' .. 

Y = yo ( 1 - ~:) . exp { .. v tanh-I ~ } 

al~d discuss its relationship with Type 'V <-'ONe'. 
9, Show that for Pearson distrib\l,tion : 

... " 
d x 
do. (log/) =-B:--+B .' B,2 

.. - 0 1'·\ + 2X 
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jrl I, 

the range is unlimited ,in both the directions if Bo + Bl X :t: B2 ~ has no real roots, 
I.m!~d, 11\ OJl~ dhectiOJ,l-if ,toots !~ ~.I ~pd 9~!)ie slJlJle- sigg., IJ~~ JjJ..lljte~ Ijn both 
directions ,if the roots are real and 9f Qpposite sign.· 

10. Investigate the properties'and shapes which may be,assumed! by ~e 
frequency curve y - !(x) Whi~h.has the differential equil.tipn 

.. 1 dy 2mx 
- y'dx--~ .t r 

and obtain the probability integral. 
'1 d 2mx 2 2 

, ~~~dx (logy) = - ;. _x2 ~ logy - m log (a- -x) + log C 

.. y.k( 1.-~r ;-.. x •• 

which is type II distribution. It 

. 11. A family-o(distributions is defined by 
1 d! x 
7' dx.,- ~'+ h2 X2 ... b4i 

and the frequency function! .. ! (x) vanishes at the terminals of its range. Show that 
the moments about the mean are given by 

bo (2s + 1) 1'211+ b2 (2s + 3) 1'21+2+ b4,(2s + S) 1'2r+4 ... -1'21+2 

,_ 8·13. Variate Transformations~ Let T by any' statistic whicb is, asymp­
totically normaHy distributed with mean 0 and variaiiCe ~ '(O~, where 'V (0) is 
some function of the pafcipleter 0 i.e., T -' N (0, 'V (0». Let us tranSform T by a 
function g. as g (n. where g is a function which possesses first order derivative 
which is continuous and g' (0) .. 0, wliere ( ') denotes diffe~nti~tion w.r.to. the 
parameter O. Then g (n is normally distributed about mean g (0) and variance 
[ g' (0) ]2 • 'V (0), i.e., 

g (n - N [g (sy, I g' (9) }2'V (0)-], ~ I 

... (8,47) 
asymptotically, provided g' (0) .. 0 is continuous in the neighbourhood o,f O. 

In-general Var (n = 'V (0) will'be dependent on the parameter O. We are 
interested in obtaining a function ,g such diat the asymp.totic variance of the 
transformed statistic g (n is independent of 0, i.e., it should' be constant. In other 
words, we want g su~h that . 

Var [ g (n ] = [ g' (0) ]2 • 'V (0) = ~nstant ... ~i, (say) , . . 
i.e., , C ' 

[g (0)] =; v'V (0) 
(. I 

Integrating both sides w.r.to. O,c we get 

g (0) -f .J'Vc(O),da 

" 
I.' . -' 

... (8·48) 
8·13·1. Uses of Variate Transformations. As discussed above, when we 

transformastatisticT to a functiong (n, thedistributionofg (n is approximately 
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normal and its asymptotic variance is independent of the 'poPdlation parameter 9. 
Hence the use of statistic g (n gives better results and confidence intervals than 
the original statistic T. The commonly used transformations are : 

(1) ~qu~re ~t Tra1l$formation. 
(2) ~ine IBverse or sin-l' Transformation. 
(3) Logarithmic Transformation. 
(4) Fisher's Z-Transformation, 
In tht following sections we shall discuss these transformations briefly. 
8·13·1. Square Root Transformation. Square root transformation is a 

transformation for the Poisson variate. If a :variable X follows Poisson distribution 
with parameter A (assutned to be la.rg~), then we kno~ ~hat asymptotic distribution' 
of X is norma las (A - (0) with E (X) - A and Var (X) - A - '" ().,), in tl\e above 
notations. Then (8'48) gives the function ' , . 

g(A).-f jfdA-2cYK,. 

Now we select c in such a way that 2c - 1 
i.e., c - 1(2 so that g (A) -.fA. . 
Hence the transformed variable is g (Xj -=..fX. Using (8'47), the tranSformed 

variable..fX has the mean ' 
g(A)-.fA 

and Var (.fX) ... [ g' (A) ]2 • W (A) 

-(2~)'.A . 
-~/4. 

or alternatively 

Var (-IX) - constant - c2 - (1/2)2 - 1/4. 
Hence ..fX - N (.f£, 1/4), asympiotieallY· .•• (8'~9) 
Ancombi has,suggested the.transformation.fX+b" w'bere b is a const~nt 

suitably c~.Q§ep. 

8'13·3. Sine Inverse or sin-l Transformation. Sine-inverse is the tra:ns­
formation for stablizing ·the ;valiance of a binomial variate. Ifp is the obserV~d 
proportion of successes in a series of n independent trials with constantprobability , 
P of success for each trial then we know that the ,asymptotic distribution of p I!> 

asymptotically nonnal (as n' .... (0) \¥:ithE (P) -P and 
Var(p) "PQln, Q = I-P 

i.e., p - N.( P, ~ )"a~ I! - 00. 

In the usual notations 

'" (P) = PQ = P (1 - P) • 
n n 

Using (8'48), the transf(lrming function 
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f e J dP 
g (P) = v", (p)dP = e Vii 'vf (1-P) 

= 2c Vii sin - 1 (yP) 

Choosing the constant e so that 

[ .. , ~sin-l.(.fP) ... 2.fP .~ ] 

we get 

1 
2c Vii = 1 ~ e... .c" 

2vn 

g (P)= sin - 1 (..f1i) 

" 

Hence the transfonned statistic is g (P) = sin- 1 vp. 
mean sin -1..f1i and 

Usi~g (8·47), g (P) has 

Var (sin- 1 vp) - [g' (P) }2. '" (P) 

= [ '1 ],2 x P'(1-P) 
2..f1i v1-P n 

1 . 
- 4n . ' 

or' Var (sin- 1 f) -e2' = ( 2 ~ f -4~ '" C9nstant. 

Hence sin- 1 .fj - N (sin- 1 ..f1i, 4f ,), asymptotiically. n" ... (8·50) 
If, is the ob\'lerved number of succe~es in n trials so that p - 'In, then 

Ancombi has sligge~ed that instead of sin- 1 ¢i ... 'sin- 1 v,lit , the transfof1l.l8tion 

h Id be . -1 .. I, + 3/8 
S ou . SID V n 318' 

+ ' •. 
- 8'13·4. Logarithm,ic TransConnation. Log transformation is the trans­

'formation for stabilizing t~ variance of the distribution of sample v&rian<;e. If s2 

is tbe sample variance in a sAmple of size n from normal population with variance 
0 2 ? then the samplir:Jg distribution of i is asymptotically normal (as n - (0) with 

, 2 2 2 204 , 
E (5 ) .. 0 and var; (s ) - --;;- (for large n), 

(e:f. Remark to Theorem 13'5]. In the usual notations we ,have, 

'" (02) = i o"4ln . Using (8'48), the transforming function is 

- 2 f ern 2 ern 2 g(o)= ,Pt 2do = V2 logo·. 
. v20 

We select e in such a way that 
eVii V2 
--=1 ~ c ... -
V2 rn' 

so that g (02) = loge. c? . / 
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Hence the tmnsfonnation for the stati~tic s2 is g (s2) .. log i and using 
(8.47) the transfonned statistic is nonnally distributed with mean 

g (02) == log 0 2 and 

Var [g (;) J .. I g' (02) }2 • 'i' (02) -( ~r 2~4 
2 --n 

or var[g(i)J=c2"',(~f -~. 
Hence loge i -N ( loge 0 2 , ~ ) I for large n. 

. .. (8,51) 

8·13·5. Fasher's z· Transformation. This tmnsfonnation is suggested for 
stablizing the vamlnce of sampling distribution. (jf correlation coefficient (c.f. 
chapter 11). If r is the sample correlation coefficient in sampling from a correlated 
bivariate nonna)' population with correlation coefficient p then the asymptotic 
distribution of r, as n - 00 is,nonnal with E (r) - p. and 

(1 • 2)2 
Var (r) - - p - 'i' (p) (or large n. Using (8·47), we get 

n 

g (p) _ f m c2 dp ~ m C loge (!.:!:..e) 
I-p 2 I-p 

We select c in such a way that 

m c - 1 => C ~ 11m, 
sotbat g(p)"iloge.(!::). 

Hence using,(8·47) , the transfonned statistic 

g (r) - i loge ( ! :; ), which is denoted by Z, is nonnally distributed with mean 

g(p) -~ IOge(~) aDd .. I-p 
2 1 

Var [g (r) ] - c --
It 

or Var [g(r) ] - [g' (p) ]2'i' (p) 

[
_1_]2 (1-: p2)2 

1- 2. 
I-p It 

1 
--, forlugelt 

It 
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l:lcnt'c Z = llog., -- - N ~ log.,--, - , for lafgc n. I [I+r] [ I+fl I] 
- I - r - I - P n ... (H·S2) 

Prof. R.A. Fisher proved that the transformed statistk Z = g (r) ts normally 

distributed even if n is small and that for exat:t,samples (small n), 

Z-N ::;Iog.,--,-- . [
1 1+ PI] 

• - I-p n~~ 

F~r the various applications of this trdnsformation the reader is referred to 
§ 14·7·2. 

Remark. We have: Z = 1 log.,. [ ! :; ] = tanh- I (r) 

Hence Z-transforrnation is also ,:alled tile tan-hyperbolit:-inverse transfor­
mation. 

8:14 Order Stati'itics Let X" X2, ... ,Xn be n independent and identkal­
Iy d.i~tributed variat~s, each with cumulatiye-distributionJunction.F (x) '. If these 
",!riables are arranged in 'ascending order of magnitude. and then written as X(1);S 

X(2) :s; ••• :s;'X(n), we cal\ X(r) as the'rth order statistk, r = I, l\ "., If. T;he X(r) 's 
becaqse of the inequality relations among them are necessarily·dep.endent. 

Rem~rk. If we writ". ~bese ordered values'as 
Y1 :s; Y2.:S; ••• :s; Yn, then: 
Yr - X(r) '", rth sma nest of Xi, X2, ... , Xn 
Y1 = X(1) = The sma nest-of X i, X2, .•• , ¥'n 
Yn = X(n) = The la~est of Xl, X2, ... , Xn 
8·14·1. Cumulative Distribution Function of a Single Order Statistic. 

Let Fr (x), r .. 1,2, ... , n denote the c.d.f. of the rth order statistic X(r)' Then the 
c.d.f. o( the largest order statistic X(n) is given by : 

Fn (x) - P (X(n) :s;x) - P (Xi:S;X; i = 1,-2, ... , n) 
.. P (Xl :s; x n X2 :s; x n ... n Xn :s; x) 
= P (Xl :s; X). P (Xi :s; x) ... P (Xn :s; x) 

I .. [F(x) J".. 
since Xl, X2, •.• ,Xn are identically distributed. 

( .. ' Xi'S are 'independent) 
... (8·53) 

The c.d.f. of the smallest order statisticX(l) is given by: 
F1 (x) = P (X(l) :s;x) 

- 1 - P (X(l) > x) 
= 1 - P [Xi> X ; i .. 1, 2, ... , n ) 

n n 

= 1 - n P (Xi > x) = 1 - n [1 - P (Xi :s; x) ] 
i-I i-I 

= 1 - [ 1 - F (x) )~ , ... (8,54) 

since Xl, X2, ... , Xn are i.i.d. rv's. 
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In general, the c.d.f. of the nh order statistic X(r) is given by: 
Fr(x) = p~X(r) S..9 

= P [At I~ast r of the Xj 's are ~ x] 

n 

= L P [Exactly j of the n, Xi's are ~ xl 
J=r I 

= i (r~J Fi (x) [1- F(xW-i, 
J=r J 

,,..(8'55) 

by using Binomial probability lilodel. 
Remarks. 1. (8'55) can also be written as [See Remark 2 to Exall1p'le 7'23]: 

F,(x) = IF (x) (r, n - r + ()t . . .. (8'56) 
p 

where 
. I f Q...J1( b-l d I (a b) = I I - t) I 

P' p(a,·b) 0 
... (8'56 a) 

is the 'incomplete Beta Function' ,uid has been tablilated in Biometrika ·tables 
.by Pearson and Hartley. 

(8'56) and (8'56 a) show that the probability ,p,oints of ~n order statistic can 
be obtained with the help of incomplete beta function. 

2. Taking r = I and r = n ,in (8'55), we get respectively: 

FI(x)= t. C;)Fi(X)[I-F(xW-J 

= I =-/{(~ FJ (x)[l- F (x)]"- i )L=o 
= I - [I - F (xW </.(8'56 b] 

and Fn (x) = PI (x), ... (8'56 c) 
the results which have already been obtained in (8'54) and (8'53) respectively, 

8·14~2. '.Probability Density Functi9P, (I).d.f.) of a Single Or{ler Statistic. 
The results in (8'53) to (8'55) 'are valid for both discrete ana cOlitinuous r.v. 's. 
We shall no\v. assume that )(;'s are U.d. contin'uous r.v.'s with p.d.f. f(x) = F' 
(x) . Iff,. (x) denotes the p.d.f. of X(r) then from (8'55) or (8'56) we get: 

d 'ii , 
f, (x) = - [Fr (x)] = -lIF( ... ) (r, n - r + I)] 

r dx dx 

_ ~[ I Ff~T)~"_1 (I-/)"-r dl] 
- ,dx. P·(r, (1-r + I) 0 _ ... (8'57) 

Let us write 

g(/) = f t r- 1 (1- I)"-r dt ~ g' (I) = I r- 1 (1- I)"-r ... (*). 
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FW FW 
~ It,-I(l.-t)"-'dt=lg(t)1 "I'g(F(x»-g(O) 

;(x) 0 

~ ~ I t,-I (1-·t)"-' dt- g' (F.(x» ./(~) ('.' g(O) is constant) 

o ,-I 11_' 
-[F(x)] [1-F(x)] I(x) [Using(*)] 

Substi~ting in (8'57) we get: 
. , 1 , I 11-' 
';(x)-~( 1)·F -·(x),[1.!.JP(x)] . I (x) 

p r, n-r+ 
i\liter. By definition of a p.d.f. v-Je get: 

: .. (8'58) 

lim P [ x <' x(,) s; x + b x ] 
f, (x) - h-O bx ... (8~59) 

The event E: x < X(,) s; x + b x can materialise as follows: 

,- r-1 "'It I- n-r 
I , ,. 

x· x +8),( 
Xi s;x for (r -1) of the Xi'S 

and x < Xi s; X + 6x for one Xi 
and Xi ~ x + 6x for the remaining (n - r) of the Xi'S. 

lienee by the multinomial probability law we Jlave: 

nt! r-I I 11_' 
p(x<..\(,)s;x+bx)-(r_1)!1!(n_r)!Pt ·P2·P3 ... (8-60) 

where PI - P (Xi s; x) ,. F (x) 
P2 - P(x <Xtsx + bx) - F (x + bx) -F(x) 

and P3 - P(X; ~x+ bx) -1-P(Xi SX + bx) -1-F (x + bx) 
Substituting in (8'60), we get: 

I, (x) .. lim P (x <X(,) s;x +.b x) 
h-P bx 

= 1 xF,-ll(x) x lim [F(X+bX)-F(X)] 
~ (r,.n - r + 1)- • .b x - 0 b x 

hm 11-' 
. x bx _ 0 [1-F(x-+bx)] 

1 ,-1 11-' 
-A.( 1)·F (X)·/(x).[1-F(x)] , 

p r,n-r+ 
as in (8'58). 

8'14·3. Joint p.d.f. oft'Yo Order Statistics. Let us denote the joint p.d.f. 
ofX(,) and X(.r), whe~.l s; r < S s n by In (x, y). Then, 

lim Pl XS;X(,)s;x+bxnys;X(s)s;y+b y ] 

In (x,y) - bx - 0 ~ b I ... (8·6) 
by-O x y 



8-139 

• 
The event E - [ X·:S X(r) :S X + 6x n y.:s X(s) :S y .. 6y } can materialise as fol­

loWS: r-- r-1 ---1 1 r-- s-r-1 ---l 1 .... 1·-- n-s 
• •• "I I I, 

~ I 
- .)1 x x "Sx Y Y+Sv 

X;:s x for' r - '1 oftbe- xi's, 
x < X; :S x + 6 x 'for one .\1, 
x+6x<X;:sy for (s-r-1) of Xi'S, 
y < X; :S Y + 6 V for one Xi. 

and Xi> Y + 6 Y for' (n - s\ .0ftheX;'S' 
lienee u~J'.'g multinomial probability law, we get 
P (E) • P [ X :S X(r) :S x + ~ x n y:s X(s) < y + 6 y ] 

n - r-I s-r71. II-S 

• (r-1),! 1! (s;-r~l)! 1! (n-s) !PI -P2P3' . p.s ps 

where 

. - , 

PI .. P (X; :S x) .. F (x) 
P2 -P (x <X; :Sx+ 6x) .F(x + 6x) -F (x) 
PP"P (x+ 6x <X;:sy) - F(y) -F'(x + 6x) 
P4.P (y,<X;:sy +-6y) -F(y + 6 y) -F(y) 
Ps·P(X;> y+ 6y) -1-P (X;:sy+ 6y) = 1-F(y +6y) 

Substituting in. (S-62). and usillg (8-61) we get: 

lim . peE) 
Irs (x,y). h- 0 6T 

6y-O x Y 

___ (8-62) 

, [F(x+6x)-F(x)] 
n - Fr -I () lim = x x x 

(r-1)!(~-r-1)!(n-s)! h-O 6x 

xlim [F(Y+6 Y)"-F(Y)]x'lim [1-F(y+6 .)]"-" 
6y-O., 6y 6y-O . > 

lim s-r-1 
X 6x ... 0 [F(y) -F(x + 6x)] 

- (r- O! (s-;~ n! (n-~)! F,-I (x) -f(x~ - (F(y) -F (x) t- r- I l(y) - ( I-F(t) )~-. 
___ (8'63) 

8'14-4 Joint p.d.f. of k - Order Statistics. Tb~ joint p.d.f. of k - order 
~tatistics X(rl)' X(ri), .. _, X(rJ w\lere 1 :S rl < r2 < .. : < rl; :S n and 1:s k:s n is for 
XI :S X2 :S .. _ :S XI; given by [on using the following configuntion and the multi­
nomial prQbability law as in § 8-14'3]: 

r-- r,-1 ---j 1 ,rrr,-, -1 \ r- f,-f2-'--1' r- .. =1' r-n-rl<l 
,.... I I I I I I 
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n! 
f,'IoT1.o'" r~ (X" !2, ... , X~) = (rl ~ 1) ! '(r2 _ rl -1) ! . .. '(rk -- rk- r- 1) ! (n - rk) ! 

x Fr,-I (Xl) Xf(XI) x [F(x,)-F(xl) r··r,-I XfiX2) 

"-~-I n-~ 
X [ F (X3) -~ F (X2) ] '1( [(X3) x •.. X [<rk)'[ 1 - F (Xk) j ... (8'64) 

8·14·5. Joint p.d.f. of all n - Order Statistics. In particular the joint p.d.r. 
of all the n order statistics is obtained on taking k = n in (8·64). This implies that 
ri = i for i = 1,2, ... , n. Hence joint.p.d.f. of X<p, X(2)' .. ~, X(n) ,is given by: 

ft.2. ," (Xt,X2 •... ,X,,) =n ![(XI)[(X2) ... l(xn) ... (8'65) 
Aliter. We can easily obtain (8·65) by ~1;i.9g the following configuration: 

I--- 0 --J 1 r -- C --., 1 I---~ 0 '----.:.j 1 I--- 0 ---! ' r-- 0 -, 

I I I I I I t I I """"I 
x., .,+s., xl X1+6x2 X) x.1+S'3 xn xn+6xn 

a'nd the multinomial prQQability law as in § lH4·3. 
IH4·6. Distrihution of Range and other Systematic Statistics. Let us 

obtain the p.d.f. the statistic Wrs .. X(s) - X(r) ; r < s. We start with the joint p.d.f. of • 
X(r) and X(s) given in (8·63) and transform [X(r), X(s)] to the new variables Wrs 
and X(r) s.t. ' 

wrs=Y-x; X=X s.t.; y=x+wrs and X=X 
1 1 

J= a(x,y) = =1 ~ IJI=1 
a (x, wrs) 0 1 

The joint p.d.L [,s(x"y) in 8·63) transforms. to the joint p.d.L of 
X(r) and Wrs as given below: 

,,-1 s-r-l 
g (t, wrs) = crs . F (x) .[(x) ~ F (x + wrs) -F (X)]. n-s 

X [(x + w".) x [1 -F(x.+. w".) J ... (8·66) 

n! 
where Crs = ( )" ) • ...(8,67) 

r-I· !(s-r.'--I)!(n-;s : 
Integrating (8·66) w.r.to. x frolll - 00 to /Xl, we obtain the p.d.f. of Wrs as: 

g (wrs) = Crs f (Fr-,I·(X)[(x) [F (x + wrs) -.F (x) rr-I .[(x + Wrs) 
_CI) 

.[ 1 ··F(x + w".) r- s filr ... (8,68) 

'Remark. Distribution of Range lV= X(II) - X(I)' Taking r = 1 and s = n 
in (8'68), we obtain the p.d.L of the range W = X(n) - X(l~ as: 

00' 

J n-2 
g(w)=n(n-l) [(x) [F(x+w)-F(x)] • . [(x+w)dr;w~O· 

-CI) ... (8·69) 
The c.d.:f of W is ratb«;l ~w;ple as given below: 
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w 

G (»1) ~ P (W s w) = f g (II') dll 
(). 

n' J j n{n -T 1) j f.(X)[ F (X + u)." F{r) ]" - 2 [(X .+. II) dx'l'dll 
o 1 -'" . I 

• n j~f(X) {~(n -1)f(<< ~)(F'tx + h)·F' (X); -2 du I ~ 
'" f '( n-l ~ n [(X) r F (X + w) - F X)] dx 

-'" 
Example 8'48 Let XI. X2, .~., Xn be II rlihdom slImple (rom II population 

wilh conlinllO/lS density. Show that YI = min (.:Y'I,X2, ... ,Xn), is exponential with 
/,lIrll111('/I'r n" i[ and only i[pllclt Xi is e,\]}onential with parllmeter I.. . 

SlIlutilln. Let Xi be Li.d. cxponcntiahvariatcs with paramcter I.. and p.d.L 

[(x)=A.e-)..~:x~O, 1..>0 ... (i) 
• x x 

F(\)=P(Xsx)'= f [(u)du=l..j e-)..udl~=l_e-ia ... (ii) 
o 0 

Distrihutioll function G( . ) of YI =< min (XI, Xl, ... , Xn) is given by: 

Gr, (v) = P (YI S y) = 1 - [ 1 - F!(v) ] 
n' 

[ From (8·54) ] 

[ )..\' ]n It, \' =1- ,.1-(1-e- ) =l-e- " ... (iii) 

I,From (ii)] 
which is the distribution fUlI~·tion. or exponentiaJ distribution \V'itli' paJ:'ln1cter 
n"-. Hence YI=min(Xj,X2, ... ,Xn), ~as exponcntial distribution with 
para meter n I.. . 

COQnrsely, Let YI = min (X,I,X2, ... , Xn) - Exp (n 1..) so th4t 

P(Y ) 1 -nl.\ P(y') -nl.\' 
IS)'= -e '=> I~y=e' 

=> p[llIin(X!'X2, ... ,Xn)~y]=e-nl.\'. 

=> P [(XI ~y) n'(X~ ~y) n ... (.K-n ~y)] = e-n~ .. \' 

=> 

=> 

n 

n P(XI ~l')=e-"i,y 
•• 1 ' 

[ P (Xi ~ y) r = e- n I,y 

P (Xi ~ y) = e- I• y 

[.,' X;,\ arc i.i.d.] 
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~ P(XiSY) ~ l-e-),Y 
which is the distribu~ion function of Exp (A) distribution. Hence Xi's are i.i.d. 
Exp (A). 

Example 8·49. For the exponential distribution I (x) = e.-x, x ~ 0; show 
that the cumulative distribution function (c.d.f.) 01 X(,,) in a random sample 01 size 
n is p'" (x) = (l-e-'''. Hencep~ovethatasn -. 00, thec.d.f.oIX(,,)-logn tends 
to the limilinglorm exp [ - (exp (-x» ], -,00 <x < 00 • 

Solutiop. Here/(x)=e-x,x~O; F(x)-P(Xsx)-I-e-X ... (t) 
The c.d.f. pfX(,,) is given by [From (8'53)] 

F" (x) -P[X(,,)sxJ - [F(x)],,- (l-e-'" [From(*)] ... (**) 
The c.d.f. G" ( .) of X(,,) -log n is given by: 

G" (x) = p [ X(,,) -Io~ n s x ] 

- p ~ X(,,) s x + log n ] 

•. [ l_e-(,1C+IOg,,)] " 

= [ 1- e:x r [ From (**)] 

[ '.' e-1og" = ;0,,,-1 _ ~ ] 

., lim G,,(x) .. lim '[1- e- X
]" =exp[_e- X ] 

" .... CD n-'CD n 

[ ... ~~ • ( 1 + ~) - .. .1 
. Example 8·50 Show tlu!t for a randqm sample 01 size 2 tom N (0, 0 2) 

popUlation, E (X(1) = - 0/.;;( [Delhi Uniy. M.sc. (Stat.), 1988, 1982) 
Solution. ror n - 2, the p.d.f.fdx) of-¥U) is given by: (Fro,m (8,58)] 

. 1 
11 (x) .. ~ (1, 2) [1-F (x) ]f(x) .. 2[ i -F(x)] .f(x); -00 <x <00 

1 l l where f(x) _ -=-:= e-x 12 a 
ov2n: 

tb GO 
:. E (X(l» - f x ·/dx) dx·= 2 f[ I-F(x)] .xl(x) dx 

-GO _GO;-

We have: log I (x) - -log (.fi1t a) --2 
20 

Differentiating w.r .t. x we get: 
f' (x) x 
!(x) ---;; 

[ '.' X - N (0, 01 ] 
... (i) 

~ f x I (x) dx .. - (12 f f' (x) dx .. _02 I (x) ... (ii) 
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'Integrating (I) by parts and using (il), we get: 
... ' ... 

E (XU» - 2. I [ 1-F (x)] (- 0 2 f(t»} -·7 f (-if/(x» (-f{x» dx 
-00 -tid 

00 00 

... - 2 iff [f(x)]2 tfr·= -~ f e-x~/CJ~ dx 
-00 

1 Vii 
--;. (110) 

- -a/Vii 

-00 (, •• j e-,lx1 dx = Vii/a) 
I -00 

Example 8·51. ShowthatinotidsamplesofsizenfromU[O, 1] popula­
tion, the mean and variance of th-e distribution of median are 1/2 and 
1I[ 4 (n + 2)] respectively. 

Solution. We have: f(x) - 1; 0 $ x $ 1 
x x 

F (x) - P (X $ x) .. f f (u) du I = r 1 . du - x 
0' 0 

Let n .. 2m + 1 (odd), where m is a positive integer ~ 1. Then median 
observation iSX(m+ 1). Takingr .. (m + 1) ip (8·58), thep.d.f ofmedianX(m+ 1) is 
given by: ... 

fm+ 1 (x) .. ~ (m + :, m + 1) .~ (1_x)m 

1 

E(X(m+l»"~( : 1).fx . .t"(1~X)mdx 
m+ ,m+ 0 

,~ (m + 2, m + 1) 
= ~ (m + 1, m + 1) . 

f(m + 2) . f(m . .:t,1) f(2m + 2) 
= x r (m + 3) f(m + l)'F(m + 1) 

m+ 1 1 
co 2m + 2 - '2 (On simplification) 

1 1 

E·(Xlm + 1)" f 2 fm+ dx) dx'" ~ (' .: 1) .f xm + 2 (l-xt dx 
o m+ ,m+ 0 

~(m+3,m+1) m+2 
= ~ ('l' + 1, in + 1) = 2 (2pa + 3) 

;z .. 2 
.. Var (X(m+ 1)" E (X(m+ 1» - [E X(m+ 1)] 

m+2 1 1 1 
.. 2 (2m + 3) -'4 - 4 (2m t 3) = 4 (n + 2) 

Example 8·52. Let Xl, X2, "', X" be i.i.d. non-negative random variables 
of the continuous type with p.d.f. f ( .) and distribution function F ( . ) . 

IfE IXI < 00, Sho~ that E IX(r) 1< 60. 



(b) WriteMII -X(II) - max (XI,X2, ""XII)' Showthat 
CD 

f l' ) 1 E(MII)cE(MII_l)-f r- (x)[l-F(x.1dx;n-2,3, ... 
o 

IDelbi Univ. B:Sc. (S!at. Hons:), 1"0] 
Henceev~JuateE (Mil) if Xl,X2, ""XII havecommondistributionfunction: 

F(x) .. x; O<x<1. 
CD 

Solution (a) f'ltX(,) I .. f I x I. I, (x) dx 
" , 0 

(t .• X'is 'non - negative cOntinuous T;V.) 

CD 

s n(;=~).!,IXI/(X)dx,~ 
sn"(;=:)EIXI 

Hence E I X(,) I < 00 if'-E I xl < 00 • 

(b) The p.d.fln (x), of MII,,,X(II) is ~ven-by: 
In (x) .. n [F (X)]"-1 • f(x) 

II 

E'(MII) ~ !i~,CD f x III (x) dx ('.' X:2: 0, as.) 
o· 

:. E (Mil) = hm nIx [F(x) r-J ./(x)dx 
11-'" 

J.' 0 . 
Integrating by parts we get: 

E (MII)~= n. lim .[.\;t. F~.(X)'\" - j F" (x) . l .. ,dx] 
'11-'" n 0 0 n 

-~":. [a~. (a) - ! F" «)dx 1 

. , : ~.":~ [ {"it-£" '«) ~ ~)d.; a F' (q)] 
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• ~":oo [{ ('-F" (x»)dx-a+a F" (a) 1 

• ~":oo [ { (~-F" (x) )dx-a (l-F" (a» 1 
Since E Mn <;~ists,-(By part (a)), 

a . P (Mn:> 0) = a.[ I-P (M" S.lI!] =.0 [ 1- Fn (0)] 

-> 0 as II -> 00. 

a ~ 

8·145 

:. E (Mn) - ~i~ PI f (1 _Fn (x») dx = J (1 - F,n (x») tU ... (*) 
o 0 

= J (r-F"-I(x).F{r»)dx 
u • 
00 

= J [ t _Fnt.r (r)"[ 1-- (1 ~F(:r»i] dx-
o 
.'" 

= J ( I - F" -I (x) ) dr + f F" - 1 (x) [ I -- F (x) ] dx 
o () J 

==E(M"_I)+J F"--l(X) [1--F(r)]dr [From(.* 1 ... (**) 
o • 

If X -U [ 0, 1 I, the!) 

[(x)=1;,0'<x<1 and F(x)=t;O<x<1 
SuhstifuJing in (**), we get: 

I 

E(Mn}-E(M,.-d = J xn- I (1-x)d.\' 
o 

=:>' E (Mn) - E'(Mn--I) =) --' _I-I-
n n t· 

Changingn to n --1) n - 2, ... ,2,1 in ("'~") \\~e gct rcslicl'tivch: 

/:. (Mn- Il .. E (M" _ 2)" = . .J -_J 
.. • 'n ~ I ". 

I 
E (M 2) - E (AI Il = 2. -. ( 

E tM J)'- E {'Mo) = 1.-'1' 
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Adding (U.) and tbe above equatiolL'l and noting tbatE (Mo) - 0, we get: 
1 n 

E (Mil) .. 1 .... n + 1 ... n + 1 

Example 8·53 (a) Find the p.df. of X(r) in a random sample of size n 
from the expo1le;ntUJ~ t!istribution: 

f(x) ... a e- ax, a:> 0, x ~O 
(b) Show that X(r) andWrs =X(s)-4(r), r < s, areindependenJlydistributed. 
(c) What is the distribution OfW1 -X(r'" 1) -X(r) '/ 

x 

Solution. Here F (x) =P(X sx) = a. e- au du = l_e- ax f ' . 
o 

The p.d.f. of X(r) is given by: 
1 r-1· II-r 

f,(X)-A( 1)·[F(x)] .[I-F(x)J ·f(x) 
... r, n-r+ 

1 r-1 
( I -ax) -ax(II-r) -ax 

- A ( . 1) . ~ e . e . a . e ... r,n-r+ 

1 -ax'(II-r+1) [1 _ax]r-1. 0 
= A ( • 1) . a . e . - e , x > ... r,n-r+ 

(b) Tbe joint p.d.f. OfX(r) and Wrs -X(s) -X(r) is given by [From (8'66)1 
1 s-r-1 

g (XI wrs) - Crs · r- (x)f(x) [ F (x + wrs) -F (x) ] 

xf(x + wr.s) [1-F(x + wr.s) r' 
n! (n-r)! [1 _ax]r-1 -ax = X X -e ae 

. (r-l)!(n-r)! (s-r-l)!(n-s)! 

. s-r-1 n-s 
X [ e- ax _e-a(x+w,.)] X ae-a(x+w .. ) X [ e-a(x+w .. )] 

~ r-1 

[ 1 -ax(II-r+1)(1 -ax) = .ae -e 
~(r,n-r+l) . 

X [~ (s-r,!-s + 1) . a. e-(II-s+ 1)aw,. (l_ea.w .. r-r-1} ... (iI) 
~ X(r) and Wrs are independently.distributed. 
(c) Takings = r ~ lin (ii), tbe p.d.f. of W1 "X(r+ 1) -X(r) becomes: 

() 1 " -a(II-r)K\ 
g Wl = ~O,n-r) .a,,~ 

= (n :.... r) a . e - (II - r) a WI; W1 ~ 0 

whicb sbows tbat W1 bas an exponential distribution witb parameter (n - r) a. . . 
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EXERCISE 8 (j) 

(I) (a) Obtain tbe distribution function and benc·e tbe p.d.f. of the rth order 
statistic X(r) in a random sample of size n from a populatiQn with continuous 

distribution fun~tion P ( .). Deduce tbe p.d.r. 's of the smallest and the largest 
salOple observatIOns. [Delhi' Univ. M.Sc. (Stat.), 19~7] 

(b) Let X1,X2, ... ,X" be a random sample of size n from a population 
baving continuous distribution functionP (x). Define the rth order statistic X( r) and 
obtain its distribution function and hence its p,d.r. 

[Delhi Univ. M.Sc. (Shat.), 19~J] 

2. Define rtb order statistic X(r). Obtain the Joint p.d.f. of X(r) and XI'), 

r <. s, in a random'sample of size n from a population witb mntinuous distrihution 
function P ( .). Hence deduce tbe p.d.f. of sample range lV = X(n) -X(I) . 

[Delhi Univ. M.Sc. (Stat.), 19~~, 1982] 
3. Obtain the distribution function 'and hence the p.d.r. or til(' slllalle~t 

sample abservation X(1) in a random sample of size n from a population with a 
continuous distribution function F (.t). Show that for random sample of size 2 

from nonnal populationN (0, ( 2), E (X(1) = - 0/5 
[Bomhay Univ. M.Sc. (Shit.), 1992] 

4. Let XI, X2, ... , X" be n independent variates, Xi having a geomctri(' 
distribution with parameter pi, i.e., 

P (Xi" Xi) = fj[i-I . Pi; qi = 1 -pi, Xi = 1,2,3, ... 
Show tbatX(1) is distributed geometrically with parameter (1 - ql q2 .. , qn) 

[Delhi Univ. M.Sc. (SUit.), 19831 

(n) Let XI, X2, ... , X" be n independent variates, Xi baving a geometric 
distribution with parameter Pi i.e. 

P(Xi = Xi) = fj[i- I ,pi,; qi = I-Pi,Xi= 1,2,3, ... , 
Show tbat X(1) is distributed geometrically with parameter (1 - ql q2 q3 

... q,,). 

S, Fora random sample of size n from a con'tinuous population whose p.d.f. 
p (x) is symmetrical at X :. fA., sbow that 

f,. (fA. + x) = [,,-r+ 1 (fA.-X), 
where f,. ( .) is tbe.p.~.f. of X(r) • 

Hint. [(fA. + x) = [(fA.-x) 
F (fA. + x) zp (X S IL + x) = P ()( ~ IL -x) (By. symmetry) 

= 1 -:P ()( S IL - x) • 1 - F (IL - x) . 
6: 1..ctXl, X2, •.• , X" be a raJ)dom sample of size n from~ population having 

continuous distribution function F (x) . 
Define tbe order statistic of rank k, 1 S k S n • Find its distribution function. 

Sbow that for tbe rectangular distributiop 

lex) = 1/92, 01-t 92 sx S 91 + t 92, 
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E rx<r>-a l ] r I l 9;' = n + 1 -2· 

7. LetXt,Xf, ..• ,Xn be a random sample with common p.d.f. 

f(x).. 0 otherwise iI, 0 <x< 1 

(i) fin~ the p.d .. , ~ea~ ~nd v~riance ofX(1) . 
(ii) Find the ,p.d.f., mean and variance oU(n) . 
(iii) Find Corr. (X(1), X(n» . 

Ans. (t) b (x) = n (l-xt-l, 0 s; x s; 1 ; E (X(1) = 1/(n + 1) 

Var (X(1) = n/[ (n + 2) (n + Ii J 
(ii) fn (x) = nxn- 1; 0 s; x s; 1; E (A(n» - nl(n + 1) 

Var (X(n» = n/[· (n -+ 2) (if + Ii J 

(u··t:\ H· ('V X.) Cov (X(1), A(n» [f Ch 10J 'J mt. r A(1), (n)" .1 c.. apter 
v Var (X(1) • Var X(n) 

y 1 Y 1 

E (X(1). X(n» ... J J xy bn (x, y) dx dy = n (n -1) J J xy (y -xt-2 dx dy' 
o 0 0 0 

( •.. bn(x,y) -n (n-1)f(x) [F (y)-F (x) t-2 f(y); 0 s;x <ys; 1 ) 
y 1 n-2 1 

.. E(X(1).X(n»"n(n-1)J J Xyn- 1f.1-!) dxdy 
o 0 ~ Y 
1 1 

=n(n-1) J J y"+1 t (1-tt- 2 dtdy; (!=t) 
o 0 y 

.. 1/(n + 2) [On simplification J 
Cov (X(1), X(n» = 1/[ (n + 1)2. (n + 2) J 

Corr. (X(1), X(n» = lin 

8. Show that the c.d.f. of the mid-point (or mid-range) M = ~ (X(1) + X(n~, 
in a random sample of size n from a continuous population with c.d.f. F (x) is: 

m 

F (m) =P (M s; m) = n J [F (2m -x),.F (x) ]"-1 .f(x) dx 
-ao 

9. LetXj (i = 1,2, •.. , n), be i.i.d. non-negative r.v/s of oontinuous type. If 
Mn =X(n) = Max (X1,X2, ..• ,Xn), andE (IXP < 00, then prove that 

ao 

E(Mn) =E (Mn-1) + J "£n-1 (x) [ 1-F(x)] dx 
o 

"[Delhi Univ. B.s'c. (Stat. 1Ions.), 1990] 
Hence find E (Mn) ifXj's are Li.d.iexponential variates with parameter A.. 
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10. Show by means of an exan~ple that there lIlay exist a r.v. X f(lr which 
E (Xl does not exist but E (X(r» exisl<; for some r ; 

Hint. Let X),X2, .•• ,Xn be a random sample from the ,popln, with p.d.L 

I 1 
f(x) =2' 1 <x < 00; F(x) = I--

x x 
E (X) does not exist, but E (X(r» exisl<; for any r < n . 
11. LetXJ, X2, ••. ,Xn be a random sample of size n from a population with 

p.d.f. f(x) = 1, 0 < x < 1 
= 0, otherwise 

Show that Y 1 =X(1yX(2), Y2 =XC2yX m, ... , ... , 
Yn - I =X(n -1)IX(n) and Yn = X(n) are independently distributed and idl'lltify 

their distributions. 
Hint. Prol'eed as in the hint to Q. No. 18 and 19. 
12. Let X), X2, X3 be a rctndom sample of size 3 from exponential distribu­

tion with pammeter f... Show that YI = X(~) -X(2) and Y2 =X(2) arc independently 
distributed. 

Hint. n = 3; write joint p.d.f. of order statistics X(2) and X(.\) and thl'll 
transform to YI and Y2. 

13. Let X), X2, ••• , X2m + I be an odd-size random sample from a N (14, 0 2) 

population. Find the p.d.f. of the sample median and shQw that it is symmetric about 
J!, and hence has the mean 14. 

14. A random sample of-size n is drawn frolll an exponential population: 

p (x) = ~ e-xl9 ; e > 0, X:it 0 

(l) Obtain the p.d.f. ofX(r). 
(ii) Show thatX(r) and W rs =X(s) -X(r), r < s are independently 

distributed. . \, 

(iiI) Identify the distribution of WI =X(r+ I) -X(r) 

[Gujrat Uoiv. M.Sc. (Stat.), 1991] 
IS. Let Xt,X2, ••• ,Xn be a random sample of size n from a unitonn 

population with p.d.f. 

Show that : 

f(x) = {I, if 05 x 5.1 
0, otherwIse 

(a) X(r) is a 131 (r, n'- r + 1) variate. 

(b) W rs =X(s) - X(r) also has a Beta distribution which depends only on 
S - r and not on sand r individually. ' 

A Ii 1 s-r-I (1 )n-s+r 0 1 os. (Wrs) = R ( 1) . Wrs -Wrs ; 5 Wrs 5 
t-' S - r, n - s + r + 
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16. In a random sample of size n from uniform U,[ 0,1] population, 
obtain the p.d.f. of Wrs = X(s) -X(T) and identify its distribution. 

[Delhi Univ. M.Sc.'. (StaL), 1987] 
17. Obtain the p.d.f. of the range in a random sample of size 5 f~om the 

population wit~ p.d.C. e-x, x > O. [Meerut Univ. M.Sc. (StaL), I99J] 

18. LetXI, X2, ... , Xn be a random sa mple from continuous population with 

p.d.C. f(x) ... ~ e-xlJ ; x:s 0, ~ > 0 
= 0, otherwise 

(0) Show thatX(r) and X(s) -X(T) are independent for any s > r. 
(b) Find the p.d.C. ofX(T ... I) -X(T) 

(c) Let ZI" nX(1), Z2 = (n -1) (X(2) -X(1», 

Z3 = (n - 2) (X(3) -X(2», ... , Zn" (X(n)-X(n-I» ... (*) 
Show that (Zl, Z2, ... , Zn) and (XI, X2, ... , Xn) are identically distributed. 
Hint. (c) The joint p.d.f. ofX(1), X(2), ... ,X(n) is: 

f (XI, X2, ... , Xn) = n ! f (Xl) f (X2) •• , f (XII) 
= n ! ~n. e-lJx1. e-lJxz ... e-lJx. ...(**) 

Transformation (*) gives: 

Zl ZI Z2 ZI Z2 Z3 
X(I)""-; X(2)=-+--;X(3)=--t--+--, ... (***) 

n n n-l n n-l n~2 

ZI Zz Zn-I Zn 
X(n)=-;+ (n-l) + ... +-2-+1 

J = .Q (X(i)' X(z), ... , X(n » =-.!. 
a (ZI, Zz, ... , Zn) n ! 

o < X(1) < X(2) < ..• < X(n) < 00 => 0 < Zj < 00; ;. = 1, 2, ... , n. 

Using (***) and IJ I, (**) transforms to 

g (z," Z2, ... , zn) = ( ~ e- lJz1 ) (~e-IJZZ) ... ( ~ e- IJZ.) i 0 < Zj < 00 

=> ZI, Z2, ... , Zn are i.i.d. exponential variates with pammeter~. 

19. LetX"X2, ""Xn be i.i.d. with p.d.f. 

f.(X) = ~ exp [ _ (X ~ e) ] ; x> 0 

... 0 , otherwise 

Show thatX(I), X(2) -XIl),X(3) -X(2), ... , X(n) -X(n-I) are independent. 

HinL Z I = X(1); Z2 = X(2) - X(I), ... , Z,. ... X(n) - X(n - I) 

=> X(l)'" Zl,X(2)" Zl + Z2, ... ,X(n) = ZI + Z2 + ... + Zn 

J = a (X(I), X(2), ... , X(n» = .1 
a (Zl, Z2, ... , Zn) 

As in above problem 
,. 

g (ZI, ZZ, ... , Z,.) .. n ! .n, f(Xj) IJ 1 
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=> ZI, Z2, ... , Zn are independently distri6uted. 
%0.· Find the p.d.f. of rth order statistic. 
LetXt,X2, •.. ,Xn be i.i.d. with a·distribution function 

-F(y)={ya if O<y<~ ; a>O 
0, otherwise 

Show that ~('), i = 1, 2, ... , n - 1 and X(n) are independent. 
(n) _ 

8'ISI 

[Delhi Univ. B.Sc. (Stat. Hons.),.1990] 
21. Let Xii, X;2, ..•... , xin, i = 1,2, ....... , k be k random samples from 

R (t, 1 \ population. Fi~d the ~istribution of U =X t (n). X2(n) ..•... Xk(n)' where 

X;(n) is the maximu'm of ith sample. 
(R. Rectangular population) 

[Delhi Univ. MSc. (Stat.), 1989] 

22. For the exponential distributionJ(x) = e- x, x .. t 0, find the p.d.f. of the 
range W in a random sample of size n and show that 

E (W).= 1 + ~ + % + ... + n ~ 1 

Ans. g (w) = (n -I} e- w (l_e-jn-2; W:it O. 
23. LetXt,X2"",Xn bearandomsampleofsizen fromU[a,b] popula­

tion. Obtain the p.d.f's of (i) X(t), (ii) X(n) and (iil) joint p.d.f. of X(1) and 
X(n)' 

24. LetXt, X2 be Li.d. r.v.'s with p.d.f. 
-A. ;.; 

P(X;=x)=_e_,_, x=0,1;,2, ... ; i=1',2 
x.. -

wbere i.. > O. Let M .. Max. (X], X2) and N = Mi~ (Xi, X2) 
Find the marginal p.mJ.'s ofM and If. 
8'15. Truncated Distributions. LetX be a random variable with p.d.f. 

(or p.m.f.)J(x). The distribution of X is said. to be truncated at the point X = a if 
~Il the values of X s a are discarded. Hence the p.d.f. (or p.m.f.) g ( .) of the 
distribution, truncated atX = a is given by: 

g(x)= J(x). '·x·>a 
P(X>a)' -

... (8'71) 

=JJ&.. IJ(x)' x>a (For discrete r.v.) ... ·(8·71 a) 

X>Q 
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[(x) 
x> a (For continuous r.v.) ... (8'71 b) 

f f(x) dx 
D 

For the ("(mtinuous r.v. X. the rtb moment (about origin) fgr the truncated 
.distribution is given by: 

'" '" f x' f(x)dx 

JA: = E (X') = f x' g (x) dx = _D ",--- ... (8'72) 

D ff(x)dx 
D 

Example 8·54 Let X - B (n.p). Find the mean and vari.:mce 01 the 

binomilll distrilJlltion truneilled at X = O. 
Solution. Let f(x) be the p.m.f. of X - B (n. p) vari~te. Then the p.m.f. 

,g (x) of the Binomial distribution truncated atX = 0 is given by: 
'" [(x) [(x) _ [(x) 

g(x) P(X>O) I-P(X-O)-I-f(O) 

.. ~. "Cx,F if-x; x -1.·2 •...• n 
l-q 
" 1" E(X)= I t"g(x)=-- I x .. "Cxpxq,,-x 

x-I I-if x-I 

.. ~[ Ix."CxpXif-X-O] 
l-q x-o ] 

.. np/(l-q") 

E (X2);= _1_ I x2 • "CxpX if-X 
I-if x-I 

= _1_ [ I ~ . "c x,F if -x . - 0 ] 
l-q" x-o 

1 [ 2 2] =-- npq + n p 
I-if ' 

J 

[ '.' X -B (n.p); E (X2) = Var'X + (EX)2 = npq +;,2 i] 
2 

Var (X) - E X2 - [ E (Xl ] 

.. -- npq + n~ p2 _.::...L-I [ n2 n2] 
I-if I-if 

Example S'SS Obtain the mean and variance of a standard Cauchy 
distribUtion truncated at both ends, wilh relevant range of variation as (-~, ~) . 

[Delhi Univ. M.Sc. (Stat.), 1987) 
Solution. Let I(x) be the p.d.f. of standard o.uchy distribution. Then the 
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p.d.f. g (X) of the truncated distribution with relevant range of variation as 
(_~,~) is given by: 

f(x) f(x) 
g (x) = p (_ ~ s X s ~) = ~ 

f f(x)dx 
-~ 

1 1 

. 1 1 A A =. .--; -"'SXS'" 
2tan-l~, (1 +X2) 

~ 1 ~ 
Mean'"' f xg"(X) = -1 f ~dx 

_~ 2tan ~_~I+x 

= 0 [ '.' Integrand is- an odd function of x] 

~ 

Variance = .... 2' - .... 1,2 = 112' K f x2 g (x) dx 
-~ 

~ 2 ~ 
= 2 f-X""- dx=_I_ f (1 __ I __ )dx 

2 tan- 1 ~ 0 1 +.XJ- tan- 1 ~ 0 1 +X2 

1 I -1 III 1 (A -IA) =~ x-tan x = ---1- ",-tan '" 
tan t3 0 tan ~ 

=-~--1 
tan- 1 t3 

Example 8·56 Consider a truncated standard normal distribution trun­
cated at both ends with relevant range of variation as (A, B ). Obtain the p.d.f., 
mkean, mode and variance of the truncated distribution. 

[Delhi Vnlv. M.Sc •. (Stat.), 1988] 
Solution. Let Z - N (0, 1) with p.d.f. IP (z) and c.d.f. <Il (z) = p (Z s z) . 

Then the p.d.f. g ( .) of the truncated nonnal distribution is given by: 

.. p (z) = p (z) _ .!. (). 
g (z) P (A s Z s B) <Il (B) _ <Il (A) - k IP z , A s z s B ...(t) 

where k .. <Il (B) - <Il (A). 
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B B 

Mean = f zg(z)dz .. i f z<p(z)dz 

A " 

We have ( ) 1 -//2 <p z =--e 
V2i 

= d () 1 -//2 ) - <p Z = -- e (- z) '" - Z <p (z 
dz V2i 

= f z(p(z)dz=.,..,<p(z) 

Substituting in (ii) 

Mean z! I-<p(z) IB .. <p (A)-<p (B) -fl'(say) 
" A <I> (B) - <I>-(A) 

I B if A < 0, B < 0 
Mode = O. if .A < 0, B > 0 

A if A >0, B >0 

B 

Variance = f ;. g (z)dz - fl,2 

A 

1 '- B 

[ 
B I ~ = k I z (- <p (z» I A + ! <p (z) dz - fl,2 

... (il) 

... (.) 

... (iil) 

1 t 2 
= -k [B<p(B)!...A<p(A)-I5l>(B)-<I>~)I]-fl' 

• = 1 A <p(A)-B!Jl(B) ,2 
+ <I> (B) - <I> (1\) - fl 

wbere fl' is given in (iii) . 

EXERCISE 8 (1<) 

I. Find the niean and variance of tbe truncated Poisson distribution with 
parameter ').., truncated at tbe origin. 

Ans. p.d.f:· 
'1 [ e-).. ')..x ], • l . ').. ~ _ • ').. + ')..2 

g (x) "'~. -'-. ,- ~ x ,.. 1, 2,3, ... ; E (X) = ~ ; EX. .-:---::>: 
l-e~· . l-e -l-e 



Theoretic" Cootinuous Distributions 8·155 

2. Obtain tbe p.d.f. and tbe mean of tru ncated standard normal distribution, 
for positive values only. 

Ans. g (z) = 2 . b e-//2 = 21P (z) ; z > 0,; E (Z) = "2/n. 

" 3 .. (a) LetX be normaJly distributed witb mean" and variance 0 2• Trun-
cate the density of X on the left at a and on tbe right at b, and then calculate the 
mean of the truncated distribution. [Note tbat if a = I' - c and b .. " + c, tben tbe 
mean of tbe truncated distribution sbould equal ".] 

[Delhi Univ. B.Sc. (Maths. Hons;), 1989] 

(b) If X is n~rmalJy distributedwith mean" and ~ariance 0 2, find tbe 
mean oftbe conditional distribution·ofX given a s.X s;b. 

Hint. In fact Problem in Part (q) is same as in Part (b), 'stated 4ifferently. 

f(x) __ l_e-(x-",,z/2,l. -oo<x<oo 
'iffio . . 

Mean of truncated distribution is 
b b 

" 

!,x f (x) f (x - I' + I')f(x) tb: 
D D 

1" - b = b 

f f(x) tb: f f(x) tb: 
D D 

b 

f (x-I') f(x)tb: . 
D 2[f(a)-f(b)] 

-I' + b ,= 1'+0 'F(~)-F(a) 

~ [tx)dx 

where F (x) .. P (X s.x), is tbe distribution functio,n of X ". 
• I •• 

{ '.' f' (x) .. f(X~ .. x [ -( x:t)] ~ _02 ~'!(x) = (x-I')f(x) 

=> ~ (X.~")/;X)dx--O' I I (x) (a'[;\Q)-/(b).] I 
•• I ~' 

4. A truncated ,Poi!)son distribution is give" by the mass function 

, , l' e"-)., "x' , 
f(x)-~,-,-,; x=1,2,3, ... , ,,>0 

l-e _ x. ( 
- t· 

Find tbe m.~:f.:and hence mean and varian~~ of the dist,?bution .. 
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s. Consider the p.d.f. 

f(x) 
g(x)"I-F(xo)' x>Xo ... (*) 

where f(x) = (V2i . or 1 • exp [ - (x -,Ai 12 0 2 ]. - 00 < I' < 00, a > 0 
XcI 

and F (xo) = f f(u) du 

[(*) is the p.d.f. of N (I', ( 2) distribution, truncated at the point x = Xo ]. 
Show that the first two raw moments can be expressed as: 

1'1' = I' +).0; 1'2' = 1'2 +).0 (xo+ ~j +02 

where). [1-F'(xo)] .. f[ (xo -1')/0] 

6. LetX -y (a). Obtain the p.d.f. of the trul)cated distribution, truncated 

at the point xo and prove that 1',' = E X' for the truncated gamma distribution 

.. [ E X' for the untruncat~d y (a) distribution] 

.¥of e- X xa - 1 
where IXcI (a).. r dx (Incomplete Gamma Integral) 

o a 1 (-X a-1) 
Ans. g(x)=I-lxo (a). e r~ ;x>XO 

7. Explain the concept of 'Truncation'. For a standard normal distribution, 
truncated at both ends with relevant range of variation as [A, B), obtain mean, 
variance and mean deviation about mean. [Delhi Univ. M.Sc. (Stat.), 1983] 

, 
ADDITIONAL EXERCISES ON CHAP"tER VIII 

1. If the random variable X has the density functionf(x) = x12, 0 <: x < 2, 
find the I' moment of X2. Deduce that Z = Jf has the distribution g (y) .. 114, 
o <y <4. 

2. Suppose that X is a random variable for which E (X) .. 1.1. and V (X) 
... 0 2 • Further suppose that Y is uniformly distributed over the interval 
(a, p) . Determine a and p so that E (X) = E (Y) and V (X) = V (Y) . 

3. A boy and a girl agree to meet at a certain park between 4 and 5 P.M. 
They agree that the one arriving first will wait t hours, 0 :S t :S 1, for the other to 
arrive. Assuming that the arrival tim~s are independent and uniformly distributed, 
find the probability that they meet. 

Hence obtain the probability tloat they meet jf t .. 10 minutes. 
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x 

Hint. _ P ( I X - Y I S I) ... Shaded Area 
P Total Area 

... 2 [ Area OAB - Area CAD ]/1 x 1 

- 1 - (1 - 1)2 " 2! - P 
Ans. t ... 10 mip,utes, Pro~bility -. 11/36 

4. LeIX - U [0, 1 ]. Find Corr. (X, Y), where Y =X" 

[Delhi Univ. B.A. (Hons.) (Spl. Course-Statistics), 1989] 
S. (a) Let Xl, X2, ... ,X" be independent random variables baving a com­

mon rectangular distribution over the in~erval [ a, b).' Obtain the distribution of' 
Y = max. (Xl. X2, ... , X,,) 

(b) Let X. - U ( 0, 1,2, ... , r I, r ... ab, a > 1, b < r, where a and b are 

positive integers. S~ow tb\lt the distribution of X coincides with U + V, where 
U and V are independent r.vo's both with uniform distributio!' on appropriate 
subsets of I 0, 1, ... , ab I. (Indian Civil Services, 1988) 

6. If Xl, X2, •.. ,X" are mutually independent rectangular variates on [0,1], 
prove that the density function of Xl .X2 . ... . X" is 

1 (_Iogx),,-l 
f(x) = (n _ 1)! ' 0 < x S 1 

0, otherwise 
7. (a) . Let' Xl and X2 be independent r.vo's, each uniform on (0,1]. Show 

that: 

Yl .. v- 2 log Xl . (sin 2"X2) and Y2 - v- 2 log Xl . cos (2 "X2) are inde­
pendent r.vo's, and that each is N (0, 1) . 

[This is known as Box and Muller transformation .] 
(b) Given a sequence of independent r.vo'sXl,X2, ... which are uniform 

on [0,1], produce a sequence of independent r.vo's Yl, Y2, ... that are N (0, 1) and 
independent. 

(You may assume that the sum of two independent Normal distributions is 
itself Normally distributed.) . 
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8. (a) Assume a ra ndom va ria bleX has a standard normal distribution and 

let Y""X2 

t Vi 2 

(i) Show thatFy(t) = "2 n! e-" 12 du, t ~ 0 

(ii) DetennineFy(t) when t < 0 al}d describe the density runctionfy(t). 

(b) Let ct> (x) be the.standard norma) distribution function and Jet 
% 

<I> (x)· = f cp (u)4u 
_00 

Show that 

(i) (;-~ ) cp(x) s 1-<1> (x) s; cp(x),x > 0 

(ii) lim x[I-<I>(x)J.=1 
x- 00 cp(x) 

9. (a) If Xl and X2 are independent -normal variates with means 

""I and ""2 and variance at and a~, respectively, find·the relation betwe~n a,~, 
y and b so that . 

, . P. (CIXI + C2X2 < a) .. y and. P (Cl XI + C2X2 < fi)'= b 

(b) If X and Yare independent normal variates with equal means and 
standard deviations 9 and '12 (respectively, and if 

P [X + 2Y < 3 ] 'f P [2X - Y ~ 4 J, 
determine.the comnion mean of X and Y. 

10. If X - N (0, 1) and A is constant, obtain the characteristic function of 

(X _A)2, Henccr or ~therwis!! prove that 

IC,-= 2[·-1 (1 + rA 2~ • (r -I),! 

where 1(, is the rth cumu)ant of X . 

ADS. ct>(X _1.)2 (t) = (1 - 2 itf V2 • exp;( it i 1(1 - 2 it) ]-

11. (a) If X is a standard normal variate and a is a s,mall number, prove 

that P (X sa) = ~ + b (a _ ~3 + 2\' ~s - ... ) 
2.3 2.5 , 

(b) Show that 
% 

f e-%2 dx =xe-%~ [1 r+ ~ (2x2) + 3\ (U)2 + ..• ], 
o ~ 

12. l.etX ue log-norma) variate with p.d.f. 

2 1 ',. , 2 21} " • f (x, fl, a ) = i a V2Jt exp - (log x - "") 12 a , x> 0, q > 9, I "" I < 00 
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" b 'f(' Show that e X has a lognormal p.d.f. x, a + b!!, b a). If Xl. X2, •.. ,X" 

are n independent observations on X, then show that G .. (Xl X2 ... X")V" also 
bas a log-norma) p.d.f. f(x, Il, a/n) . 

13. (a) The distribution 

dF = ,,; 1t exp ( - ~ x2 } - 00 < x < 00, 

is transformed by the transformation 1- =·a loge (Y - b) + C . Find the distribution 
ofY. Eva)uate the mean, the mode and the median of this distribution of(Y) 'and 
arrange them in order of magnitude when b > 0 . 

(b) If Y = a log (X -b) + C bas normal distribution with mean zero and 
unit variance, obtain the distribution of X and evaluate its mean, median and mode. 

14. A standard variableX' is transformed to Y by the relation 
1 . 

X == - [ )oglO Y - a ] 
c 

b2 2 1 
with m - e C and b" 10glO e; show that for the transformed variable 

fil - m2 (m + 3) - 4 and fi2 = m2 (m2 + 2m + 3) - 3 
15. If X and Yare independent normal vari;ttes with zero expectations and 

variances at and a~: show that Z =XYNX2 + y2 is norma) with variance 

0;" [ (lIat) + (lIa~) r I 
16. If Xi ; i-I, 2, ... , n is a random sample of size n from a norma) popu­

lation wilh mean Il and variallce if, obtain tbe joint distribution of 
II II 

u - I OiXi and V= I biXi 
i.; I I-I 

where ai's and bi'S are arbitrary co~tants. 

Hence or otberwise show that the necessary and sufficient condition that U 
and V arc independent is that I Oi bi = 0 . 

17. LetXI, X2 and X3 be three independent normal variaies with-the same 

mean fA and variance a2• ~t 
Y XI",X2 Y. XI-2X'2 +X3 d Y XI +X2 +X3 

1= ,fI , 2- ,f6 ,an 3=--,;r-
Show tbat Yt. Y2 and YJ are independe~t norma) variates. 

Show that 

,,.2 2 j - 2 - Xl +X2 +X3 
TI + Y2" I (Xi-X), where X= 3" . 

i- I 

18. A random variableX has probability density function 

f(x) - C''P (x), x ~ k 
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where k is a given number, C is a cot;lStal.lt chosen to ensure that f(x) is a 
probability' density function and 

cp (x) = _1_. exp {-!.x2} V2it 2 

If g (k) = f cp (x) dx, show that the arithmetic mean and the variance of X 
k 

.. . p(k) ~ { ~} are respecttvely g (k) and 1 + g (k) k- g (k) 

19. Three independent observationsX1,X2,X3 are given from a univariate 
N (m, ~). Derive the joint sampling distribution of: 

(a) U=X1-J{3; (b) V=X2-X3 
(c) W -Xl +X2 +X3 - 3m 

Deduce the p.d.f. of Z - U/V. Show that mode Z .. 1/2 and obtain the 
significance of this modal value. (Indian Civil Services, 1986) 

20. Neyman's Contagious (Compouf!d) Distribution. Let X - P (A y) 

Where y itselfis an observation of a variate Y - P (A1). Find the unconditional 

distribution of X and show that its mean is less than its variance. 
21. If Xl,X2, ... ,Xn are independent random-variables, having the prob­

e->" jJi . 
ability law p (Xi) - --,-; t = 1, 2, ... , n, Xi ... 0, 1,2, ... ,00 

Xi· 
n n 

and if X- l: X; and' A- l: ;... 
i-1 i-1 

then under certain conditions to be speCified clearly, 

P { X irA «1 } - ";.1t l e- li2 dt as n --. 00 • 

22. Prove that 
~ n, 

1 -x e-" i! -, f e ~ dx = ~ -,-; n '"' 0, 1,2, .•. n. r. 
A. r-O 

Using the above, write down the relation connecting the distribution func· 
tions of a Poisson and a Gamma variate. 

23. A two-dimensional random variable (X, Y) has the joint p.d.f., 

f() 1 _.Il-1(y ),,-l-y 
X, Y .. r (~) r (v) A -X e 

in the X - Y plane where 0 < x < y < 00. a nd zero elsewhere. Show that the marginal 
distributions of X and Yare gamma distributions. 
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24. Starting from a suitable urn model, deduce the differential equation of 
the Pearsonian curves in the form 

1 dy a +x 
y . dx - bo + b1 X + In Xl 

Also discuss the limitations of ranges in the solution of such differential equations. 
25. Karl Pearson showed that the differential equation 

d[f(x) J.. d-x dx 
f(x) a+bx+d 

yields most of the important frequency curves when appropriate values of 
a, b, c, and d are chosen. Show that 

(I) ~hen d .. 0 and a .. c - 0 as welI as b> 0, the differential equation 
yields exponential diStribution, 

(ii) when b .. c .. 0 and a,> 0, the differential equation yields normal dis­
tribution, and 

(iiI) when a - t - 0, b"> 0 and d>.!... b, the differential equation yieJds 
gamma distribution. 

26. Find the m.g.f. of the distribution with p.d.f. 

f (x) _ (~')112 exp [ - i.. (x ; ~)2 ], x> 0, y > 0, ~ > 0 
. 2 n x 2 ~ x ... ( *) 

Also show that I1h cumulant is given by: 

K, .. 13.5 ... (2r -3) ~2r-3 ,,1-, 

(*) is the p.d.f. of Standard Inverse Gaussian distribution. 
27. ObtainMx (t), when X - P (i..). Find the Iimitas i.. - 00 of m.g.f. of 

(X - i..)/V£ and interpret the result in the context of C.L. T. Also prove t~t: 

lim II [e-)..i!] 1 b (12) 
).-00 ,}: ~"..n:1t f exp -"2 u . du, 

k-a Q • 

( 

a - i.. + a V£, ~ '\!' i.. + b ~ 

Show that "lX is not a Poisson variate. Give a set of conditions under which 
X + Y too is a Poisson variate. (Indian Civil Services, 1983) 

28. The random variables Xk (k .. 1, 2, ... ,) are independent and have the 
Cauchy distribution with p.d.f. 

1 1 1 ~ 
f(x) a- '--2' _00 <x < 00. Let Y" -- .LJ X;. 

n 1 +x . n ;_1 

Examine whether the sequence I y,,} obeys the weak law of large numbers. 

29. Let Xl, X2, ... , X", •.. be independent Be!'1loulli variates such that 

P (){k - 1) = Pk, P (){k = 0) = Qk = (1 - Pk), k - 1,2, ... , n, .... 
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r n \ Examine whether the sequence 1 ~ Xi follows thecentrallintittheorem. 
i -1 

OBJECTIVE TYPE QUESTIONS 
1. Choose the. correct answer from B and match it with each item inA. 

A B 
(0) Ih for a Normal distribution (1) 304 

(b) Ih for a Normal distribution (2) 0 

(c) 113 for a Normal distribution (3) 3 

(d) 114 foraNormaldistribution (4) ip.,_,2(ll2 

(e) Characteristic function for Nonnal distribution (5) ~ 0 

(f) Moment generating function of Nonna) distnbution _(6) 0 

(g) Mode of Normal distribution "l 2 • 
(7) elL' +I (J /2 

(Il) Mean deviation from mean for Nonnal distribution (8) 11 

11. Match the dist'ributions: 

(a) Unifonn distribution (1) f(x).. I 1 2 2\ ' - 00 < x < 00 
A. (x -11) +).; 

(b) Nomlal distribution 

(c) Exponential distribution 

(d) Beta distribution . 
(e) Caucby distribution 

(2) f( ) 1 -'/a 
'x =.f2:it e , -00 <x <'00 

1 
(3) f(x)=-b-,asxsb 

-a 

(4) f(X)"B(~,n).lj"'-1(1-X)n-\OSXS1 

(sy f(x)=~e-xlG,x~o 

III. If Xi (i = 1,2,3, ... "n) are independent N (0, 1), write (without proof), 
the distribution of 

( ,.)X2 n (.) xi 
(i) Xl - 2 X2 + X3, II X' (iii) I Xi IV -2--2' 

3 i-l Xl +X2 

() xl (' ) Xi (' ') ('.) ~ X2 ("') Xf . . 
V X~2 + X~3- ' IV X.' I .. J VII... i VIII 2' I .. J 

J i-I Xj 
IV. In eal'h case, specify the distribution for which: 
(i) Moments do not exist. 

(ii) Mean = variance. 
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(iii) Mean < variance 
(iv) Mean> variance. 
(v) II> (t)'= eit - t2 

(vi) II> (t) = e- 1tl 

V. State the conditi<;ms under which 
(i)' Binomial distribution, 

(ii) Poisson distribution 
tends to Normal distribution. 

8·163 

VI. (i) Give two examples of variates which you expect to be distributed 
normaIly. 

(ii) Give two examples of variates which you expect to be distributed 
exponentiaIly. 

VII. State which of the foIlowing statements are TRUE and which are 
FALSE. In case of false statements, give the correct statement. 

(i) For normal distribution mean deviation about mean is greater than 
quartile deviation. 

(ii) X is a random variable foIlowing Cauchy di~~ribution, for which 
mean does not exist but variance exists. 

(iii) .In case of normal distribution ~I = 3, ~2 = 0, 
(iv) If X and Yare two independent nom131 variates, then X - Y is also a 

normal variate. 
(v) Binop1ial distributiQn, tends to normal distribution as n -7 00. 

(vi) For normal distribution, mean = mode = median. 
(vii) It is possible to reduce every normal distribution to'the standard 

normal distribution by a transformation. 
(viii) In uniform distribution, the percentile points are equi-spaced. 

(ix) Normal distribution is symmetrical only for some specified values 
of the mean and variance. 

(x) Normal distribution can be obtained as a limiting case of Poisson 
distribution wi,th the parameter:>... -7 00. 

VIII. Give the correct answer to each of the following: 
(i) The mean and variance of Normal distrilJution 

(a) are same, (b) cannot be same, (c) are sometimes equal, 
(d) are equal in the limiting case, as n -7 00. 

(ii) The mean and variance ~f Gamma distributiol} 
(a) are same, (b) cannot be same, (c) are sometimes equal, 
(d) are equal in the limiting case, as 11 -700. 

(iii) X is normally distributed with zero mean and unit variance. The 
variance of X2 is 
(a) 0, (b) I, (c) 2, (d) 4 

(iv) The points of inflexion of Normal curve are 

(a) In ± cr, (b) m ± 2 cr (c) m :i; 3 cr 
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(v) The moment generating function of gamma distributton is 

(a) (1 + I)", (b) (1- t)A., (c) (1- Ir)., (d) (1 + Ir). 
{vi) The characteristic function of Cauchy distribution is 

(a) e- I, (b) e-III, (c) e', (d) eI 'l 
(vii) Area to the right of the point Xl is 0·6 and to the .left of (he point 

X2, is 0·7. Which is-the correct: - _ 
, (I) Xl > X2, (ii) Xl < X2 or (iii) Xl = X2 ? 

(viii) The standard normal distribution is represented by 
(a) N (0, 0), (b) N (1, 1), (c) N (0, 1), (d) N (1, 0) . 

(ix') FQr a nonnal distribution, quarJile deviation, mean deviation, standard 
deviation are in the ratio 

42 24 42 2 4 
(a),5:3: 1, (b)3:5: 1, (c) 1: 5 :3, (J)3:1:5 

(x) Th~ nonnal distribution is a limiting form of binomial distribution if 
(a) 'n -+ 00, P -+ 0, (b) n -+ O,p -+ q, (c) n -+ oo,p -+ n, (d) n -+ oc 
and neitber p nor q is small. 

(xi) Normal curve is 
(il) very flat, (b) bell shaped symmetrical about mean, (c) very 
peaked, (d) smooth. 

(xii) The nonnal distribution is a limiting case Qf Poisson's wben 
'(a) A -+ 0, (b) A -+ 0, (c) A -+ 00, (d) A < 0. 

(xiii) In ;-normal curve the number of observations less than mean are 
included in the range 
(a)x z 3 0, (b) x z 1·96, (c) x z 2 0, (d)x z 0-67 0 

--- (xiv) If X is a standard nonnal variate, then1X2 is a 

(a) Gamma variate with parameter t, (b) a nonnal variate, (c) a 
Poisson variate. 

(xv) -The range of the beta variate is 
(a)(O, (0), (b)(':" 00, (0), (c) (0, 1), (d) (- 1, + 1) 

IX. Fill in the blanks :-
(,) The mean deviation of normal distribution is ... 
(ii) The p.d.f. of Gamma distribution is ... 
(ii,) The relationship between Beta distributions of first and secon~ 

kind is ..• 
(iv) The norliial distribution is a limiting fonn of binomial distribu-

tion if .•. _ . . 

(v) Mean = variance for : •. distribution(continuous). 
(vi) Fortbe normal distribution: 

~l = ... 
~2" ••• 

Mean deviation = ... 
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Quartile deviation = ... 
(vii) The characteristic function of a Gamma distribution is ... 
(viii) The points of inflexion for a 'normal curve are ... 

(ix) For the normal distribution with varaince 0 2, 

JA.2r - ••• 
JA.2r+ I" ... 

8·16S 

(x) A normal dist.ribution is completely specified by the parameters ... 
(xi) For normal distribution 

S.D. : M.D. : Q.D. : : ... : ... : ... 

(xii) If X - N (JA., 0 2) then 

P(JA.~o<X<JA.+o)= ••. 
P (JA. - 2 0 < X < J.t + 2 0) = •.. 

P(JA.-3 0 <X < jA. + 3 0) = ... 

(xiii) If X is a random variable with distribution function F then 
F (X) has ... distribution. 

(xiv) If X - N (0,1), theilX2/2 bas ... distribution with parameter .,. 

X. Random variables Xi are independent and all of them have the same 
distribution defined by 

[(x)=V;1t exp 1-~x-l)2/81. -oo<x<oo 

Find the distribution of 
10 

(i) I X/I0' and (il) XI - 2X2 + X3 
;-1 

Ans. (i) N ( 1, ~ ). (ii) N (0,24) 

XI. The random variables Xi, i .. 1,2. ... are independent and all of them 
have the same distribution defined by 

[(x) = _1_ e-(X-I)z/18; _ 00 < x < 00 • 
v181t I-

Find the distribution of 
1 5· 

(0) -5 I Xi. 
i. I 

(b) 3X~-X2+2X3. f. 
XII. Find the mean and standard deviation of a probability ,distribution 

whose frequency function is given by 
z 

I(x) .. Ce-(1I24)(X -6u 9), _ ,00 <x < 00 

where C is a cosntant. [Delhi Univ. B.A. (StaL Hons.), 1986] 
:2 . 1 

ADs. Mean 3. o· - 12, C - v'1A " 
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xm. 

ADs. 

(b) 
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1 

(a) If{(x)_ke- 3x + 6x .- oo <x<oo, 

obtain the yalues of k, '" and ci. 
k=Y.(311r.) e- 3 , ",_1,02=~ 

If X is anonnal variate with mean", and variance 0 2, find the 
distribution of Y = a X + b . 

Ans. Y - N (a '" + b, i 0 2), 

(c) If X is distributed' nonnally With mean", and standard deviation 0, 

write down the distribution of U- 2X -3 and find the mean and 
variance of U. 

ADs. U-N(2",-3,402) 

XIV. If XI is nonnally distributed with a mean 10 and variance 16 and 
X2 is nromally distributed with a mean 10 and variance 15 and if W .. XI, + X2, 
what will be tl;1e values of the two ,parameters of the distribution of the variate 
W? (Assume that XI andX2 are independent), 

(c) LetX and Y be independent and'nonnally distributed asN ("'I, oil and 

N ("'2"O~). Find the mean and variance of t (K + Y) 

xv. ' Write a note on the role of Nonnal distribution in Statistics. 
XVI. If Xi, (i = 1,2,3, ... , n) are U.d. standard Cauchy variateS; write the 

distribution of X =,! i: Xi. 
n i-I' 

Ans. Standard Cauchy. 
XVn. Is the sum of two independent Cauchy variates a Cauchy varaite? 
If Xi. (i - 1 2, 3, 4) are independent standard normal variates, what is the 

d·· 'b' f XI X3? IStn uhon 0 X2 '+ X4 . 

ADs. Cauchy. 
xvm. "The role of Cauchy distribution in statistiCal theory often 1ies in 

providing counter examples." Elucidate. 
XIX. Write a note oil "the role of Central Limit Theorem in Statistics. 
xx. If Xi, (i = 1, 2, 3, 4) are i.i.d. N (0, 1), write the distribution ~f: 

(,) XI -X2 (ii) XI + X2 (iii) ~~ (iv) ~~ + ~ 

(v) XI-X2+X3-X4 (vi) ~Xi (vii) ~(X~+X~) 

( "') xi (. ) xi () xi v'u 2 2 IX 2 x~. 
Xl +X:z X4 X:z +A3 

ADs. (i) N (0,2) '; (i,) N (0,2); (ii,) Standard Cauchy; (iv) , Cauchy; 
(v)N (0, 4); (v,) y q); (vii) y (1); (vii,) ~l (H); (it) ~2 q!t); (x) ~2 (~, 1) . 
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Curve FittingandPrincipleo! 
LeastSquares 

9·1. Curve Fitting. Let (x., Yi) ; i = I, 2, ... , n be a given set of n pairs 
of values, X being independent variable and Y the dependent variable. The 
general problem in curve fitting is to find, if 'possible, ail analytic expression 
of the form Y ==1 (x), for the functional relationship. suggested by the given data. 

Fitting of curves to a set of numerical data is of considerable importance­
theoretical as well as practical. Theoretically it is useful in the study of correla­
tion arid (egressjon, e.g., lines of regression can be regarded as fitting of linear 
curves to the given bivariate distribution (c.c. § 10·8'1). In pfactical statistics .it 
enables us to represent the relationship between two var~bIes by simple al­
gebraic expressions, e.g., polynomials, exponential or logarithmic functions. 
Moreover, it may be used to estimate the values of one variable which 'would 
correspond to the specified values of the other variable . 

• 9·1·1. Fitting of a straight line. Let us consider the 'fitting of a straight 
line 

Y=a+bX ... (9,1) 

to a set of n points (x.. Yi) ; i = 1,2, ... , n. Equation. (9·1) represents a family of 
straight lines for different values of the arbitrary constants' a' and : b' . The problem 
is to determine 'a' and 'b' so that the line (9(1) is the line of " best fit ". 
. The term 'best, fit' is interpreted in accor~ce with Legender.'s principle 

of least squares which consists in minimising the sum of the squares of the 
deviations of the actual values of y 
from their estimated values as given 
'by the line Of best fit. 

-O~-------M~---------~X 

Let Pi (Xi. Yi) be any general 
point in the scatter diagram (§ 10·2). 
Draw Pi M 1. to x-axis meeting the 
lin~, (9·1) ilJ Hi: Abscissa of Hi is 
Xi and since H;. lies on (9·1), its.or­
dinate is a + bx i. Hence the 'co-or­
dinates 'of Hi are (Xi. a + bXi). 

piHi=PiM-HiM 

=Yi-(a+bxi), 
is Called the error of estimate .or the 
residual for Yi. 

According 'to the principle of, 
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least squares, we have to detern1ine a and b so that 

. n 2 n 2 
E= L PH· = L (y.-a-bx.) 

;=1 1 1 ;=1 1 1 

is minimum. From the principle of.maxima and minima, the partial derivaUves of 
E, with respect to (w.r.t.) a and b should vanish separately, i.e .• 

aE' n BE n 
-=0=-2 L (y.-a-bx,) and-=O=-2 L x.(y.-a-bx,) Oa ;=1 1 1 Bb ;=\ 1 1 1 

... (9'2) 

n n .n n n 2 

=> .L Yi = na + b .L X; and .L xiY; = a .L x; + b .L Xi 
1=\ I=\' 1=\ 1=1 1=\ 

... (9'20) 

Equations (9'2) and (9'2a) are:known as the normal equations for estimating 
a and h. 

'n n 2 n n 

All the quantities L x; E x;, L y; and L x;Y;, can be obtained from 
;=\ ;=\ ;=\ ;=( 

the given set of points (x, Yi); j = .1, 2, ... , nand .the equations (9'2a) can be 
solved for a and b. With the values of a and b so obtained, equation (9'1) is 
the line of best fit to the given set of poin~ (Xi' Yi); i = 1, 2, ... , n. 

Remark. The eqmllion of the line of best. f\t of Y on x is obtained on 
eliminating a clOd b in (9' !) am) (9'2a) and can be expressed in the determinant 
forlp as follows: 

y X 

. LY; LX; n ~O 

LX;Y; LX; LX; 

9-1-2. Fitting of second degree I)araboln. 'Let 
Y = a + hX + e}{2 

... (9·2b) 

... (9'3) 
be the second degree parabola of best fit to set of n points (Xi' Yi); i = 1, 2, ... , 
n, Using the principle of l¥ast squares, we have to determine the constcints 0, 

band e so that 

is mininuun. 

n 2 ~ 
E= L (v- -a-bx. -ex· r 

;=( I 1 1 

Equating to zero the partial derivatives of E with respect to a, h clOd c 
separately, we get the normal equations for estimating Q. band c as 

BE = 0 =..,..2 L(y. -a -bx. -cx2 ) fJa • 1 1 1 

DE 2 
- = 0= -2 LX.(y. -a~bx· -ex· ) Db 1 1 1 1 

... (9,4) 

0: = 0 = -2 L xi(Y; -a-bx; -cxi> 
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L: V ;: na + b t X + c L: x.2 . , " 
~ L: Xi Yi = a L: Xi " b L: xl + c L: x/ ... (9·4a) 

L: x2 Y = a L: x2 + b L: x3 + c L: x4. , ., , , , . 
summation taken over i from I to n. 

For given set of points (Xi' Yi); i = 1,2, ... , n, equations (9'4a) can be solved 
for a, band c, and with these values of a, band c, (9'3) is the parabola of best 
fit. 

Remarl< •. Eliminating a. band c in (9'3) and (9'4a), the parabola of best fit 
of Y on X is given by 

y X2 X 

LYi LX~ LXi n 
=0 I 

LXiYi LX~ LX~ LXi 
I I 

LX; Yj LX4 LX3 LX2 
I I I 

9·1·3. Fitting of Polynomiul of kth Degree. If 
}' - v • '\"2 vI. - ao + a1 ."- + a2 • + ... + ak .~ 

is the kth degree polynomial of best fit to the sct of points (Xi' Yi); i = 
n. the constants ao, al • a2, ... , ak are to be obtained so that 

n . 2 I; 2 
E = L. (yj -aO -aJxj -a2xj - ... -al; Xj ) 

J=} 

... (9·4b) 

... (9'5) 

1.2, .... 

is minimum. Thus the normal: equations for estimating ao, aI' .... ak are obtained 
~n equating to zero the partial derivatives of f w.r.t. ao, ai' ... , ak separately, 
I.e .• 

BE 2 I: -;-- = 0 = -2 L(Yi -ao -aJ Xj -a~ Xi - ... - al;xi ) 
vao 

aE 2 I; 
--=0=-2 LXj(Yj-aO-aJ Xj -a2 Xj - ... -al;xj ) 
aaJ 

BE k 2 I; 
-;--=0=-2LXj (Vj-aO-aJ xi -a2 xj - ... -al;xj ) 
val; 
~ 

LY; = nao +aJ L'C; +a~ "Ex? + ... + ak 'i.xf } 

L XjY; = ao L.'Cj + a J L.t; +a2 L.'C: + ... + ak 'txf+J 

L xtYj = ao rxt +aJ L.'Ct+ J +a2 ~'Ct+2 + ... + ak Lx;t, 

... (9'6) 

... (9·6a) 

summation extended over i from 1 to n. These are (k + I) equations in (k + 1) 
unknowns aOI aI' a2, ... , ak and can be solved with the help of algebra. 

Remarl<. It has been found that in all the above cases, the values of the 
a2 E [;2 E 

second order derivatives, viz., --2 '--2 '" come out to be positive at the 
aao aaJ 
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points 00, a" ___ , 01;. the solutions of the 'normal equations'. Hence they 
provide minima of E. For proof see Remark 1 to § 10_7. I-Lines of Regression_ 

Example 9·1. Fit a straight line to the following data. 
X: 1 2 3 4 6 8 
Y. : 2·4 3 3·6 4 5 6 
Solution. Let the line be Y = a + bX 

X Y )(2 XY 

2·4 2·4 
2 3-0 4 6·0 
3 3·6 9 10·8 
4 4·0 16 16·0 
6 5·0 36 30·0 
8 6·0 64 48·0 

Total 24 24 130 113·2 

Using nonnal equations (9_2a), we get 
24 = 6a + 24b and J J3-2 = 24a + 130b 

Solving these equations, we get a = 1-976 and b = 0-506. 
Example 9·2. Fit a parabola of second degree to the following data: 
X 0 1 2 3 4 
Y: 1·8 1·3 2·5 6·3 

(Delbi Univ. B.Sc., Oct. 1992) 
Solution. Let Y = a + bX + c)(2 be the second degree parabola. 

X Y Xl X3 X4 

0 1-0 0 0 0 
I 1-8 1 1 I 
2 1·3 4 8 16 
3 2-5 9 27 81 
4 6·3 16 64 256 

Total 10 12·9 30 100 354 

Using nonnal equations (9·4), we get 

12·9 = 5a + lOb + 30c; 37·~ = lOa + 30b + 100c; 

130· 3 = 30a + 100b + 354c 

XY Xly 

0 0 
1-8 1·8 
2·6 5·2 
7-5 22·5 

25·2 100·8 

37·1 130-3 

Solving these equations, we get a = 1·42, b = - 1·07 and cO-55. Thus the 
required equation of the second degree parabola is 

Y = 1-42 - 1·07 X + 0·55)(2 

Remark. If the values which X and Y take are large, the calculation of 
LX, L x2, LX y, ... , becomes q~ite tedious and the solution of the normal 
equations, is also quite cumbersorrte. In this case arithmetic is reduced to a great , 
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C,xlcnt by suilllble change of origin in X or (and) in )'. 
9·1·~. Change of origin. Lei us suppose thalthe values of X are given 

to be equidistant at an interval of It, i.e., X rakes the values, (say), a, a + h. 
;1 + 21t •... If n is odd. i.e .• n = 2m + I (say). we take 

U = X - (m,tddle t?r~ ~ = X - (a + mh) 
- Interval h 

Now U takes the values - m. - (m - 1) •...• - 1. 0.1, ... , (m - 1), m, so that 

~U= I: U 3=0. 
If n is even, i.e .• n = 2m (say). then there are two middle terms, viz., mth 

and (m + l)lh terms which are p + (m - 1) h and a + mho In this case.we take 

X - (mean of two middl~ terms) X - [a + ~ (2m - 1) h) 
U- ---~----

- ~ (i.nterval) - ~ (h) 

2X ~ 2a - (2m - 1) h 
= h ... (9·7) 

Now for X = a, a + h , ... , a + ( 2m - 1 ) h; U takes the values 
-( 2m - 1 ), - ( 2m - 3 ) , ... , - 3, - 1, 1. 3, .... , ( 2m - 3 ), ( 2m - 1 ) . 

Again we see that I: U = I: U3 = 0 . 
E"a~ple 9·3. The weights of a calf taken at weekly intervals are given 

below. Fit a straight Iif!e using the method of least squares and calculate the 
average rate of growth ,per week. 
Age (X) 1 2 3 4 5 6 7 8 9 10 
Weight (Y): 52·5 58·7 65·0 70·2 75·4 81·1 87·2 95·5 102·2 108·4 

Solution. Let the variables age and weight be ,.denoted by X and Y 
respectively. 

Here n = 10. i.e .• even and the values of X are equidistant at an interval 
of unity, i.e., h = 1. Thus we take 

U = X - (5 1+ 6)12) = 2X - 1.1. 
- -2 

Let the least-square line of Y on l.j be Y = a + bU. 
The normal equations for estimating a and b are 

I:Y = na + bllJ and I:UY = aW + bI:U 2 

X Y U ~2 

1 52·5 -9 81 
2 58-7 -7 49 
3 65·0 - 5 25 
4 7~2 -3 9 
5 75-4 - 1 1 
6 81-1 1 1 
7 87·2 3 9 

UY 

-472·5 
-410·9 
- 325-0 
-210-6 
-75·4 

8].] 
261·6 
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8 95·5 5 25 477·5 
9 ](\2·2 7 49 71~-4 

10 IOS·4 9 81 975·6 

Total 796·2 0 330 1016·8 

Thus the normal equations are 

796·2= lOa + 0 x band 1016·8 =a x 0+ 330b, 
1016·S 

which give a = 79·62 and b = ~ = 3·0S (approx). 

:. The least ~uare Ijne of Y on U is 

I y = 79·62 + 3·0SU 
Hence the line of best fit of Y on X is 

y= 79·62 + 3·0S (2X -11) => Y=45·74 +6·16X 
The weighrs of the calf (as given bY,the line of best fit Y = A + BX ) after 

I, 2, 3, ... weeks are A + B, A + 2B, A + 3B, ... , respectively. Hence the average 
rate of growth per week is B units, i.e., 6·16 units. 

EXERCISE 9 (a) 

1. (a) (Xi, Yi) ; i = 1,2, ... , n, give the co-ordinates of n points in- a plane. 
It is proposed to fit a straight line Y = aX + b to. those points such that the sum 

-of the squares of the perpendiculars from those n points to the line is a mini­
mum. Find the constants a and b. Use the above meth.Qd to 'fit a straight line 
to the following points : 

X: 0 2 3 4 
Y: 1 I·S 3·3 4;5 6-3 

Ans. Y=O·72+ 1·33X 
(b) Fit a straight.line of the form Y = AX + B to. the following data: 

X : 0 5 10 15 20 '25 30 
Y: 10 14 19 25 31 36 39 

2. Show that the line' of best fit to the following data is given by 

Y=-0·5X + S 
X : 6 77'S 8 8 9 9 10 
Y: 5 5 4 5 4 3 4 3 3 

3. (a) How do you define ~e ter:m "line of best fit". Give the normal 
equations generally used to obtain such a line. Fit a straight line and parabolic 
curve to the following data :X :1·01·52·02·53·03·54·0 

Y: I-I 1·3 1·6 2·6 2·7 3·4 4·1 
Ans. Y = t-()4 - O· 20X + 0-24X 2 

(b) Fit a straight line to the following data. P,Iot the observed and the ex· 
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(h) FiL a ~LraighL line LO the following daw. PIOL Lhc observcd and Lhc cx­
I)CCLCd values III a graph amll~xamil)c wheLhcr the sLraighL line givcs an adequaLc 
rlL 

x... I 2 3 4 5 6 7 R 
y... 55 46 40 38 33 30 29 30 

4. An expcrimcnt is conductcd to verify the law of falling under gravity 
expressed by . S = ~ gt 2 

where S is the distance fallen at time t and go is a gravitational constant. The 
following resulL<; arc obtained: 

t(seconds): 1 2 3 4 5 
S ( feet) 15 70 14<r 250 380 

Taking S as thc dcpenent variable, fit a stmight line to the data by the 
method of least squares in a manner thar you can estimate g. What is the estimate 
of g? . 

S. (a) Explain the 'method of fitting a second degree parabola by using the 
principle <,>f lea<;t squares. 

(b) Fit a parabola Y = a + bx + ex 2 to the following data : 

X; I 2 3 4 5 6 7 
Y: 2·3 5·2 9·7 16·5 29·4 35·5 544 

6. Fit a second degree parabola to the following data taking X as the 
independent variable : 

X ': I 2 3 4 5 6 7 '8 9 
Y: 2 6 7 ,8 10" 11 11 10 9 

An~. Y = - 1 + 3·55X - 0·27X 2 

7. In a spectroscopic method for determining the .per cent X of natural 
rubber-content of vu\cani7..ates, the variable Y used is 1 + 10glO r, where r is the 
ratio of transmission at two selected wavelengths. In order to establish a relation­
ship between X and Y, the following data were obtained : 

X : 0 20 40 60 80 100 
Y: 2·19 2·65 3-16 3·57 3·93 4·27 

Using least square method, fit a parabola. Comment on your results. 

8. Fit ~ second degrec curve'Y = a + bX + eX 2 to the following data relat-
ing to- profjt of a certain comP.any .. 

Year : 1980 1982 1984 1986 1988 
Profit in lakhs o{rupees.: 125 140 165 195 230 
Estimate the profit in the year 1995. 

Ans. Y=114+7·2X+3·15X 2 

9. Explain the method of least squares of fitting a curve to the given mass 
of data : 

X:. -2 -1 I) 2 
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Y : YI Y2 Ya Y4 Ys 
Fll a parabola Y = a + bX + c (X 2 - 2), by lhe ,melhod of leasl squares and 

show lhal 

- I 2 1 2 a=y, b=IO(-2YI-Y2+ Y4+ ys), C=14(2YI-Y2+ Y4+ ys) 

10. Show lhal lhe besl filling linear function for the points (x\,Y\), 
(X2, Y2), ... , (XII' YII) may be expressed in lhe form 

x Y 1 
EXi EYi n =0, (i=1,2, .. ,n). 
Ex? LX;Yi LXi 

Show that lhe line passes through the mean point (x, Y). 
9.·2. Most Plausible Solution of a System of L..ine~r Equations. 

Method of least squares is helpful in fmding the most plausible values of the 
variables satisfying a system of independent linear equations whose number is 
more than the number of variables under study. Consider the follQwing set of 
m equations in n variables X, Y, Z, ... , T : 

a\X+b\Y+c\Z+ ... +k\T=/\ } 
a2X + blY + c2Z + .. , + k2T = h 

a",)( + bmY + cmZ + ... + k".T= 1m 
where aj, bj, ... , 'i; i =--1, 2, ... , m are constants. 

... (9·8) 

If m = n, the system of equations (9·8) can 'be solved uniquely with the help 
of algebra. If m > n, it is not posible to detennine a u,nique solution X, Y, Z, ... , 
T which will satisfy the system (9·8). In this case we find th& values of X, Y, 
Z, ... , T which will satisfy the system (9·8) as nearly as possible. 

Legender's principle of least squares Consists in minimising the-sum Of the 
squares o'f the 'residuals' or the 'errors'. If 

Ej = aX + bjY + c;Z + ... +- kiT -/j; i = 1,2, .. , m 
is the residual for lhe ilh equation, then we have to determine X, Y, Z, ... , T so that 

m m 

U = L E? ~ L (aj X + bjY + 'Cj Z + ... + kj T _ /j)2 
j .. I ;= I 

is minimum. 
Using the principle of maxima and minima in differential calculus, the par­

tial derivatives of 'U' w.r.t. X, Y, Z, ... , T should vanish separately. 
Thus 
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~ ~ = 0 = . ~ a. (a. X + b.Y + GiL + .,. + kiT - Ii) 
(J • = t 

~ ~ = 0 = . ~ b. (a. X + b.Y + G.L + ... + kiT - liJ 
a • = t 

... (9·9) 

~ ~ = 0 = . ~ k. (a. X + bjY + CiZ + ... + kiT - /;) 
U .= t 

These are known as the normal equations for X, Y, Z, ... , T respectively. 
Thus we have n - normal equations in n unknowns X, Y, Z, ... , T and' their 
unique solution gives the best or the most pla4sible solution of the system (9·8). 

Here we see that the norm,al equation for any variable is obtained by mul­
tiplying each equation py {he coefficient of the variable in that equation and 
then adding all the resulting equations. 

Example 9·4. Find the most plausible values of X and Y from' the 
fol/owing equations : 

X-5Y+4=0, 2X-31:'+5=0 
X + 2Y - 3 = 0, 4X -¥ 3Y + 1 == 0 

Solution. Normal equation for X is 
I . (X - 5 Y + 4) + 2 (2X - 3 Y + 5) + 1 . (X + 2Y - 3) + 4 (4X +.3 Y + 1) = 0 
=> 22X+3Y+15=O ... (*) 
Normal equation for Y is 
- 5 (X - SY + 4) - 3 (2X - 3Y + S) + 2 (X + 2Y - 3) + 3 (4X + 3Y + 1) = 0 
=> 3X + 47Y - 38 = 0 ... (**) 
Solving (*) and (**), we get X = - 0·799 and Y = 0·86. 
Hence the most plausible values of X and Y are X = - 0·80 (approx.) and 

Y = 0·86 (approx.) 

EXERCISE 9 (b) 

1. Find the most plausible values of X and Y from tile following equations: 
X + Y= 3·01, 2X - Y=0·03, 

.X + 3Y = 7·03, 3X + Y = 4·97. 
(i) 

Ans. X = 1·0003, Y = 2·0007. 
X + Y = 3, X - Y = 2, 

X + 2Y -'- 4 = 0, X = 2Y + l. 
(ii) 

2. Find the most plausible values of X, Y and 2 from the following 
equations: 

X - Y + 1Z = 3, 3X + 2Y - 52 = 5, 4X + Y + 4Z = 7t and -x + 3Y + 3L = 14 
Ans. X=2·47, Y=3·5S, Z=I·92. 
9·3. Conversion of Data to Linear Form. Sometimes it may happen that 

the original data is not in a linear form but can be reduced to linear form by 
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somc sImple transformation of variables. We will illustrate this by consldenng 
thc following curves : 

<a) Fitting 01 a Power Curve. Y = aXb ... (9 10) 

to a set of n points. 
Taking logarithm of both sides, we £et 

log Y = log a + b log X 
~ U=A+bV 

where U = log Y, A = log a and V = log X. 
I 

This is a linear equation in V and U. 

Normal equations for estimating A and B are 

r..U::: nA+ br..V and r..UV = Ar..V + br..V 2 ... (9· lOa) 
These equations can be solved for A and b and consequently, we get 

a = antilog (A) 

With the values of a and IF so obtained, (9·10) is the curve of best fit to 
the set of n points. 

( b ) Fitting of Exponential Curves. (f) Y = abx , (ii)' Y ::: aebX 

to a set of n points. 
(i) Y = abx .:.(9 11) 
Taking logarithm of both sides, we get 

log Y::: log a + X log b 

~ U=A+BX 
where U::: log Y, A = log a and B::: log b. 

This is linear equation in X and U. 
The normal equations for estimating A and B are 

r.. U = nA + BU and UU:;: AU + BU 2 

Solving these equations for A and B, we finally get 
a = antilog (A) and l!.:;: antilog (B) 

... (9·11a) 

With these values of a and b, (9·11) is the curve of best fit to the given 
set of n points. 

(ii) Y=alX 

log Y = log a + bX log e = log a + (b log e) X 

V=A+BX 
where U = log Y, A::: log a and B = b tog e. 
This is linear equation in X and U. 
Thus the normal equations arc 

r..U :;: nA + au and r..xU = Af..X" + BU 2 

From these we ~ind A and B and consequently J , 

... (9·12) 

... (9·12a) 
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(/ = antilog (A) and 
8 

fl=--
loge 

Example 9·5. Fit an exponential curve of the form Y = ab~ 10 Ihe 
following data : 

X: I ·2 3 4 5 6 7 8 
}' : 1·0 1·2 1·8 2·5 3·6 4·7 6·6 9·1 

Solution. 
X y V = log Y XU X2 

t 1·0 0·0000 0·0000 1 
2 1·2 0·0792 0·1584 4 
3 1·8 0·2553 0·7659 9 
4 2·5 0·3979 1·5916 16 
5 3·6 0·5563 2·7815 25 
6 4·7 0·6721 4·0326 36 
7 6·6 0·8195 5·7365 49 
8 9·1 0·9590 7·6720 64 

total 3~ 30·5 3·7393 . 22·7385 204 , .. 
(~rlla) gives the nonnal equations as 

3· 7393 ::= 8A + 368 
and 22· 7385 = 36A + 2048 
Solving. we get 

8 ::= 0·1408 and A =~·t662 = f.8338 
f 

:. b = Antilog B ::= 1·383 and a::= Antilog A ::= 0·6821 
Hence the equation of the required curve is 

Y::= 0·6821 :1·38)x . 
Example 9·6. J)erive the least square equations for filling a curve of the 

Iype Y::= aX + (b/X>, to a set of n points (Xi. Yi) ; i = 1.2 ..... n. 
Solution. The error of estimate £1 for the ith point (Xi. Yi) is given by 

Ei = ( Yi - axi - ~ J 
According to the principle of least squares. we have to detennine thy values of a 
and b so that sum of the Squares of errors £, viz., 

E= E E?::= E Ji-axi--. n n ( b J2 
;=1 ;=1 XI 

is minimum. 
Consequently. the normal equations are 

iJE = 0 ::= - 2 i Xi ( Yi - ax; - ~ J 
da ;= 1 XI 
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dE n I ( b '\ - = 0 = - 2 1: - Yi - axi - - J 
db i=lxi x, 

which on simplificalion give 
n n 

1: Xi Yi = a 1: xl + nb 
i= I i= 1 

and i [~)=:na + b .i [-~) 
i=1 x, i='l x, 

Example 9·7. Three independent measurements on each of the 
three angles A, B, C of a tria'lgle are as follows,' 

ABC 

39·5 60·3 80·1 

39·3 62·2 80·3 

39·6 60·1 80·4 

Obtain the best estimates of the three angles taking into account the relation 'that 
the sum of the angles is equal to 180°. 

Solution. Let the Lhree observations on A be denoted by XI, X2, X3, on B 
by y., Y2, Y3 and on C by ZI, Z2, Z3. ~t 9.,92 be the best estimates for A and 
B respectively. 

According to the principle of least squares, our problem is to estimale 
9. and 92, so that 

E = 1: (Xi - 91)2 + 1: (yj - 92)2 + 1: (Zj - 180 + 91 + 92)2 
is minimum, summation being taken over i from 1 to 3. 

Equating to zerQ the ,partial derivatives of E w.r.t. 91 and 92, the. nonnal 
equations are 

dE 
:l9. = 0 = - 1: (Xi - 9d + 1: (Zj - 180 + 9. + 92) 
o .. ,(*) 
dE 
a92 = 0 = -1: (yj - 92) + 1: (Zj - 180 + 9. + 92) ... (**) 

From {*) and (**), we get 
391 - 1: Xi + 1: Zj - 540 + 39. + 392 = () } 
392 - 1: Yj + 1: Zj - 540 + 39. + 392 = 0 ... (***) 

But 1: x, = 39·5 + 39· 3 + 39·6 = 118·4 
1: Yj '" 60·3 + 62·2 + 60·1 = 182·6 
1: Zj = '80·1 + 80· 3 + 80·4 = 240·8 

Substituting in (***), we get 

69.+392-417·6=0 and 39.+692-481.8=0 

:. ~ = Q1 = 39.27,h = Q2 = 60·66 and t = 180 - QI - G2 = 80·07 
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9.4: Selection of Type of Curve to be Fitted. The greatest limitation of the 
method of curve fitting by the principle of least squares is the choice of the 
Inalhematical curve to be fitted to the given data. The chojce of a particular 
curve for describing the given data requires great skill, intelligence and expertise. 
The graph of the given data enables us to have a fairly good idea about the 
type of the curve to be fitted. The graph will clearly reveal if the trend is linear 
(straight line) or curvilinear (non-linear). If the graph exhibits a curvilinear trend 
Illen further appr.oximations _ to the type of trend curve can be obtained 011 

plolting the data. on a semi-Iogarilhll~ic sca!e. A ca~eful sl.udy .of the graph 
obtained on plottmg the data on an anthmellc or senll-iogantllllllc scale often 
provides adequale basis for selecling the type of the curve. The various types 
of curves that may be llsed to describe Ihe' given data in practise are: [If Yx is 
Ibe value of the dependenl variable corresponding to th~ value x of the 
independent variableJ 

(i) A straight line: yx = a + hx 
(ii) Second degree parabola: Yx = a + bx + cx2 

(iii) kth degree po~vnomial: yx = ao T a J x + a2 x2 + '" + ak xk 
(iv) Exponential curve: Yx = abx 

~ logyx = log a + x log b = A + Bx, (~ay). 
(iv) Second degree curve jitted to logarithms: .. 

(vi) 
(a) 

(b) 

~ 

(c) 

y = abx cx2 
. x 

~ log y = log a + x log b = x2 log c x . 
= A + Bx + Cx2, (say). 

Growth Curve ... : 
Yx = a + \)X (Modified Exponential Curve) 
Yx = abeX (Gonlpertz Curve) 

log Yx = log a + "x. log. h = A + BeX, (say) 
1 

- k . b < 0 (Lo'gistic Curve) 
YI' = I + exp (a +hx) 

For decideing about the type of curve 10 be titted to. a given sel of data, 
the following points may b~ helpful: 

(i) When the Yx series is found to be increasing by equal absolute amouIlls. 
the straight line curve is used. In tllis case, the graph of the data will give a 
straight line graph. 

(ii) The logarithmic straigl"t line (exponential curve Yx = aV) is llsed when 
the series is increasiJ)g or decreasing by a cO~lstant percentage rath~r than a 
constant absolute amOlan\. In this case, the data plotted· on a semi-logarithmic 
scale will give a straight line graph. 

(iii) Second degree curve fitted to·logarithnls may be tried if the-data plotted 
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on a semi~logarithmic scale is not a straight-line graph but shows curvature, being 
concave.either upward or downward. 

For further guidelines, the following statistical tests based on the calculus 
of finite differences [ef. Chapter 17] may be applied. 

We know that ·for a polynomial y" of nth degree in x. 

~ ~ y" = constant, r = n } 
• =0 '\, r>n 

where ~ is the difference operator given by ~ y" = YH It - y", h being the interval 
of differencing and ~ , y" is the rth order difference of y". 

r. If ~ y" = constant, use straight line curve. 

~. If ~ 2 y" = constant, use a second degree (parabolic) curve. 
3. If ~ (IOKY,,) 'T constant, use exponential curve. 

4. If ~2 (log Y.) = constant, use second degree curve fitted to logarithms. 
S. If ~ y" tends to decrease by a constant percentage, use modified ex-

ponential curve. 
6. If ~ y" resembles a skewed frequency curve, use a Gompertz curve or 

Logistic curve. 
7. The growth curves, viz., modified exponential, Gompertz and Logistic 

curves, can be approximated by the constancy of the ratios 

~ { ~logY1i } { ~(l/y,,) } 
. ~Y"-l' ~IOgY"-l ' ~(l/Y"-l)' 

respectively for all possible values of x. 
EXERCISE 9 (c) 

1. Describe the method of fitting ~e following curves : 

(t) Y = aeb", (ii) Y = aX b . 

2. (a) Fit an eQuation of the form Y = abx to the following data : 

-------' ..... X: 2 3 4 5 6 
Y: 144 112·8 207·4 248·8 298·6 

Ans. Y= (101·3) (l·I96l 
(b) Fit a curve of the type y'='iJl,x to the following data : 

X:.2 3 4 ~5 "'6 
f: 8·3 15·4 33·1 65·2 127·4 

Estimate Y when X = 4·5, 7 and 3·5. 

3. Fit a curve of the' form Y = bex to the following data : 
YeCJl'(X): 195'1 1952 1953 1954 1955 1956 ·1957 
Production 
In 'lQ!'IJ (f) : 201 263 314 395 427 504· 612 
.". In a,n' experiment in which! the growth of duck weed under certain con-
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ditions was measured, the following results were obtained: 

Weeks (X) '" 0 1 2 3 4 2 6 7 H 
No. of friends (Y) ... 20 30 52 77 135 211 326 550 '1052 

Assuming the relationship of the form Y = alx, find the best values of (l 

and b by the method of least squares. 
S. For the data given below, find the equation to the bes~ fitting exponential 

curve of the form Y = alx. 

X: 1 2 
Y: 1·6 4·5 

Ans. Y = (0.557) e!·05X 

3 
13·8 

4 
40·2 

5 
125·0 

6. Fit the curve Y = aX 2 + (b/X) to the following data : 

X: 1 2 3 
Y: - 1·51 0·99 3·88 

4 
7·66 

6 
300·0 

7. The following table gives correspondipg values of two variables 
X and Y. 
X: 1 2 3 4 5 
Y: 1·8 5·1 8·9 14·1 19·8 
It is found that they are connected by 'a law of the form Y = aX of bX 2, where a and 
b are constants. Find the best values of a and b by the method of least squares. 
Calculate the value of.Y for X = 2. 

Ans. a = 1·521; b = 0·49; 5·006 
8. The following pairs of observations were noted in experimental work on 

cosmic rays. Find, by the method of least squares, the best values of a and b 
for the equation log R = a - bC which fits the data and estimate the most 
probable value of R for C = 20· 7. 

C: 14 15 16 17 18 
R: 24·1 20·5 14·0 7·3 5·0 

9. (a) Explain the principle of least squares and describe its applications, 
in fitting a curve of the form Y = a exp (bX + cX2). 

(b) Fit an indifference curve of the type XY =r b + aX to the data given 
below: 

Consumption of Commodity X : 2 3 4 
Consumption of Commodity Y : 3 1· 5 6 7· 5 

Hint. y = a + (b/x). Now proceed as'in Example 9·ti. 
Ans. XY= 1·3X+'l·7 
10. (a) Show that the parabola of best fit for the points 

(XI,YI); (Xl,Y2) ; ••.••• ; (X2n+I,Y2n+ I) 

where the values of x are in A.P. with common difference unity and x ~ 0, can be 
expressed in the form 
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Y 
Iy; 

IX;Yi 

r.x~ Yi 

i 
n(n+l)(2n+l) 

3 
o 

n2 (n+ 1 )2 

2 

'FUndamentals of Mathematical Statistics 

x 
o 

n(n+l)(2n+l) 
3 
n 

an+ 1 
.0 

n (m + 1 )( 2n + 1 ) 
3 

=0 

[Delhi Univ. B.A. (Pass), 198'1) 
Hint. Use (9·4b), with 

xi=a+i; i= 1,2, ... ,(2n+ I). Since x=O, 

l:xi=(2n+ I)a+l:i => 0-(211+ I)a+ (2n+ 1)(2n+2) 
- 2 

a=-(n+ I) 
l:Xi2 = l: (a + ,i = (2n + oi + l:i 2 + 2d ~i 

and so on, for l: x? and 1; Xi 4 • 

[ iil=m(m+l)(2m+I); i;3=[m(m+l)f 
i= 1 6 i= I 2 

and m 1 ] 
i -: t = 30 m(m + 1 )(2m + 1 )(3m2 + 3m - I) 

(b) When do we prefer logarithmic curve to ordinary curve? . 
9·5. Curve Ji'itting by Orthogonal Polynomials. Suppose that the 

polynomial of pth degree of Y on X is 
2 ' 

Y = ao + alX + az X + ... + ap X p ... (9·13) 

The normal equations for detennining the .constants als are 'obtained by 
the principle of least squares by minimising the residual or error sum of squares 

E=l:(y-ao-alx-a2X2- ... -apxP)'" ... (9·14) 

summation being extended over the given set of observations. The nonnal equa-
tions are: 

~E =0, (j=0, 1,2, ... ,0) 
Oaj 

. 2 
i.e .• l:xJ(y-ao-alx-,a2x - ... -apx")=O, [j=0, 1,2, ... ,p] ... (9·15) 

Assume that X and Y are measured from their means (and this we can de 
without any losS of generality) so that 

and write, 

~r= !!r"= E (X') = . ..!.. l:x' .' / N 

1 ., 
~jJ =- l:xJi.y, 

- N 
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where N is number of observations taken on each 01 the v;lriables X and y. 
Hence (9·15) gives 

J..Ljl -aoJ..L,-al J..L,+ 1- (/2 J..L,+2 - ... -ap J..L,+p= 0; )=0, I, 2, ... ,p 
:;:::) ao J..L, + al J..Lj + 1 + el2 J..L, + 2 + ... + ap J..L, + p = flJI ; J = 0, 1. 2, ...• f1 
PUlling j = 0, 1.2 •...• p, we get respectively 

ao J..Lo + al J..LI + a2 J..L2 +... + ap IIp ;= J..LoI ) 
aOIl\+alll~ +a21l:3 + ... +ap~+1 =J..L:I\ ... (9.16) 

aof..lp+al f..lp+1 +a2Ilp+2+ ... +apll2p =J..Lpl 

Solving (9·16) for ao. a1. ...• up in terms of the moments 11, 's and J..Ljl's. 
j = O. 1.2 ..... p and substituting in (9·13) we get the required curve of be~t fit. 

Let 

J..Lp 
IIp+ I 

• f..lp J..Lp + I J..Lp + 2 J..L7p 

... (9·17) 

and .111") be the determinant obtained on replacing (j + l)th column of .11(P) by 
the column 

... (9·18) 

The required curve of best fit is the eliminant of aj's in (9·13)iand (9·16) 
and is given. by 

Y 1 
~I J..Lo 
J..LII J..LI 

X 
J..LI 
J..L2 

J..Lp1 J..Lp J..Lp +'1 J..Lp + 2 .... J..LZp 

... (9·19) 

The use of equation (9·19) is subject to one. serious drawback. If 'we have 
a set of data and apart from inspection if there is no guide regarding the order 
of the polynomial to be fitled. the only way left to us is to try curves of order 
I. 2. 3, .. , until we reach the point where further tenns do not improve the fit. 
Every time we add a new term. the a, 's given by (9·18) change and accordingly 
the determinantal arithmetic has to be done afresh. For example, if we want to 
fit a polynomial curve of third or higher degree to the same data then w~ cannot 
use the coefficients which we computed while fitting a second degree parabola. 
To overcome this drawback Prof. R.A. Fisher suggested a method which 
involved the fining of Orthogonal Polynomials by the principle of least squares, 
so that each term i~ independent of the other, i.e .• each of the coefficients in 



<) III Fundamentals of Mathematical Statistics 

the polynomial is independent or the other so that each of them can be calculated 
II1dcpcnde.ntly. In this method. the coefficients computed earlier remain the same 
and we have to compute the coefficient only for the added term. 

95·1. Orthogonal Polynomials (Del). Two polynomials p)(x) and 
P2(X) are said to be orthogonal to each other if 

1:. Pl(X) P2(X) = o. . .. (9·20) 
where summation is taken over a specified set of values of x. If x were a 
continuous variable in the range from a to b, the condition for orthogonality gives 

b 

I PI(X) P2(X) dx = 0 
a ... (9·2Oa) 

For example. if we take 

Po = I.PI(x) = X-4.P2(X) = X2 - 8x+ 12.P3(x) =x 3 - 12t2 +4lx - 36 

.•. (9·20b) 
then these are orthogonal to each other for a set of integral values of x from 1 to 
7 as ~xplained in the following table. Other examples of orthogonal polynomials 
are HCrinit~ polynomials. Gram Charlier's polynomials. Legender.·s polynomials. 
etc. 

ORTHOGONALITY OF POLYNOMIALS DEFINED IN (9·20b) 

X Po PI POP2 PoP.3 PtP: PtP3 P,f3 

1 -3 5 -6 -15 18 -30 
2 -2 0 6 0 -12 0 
3 -1 -3 6 3 -6 -18 
4 0 -4 0 0 0 0 
5 1 -3 -6 ;-3 -6 18 
6 2 0 -6 . 0 -12- 0 

, 7 3_ 5 - 6 15 1~_ 30 

Total 0 U U U u U' 

9·5·2. Fitting of Orthogonal Polynomials. "Ibe Ptit degree polynomial 
(9·13) can be rewritten as 

y = boPo+ blPl + bzP2 + .,. + bpPp .•. (9·21) 
where P's are polynomials in x • Pj being a polynomial of degree 
j. (j ;:: O. 1.2 •...• p). We shall determine P 's so that they satisfy the condition of 
orthogonality. yiz .• 

1:.Pj . Pl '.= 1:.Pj(x)Pl(x) =O;j~k 
x ..• (9.22) 

th~ summation being extended over the observed valuesof x. Tne normal equations 
for estimating the constants bj 's ~e obtained on minimising 

E = :E (y - boPo - blP) - ... - bp pp)2 ... (9·23) 
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and arc given by 

aE=O 
ab, 

~ LPj (y- boPo- biP. - ... -.bpPp);= 0: I = O. 1.2 • ...• p. 

Siml,ifying and using (9·?2). we get 

r. Pj . Y - bj L p/ = 0 
._LyP}._ . 

bJ - 2 .J - 0.1.2 • ...• p. 
LPj 

919 

. .. (9·24) 

Thus bj is determined by Pj. If having fitted a curve of order p we wish 
to go a step further by adding a term bp +. P p + I. the coefficients already obtained 
in (9·24) remain unaltered. 

Moreover. the use of orthogonal polynomials will gi·.e us a very convenient 
method of determining. step by step. the goodness of fit of the polynomial 
curve. For pth degree polynomial'(9·21) •. the error sum of squares is [c.f. (9·23)J 

E= L (y - boPo-blPI - .... - bp pp)2 

= Ly2+ b6 LP6 +bltpl-:+- ... + bi ~P; 
- 2 hoLY-PO - 2 blLyPI - ... - 2 bp LyPp• 

other terms vanish because of orthogonality conditions (9·22). Using (9·24) we 
finally obtain 

E= Ly2 ':!.bo2 LP02 - bl2 LPI%- ... -b/ LP/ ... (9.25) 

Thus the effect of adding any term bj Pj is to reduce the error (residual) 

sum of squares E by b/ L p/ and we may examine the effect of this term on 
• E separately. If we find that the addition of any term bpPp does not reduce E 

significantly. we ma){ conclude that it is not desired (as far as the representation 
of the given data by a polynomial curve is concerned). 

9·5·3. Finding The OrthOgonal Polynomial' P" in Fitting a Polyno~ial 
of Degree p. Let P p. the polynomial of degree p in x be given by 

p . 
Pp.= . ~ Cpjx} ••• (9·26) 

}=o 

This contains (p + If-unknown constal)ts c,o: CpI. .••• Cpp. Hence in all the 
polynomials in (9·21) up to and including those of pth order. there are 

(p+l)(p+2) 
I+2+3+ ... +(p.+1)= .2 • 

unknown constants. The orthogonaljty conditions 
LP;Pj=O.i~j=O.I.2 •...• P. 

prOvide p + Ie 2 = (p + l)p conditions on the c· s so that there are 
2 

(p+ 1)(p+2) _ (P+ l)p_ 1 
2 2 -p+. 
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constants which can be assigned arbitrarily. We will take one for each polynomial 
Pj (j = 0, 1, 2, ... , p) and assign it such that the coefficient of x1 in Pj is unity 
i.e., 

cjj = I,} =. 0, 1, 2, "', p, ... (9.27) 
In particular coo= Po = l. The orthogonality conditions give: 

~ Pp P, = O,} < p (j = 0, 1, 2, ... , P - 1) ... (9'28) 

}=O,givesLPpPo=O => LPp=O;(':Po=l) ... (*) 
}=O,givesLPpPI = 0 => LPp=O,(x+k)=O 

=> L Pp . x + I{ L Pp = ° 
=> L x P p = ° ... (**) 

} = 2, gives L Pp P7 = 0 => LIt'..p = (xl + klx + k2) = ° {Using (*)) 
. => L r. Pp = ° [Using (*) and (**)) 

Similarly proceeding, we shall get in general 

;: Pp x" = 0, r = 0, 1,2, ... , P - 1 ... (9'29) 

~(f cpj .xjJxr = 0 
x }=o 

=> f (c ~ xJ+r ) = 0 
j=O PJ x 

Dividing both sides by N, the number of observations on each of the 
yaria.bles X and Y, we get. 

p 

J~O cpj Pj + r == 0; r = 0, 1, 2, ... , (p - 1) ... (9'30) 

where x is ~~umed to be measured from mean. Putting r = 0, 1, 2, .. , (p - I) 
in (9'30), we get respectively 

cpO~ +cpl~I+"'+cpj~j +"·+cp.p_I~p-1 +cpp~p=o 
cpO~1 +cPI~+,,·*cpj~j+1 +"·+cp.p_l~p +cpp~p+I=O 
C : II + C II + ... + C II: + ... + C 11_ + C 11_ : pO:t"'p-1 plt"'p .pjt"''j+p_1 p,p-Ir-J.p-2 pp r-J.·p-I=0 
Notmg that cpp = 1, solvmg the above equations for C S, we get 

~o ~l ... -~p ~p-l 

~l ~2'" -~p~l'" ~P 

~p-l ~P ~L2p-l ... ~2p-2 _ /l(p)P} 
cpj = 

~o ~ll ~j ~p-l 
- lp-l) 

~l ~2 ~l J+l ~P 
... (9'31) 

~p-l ~p ... ~j+p-l ... ~2p-2 
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where !!.(p) h~l" been defined in (9 1'7) and !!.(P)PI is the minor 01 the element 

in the last row and (j + 1 )th column in !!.(P). SubstilUling lhis value of CPI in (9·26), 
wegct 

1 
Pp=-­

!!.(p-I) 
1lP-1 IIp 11:>+ 1 1l2p-1 

) X x 2 x P 

... (9·32) 

In particular if 110 = 1, III = 0 and 112 = I, i.e.~ if x is a standardised variate 
then thc orthogonal polynomials are given by 

Po= 1 

17 ~l 
PI (x) ----:::;x 

110 
110 III 112 
III 112 113 
1 X x 2 

Pix) =-,-Ilo--Il-l -1- =x 2 -1l3 x - I 

III 1l2. 

110 III 112 113 
110 III 

III 112 113 J.14 P3(X) = + III 112 
112 113 J.4 Ils 
1 X x 2 3 112 113 

x 
and soon. 

... (9·33) 

... (9·330) 

... (9·33b) 

112 
113 ... (9·.33c) 

J.4 

If we further assume that x is· a standard normal variate so that 113 = Ils 
= '" = 1l2r+ 1= 0, then the above orthogonal polynomials are called Hermite 
Polynomials and are given by 

'\ 2· 3' 4 2 Po=l;PI(x)=x;Pix)=x -I;P3(x)=x -3X;,P4(X)=X -6x +3; 

and so on,. where x is a continuous r. v. taking values from - 00 to 00. ...(9· 34) 
Remark. Hermite Polynomials defin~.d in (9·34) are orthogonal w.r.t. the 

weight function 
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00 

i.e., J Pj(X) P,{X) a(x) = 0; i '* j 
... (9·35) 

where PI(X). P2(~). P3(x). P4(X) are defined in (9·34). 
9·5·4. Determinatiop of the Coefficients bi's in (9·21). From (9·24), we 

get 
bp = r., y Pp / r., p/ ..• (9·36) 

Now r.,p/=r.,pppp 
=r.,pp [CpO + CpIX+ Cp2X2+ ••. + cppxP] 

x 

=r.,pp.xp, 
x 

on using (9·29) and the fact that cpp = .... 

. r.,p/=r., ( .! CPii] xp=.! (Cpjr.,xp+jJ 
x )=0 )=o-x 

l!.- P 6.(P) . 

= N . r. Cpj IlP +j = N . r., (P-"~) ·1lP+j 
)=0 )=0 6. 

[From (9·31)] 

~ ·~I IlP 

N ~J ~2 1lP+ I 
=--

6.(p-J) IlP-J IlP ~1p-l 
IlP ~p+ I ~1p 

[Proceeding exactly as we obtained (9·32) r 
N 6.(P) 

- 6.(P- J) 

P 6.") . 
Similarly, 'r., y Pp = N r., PI 

j=JJ 6.(P- J) . ~jJ 

~ ~I IlP 

N .~I . ~2 1lP+ I 
---

6.(P-J) 
IlP-I IlP ~1p-J 

~J ~11 IlPI 
N .6.(P) 

= 6.(P- J) 

where 6.(P) and 6.(P)j arci<lefined in (9·17). Substituting in (9,36) we get 

... (9·37) 

... (9·38) 
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... (9·39) 

1 f Lhe variable x takcs Lhe inLcgral val ues 1, 2, ... , N. Lhen Lhe firsL seven 
of these orLhogonal polynomials Pj'S j = 0, 1,2,3, ... ,6 are given by : 

Po(x) = 1, Pt(x) = At . ~ 

P2(X):;=A2{~2_N:;I } 

'\ {~3 3N 2 -7 ~} 
P3(X) = 11.3 ., - 20 ., 

P4(X) = A) ~4 _ 3N 2 - 13 ~2 +...1.. (N 2 _ I)(N 2 - 9)} 1 14 560 

Ps(x) = As { ~s - {8 (N 2 -7) ~3 + I~8 (I5~ - 230N z + 407) ~ } 

P6(X)=~·{ ~6 - ;4 (3N2-3I)~4+ I~6 (5~-llON2+329)~?} 

__ 5_ (N2_ 1)(N 2-9)(N Z -2S)}' 
14784 

and so 011, where ~ = x -~ so that.~ ~ = 0 and A.;'s are arbitr3!Y constants. 
If y = bo + btPt(x) + bz Pz(x) + ... + bp Pp(x); is Lhe orLhogonaI polynomial 

fitted LO the given data then, using (9·24), we geL 

~yPo ~v 
bo=--z =/t ; (.: Po= 1) 

~Po 
~yP. 
x . 

bi=--2 ,(i= 1.2, ...• P, 
~Pi 
x 

The OIiglO of P;'s is so chosen that ~ Pi = O. 
If N, the number of observations is odd, then we take 

~=xj-A 
h 

and if N is even ~~ we take 

~=xi-At 
(h/2) 

where h = length of the Jnterval (for values of x) 
A = middle value (item) of the data 

. .. (9·40) 

and At = ArithmeLic '"!1P.ao of two middle values of the data . . , 

The values of P;'s and A.;·s are obtained Jrom. 'StatisLical Tables' by 
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R.A. Fisher for the values of N from 3 to 75. In these tabl~s the orthogonal 
polynomials P/s are denoted by <I>/s. We reproduce below these tables for 
N= 3toN=6. 

TABLES OF ORTHOGONAL POLYNOMIALS 

N=3 N=4 N=5 

<pI <1'2 <PI <1'2 <p3 <PI <1'2 <P3 <P4 

-I 1 -3 1 -1 -2 2 -1 1 
0 -2 -1 -I -'3 -I -1 2 -4 
1 I 1 -1 -3 0 -2 0 6 

3 1 1 1 -1 -2 -4 
2 2 1 1 

Z. 6 20 4 20 10 14 10 70 
~c/)t 10 5 35 
Ai 3 2 3 6 22 

N=6 

<pI <1'2 ~ <P4 cps 

-5 5 -5 I -1 
-3 -1 7 -3 5 
-1 -4 4 2 -10 

l' -4 -4 -2 10 
3 -1 -7 -3 -5 
5 5 5 1 1 

r. <p~ 70 84 180 28 252 
x 3 5 7 21 
Ai 2 2 3 12 10 

Example 9·8. Fit a straight'line y = a + bx ... (*) to the following data by 
using orthog I I . I ona pay IIOmta s. 

x 0 "I 2 3 

Y 1 1·8 3·3 4·5 

Solution. Here N = 5. Let us transfonn to the variable 
x-2 

~=-I-=x-2 so that r.~=0 

4 

6·3 

Let the orthogonl!1 polynomial fonn of straight line (*) be 

y = bo+ btPt(~) = bo+ bt<l>t(x) .(**) 
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- X ~=x-2 )' <Ill y <Ill 

- 0 -2 1 -2 -2 
I -1 1·8 -1 -J.8 
2 0 3·3 0 0 
3 1 4·5 1 4·5 
4 2 6·3 2 12·6 

Total 16·9 -0 13,3 

Thc values of c)ll are noted 'from .the tablcs for N = 5. From tables we also 
find 

Lc)l12= 10, AI = 1 
. LV 16·9 Lyc)ll 13·3 

Now usmg (9·40), bo == =..L == - = 3·38 ; /)1 = --2 = - = 1·33 
N 5 Lc)ll 10 

c)l1(X) = 1..\ ~ = 1 . (x - 2):;:: x - 2 
Substituting in (**), the required straight line is 

y = 3·38 + 1·33 (x- 2) 
=> Y = 1· 33x + O· 72 
Example 9·9. Fit a second' degree parapola to the following data, ,using 

lhe method of orthogonal polynomials. 

x 0·5 1·0 1·5 2·0 

y 72 110 158 214 

Solution. Let the second degree parabola be 

y=a+bx+ cx 2 

and its orthogonal polynomial transform be : 
-,Y = bo + bl c)ll (x) + b2 c)l2(X) 

Here we have N = 6. Let us transform to 
x -.! (l·5 + 2·0) 

~= \ =4(x-l·75)=4x-7, 
'2 (0·5) 

2·5 3·0 

290 380 

... (*) 

, .. (**) 

so that L ~ = O. From Fisher's tables we nOle the values of c)ll and C\lz (as given in 
the following table) and also 
L <!II 2 = 70, L <\122 == 84 ; Al == 2, 1..2 :::: 3/2· 

0,5 
1·0 

-5 
-3 

72 
110 

-5 ., 
--' 

5 
-1 

-360 
-330 

360 
-110 
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1·5 
2·0 
2·5 
3·0 

Total 

FUndamentals of Mathematical Statistics 

-1 158 -1 -4 -158. -632 
1 2i4 1 -4 214 -856 
3 290 3 -1 870 -290 
5 380 5 5 1900 1900 

1224 2136 372 

bo = ~::: 122'!.:: 204' bl = E Y -1>1 = 2136 = 30.51 
N 6 • E~12 70 . 

Ey¢2 17t ~ 
b2= 2 ::-=4·43; ~I(X)::~' -::2[4x-7]=8x-14 

E~2 1M 

'I [~2 N 1 ..,. 1] 3 [ 2 36 - 1 ] ¢2(x) = 11.2 ., --- :;::- (4x-7) ---
12 2 12 

=1 [1&1+ 49 - 5&- 35 ]=24Xl-84X+69.125 
2 12 

Substituting in ( ...... ). we get 
y =204 + 30·51(8x-14) +443 (24xl- 84x+69·125) 
= H)6·32x 2 - 128·04x + 83·08 

which is the reqUired second degree parabola of best fit. 



CHAPTER TEN 

Correlation and Regression 

10·1. Bivariate Distribution, Correlation. So far we have con­
fUled ourselves to unvariate distributions, i.e .• the distributiQPS involving only 
one variable. We may, however, come across certain series where each term of 
the series may assume the values of two or more variables. For example, if we 
measure the heights and weights of a certain group of persons, we shall get what 
is known as Bivariate distributiofl--:-,()ne variabJe reJating to height and other 
variable relating to weight. 

In a bivariate distribution we may be interested to fi~d out if there is any 
correlation or covariation between the two variables under study. It the change in 
one variable affects a change in the other variable, the variables are said to be 
correlated. If the two variables deviate in. the same direction, i.e .• if the increase 
(or decrease) in one resuJts in a corresponding increase (or decrease) in the other, 
correlation is said to be direct or positive. But if they constantJy deviate in the 
opposite directions, i.e., if increase (or decrease) in one results in correspon~ing 
decrease (or increase) in the olber, correlation is said to be diverse Of negative. 
For example, the correlation between (l) the heights and weights of a group of 
persons, (il) the income and expenditure is positive and the correlation between 
(i) price and demand of a c.o~modity, (il) the volume and pressure of a perfect 
gas, is negative. CorreJation is said to be perfect if the deviation in one variabJe 
is followed by a corresponding and proportional deviation in the other. 

10·2. Scatter Diagram. It is the simplest way of the diagrammatic 
representation of bivariate data. Thus for the' bivariate distribution (Xi, y;); i = I, 
2, ... , n. if the values of the variables X and Y b~ plotted along the x-axis and 
y-axis respectively in the xy plane, the diagram of dots so obtained is known as 
scatter diagram. From the scatter diagram, we can form a fairly good, though 
vag'le, idea whether the variables are correJated or not, e.g.. if the points are 
very dense, i.e.. very close to each other, we should expect a fairly good 
amount of correlation between the variables and if the ,points are widely 
scattered, a poor correlation is expected. This method. however. is.not suitable if 
the number of observations is fairly large. 

10· 3. Karl Pearson Coefficient of Correlation. As a measure of 
itensity or degree of linear relationship between two variables, Karl Pearson 
(1867-1936). a British Biometrician. deyeloped a..formula called Correlation 
Coefficient. 

Correlation coefficient 1?etween two random variables X and Y, usually 
denoted by r(X. Y) or simpJy rxy. is a numerical measure of linear relationship 
between them and is defined as 

r(X. Y) = COY (X. Y) 
C1XC1y 

(10·1) 
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If (Xi. Yi) ; i = I. 2 •... , II is the bivariate distribution. the!) 

Cov (X, Y) =E[{X-E(X)} {(Y-E(Y)}] 

=1 1:jx;-x) (v;-y) = J.1IJ 
II 

ai =E{X-E(X»)2=11:(x.-x)2 , 
Il ' 

a~ =E{Y-E(Y»)2=~1:(yi-:W 
... (10'2) 

the summation extending. over i from I to II. 
Another convenient form of the formula (10·2) for computational work is as 

follows: 

Cov (X, Y) =11: (x;-x) (Yi -'y) = 1 (Xi Yi -'X;y -x Y; + x Y) 
II II 

l~ _1~ _I~ __ = - ~ xY' - Y - ~ X, - X - ~ Y' + X Y 
II " n ' II ' 

C (X Y) 1 ~ -- 2 I ~ ? ~2J 'ov, =;;~X;Y;-X y, ax =;;~x;--X 

and a~ = ~ 1: Y? - y2 ... 00.2a) 

Remarks 1. Following are the figures of the standard data for r> 0, <'0, 
= 0, and r = ± I. 

I 
f 

I 
0 

" . y 

y~ ~ 
" 

:~7rl:~1!~ \~,}t~~ ~~l{m~t~~ xJ... 
~ 

0 
.'.: . .. ,:/.~ -

(r>O) 
X 0 

(r'< 0) X 0 
(r =0) 

X o X o X 
(r", +1) (r=-·l) 

2. It may be noted that r (X, Y5 provides a'measure of Ii"ear relationship 
between X and Y. For nonlinear relationship, however, it is not very suitable. 

3. Sometimes. we write: Cov (X, Y) = axy 
4. Karl Pearson's correlation coefficient is also called product-moment 

correlatioll coefficient, since 
Cov (X, Y)-= E [fX - E(X») tY - E(y»)] = J.111' 

10·3'1. Limits for Correlation Coefficient. We have 

r'X _ Cov(X,Y)_, ~,1:(Xj'-£)(Yi-Y) " 

( • Y) - a a [ 1 I ] 112 
X Y _ 1: (x' _ £)2 . - 1: (Y' _ V)2 

II' II" 
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('i.a'bjl (a. = x· ~ x) 
:, r2(X. Y) = ( 2aJ?(D>.2 )' }VJtere ' , _ 

• I bi=Yl-Y' 
••. (*) 

We have Qle Schwartz inequality which states that if ai, bi; i == 1,2, ...• n 
are real quantities then . 

" "" ('i. aib;)2 ~ ( ~ a?-)( 1:. b?-) 
;-1 ial ;'-:1 

the sign of equality holding'if and 6ply if 

a1 Oz a" 
b=''':'='''=b-

, 1 vz !' 

Using Schwartz inequality, we get from (*) 
2 • ". I< 

r (X. Y) ~ 1 I.e., I reX. 1) I ~ 1 => -1 ~ rex. Y) ~ 1 •.. (10·3) 
Hence correlation cQeffident cannot 'exceed unity numerically. It always 

lies between -1 and + 1. If r = + 1, "the c6rtelation is perfect and positive and if 
r = -1, corre~tiol) js perfect and negative'. 

Aliter. If we write '£(X) = Ilx and E(Y) = ~Y' then we have 

:[(X ~:~J~ (Y ~;rr "0 

E +E ±2 . ,~O (X - IlX)2 f --IlY)~ E[(X -'llxHY - IlY)] 
CJx CJy , CJx CJy 

1 + 1 ± 2~(X. Y) ~ Q 

-1 ~·t~X, Y) ~ 1. 

Theorem 10'1. Correlaiion coefficient is independent of change of.origm 
and scale. 

X -·a Y - b .'.' . 
Proof. Let Y =-h-' V =-k-' ~o tliatX = a ~ hg and Y,,:, b + kV. 

where q. b. h. k are constants; h > 0, k > 0." • 
We shall'prove·tJ;1at reX; 1') = r(V, V) -r 

Since X = a + .hV and y.= b + kV, on taking expectations, we get' 
- - E(X) = a + JiE(l!) -and' E(Y) = /j + kE(V) ~ . ., , , 

. . X - E~X) = h[V - E(V~] ~d Y - §(Y) = ~~V '- E(l:')) 
=> Cov (X. Y) =E[{X -.E(X)lr{Y -E(Y)l] '1 

=E[h{V-E(U)} (k{V-E(V)}] " 

= hk E[{V~ E(U»).{V - E(V»)] = hk Cov (V. V) ... (10·4) 
C1x2 = E[{X-E(X)}2]=E[h2{V="E(U))2]=II2CJrl 

=> CJx = hCJu • (h > 0) _ • 

CJ,) = E({Y -E(Y)}2] = P[k2{V - E(\0},2] = k2a,} 

CJy = kCJv • (k > 0) , 

...(104a) 

... (10-4b) 
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Substituting from (104), (1040) and (104b) in (10·1), we get 

r(X. Y) = COy (i. Y) _ hk. COy (U. V) = COY (U. V) _ r(U 
C1x C1y hk.C1u C1y C1u C1y • V) 

This theorem is of fundamental" importance in the numerical comp~tation of 
the correlation coefficient. 

Corollary. If X and Yore random variables and a. b. c. d are any numbers 
provided only that a #0. c #0. then 

. ac 
r(aX + b. cY + d) = I ac l·r(X. y) 

Proof. With usual notations, we have 
yar (aX + b) = a2C1J?-; Var (cY + d) = c2a'; ; 
COy (aX of b, cY + d) = aCC1XY 

COy (aX + b •. cY + d) 
.. r (aX + b. cY + d) = [Var (aX + b) VaT (cY + 4)]112 

= ac C1XY' ac (X'Y) 
I a II c I C1x C1y =~r • 

If ac > 0, i.e.. if a and c are of same signs, then ocllocl = + 1 
If ac < 0, i.e .• if a and c are of opposite signs, then acllacl =-1. 

Theorem 10·2. Two independent variables are uncorrelated. 
Proof. If X and Y 'are independent variabl.es, then 

COy (X, Y) = 0 (cl. § 64) 

r(X. Y) 'Cov ex. Y) _ 0 
C1XC1y 

Hence two independentJ v&riable$ m:e Uncorrelated. 
But the converse of the theorem is not true, i.e., two uncorrelate(I-variables 

may not be independent as the following example illustrates : 

X 

r 

,XY 

-3 -2 -1 1 2 :3 
Total 

I.X = 0 
, . 

9 4 1 1 4 9 I.Y = 28 

..,27 - 8 -1 1 8 27 ll,Y= 0 

- I 1 --
X = - U = 0, COy (X. Y) = - UY - X Y = 0 

n 'n 

r(X. Y) COy (X. Y) 0 
C1x C1y 

Thus in the above example, the variables X and Y ~e un«orrelated. But on 
cardul examina~ion we find that X and Y are not independent but they are 
wnnccted tty the relation Y = Xl. Hence two uncorrelated variables need not 
lI\'I.'\'sS<lrily be independent. A simple reasoning for this st(a~ge conclusion is 
"wt r(.\', n = 0, merely implies the absence of any linear relationship between 
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the variables .. X and Y. There may, however, exist some other, form of 
relationship between them, e.g., quadratic, cubic or trigonometric. 

Remarks. 1. Following are some more examples where two variables are 
lJllcorrelated but not independent. 

(i)X -N(O, I) and Y=Xl 

Since X -N (0, I), E(X) = 0 = E(}{3) 

.. Cov ·(X, Y) = E (Xy) -E(X) E(Y) 

= E(Xl) - E(X) E(Y) = 0 ( .• ' Y = X2) 

r(X, Y) - Cov (X, Y) = 0 
CJx CJy 

Hence X and Yare uncorrelated,but not independenL 
(ii) Let X be a r.v. with p.d.f. 

Jtx)=k,-I~X ~1 
and let Y = Xl. Here we shall get 

E(X) = O' and E(XY) == E(X3) = 0, => r(XI Y) = 0 
2. However, the converse of the theorem holds in the following cases: 
(a) If X and Yare jointly normally distributed with p = P (X, Y) = 0, then 

they are independenL If p = 0, then [ef. § 10·10, ~uation (10·25)] 

J(x, y) = CJx & exp [- ~ r ~:xJJ x CJ y k exp [ - ~ (Y ~;!)J 
.. J(x, y) =!t(X)f2(Y) 
=> X and Yare independent. 
(b) If eaeh of ' the two variables X and Y takes. two values, 0, 1 with 

positive probabilities, then r (X, Y) = 0 => X and Yare independent. 
Proof. Let X take the values 1 and 0 with positive probabilities PI and ql 

respectively and let Y take the values 1 and 0 with positive pro~abilities.p2 and 
'h respectively. Then 

r (X, Y) = O. => Cov (X, Y) = 0 
=> 0 = E(XY) - E(X)E(y) 

= 1 • P(X = lilY =!i) ·,.[1 • P(X) = 1) xl. P(Y = 1)] 

= P(X = lilY = 1) - P1P2 

=> P(X = lilY = 1) = P1P2 = P(X = 1) . P (Y = 1) 
=> X and Y are independeilt. 
10'3'2. Assumptions Underlying Karl Pearson's Correlation 

Coefficient. Pearsonian correlation coefficient r is based on the following as­
sumptions: 

(I) The variables X and Y under study are linearly related. In other words, 
the scatter: diagram of th~ data will give a straight line curve. 
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(il) Each of the variables (series) is being affected by a large number of 
independent contributory causes of such a' nature as to pro{Juce normal 
distribution. For example, the variables' (series) relating to ages, heights, 
weight, supply~ price, etc., confonn to this assumption. In the words of Karl 
Pearson: 

"The sizes of the complex of orga,ns (something measurable) are determined 
by a great variety of independent contribut<,Jry causes, for example, climate, 
nourishment. physical training and innumerable other causes which cannot be 
individually observed or. their effects.weasured." Karl Pearson further observes. 
liThe .variations in imensiry of the contributory causes are small as compared 
with their absolute intensity and these variations follow the normal law of 
distribution ... 

(iii) The forces so opefi;iting on each of the variable' series are not 
independent of each other but are related in a causal fashion. In other word, cause 
and effect relationship exists between different forces operating on the items of 
the two variable series. These forces must be common to both the series. If the 
operating forces are er.!irely independent of each other and not related in any 
fashion, then there cannot be any correlapoQ between the variables under study. 

For example, ~e correlation coefficient between, 
(a) the series of heights and incomes of individqals over a period of.time, 
(b) the series of marriage l1lte and the rate of..agriculturaI, production in a 

country over a period of time, . 
(c) the series ,reiating t9 the size of the shoe and iptelligence of a group of 

individuals, 
should be zero, since the forces affecting the two variable series in each of the 
above cases are entirely independent of each other.' . 
However, if in ;my of the above cases ~e value of r for a given set pf data is not 
zero, then such correlation is tenned as chance co"elarion ot spurious or non· 
sense correlation. 

Example 10'1. Calculate the correlauon coefficient for ihe follo.wing 
heights (in inches) offathers (X) and their sons (Y) : 

X : 6S 66 67 67 68. 69 '7072 
Y: 61 68 6S 68 12 12 69 71 
Solution. 

CALCULATIONS FOR CORRElATION COEFFICIENf 

X Y }(2 y2 XY 
65 67 4225 4489 4355 
66 68 4356 4624 4488 
67 65 4489 4225 43~5 
67 68 4489 4624 4556 
68 72 4624 5184 4896 
69 72 4761 5184 4968 
70 6~ 4900 4761 4830 
72 71 5184 5041 5112 

Total 544 552 ~1028 38132 37560 
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- 1 544 - 1 1 -X = -~ =--8 = 68, Y=-'~Y= -8 x 552 =69' 
'1! n 

!l:XY -i Y 
r(X, y) = COy (X, ~) = _ n _ 

· "..,y " (~D{' -i') G l:Y' - i") 
~x 37560 - 68 x 69 

= ---;:::=================== 
[37~28 _ (68r~ 138~3~ - (69)lJ 

= 4695 - 4692 = ~ = 0.603 
...J(4628.5 -4624) (4766·5..:. 4761) ...J4·5 x 5·5 

Aliter. 
(SHORT-CUT METHOD) 

x y U =x -68 V = Y -69 cP vz uv .. , - 65 67 -3 -2 9 4 6 
66 68 -2 

\ - -1 4 1 2 
67 6S -1 -4 1 16 4 
67 68 -1 - 1 1 1 1 
68 72 0 3 0 9 0 
69 72 1 ~ I 9 3 
70 69' 2 0' 4 0 0 
72 71 4 2 16 4 8 

Total 0 0 3~ 44f '24 

.ff ::{!w=o, V=.!IV=O n -' n 

1 - - 1 
COy (U, V) =ii~UV -U V =gX 24 = 3 

1 ..;., 1 GrJ =ii ICP- (U)2=i x 36: 4·5 

1 ~ 1 
Gv2 =;;IV2-{v)2=ix44.=S.S 

r(U, V) = COy (U, V) ~ 3 = 0-603 = r(X, Y) 
GuGv ...J4·5 x 5-5 

Remark. The reader is advised to calculate the correlation coefficient by 
arbitrary origin method rather than by the direct method; since the latter leads to 
much simpler arithmetical calculations. 
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Exampl~ 10·2._ A computer while calcl/.lating cqrrelation coefficient 
between two variables X and Y from 25 pairs of observatiof.lS obtained the 
following results : , 

n = 25. IX = 125, IX2 = 650. I.Y = 100. I.f2 = 460. IXY = 508 
It·was. however. later discovered at the time of checking that he had copfed 

down two pairs as X*' Y while the correct values were X~ 
6 14 8 12 
8 6 6 8 

Obtcdn the correct value of correlation coeffic~nt. 
[Calcutt" Unto. B.Sc. (Moth •• HOM.), 1988, 1991] 

Solution. 
Couected 
Couected 
Couected 
Omected 
Corrected 

IX = 125 - 6 - 8 + 8 + 6 = 125 
I.Y = 100 - 14 - 6 + 12 + 8 = 100 

IX2=650 - @ - 82 + 82 + @=650 
I.f2=4® - 142 - @ + 122 + 82=436 

IXY=508'-6xI4 - 8x6 + 8x12 +6x8=520 
r 

X =! IX =-is x 125 = 5, Y = ~ I.Y = is x 100 = 4 

1 -- 1 4 
COy (X0Y) a;; IXY -XY = 2S x 520 - 5 x 4'= 5 

1 - 1 a,? =; I,X2 - X2 = 2S x 650 - (5)2 = 1 

, 1 - 1 36 afJ- a;; I.y2 - Y2=25 x 436 -16 = 25 

'4 
~ COV-(X. Y) ·s 2 

. . ~.orrected r(X, Y) - == --6 = -3 = 0·67 
ax ay I x 5 -

Example 10·3. Show that if X', Y' are the deviations of the random 
variables X and Y from their respective means then 

. , ,.~ 

(J) r = 1 _ L I. (X; _ Y; ), 
2N i ax ay. 

1 (X~ y~)2 
r = -1 + - I. .:.:.L + -'. -

2N i ax ay 

Deduce that -1 s;. r S + 1. 
~lAi Uni". B.Sc. Oct. 1992; Mtulrtu Uni". B.Sc., No". 1991] 

\ - -
Solution. (i) Here X~ = (.~l.-X) and r. =-(Y; - Y) 

- 1 (!i. Y~J R.H.S. =I-WI --
i ax ay 
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= 1 _.1:.. L[ X'l- +' Y~ _ 2XiYiJ 
2N i CJr- CJ?- CJx<Jy 

= 1 __ 1 [_1_ L~i2 + _1_ LY? __ 2_ LXiYi] 
2N CJr- i . CJ?- i CJxCJy j 

1 [ 1 
... 1 -W CJr- L (Xj -X~ 2 + 12 L (Yj - y)2_ '_2_ L(X i - X)(Yj - y)lJ 

i CJr i' qx<Jy j 

1[1 2 1 . 2 2 . ] :: 1 --2 -:2. CJx + '-'2 .·CJy - --. rCJXCJy CJx- CJr CJXCJy 

I -
'= 1 - 2 [1 + 1 - 2r] = r • 

(i.) Proceeding similarly. we will gel 
1 

R.H.S. = -1 + 2 (1 + 1 + 2r) = r ,I 

Deduction. Since (Xi ± ,Yiy. being lhe square of a real quantity is 
CJx CJY) I 

I 

always non-negative • .L. -,. - IS a so non-negative. rOq} part I/> we gel • "t' ~{ Y/J.L I . F (r'> 
j ·CJx CJy, 

r = 1 -'(some non-negative quantity) => r ~ 1 ... (*) 
Also from part (il). we get \ 

r = -1 + (some non-negative.quantity) => ... 1 ~ r ... (**) 
The sign of ~ly in (*),and (**).holdsjf and only,if 

CJx CJy .' 
Xi _ Yi = o} 
Xi Yi 'V • = 1.2 •...• n 

-'" -+-=0 
i",1 CJx CJy 

respectively. 
From (*) and (**), we gel 

-1 ~ r S 1 
Example 10·4. The variables X and Yare connected by' the equation 

ax + bY + c = O. Show that the co"elation between them is -1 if the signs 0/ 
a and b are aliJce and +1 if they are different. 

[NGl!Pur Uni.,. B.Sc. 1992; DeW Uni.,. B.Sc. (SIal: Hon •• ) 1992) 

Solutioll. aX + bY + c = 0 => aE(X) + bE(Y) + c = 0 
.• a{X -E(X») + b{Y -E(n) ... 0 

=- (X -E(X») =.-~ (Y.-E(y)} 

• . COy '(X. y) = E[ (X - E(X») (Y - E(Y) H . ~ 
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= _f!E[(Y -E(Y)V1 = _.f!. ayl 
a - a 

E(X-E(X)J2 =~E[(Y _E(Y)}2J = ~. ayl 

_ £. . a y2 _ £. a y2 

r = a =_-=a:.....-_ 

-fayl" ~. ay2 I ~ :1 ay2 

= {+ I, if b and a 'are of opposjte signs. 
-I, if b and a are of same sign-. 

Example 10·5: (a) If Z = aX + bY arid r is the correlation coefficiem 
between X and Y, show that 

ai! = ala;' + b2aYJ. + 2abrax ay 
(b) Show that the correlation coefficient r between two random variables X 

and Y is 8iven by 
r = (ar + a.r -ax -.r) /2axay . 

where ax, ay and aX_yare the standard deviations of X. Y and X - Y 
respectively. 

[Calcutta Univ. B.Se., 199~; M.S. ~qroda Univ. B.Se. 1992] 

Soluti~D .•. Taking expectation of both sides of Z = aX + bY, we get 
E(Z) = aE(X) + bE(Y) 

Z -E(Z) = a(·X -E(X)} ,.. b.(Y ...,E(y)} 

Squaring and taking expectation of both sides, we g~t 
a'; = alar + bla.r + 'lab Cov (X, Y) 

= ala;' + 1J2aYJ. + 2abrax ay 

(b) Taking a = I, b = -1 in the above case, we have 
Z=X-Y and ax_YJ.=ax2+aYJ.-2rajcay 

ax2 + ayl - ax _ yl 
r= .. 2ax 01 

Remark. In the above example, we have obtained 
1 • , , -

V(aX + bY) = a2 V(XJ + b2 V(Y) + 2ab ~ov <)f; n 
Similarly, we could obtain the result_ 

V(aX - bY) = 02 V(X) +·b2 V(Y) ~ 2ab Cov'(X: n. 
The above results are useful in solving theoretical problems. 
Example 10·6. X aM Yare two random variables witll variances aJ­

and ay2 respectively and r is the, coefficient of correlation between them. If 

U = X + kY and V = X + ~ Y" find the value of k so that U and V are qy -
UllCorreialed. [Delhi Univ. B.Sc;. 1992; Andhra Univ. B.Se. 1998] 
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Sqlution. Taking expect~tions of U = X + kf and V = X + ~ f, we get 

E(U) = E(X) + kE(Y) and E(V) = E(X) + ,CJx E(Y) 
, CJy 

U -E(U) = (X - E(X)) + k(f - ~(f») aQd 

V - E(V) = (X -'E(X») + CJx (f - E(Y) ) 
CJy 

COy (U, V) = E[(U -E(U)) (V -F,(V»)] 

= E[(X -E(X)) + k(f -E(y»)1.x [(X -E(X)) + CJx (f -E(Y»)] . CJy 

= CJx2 +~x COy (X. f) + k COy tX. Y) + k CJ.\ • CJ~ 
CJy ~y 

= [~x2 ,+ kCJXCJY] + ['CJX ... k.] COy (X. Y) 
. " CJy' ",a. 

I. - rCJx'+ kCJY] C (" V\ = CJx \CJx + kqy) + [CJy ov X ... ., 

. . [cov(x.n]·, ,-= (CJx + kCJy) CJx (+ = (CJx + kay) (1 + r)CJx - CJy 
U and V will be uncorrelated if 

r(U, V) = 0 => COy (U, V) = 0 
i.e., if (c;sx + k~y) (I- + r) CJx = 0 

=> CJx+kCJy=O (.:CJx~O,r~-I) 

CJx 
=> k =--CJy 

Example 10·7·. The "randOm variables. X ,and Y are jointly normally 
distributed and U and V.are·dejine(!by ," 

.. U <;: X cos· a + f sin a, 
V = y.' cos a - X sin a 

Show thai V and V will be pncorre,lated if 
2rCJxCJy 

tan2a = 2 . .2', . " CJx r- CJy 

where r =. COTTo (X, fJ, CJ~ = VaT (XJ and CJ; =- Var (V). Are U and V then 
independent? . 

[Delhi Uraiv. B.Se. (Stat. Bora •• ) 1989; (Math •• JI01&ll.), 1990] 

Solution. We have 
COy (lI, V) = E[(U - E(C!» [V - E(V)}] 

= E[[(X -E (X)) cos a + (f -'E(y») sin a] 

x [[f - E(Y») cos a - (X - P(X») sin a]] 
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= cos2 a COy (X, Y) - sin a cos a.aJl 
+ sin ~ cos a.a,z - sin2 a (Cov (X. Y) 

= ·(cos2 a - sin2 a) COy (X. f) - sin a cos a (a~ - ay2) 

= cos2a COy (X, Y) - sin a cos a (a~ - a,z) 

U and V will be uncoitelated if and only if 
r(U, V) = O. i;e., iff <;ov (U. V) = 0 

i.e.. if cos 2a Cov (X. Y) - sin a cos a (ax2 - ay2) = 0 

or if sin 2a 
cos 2a r axCJy = -2-. -. (ax2 - a,z) 

2r axCJy 
·tan 2a = .2 . 2 

ax - ay-
or if 

However, r(U. V) = 0 does ~ot imply that the variables.U and V are 
independenL [For detailed discussion,see Theorerpl0·2, page 104.]. 

Example 10·S. [IX, Yare standardized random variables. and 
1.+ 2ab 

r(aX + bY, bX + aY) = a2 + b2 " .(*) 

find r(X. Y), the coefficient 01 correlation between X and Y. 
[Sardar PaI,1 UIIi". B.Sc., 1993; Delhi UIIi". B.Sc. lStat. Hons.), 1989] 

Solution. Since X and Y are standardised random variables, we have . . 
E(X) = E(Y) = 0 . j' 

and Var (X) = Var (Y) ='1'~ E(X2) = E(f2) = 1 
and Cov(X, Y) = E (X Y) ~ E(XY) = r(X,y).axCJt' 

= r(X,Y) 

,.:(**) 

Also we have 

r(aX + bY, bX + aY) 

_ E[(aX + bY)(bX + aY)] - E(aX + bn E(bX +'an 
- [Var·(aX + bY) .. Var{IfX + aY)]m 

= E[abX2,+ a2 XY + b2 YX + aby2] - 0 
{[a2 Var (X) + b2 Var (Y) + 2ab COY (X.y)] 

x [b2 Var (X) + a2 Var Y T 2ba Coy (X,y)])·l/2 

. ab.l + a2 rex, Y) + ·b2 rex. Y) + ab.l 
= ([a2 + b2.+ 2ab r(X, f)][bl + a2 + 2ba r(X, Y)]) 1(1. 

[Using (**)] 
_ 2ab + (a2 + b2). reX. n 
- a2 + b2 + 2ab. r(X, Y) 

From (*) and (**). we get 

1 + 2ab _ (a2 + b2). r(X, -y) + 2ab 
. a2 + b2 - a2 + b2 + 2ab: r(X, Y). 

Cross multiplying, we get 
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(aZ + IJ2) (1 + lab) + lab. r(X, y) (1 + "2ab) = (a2 + 1J2)2. r(X, y) + lab (a2 + IP) 

:::> (a4 + !J4 + 202b2 - 'tab - 4 a21JZ). r (X. Y) = (a2 + IJZ) 
[(a2 _1JZ)2 - lab] r(X; Y) = a2 + b2 

a2 + b2 
r (X, Y) = (a2 ~ b2)2 _ 'tab 

Example 10·9. If X a¢ Y are uncorrelated random variables with means 
zero andvariancesCJI2 anda,.2 respectively, show thai 

U = X cos a + Y sin a, V = X sin a - Y cos a 

haVe a correlation coefficient p given by 
CJI2 - CJ22 

p = [(CJ12 - CJ22)2 + 4CJ12cJ2~ cosec2 2a]1I2 

Solution. We are given that 
r(X, Y) = 0 ~ Coy (X, Y) = 0, CJll = CJ? and CJr = CJ22 •.. (1) 

We have 
CJU2 = V(X cos a + Y sin a) 

= cosla V(X) + sin2a V(y) + 2 sin a cos a Cov (X. Y) 
= cosla CJI2 + ~in2a CJ22 [Using (1)] 

Similarly, L. 
CJ'; = V(X sin u - Y cos a) = sin2a.CJ12 + cos2a.CJ22 

Cov (U, V) =E[(U -E(U)} [V -E(V}}] 

Now 

= E[ {(X -E(X» Cos a + {(Y -E(Y) sin a} 

x [(X -E(X» sin a - (Y -E(Y» cos a}] 

= sin a cos a V(X) - cos2a Cov (X, Y) 

+ sin2 a 'Cov (X, Y) - sin a cos a V(Y) 

= (CJ12 - CJ22) sin a cos a [Using (1)] 

2 _ [Cov (U, V)]2 
p - CJU2CJv2 

= (cos2a CJI2 + sinZa CJ22) (siJl2a CJ12 + cosZa CJ/) 
== sinZa cos2a(CJ14 + CJ24) + CJl2a22 (cos4 a + sin4a) 

= sinZa COS2a(CJI4 + CJ24) + CJl2a~2[(sinZa+ cos2a)2- 2 sin2a cos2a) 
= sinZa cosla (CJ1.4 + CJ24 - 2CJl2a22) + CJI2a22 

= sinla cos2a (CJ12 - CJ22)2 + CJ 12a·i 

rr= 

= 

CJl2a22 + sip2a COSla(CJ12 - CJ?)2 

~(CJ12 - CJ22)2 sin2 2a 

CJ12CJ22 + sin2 2a. ~ (CJ12 - CJ22)2 
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(a12 - (22)2 , 
= 40'12cr22 COS~~ta + (0'12 -'-.0'22)2 

_ 0'12 -0'22 

=> P - [(0'12 - 0'22)2 +'40'12022 cosec22a]lf2 

Example 10-10.11 V = aX + bY and V = eX + dr, where X and Yare 
m({lSured Irom, their respeetivtf means and if r is the eo."elation cOl'ffi.eient 
between X and Y, and if V and V are unCo"elated, sho.w that 

auav = (ad - be) O'xay (1 - r2)1/2 , 
[Poont;J Univ. B.Sc., 1990; Delhi Unii1. B.Sc. (Stat. Hons.), 1986] 

Sqlution. We have 
_ Cov (X, Y) 1 2 _ 1 [Cov (X, Y)J2 

r - ax ay => - r - ,- Gx2 ar 
=> (1 - r2) axl O'r = O'x2 ar -[Cov (X. Y)]2 _ .. (*) 

[This step is suggested by the answer] 
V = aX + bY , V = eX + dY 

Since X. Yare measured from their means, 

E(X) = 0 = E(Y) => E(V) = 0 = E(V) } 
au2 = E(V2); a~ = E(Vl) 

Also aX + bY - V = 0 and eX + dY -v = 0 

X . Y 1 
-bY +' dV= -eV + aV= ad -be 

1 . } X = ad:... be (dV -bV) 

Y = ad ~ be (-e V + a V) 

1 
Var (X) = (ad _ be)2 [til O'el + b20''; - 2 bd Cov (V, V) 

= (ad ~ bc)2JiPael + b2 6';] 

",,(**) 

.. ,(***) 

[Since p. V are uncorrelated ~ Cov (V. V) = 0] 
Similarly, we have 

Var (Y) = (ad ~ be)2 (e~ a.cl. + Q2 aif). 

Cov (X:y) = E(XY) -E(X) E(Y) =-E(XY) ['.' E(X) = 0 = E(Y)] 

= (ad ~ be)2 E[(dV - bV) (~V + aV)] [From (***)] 



1 ' = (ad _ bc)2 [-cd GrJ - ab Gy2) 

[Using (*~) and. Cov (U, V) = 0, given] 

= (ad __ lb'c)2 [cd G~ + ab Gy2), 

Substituting in (*), we get 
1 

(1-,.2) Gll Gf1- = (ad _ bc)4 x [(dl ar1 + 1J2 Gy2) (c2 Gel- + a2 Gy2) 

- (cdGrJ + ab Gy2)2] 
1 

= (ad - bc)4 

x tc2cP Gu4 + a2b2Gv4 + (a2cP + b2c2) Grr. Gy2 

- c2dlGU4-a2 b2Gv4 - 2abcd GrJ Gy2] 

= (ad~_bC)4 [a2cP + h2c2-.2abcd] Gr/Gy2 

= (ad ~ bet (ad - bc)2 GrJ Gy2 

Gel Gy2 -( 
= (ad - bc)2 

Cross multiplying and taking square root, we get the required result. 
Example 10·11. (a) Establish the formula : 

nrO'xOf = nlrlO'xlOfl + n2r2uXz Ofz + nldxldyl + n2dx~Y2 ... (10·5) 
where nl, n2 and n'are respectively the 'Sizes of,thefirst, second and combined 

sample: (XI' ]1), (X2' ]2)' (x, ]), their means rl' r2 and r their coefficients of 
correlation; (O'xl, Ofl), (O'xz' Of;, (O'x, O'y) their standard deviations, and 

dx1 = Xl - X dYl =]1 - Y 
dx2 ='X2 - x' dyz =']2 -] 

(b) Find the correlation co-efficient of combined sample giv.en that 

Sample size 

Sample mean (i.l 

Sample mean 6) 
Sampleyariance (Gll) 

Sample I Sample 1/ 

!OO 150 
80 

100 
10 

72 

118 

12 

Sample variance (GI) 15 18 
Cor;elati'on coefficient 0·6 0·4 
Solution. (0) ~et (~li' Yli) ; i = .1, 2, ... , nl and (X2j' Ylj); j = 1, 2, ... , 

n2. be the two samples 9( si:zes nl and n2 respectively (rolt) the bivariate 
population.' Then with the given notations, we have 
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x = nixi. + nZxZ - _ nl'l + nZ}Z 
nl + nZ Y - nl + nZ 

naxZ = nl (axiz,+ dx lZ) + nz (axzZ + dxzZ) } 

ncYZ = nl (aYl z + dYIZ) + nz (ay,.z + dyzZ) ... (1) 

••. (2) 

lit lit 
But 1: (xu -XI) = 0 and 1: (yu - y,) = O. 

i-I i-I 

being the algebraic sum Of the deviations from the mean. 

lit 
:. . 1: (xu - x) (Yli - y) = nl'l aXI aYI + nl dxltiyl [Using (2)] 

• - I 

Similarly. we will get' 
"2 
1: (XZj - x) (Y2j - y) = nz,z axz ayz + nz dxzdyz 

j - I 

Substituting in (3). we get the required formula. 
(b) Here we are given: 

nl = 100. Xl = SO. YI = 100. aXlz = 10. aylz = 15. 'I = 0·6 

n2 = 150, Xz = 72. Yz = l1S,'axzZ = 12. ayl = 18. 'z = 0.4 

100 x SO + ~50 x 72_ 75.2 
100 + 1-50 . --



Coftelationand~iOn 

y = nlYl + nzyz = 100 X 100 + 150 X 118 _ 110.8 
nl+nZ 100+150-

dxl =Xl -x = 4·8, dYl = Yl- Y = 10·8 

dxz = Xz - x = 3·2, dyz = Y2 - Y = 7·2 

nar = nl (ax12 + dxlZ) + nz (aXZZ + dxzZ) = 6640 

na1- = nl (aYl ~ + dylZ) + nz(ayl + dyl) = 23640 

Substituting these values in the formuJa and simplifying, we get 

nlt;laxlGYl + nZr2aXZaY2 + nldxldYl + n2 diczdY2 
r= = 0·8186 nax(Jy 

Example 10·12. The independent variables X and Yare defined by : 

!(x) = 4ax.~sx~r I f(y) = 4by.Osy.ss 
= 0 • otherwIse = 0 • otherwlse 

Show that: 'r.. 

b-a 
Cov (U. V) =-b - , +a 

where U = X + Y and V = X - Y 

10·17 

[I.LT. (S. Tech.), Nov. 1992] 
Solution. Since the total area under probability curve is unity (one), we 

have: 
r r 

J f(x)dx =·40 Jxdx = 1 
o 9 
r ' I 

J fly)dy = 4b Jydy = 1 
o 0 

1 
=> 2a,z= 1 => a=2r2 

1 
b=~ 

... (1) 

.•. (ii) 

2x, 
:. !(x)=4ax=,z ,OSxSr; and fly) = 4by = ~. 0 S Y S s ... (iii) . s 
Since X arid Yare independent variates. 

r(X. Y) == 0 => Cbv (X. Y) = Q 
Cov (U. V) = Cov (X + Y, X - Y) 

= Cov (X. X) - 'Cov (X. Y)'+ Cov (Y. X) - Cov (Y. Y) 

... (iv) 

:'ar - a? [Using (iv)] 

Var(U) = Var (X + Y) = Var (X) + Var (Y) + 2 Cov (X. Y) 

= ax2 + a1- [Using (iv)] 

Var (y) =. Var (X -. Y) = Var (X) + Var (Y) - 2 Cov (X, Y) 

[Using (iv)] 
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'" (v) 
We have : 

E (X) = J xf(x) dx = 2~ J x2 dx = 2,. 
"',.- 3 

[From (iii)] 

0. o 
r 

E(Xl) = f x2f('~) dx = 1. f xJdx = ,.2 • ;.2 . . . '2 
o 0 

- /:2 -4r2 r2 1 
.. Vat (X) = E (Xl) - [E(X)]2 =2 - 9"= T8 = 36a [From (i)] 

Similarly, we shall get .1 

2s s2 s'2 1 
EQ') =]' E(y2) =2 and Var O}=18= 36b 

Substituting in (v.), we get 
. _ 1/(36a) - l'/(36b) ~ b - a 
/ (U, V) - 1/(36a) + 1I(36b)' ='1/ + a . 

Example 10·13. Let the random variable X !lave the margillal-density 
I 1 

f. (x) = I, - 2 < x < .2 
alld let tile cOllditional density of Y be I 

f (y I x) = 1, x < Y < x + I, - 2 < x < 0 
I = I, -x < Y < 1 - x, 0 <: x.< ~ 

Show that the variables X and Yare ullcorrelated. 
Solution. We have 

• 2" • 2 

E(X) = f xf. (x) rfx:;: f x.l,dx :;:11:~21 
• -• .!. -2" " 2· 

IfJtx, y) is the joint p.d.f .. of X and Y, then '-

112 

=0 
- 112 

", 

j(x, y) = f(y I x) f. (x) = f (y I,x). (t*) 

• 1 . o x :t." • 2" I - .~ 

(*) 

[:., fl (x) = 1] 

E(Xy) = J I xy f (x, y) dx dy + f .f "vlyj(x, y) dx dy 
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Ci 1 
1 1 2 

=2 J x(2x + l)iU + 2 Jx (1 ~ 2x) dx 
_1 0 

2 

=~ [~x'+~ r + ~ [~ -~x' 1 
1[1 1 j IJ" = 2 12 - 8 '- 12 + 8 = 0 

.. Cov (xy) = E(Xy) - E(X) E(Y) = 0 => r(X. Y) = 0 
Hence the variables X and Yare uncorrelated. 

EXERCISE 10(a) 

1. (a) Show that the co-e~ficient of correlation r is independent of a change 
of scale and origin of the ~ariables. Also prove that for two independent· 
variables r = O. Show by an example that the converse is not true. State the 
Iim~ts between which r lies and give its proof. 

[Delhi Univ. M.Sc. (O.R.), 1986] 

(b) Let P be the correlation coefficient between two jointly distributed' 
random variables X and Y. Show that I P I.~ 1 and that I p I = 1 if, and only if X 
and Y ~ linearly related. [lndan Forest Service, 1991] 

2. (a) Calculate the coefficient of correlation between X and Y for the 
following: 

X... 1 3 4 5 7 8 10 
Y... 2 ~ 8 10 14 16 20 

Ans. r(X. Y) =" +1 
(b) Discuss the statisti~1 validity of the following statements : 
(0 "High positive coefficient of correJation between increase in the sale of 

newspapers and increase in the number of crimes leads to the conclusion that 
newspaper reading may be rt)Sponsible for the increase in the number of crimes:" 

(it) "A high positive value of r between the increase in cigarette smoking 
and increase in lung cancer establishes that cigarette smoking is respon~ible for 
lung cancer." 

(c) (i) Do you agree with the ~tatement that "r == 0·8 implies tb~t 80% of 
the data are explained." 

(il) Comment on the following : 
"The closeness of relationship between two variables is proportional to r". 
Hint. (a) No (b) Wrong. 
(d) By effecting suitable change of origin and scale, compl)t~ t!le product 

moment correlation coefficient for the following set of 5 observations on 
(X. Y) : 

X: -10 -5 0 5 10 
Y: 5 9 7 11 13 

Ans. r(X. y) ~ 0·34 
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3. Tlie marks obtained by 10 students in Mathematics and Statistics are 
given below. Find the coeffi~ient Qf correlation bc-.tween the two subjects. 
Ro')) No. 1 2 3 4 5 6 7 8 9 10 
Marks in 
Mathematics: 75 30 60 
Marks in 

80 53 35 15 40 38 48 

Statistics: 85 45 54 91 58 63 35 43 45 44 
) 

4. (0) The following table gives the number of blind· per lakh of population 
in different age-groups. Find out the correlation between age and blindness. 
Age in year~0-10 10-20 20--30 30-40 40-50 
Number of blind 
per lakh 55 67 100 111 150 
Age in year 50-60 60-70 70-80 
Number of blind 
per lakh ~OO 300. 500 

. ADS. 0·89 

. (b) The following table gives the distribution of items of production and 
also the relatively defective items among them, according to size-groups. Is 
there ay correlation between·size and defect in 'quality ? 

Size-Group: 15-16 16~17 17-18 18-19 19-20 20.....:.21 
No. of Items: 200 270 340 360 400 300 
No. of defective 
items 150 162 170 180 180 120 

Hint. Here we have to find the correJation coefficient between the size­
group (X) and the percentage of defectives (Y) given below. 

x 15·5 16·5 '17·5 18·5 19·5 20·5 

y 75 50 50 45 40 

Ans. r = 0·94. 

5. Using-the formula 
crx _y1= crX1 + cry1 - 2 r(X, Y) crx cry 

obtain the correlation,coefficient between' the heights of fathers (X)' and of the 
sons (Y) from the following data: ' 

x·: 65 66 67 68 69 70 71 67 
Y : 67 68 64 72 70 67 70 68 

6. (0) From the following data, compute the co-efficient of correlation 
between X and Y. 

No. of items 
Arithmetic mean 
Sum of sqlUlTes of deviations 
from mean 

X series 
15 
25 

136 

Y series 
15 
18 

138 
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Su~mation of product of deviations of X and Y series from ~ respective 
arithmetic means = 122. 

ADS. , (X. Y) = 0·891 
(b) Coefficient of correlation between two variables X and Y is 0·32. i'iteir 

co\'llriance is 7·86. The variance of X is 10. Find the standard deviation of)' 
'es. 

set! (c) In t~o sets of variables X and Y with 50 observations each. the 
following data were observed : 

X = 10. C1x = 3. Y = ~. C1y = 2 and ,(X. y) = 0·3 
But on subsequent verification it was found that one valu~6f X (= 10) and 

one value of Y (= 6) were inaccurate and hence weeded out With the remainin&, 
49 pairs of values. how is the origipal value of , affected? ' 

(}Iagpur Uni(). B.Sc., 1990) 

Hint. IX = nX = 500. ry = nY = 300 ~ 

IX2 = n(C1~ + X"Z) = 5450. ryz = 50(4 + 36) = 2000 
LXY -u-

, C1x C1y = Cov (X. y) = -n - -)( I 

=> 0·3 x 3 x 2 = lfoY - ~O x 6 

=> rXY = 5q(I·8 t 60) = 3090 
After weeding out the incorrect pair of observatioJ;l, viz .• (X = 10, Y = 6), 

lite corrected val~es of IX, rY,~, rf2 and IXY for the remaining 50 -1 = 
49 pairs of observations are given below : 
Corrected Values ; 

LX = 500 - 10 = 490 ; ry = 300 - 6 = 294 
L XY = 3090 - 10 x 6 = 3090 - 60 = 3030 
L XZ = 5450 - 102 = 5350. ryz = 2000 - 62 = 1964 
." _ Corrected Cov (X. Y) =' 90/49 = 0.3 
' .. , = (Corrected C1X) x (Correcte~) C1y '450 -200 

~49)( 49 
Hence the correlation coeffiCient is invariant in this case, 
(d) A prognostic test in Mathematics was given- to 10 students who were 

about to begin a course in Statistics. The scrores '(X~ in their test were­
examined in relations. to score~ (Y) in the final examination in Statistics. The 
following results were obtained :-

r X = 71, r Y = 70,'l: XZ = 555, r yz = 526 and r XY = 527 
Find the coefficient of correlation between X and Y. 

(Kerola Uni(). BoSc., 1990) 

7. (a) Xl andXz are independent variables with means Sand 10 and standard 
deviations 2 and 3 respectively, Obtain ,(U, V) where 

U = 3XI +4Xz and V = 3XI -Xz 
Ans.O (Delhi Uni(). B.&. ,1988) 
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(b) If X and Y src ~ormal ~d im,ependent with zero means and standard 
deviations 9 and 12 respectively, and if X + 2Yand leX - Y are non-"correlated. 
find k. 

(c) X. Y, Z ~e random variables each with expectation 10 and variances I. 
4 and 9 respectively. The correlation coeffiCients are 

r(X, y) = 0, r(Y. 2) = r (X, y) = 1/4 
Obtain the numerical values of : 
(;) E(X + Y - 22), (il) Cov (X + 3, Y + 3), (iii) V(X - 2 Z) and 
(iv) Cov (3X, 52) 
Ans. (i) = 0, (il) 0, (iii) 34, and (ill) 45/4. 
(d) X aDd Y an. discrete random variables. If Var (X) = Var(Y) = CJ2, 

2 
Cov (X, Y) = ~ , find (i) Var (2X - 3y), (il) Corr (2X + 3, '2Y - 3). 

8. (0) Prove that: 
V(aX ±by) = a2V(X) + blV(Y) ± 2ab Cov (X. Y) 

Hence deduce that if X and Y.are independent 
V(X ± Y) = V(X) + V(Y) 

(b) Prove that correlation coefficient between X and Y is positive or 
negative according as 

CJx + Y > or < CJ x _ y 

9. Show that if X and Y are·two ranc;lom variables each assuming only twO 
values and the correlation co-efficient between them is zero, then they are 
independent Indicate with justification whether the result is true in general. 

Find the correlation coeffident between X and. a - X, where X is any 
randOm variable and a is constant. 

10. (a) Xi (i =1, 2, "3) are uncorrelated variables each having the same 
standard deviation. Obtain the correlation between Xl + X~ and X; + X3' 

Ans. 1/2 
(b) If Xi (i =1, 2, ~) are three uncorrelated variables having stimdard 

deviations O'r, CJ2 and CJ3 respectively, obtain the coefficient of correlation 
between (Xl + Xv and (X2 + X3). 

Ans. CJ22/..J (CJ12 + CJ22) (CJ22 + CJ32) 

(c) Two random variables X and Y have zero means, the same variance (J2 

and zero correlation. Show thlilt 
V = X co~ (l + Y sin a and V = X sirta - Y cos a 

have the same variance 0'2 and zero correlation. ) 
Ulangalore Uni". B.Sc., 1991 

(d) Let X and Y be iincorrelated random variabl~. If U = X + Y ~d 
V = X - Y. prove that the coefficient of correlation between U and V IS 
(O:x2 - O'y2)/(CJX2 + CJy2). where CJx2 and .q,z are v~ances of X and r 
respectively. . , 

(e) Two independent random variables X and Y have the following 
variances: O'xZ = 36, O'yZ = 16. Calculate the coefficient of correlation betWeen 

U=X+YandV=X-Y 
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if) Random variables X and Y have Zt;ro means and non-zero variances (JJil 
and a';. If Z = Y - X, then find (Jz and the correlation coefficient p(X. Z) of X 
and Z in terms of (Jx. (Jy and the correlation coefficient p (X. Y) of X and Y. 

(g) If the independant random variables X I. X 2 and X 3 have the means 4. 9 
and 3 and variances 3. 7.5. respectively. obtain the mean and variance of 

(i) Y ='2Xl - 3X2 + 4X3• (il) Z = Xl + 2X2 - X3• and 
(iiI) Calculate the correlation between Y and Z. 

[Delhi Univ. M.A.(Eco.)~. 1989] 

11. (a) X .. X2 ..... :x" ar~ ,\1nC9rre~ed randopl variables. all with the same 

distribution and zero means. Let X = IXi In 
Find the correlation co-efficient between (I) Xi and X and (il) Xi - X and X. 

[Delhi Uni". B.Sc. (Stat. Hons.), 1993] 

Hint. r(Xi• X) == (J21n = _I_ 
V (J2. (J21n {; 

COv(Xj - X.:X.) = Cov (Xi. X) - Var (X) 
= «(J2/n) - (fJ2ln) = 0 

r(Xi - X. X ) = 0 
(b) X h X 2. ... .. .• X" are random variables each with the same expected 

value Jl and s.d. (J. The correlapon coefficient between any two Ks is p. Show 

that(l) Var (X) =: + (1 - ~) p(J2. 

(ii) E i (Xi - X)2 = (n -1)(1- p)G2. and (iiI) p > '- _1-1 
1 n -

12. (a) If X aIld Yare independent random variables, show tflat 
r(X + Y, X - y) = r2(X. X + Y) - r2 (Y, X + y), 

"here r(X + Y. X - Y) denotes the co-efficient of correlation between (X + Y) 
and (X - Y ). (Meenlt Uni". B.Sc.; 1991) 

(b) Let X and Y be random vari~bles having, mean 0, variance 1 ~d 
COrrelation r. Show that X - rY and Y are uncorrelated and that }{l' - rY has 
tnean zero and variance 1 - r2. ' , 

13. XI and X2-are two variables with zero means; variances (J12 and (J22 
~tively and r is die: correlation coeLlcient between them. Determine the 

ues of die constants a and b which are independent of r such that X I + aX2 
lind XI + bX2 are uncorrelated. . 

,14. (a) If Xl and X2 are two random v.ariables with means ~I and ~2. 
~s (J12. (J22 an4 correlation coefficient r. fmd the correlation co-efficient 

U = alXl + azX2 and V = blXl + bzX2, 
~ere al; a2 and bl • bz are constants. 
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(b) Let X .. X2 be independent random variables with nwaos 111.112 and non, 
zero variances cr12, cr22 respectively, Let U = XI - X2 and Y = XI X2· find the 
correlation coefficient, betweeQ (i) XI and U, Ui) XI and V, in terrn~ of 1lJ,j.ll. 
cr I 2, cr22. 

15. (q) If U = aX + oY and V = bX - aY, where X and Yare meas,ured frolll 
their respective mean~. and if U and V are uncorrelated, ,. the cQ-efticient or 
correlation between X and Y is given by the equation. 

cru cry = (a2 + b2) crx cry (1 - 1'2)1/2 (Utkal UDiv. B. Sc., 1993) 
(b) 'Let U = aX + bY and V = aX - bY where X, Y represent deviations frolll 

the means of two measurements on the same individual. The coefficient or 
correlation between X and Y is p. If U, V are uncorrelated, show ~h!lt 

cru cry = 2abcrx cry (1 - 1'2)112 
16. Show that, if a and b are constants and I' is the correlation coefficienr 

between X and Y, then the correlation coefficient between aX and bY is equal to 
I' if the signs of a and b are alike, and to - t if they art( different. 

Also show that, if constants a, band c are positive, the correlation 
coefficient between (aX + bY) and cYis equal to 

(arcrx + bcry) I ...J(a2crX2 + b2cry2 + 2abrcrxcry) 
17. If XI, X2 and X3 are three random variables measured frQm their 

respective means as origin and of egual variances, find the coefficient of 
correlation between XI + X2 an<;l X2 + X3 in terms of t:12. rJ3 and 1'23 and show 
that it is equal to . 

( .)rI2 + 1 ·f 0 d(") 1'12+ 3 'f' I 
I 2 ,I 1'13 = 1'23 = ,an II = 4 ,I 1'13 = 1'23 = 

18. (a) For a weighted distribution (x;, Wi), (i = 1, 2, .... , n) shbw that the 

weighted arithmetic mean Xw = ~ IV; x;I~ IV; > or < the unweighted mean l 

:x = ~ X;lll according as r.n .. > or < O. 
(b) Given N values XI' X2, ... , XN of variable X and weights 11' .. 1V2, .... , WN. 

exprpss the coefficient of correlation between X and W in terms involving the 
difference between the arithmetic mean and the weighted mean of X. 

19. (a) A coin is tossed /I times. If X and Y denote the (random) number 01 
heads and number of tails turned up respectively, sflow that I' (X, Y) = -'-I. 

HiDt. Note that X + Y = n => Y = " - X 
.. I' (X, Y) = I' (X, n - X) = I' ( X, ~X) = -I' ( X, X) = -I. 
(b) Two dice are thrown, their scores being a and b. The first die' is left on 

the table while the second is picked up and throw:n again giving the score c. 
Suppose:the process is repeated a large number of times. What is the. correlation 
coefficient between X = a + band Y = a + c '? 

1 
ADS. I' (X, Y) = 2 
20. (a) If X and Yare independent random variables with means III and 111 

an<;l variances cr12, cri respectively, show that the correlation coefficient between 

U = X and V = X - Y in terms of 11 .. 112. crl2 and cr22 is crll..J cr. 2 + cr22 . 
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(b) If X and Yare independent random variables with non-zero variances, 
show that the correlatiol) coefficient between U = XY and V.= X in terms of 
mean and variaQCe of X and r is given by 

'~zC1l/ "'CJl~~2 + ~l2CJ22 + ~2~l2 
[pelhi {{ni". B.Sc. (Stat Ron •• ), 1981] 

21. If Xi, Yjand Zk are-all iildependt;nt random vari~J>les with mean zero 
and unit variance, fmd ~e correlation coefficient between 

~ m II m II 

U = t Xi + I. Yj and V = I. ,Xi + I. Zk 
i-l;'1 i-I k-l 

Ans. r(U. V) = m/(m + nf (Bombay Uni"., B.Se, 199() 
22. (a) Find the value of I so that the correlation • coefficient between 

(X -/Y) and (X + Y) is maximum, w4ere X, Y are independent random 
variables each with mean zero and variance 1. [Ans.1 = -1] . • Hint. U = X -IY .. V = X +-Y. No~ find I.so that r (U. V) = 1. 

(b) If U = X + kYand V = X + mY and r is the correlation coefficient 
between X and Y, find the correlation coefficient between U and V. Show that 

U and Y are ~correlated if k = - CJx (CJx + rm CJy) 
• CJy (r CJx + mCJy) 

• CJx CJx 
and further If m = -, then k = - -. 

, CJy CJy 
(Gujarat Uni". M+, 1993) 

23. Xl' X 2, X, are three variables, each with variance CJ2 and ·the correlation 

coefficient.between any two of them is'r. If X = (Xl + Xz + X3)!3, show that 
- (12 

Var (X) = '3(1 + 2;) 

Deduce that r ~ -1/2. 
24. (a) If U = aX + bY and V = bX - aY, show that cJ and V are 

ab PCJx CJy 
un~lated if a2 _ b2 = CJxz - CJy2 

where p is the coefficient of correlation between X and Y. Show further that, in 
this case 

CJrr + CJ';' = (a2 + bl)(CJr + CJ,.z) and CJu CJv = (a2 + bl) CJx CJy ~ 1 - p2 

(b) If u = aX + bY, v = eX + dY, show that .' Ivar(U) cov (u,V) I I a b 121 var (X) cov (X, Y) I 
cov (U,v) vm; (y) = e d cov (X. Y) - var (Y) 

25. If X is 8' standard normal' variate and Y = a + bX + eXl, 
where a. b. e are constants, find the correlation coefficient between X and Y. 
Hence or otherwise obtain the conditions when {i)'X-and Yare uncorrelated and 
(ii) X and Yare perfectly correlated. 

26. (0) If X - N (0, I), fmd corr (X. y) where y.,= 0 + bX + cXl. 
[Delhi Uni". B.Sc. (Math •• Ron •• ), 1986] 
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" b ADs. r(X, Y) = .1 
'I b" + 2c" 

(b) If X has Laplace distribution with parameters (A, 0) and 
Y = 0 + bX + cX2, find p(X, Y) 

[Delhi Univ. B.A. (Stat. HOM. Spl. Coru·.e). 1989] 
• 1 '\ ,lHnt. p(x) ="2)" exp [-AI X I], -00 < X < 00. 

E (X24+') = 0 = J.l.2k+ I ; E(J(11) = J.I.2i = (2k)! 1).,2k 
'Ab 

Pxr - V b2)..2 + 10c2 

27. In a sample or' n random observations frOIn exponential distribution 
with parameter A, the number of observations in (0, 1A) and (lA, 2A), 
denoted by X and Yare noted. Find p(X, Y), 

t/A 

Hint. PI = p(O < X < 1A) = I )"~dJc= e ~ 1 
o 
2A 

P2 = p(lA .;. Y < UA) = J)., ~1dy = e ;Z 1 
t/l. 

Then (X, Y) has a trinomial distribution with parameters (n = 3, PI', P2, 
P3 = I-PI -pv. 

Hence we have 

p(X, Y) = -[(1 .... p'!m -P2)]:1Z = - ve: _-e1 + 1 . 

28. Prove that : 

r(X, Y + Z) = ay • r.(X, Y) + az • r(X, Z) 
Cly+z ay+z 

19. If X and Y are independent random variabl~, find Corr(X, XY). 
Deduce the value of Corr(X, X/Y), 

Ans. r(X, XY) = ax J.l.yl[a~yZ + ... .; a~ + J.l.yZ a';plZ 
30. Prove or Disprove: 
(0) r(X, Y) = 0 ~ r(1 X I, Y) • 0 
(b) r(X, Y) = 0, r(Y, Z) = 0 ~ r(X, Z) = O. 
ADs •• (0) False, unless X and Y are independent. 

(b) Hint. I:.et Z !E! X, and'X and Y be independent Then 
r(X, Y) = 0 = r(Y, Z). But r(X, Z) = r(X, X) = 1. 

31. Le~ random variable X JIave a p.d;f. f(.) with distribution functioft 
F (.), mean",!" and variance a2• Derme· Y ="(l + pX, where (l and p arl" 
constants satisfying - 00 < (l < "", and P > O. 

(0) Select (l and p so that Y has mean 0 and variance 1. 
(b) What is the correlation ~fficient between X and Y'1 
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32. Let (X, f) be jointly aiscrete·random variables such that" each X and Y 
have at most two mass points. Prove or disprove: X and Y are independent if 
and only if they are unCQrreIated: 

Ans. True. 
33. If th~ variableS X I' X Z, ... , X z,. all !1l1,ve the same variance (J2 and the 

correlation coefficient between Xi and Xi (i :f::J) has the same value, show that 
II :lit 'i' • 

the correlation between 1:'¥i and 1: Xi is given by [np/{l + (n -l)plJ. 
i-I i-II+1 . 

34. The means 'Qf independent r.'!I's X I. X2, ••• , XII are zero and variances 
are equal, say unity. The correlation coefficients betWeen the :;um of selected t 
«11) variables out of these variables and the sum of all n variables are found 
out. Prove that the sum of squares ·of all these correlation c~fficients is .... 1 C 1-1' 

[Burdwan Univ. B.Sc. (Bon8.), 1989] 

35. Two variables U and V are made up of the sum of a number of terms 
as follows: 

U=X'I +Xz .+ ••• +XiI+YI +Yz + ....... Y .. , 

V =XI + Xz + ... +·X~ + ZI + Zz + ... + Z,., 
where a and b are all suffixes and where X's, Y's and Z's are all uncorrelated 
standardised random variables. Show that the correlation coefficient between 

U and V is ~ n • Show furUter that 
(n'+a)'(Ii+b) 

~ ~ ~ (n + b')'U + ~ (n ... a) V } 
--' al _I . ...(.) 
i ... ' 1l =V (n + b) U -"V (n + a) V 
are llIICOIICJated [South Gujarat Univ. RSc., 1989] 

36. (a) Let the random variables X and Y have the joint p.d.f. 

I(x, y) = 1/3; (x, y) = (0, 0), (I, 1) (2,0) 

Compute E(X), V(X), E(y), V(y) and r(X-, n. Are X and Y stochastically 
independent? Give reasons. 

(b) Let (X, Y) have the probability distribu~on : 

1(0,0) =.0-45,1(0,1).= 0·05,1(1, 0) = 0·35,],(1, -I) = 0·15. 

Evaluate VOO, \/\1') and p(X, n. 
Show tha" while X and Y are correiated. X ~d X -5Y are 'Uncorrel&ted; Are 

X and X - 5Y independent 7 
(c) Given the bivariate probab~lity distribution : 

-/(-1,0) = 1/15, 1 (-I, 1) = 3/15, 1(-1,2) = 2/15 
1 (0, 0) = 2/15, /(0. i) = 2/15, 1 (0, 2) ~ 1115 
1 (l, 0) = 1/15, J (I, 1) = 1/15, I (I, 2) = 41~S 

I~; y,) = 0, .elsewhere. 
Obtain : 

(.) Tae inarginal distributions'of X and Y. 
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(il) The conditional dis.tUbutions of .Y given X = o. 
(iii) E(YIX = 0). 
(iv) The product moment correlation coefficierifbetween X and Y. 

Are X and Y independently distributed ? 
'37. If X· anti Y are standardised variates with correlation coefficient p, 

prove that E [max (X2, f2)] ~ 1 + ..J \ - 'p~ 

Hint. max (X2, ~) = ~I P, - ~:I + ~(X2 + ~) " "0(*) 

E(X) = E(Y) = 0; E(X2), = ~(¥2> = I; fi(XY) = p 
and [E I X -.Y i . I X + Y 1}2 S E (X - Y)2 • ~ (X + Y)2 

(By Cauchy-Schwartz Inequality) 
38. The joint-p~d.f. of two vaQates X and Y is given by 

f(x. y) = k[(x + y) - (xl ~ yl)] ; 0 < (x. y) < 1 
=; 0, otherwise. 

Show that X and Yare uncorrelated but not independent 
39(a)0 If the random variables X and Y have the joiOt p.d.f., 

{
X + y; 0 <: x < -,I, ' 0 < y < ] 

/(x. y) = 
O. elsewhere' . 

then show' that the correlation coefqcient bet~een ~ ~d Y is - .111 • 

[Madra Univ. B.Sc., Oct., 1990] .' , 
(b) The dtonsity function/of a random ~ariab!eX is given by 

{ 
kX2, if-l'~xrS'l 

f(x) = 0 

0, otherwise 

(I) What is the ~ue of k ? What is the disttibution function .of X ? 
(ill Obtain the density fl,1nc~on of the random variable Y = Xl. 

(iiI) 01?tain ~e correlation coefficient between X and Y. 
(iv) Ate X and Y ,~dently disttibuted ? 

6'-x-y 
40(a). If/(x. ,Y) = 8'; 0 Sx S 2.2 S,y ~4 .. , 

find "<i) Var (~, (i,) Var (Y) -(iii) r (X. 10. 
A (0) 11 (01\ 11 (00:\ 1. 

ns. I 36' "'I 36 ' lUI - 11 . 
(b) Given the joint· density of random variabl~s ~ •. Y, Z as : 
/ (x. 'y. z) = k x exp [- (y +. z)], 0 < x < 2, y <!: 0, z <!: 0 

= 0, elsewhere 
Fmd 

(i) k • 
.(u) the marginal density function, 
(iii) conditional expectation of Y, given X and Z. and 
(tv) the product mqment correlation between X and Y. 

[Madra Uni.,. B.Sc. (Main'Stat.), 1988] 



10·29 

(c) Suppose that the two dimensional random variable (X. Y) has p.d.f. 
given by I (x. y) = ke-Y .0 < x'< y < 1 

= O. elsewhere 
Find the correlation coefficient rxr. [Delhi U,aiV. M.C.A., 1991] 
41. The joint density of (X. Y) is : 

j(x.y)=l(x+y), OSxS2,OSy S2. 

Find 1.1.' r.r = E (xr Y') and hence find Corr (X. Y). 

A .. ' - 2r +' + . r __ l [ 1 1 ] 
ns· ... r,~ (r+2)(s+l) (r+ Ih(s+ 2) • - If 

(b) Find the'm.g.f. bf'the bivariate distribution: 
j(x, y) = 1. 0 < (x. y) < 1 

. = o. otherwise 
and hence find 1: (~,.Y). 

Ans •. M (I .. Iz) ~ (e'l .... '1) (e'z - 1)/(11 Iz); 11 ¢ 0, Iz.¢. O. r (X. Y)'.= O. 
42. Let (X. Y) have joint.denSity : 

j(x; y) = e~x + y) 1 (0, _) (x) ./(0, _) (y) 

Find Corr (X. Y). Are X and Y independent.? 
An$. Corr (X. Y) = 0: X and Yare independenL 
43. A bivariate distribution in two discrete random variables X and Y is 

defined by the probability generating function : 
exp [a(u - 1) + b(v - 1) + c (u - 1) (v - 1)], 

simultaneous probability of X = rny = s. where r and s are integers being the 
coefficient of urv'. Find the correlation coefficient between X and Y. 

'Hint. Put u = ell and, v = e'z in exp [a(u - 1) + b(v - 1) + c(u - 1) (v - 1)]. 
the result will be the m.g.f. of a bivarl8te distribution and is given by 

M(l .. lz) = exp [a(e 'l - 1) + b(e'z -. i) + c(e'~' - 1) (e.'z - 1)] 

Wehave [aM] = d. [aZM ] = a(a -t 1). 
atl ,} = '2 = ,0 a,lz ,} = 'i = 0 

[ aZM_ ] = ab + c, [aM ] = b, [aZM' ] ;= b(b +, 1) 
a'l a,z. '1' = 0 .. a,z '1 = 0 atzz. '1 = 0 

~=O ~=O ~=O 

So we have 
E(X) = a, E(XZ) = a(a + 1). E(Y) == b. E(y2) = b(b + 1) and E(XY) = ab + c 

•• reX. Y) = E(XY) - E(X) E(D _....£:.... 
V [E(X2) - {E(X»2] ;[E(f2) ~ {E(Y»2] ~ 

44. Let the number X be chosen at random from among the integers I, 2, 
3, 4 and the .number Y be chosen from among those at least as large as X. 
Prove that Cov (X. Y) = 5/8. Find also the regression line of Y on X. 

[Delhi Univ. B.Sc. (Math •• Ron •• ), 1990] 

Hint. P(X = k) = l ; k ... -1, 2, 3, 4 and Y ~ X. 
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, i 
P(Y=yIX= 1)=4";)'= 1,2,,3,4(·.·y~x); 

P (Y = V I "X.= 2) = 1 "\I' = 2 3 4 . 3'·" , 

1 
P (Y = Y I X = 3) = 2"')' = 3,4 ; P (Y = Y I X:;, 4) ;= 'I "y = 4. 

The joint probability distribution can be obtained on using: 
P (X = x, Y = y) = p (X = x) . fey = y I X- = x). 

r (X, y) = Coy (X, n = . 5/8 = - fT5 
qx(jy ~(5/4)~(41148) '\[41 

. I' f Y X r(jy RegreSSion me 0 on : Y - E (y) = - [X - E (X)] 
(jx 

45. Two ideal dice are thrown. Let XI be the score on the first dice ad X2, 

the score'on the second dice. Let Y = max {XI' X21. Obtain the joirit'distribution 
of Yand XI and show that 

3 
Corr «Y, XI) = ,1-

2 "'173 
46. Consider an experiment of tossing two tetrahedra. ~Let X be tht:· number 

of the down turned face of-first tetrahedron and Y, the larger of the two numbers. 
Obtain .the joint distribution of X and Yand hence. p (X, y). 

Ans. p (X, l') = COy (X, n 5/8 _2_ 

(jx (jy ~ 5/4. '" 55/64 {U 
47. Three fair coins are tossed. Let X denote the number of heads on the first two 
coins and let Y denote die number of tails on the last two coins. 

(a) Find the joint distribution of X and Y. 
(b) Find'the conditional distribullon of Y given that X = t. 
(c) Find COy. (X', y) 
Ans. COy. (X, y.) ;::"-1/4. 
48. For the trinomial distribution of two random variables X and Y: 

n! 
f(x,y) =x!Y !(Il-x-y) !pXq.l'(I_p_q)!I-X-Y 

for x, y = 0, 1, 2, .... , n an"d x + y S; Il, P ~ 0, q ~ 0 and p + q S; I. 
(a) Obtain the marginal di~~ribution of Y 
(b) Obtain E(XIY=y). 
(c) Find p (X,Y'). 
Ans. (a) X - B (n, p), Y - B (II, q~ 

(b) (X I Y = y) - B (n - y, ~) 

(Note: p + q::F. I) 

:. E(X I Y = y) = (Il - y) ( ~) 
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(c) COV(x"Y)=-npq;p(~,Y)=-[ (l-Pi1-1-Q) T"2 
OBJECTIVE TYPE QUESTIONS 

I. Comm lOt on the following: 
(,) rn = 0 ~ -x tiJ\ct-Yare j,Qdependent. 

-.... ., <'< 

(i,) If r.~}' > 0 then rx, _y > 0, r_Xy>.O and r_x _y > 0 
, ~I ' 

(ii,) r Xl> Q- ~ E(XY) > E(X) E(Y) -'-

10·31 

(iv) PearvOn's coefficient of correlation is independent of origin but not 
ofscal~. . 

(v) The numel'ical value of product moment correlation c-oefficient 'r' 
between tWo variables X and Y cannot exceed unity . 

. {VI} If the-correlation coefficient between 'the. variables X and Y is zero 
then the correlation coefficient between J(2 arid ,y2 is also zero. 

(¥i,) If r > 0, then as X inc~asesS also increases. 
(viii) "The closeness, of relatiOJ:lship, between two v~ables is PI;oPoJtiQ~ 

to r." 
(iJ) r measures -every type of relatiol)~hip betw.een ·the two variabl~; 

U. Comment on the following values o( 'r' (correlation coefficient) : 
I, - 0·95, 0,,-1·64, 0',87, 0·32, -I, 2·4. 

m. (i) If PXY = -'0·9, then for.large values of-X, what sort of'values do we 
expect for Y '7 

(i,) If Pxt = 0, what is the value of'cov (X. 'f) and how are X and Y related 7 

IV. Indicate the correct answer: 
(,). The coefficient'of correlation will.have positive sign when 

(a) X is increasing,.r is dec~ing',. (b) both X and Y are increa~ing, 
(c) X i~ decreasing, Y is increasing, (cI) tI;lere is no change in X and Y. 

(i,? The coefficient of correlation (a) can take' any value between -1 and + 1 
(b) is alwa~s less than -I, (c) is always more than +1, (d) cannot be 
zero. 

(iiI) The COefficient of correlation (a) cannot be positive, (Ii) cannot be 
negative, (c) is always positive, ('d) can be both positive as well as 
negative. 

(iv) Probable error of r is 

(a) 0·6475 1.:;-:2 • (b) 0.6754 17. ' (c) 0.6547 '1 ~ r2 , 

(d) 0.6754 1 - ;-2 . 
n 

(v) 'The coefficient of correlation between X and Y is 0·6. Their covariance 
is 4·8. The variance of X is 9. Then the S.D. of Y is 

4·8 0·6 3 4·8 
,(a)3 x 0.6' (b) 4.8 x 3 ' (c) 4:,8 x 0.6' (cI) 9 x 0.6' 
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(",) The coefficient of correlation is independent of (a) change of scale only, 
(b) change of or~gin only, (c) both change' of ,scale and origin, 
(d) neither change 'of scale nor change of Origin. 

V. Fill in the blanks ~ . , 
(,) The Karl Pearson coefficient of correIati9D between variables' X and Y 

is •••..• 
(i,) Two independent variaPl~ are •••••• 

(iii) Limits for correlation coefficient are •..... 
(iv) If r be the correlation coefficient between the'random variables X and Y 

then the varian.ce of X + Y is .• , ••• 
(~,) The absolute value of the product moment correlation coefficient·is less 

thag •..••. 
(v,) Correlation coeffICient.is i3nvarianl.under changes bf .• and- .' ••.. , 

VI. How can you use scatter diagram to obtain an idea of extent and nature 
(directiQn) of the correlation coefficient? 

10·4. Calculation 01 the Correlation Coefficient for a Bivari­
ate Frequency Distribution. When the data 'are considerably large, they 
may be summarised by using a two-way table. Here, for each variable a suitable 
number of classes are taken, keeping in ,view the same ,considerations as in the 
univariate case. If there are n classes for X and m classes for Y, there will be in 
all'm Xn cells in the two-way table . .By going througb the pails of values of X 
ahd Y. we can fmd the frequency for each cell. The whole set of cell frequencies 
will then define a bivariate jr'eqUlmcy distribution. The column totals and row 
totals will give us the marginal distributions of X and Y. A particular column 
or row will be called the conditional distribution of. Y for given X or of-X for 
given Y respectively. . , 

Suppose that the bivariate data on X and Yare presented in a two-way 
correlation table (shown on page 10·33) wMre there are m classes of Y placed 
along the hori~ont3.1 line and n classes of X along a vertical line and lij is the 
frequency of individu8Is lying in the (i. })th ceil. 

!be If(x, y) = g(y) 
'.¥' 

is the sum of the frequenci~ along any row and 

Lf(X., y) = f(x). 
:1 

is the sum of the frequencies along any column. We observe that 

L If(x. y) = L L f(x. y) = Lf(X) :.: L g(y) ::: N 
Thus JC:1":1 x x :1 

:i =~ I I xl (x. y) = ~[}; t x I/(x. y~ 1] =k Ixf(x) 
Similarly :x ., :1:; Y X 

Y = N.l I I y f(-x. y) = N1 .I.y. , g(y) , 
1< Y '1'.1 

a,?- =~Nl L LX2 f(x. y).:.i' 2 =N.! L'X2 !(x) - i"2 
JC :1 JC 
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BIY ARIATE FREQUENCY TABLE (CORRELATION TABLE)' 
.... ,,'" " '. 0' 

J( Series 
'J. " . . - ~ . 

-+ - Classes Total 0/ 
• frequencies 

Y o/Y 
Series ~ Mid POints g(y) 

J, Xl X2 ••• XiII··· ... X". 
• 

I. 
Yl . 

I Y2 ,-.. 
I " ;0.. 

, . 10( . 
~ I 

; , 
~~ 

Yj I /(x, ~) 
.!!. -

0 ~ . -< 
.~ . I co , 

! .. 

y" 
.. , . 

Total of N-+ l:l! f(x,y 
freque'liie~ 

!(x) =, l:Jtx, y) ~ x y 

o/X . ~ y t~l(x,v fix) - -
, 

Example'10·14'. The following table gives, according to. age, the 
frequenC! o/marks obtained by 100 students in an intelligence test . . , 

'Ages'in 
... 

, 
yeqrs 

-+ 18 19 2(j 21 Toeal 
Marks· 

J. , 

10-20 4- i· 2 - 8 

20-30 5 4 6 4 19' 

30-40 6 8 10 11 35 

40-50 4 4 6 8 22 

50-60 - 2 4 4, 10.-

60 ....... 70 - 2 3 ~ 6 

;r,ola/ 19 22 31 28 100 
~, . .- .... .~- ... . ..... -- -

Calculate tM correlation· coefficient. 
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Solution. 

Fundamentals ~Matbematical Statistic. 

. 
", ~ 

CORRELATION TABLE 

u -1 0 1 2 ::i 
~ 

JC _ 18 19 20 21 Total v/:v) v2/(v) 
;:.. 
:t 

v y Maries ftv) IH¥ 

(i) @ g --.: 

-2 15 .10-20 8 : -16. 32 4 
4 ; 2 . '7-

G> @ g @ I 

~1 25 20-30 10 -19 19 -9 
5 4 6 4 

6 
@ @ @ @ 

35 30-40 35 0 P 0 
6 -8 10 11 

g @ @ @ 
1 45 40-50 22 22 22 18 

4 4 -6 8 

@ (i) @ .' 

2 55 50-60 10 20 40 24 
2 4 4-

@ @ @ 
3 6S 60-70 6 18 54 15 

2 3 1 

Totalf(u) 19 22 31 ·28 100 2S 167- -52 

'. 

uf(uJ -19 o· 31 56 6~ .. 
,; f(.~) 19 0 3l 112 162 

Il!. vf(Il, v) 9 0 13 30 52 
v 

.. -

Let . U =x - 19 .. V= {(Y - 35)/I0) 
- 1 ~ ~ 68 OL8 - 1 ~ 25 
u = N Lou,fu) = 100 = ""." = N Lo \I g(\I) = 100 = 0·25 

u ., 

Cov (u,\I) = ~ L I. U\I f(u, \I) - ii V = 1~ X ~2 - 0·68 X 0·25 = 0·35 
a. ., 

1 - 162 CJrl = N ~ u2 f(u) - U 2 = 100 - (0·68)'2 i= 1-1576 

'2 1 ~ 2 - 167 2 • CJy- =NLo \I g(v)-\l2=100-(O.25) =1·6Q75 
v 

r (U, V) = Cov (U, V) '-. - 0·35 - =-a:2~-: 
CJu CJv ~ 1.1576'x 1.6075' ~, 
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Since correlation coeffjcient is independent of change of origin and scaJe, 
r(X, y) = r (U, V) = 0·25 

Remar.k. Figures in circles in the table on pagelO·34 are the product 
termS uvf(u. v) : 
. Example 10·lS . .The joint probability distribution of X and Y is giwn 

below: 

~ -1 +1 

0 1 3 
8 8 

1 2 2 
8 8 

Find the correlation coefficient between X and Y. 
Solution. 

r-

COMPUTATION OF MARGINAL PROBABruTIES 

IK -1 +1 

I) 
1 3 
8 8 

1 
2 2 
i i 

-
p(x) 

3 ~ 
8 8 

Wehave: 
3 S 1 

E(X) =I.~p(x)=(-l)x '8+ 1 X '8='4 

E(XZ) =I.x2p(x) = (-1)2.X ~+ 12 x i=r 
Var (X) = E(X2) - [E(X)]2 = 1 - 1~ = !~ 

E(y) =I.yg(y)'=Oxi+] x~=~ 

E(y2) = I./y2 g(y) = 02 X 1+ 12 X i =! 
8 8. 2 

Var (Y) = E(f2) - [E(Y)]2 = !-- ~ = ~ 

g(y) 

i 
8 

Ii 
i 

1 

-

E(X-y) =-0 x (-1) X -81 + 0 x 1 x !+ 1 x (-I) x ~ + 1 :-< 1 x ? I 8 8 1\ 

2 2 
=-8+8=0 

1 1 1 
~ov (X. Y) =E(XY)-E(X)e(Y)=O -'4 x "2=-g 
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1 
(X Y) _ Cov (X, Y) - i -1 -1 
r, - (Jx (Jy - ... /IS 1 ~ m = 3·873 

'!16 X 4 

= -0·2582 

EXERCISE lO(b) 

1. Write a brief note on the correlation table: 
The following are the marks obtained by '24 students in a class test of 

Sf.atisticS and Mathematics: 
Role No. of Students 1 2 3 4 5 6 7 8, 9 10 11 12 
Marks in Statistics, 15 0 1 3 16 2 18 5 4 17 6 ~ 9 
Marks in Mathematics 13 1 2 7 8 9 12 9 17 16 6 18 
Roil No. of Students 13 14 15 16 17 18 19 20 21 22 23 74 
Marks in Statistics 14 9 8' 13 10 13 11 11 12 18 9 7 
MarkS in Mathematics 11 3 5 4 10 11 14 7 18 15 15 3 

Prepare a correlation table taking the magnitude of each class interval as 
four marks and the first class interval as "equ.'ll to 0 and less than 4". Calculate 
Karl Pearson's coefficient of correlation between the marks in Statistics and 
marks in Mathematics from the correlation table. 

Ans. O· 5 544 .. 
2. An employment bureau asked applicants their weekly wages on jobs last 

held. The actual wages were obtained for 54 of them; and are recorded in the 
table below; x represents reported wage, y actual wage, and the entry in the table 
represents frequency. Find the correlation coefficient and comment on the 
significance of the computed value. [Four figure log table may be used]. 

~ 15 20 25 30 35 40 

40 2 

35 3 5 

30 4 15 

25 20 
-

20 3 1 

15 1 , 

3. Cal 1 th cu ate e corre allon coe lClent rom e 0 owmg ta e:-
[Cakutta Una". B.Sc. (14ath •• , Hon •. ), 1986] 

I' ffi' fi th f, II' bl 

~ 0-10 10-20 20-30 30-40 

.. 
0-5 1 '3 2 0 

5-10 1 10 8 1 

10-15 1.0 13 \0 8 

15-20 5 8 10 7 

20-25 0 1 5 4 
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4. (a) Find the correlation coefficient between age and salary of 50 workers 
in a factory : 

Age Daily pay in rupees 
(in years) 

,J. 160-169 170-179 180-189 190.....,..199 200-209 

20-30 5 3 1 .. , '" 

30--40 2 6 2 1 '" 

40-50 1 2 4 2 2 

50-60 '" 1 3 6 2 

60-70 '" ... 1 1 5 

... 
(b) Fnd the coefficient of correlation between the ages of 100 mothers and 

daughters : 

Age of mothers Age of daughters in years (Y) Total 
in· years (X) . 5-10 10-15 15-20 20~25 25-30 

15-25 6 3 9 
25-35 3· 16 10 29 
35-45 10 15 7 32 
45-55 7 10 4 21 
55-65 4 5 9 . 

Total 9 29 32 21 9 100 • 

[MadraB Univ. B.Sc. (Main Math •• ), 1991) 

5. Given the following frequency distribution of (X. y) : 

~ 5 1.0 

10 30 20 

.0 , 

20 20, 30 , 

Total 50 50 0 
" 

Total 

50 

50 

100 

find, the frequency distribution 
of (U. V), where 

X-7·S Y-15 
U 2.5 I V = -5 

What shall be the relationship 
between the correlation cocffic'ients 
between X. Y. and U. V? 

6. (a) Find the ,coefficient of correlation between X and Y for the. following 
table: 
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~ ]1 ]2 Total 

XI PI! PI1 P 
, .. 

Xl Pli I'll Q 

Total P' Q' 1 

(b) Consider the following probability distribution : 

~ 0 

0 0·1 

1 0·2 

1 

0·2 

0·3 

2 

0·1 

0·1 

Calculate E(X), Var (X), 

Cov(X. Y) and r (X. n. 

[Delhi Univ. M.A (Eeo.), 1991] 

(c) Let (X, Y) have the p.m.f. 

p(O, i) = p(1, 0) = ~; p(O, -I) == p(-I, 0) = k. 
Find r(X, Y). Are X and Y independent? For what values of k, X + kY and 

kX + Y are uncorrelated ? 
10·5. Probable Error or Correlation Coefficient. If r is the 

correlation coefficient in.a sample of n pairs of observations, then its standard 
• .'. b S E( ) 1 - r2 

error III gIVen. y ..' r.= ~ 

Probable error of correlation coefficient,is.given by 
(1- 'r2) 

P.E.(r) = 0·6745 x S.E. ,= 0·6745 {;, .•. (10·6) 

Probable error is an old measure for testing the reliabjlity of an obserVed 
{~nelation coefficient. The reason for taking the factor 0·6745 is that in a 
r'OImal distribution, the range 1.1 ± 0·6745 cr covers 50% of the total area. 
According to Secrist, "The probable error of the correlation co-efficient is an 
ar,tount which if added to and substracted from the mean correlation coefficient, 
produces amounts within which the chances are even that a coefficient of 
correlmionfrom a series selected at random willfall." 

If r < P.E.(r), correlation is not at all significant. If r > 6 P.E.(r), it is 
Ilel inilCly significant A rigorous method (t-test) of testing the significance of an 
o~)~crvcd corrclatior: coefficient will be discussed later in "tests of significance" 
111 s<~n'r'ing [d. § 144·111. 
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Probable error also enables us to find the limits within which the 
population correlation coefficient can be expected to vary. The limits are 
r ± p.E.(r). -

10·6. Rank Correlation. Let us suppose that a group of n individuals 
is arranged in order of merit or proficiency in possession of two characteristics A 
and B. These ranks in the two characteristics will. in general. be different. For 
example. if. we consider the relation between intelligence and beauty. it is not 
necessary that a beautiful individual is intelligent also. Let (Xi. Yi); i = 1. 2 •...• 
n be the ranks of the ith individual iii two characteristics A and B respectively. 
PeafSOnian coefficient of correlation between the ra~ks Xj's and y;'s is called the 
rank correlation coefficient between A and B for that group of individuals. 

Assuming that no two individuals are bracketed equal in either 
classification. each of the variables X and Y takes the values 1.2 ..... n. 

- - I (1 3 n + 1 Hence X =y =;; + 2 + + ... + n) =-2-

1 II _ 1 ( (n + 1) crr-- L x? -x2=- }2 + 22 + ... + n2) - -2-
n i-I n 

= n(n + 1)(2n + 1) _ (n + ·1)2 = n2 - r 
6n 2) 12 

n2 - 1 
crx2 =---u- = crf2 

In general Xi '#. Yi . Let di = Xi - Yi 

di = (Xi - X ) - (y i - Y ) (':x=y) 
Squaring and summing over i from 1 to n. we get 

L d? = L(Xi -x) - (yj - y»)2 
= L(Xj -x)2 + L(Yi - y)2 - 2L(Xj.,..,i )(yi - y) 

Dividing both sides by n. we get 

1 Ldl = crx2 + crf2- 2 Cov (X. Y) = crx2 + crf2 - 2p crxcry/ n 
where p is the rank correlation coefficient between A and B. 

1 Ld~ 
;;J:.ct? = 2CJx2 - 2pcrx2 => 1 - P = 2ncr~ 

II II 

~ dl 6 L di 2 
-1 j-,1 -1 i-I 

=> P - - 2ncrr - . n(n2 - 1) 
which is the Spearman'sfo171llllafor the rank correlation coefficient. 

Remark. We always have 

LPi = L (Xi - Yi) = LXi -' LYi = n{x - i>= 0 
This serves as a check on the calct;lations. 

... (10·7) 

(.: x = y) 
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10·6·1. Tied Ranks. If some of the individuals recei.ve the same rank in a 
ranking or merit, they are said to be tied. Let us suppose that III of the 
individuals, say, (k + I)"', (k + 2)"', .... , (k + III)'" are tied. Then each of these III . 
individuals is assigned a common rank, which is the arithmetic mean of the 
ranks k.+ I.k +2 • ....• k+m. 

Derivatioll ofp (X, y):We have: 

... (O) 

where x=X-X.y= Y- Y. 
If X and Yeach takes the values I, 2 ...... II. then we have 

X = (II + 1)12 = Y 

and ? ~ -2 11(112 - I) d ~ ~ 2 n(11.2 - I) 
/lCJor = ~ - -= an nCJ = ""v " 12 . 12 

•.. (00) 

Also ~d2 = ~ (X - Y)2 = ~ [(X - X) - (Y - y]2 = ~ (x _ y)2 
~d2 =u2 + ~y2-2~xy 

=> ~ xy = ~ [u2 + ~y2 - ~d2] ... ("00) 

We shaH now investigate the effect of common ranking. (in case of ties). on 
the sum of squares of the ranks. Let S2 and S\2 denote the sum of the squares of 
untied and tied ranks respectively. 

Then we have: 
S2 :: (k + 1)2 + (k + 2)2 + ... + (k + m)2 

= mk2 + (12 + 22 + ... + m 2) + 2k. (1 + 2 + ... + III ) 

k 2 m(m+J)(2m+\) k( I) 
=m + 6 +m 111+ 

S? = m (Average rank)2 

=m[(k+ 1)+(k+2;1+···+(k+III)Y 

2 
( m + I) 2 m (m + 1)2 = m k + 2 = III k + 4 - • + m k (m + 1) 

S2_S\2 _m(III+1)[2(2 I) 3( 1)]- lII(m2 -1) 
.. - 12 m + .- m + - 12 

Thus the effect of'tying m individuals (ranks) is to reduce the sum of the 
squares by III (m2 - I )/12, though the mean value of the ranks remains the same, 
viz .• (n + 1)/2. . 

Suppose that there are s such sets of.ranks 'to be' tied in-the X-series so that 
the total sum of squares due to them is 

s s 

112 ~ Ill; (Ill? - I) = 1'2 ~ (m? - m;) = Tx. (say) ... (1O.7a) 
,= \ ,= \ 
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Similarly suppose that there are t such sets of ranks to be tied with respect 
to the other series Y sO that sum of squares due to them is : , , 

.!. L m.'.(m.'2-I)=.!. L (mp-m:)=Ty,(say) .... (iO·7,b) 
12 j = I J J 12 j = I J 

Thus, in the case of ties, the new sums of squares are given by : 
n(nZ - 1) 

n Var'(X) = L xZ - Tx = 12 - Ti 

, Z n(nZ - 1) 
nVar(y) =LY ,-Ty = 12 -Ty 

ad n Cov'(X, Y) = ~ [L xZ -:fx + LYz - Ty - Ld2] [From (***)] 

_![n(nZ -1) T n(n Z - n _ T - ~ dZ] 
-2 12 x + 12 y ~ 

n(nZ - 1) 1 [ ] = 12 ...,. 2 (Tx + Ty) + L tP 

n(n2 - 11_ L [T T ~ dZ] 12 2 x + y+ ~ 
p(X. Y) =---==----------

[n(nZ - I) JII2 [n(.n2 - 1) JIll 
12 - Tx 12 - Ty 

n(n2
6- 1) _ [Ld2 + Tx + Ty] 

-------~----------------------

[ n<nZ - I) JI/2 [n<n2 - 1) JIll 
6 - 2Tx 6 -- 2 Ty 

... (l0·7c) 
where Tx and Tyare ~iven by (10·7a) and (10·7b). 

Remark. If we adjust only the covariance ·term Le .• Liy and not the 
variances Gx2 (9r L x2) and Gy2 (or LY) for ties, then the formula' (10.7c) 
reduces to: 

n(n~-l) _ (Ld2 + Tx + Ty) 

p(X. Y) = n(nZ _ 1)/6 

_ I _ 6 [Ld2 + T x + T y] 
- n~Z-I)' 

... (l0·7J) 

a formula which is commonly used in practice for nu~erica1 problems. For' 
illustration, see Example 10·18. 

Example 10·16. The ranks of same 16 students in Mathematics and 
Physics are as follows. Two numbers within brackets denote the ra* of the 
Gtudents in Mathematics and Physics. 

(1.1) '(2,10) (3,3) (4,4) ·(5,5) (6,7) (7,2) (8,6) (9,8) 
(10,11) (11.15) (12,9) (13,14) (14,12) (15,16) (16.13). 
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Calculate the rank correlation coefficient for proficiencies of this group ill 
Mathematics and Physics. 

Solution. -Ranks in 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Total 
Maths. (X) 

Ranks in .1 10 3 4 5 7 2 6 8 11 15 9 14 12 16 13 
PhysiC'S(Y) 

d=X-Y 0 -8 0 0 o -1 5 2 1 -1 -4 3 -1 2 -1 3 0 

tP 0 64 0 0 0 1 25 4 1 1 16 9 1 ;4 1 9 136 

Rank correlation coefficient is given by 
6 r. d2 6 x 136 1 4 

P = 1- n(n2 _ 1) = 1 -16 x 255 = 1- 5= 5= 0·8 

Example 10·17. Ten competitors in a musical test were ranked by the 
three judges A. Band C in the following order: 
Ranks by A: 1 6 5 10 3 2 4 9 7 8 
Ranks by B : 3 5 8 4 7 10 2 1 6 9 
Ranks by C : is 4 9 8 1 2 3 10 5 7 

Using rank correlation method. discuss which pair of judges has the nearest 
approach to common likings in music. 

Solution. Here· n = 10 
Ranks Ranks Ranks 
by A by B by C ·dl d,. d3 dl1 d,.1 ~1 

(X) (Y) (Z) = X-Y =X-Z =Y-Z 

1 3 6 -2 -5 -3 4 25 9 
6 5 4 1 2 1 1 4 1 
5 g 9 -3 -4 -1 9 16 1 

10 4 8 6 .2 -4 36 "4 16 
3 7 1 -4 1 6 16 4 36 
2 10 2 - 8 0 8 64 0 64 
4 2 3 2 1 -1 4 1 1 
9 1 10 8 -1 -9 64 1 81 
7 6 5 1 2 1 1 4 1 
8 9 7 - 1 1 2 1 1 4 

Total rdl =0 !.dz~O !.~=O !.di~=20(] !,dzl=60 !.di 
=214 

6r.d12 6 X 200 40 7 
p(X. Y) = 1 - n(n2 _ 1) = 1 10 X 99 = 1 - 33 = - 33 

6r. dl 6 X 60 4 7 
p(X. Z) = 1 -,r,(n2 _ 1) = 1 - 10 x.99.= 1 -U~ It 
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{) L d32 6 X 214 49 
p(Y. Z) = 1 - n(n2 _ 1) = 1 to x 99 165 

Since p(X. Z) is maximum, we ·conclude that the parr of jQdges A and C 
has the nearest approach to common likings in music. 

10·6·2. Repeated Ranks (Continued). If any two or more 
individuals are bracketed equal in any classification with respect to c~cteristics 
A and B, or if there is more than one item with the same value in the series, 
then the Spearman's formula (10·7) for calculating the rank correlation 
coefficient breaks down, since in this case each of the variables X and Y does 

not assume the values 1,2, ... , n and consequently, X:I;. y. 
In this case, common ranks are given ro the repeated items. This commor. 

rank is the average of lhe ranks which the~e items would h?ve assumed if they 
were sightly different from each other and the next item will get the rank next to 
the ranks already assumed. As a result of this, followiqg adjustment or 
correction is made in the rank correlation formula [c.f. (10·7c) and (10·7d)]. 

m(m2 -1) 
In the formula, .we add the factor J2 to Ld2, where m is the 

number of times an item is repeated. This correction factor is to be adcled for 
each repeated value in both the X-series. and Y-series. 

Example 10·18. Obtain the rank correlation coefficient for the following 
data: 

X 68 64 15 50 64 80 75 40 55 64 
Y 62 58 68 45 81 6() 68 48 50 70 
Solution. 

CALCUlATIONS R>R RANK CORRELATION 

X Y 
Rank X Rank Y 

d=x-y d2 (x) (y) 
68 62 4 5 -1 1 
64 58 (; 7 ~1 

75 68 2·5 3·5 -1 1 
50 45 9 10 -1 1 
·64 81 6 1 5 25 
80 60 1 6 -5 25 
75 68 2·5 3·5 -1 1 
40 48 10 9 1 1 
55 50 8 8 0 0 
64 70 6 2 4 16 

!.d=O !,d2 = 72 

In the X-series we see that the value 75 occurs 2 times. The common rank 
given to these values is 2·5 which is the average of 2 and 3, the ranks which 
these values would have taken if they were different. The next value 68, then 
gets the next rank which' is 4. Again we see that value 64 occurs thrice. The 
common rank given to it is 6 which is the av~rage of 5, 6 and 7. Similarly in 
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the Y-series, the value 68 occurs twice and its common rank is 3·5 which is the 
a"~rage of 3 and 4. As a result of these common rankings, the fonnula for 'p' 

m(m2 -l) . 
has to be corrected. To L tP we add 12 for each value repeat~d, where 

m is the number of times a value occurs. In the X -series the correction is to be 
applied twice, once for the value 75 which occurs twice (m = 2) an<t then for the 
value 64 which occurs thrice (m = 3). The total correction for the X-series is 

2(4 - I) 3(9 -I)_~ 
12 + 12 -2 

. 2(4 -1) 1 
Similarly, this correction for the Y-series is 12 - 2"' as the value 68 

occurs twice. 

6[LtP + ~ + !.J 
2 2 6(72 + 3) 

Thus p = 1 - --n-(n""""2=---I-) -= 1 - 10 x 99 = 0·545 

10"6'3. Limits for the Rank Correlation Coefficient. 
Speannan 's rank correlation coefficient is given by 

" 'p' is maximum, if L d?- is minimum, i.~., if each of the deviations dj is 
j .. 1 

minimum. But the minimum value of dj is zero in the particular case Xj = Yj, 

i.e., if the ranks of the ith individual in the two characteristic are equal. Hence 
the maximum value of p is + I, ,i.e., p:s; 1. 

" 'p' is minimum, if L d?- is maximum, i.e., if each of the deviations dj 
i -= 1 

is maxiJ1\um which is so if the ranks of the n individuals.in the two 
characteristics are in the opposite directions as.given below: 

. 
x 1 2 3 ... . .. n -1 n 

y n n - 1 11-2 ... . .. 2 1 

Case 1. Suppose n is odd and equal to (2m + 1) then the values of dare: 
d : .2m, 2m - 2, 2m - 4, ... , 2, 0, -2, -4, ... - (2m - 2), -2m. 

" .. L dl = 2 { (2m)2 + (2m - 2)2 ~ ... + 42 + 22) 
j .. 1 

_ 8{ 2 ( _ 1)2 12) _ 8m (,;, + I) (2m :+ 1) - m+m + ... + - 6. 
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II 

6 I. d? 
Hence . P = J j - 1 _ 1 8m(m + 1)(2m + 1) . 

n(n2 -I) - -(2m + I){(2m + I)2-I) 

= 8m(m + 1) = 1 _ 8m(m + I) -1 
(4m2 + 4m) 4m(m + 1) 

Case n. Let n be even and equal to 2m. (say). 
Then the values of d are 
(2m - 1). (2m - 3) •...• 1. -1. -3 •...• -(2m - 3). -(2m - 1) 
. . L d? = 2 {(2m - 1)2 + (2m - 3)2 + ••. + I2) 

= 2[{(2m)2 + (2m _1)2 + (2m - 2)2+ '" + 22 + 12) 

10-45 

_{(2m)2 + (2m - 2)2 + ..• + 42 + 22)] 
::; 2[12 + 22 + '" + (2m)2 _ {22m2 + 22(m -'--1)2 + .•. + 22}] 

=2[2m (2m + ~)(4m + 1) 4 m{m + 1)~2m + UJ 
= 2; [(2m + 1) (4m + 1) - 2(m + 1)(2m + 1)] 

= 2; [(2m + I)(4m + 1 -2m - 2)] 

= 2; (2m + 1)(2m _ 1) = 2m(4~2 - 1) 

_ 6I,dj2 _ 4m(4m2 - 1)_ 
.. p - 1- n'(n2 _ 1) - 1 - 2m(4m2 _ 1) --1 

Thus the limits for'rank correlation coefticient are given by -1 S pSI. 
Aliter. For an alternate and simpler proof for obtaining the minimum 

value of p. from -(*) onward. proceed as in Hint to Question Number 9 of 
Exercise 100c). 

Remarks on Spearman's ~ank Correlation Coefficient. 

1. I.d = I. x - I.y = n(i - y) = O. which provides a check for numerical 
calculations. 

2. Since Spearman's rank correlation coefficient p is nothing but· 
Pearson ian correlation coefficient between the ranks. it can be interpreted in the 
same way as the Karl Pearson's correlation coefficient. 

3. Karl Pearson's correlation coefficient assume that the parent population 
from which sample observations are drawn is normal. If this assumption is 
violated then we need a measure which is distribution free (or non-parametric). A 
distribution-free measure is one which doesnot make any assumptioJls about the 
parameters cf the population. Spearman's p is such a measure (i.e .• 
distribution-free). since no strict assumptions are made about the form of the 
population from which sample observations are drawn. 

4. Speannan' formula is easy to understand and apply as compared with 
Karl Pearson's formula. The value obtained by the two formulae. viz .• 
Pearson ian , and Spearman's p. are generally different The difference arises due 
to the fact that when ranking is used instead of full set of observations. there is 
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always some loss of infonnation. Unless many ties exist. the coefficient of rank 
correlation should be only slightly lower than the Pearsonian coefficient. 

S. Spearman's formula is the only formula to be used for finding 
correlation coefficient if we are dealing with qualitative characteristics which 
cannot be measured quantitatively but can be arranged serially. It can also be 
used where actual data are given. In case of extreme observations, Spearman's 
form ula is preferred to Pearson's fonnula. 

6. Spearman's fonnula has its limitations also. It is not practicable in the 
case of bivariate frequency distribution (Correlation Table). For n> 30, this 
fonnula should not be used-unless the ranks'are-given, since in the contrary case 
the calculations are quite time-consumi~g. 

EXERCISE lO(c) 

·1. Prove that Spearman's rank correlation coefficient is given by 

1 - 63Ld? , where d j denotes the difference between the ranks of ith 
n - n 

individual. 
2. (a) Explain the difference between product moment correlation 

coefficient and rank correlation coeffic\ent. 
(b) The rankings of teD' students in twO' subjects A and B are as follows: 
A 3 5 8 4 7 1-0 :~ 1 6 9 
B 6 4 9 8 2 3 10 5 7 
Find the correlation coefficient. 
3. (a) Calculate the coefficient of,correlation for ranks-from the following 

data : 
(X, Y): (5; ,8); (10, 3), (6, 2), (3, 9). (19., 12), (5. 3), 

(6, 17), (12, 18), (8, 22). ,(2. 12). (10, 17), (19, 20). 
[CaUcut Univ. B.Sc. (Sub •• Stat.), Oct. 1991] 

(b) Te'n recruits were subjected to a selection test to ascertain their 
suitability for a certain course of training. At the end of training they were given 
a proficiency test. 

The marks secured by recruits in the selection test (X) and in the proficiency 
test (Y) ~ given below :-

Serial·No. 1 2 3 4 5 6 7 8 9 '10 
X 10 15 12 17' 13 16 24' 14 22 20 
Y : 30 42 45 46 33 34 40 35 39 38 

Calculate product inoment correlation coefficient and rank correlation 
coefficient. Why are two coefficients different? 

4. (a) The I.Q.'s,of a group of 6 persons were measured, and they then, sat 
for a certain examination. Their I.Q.'s and.examination marks were as follows: 

Person: A B' C D E' F 
I.Q. : 110 100 140 120 80 90 
Exam. marks : 70 60 80 60 10 20 

Compute the coefficients of correlation and,rank correlation. Why are the 
correlation figures obtained different? 

Ans. 0·882 and· 0,9. 
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The difference arises due to the fact that when ranking is used instead of the 
full set of observations, there is always some loss of information. 

(b) The value of ordinary correlation (r) for the following data is 0·636 :­

X: ·05 ·14 ·24 ·30 ·47 ·52 ·57 ·61 ·67 ·72 

Y: r·08 1·15 1·27 1·33 1·41' 1·46 1·54 2·72 4·01 9·63 

(i) Calculate Spearman's rank-correlation (p) for this data. 

(iJ) What advantage of p was br9ught out in this example ? 

4. Ten competitors in a beauty contest an[ ranked by three judges as 
follows: 

Competitors 

Judges 1 2 3 4 5 6 7 8 9 10 

A 6 5 3 10 2 4 9 7 8 1 

B 5 8 do 7 10 2 1 6 9 3 

C 4 9 8 1 2 3 10 5 7 6 

Discuss which pair of judges has the nearest approach to common tastes of 
beauty. 

s. A sample of 12 fathers and their eldest sons gave the following data 
about their height in inches : 

Father: 65 63 67 64 68 62 70 66 68 67 69 71 

Son : 68 66 68 65 69 66 68 65 ii 67 68 70 

Calculate coefficient of rank correlation. (Ans. 0·7220) 

6. The coefficient of rank correlation between marks in Statistics and marks 
in Mathematics obtained by a certain group of students is 0·8. If the sum of the 
squares of the difference in ranks is given to be 33, find the number of student in 
the group (Ans. 10). [ModrOB Univ. B.Sc., 1990] 

7. The coefficient of rank correlation of the marks obtained by 10 students 
in Maths and Statistics was found to be 0·5. It was later discovered that the 
difference in ranks in two subjects obtained by one of the students was wrongly 
taken as 3 instead of 7. Find the correct coefficient of rank .correlation. 

Hint. 

=> 

6l:tP 
0·5 = 1-- 10 x 99 

990 
l:tP = 6 x 2 = 82·5 

Since one difference was wr~)I)gly taken as 3 instead of 7, the correct value 
of l:tP is given by 

Corrected l:tP = 82·5 - (3)2 + (7)2 = 122·5 

Corrected P _ 1 6 x 122·5 0.2576 
- - 10 ~ 99 
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8. If di be the difference in the ranks of the ith individual" in two different 

" 
characteristics. then show that the maximum value of ~ d? is i (n 3 - n). 

i a 1 

Hence or otherwise. show that rank correlation coefficient lies'between -1 and 
+ L . [Dellai Univ. B.Sc. (Math •• Ron •• ); 1986] 

9. LeUlt Xl ••••• X" be-the ranks of n individuals according to a character A 
and Ylo Yl ..... y" be the ranks of the same individuals according to other 
character B. Obviously (Xlo X2 • •• :';x;;).and Ql. Y2 • .... y,.) are permutations of 1. 
2 •...• n. It is given that Xi + Yi = 1 + n. for i = 1, 2, ...• n. Show that the value 
of the rank correlation coefficient p between the characters A and B is -1. 

Hint. We are given Xi + Yi = n + 1 'Vi = 1.2 •...• n 

Also Xi - Yi = di 

2Xi = n + 1 + dj => dj = 2xi - (n + 1) 

" " 
~ df = ~ [4x? + (n + 1)2 - 2(n + l)2xi1 

i-I i-I 

_ 4 n(n + 1)(2n + 1) ( 1)2 4(n + l)n(n + I} 
- 6 +nn+ 2 ' 

_ n(n2 - 1) 
- 3 

p = 1 

" 
6 ~ d? 

i. 1 --1 
n(n2 - 1) 

Remark. From Spearmans' formula we note that p will b~ minimum if 
~ d? is maximum. which will be so if the ranks X ar.d Y are in opposite 
directions as given below: 

: rl-'-:-"---n-~-1--n~3~_~2~--~~n~'~"1 

This gives us 

Xi + Yi =.n + 1. i = 1.2 •...• n. 
Hence the value of p = - t' obtained above is minimum value of p. 

10. Show that in a ranked bivariate distribution in which no ties occur and 
in which the variables are independent 

(a) I. d? is always even. and 
i 

(b) there are not more $an ~ (.13 - n) + 1 possible values of r. 
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11. Show that if X. Y be identically distributed with common probability 
1 

mass function: P (X = k) = Iii' for k = 1.2 •...• N; N >1. 

then Px .y. the correlation coefficient betwe~n X and Y. is given by 

I _ 6E(X - y}2 
N2 - 1 

[Delhi Univ. B.Sc. (Math. Ron •• ), 1992] 
(" 

10·7. Regression. The tenn "regression" literally means "stepping 
back towards the average" . It was fIrst used by a British biometrician Sir Francis 
Galton (1822-1911). in connection with the inberitance of stature. Galton 
found that the offsprings of abnonnally tall or short parents tend to "regress" or 
"step back" to the average population height. But the tenn "regression" as now 
used in Statistics is only a convenient tenn without having any reference to 
biometry. 

Definition. Regression analysis is a mathematical measure of the average 
relationship between two or more variables in terms of the original units of the 
data. 

In regression analysis there are two types of variables. The variable whose 
value is influenced or is to be predicted is called dependent variable and the 
variable which influences the values or is used for prediction. is called 
independent variable. In regression analysis .ndependent variable is also known 
as regressor or predictor or explanatory variable while the dependent variable is 
also known as regressed or explained variable. 

10·7·1. Lines of Regression. If the variables in a bivariate 
distribution are related. we will find that the points in the scatter diagram will 
cluster round some curve called the "curve of regression". If the curve is a 
straight line. it is called the line of regression and there is said to be linear 
regression' between ~e variables. otherwise regression is said to be curvilinear. 

The line of regression is the line which gives the best estimate to the value 
of one variable for any specific value of the other variable. Thus the line of 
regression is the line of "best /it" and is obtained by the principles of least 
squares. 

Let us suppose that in the bivariate distribution (Xi. Yi); i = 1.2 •...• n; Y 
is dependent variable and X is independent variable. Let the line of regression of 
Yon X be Y = a + bX. 

According to the principle of ·least squares. the normal equations -for 
estimating a and b are,{ c.j. (9·2a}) 
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" " L Yi = na + b L Xi 
;ml i-I 

... (10·8) 

" " " and L X;Yi = a L Xi + b L xl-
i-I i=1 i-I 

... (10·9) 

From (10·8) on dividing-by n. we get 

y = a + bi ... (10·10) 

Thus the line of regression of Y on X passes through the point (i. y). 
Now 

1;' -_ 1;' -_ 
llu=Cov(X.y) =- ~XiY;-XY'~ - ~xiYi=llll+XY 

n i-I nial 
... (10·11) 

Also ~ ! i x? = (J;(2 + i 2 ••. (lO·l1a) n ; _ • 

Dividing (10·9) by 11 and using (10·11) and (lO·lla), we get 

Illl + i y = ax + b«(Jx2 + i 2) ... (10·12) 

Multiplying (10·10) by i and then subtracting from (10·12), we get 

Illl = bu;(2 ~ b = ~~ ... (10·13) 

"Since' b' is the slope of the line of regression of Yon X and since the line 

of regression passes through the point (x , y ), its equation is 

- b(X - ) Illl ( - ) Y - Y = -x = -2 X-X (Jx 
_ (Jy ( _ 

Y -Y =r- X -x) 
(Jx 

... (10·14) 

... (I()'I4a) 

Starting with the equation X = A * BY and proceeding similarly or by 
simply interchanging the variables X and Y in (10·14) and (10·14a), the 
equation of the line of regression of X on Y becomes 

X -Ill. (Y -) -x =(J.(2 -y 

- (Jx -) 
~ X - x = r - (Y - l' 

Uy 

Aliter. The straight line defined by 
Y = a+bX 

and satisfying the residual (least square) ~ondition 

S = E [(Y - a - bX)2] = Mi~lifT'um 
for v~riai.lons in a and b, is called the line of regression of Y on X. 

: .. (10·]5) 

... (10·15a) 

... (i) 

The necessary and sufficient conditions for a minima of S. subject to 
variations in a and bare: 
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. as as 
(I) aa = 0, ab = 0 and ... (*) 

a2s a2s 
aa 2 i)ai)b 

(ii) A = a2s a2s 
a2s 

>0 and aaz>O '" (**) 

abaa ab'l 
Using (*), we get 

as aa :;: -2 E [Y -a-bX] = 0 ... (ii.j 

as 
ab = -2 E [X(Y - a - bX)] = 0 ... (iv) 

=> E(Y) = a + bE(X) ... (v) and E(Xy) = aE(X) + bE ()(2) . .. (vi) 
Equation (v) implies that the line (i) of regression of Y on X passes 

through the mean varue [E(X), E(Y)). 
MUltiplying (v) by E(X) and substracting from (VI), we get 

E(XY) - E(X)E(Y) = b[E(X Z) - (E(X)}Z] '. 

C (X Y) b Z b _ COy (X. Y) _ rC1y ( .;\ 
=> ov.:z C1x => - . 2 - ••• VII, 

C111 C1x 

Subtracting (v) from (I) and using (vii), we obtain the equation of line of 
regression of Y on X as : 

Y _ E(Y) = COY ~. Y) [X _ E(X») => Y _ E(y) = rC1y [X -E(X») 
C1 C1x 

Similarly, the straight line d~fined by X = A + BY 
and satisfying the residual condition 

E[X - A -BY]2 = Minimum, 
is called the line of regression of X on Y. 

Remarks 1. We note that 
azs au- = 2 > 0, and 

azs azs 
ab'l :;: 2E()(2) and aaab = 2E(X) 

Substituting in (**), we have 
azs azs (aZs Y 

A = iJa2 . ab'l - I oai)b) 
= 4 [E(XZ) - (E(X»2) = 4. C1J? > 0 

Hence the solution of the least square equations (iii) and (iv), in fact, 
provides a minima of S. 

2. The regression equation (1O'14a) implies that the I}ne of regression of Y 

on X passes through the point (i, Y ). Similarly (l0·15a) implies that the line 

of regression of X on Y also passes through the point ( i, y ). Hence both the 

lines of regression pass through the point' (i, Y ). In other words, the-mean 
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values ( i. Y ) can be obtained as the point of ~fltersection of the two regression 
lines. ' 

3. Why two lines of Regression ? There are always two lines of regression 
one of Y on X and the other of X on Y. The line of regression of Y on i 
(1O·14a) is used to estimate or predict the value of Y for any given value of X 
i.e., when Y is~~uf~pendent variable and X is an independent variable. Th~ 
estimate so obtained will be best in the sense that it will" have the minimurn 
possible error as defined by the principle of least squares. We can also obtain an 
estimate of X for any given value of Y by using equation' (lO·14a) but the 
estimate so obtained will not be best since (10· 14a) is obtained on minimiSing 
the sum of the squares of errors of estimates in Y and not in X. Hence to 
estimate or·predictX for any given value of Y. we' use the regression equation of 
X on Y (1O.15a) which is derived on minimising the sum of the squares of 
errors of estim§les in X. Here X is' a dependent variable.9nd Y is an independent 
variable. The t)Vo regression equations are npt reversible or interchangeable 
because of the simple reason that the basis and assumptions for deriving these 
equations are quite different. The regression equation of Y on X is obtained On 
minimising the sum of the squares of the errors parallel to the Y-axis while the 
regression equation of X on Y is obtained on minim~sing the sum of squares of 
the errors parallel tQ the X. -axis .. 

In a particular case 9fperfect correlation, positive or negative, i.e., r ± I, 
the equation of line of r~gression of Yon X becomes: 

Y -y =± ~(X-x) 
CJx 

.r...=-.i = +_ (X. - i) => •..• (10·16) 
CJy .. CJx' 

Similarly. the equation of the line of regression of X on Y becomes : 

X - i = ± ~ (Y - Y.,) 
CJy 

=> Y-y =±(X-i). 
CJy CJx 

whic" is sam~ as (10·16). 
Hence in case of perfect correlation. (r = ± 1), both the lines of regression 

coincide. Therefore. in general. we always have two lines pf regression except in 
the particular case of perfec;t c.orrelation when both the lines coincide and we get 
only one line. . 

10·'·2. Regression Curves. In mo(Jern terminology. the conditional 
mean E(Y I X = x) for a continuous distribution is called the regression function 
of Yon X, and the graph of this function of x is 19town as.the regression curve 
of Yon X or sometimes the regression curve for the mean of Y. Geometrically, 
the regression function represents the y co-ordinate of the centre of mass of the 
lilVariate'probabiJiw mass in the infinitesimal vertical strip bounded by x and 

. x'+dx. 
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Similarly, the regression function of X on Y is E (X I Y == y) and the graph 
of this function of y is called the regression curve (of the mean) of X on Y. 

In case a regression curve' is a straight line, the corresponding regression is 
said to be linear. If one of the regressions is linear, it d~s not howev.er follow 
that the other is also linear. f:or illustration, See Example 10·21. 

Tb~orem 10·4. Let (X. Y) be a two-dimensional random variable with 

E(X) == X, E(Y) = Y, V(X) = crX2, V(Y) == cry2 and let r = reX. Y) be the 
correlation coefficient between X and Y. II the regression 01 Y on X is 'linear 
then 

E(Y I X) = Y + r cry (X - X) 
crx 

Similarly. if the regression 01 X on Y is linear. then 
, I 

E(X I Y) :: X + r crx (Y - f) 
cry 

Proor. Let lite regression equation of Y on X be 
E(Y I x) = a + bx 

But by definition. 

E(Y I x) = f: Y I (y I x) dy = J _: y I j;~t dy 

1 J 00 .. (x) y f(x. y) dy = a + bx 
IX -00 

... (10·16a) 

... (lO·I6b) 

.•• (1) 

... (2) 

Multiplying both sides of (2) by fx(x) and integrating W.f.t. x. we get 

J:oo J :ooYf(x. y) dydx = a J:lx(X) dx + b J _:Xlx(X)dX 

=> J:ooY [J:!X:y)dx]dY =a+bE(X.I 

=> J :00 y Iy(j)dy = a + bE(X) 

i.e.. E(Y) = a + bE(X) => Y = a + bX .. :(3) 
Multiplying both sides of (2) by xlx(x) and integrating w.r.t. x. we get 

=> 

=> 

J _: J.:XY f(x. y) ay tU = a J': ~ Ix(x) dx + b J:oo x2 /x(x) dx 

E(XY) = a E(X) + bE (X2) 

J.i.11 + X y = aX + b(crx2 + X'l) ... (4) 
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( •• ' III I = E(Xy) ..., E(X)E(Y) = E(Xy) - X Y ; 

cr:l = E()(2) - (E(X)}2 = E()(2) - X2 

Solving (3) and (4) simultaneously. we get 

III I -- 1l11--
._h-.-d cr; and a = Y,.,. cr; X 

Substituting in (I) and simplifying. we get the required equation of the line 
of regression of Yon X as 

- IlII --
E(Y I x) = Y + cr; (x ,- X) 

~ E(YIX) = Y + ~; (X - X) 

- cry --
~ E(Y I X) = Y + r - (X - X) 

crx 
By starting with the line E (X I y) = A + By and proceeding similarly We 

shall obtain the equation of the line of regression of X on Yar 

- J.l11 ....!. -- crx --
E(XI y) =X +2(Y - y)=X +r-(Y- Y) crr cry 

Example 10·19. Given 
f(x, y) =Xe-x(I'+ /);x 20, y 2:0, 

find the regression curve of Yon X. [B.H. Univ. M.Sc., )989] 
Solution. Marginal p.d.f. of X is given by 

fdx) = J f(x. y) dy = J xe-x/y + I) dy 

o o 

=xe-X
• J le-XY I e-X)' dy = xe-X ~x 

o 
= e-x • x ~ 0 

Conditional p.d.f. of Y pn X is given by 

o 

I'IX'" xe-x(I'+I) . 
f(y lx) =~= =xe-X.I' y ~O. 

fl(x) e-X • 

The regression curve of Y on X is given by 

: y = E (Y I X = x) = J y fCy I x) dy = J yxe-X•" dy 

o 0 
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( 

i.e .. 
1 y=- => xy=1. 
x 

which is the equation of a rectangular hyperbola. Hence the regression of Y on 
X is not linear. 

Example 10'20. Obtain the regression equation of Y on X for the 
following distribution : 

f(x. y)' = (1 ;X)4 exp (-~) ; x. y ~ 0 

Solution. Marginal p.d.f. 'of X is given by Joo 1 
fl(x) = 0 f(x. y) dy = (1 + X)4 J ~ ye -y/(I+>:) dy 

= (1 .; X)4 . r2 . (1 + x)2 (Using Gamma Integral) 

_ 1 . > 0 
- (1 + x)2' x_ 

The conditional p.d.f. of Y (for given X) is 

f(y ,~)'=1:(xf = (1 ; x)2 exP (-~) ;y~ 0 

Regression equation of Y on X is given by 

= (1 .; x)2' r3. (1 + X)3 

=> Y = 2 (1 + x) 

Hence the regression of Yon X ~ Jinear. , 

[Using Gamma Integral] 

[.: r3.= 2 ! = 2] 

Example 10·21 •. Let ('X. Y) have the joint p.d/. given by 

I'IX , ') = { ~t!f / y / <. ;co, 0 < x < 1 
JI Y 0, otherWIse 

Show that, (he regression of Y on X i9 linear but regres$ion of X on Y is 
not linear. 

Solution. 1 y 1 < x => -x < y < x sod' x > 1 y I. 
The marginal p~d.f'sfl(') of X andfz(.} of Yare given by: 

fl(X) = J~ f(x, y) dy, = J~ 1. dy = 2x ; 0 < x < 1 
-% ~ 

fz(y) = JI f(x, y) dx = JI 14x ='1 -I y 1 ; -1 < Y < 1 
I yl Iyl 

= 
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.. fdx 1 y) =f}:&f = 1 ! Iyl ; -I S; Y < 1,0 < x < I 

~{I ~ y , 0 < y < I ; 0 < x < 1 
- I 

-1-- , -; 1 < y < 0 ; 0 < x < I 
+y 

h (y 1 x) = fY.(Xf = ix ,0 < x < I; 1 y 1 < x 

E(YIX=x) = y.f2(ylx)dy= Ldy::-.lyzi =0 Jx JX 1 x 

-x _x'lx 4x -x 

Hence the curve of regression of Yon X is y = 0, which is a straight line. 

E(XIY=y) = JX f • (xly)dx 

E(XIY=y) = J>(I~y r=2(11_ y),0<y<1 

aOO E(XIY=y) = J>( I ~y r;::2(1,~y),-I<y<0 
Hence the c~e of regression of X 00' Y is 

{
2(11_ )' 0 < y < I 

X - Y - I 
2(1 + y) , -I < y < 0, .. 

which is not a straight line. 
Example 10·22. Variables X and Y.have the joiot p.dl. 

1 f(x,y) ='3 (x + y), 0 Sx S 1.0 Sy s2. 

Fi~: 
(i)' reX. Y) 

(ii) The two lines of regression 
(iii) The two regression curvesfor the means. 

Sohi'tion. The marginaJ.p.d'.f.'s.of X and r ~ given by: 

f. (x) , = ftx.y)dy;::kfo{x+Y)dY ~XY+'fl: 
, 

2 
:::), f.(x) =3'(I+x):OS;xS;1 .. ;(1) 

h(Y) = Jl(X; y) tU = t J:(X + y) tU= ~I If'+ x; I~ 
~ fz(y) =.t(k+ y ): 0 S Y S 2 ... (2) 
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(i) 

The conditiona~ diStributions are given by : 

f (y I x) . =.!J.!J1 =! (:!....±....!.) 
3 ft(x) 2 1 + X 

r4(x I y) -~ - 2(x+ y) (3) 
J' - fiY) - I + 2y ... 

E(Ylx) = foY ·/3 (y Ix) dy = 2(1 ~ x) 5:y(X + y)dy 

_ 1 I~ + y2r -2 _ 3x + 4 
-2(1 +x) 2 3 ,;=0 -'3(x + 1) 

Similarly. we shall .get 

rl . 2 51 2 + 3y 
E(X I y) = J OXf4 (x I y) dx = 1 + 2y 0 (x2 + xy) dx = 3(1 + 2y) 

(ii.) Hent;e the're~ssion curves for means are': 
3x + 4 2 + 3.1-

y = E(YIx) = 3 (x + 1) and x = E(Xly) = 3(1 +. 2y)" 

From the marginal distributions we shall get 

E(X) = J> f1(x) dx = ~. E(XZ) = J>2 f1(X)dx = i8 

Var(X) =0 2_l_(~)2 _11.. 
x- - 18 9 -162 

r(X. Y} = Cov (X. Y)_ 
Ox ' Oy 

1 

- 8t ( 2 )112 
13 23 = - 299 

162 x 8t 
(ii) The two lines of regression are : 

Y -E(Y) = ·co:VjJo.Y} [X -E(X)] ~ 



lo.ss. 
met X -E(X) , = COVj~' n [Y -E(Y)] ~ 

10"'3. Regression Coefricients. 'b', the slope of the line of 
regression of Y on X is also called the coefficient of regression of Y on X. It 
represents the increment in the value of dependent variable Y corresponding to a 
unit change in the value of independent variable X. More precisely, we write . 

bY}{ = Regression coefficient of Y on X :: ~ = r ~ ... (10,17) 

Similarly. the coefficient of regression of X on Y indicates the change in 
the value of variable X corresponding to a unit change in the value of variable 
Y and is given by 

bxr = Regression coefficient of X on Y = ~ = r.!!.I ... (IO·17a) '. ,ay ay 

10"'4. Properties. or Regression Coefficients. 
(a) Correlation coefficient is the geometric mean between the regression 

cqefficients. 
Proor. Multiplying (10·17) and (10·17a), we get 

ax ay 
bxyxbyx =r-xr-=il 

ay ax 

r =±~bxy x b u •.. (10.18) 

Remark. We have 

J.lII J.lll J.lII 
r = , bY}{ = -:-:i and bxr = ---::i ax . ay ax ay 

It may be noted that the sign of correlation coefficient is the same as that of 
regression coefficients, since the sign of each depends upon the co-variance term 
Ilu. Thus if the regression coefficients are positive, 'r' is positive and if the 
regression coefficients are negative 'r' is negative. 

From (10·18), we have 

r=±~bxy x by.x 

the sign to be taken before the square root is that of the regression coefficients. 
(b) If one of the regression coefficients is greater than unity. the other must 

be less than unity. 
Proor. Let one of the regression coefficients (say) brx be greater than 

unity, then we have to show that bxr < I. . 

Now brx > I ~ b!x < 1 ... (*) 

Also ils 1 ~ by}{. bxy S I 
1 Hence bxy S-b < I [From.(*)] 
yx 

(c) Arithmetic. mean 0/ the, regression coefficients is greater than the 
correlation coefficient r,provid.t{dlr > O. 
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Proor. We have to prove that !(brx + bxy) ~ r 

cr -21,Jr ay + r ax)~ r or !2:+ ax ~ 2 (.: r> 0) 'l ~ ay ~ ay 

~ al ~ax2 - 2aXay ~ 0 i.e., (ay - ax)2 ~ 0 
which is always true, since the square of a real quantity is ~ O. 

(d) Regression coefficients are independent of the change of origin but not 
ofscale. 

X-a Y-b 
Procf. Let U =-.-h-' V =-k- = X = a + hU, Y = b + kV. 

where a. b. h (> 0) and k (> 0) are constants. 
Then Cov (X, y) = hk Cov (U. V), ar- = h2ael and a1' = kla'; 

b _ I!u.. _ hk cov (U. V) 
YX - c1r- - 1i2CJel 

_! cov (U. V) -!b 
- h . ael - h vu 

Similarly, we can prove that 
bxy~'= (hlk) buy 

10·7·.5. Angle Between Two Lines or Regression. Equations of 
the lines of regression of Yon X, and X on Y are 

Y - ay ( - ) d - ax (Y - ) -y=r.- X-x an X-x=r.- -y 
ax ay 

Slopes of these lines are r . ay and ay respectively. If e is the angle 
ax rCJx 

between the two lines of regression then 
ay ay 

r--
tan e = ax rCJx _ r~ - I ( aXay ) 

l ay ay - r' ax2 + ay2 
+r-.-

ax rCJx 

_ I ,.. r2 ( aXay. ) 
- r ax2 + ay2 

;"= tan-1 {I - r2 ( aXay ~)~ 
r ax2 + ay" ~ 

x 
Case ·(i). (r = 0). If r = 0, tan e = 00 = e = 2 

(·:,lSI) 

.. :(10,19) 

Thus if the two variables are uncorrelated, the lines of regressio!,! ~ome 
perpendicul8r to each oth~r. 

Case (ii). (r = ± 1). If r = ±I, tim e = 0 = e = 0 or x. 
In this case the two lines of regression either coincide or they are parallel 

to each other. But since both the lines of regression pass through the point 
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(X , y ), they cannot be parallel. Hence in the case of perfect correlation, 
positive or negative, the two lines of regression coincide. 

Rema-:-ks 1. Whenever two lines inter~ect, there are two angles 
between them, one acute-an~le and·the ollieI' ootuse ang~e. Further tan e> 0 if 
0< e < na, i.e., 9 is an acute angle and tan 9 ~ 0 if 1t/2 < 9 < n, i.e .. 9 is an 
obtuse angle and since 0 < rZ < I, the acute angle (91) and obtuse angle 92 
between the two lines of regression are given by 

{ 0XOy 1 rZ} 91 = Acute angle = tan-I Z z. ---- ,r > 0 
Ox + Oy - r 

tL 0 1 I { Ox .Oy rZ - I} vz = btuse ang e = tan- Z 2 • -- ,r > 0 
, Ox + Or r 

2. When r = 0, i.e .• variables X and Y are uncorrelated, then the lines of 
regressions of Yon X and X on Y are given ,respectively by : [From (1O·14a) 
and (lO·15a)1 VI-

Y = Yand X = X, -t V = Y teXt y_} 
as shown in the adjoining diagratn. (O,Y 
Hence, in this case (r = 0), the lines X : X 
of regression are perpendicular to 
each other and are parallel to X- axis O~-----(-:x-~.-O)--i 
and Y-axis:respectively. 

3. The fact that if r = 0 (variables'uncorrelated), the two lines of regression 
are perpendicular to each and if r = ±l, e = 0, i.e., the two lines coincide, leads 
us to the conclUsion that for higher degree of correlation between the variables, 
the angle between the lines is smaller, i.e ... .the two lines of regression are 
nearer to each other. On the other hand, if the lines of regression make a larger 
angle, they indicate a poor degree of correlation between the variables and 
ultimately for e = 1t/2, r = 0, i.e.. the lines become perpendicular if no 
correlatiQn exists between the variables. Thus by ploUing the lines of regression 
on a graph paper, we ,can. have an. approximate idea about the degree of 
correlation between tf\~ two variables under study. Consider' the following 
iJJu~tr~ons : 

1WOllNES 
COtNc;IDE 

(r=-l) 

1WOllNES 
COINODB 

(r=+l) 

.1WOUNES 
>\PART (lOW 
Dl3GREEOF 
~TION) 

1WOllNES 
APART(HIOH 

DEGREEOF 
roRRELATION 

10·7'6. Standard Err.or of Estimate or Residual Variance. The 
equation of the line of regression of Y on X is 
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- ay -
y = Y + r aX pC - X) 

Y - f (X -X) (' --=r -,--
ay ax . 

The residual variance s'; is the expected value of the squares of deviations 
of the observed values of Y from the expected values as given by the line of 
regression of Y on X: Thus 

s'; = E[Y - (Y + (ray (X - X)/ax»)]2 

=a1-E[Y - f _ r (X - x~12 =a1-E(Y*:..rX.)2 
ay ax ,~)J 

where r and r are standafdised variates so that 
ECX-~' = 1 = E(y-l) and E(X· -r) = r. 

s'; = a';[E(Y"'2) + r2 E(r2) - 2r E(X*Y*)] = a'; (I - 1'2) 

Sy = ay (1 - ,-2)1/2 . 
Similarly, the lstandard error of estimate of X is given by 

Sx = ax (1 - r2)112 

Remarks 1. Since sr- or s'; ~ 0, it follows that 
(1 - 1'2) ~ 0 => I r I ~ 1 

-1 S r(X. Y) ~ 1 ' 
./ 

2. If r = ± I, Sx = Sy = 0 so that each deviation is zero, and the two lines 
of regre~ion are coincidenL 

3. Since, as.r2 .... I, Sx and Sy .... 0, it follows that departure of tne value 
,-2 from unity indicates the departure of the relationship between the variables X 
and Y from linearity. 

4. From the definition of linear regreSsion, the minima condition implies 
that Sy or sx is the minimum variance. 

10'7·7. Correiation Coe"icient betwe;n Observed and Esti. 
mated Value. Here we will find the correlation between Yand 

" - ay -Y iF. Y+ r·-- (X -X) 
" ax 

where Y is the estimated value of Y as given by the line of regression o[ Y on 
X, which is given by 

." 
(Y Y)" - Cov (Y, Y) r ,- It. • 

ay~y 

Webave 
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1\ 
=> .Oy= rOy 

A A A 
Also Cov (Y, Y) :: E[{Y - E(y)} {Y - E(Y)}] 

. . . 

={ (b(X -E(X»} {r :: (X - X)}] 

=br---.lE[(X-E(X)}2]= r---.l 0;'=r20';--0 ( 0 )2 
Ox Ox 

A r20'; . 
r(Y, Y) =--=r=r(X,y) 

Oyroy 
Hence the correlation coetliclent between observed and estimated value of Y 

is the same as the correlation coefficient between X and Y. 
E~mple 10·23. Obtain the equations 0/ the lines 0/ regression/or the 

data in Example 10·1. Also.obtain the estimate a/X/or r = 70. 
Solution. Let U = X - 68 andY = Y - 69, then 

fj = 0, V = 0, oel = 4·5, o~ = 5·5, Cov (U, V) = 3 and r (U, V) = 0·6 
Since correlation coefficient is independent of change of origin, we get 

r = r(X, Y) = r(U, V) ='0·6 
. X-a Y~b 

We know that If U =-h- , V =-k-' then 

X=a+hU, Y =b+kV,ox=hou andoy=koy 
In our case h = k= l,a = 68 and b= 69. 

Thus X = 68 + 0 = 68, Y = 69'+ 0 = 69 

Ox = ~u = "4·5 = 2·12 and Oy':: Ov = .:; 5·5 = 2·35 
Equation of line of regression of Y on oX is 

• - Oy -Y -Y =r-(X -X) 
Ox • 

2·35 
i.e., Y = 69 + 0·6 ><'.2.12 (X - 68) => Y = 0·665 X + 23·78 

Equation of line of regression of X on Y is 

X - X = r Ox (Y _ Y) 
Oy . 

=> X = 68 + 0·6 x ;:~; (Y - 69)' i.e., X = 0·54Y + 30·74 

To estimate X for given Y, we use the line of regression of X on Y. If 
Y = 70, estimated value of X is given by 

1\ 

X = 0·54 x 70 + 30·74 = 68·54, 
1\ 

where X is estim~ of X. 
Example 10'24. In a partially destroyed laboratory record. 0/ an analysis 

0/ correlation ddta, the /ollowing results only are legible: 
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Var{allce of X = 9. 
Regression equations: BX - lOY + 66 = O. 40X -IBY = 214. 

What were (i) the mean values of X and Y. 
(ii) the correlation coefficient betw~en X and Y. and 

(iii) the standard deviation..!!f Y ? 

10-68 

[Punjab Univ. B.Sc. (Hons.), 1993] 
Solution (i) Since both the lines of regression pass through the point 

(X, Y), we have 8X .=. lOY + ~6 = 0, and 40X - 18Y = 214. 

Solving, we get X = 13"Y = 17. 
(ii) Let 8X - lOY + 66 = 0 and 40X - 18Y = 214 be the lines of regression 

of Yon X and X on Y respectively. These equations can be put in the form : 
8 66 \ 18 214 

Hence 

Y = to X + to and X = 40 Y + 40 

'b yx = Regression coefficient of Yon X = ~O = ~ 

bxy = Regression coefficient of X on Y = !~ = ;0 

4 9 9 
r2 = byX • bxy = 5" . 2Q = 25 

3 ' 
r =±5" = ±0·6 

But since both the regression coefficients are positive, we take r = +0·6 

(iii) We have brx = r· ~; ~ ~ = ~ x ~y [.: cr; = 9 (Given)] 

Hence cry = 4 

Remarks. 1. It can be verified that the values of X ~ 13 and Y = ] 7 as 
obtained in part (i) satisfy both the regression equations. In numerical prob1em~ 
of this type, this check should invariably be applied to ascertain the correctness 
of the answer. 

2. If we had assumed that 8X - lOY + 66 = 0, is the equatipn of the line of 
regression of X on Yand 40X - 18 Y= 214 is the equation of line of regression 
of Yon X. then we get respectively: 

8X = 10 Y - 66 and ] 8 Y = 40X - 2] 4 

X - lOy _ 66 and Y _ 40 X _ 2] 4 
- 8 8 - 18 18 

18 40 
bxy =8 and byx =]8 

10 40 
r2 = bxy . brx= 8 x Is = 2·78 
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But since r2 always lies between 0 and I, our supposition is' wrong. 
Example 10'25. Find the most likely price in Bombay- corresponding to 

the price of Rs. 70 at Calcutta fr.om the following: 
Calcutta Bombay 

Average price 65 67 
Standard, deviation 2·5 3·5 
Correlation coefficient between the orices of commodities in the two 9i~ies 

is (f:8~ [Nagpur Ulliv. RSe., 1993; 
'" Sri Veiakoteswol'O Ulliv. B.Se. (Oct.) 1990] 

Solution. Let the prices, (in Rupees), in Bombay and Calcutta be 
denoted by Y and X respectively. Then we are give!) 

X = 65, Y = 67, ax = 2·5, ay = 3·5 and r = r(X, Y) = 0·8. We want Y for 
X= 70. 

Line of regression of }' on X is 

Y ... Y = r ay (X - X) 
ax 

3·5 
~ Y = 67 + 0·8 x 2.5 (X - 65) 

" 3·5 When X = 70, Y = 67 + 0·8 x 2.5 (70,- 65) = 72·6 

Example 10·26. Can Y = 5 + 2·8 X and X = 3 - 0-5Y be the estimated 
regression equations of Y on X ~nd X on Y respectively? Explain your answer 
with suitable theoretical arguments. [Delhi Ulliv. M.A.(Eco.), 1986] 

Solution. Line of regression of Y on X is : 
Y = 5 + 2·8X => byx = 2·8 ... (*) 

Line of regression of X on Y °is : 
X = 3 - 0·5Y => bxy = - 0·5 ... (**) 

This is not possible, since each of the regression coefficients brx and bxy 
must have the same sign, which is same as that of Cov (X. y). If Cov (x. y) is 
positive, then both the regress~'on coefficients are positive and if C6v (X .. y) is 
negative, then both the regression coeffiCients are negative. Hence (*) and (**) 
cannot be tile estimated 'regression equations of Y 6n,X and X on Y respectively. 

EXERCISE .10 (d') 

1. (a) Explain what are regression 1ines. Wh~' are there two such lines? 
Also derive their equations. 

(b) Define (I) Line of r.egression, (ii) .{egression coefficient. Find the 
~uations to the lines of regression and: sho\J.' that the coefficient of correlation is 
tne geometric mean of coefficients of regression. 

(c) What equation is the equivalent mathematical statement for the 
following words? f 

"If the respective deviations in each series, X and Y. from their means were 
expressed in units of standard deviations, i.e., if each were divided by the 
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standard deviation of the series; to which it belongs and plotted to a scale of 
standard deviations, the slope of a straight line best describing the plotted points 
would be the correlation coefficient r." 

2(a) Obtain the eq\Ultion of the line of regression of Y pn X and show that 
the angle 8, between the two lines of re~ession is given by 

J..::...Q: crlcr2 
tan 8= X z z 

P crl + cr 2 

where crh crz are the standard deviations of X and Y respectively, and' p is ,the 
correlation coefficient (Delhi Univ. RSc. (Math •• Hon •• ), 1989) 

Interpret the cases when p = 0 and p = ± 1. 
(Bango1ore Univ. B.Sc. 1990) 

(b) If e is the acute angle' between the two regression lines with 'Yorrelation 
coefficient r, show that sin e ~ 1 - r2. 

3. (a) Explain the'term "regression" by giving examples. Assuming that 
the regression of Yon X is linear,'outJine a method for the estimation of the 
coefficients in the regression line based on the random paired sample of X and 
y, and show -that the varian'ce of the erroF. of the estimate for Y for the 
regression line is cry2 (1 - p2), where cri is the variance of Y and p is the 
correlation Coefficient between X and Y. 

(b) Prove that X and Yare lineady related if and only if Pxy2 =.1.,further 
show that the slope of the regression line is positive or nega.tivCl according as 
p=+lorp=-l. 

L X Y . '. x .... 0 • Y-c (c) et and be two varIates. Defme X = -b-' Y = -d- for 

some f:onstants a, b, c and d. Show that the regression line (least square) of Y 
on X can be obtained from that of r- on X·. 

(d) Show that the, coefficient of correlation between the' observed and the 
estimated values of Y obtained from the line of regression of Y on X, is the 
same as that between X and Y. 

4. Two variables X and Y are known to be related to each 'other by t)te 
relation Y = X/(aX + b). How is the theory or linear regressic;m to be employed 
to estimate the constants a and b from a set of n pairs of observations (Xi, Yi), 
i = 1,2, ... , n ? 

Hint. 1 aX + b b Y = X =.0+X' 

Put 
1 1· 
X=Uandy=V 

V =o+bU 
S. Derive the standard error of estimate of Y obtained from the linear 

regression equation o( r on X. What does this standard error measure? 
6. (0) Calculate the tocfficien( of correlation from the following data : 

X: 1 2 3 4 5 6 7 8 9 
Y: 9 8 10 12 H 13 14· 16 15 



10.66 

AI,so obtain the equations of the lines of regression and obtain an estimate 
of Y which s!tould correspond on the average to X = 6·2. 

Ans. r = 0·9~, Y - 12 = 0·95 (X - 5), X - 5 = 0·95 (Y - 12), 13·14 
(b) Why do we have, in general, two lines of regression '1 Obtain the 

regression of Y on X, and X on Y from the following table and estimate the 
blood pressure when the age is 45 years: 

Age in years Blood pressure 
(X) (Y) 

56 147 
...-42---... 125 

12 160 
36 118 
63 149 
47 128 

Age in years 
(X) 

55 
49 
38 
42 
68 1 

60 
Ans. Y = 1·138X + 80·778, Y = 131·988 for X = 45. 
(c) Suppose the observations on X and Y are given as : 
X: S9 65 45 52 60 62 70 
Y: 75 70 55 65 60 '69 80 

Illood pressure 
. (Y) 

150 
145 
115 
140· 
152 
155 

55 45 49 
.65 59 61 

where N = 10 students, and Y = Marks in Maths, X = Marks in Economics. 
Compute the least square regression equations of Y on X and of X on Y. 

If a student gets 61 marks in Economics, what would you estimate his 
marks in Maths to be ? 

7. (a) In a correlation analysis on the ages of wives and husbands, the 
following data were (,btained. Find 

(I) the value of the correlation coemcient, and (il) the lines of regression. 
Estimate the age of husband whose wife's age is 31 years. Estimate the age 

of wife whose husband is 40 years old. J 

~ 15-25 25-35 35-45 45-55 55-65 

Age of 
Husband 

15-30 30 6 3 - -

30-45 18 32 15 12 8 

45-60 2 28 40 16 9 

60-75 - ~ 9 10 8 

(b) The following table gives the distribution of 'otal cultivable a,ea (X) 
and area under cultivation (Y) in a district of 69 villages. 

Calculate (0 the linear regression of Yon X. 



10067 

(il) the correlation coefficient r(X. y), and (iii) the average area under wheat 
corresponding to total area of 1,000 Bigi\as, 

;; 
\) Total' area Yin Bighas) , 

I 

~500 500-!.1000 1000---!1500 1500-2000 2000-2500 
- -- 0-200 12 6 

'< 

... ... ... 
i . 
~ 

200-400 2 18 4 2 1 

1 400-600 ... 4 1 :3 . .. , 
.. . 

! 600~800 ... 1 ... 2 1 

800-1000 ... ... r 2 3 
.. , .. 

ADS. (,) r = 0·7641X - 455·3854, (ii) r(X. y) = Q·756 I' 
(iii) ,y = 308·7146 for X = 1000 .-

8. (a) Compare and contrast the roles of correlation ~d regression 'in 
studying the iQteJ:-depen&nce of two variates. 

FOI: 10' observations on price (X) and supply (Y) the following data were 
obtained (in appropriate units). 

LX = 130, I,Y = 220, I,Xl' = 2288, I,f2 = 5506 and I,XY = 3467 
Obtaill the line of regression of Y on X and estimate the supply when the 

price is 16 units, and find out the standard error. of the estimate, 
ADS. Y = 8·8 + 1·015X, 25·04 
(b) If a number X is chosen at random from anlong the integers 1,2,3,4 

and a number Y is ch~n from among those at least as l!tfge as X, prove that 
s . 

Cov (X. Y) =8 

Find also the regression line of X on Y. 
(c) Calculate the correlation coefficient from Ihe following data :-

N = 100, IX = 12500 I,Y = 8000 
I,X2 = 1585000, I,f2 = 648100 I,XY' = 1007425. 

~o obtain the regression equa~on of Y on X.' • 
9. (a) The m~s of a bivariate frequency djstribution are at (3, 4), and 

r = 0·4. The line of regression o(Y op X is parallel to the line Y = X. Find the 
two lines of regression and estimate the mean of X when:r = 1. 

(b) For certain data, Y = 1·2 X and X = 0·6 Y, are the regression lines. 
Compute p(X. l') and ax/ay . Also compute p (X. Z), if Z = Y - X. 

(c) The equations of two r~gression lines obtained in a correlation analysis 
are as follows : 

3X + 12Y = 19, 3Y + 9X = 46 
Obtain (,) the value of correlation coefficient, 

(ii) mean values of X and Y, an~ 
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(iii) the ratio of tl}e coefficient of variability of X to that of Y. 

Ans. ~) -' &v3, (~!.x'= 5, Y = 1/3. 

(d) For an arl!!Y. pe~sonnel of strength 25, the regression of weight of 
kidneys (y) on .weight of heart (X ), both measured in .ounces is 

Y -, 0·399X - 6·934 = 0 
1,nd the regreision of weigh} of heart on weigbt of td<Jney is 

, .)( _ 1.212Y + 2.461 = 0 C 
I .." .. 

~ Find the c;:orrelation c~fficient between X and Yand their m.~ values. Can 
you find out the standard deviation of X and Y as well ? 
~ "...._ -"--. i j 

Ans. ,(x.,. YJ = 0·70, X = 1'1·508~, Y = 11·52~1, No. 
(e) Frnd the coefficient 6f correlation for distributfon in whiCh 

S.D of X = 3'() units 
S.D. of Y = 1·4 units 

Coefficient of regr:ession of Y on :x = 0·28. 
10, (a) Given thai'x ::: 4Y + 5 and Y = kX + 4, ate the lines of regression 

of X on Y and r on X respectively. ,show that 0 < 4k < I. If k = '1~ • .find the 
means of the two variables and coefficient of correlation between them., 

~ I [Punjab. Univ. B:Sc. (1101Ul.); 1989] 
Hint. X = 4Y + 5 => bxy = 4 ' ., 

'y = kx + 4- '~ byx "= k . , .~ r- = 4k, ... (*) 
But 0 S,2 ~ I=>O S 4k s 1. 

If k '= 116 •• then from (~), we get . . ' 
r-= 2J x i16~' = + ~ (Siil~ both the regression coefficient are positive] 

For k = 116 • the two lin~~ of regressio-:, become 
1 X = 4Y ;+- 5 and Y.= 16X + 4 

Solving the two equations, we get Y = 5',75 , X:;: 28. 
(b) For 50 students of a class the regression equation of marks in $~\istics 

(X) on marks in Mathematics (Y) is 3Y - 5X +'180 = O. The mean marks in 
Mathematics is 4,4 and variance of inai~s in Statistics is 9/16th of'the'variance 
of marks in Mathematics. Find the mean marks in Statistics and the coefficient 
of correlation between marks in two subjects. 

[Banga/ore Un{". B.Sc.,· 1989] 
.. ( 1 

;Hint., We are g;yen n = ~O, Y = 44 

lIl1 0'; = i6 O'~ ~ ~ =~~ ... (*) 

The equation of the line of regression of X on Y is given'to be 
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3 180 
3Y' - 5X + 180 = 0 => X = 5 Y + s 

b - f crx - ~ => ,- ~ - 1 or r = 0.8 xy - .cry -:- 5 . 4 - 5 

Since the lines of regression pass through the point (X, Y), we get 
- 3 - 180 3 
X = 5 Y + """5 = 5 x 44 + ~6 = 624 

(c) Out,of the two lines ,of. regression given by 
X + 2Y - 5 = 0 and 2X + 3Y- - 8 = 0, 

which one is the regression line of X on Y? 

10-69 

Use the equations to find the mean of X and the mean of Y. If the variance 
of X is '}2', calculate the variance of Y. 

Ans. X=I,-Y=2,cr~=4 
(Q) The lines of regression-in a bivariate distribution are : 

X + 9Y = 7 and Y + 4X = 4: 
Find (l) the coefficient of correlation, (iit) the ratios cr; : crYl : Cov (X, y), 

(iii) the means of the distr!bution and (tv) E(X I Y = 1). 
(e) Estimate.X when Y = IO,if the two lines of regres~ion are : 

1 
X = - Ii Y + A. and Y = -2x + J,l. 

(A, J!) being unknown and the meal) of the distribution is at (-1. 2). Also 
compute r, A. and J.1. [Gujarat Univ. B.Sc., Oct. 199.J} , 

11. (a) The following reSultS were obtained in th.e arullysis of dat1 on yield 
of dry bark in ounces (Y) and age in years (X)'of 200 cinchOna plants : 

X Y 
Average 9·2 . 16·5 
Standard deviation ·2·1 4·2 
Correlation coeffiCient = +0·84 

.." f • 

Construct the two lines of regression and .~~..ilflatc th~ .Yi~ld of <fry bark of ~ 
plant of age 8 yeats. . [Patna Univ. RSc., 1991J, 

(b) The following data pertain to the marlt'$ in subjects A and B in ~. cedain 
examination : 

Mean marks in A = 39·5 
Mean marks inB = 47·5 
Standard deviation of marks in A = 10·8 
Standard deviation of marks in B = 16·8 

Coefficient of correlation between marks in A apd marks ~n B = 0'12. 
I;>raw the two lines of r~gression and e~plain why there are two regression 

equauons. Give the estimate of marks in B for candidates who secured 50 marks' 
in A. . -

Ans. Y = 0·65X + 2,·825, X = 0·27Y + 26·675 and Y = 54·342 forX = 50 
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(e)'You are given the following infonnation a~ut advertising expenditure 
and Sales: 

. Advertising Expenditure (X) Sales (Y) 

'Mean 
(Rs. lakhs) (Rs. lakhs) 

10 90 
s.d. i 3 12 
Co~lation coefficient = 0·8 
What should ~ the advertising budget if the company wants to attain sales 

target9f..Rs.J20 Jakhs? .[Delhi Univ. M.e.A., 1990] 
12. ,Twenty-five pairs of value of variates X and Y led to the following 

~.: . 
N = 25, LX = 127, iy = 100, W::::; 760, l:f2 = 449 and LXY = 500 
A subsequent scrutiny showed that two pairs of values were copied down 

as : my 

8 14 
8 6 

my 

8 12 
6 8 

(I) Obtain the correct value of the correlation coefficient. 
(il) Hence- or otherwise, find tlie correct equations of the two lines of 

regression. ' 
(iiI) Find the angle between the regression lines. . 
A .. s. (i) r(X, Y) = -; (0-64 X C·I~)IJ2, 

(il) X = -.O·64Y + 7·56, Y = -0·15X ~+ ~·75. 
13. Suppose you have n observations: 

(Xl> Yl), (X2' yz), ...... , (XII' y,.) 

on two variables X and' Y, and you have fitted a linear regression Y = a + bX by 
the method of least squares .. Denote the 'expected' value of Y by r. and the 
residual Y - Y'" bye. Find means and variailces qf Y· and e, and the 
correlation co-efficient between (I) X and e. (il) Yand e and (iiI) Y and 'r"'. Use 
these results to bring out the significance and 'limitations of the correlation 
coefficienL 

Ans. r(X. e) = 0, r (Y. e) = 0 and r(Y, If"') = r(X, Y). 
14. (a) The regression lines of Y on X and of X on Y are respectively 

Y = aX +'b and X = eY + d. Show that ' 

(I) Mean& are X = (be + d)/(1- ae) and Y = (ad + b)/(I- ae) 

(ii) Correlation coefficient between X and Y is ~, 
(iiI) The Iatio of the standard deviations of X 'and Y is {da . 
(b) For two random variables X and Y with- the Same 'mean, the two 

• . b I - a 
regression equations are Y. = aX + b and X = aY + p. Show that ~ = I _ a . 

Find also the common mean. 
• [Pu.vab Univ.B.Sc. (MatI.. Hon&)~ 19192] 
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(c) If tile lines of regression of Y on X and X on Yare. respectively 
((IX + blY + CI = 0 and a'Ji( + bzY + Cz = 0, prove that albz S aZb1• 

(Delhi Uniu. B.Sc. (Stat. Hon&), 1989) 

. (a1) ( 6z) albz HlDt. rZ = brx . bxy S 1 ~ - bl X , ..,. ~ = a/Jt S 1 

/I 

15. (a) By minimising L /; (Xi COS a + ;i sin a - p)Z for variations in a 
; - 1 . 

and p. show that there are two straight lines passing through ,the mean of the 
distribution for which the sum of squares of normal deviations has an extreme 
value. Prove also that their slope$, are given by 

. 21l1l 
tan2a= z z 

CIx - CIy 

Hint. We have to minimize 
/I 

S = L /; (x; cos a + Y; sin a - p )2" ••• (1) 
i-I 

Equating to zero, the partial derivatives of (I) w.r.L a andp, we have 

~S = 0 = 2 i /; (xi cos a + Y; sin a - p) (-X; sin a + Yi cos a) .•. (2) ua ; _ 1 

as /I 

:\ =,0 = -2 L /;(x; cos a + Yi sin a - p) ... (3) 
up ; .. I 

Equation (3) can be written as 
/I 

L /; (Xi cos a + Yi sin a - p) = 0 ~ x cos a + y sin a - p = 0 . .,(4) 
j - 1 

From equation (2), we get a quadratic equation which shows that there are 
two straight Jines fQr extreme values of E, 

From equatiorl (4), it becomes clear that 1>oth the straight lines pass 

ihrough the point (x , y ). 
Again equation (2) can be written as : 

/I 

L /; (X; cos a + Yi sin a-p) (yj cos' a -Xi sin a) = d 
j - 1 

/I 

~ L /; [cos a (Xi.-X)+ sin a (Yi. y)] [y; cos a'-xi sin a] ~ 0 
i-I [Using (4)] 

It /I ~ 

~ cosz a L /; Yi (Xi - X ) - sin a cos a L Ii Xi (X; - x) 
; - 1 .' ; - 1 

/I /I 

+sinacosa L f;Y;(yi-y):'sinza L/;X;(Yi-Y)=0 ••• (5) 
;-1 i-I 

We have 1111 =! ~f;(x; -x) (yj -Y) , 
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:;0 ! ~f;x;~; -y) -x. ~~fdY; -y)=~~/;x;(y;-Yj . , 
1 .. _ 

Similarly, ~1l= Ii ~~y; (x; - x) , 
.2 1~ '- 2 1~ -ax- = N ~/; x; (x; -x) and ar = Ii ~/; y;(y; - y) . , , 

Substitutirig these values in (5), we get the required result 
(8Nfth-e-straight line dermed by" 

Y =a+'bX'-
satisfies the condition ~[(Y - a - bX)2] = minimum, show that the regression 
line of the random variable Y on the random variable X is 

Y -. Y = r aay (X - X), where X. = ~(X), Y = E(Y) x . 
16. '(a) Define Curve of regre~sion of Yon X. 
The joint density function of X and Y is given ;by : 

f(x, y) = x + y ,0 < x < 1,0 <y <: 1 
= 0, otherwise 

. Fmd 

(i) ~e correlation coefficient between X and Y, 
(;1) the regression curve of Y on X, and 

(iiI) the regression curve of X on Y. 

ADS. P (X, Y) = - 111 • [MadraB Univ. )J.Se., Slat. (Main),1992] 
: ~ . 

2 
(b) Let j{Xl'XV'= a2;O":;:Xl <X;2,O<~2><a 

= 0, elsewhere 
be the joint p.dJ. of Xl and X2• 

Find conditional means and variances. Also show that p = ~ . . . 
17. If the joint density of X and Y is given. by . 

f( ) - { (x + y)/3, for O,<'x < 1,0 <'y <2 
x, y - 0, otherwise 

obtain the regressions (I) of Y on X. and (il} of X on Y. 

Are the regressions linear ? Find the correlation coefficient between 
X ahd Y. • (~ Uni". B.Sc.199J) 

, '3x + 4 2 + 3)' ~ 
ADS. r= E(Y I.~) = .3 (x + 1); x = E(X Iy) = 3 (1 .2y) 

Corr. (X,-of) = - ( 2~ )12 
18. Let the joint density fu'ncti9n of X and i' be' given by :­

j(x, y) = 8xy, 0 < % <: y'< 1 
= 0, otherwise 
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Find: (l) E(Y I X = x), (il) E[XY I:¥ = xi, (iiI) .~~ 'ry I X == x] 
[Dellai Uni,,-. BSc. (Moth. Hon •• ),· 1988] 

2 (I+X+X2) • 2 
Ans. (I) E(YIx) = 3l 1 ~ x E (XY I x) = x.E(Y I ~), (iiI) E ~y2 l,oX) = 1 ~,x 

19. Give an example to show that it is possible to have the regression of 
yon X constant (does not depend on X), ;but the regression 'of X on Y is not 
constant (does depend on y)., • 

Hint. S~ E..~ample 10'.2.1 . 
20. Prove or, 4isprove ~ 

Ans. ~rue 
E(YIX=x) = constant R r(X.y)=·0 

21. lfj(x;l).= tx~ exp T-y (1 +.~)]~ x ~.O,:y ~ O~is tl}e jQ,n~ p.d.f. of 
(X.Y), obtain tJie'equation of regression of Yon X, 

, Ans. y-'~·E(Y IX)I= 1/(.1 + x). 
22. Variables (X,Y) have joint p:d.f; 

I(x;y)'= 6(l- - x - y), x> :0, j >IO,'x + y < 1. 
'T 0, oth~fWi$e. 

Find/x(x)./y(y) and Cov (X,Y). Are X and Y independent? Obtain the 
regression curves for the' means. • " 

[Colcutto ·Univ. asc. (Moth •. Bon •• ), 1986] 
- J . 

Ans~/l(X) ~'3(1-i)2, 0-<: x < 1 ;h(Y) = 3(1 _y)2, 0 < Y < 1. . . . 
X and Yare not independent. . ,-
Regression.curves for the means are;: 

y == E(Ylx) = t (1 -x) I.an~ x':: E(X rY>-='t (1 :""y)' 

23. For the. Joint p.d.t 
• ·1<x. y) = 3x2 - 8xy l' 6y2;-.0;i(x, y)'S.I" 

find the 1t1ii.st Wuart: 1C~sjon lines and the regression curves for the means. 
[Colcutto Unil7. BoSc. (Moth •. j H.n •• ); 1981] 

ADS. Regression lines :. ./ 

y ~~=-~~(x -:2) ; x .. :z=-;;G - ~) 
Regression' curves for-means are : 

9.%2 - 16x.+ 9 36y2 - 3'2'). - 9 
y = E(YIx) = 6(3x2 :... 4x; +: i) ; x = ~(X Iy) ,'i' .12(6;2 '_ 4) + 1) 

24. :eet (X. Y.) .be joiiltly'distributed with p.d.f: 
f(x, y) = e-Y , 0 < x < y < 00 

;. ".= 0 , odierwisO 
Prove that: 

E(Y IX =:i) '= x +')1: and E(X I'Y = j) ~ )/2. 
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Hence prove that r(X. Y) = "In. . 
2 S·. Letf(x. y) = e-7 (1 :.;. e-%) ,0 < x < y ; 0 < y < ~ 

= e-% (1 - e-7) • 0 < -Y' < x ; 0 < x < 00 

(a) Show thatj{i. y) is a p.d.f. 
(b) Find marginal distributions of X and ·Y. 

(c) Find E(YIX = x) for x> O. 
(d) Find P (X S 2, Y S 2). 
(e) Find ~e correlation coefficient reX. Y). 
if> Find another joint p.d.f. having the same marginals. 

Ans. (b) 11(x) = xe-% ,0 < x < 00 ;12(Y) = yc' ,0 < y < 00. 

(c) E(YIX)~I~e"[X-l]+~(~'+xe%+e-%-I) 

(d) 1 -' ~ - ~; (e) rex. y) - <;o~ (XI y) - {il {2'= -21 
~ C:' c:- (1% (1, 2 2 

(j) Hint. I(x. y, a) =/.(x)/2(Y) [1 + a (2F(x}-I) (2F(y) -'1)] . 
I a J < I, has the same margiiJals/.(x) andl2(Y). 

26. Obtain regressi9n equatiPD of Y 9D X for the distributions : 
9 1 + x + y _ .J • 

(a) j{x.y) =~:(1 +'X)4(1 :l-y)4 ;x.y. ~o 

(b) f(x. y) =; (x + ~y)e-%-2' ; x! Y ~ 0 

[~Patellmi.,. M.Sc., 1992] 

Ans. (a) Hint. See Example 5·25, page 5·55, (b);x ++ 3~ . 
27. A ball is drawn at random from an \lrD containing 'three white balls 

numbered O. I, 2 ; two red balls numbered 0, 1 and one black .hall numbered O. 
If the colours white, red and black are again numbered 0, 1 and.2 respectively. 
find the correlation coeffICient between the variatesX. the coloufnumber and Y 
the number of the ball. W~te down the equation of regression line of f on X. 

,[Calcutta U"iu. B.Sc. (MGtIu. 'Hon.&), 1986] 

OBJECTIVE TYPE QUESTI,ONS 

I. State, giving reasons, whether each of the following statements is true or 
false. 

(i) Both regression !ines of Y on X and of X on Y do not'inter!IeCt at 
all. 

(iJ) In a bi~ariate regression, brx = t, bxr = 10 
(iii) The regression coefficient of Y on X 1s. 3·2; and that of X on Y is 

0·8. 
(iv) Th~'is no relationship between 'iOrretapon coefficient and regression 

coefficient. 
(v) Both the regression coefficients can~t exceed unity. 

prakash
Rectangle
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(VI) The greater the value of 'r', the better are the estimates obtained 
through regression an8Iysis. 

(vii) If X and Yare negatively correlated variables, and (0, 0) is on the 
least sq~s line of Y on X, and if X = 1 is, the obser\red value then 
predicted value of Y must be. negative. 

(viiI) Let the correlation between X and Y be perfect and positive. 
Suppose the points (3, 5) and (1,4) are on the regression lines, With 
this knowledge it is possible to detennine the least squares line 

lexactIy. . 

(~) If the lines of re~ssion are Y. = i X and X = ~ Y + I, then p = ~ and 
E(X I Y = 0) = 1. 

(X) Ina bivaria~ distribution, brx = 2·8 and bxy = 0·3. 
p. Fill in t..'te· blanks : 

(l) The regression analysis measures ••• between X and Y. 
(iI) Lines of regressiol! are ... if rxr = 0 and they are ... if rxr = ± 1. 

(iil) If the regression coefficients of X on Y and Y on X are - 04 and 
- 0·9 respectively then the correlation coefficient between X and Y 
is ... 

(iv) If the two regression lines are X + 3Y -5 = 0 and 4X + 3Y - 8 = 0, 
then the correlation coefficient between X and r is ... 

(v) leone of the 'regression coefficients is ... unity, the other must,be ... 
unity. ' 

(VI) The farther the two regression lines cut each other, th~ ... will. be the 
degree of correlation. 

(viI) When one regression coefficient is positive, the other would be ..• 
(viii) 'The sign 9f regression coefficient is ••• as that of cOrrelation 

coefficienL 
(ix) Correlation coefficient is the, ... between regression coefficients. 
'(x) Arithmetic m~ of re~sion'<roefficien~ is '" correlalion'coeffi­

. cienL 
(.u) When the correlation coefficient is :zero, ,the. two ~gression lines are 

•. ~ and when it is ± I, then the regression lines are ... 
m. Indicate'tIie correct answer : 

(i)' The regression line of Y on X (a) minimi~s total of the squares of 
'horizontal deviations. (b) total of the squares' of tht( vertical 
devialions, (c) both vertical and horiZontal deviations, {d) none 'of 
these. 

(ii) The regression coefficients. ~e b2 and hi, Then the correlation 
. coefficient r is (a) bl/b,., (b) b;/bh (c) bib,. (d) ± V tJi b2 ' 

-'(iil) "Qte f8Jlber the two re~ion lines cut each other (a) tIle greater will 
be the degree of correlation, (b) the lesser will be the degree of 
correlation, (c) does DOt matter. 
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(iv) If one regression coefficient i~ greater than unity, then 'the other must 
be (a) greater than the first one, (b) equal to unity, (c) less than 
unity; (d) equal to'zero:' 'J' • 

(v) When the correlation coefficient r = ±1, then. the two regression lines 
(a) are perpendicular to each- other; (b) coincide, (c) an( parallel to 
each· other, (if) do not exist. .; , 

·(vl) The ·two lines of r~gress~on are given as x + 2Y ..:. 5 ;:: 0 and 
;2X + 3Y = 8. Then ·the mean values of X and Y'respeCtively are (a) 
2, 1, (b) 1,2, (c) 2,,5, (tf) 2, 3. ' -

(vii)' The tangeqt of the angle between, two regression lines is given as 0·6 
and the s.d. of Y is known to be twice that of X. 'fheQ:'the value of 

cOJelation coefficient' betw~n X andY is (a) -~, (b) ~, (c) 0·7, 
(if) 0.3. r· " , • 

IV. Ox and Oy are the standard deviations of tWQ coriehitea:-variables X an 
Y respectively in a large sample, ·and r is the samp1e correlation 
coefficient . 

(I) State the "Standard Error of Estimate" for linear-regression of Y on 
X. II 

(if) What is the standard error in,estimating Y from X 'if r = O? 
(iii) By how -much is this error reduced if r is iriJreased to 0.30? 
(iv) How large must r be in·orde~ to redure this standard error' to one-half 

its value for r =:; 0 ? ' 
(v) Give your interpretations for the cases r = 0 and, = 1. 

V. pxplain why V{e have two lines of regression. ' ~. 
~ 1 I 

1,0-8. 'Correlation Ratio. As discused earlier, when variables are 
linearly rel!!ted, we have the regression lin~ of one variable on ~other variable 
and 'correlation coefficient can be 'computed to ten. us about the extent of 
association between them. However, 'if the varlabies are not Iinearlyrelated but 
some so;l of curvilinear relationship'exists between them, the use of r which is 
a measure of the degree to which the relation approaches a stpighf line "law" 
will be misleading. We might come across bivariate'distributions_ where r may 
be very low or even, zero but the'regression may ~be strong, or even perfect. 
Corr~lation ratio '1)' is the appropriate measure of curvilinear 'reI3tj.9,nship 
between the tWQ variables. Just as r measures the con~ntration of points about 
the 'strhl,gl\t line orbest {it, 11 measures the concel1tration of ,po!nts about the 
curve of best fit. If regression is linear 11. =..r, otherwise'l1 > r (f f. Remark 2" 
§ 10·8·1). 

10·S·I! M~sun~ of Correlation _Ratio. In the prev10us, ~cles we 
have aSsum,oo that there is a single obS«rved'value Y ~rresponding to the given 
value Xi of X but sometimes there ate more than one suell' v81ue of Y. 
, " Stippose-correspo~ding to the values Xi' (i = 1,2, ..... m) o( th(variable X, 
tIle variable Y,takes 'the 'values Yij with respective frequeh~ies hj' j ~~1, 2, ... , n. 

Though all the x's in the ith vertieal array have the same"vatue~ the y's are 
different. A typical pair of values in the ith array is (Xj, Yij), with frequericy hj. 
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1bus the first suffix i indicates the vertical array while the second suffix j 
indicates the- positions of y in that array. Let 

If Y i and i denote the means of the. ith array and the 9veIflll ,mean 
respectively. then • 

I,.I,.fij Y ij I,.n i Yi T 
1. = I hk = 'I. ni = Ii .., . 

j I J I 

In other words y is· the weighted mean of all the array mean~. the weights 
being the array frequencies. 

Def. The correlation ratio of Yon X. usually denoted by 1lrx is given by, 

__ 2 - 1 C1e1-. (1021) 1'\YX -. - C1il ••. . 

where C1ey2 and C1y2 are given by 

C1 2 =). I I.1i- (y .. - Y·)2' and C11- = 1. I Ii, .. (y .. _ y)2 
eY N i j I, I, I N i j I, I, 

A c011.venient expression' for 1)rx can be obtained in terms of stalldard 
deviation C1mr of the means of the vertical arrays, each mean being weighted by 
the array frequency. 

We have 
.. 

= ~ ");./;j Qij -. y;'r + "f.,'I,./;j ( Yi '-Y )2 + 2~ I,.fij (Yij - Yi) (y'i -.y) 
, I } ,.' I } , I ! ' 

The term.=2["f.,( Yi -~y) {");./;j -(Y;j ~ y;)l1 'vanishes since I,./;j (yij - Yi) = 0, 
I } 

being the algebraic sum of the deviations from mean. 

=> 

=> 

I if .• I 

N C1il = I,. I,./;j (jjj - Yi)2 + I,. ni(Yi - y)2 • 
I ) I 

.N ,C1,y2 = NC1eil +cNC1 2 => C1 2 = C1 2 +'C1 2 . "'y, y .y ".y . 
, . '2 

1 C1.l _ d".y 
-C1 2 -C1 2, 

y y .' 
which'on ComparisOn with (l0.21(gives 

C1 2, I nj(J; - y)2 
".y i '!1rx2= --.=...,.,....:...-----

C1l "f., "f.,f;j (Yij :., )2'-
I ) . 

... (10·2~) 
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We have 

Na 'l = I. n· (Y. - y )'l= !liijl-Ny.= I. Tr - 12 
Illy j" j' jn; N 

a formuia. much more convenient for computational purpoSes. 
Remarks 1. (10·21) implies .that 

(1,,'; = d'; (1 -fl~) 
Since a,,'; and a'; are non-negative; we h3v~ 

... (10·23) 

J 1 - flyx2 ~O => flyx2 ~n => I flyx lSI 
2. Sinc~the sum of squares of deviations in any array is minimum when 

measured from its mean. we have 

"i;. "i;./;j (y;j - Yi)2 So "i;. "i;.fij (Yij - Y jj)2 ••• (*) 
, J . , J 

where Yij is the estimate of Yij for. given value of X = Xi • say. as given by the 
line of ~yression of Yon X i.e.. % = a + bXi. (j = 1.2 •...• n). 

But ~ ~jjj (Yij - y;)2 = Na;'; = Na? (-1-,,~) 
, ! 

~ "i;. "i;./;j ~(yij - a - bXi)2 = Na'; ({- r2) (cf. § 10·7-6) 

:. (*) => 
i.e .• 

, J 

1 -flyx2 S 1 _r2 

fI~ ~ r:2 ~ I flrx I ~ I r I 
Thus the absolute value of the correlation ratio can never be less thwUlte 

absolute of r. the correlation coefficient. ., 
When,. tJte regJ.:ession of Y on X is Iin~. straight line of means of arrays 

coincides with the line of regression and flyx2 = r2. Thus flyx2 - r2 is the 
departure of regression from linearity. It is also clear (from Remark 1) that the 
more nearly fI~ approaches unity. the smaller is a,,'; and. thetefore. closer are 
the points to the curve of means of vertical artay~. 

When flrx2 = 1. a,,'; = 0 ~ I. f.hj (Yij"" Y/)2 = 0 . 

~ Yij. = Yi • 'V j = J. 2 •...• n. i.e.. all the points lie on the curve of 
means. This implies that. there is a functional relationship between X and Y. 
fin is. therefore. the measure of the degree to which the association between the 
variables approaches a functional-relationship of the form Y = F(X). where 
F(X) is a s~le valued function of X. [F(X) = a + bX). 

3. [t is worth noting that the value of fI YX is not independent of the 
classification of the data. As the class interVals become narrower llrx approaches 
unity. since in that case 0:".'; gets nearer to a';. If the grouping is so fine that 
only one item appears in each row (related to each x-class). that item will 
constitute the mean of that column and thus in this case a",'; and a'; become 
eqqal so that fI~ = 1. On the other hand. a very coarse grouping tendS to make 
the value ·of flrx approach r. "Student" has given a formula for ·the correction' 
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to be made in the correlation ratio 'Cor grouping' in Biometrika (Vol IX page 
316-320.) . 

4. It can be easily proved that TI~ is indeperluent of change of origin and 
scale of measurements. 

S. TI.xyl, the second correlation ratio of X on Y depends upon the scatter of 
observations about the line of column meaJ'ls. 

6. rxr and rrx are same but Tlrx is, in general, different from Tlxr. 
7. In tenns of expectation, corrclation ratio is defined as follows: 

= Ex [E(YIX) -E(Y)]2 _E[E(YIX) -E(D]2. 
Tlrx2 E[Y-E(Y)]Z - (11--

Tlx1- = Ey [E (X I D - E(X)]2 _ E[E(X I D - E(X)]2 
E[X - E(X)]2 - (1~ 

8. We give below some diagrams, exllibiting the relationship betw~en r 
and Tlrx· 

(i) For completely random scattering of the dots with no trend, both r IlIl4 TI 
are zero. 

y 

x 

r :0.'1 : It =0 
YX ")tY 

(ii) If dots lie precisely on a line, r = 1 and TI = 1. 
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(iii) If dots lie on a curve, such .that no ordinate cuts i~ more than ~>nce, 
Tbx = 1 andif fuithennore, the dots are symmetrically placed about Y-axis, then 
llXY = 0, r = O. 

y • 

... x 

(iv) IfTlrx > r, the dots are scattered around a definitely curved trend line. 

y 

x 

EXERCISE IO(e) 

I. (a) Define correlation coe{fici~nt and correlation ratio. When is'!he latter 
a more suitable measure of correlation than tne former ? Show that the 
correlation' ratio is never less than the correlatic.n coefficient. What do you infer 
if the two are equal? Further, show that none of these can exceed one. 

r.LkUii .... iv. I1Sc. (Stat. Bon •• ), 1988] 

2 2 
(b) Show that 1 ~ TlYX ~ rrx ~ 0 
Interpret each of the following stateIPents. 
(i) r = 0, (il) r2 = 1, (iil) Tl2 = 1, (i.v) Tl2 = r2 and (v) TI = 0 
(c) When the correlation cOefficient is equal to unity, show.that the two 

correlation ratios are also equal to unity. Is the converse true? 
(d) Define correlation ratio Tlxr and prove that 
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• . . 1 ~ Tl 2XY ~ r2, . 
where r is the coefficient of correlation betw.een X and Y: S11o,," further that 
('16Y - r2) is a measure of non-linearity of regression. 

2. For the joint p.d.f. . 

fllld: 
(I) 

(if) 
(iii) 

(iv) 

f(x.y) =~x3exp [-x(y+ l)];y;>O,x>O 
\, = 0 ,. f otherwise, 

Two lines of regression. 
The regression curves for the means. 
reX. Y). 

2 2 
Tlrx and Tlxr . 

[Delhi Univ. BoA. (Stat. Bon .. Spl. Course) .. 1987] 
1 2 10 

Ans. (I) y=-6 x +! x=-3Y +"3 

"(if) y = E (f.lIx):,1 x = E(X Iy) =-4-
x 1 + Y 

(iii), r(X.,Y) !f,-i· (iv) flh =}, Tl 2XY R k 
3. CoqtP,u~ rQf, Y) and Tlrx f9r tJte following data : 

x: 0,5 - 1·5 1·5 - 2·5 2·5 - 3·5 3·5 - 4·5 4·5 - 5·5 
t : J 20 30 ' 35 2S ,:5 
-
Yi' ': 11·3 12'7 14·1 16·5 }.9.·1 

Var (Y) = 9·61 
Ans. "'yx'~'O.77, r ='0'·85 ... . 

table: 4. Compute'TlXY for 'the followin 
•• J • .. . 

.,. X 
47 52 57 62 67 

Y 

57 4 4 2 
62 4 8 8 1 
67 7 12 1 4 
72 3 1 8 5 
77 3 5 6 

10·9. Intra-class Correlation. Intra-cl~s.s correlation means within 
class correlation. It is distinguishable from proouct moment correlation in as 
mtfch as here both the variables measure the same characteristics. Sometimes 
specially,in biological and agricultural study, it is of interest to know 'how the 
members of a family or group are correlated among themselves with respect to 
some one of their common characteristic. For example', we may require the 
correlation between the height~ of brothers of a family or between yields of 
prots of an cxperim-,ntal block. In such cases both the variables measure the 
same characteristic, e.g.. height and height or weight and weight. There is 
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nothing ~ distinguish one from the other so that one may be treated as X­
variable and the other as the Y-variable. 

Suppose we have Ah A 2, ••• , A .. families with kh "2, ... , k .. members, 
each of which may be represented as 

Xll X21 .•..... : .•...•... Xii ..••••..••••.•.•• X"l 

! 
! 
! 
! 
: 
; 

I : 
Xlj X'1J ................. X;j ................. XIIj 

Xl.tt X2lz ..•..••..•••..• :. Xik; ................. x...t .. 
and let xij (i = 1,2, ... , n1 j = 1,2, ... , k;) denote tht( measureillent on the jth 
member in the ith family. 

We shall have k;(k; - I) pairs for"the iib family or group'like (x;j' Xii), 

" j ~ I. There will be L k; (k; - i) = N pairs for all the n lamitieS or groups. If 
; .• '1 

we prepare a correlation table there will be k; (k; - I) entries for the ith group or 
family and L k; (k; - I) = N entries for all the n families or groups. The table is 

i 
symmetrical about the principal diagonal. Such a table is called an intra-class 
correlation table and the correlation is called intra-class correlation. 

~ . 
In the bivariate table Xii occurs (k; - I)'times, x.'loccurs (k; - I) times, "" 

X;k' occurs (ki -: I) times, i.e .• from the ith family we have (k; -1) LX;j and 
• I • j 

hence for all the n families we have ~ (ki - I) l:%ij as the marginal; frequency, , 
the table being symmetrical about principal diagonal. 

.. i = Y 7' ~ [r (k; - 1) f;i] 
Similarly, 

CJJt- = CJyZ=! [¥k; -1) lj(Xij - i) 2.]­
FUrther 

C-ov (X. ~ =! r L~, (Xij - ~)(Xil -,x )} j ~ I 

== k L . I. I. . (Xii - X ) (Xii - X ) ..... L: (Xii - i )2 
~[k; k; ~;] 

i J-l '.1 J-l 
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£f we write X; = ~ X;/ kit then 
J 

k k 

L [:f :f (xij - x) (Xii - X)] 
; j = I 1= I 

= L [L (x·· -x) L (X,,-X)] 
;. _ j IJ I 1 

Therefore intra-class correlation coefficient is given by 
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~ k .. ? (x; - x)2 - L L (xij - x)2 
reX. y) = ~cov (X. Y) = 1 ; j ... (10.24) 

VeX) V (Y) ~ ~ (k; - I) (x;j - i")2 
1 J 

If we put k; = k. i.e .• if all families have equal members then 

k2 L(X; _;")2 - L L (x·- - xp 
; ; J' IJ 

r =--------~----
(k - I) ~ ~ (Xij'- x)2 

1 J 

_ m ___ "'_1 Ilk2 cr 2 - nkcr2 I {k cr 2 } 

- (k -1) nkcr 2 -(k - I) cr2 -
... (l0·24a) 

where cr2 denotes the variance of X and crm2 the variance of means of families. 

Limits. We have from (1O·24a) • 

. " kcrm2 
1 + (k - J) r = -2- ~ 0 

cr => .,. ~ - (k - I) 

Also 
. cr",2 

1 + (k - I) r ~ k. as the ratio crT ~ 1 => r ~ I 

so that ) < < ) 
(k _ I) - r_ 

Interpretation. Intraclass correlation cannot be less than ......, I/(k - I), 
though .. it may attain the value + I on the positive side. so ... that it is a skew 
coefl1cient and a negative value has not the same significance as a departure from 
independence as.an equivalent positive value. 

EXERCISE iO (f) 

1. If X,, X2, ... , Xk be k variates with standard deviation cr and 111 be a .. ny 
number. prove that 

k k ~ 

k2cr2=(k-1) L (x,-m)2: L L (x,-m) (x,,-m),r:t:s 
,=1 ,=1'.\'=1 

Hence deduce that the coefficient of intraclass correlation for 1/ families with 
varying number of members in eaeh family is 
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I. kiar 
1 _ i 

a2I. ki(ki - I) 
j 

where ki' a; denote the number of members and the variance respectively in the 
itn family and a 2 is the general variance. 

(jiven n::: 5, aj = i. kj = i + 1 (i ~ 5), find the least possible intraclass 
correlation coefficient 

2. What do you understand by intra-class correlation coefficient 
Calculate it'! value for the following data·: 

Family No. Height of brothers 

1 / 60 62 63 65 
2 59 60 61 62 
3 62 62 64 63 
4 65 66 65 66 
5 66 67 67 69 

3. In four families each containing eight persons, the chest measurements 
of persons are given below. Calculate the intraclass correlation co-efficient 

F,:mily 1 2 3 4 5 6 7 8 
I 43 46 48 42 50 45 45 49 
IT 33 34 37 39 82 35 37 41 
ill 56 52 50 51 54 52 39 52 
IV 34 37 38 40 40 41 44 44 

10·10. Bivariate Normal Distribution.,. The bivariate normal 
distribution is a generalization of a normal distribution for a single variate. Let 
X and Y be two normally correlated variables with correlation coefficient p and 
E(X) = Illo Var (X) = a12 ; E(Y) = 1l2' Var (y) = a22• In_deriving the bivariate 
normal.distribution we m~e the following three assumptions. 

(i) The regression of Y on X is linear. Since the mean of each array is on 
the line of regression Y = p(az!al)X, the mean or expected value of Y is 
p(az/al)X' for different values of X. 

. (ii) The arrays are homoscedastic. i.e .• variance in each array is same. The 
common variance of estimate of Y in each array is then given byai (1- p2), 
P being the correlation coefficient between variables X and Yand is independent 
ofX. 

(iiI) The distribution of Y in different arrays in normal. Suppose that one 
of the variates, say X, is dist{iputed normally with mean 0 and standard 
deviation al so that the probability that a randorr. valu~f X will fall in the 
small int.erval dx is 

g(x) dx= k. exp (-X2/2alZ) dx 
al (2n) . 

The probability that. a value of Y, taken at random in an assigned vertical 
array will fall in the interval dy is 
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h (y I x) dy = '..J 1 . exp {- 2 2(: 2) (y - P X ~12Y} 
G2 2n (I _ p2,) G2 - P ) 

1M joint probability differential of X and Y is given by 
dP (X. y) = g(x)h(y I x)dxdy 

..5 

1 {(.t-fAIf (.t.:itJ)(Y-~ + (y-~} - -- -- - 2p -'--:....:.:....::--'-'''-
_ 1 e 2(1- pl) 0.1 o.~ ~1, 
- 27tGIG2..J (1 _ p2) . • 

, (- 00 < x < 00. - 00 < y < 00) ••• (10·25) 
where Ill> 1l2. GI (>0), G2 (>0) and p (-1 < P < 1) are the five parameters of the 
distribution. 

NORMAL CORIELA nON SURFACE 

This is the density function of a bivariate· normal distribution. The variables 
X and Yare said to be normally correlated and the surface z = f(x. y) is known as 
the normal correlation sUrface. The nature of the normal correlation surface is 
indicatt'.d in the above diagram 

Remarks 1. The vector (X. Y)' following the joi.{ll q.dJ. f(X. y) as given 
in (10·25). will be abbreviated as (X. Y) - N U11. J.l.z. (fi. CJ2. p) or BVN U11. 1l2. z Z " 
(fit 0z • p). If in particular III = Ilz = 0 and (fl = 0z = 1 then 

(X. Y) - N (0.0, I, I, p) or BVN (0. O. 1,1. p). . . 
2. The curve z = l(x., y) which is the equation of a surf~ce in three 

dimensions, is called the 'Norma' Correlation SUrface'. 
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10·10·1. Moment Generating Function of Bivariate Normal 
Distribution. Let (X. Y) - BVN (JJ.lt 1l2. <1~,.<1~, 1'). By def., 

Mxy (tto t~ =E [etlX + t2Y ] =I_: f_: exp (tlX + t1Y).f(x.y) dxdy 

x - III Y - 112 Put -- = u, --= v, - 00 < (u. v) < 00 

<11' <12 
i.e.. x =<1lu+llloY=<12v+J.12 ~ IJI=<11<12 

, exp (tllli + t2ll2) 
'''~x, y (tt. t~ = 21t...f 1 _ 1'2 

X If exp [t1<1 1U + t2<12V - 2(1 ~ 1'2) {u 2-7puv + v2 } Jdudv 
uv 

_ exp (tllli + t21l2) 

- 21t...f 1 _ 1'2' 

x f fexp [ 2(1 ~p2) {(u2-2puv + v2) -2(1- ~2)(tl<1lU +t2<12v) } J dudv 
u.v 

We have 
(u2 - 2puv + v2) - 2(1 - 1'2) (tl(11 u + t2<12V) 

= [(u - pv) - (1 - p2)tl<11)2 

+ (1- 1'2) { (v - ptl<1l - t2<1i)2 - tllcrj2 - t22 <1l - 2pI112<11<12} .,(*) 
By taking 

u - pv - (1 - 1'2) tl<1l = 00(1 - p2)1/:l} ...... 
~ dudv=Vl-p2 dwdz 

and v-ptl<11-t2<12=z 

and using (*), we get 

Mx. y(tto tv = exp[tllli + t:1J.l2 + i(tl2012 +tl'(J,)?+ 2ptlt2<1l<1i)] 

= exp [tllll 4- t2ll2 + i (t12<11 2 + tl<12Z + 2ptlt2<1l<1i1] ... (10·26) 

In particular if (X. Y) - BVN (0, 0, I, I, 1'), then 

Mx. y (tto ti) = exp [k(t12 + t22 + 2ptlti)l ... (10·26/1) 

Theorem 10'5. Let (X. Y) - BVN (Illt 1l2' <11 2, <122, 1'). Then X and Y 
are indepenilent if and only if p = O. 

Proof. (a) If (X. Y) - BVN (JJ.1o 1l2' <112, <122, 1') and I' = 0, then X and Y 
are independent [ef. Remark 2(a) to Theorem 10·2, page 10.5J. 

Aliter. (X. Y) - BVN (JJ.t. 1l2' <112, <122, 1') 
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., Mx. Y (tit t~ = exp (tllli + t2J12 + ~ (tll<JIl + 2ptl t2<JI<J2 + t~2cr22)} 
If P = 0, then 

. { Ill} { .12l} MX,y(tl,ti) = exp tllll+2"tl<JI .exp tlJ.1z+2"tl<J2 

J = MX(tl)' My (tz). ...(*) 

[.: If (X. Y) - BVN (J.11t 1l2' <JIl , <Jll , p), then the marginal p.dJ.'s of 
X and Y are normal i.e .• X - N (Ilit <JIl) and Y - N (J.1~, <Jll)]. 

(*)::) X and Yare independent' 
(b) Conversely if X and Yare independent, then p = 0 [c:f. Theorem 10·2] 
Theorem 10·6. (X. Y) possesses a bivariate normal distribution if and 

only if every linear combination,of X and Y viz .• aX + bY. a :;f: O. b :;f: O. is a 
normal variate. 

Proof. '(a) Let (X. Y) - BVN Uti' 1l2' <J12, <J2Z, p), then we shall prove 
that aX + bY, a:;f: O,'b :;f: 0 is a normal variate. 

Since (X. Y) bas a bivariate normai distribution, we have' 

Mx,y (tit t~ = E (et.x + tzY) 

= et,l!, + t2ll2 + ;(t,2o,2 + 2pt,~ (J,o, + t2'g~Z) ... (*) 

Then m.gJ. of Z = aX + bY, is given by: 
Mz(t) = E(etZ) = E (e'(aX + bn ) = E (eDtX + btY) 

t2 
== exp (t(alll + bJ.12) + 2 (a2cr12 + 2paOOl<J2 + blcrl)} , 

[Taking tl = at, t2 = bl in (* )] 

which is the 11).g.f. of normal distribution with paquneters 
Il = alll +-412; <Jl = a2<J12 + 2pabcrl<J2 + b2cr22. . .. (**) 

Hence by uniqueness theorem of m.g.f;, 
Z = aX + bY - N{J.1, <J2), 

where Il and <J2 are given in (**). 
(b) Conversely. let Z = aX + bY, a ':;f: 0, b :;f: 0 be alnormal variate. Then 

we have to prove that (X. Y) has a bivariate,nonnal distribution, 
Let Z = aX + bY - N(Il, <J2), 
where Il = EZ = E (aX + bY) = aJ.1z + bJ..L, 
3ld <J2 = Var Z = Var (aX :.. bY) = a2cr,.? + 2abp<J,,<J, + *l 

Mz{t) = exp [1J.1 + 12cr2/2] 

= exp [t(all" + bJ..l.,) + ~ (a2cri + 2abp<J:xf1, + b2cr/)] 

I 
= exp [till" + t2J..l, + l(tl2cri + 2P~1 t2<JP, + tl2<J/)] ... (***) 

where tl = at and t2:;: bt. 
But (**~) is the m.gJ. of BVN distribution with parameters (Il", Il" <J,,2. 

oi, p). Hence by uniqueness tfleorem of m.g.f. 
, .. 
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(X. Y) - BVN (JJ.x,lly, ax", aI, p) 
10·10·2. Marginal Distribution or Bivariate Normal. Distribution. 

The marginal distribution of randoqt variable X is given by 

Ix(x) = J_:/xy (x. y) dy 

y - Il" -- = u, then dy = a" duo Therefore, 
a" 

Pl\t 

1 
Ix<J) =--~== 

21tala"..J (1 - p,,) 

1 [ 1 (~r.] = exp --
21tal " (1 - p") 2 al 

.J 00 [ 1 { (X - IlI)~"] X -00 exp - 2(1 _ p2) u - P ~ ~ du 

Put 1 [u _ p (X - III )~ = t. tl;1en du =..J (1-:... p2) dt 
" (1 - p2) al U 

2 . [ I (X-IlI)2]JOO (t2). Ix(x) = 21tc;JI . exp - 2 ~ -oc exp - 2' dt 

=_1 exp [ _ L (~)2], 
al V2it 2 al 

... 00·27) 

Similarly, we shall get 

1r<Y) = J_:lxr<x, y) dx 

= a2'& exp [ - ~ e ~1l2)] (10·270) 

Hence X - ']Ii (JJ.I, a~2) and Y - N (JJ.2, (22) ... (1O.27b) 

Remark. We have proved that if (X. Y) - B'lN (JJ. .. Il", al 2, a,,2, p), 
then the marginal p.d.f.'s of X and Y are also normal:However, the converse 
is not true, i.e., we may have joint p.d.f. I (X. Y) of (X, Y) which is not 
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normal but the marginal p.dL's may still be normai as discussed in the 
following illustration. 

Consider the joint distribution of X and Y given by : 

f(x, y) =-i[21t (1 ~ pZ)l/Z exp h(I-~ pZ) (xz - 2pxy + yZ) } 

+ 21t(1 ~ pZ)llZ exp{ ~ 2(1 ~.pZ) (xZ + 2pxy + yl) }] 

=~ [fl(X, y) + fz (x, y)] ; - 00 (x, y) < 00 ••• (I~.27cJ 

wherefl(x, y) is the p.d.f. of BVN (0,0,1, I, p) distribution andfz(x, y) is the 
p.d.(. of BVN (0, 0, 1, 1, - p) distribution. 

It can be easily verified that f(x, y) is the joint p.d.f. of (X, y) and 
obviously f(x, y) is not the p.d.f. of bivariate normal dis~bution. 

Marginal distribution of X in (10·27c) 

fx(x)=&[ f_~fl(X,Y)dY+ f_~fz(X,Y)dY] 
But r:f.(x"Y) dy is the marginal p.d.f. of. X, where 

(X, y) - BVN (0, 0, 1, 1, p) and is given by X - N(O, 1). 

Similarly f_:fz (x, y) dy is the marginal p.d.f. of X, where 

(X, y) - B"vN (0,0,1, I, - p) and is given by X - N (0,1). 

= _ ~ e-x'-/2 ; _ 00 < x < 00 

v21t 
- ... (l) 

~ X - N(O, 1) i.e., the marginal distribution of X ... (10·27c) is normal. 
Similarly, we can show that that the marginal p.d.f. of Y ill' (10·i7c) is 

given by: 

fy(y) =![ __ I_ e,:,,,o/2 + _1_ e-"o/2] 
2 ili ili 

= I e-r/2; _ 00 < y < 00 

-~21t 
Y - N(O, 1). 

... (iO 

Hence if the marginal distributions of X and Yare normal (Gaussian),)1-
does not necessarily imply that the join{ distribution of (X, Y) is bivariate 
normal. 

For another illustration, see Question NU!llber 17, Exertise 10(1). 
We further note that for the joint p.dJ. (10·27c), on using_(l) and (il), }Ve.b.ave 

E(X) = 0, CIxz = 1 and E(y) = 0, CII = 1. 
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Cov (X. y) = E(Xy) - E(X) E(Y) = E(X'Y) 
(1x (1y 

=4 [[ [ .tY Ji(x. y) 4..;y + [[ .tY f,(x. y) <hdy 1 
=Hp+(-p)] =0. 

because. for fl(X. y), (x. Y) - BVN '(0, 0, I, l"p) and for fz (x. y). 
(X; Y) - BVN (0,0, I, I, - pl . 

. .! Corr. ,(X, Y) =' Cov (X. y) = 0 
/ (1~y 

However, w~ have ;.[From (i) and (iz)] 

fi(x) .fy(y) = 2~ e- ! (x? + )12) '# f(x. y) 

=>. X and Yare not independent. 
The above example illustrates that we may' have a joint density (non­

Gaussian) of rv's (X. Y) in which the marginal p.d.f.'s of X and Yare normal 
and p(X. Y) = 0 and yet X and Y lP"e not independent. _ I 

1(HO·3: Conditional Distributions. Conditional distribution of X 
for a fixed Y,is given by 

fn (x. y) 
fXly(xly) = 1r<Y) 

,= ili (11 ~ (1- p2;exp[ - 2(~ ~ p2) {( X ~1 J 

1 

- (11ThV (l - p-2) 

x exp [ - -2(1- ~2)(112 {(X - ~l) - P :~ (y - ~i) YJ 
1 

- ili (11V (1- p2) 

x, exp L -2(1 _ ~2)(112 {x -01 + P ~ (y - ~2»)rJ 
~hich is the prQbabili,ty (un~ti~g of a unvarjJltp. nonn~ di~tribl;~ion with mean 
and variance given by 

E(X I Y = y.) = ~1 + p ~_<Y - ~2) ~d V(X I Y = y) ;:: (112 (1 - p2) 

Hence the-conditional distribution of X 'for fixed Y is given by ; 
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... (10·27d) 

Similarly the conditional distribution of random variables Y for a fixed X is , 
fxy (x. y) 

fylx~(ylx) = fx(x) 

1 

= Th (12..J (1 - p2) 

X exp [ - 2(1 _ ~2) (1zz {(Y - Ilz) - p ~ (x - Ill) }Z] , 

-OO<Y<OO 
Thus the conditional" distribution of Y for fixed X is given by 

[ (1z ] (Y IX =x) -N -Ilz + P (11 (x -Ill) ,(1z2 (1 - pZ) ... (10·27e) 

It is apparent from the above results that the array means are collinear, i.e .• 
the regression equations-are linear (invol\'ing linear functions of the independent 
variables) and the array variances are constant (i.e .• free fi0n:t independent 
variable). We express this by saying that the regression equations ofY on X and 
X on Yare linear and homoseedastie. 

For p = 0, the conditional variance V (Y I X) is equal to the marginal 
variance (122 and the conditional mean E(Y"I X) is equal to the marginal mean 
Ilz and the two variables become .independent, which is also apparent from joint 
distribution function. In between the two extremes when p = ± 1, the correlation 
coefficient p provides a measure of degree of association or interdependence 
between the two variables. 

Example 10·27. Show that for the bivariate normal distribution 

4P = eonst, up [- 2(1 ~ p2) (x2 - 2pxy + yZ)] dx dy. 

(l) M.G.F. is M(th tz} = exp.(!(t1z.+ 2PtltZ + tzZ)] 

(ii) Moments obey the recurrence relation. 
~.:::'(r+s-l) Pllr-1 .• t.. 1 + (r-l) (s-l) (1-pZ) Ilr-2..-2 

lienee or otherwise. show that 
Ilr.r = 0, ifr + sis odd.1l31 = 3p, 1122 = 1 +.2p2 

rbelhi U"i.,. 8.Bc. (Stat. H6M.), '1989] 
. Solution. (0 From the given probability function. we see that 

III = 0 = Ilz and (11 Z = 1 = (1zz . 
:. From.(10·26a). we get 

~ = M (tl • tz) = exp [~(t12 + 2PtitZ + tz2)] 

aM aM-
(ii) ~ = M(tl -+ ptl> and~ ~ = M (t2 + PI)) 

I1tl I1tz 
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iJlM 0 (oM) 0 
011012 = OIl 012 = 011 [M(/2 + P/1)] 

= Mp + (/2 + P/1) (II + p/~M 
02M oM oM 

011012 - p/l ~ - P/2 012 

= [Mp + (/2 + p/I)(/1 + p/~M -:: p/l (II + p/~M - P/2(/2 + P/I)MJ 
=M[/1/2 + P - p2/1/2l (On simplificalion) 

= Mp .... ,(1 - p2)M11/2 

iJlM oM oM 
011012 = p/l a,;-+ P/2 012 + Mp + M (1 - p2)/1/2 ••• (*) 

00 00 

But M = exp H(/12 + 2p/1/2 + 122)] = L L ~" . :1; ':', 
:. (*) gives 

,=Os=O 

00 00 

~ ~ li,-llrl 

£.j £.J J.lrs • (r - 1) , (s - 1) ! 
r=ls=1 

'[ Loo Loo 
.!l.!L Loo

, Loo 
,II' 12' = P r~,... " ,+ p sJ.l, ... -, -, r . s . r . S • 

r=ls=O ,=Os=1 
~ ~ ~ ~ 

L L 1{12"" 2 L L 11'+1/2'+1 ] + P J.l,... , , + (1 - P ) ~,.. • , , r. S • r . S • 

,=Os=O ,=Os=O 
. . I {-I 12'-1 . 

EquatlDg the coeffiCients of (r- Ij , . (s' _ 1) ! on both sld~, we get 

J.l1'S" = [p(r - 1) J.l,-I."...I + p(s - 1 )J.lr-I" -I- + p2J.lr_'1. ;:'1 
- + (1 - pZ)(r - 1 )(s - 1 )J.lr-2, ,-21 

~ J.In = (r + S - 1) PJ.l,-I. ,-I + (r - J)(s - 1 )(1 - p2)J.lr_2. ,-2 
In particuJar ' 

J.l31 = 3PJ.l2.0 + 0 =,3pGI2 = 3p (.,' GI2 = 1) 
J.l22 = 3PJ.ll.l + (1 - p~) ~,o = 3p2 + (1 - p2).l, 

= (1 + 2p2) (.,' J.lll = P(Ji~2 = p) 

Also ~3 = J.l30 = 0 
J.l12 = 2P~.1 + 0 = 0 ,(.,' ~r= J.lIO = 0) 
1123 =; 4P~h2 + 1·2 (1 - p2)J.lo'1 = 0 

Simi~ly, we will get J.l21 = 0, ~32 = 0 
If r + s is odd, so is (r - 1) + (5 -1), (r -'2),+ (s - 2), iIlld-so on. 

And since J.l30 = 0 = J.lo3, J.l12 = 0 = 'J.l21 , J.l23 = 0 = J.l32"" we finally get, 
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J.lrs = O. if r + s is 9dd. 
Example 10·28. Show thai if ~I and Xz are standard normal variates 

with correlation coefficient p between them. then the correlatif)n coefficient 
between XI Z ana Xzz is glven by pZ l 

Solution. Since XI and Xz. are two standard no-mal variates. we have 
) 

E(XI) = E(Xi) = 0 and V(XI) = E(XIZ) = 1 = V(Xi) = E(XzZ) 
Mx •• Xz (t .. ti) = exp n (tiZ + ~PtltZ + tz2)] [c.f. (10·26)] 

E(X1Z XzZ) - E(X)Z) 'E(XzZ) 
Now p(X)z.Xz2) = 

...J [£(X)4) - (E(X)Z)}2] -\ [E(XZ4) - (E(XzZ)}Z] 
, t z, t Z 

where E(X)zXzZ) = Coefficient of fr. ft in M(t .. ti) = (2pZ + 1) 

E(X)4) = Coefficient of ~ in M(t .. ti) = 3 

E(XZ4) = Coefficient of ~; in M(t). ti) = 3 

p(Xlz.XZZ) 2pz + 1 - 1 Z 
.. = ...J (3 .:. 1) ...J (3 - 1) = p 

Example 10·29. The variables X and Y with zero means and standard 
deviations (7) an4. <7z ar!.normally correlated with correlation coefficient p. Show 
that U and'V defined as 

U=X + I.. and V=X _I.. 
(7) (7z (7) <7z 

are independent normal variates with variances 2(1 + p) and 2(1 - p) 
respectively. 

Solution. We are giv~n that 

dF(x. y) = 21t(7)(7z ~ (1':' pZ) exp [-: 2(1 ~,pZ) {;;z - 2£~; + ~}~ 
-00 < (x. y)< 00 
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= ./. e"(p [- 4(1 1 2) { (1- p)u2+ (1 + p)v2 1] du dv 
21t. 2'1 (1 _.p2) _.p 

= 1 . exp [_ u2 _ v2 J du dv 21t..J2(1 _ p) ..J2(1 + p) 2(1 + p)2 2(1- p)2 . 

[ _ 1 {u2 ]] ~ .. = exp - , flU ili ..J 2(1 + p) . . 2(1 + p,)2 

x [~..J;(1- p)' exp {- 2(1 : P)1}] dv 

= [f\(u)du] lfz(v)dv]. (say) 

where f\(u) = 1 .exp { _ _ -"u;....2_} 
~..J2(1 + p) 2€1 + p)2 

f2(v) = lli ..J ~(1 _ p) . exp {- 2(1 ~ p )2} 

Hence.u and V are independently distributed. U as N [0,'2(1 + p)] and Vas 
N [0, 2 (1 - p)]. 

Aliter. Find joint ~.g.f. of U and V viz., 
M (tit ti) = E (e t\ U + t2V) = E [eX(t\ + ti)/o\ + Y(t\ - ti)/Ol ] 

and use E(et\X + t1Y.) = exp [(ti2012 + t22022 + 2pt t20"\0"i)12] 
Example lO·30./f X'and Yare standard normal variates with co-efficient 

of correlation p. show that 
(J) Regression of Y on X is IifJear. 

(il) X + Y and X - Yare independently distributed. 

( ":\ Q "X2 - 2pXY + y2 . d' 'b d I'u hi . ha if "" (1 _ p2) 1$ ,strl ute , a c -square, '.e., as t to 

the sum of the .squares of standard normal variates. 
(Madra Uni". B.E •• 1990) 

Solution. (i) c.f. § 10·10·3. 
(U) Let u = x + :y and v = x - Y 

dF (x, y) = ..J 1 . exp [- 2(1 ~ 2) (x2 - 2pxy + ]2)J dxdy 
21t 1 _ p2 P 

Now u+v u-v 
x =-2-'y =-2-
,. 

ax ax 1 1 
au av 2. 2 1 

J = Q1 Q1 = 1 1 =-2 
au av 2- 2 

dG(u •• ) = C exp [- 2(1 _ ~'> . 4 (2(u' + ~-2j1(';-"'» ] dudY 
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where C __ -;::1~~ 
4ft...) ~ :... ;'2 

:. dqu. V) = cexp [- 4(1 ~ p2~ {(1 - p)u2 + (1 + P)V2}]dudv 

=[C1 ex~- 4(1: p)r] x [C2 ex~- 4(1~ p)rJ 

= [g1(u)du] [giv)dv] , (say). 
Hence U and V are independently distributed. 

(ii,) MQ(t) = J _: J ~ e'Q dF(x. y) 

1 roo JOO = exp(tQ) 
2ft...J(1_p2)J- 00 --00 

10.95 

xexp[~ 2(1 ~p2) {X2 -2pxy + Y2}Jemty 

~oo Joo ( Q) = exp tQ - - dxdy 
2ft (1 - p2) -00 -00 2 

. = 1 r 00 J co exp,[- ~ (1 - 2t)]dxdy 
21t ...J (1 - p2) J - 00 - 00 

Put ...J (1- 2t) x = u and ...J (1 - 2t) y = v 
til dv 

.. dx= anddy= 
...J (1 - 2t) ...J (1 - 2t) 

_ 1 [ 2] _ 1 [u2 - 2puv + V2] 
Also Q - (1 _ p2) x2,... 2pxy + y - (1 _ p2) 1 _ 21 

.• MQ(t)... 1 
21t...J (1 - p2) (1 - 2t) 

x J _00
00 
J _: exp.[ - ,2(1 ~ p2) (u 2 - 2puv + v2 ) Jdu dv 

1 
= (1 _ 2t) • 1 = (1 - 2t)-1 
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which is the m.g.f. of chi-square (xZ) variare- wilh-n \=2) degrees of freedom. 
Example 10·31. Let X and Y be ".dependent standard normal variates. 

Obtain the m.gf. of XY. [Gauh"ati Uni~. M.Sc.,1992] 
Solution. We have. by definition: 

Mxr<t) = E(e rXY) = J _ 0000 J _: etxy .f(x. y) dxay 

Since X and Y are independent standard nonnal variates, their joint p.d.f. 
f(x. y) is given by : 

/ f(x. y) = fi(x) .fz(y) = 2~ e-r12 e-r12 ; - 00 < (x. y) < 00 

1 J 00 J 00 -! (XZ - 2txy + yZ) 
M Xy(t) = 2Jt e 2 dxdy 

-00 -00 

1 JooJoo 1 
= 2Jt -00 -00 exp [ - 2(1 - tZ) 

... ( .. ) 
al~ = azz = (1 _ tZ) and p = t, we get 

1 1 1 _ r::--;. 
Mxy(t) =-2 . 2Jt _~. r-=-' '41 - tZ 

Jt '4 1 - tZ "! 1 - tZ 

=> Mxr (~) ;: (1 - tZ)1!Z ; -1 < t < 1 

Example 10'32. Let X and Y have bivariate normal distribution with 
parameters: 

J.lx = 5. J.ly = 10. (jr = 1. (j'; = 25 and Corr (X. Y) = p. 
(a) If p > O,fmd p wheiiP (4 < Y-< 16 i X = 5) = 0·954 

\. _ [Delhi Univ. B.Sc. (Math. Hons.), 1993, '83] 

-Chi-square distribution is discussed in Chapter 13 
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(b) If P = o,Jind P (X + Y ~ 16). 
Solution. Since (X, y) - BVN (J.Lx, J.l.y, (Jx~, (JyZ, p), the conditional 

distribution of Y give~ X = x is also normal. 

(Y IX = x) - N [J.l. = J.ly + P(Jy (x - J.lx). (J2.., c? (1 _ p2)] 
) (Jx 

. . (Y I X = 5) - N [J.l = 10 + P x f (5 - 5), (J2 = 25 (1 - p2)] • 

We want p so that 
= N [J.l = 10, (Jz = 25(1 - p2)] 

P(4 < Y < r61X = 5) = 0·954 

where Z =J:...=..M..= Y - 10 - N (0, I) 
(J 5 '" (1 _ pZ) 

:::> P (4 ~ 10 < t < 16 -(JIO) =0.954 

:::> P (-(J 6 < Z < 2a) = 0·954 ... (*) 

But we know that if Z - N (0, I), then 
P (-2 < Z < 2) = 0·954 .... (*"') 

Comparing ("') and (""" ), we gel 

~ = 2 => (J = 3 => (J2 = 9 = 25 (1 _ p2) 

2 ,9 2 16 4 1 - P = - => P = - => P = - = 0·8 2S . 2S S 

(b) Since (X. Y) have bivariate normal distribution, 

Hence 

where 

p = 0 => X and Yare independent rv's 
X - N(J.lx ,(J~) and Y - N(J.l.y , (Jy2) 

X + Y - N (J.L = J.lx + J.ly, (Jz == (Jxz + (Jy2) = N (15, 26) 

P (X + Y S 16) = P (z S 16ju15) 

2 = (X + Y) - J.l. _ N (0, I). 
(J 

(·.'p>O) 

P(X+YSI6)=P(Z s _~')=fl>(lrI26), 
V 26/ 

where <I>(z) = P (Z S z), is the distribution functi.on of standard normal vilriale. 

Remark. P(X + Y S 16) =p(ZS 5.~9J=P(ZS_0'196) 
= 0·5 + P (0 SZ S 0·196) 
= 0·5 + 0·0793 (approx.) 
= 0·5793. 
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EXERCISE 10(f) 

1. (0) Define conditional and marginal distributions. If X and Y follow 
bivariate normal distribution, find (i) the conditional distri_bution of X given y 
and (;,) the margin~ distribution of X. Show that the conditional mean of X is 
dependent on the given Y, but ~e conditional variance is independent of it. 

(b) Derme Bivariate Normal distQbution. If (X. Y) has a bivaria~ normal 
distribution, find the marginal density function/x(x) of X. 

[Delhi Univ. B.Sc. (Maim. Hom.), 1988) 

2. ~G) The marks X and Y scored by candidates in an examination in two 
subj~ts Mathematics and Statistics are known to follow a bivariate nonnal 
distribution. The mean of X is 52 and its standard deviation is IS, while Y has 
mean 48 and standard deviation 13. Also the ~oefficient of correlation between X 
and Y is 0·6. 

Write down the joint distribution of X aud Y. If 100 marks in the 
aggregate !lJ'e needed fOI a pass in the examination, show how to calculate the 
proportion of candidates who pass the euminatioJI ? 

(b) A manufacturer of electric bulbs, ill his desire for putting only gOOd 
bulbs for sale, rejects all bulbs for which a certain quality char~cteristic X of the 
ftlarnent is less than 65 units. Assume that the quality characteristic X and lh(' 
life Y, of the bulb in hours are jointly normally distributed with parameters 
~i-:en below : 

X 
Mean 80 
Standard deviation 10 
Correlation coefficient p(X. Y) = 0·60 

Y 
1100 

10 

Find (i) the proportion of bulbs produced that will bum fOf, less ilian 1000 
hours, (;,) the proportion of bulbs produced that will be put for sale, (iii) the 
average life of bulbs put for sale. 

3. (0) Determine the panpne,iels of the bivariate normal distribution: 

Ax, y) = k exp [- :7 (x - 7)2 - 2(x - 7) (y + 5) + 4(y + 5)2 J J 
Also find the value of k. 

(b) For the bivariate normal distribution: 

[rod 

(X, Y) -BVN (1,2,42,52, {}) 

(t) P(X > 2), (;,) P(X > 2 I Y = 2). 
(c) The bivariate random variable (X .. X2) have a bivariate normal 

distribution with means 60 and 75 and standard deviations 6 and 12 with a 
correlation coefficient of 0·55. Find the following probabilities : 
(l)P(65~Xl ~ 75), (;,) P (71 ~X2 ~ 80 IXI = 55) and (iii) P(IXI --X21'~ 15). 

4. For a bivariate normal distribution : 

Ixy (x, y) = ..J) exp ~- 2(1 ~ p2) (x2 - 2pxy + y2)} • 
21t (1 - p2) l 

- 00 < (x, y) < co 
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Find (i) marginal distribution of X and Y, 
(ii) conditional distribution of Y given X, 

(iii) d~stribution of (I ! p2) [x2 - 2pxy :+ y2], 

and (iv) show that in general X and Y are stochastically de~ndent and will be 
independent if and only if p ~ O. 

5. Let tl)e joint p.d.f. of X and Y be 

f(x, y) = 1 
21tcrlcrl '" (1 - p7) 

{ 1 [(X-lll)Z 2 (X,.,.lll) 
x exp - 2( 1 _ pZ) 'crlZ - P crl 

where - 00 < x < 00, - 00 < y < 00, -I < P < 1. 
(i) Find the marginal distribution of X. 

(ii) i·.iud tile conditional distribution of Y given X = x. 
(iiI) Show that the regression of Yon X is linear and homoscedastic. 
(iv) Find P(3 < Y < 8 I X = i), given that ill = 3, Ilz = I, crll = 16,. 

crll = 25, P = 0·6, 

(v) Find the probability of tqe simultaneous materialization of the 
inequalities, X > E(X) and Y > E(Y) 

Hint. (v) Required probability p is given by 
p = P[X > E(X), Y > E(Y)] = P[X > Ill) r"I (Y> Ilz)] 

= J,"" J "" f(x, y) dx dy 
J.It J.I2 ' 

-= J: J: 21t "': _ pZ . exp [- 2(1 ~ pl) (U Z - 2puv + vZ) }UdV, 

( u = x - Ill, V = Y - Ill). 
crl crl 

Now proceed' as in Hint to Question Number 9(b). 
6. Let the jrandom variables X apd Y be assumed to have a joint bivariate 

normal distribution with . 
III =,Ilz, = 0, crl = 4, crz = 3 ~d r(X. Y) = 0·8. 

m Write do}Vn the joit;lt density functio~ of X and Y. 
(il) Write down the regression of Yon X. 

(iii) Obtain the jo~nt density of X + Y and X - Y. 
7. For the distribution 'of random van,abJesX and Y given by 

dF= kexp [ - 2(1-:' pz) (xl •• 2pxy + yZ) Jdx dy; -- Sx S 00, -c:o S y ~ 00-



Fundamentals ofMatbematical Statistic. 

Obtain 
(I) the constant k, 

(U) the distJ;ibutions of X and Y, 
(iil) the distributions of X for given Y and of Y for given X. 
(iv) the curves of regression of Yon X'and of X 011' Y, 

Md (v) the distributions of X + Y and X - Y. 
8. Let (X. y) be a bivariate normal ran~om variable with E(X) = E(Y) = 0, 

Var (X).J: Var (Y) = I and Cov (~. Y) = p. Show that the random variable 
Z = Y~l\as a CaUc.:1Y distribution. 

[Delhi Univ. B.Sc. (Malhs. Hons.), 1989] 
_ 1 [ (1 - p2)1!2 ] 

Ans,!(z)-1t (l_p2).+(z_p)2 ,-OO<Z<OO. 

9. (a) If (X, y) - N(IJ.", lJ.y, a" 2, ai, p), prove that 
, 1 sin-Ip 

P(X > IJ." n Y > lJ.y) = 4 +. 21t 

[Delhi Univ. M.Sc. (Sial.), 1987] 
(b) If (X, Y) - N(O~ 0, 1, 1, p} then prove that 

1 sin-I p 
P(X > OnY > 0) = 4 + 21t . 

[D.e(hi Univ. B.$c. (Sial. Honf.), 1990] 

Hi.bt. P = P(X > OnY > 0) 

~ r ,x J'" Joo :exp L- 2(1 ~ 2) {,X2 - 2p,Xy + y2} JdxdY 
21t~ 1 _ p2 0 0 p. 

Put x :: 'lcOS ,9, y = , sin 9 => I J I = r ; 0 < , < 00, 0 ~ 9 S; 1t!2 

. p _ 1 Joo J1tI2 xp [_ r2 2) (1 - p SIn '29>] ,drde 
.. - 21t -V 1 _ p2 0 0 2(1 ... P • 
Now integrate frrst w.;. to, ~~ !hen w.r. to 9. 

10. (a) Let XI and X2 be two indepenoent normally distributed variables 
with zero means and unit variances. Let YI and Y2 be the linear functions of XI 
and X2 defined by 

Yj = ml + IIIXI + 112 X2, Y2 ,: m2 + 121XI + 122 X2 

Show that Y\ and Y2 are normally distributed with means ml and m2, variances 
Jl20 = 1\1 2 + /122, 1-102 = 1212 + lxi, and covariance I!I~= 111/21 + 112 /22• 

(b) Let XI and X2 be independent standard'normal variates. Show that the 
variates Yh Y2 defined by 

XI = a\ + bllXI + b12X2, >:2 = a~ + b21XI + b22X2.ate dependent normal 
variates and find their m~ and-variance. 

"!nt. YI and Y2, being ,inear combination of S.N.V's are also normally 
l!istributCd: To prove that they ar:e.dependeQt, it i:; sufficieQt. to 'prove that 
rO'\> Y2) ~ O. [e/. Remark 2 to Theorem' 10·2) . 
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11. (a) Show that, if J( and Y are independent nonnal variates with zero 
means and variances GI2 and G22 respectively, the point of inflexion of the curve 
of intersection of the nonnal correlation surface by planes through the z-axis, lie 
on the elliptical cylinder, . 

}{2 f2 -+--1 (f12 (f,l-

(b) If X and Yare bivariate nonnal variates with standard deviations unity 
and with correlation coefficient p, show that the regression of X2 (f2) on f2 
(Xl) is strictly linear. Also show that the regression of X (Y) on f2 (}{2) is not 
linear. 

12. For the bivariate nonnal distribution: 

£iF = k exp [- ~ (x2 - xy + y2 - 3x + 3y + 3)] dx dy. 

obtain (i) the marginal distri»ution of Y, and 
(il) the conditional distribution of Y given X. 
Also obtain ilie characteristic function of the above bivariate I}ormal 

ditribution and hence the covariance betwecrn X,and Y • 
• 3. Let/and g be the p.dJ.'s with corresponding distribution functions F 

and G. Also let 
h(x. y) -= j(x) g(y) [1 + a (2F.'(x) ~ 1) (2G(y) - 1)], 

where I a 1St, is a constant and h is a bivariate p.dJ. with marginal p.d.f.'s 
f and g. Further let/and g be p.dJ.' s of N (0, 1) distribution. Then 'prove that: 

Cov (X. y) = a/TC 
14. If (X, Y) - BVN {JJ.J, 1l2' G12, (f22, p), compute the correlatiol) 

coefficient between eX and eY• 

Hint. Let U = eX, V = eY• 

Il'n =E(lJ'.~=E [e rX + sY] 

= exp ['111 + SJ.I.2 + i(r2a12+s2a22+ 2prs)] 

[c.f. m.g.f. of B. V lj., <listribution : 'I = r, t2 = sJ 
Now E(U) = Il/lo ; E(U2):.: Il' 20, E(UV) = Ilu ' and so on. 

epGl~ - I 
Ans. p(U,v) = 2 --. 2 

[(ec:rl - 1) (eG2 _l)]1/2 

15. If (X. y) - BVN (0,0, 1, 1, p), find E [max (X. Y)]. 

Hint. max, (X. Y) =~ (X + Y) +~I X - Y I 

ani Z =X - Y..., N rO.2 (1- p)] ,[c.f.Theorem 10·6J 

Ans. E [max (X. Y)] = ( l=..Q....TC )112 

16. If (X. Y) - BVN (0, 0, I, I, p) wilh joint p.d.f.j(x. y) lhen prove that 

(a) P(XY>O) =~+~:sin-l.(p). 
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Hint. P(XY > 0) = P(X > ° f"'I Y > 0) + P(X < ° f"'I Y < 0) 
= 2 P(X > ° f"'I Y > ·0) [By symmetry] 

Now proceed as in Hint to Question No. 9(b). 

o 0 

(b) 21t I __ I __ .f{x, y) dxdy = 1t + sin-J p 

17. The joint density of T.V'S (X, Y) is given by: 
1 1 

f(x,-y) = -2 .. exp [- (x2 + y2)/2] x [I + xy exp (- (x2 + y2 - 2)!2)] ; 
y 1t ' 

- 00 < (x, y) < 00 

(I) Verify thatf(x, y) is a p.d.f. 
(iI) Show that the marginal distribution of each of X and Y is normal. 

(iii) Are X and Y independent? 
Ans. (ii) X -N (0,1), Y - N(O, 1) 

(if) X and Yare not independent. 
18. Show by means of an example that the normality of conditional 

p.d.f.'s docs not imply that !he bivariate density is normal. 
Hint. Consider f(x, y) = constant. exp [- (1 + x2) (1 + y2)]; -00 < (x, y) < 00 

. Then (rIX),-N(O. 2(1 :x2»)and(XIY)-N(0, 2(1 :'y2») 

19. For a bivariate normal T.V. (X, f), does the conditional p.d.!". of (X, y) 
given X + Y = c, (constant) exist? If so find it. If not, why not? 

AIlS. No, since P (X + Y = c) = 0. 
20. Let 

..J e'xp - 2(1 _ p2) (x2 - 2pxy + y2) 

[ l' {I } ] 1 21t 1 _ p2 
f(x. y) =2 . 

+ .1 exp {- 2(1 ~ 2) (x2 + 2pxy + X2)} 
21t..J 1: _ p2 P 

- 00 < x< 00, - 00 < y < 00 

then show that : 
(1).f{X, y) is a joint p.d.f. such that bOth marginal densities are normal but 

f(x. y) is not bivariate normal. 
(ii) X and Y have zero correlation "but X and Yare not independent. 

[Delhi Univ. B.Se. (Sial. Bon&), 19891 
21. Let X. Y be normally correlated variates with zero means and variances 

(J,2, (J22 and if 

w=K. z= 1 {L_~} 
(Jl ' ..J (1 _ p2) (J2 (J, 

Show that 
CJ(w. zl_ I 
CJ(x, y) - (J,(J2..J (1 _ p2) 
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!n1 W2 + Z2 = 1 [X2 _ 2pX Y + .r=-J 
(1 - p2) <112 <11<12 <122 

])educe thauhe joint probability differential of Wand Z is 

1 ~=;2~·exp[ - ~(W2+ Z2)JdwdZ 

and hence that 'W, Z are independent normal variates with zero means and unit 
S.D.'S [Meerut Univ. M.Sc., 1993] 

Hence or otherwise obtain the m.g.f. of th~ bivariate normal distribution. 
22. From· a standard bivariate normal population, a random sample of n 

observations (Xj, Yj), (i = 1,2, ... , n) is drawn. Show that the distribution of 

1 " I " 
ZI = - L X? and Zz = - L y j2 

njal _ni=1 

-:!' _00_00 

Now use the result 

foo Joo 1t exp[ - (ax2 + 2hxy + by2)] dxdy = -V 
-- -- . ab _.h2 

and simplify. 

10·11. Multiple and Partial Correlation. When the values of one 
variable are associated with or influenced by other variable, e.g., the age of 
husband and' wife, the height of father and son, the supply and demand of ,a 
commodity and so on, Karl Pearson's eoefficient.of correlation can be used·as a 
measure of linear relationship between them. But sometimes there is 
interrelation between many variables and the value of one variable may be 
influenced by many others, e.g .• the yield of crop per acre say (XI) depends 
upo~ quality.oJ seed (X~, fertility of soil (X3), fetilizer used (X4), irrigation 
facilities (Xs). weatt.~r conditions (X6) and ,so o~. Whenever we are interested in 
studying \.be joi.n~ ~ffect of a group of variables upon a variable not included in 
tha~ group, our study is that of f!lultiple correlation and mult!ple regression. 

Suppose in a trivariate or. multi-variate di~tribution we are interested in th~ 
relationship between two variables only. The are two alternatives, viz., (i) we 
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consider ·only those two members of the observed data in which the other 
members have specified values or (ii) we may eliminate mathematically the 
effect of other variates on two variates. The fllst method has the disadvantage 
that'it limits the size of the data and also it will be applicable to only the data in 
which the other variates have assigned values. In the second method it may not 
be possible to eliminate the entire influence of ~e variates but the linear effect 
,can, be easily eliminated. The correlation and regression between only two 
variates eliminating the linear effect of other variates in them is called the partial 
correlation and partial regression. 

10·11·1. Yule's Notation. Let us consider a distribution involving 
three randoin variables X I, X 2 and X 3' Then the equation of the plane of 
regressiortof Xl onX2 andX3 is 

Xl = a + bI2.~2 + b13."x3 ••• (10·28) 
Without loss of generality we can assume that the variables Xl' X2 and X3 

have been measured ftom their JespecUve means, so that 
E(XI ) = E(X,) = E(X) = 0 

Hence on taking expectation of both sides in (10·28), we get a = O. 
Thus the plane of regression of Xl on X2'and X3becomes 

'Xl = b12.3 X2 + b13.iX, ••• (10,2&) 
The ,coefficients b l2.3 and b13•2 are known as the partial regression 

coefficients of Xl' on X2 and of Xl on X3 respectively. 

el.23 = biB X2. + bl,.2 X3 
is called the estimate of X I as given by the plane of regression (10· 28a) and the 
quantity 

~1.23 = XI,- b12•3 X2 - bl 3-1X3, 

is called the error of estimate ot residual. 
In the general case of n variables Xl> X2, ••• , X".the equation of the plane of 

regression of Xl onX2,X" ••. ,X" becomes J 

Xl = bI2.34 ••• "X2 + bl3-24 ••• "X3 + ... + bl".23 ... ( .... I) XII 
The errcr of estimate or residual is given by 

XI.23··." =XI - (b I2.34 ••• "X.'2 + b I3.24 ••• "X3 + ... + bl".23 ... (".I) X,J 
The noUlu"bns used here are due to Yule. The subscripts before the dot (.) are 

known as,primary su/Jscripts and those after the dot are ·called secondary 
subscripts. The order of a regression coefficient is determined by tl)e number of 
secondary subscripts, e.g., 

bI2." bi2.34, ••• , bI2.34 ••• " 

are the regression coefficients of order 1,2, ... (Ii - 2) respectively. Thus in 
general, a regression coefficient with p-secondaly subscripts. will be called a 
regression co-efficient of oider 'p'. It may be pointed out that the order in which 
the secondary subscripts are written is immaterial but the order of the primary 
subscripts is important, e.g., in b I2.34 ..• ", X2 i~ independent- while Xl is 
dependent variable but in ~1.34 ••• " ,Xl is independent while X2 is dependent 
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variable. Thus of the two primary subscripts. fonner refers to dependent variable 
and Ille latter to independent variable. 

The order of a residual is ~lso detennined by the number of secondary 
subscripts in it, e.g., XI.Z3• XI.Z34 •...• XI.Z3 ..... are the residuals of order 2.3 • 
.•.• (n - 1) l'tfspectively. 

Remark. In the following seque~ces we shall assume that the v:uiables 
under consideration have been measured from their respective meanso 

10.12. Plane of Regression. The equation of the plane of regression 
of Xl on Xz and X3 is 

XI = bIZ03Xi'+ b I3.Z·X3 ... (10·29) 

The constants b's in (to·29) are detennin~d by the principle of least 
squares. i.eo, by minimising the sum of the squares of the residuals. viz .• 

S = l:Xl.Z3z ,= l:(Xl -b1Z.3XZ -b13.ZX3)z. 
the summation being extended to the given values (N in number) of the 
variables. 

i.e., 

The nonnal equations for estimating b1Z.3 and bl 3-z are 

:lbOS = 0 = - 2 l:XZ(Xl-blZ03XZ-b130ZX3)} 
CJ lZ.3 as ... (10·30) 
~b = 0 = -2 l: X 3(X1 - b 1Z.3 X 2 - b I3.ZX 3) 
CJ 13.Z 

LXZXl.Z3 =0 and l:X3XloZ3 '= 0 

l:~lXZ -, biB E Xzz..,.. b 130z l; X ZX 3 = O} 
l:XIX3 - b 12.3 l: XZX3 - b 13.Z L X32 = 0 I 

.•. (10·30a) 

... nO·30b) 

SinceX;'s are measured from their respective means. we have 

GiZ.= ! l: X? Cov (Xi. Xi) = ~ l: Xi Xi} 

. Cov (Xi. Xi) l: XiX; ... (to·30e) 
an rii = GiG)' = N GiG) 

Hence from (to·30b). we get 

rlZ GIGZ - b 12•3 dl- b l3-2 rZ3 GZG3 = 0 } 
b b 2 0 .•. (10·30d) 

I rl3 GI G3 - IZ0 3 rZ3GZG3 - 13·Z G3 = . 
Solving the equations (10.30d) for bl 2-3 and bI3.Z• we get 

I rlZ GI rZ3 G~ I I rlZ 
rZ3 I r13 GI G3 rl3 1 

b.,., -I' 1-:'1 1 I. 
... (10·31) 

Gz rZ3 G3 rZ3 
rZ3 Gz f13 rZ3 1 
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Similarly, we will get 

... (1O·31a) 

If we write 
1 

·(10-32) 

and (j)jj is the cofactor of the, element i,n the ith row andjth column' of <0, we 
have from (10·31) and (1O·31a) 

01 <012 01 <013 
b\2.3 = - - . - and b l3.2 = - - . - ... (10·~3) 

02 <011 03 <011 
Substituting these values in (10·29), we get the required.eq~ation of the 

plane of regression of XI on X2 and X3 as 

XI = - °1 . ~. X2 - <!1.. ~. X3 
02 <0. l' 03 <OIl 

XI X2 X3 
~ - . <011 + - . <012 + - . <0\3 = 0 ... (10·34) 

01 02 03 
Aliter. Eliminating the cOefficient b12.3 and bl3.2 in (.10·29) and (10·30d), 

the required equation of the plane of regression of XI on X2 and~3 become~ 

XI X2 X3 

rl~102 ~2 r23~03 = 0 

rl30103 r23¥3 032 

Dividing C .. C2 and C3 by 0., 02 and 03 respectively and also R, and R3 
by 02 and 03 respectively, we get' . 

!1.~!l 

=0 

r13 r23 1 

!1. ~ X3 
~ COll + COl2 + -, COl3 = 0 

01 02 03 
where <Oij is defin~d in (10·32). 

10·12·1. Generalisation. In general, the equation of the plane of 
regression of XI on X2,X3 , : •• XII is 

XI = bI2.34 ... IIX2 + b l3.24 ... "X3 + ... + OIIl.23 ... (II-l)XII 

The sum'of the squares of residuals is given by 

S = L X21.23 ... " 

... (10·35) 
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= L (Xt -bt2-34 ... "XZ -b13.24 ••• "X3 - ••• -b t ".23 ... (,,_t)X,,)Z , 

Using the principle Qf least squares, tile normal equations for estimating th~ 
(n - 1), b's are 

~ = 0 ~ -2l: X1(XI - bll.34 ... "X1 - bu .14 ... "X3 - ... - bl"'13' ... (" -lye,,) 
abIZ·34 ...• 

oS 
_= 0 = -2l:X3(XI - bll.34 ...• Xl-bu.14 ... "X3 - ... - bl".13. (,,_I)X,,) 
abI3·14 ... • 

_ as '" 0= -2l:X,,(XI - bll-34 ... "X1-bd.14 ... " X3 - ... - bl"'13, .. ("-I)~") 
ab l .Z3 ... (" -I) 

... (10·36) 
i.e.. LXi Xt .23 ... n = 0, (i = 2, 31 "'1 n) .. ,.(lO·360) 

which on smplification after using (lO·30e), give 

rt:zGtGz:: b1Z.34 ... "G22 + bt3-24 ... "r23G2G3 + ... + bt ".23 ... ("_t)r2llG2G,, 

rt)C1tG3 = b tZ.34 ."r23GzC13 + bt3-24. "G32 + ... + b t ... 23 ... ("_l) r 3"G3G " 

rt"GIG" = btZ.34 ... "r.2IlGzC1" + bt 3-24 ... " r3"G3G " + ... + bt"'23 ... (,,_t)G,,2 

... (10·36b) 
Hence the eliminant of b's between (lO·35) and (lO·36b) is 

X t X 2 

rlzC1tCJz G22 

r13GtCf) r2)C1zCf) 

=0 

Dividing C h C2, ••• ,·C" by G\> Gz, •••• G" respectively and R2, R3, ••• R" 
by 02, G3; ••• , G" respectively, we,get 

Xl X2 X3 X" 
Gt G2 C1) G" 

rt2 1 r32 

1 
=0 ... (lO·37) 

1 
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If we write 

1 ri2 ,rI3' rl .. 

r21 1 rZ3 r:7JI 

r31 r32 1 r311 

CO= ... (10·38) 

"'{Ill r to. r ti3 1 
and OJij is the cofactor of'the element in the ith row andjth column of OJ, we get 
fMm ,(10·37) 

XI X 2 X3 X ... 
-. OJll + - COl2 of - OJI3 + ... + - COl .. = U ••• (10·39) 
(JI (J2 0'3 (J .. 

as the required equation of the plane of regressiol} of XI on X2, X3, ••• , X ... 

Equation (10·39) can be re-written as 

X - (JI OJI2 X (JI COl3 X (JI OJI .. X 
I - - (J2 • COll 2 - (J3 • OJll 3 - ••• - (In • OJll .. ... (10·390) 

Comparing (10·390) with (10:35), we get 

Remarks 1. From the ·symmetry of the result obtained in (10·40), the 
equation of the ~plane of regression of Xi' (say), on the remaining variables Xj 
(j * i = 1, 2, ... , n), is given by 

~ 

Xl X2 Xi X.. . 
- COil + - COi2 + ... + - CO" +" ... + - COi .. = 0 ; I = 1, 2, , n 
~ (J2 ~ (J .. 

. .. (1041) 
2. We have 

b =-~ ~ 
12-34..... <Jz • con 

3'Xl b = _ <Jz C021 
21· 34..... (JI C022 

Since each of (JI> (J2, OJll and OJ22 is non-negative and OJI2 = OJ21> [c/o 
Remarks 3 and 4 to §10·14, page 10·113] the sign of each regression 
coefficient bl 2-34 ..... and bzl.34 ..... depends on eDt;. 
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10·13. Properties 6f residuals 

Property 1. The sum of th.e product of any residual of order zero with any 
other residual of higher order is zero, provided the subscript of the former: occurs 
among th~ secondary subscrjPts of the latter. 

The normal equations for estimating b's in trivariate and n-variate 
distributions. as obtained in equations (10·30a) and (10·3OO). are 

I,XZK'I.Z3 = O. I,X3XI.Z3 = 0 
mel I, Xj X I.Z3 ..... = 0; i =~. 3 •...• n 

respectively. Here Xi. (i = 1.2.3-•...• n) can be regarded as a residUal of order 
zero. Hence the result 

Property 2. The sum of the product of any two residuals in which all the 
secondary subscripts of the first occur among the secondary subscripts of the 
second is unaltered ifwe omit any or all of the seconoory subscripts of the first. 
Conversely; ,the product sum of any residual of o.rder 'p' witli a residual of order 
p + q, the 'p' subscripts being the same in each case is unaltered by adding to 
the secondary subsQ"ipts of the former any or all the 'q' additional subscripts of 
the latter. 

Let us consider 

I, XI.ZXI.Z3 = I, (Xl - bl~z}XI.Z3 = I,XIXI.Z3 -biZ I, Xz X I .Z3 

= I,XIXI.Z3 (cf, Property~) 

Also I,XI.Z;z = I,XI.Z3XI.Z3 = I, (Xl -blz.3 Xz -bI3•Z X3) XI.Z3 

= I, X I XI.Z3 -.bl,2.3 b Xz XI.Z3 - bl 3-Z I, X3 XI.Z3 
= I, XI XI .Z3 (cf, Property I) 

Again I, XI•34 ..... XZ•34 ..... 

= I,t(XI - bI3-4 ... 11 X3 - bI4•3S, .... X4 - ••• - bl .... 34 ... (~-I) X .. } XZ.34 ..... ] 

= I, X1XZ•34 ... 11 (cf, Property I) 

Hence th~ property? 
I 

Property 3. The sum of the product of two residuals is zero if all the 
subscripts (primary as,well as secondary) of the one occur among the secondary 
subscripts of the other. e.g., 

I,XI.Z XHZ = I, (Xl - biZ Xz) XHZ =' I, ,xIXHZ - bIZ I, Xl X3-lZ = 0 
(cf.'Property I) 

I, XZ•34 ..... X.I .Z3 ... .. 

= I,[(Xz - bZ34 ... IIX3 - b24.3S ..... X4 - ...... bz..,}4 ... (,.,.l) X .. } X1.Z3 ... II ] 

= I, Xz XI.Z3 ..... - b23.4 ..... I, X3 X1.Z3 ..... -b24.3s ..... I, 1(4 X1.Z3 ... .. 
••• - hz,..34 ... ( ..... I) I, X .. X1.Z3 ..... 

=0 (c/.Property.1) 
Hence the property 3. 
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10·13·1. Variance of the Residual, Let us consider the plane of 
regression of XI on X2• X3 • •••• ~" viz .• 

XI = b I2.34 ..• " X 2 + b13.24 ... "X3 + ... + bl ".23 ... (,,-.I) X" 

Since all the X;'s are measured from their respective means •. w~ have 

E(Xj) = 0; i ~ 1.2 ....• n ~ E(XI .23 ... ,.} = 0 

Hence the variance of the residual is given by 

(J2 = 1. L[X" _ E(X ,.}]2 = 1. LX2 
1·23 ... " N 1'2~\" 1·23... N' 1·23 ... " 

1 1 
= N LX 1·23 ... " X 1·23..." = N LX IX 1·23 .. ". 

(c/. Property 2 § 10·13) 
1 = N L XI (Xl"" b I2.34 ... " X 2 - b.JJ.24.,." X3 - '" - b!ll.23 ... (" .... I) X,.} 

= (J12 - b I2.34 ... " r12(JI(J2 - bl3 24 ... " r13(JI(J3 - ••• - bl".23 ... (" -I) rl,,(JI(J,; 

:;:> (J12 - (J21.23 ... " = bI2.34 ... " rI2(JI(J2 - b 13.24 ... " r13(JIO-3 - .,. 

- bl ".23 .. (,,- D rl"(JI(J,, ••• (1042) 

Eliminating the b's in equations (10·42) and (10·36b). we get 

(J12 - (J21 23 ... " 

rl2 (JI(J2 

rl ,,0\ (J" r2ll(J2(J" (J,,2 

=0 

Dividing R10 R1 • ...• R". by (J1o (J2 • ••• , (JII respectively and also C h Cl • 

. . .• C II by (J I. (J2: ••• ,"(In respectively. we get 

1.-
(J21·23 .. II 

(Jll 
rl2 rill 

rl2 1 r~ 

=0 
.. 

rl .. rlll 1 

1 -
(J21.23 ..... 

riA 
(J12 rlZ 

rlZ + 0 1 rlll =0 

rill + 0 rlll 
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I TI2 TI .. G21.23 ..... 
GI2 TI2 TI .. 

~h 1 T'bt 
oJ .0 1 T'bt 

=0 

TI .. T'bt 1 0 T'bt 

=> 
G2 ro 1·23 ..... ro = 0 

- ~12 11 

G7 -G 2 J!L 
•• 1·23 ... ,. - 1 0>11 ... (1043) 

Remark. In a tri-variate distribution. 
ro 

GI.232 = GI2 - ... (1043a) 
rolf 

where ro and roll are defined in (10·32). 
10·14. Coefficient of Multiple Correlation. -In a tri-variate 

distribution in which each of the variables Xl> X2• arid X3 has N observations. 
the multiple correlation coefficient of XI on X2 amI X3• usually denoted by 
RI.23. is the simple correlation coefficient between XI and the joint effect of X2 
and X 3 on X I' In other words R 1.23 is the correlation coefficient between X I and 
its estimated value as given by the plane of regression of XI on X2 and X3 viz .• 

el.23 = b12.3X2 + b13.2X3 
We have XI,23 =XI-bI2.3X2-bI3.2X3=XI-el.~3 
=> el·23 = XI -XI.23 
Since X;'s are measured from their respective means. we have 

E(XI.23) = 0 and E(el.23) = 0 (.: EO~;) = 0; i = 1.2.3) 
Rydef .• 

R _ Cov (XI. el.23) 
1·23 - "'V(~I)V(el.23)· 

~! .. (I044) 

Cov (XI' el.23) = E[{XI ,...E(XI»){el.23 -E(el.23))] = E(XI el.23) 

1 ~ 1 ~ , = N .L. XI el·23 ~ 'N.L. XI (XI -XI.23) 

1 I 1 1 ='N LXI2 - N LXIXI.23 = 'N LX12 - N LXZI.23 

= GI2 - <11.232 (cf. Property 2, § 10·13) 

Also 
1 1 

V(e123) = E(el'232)='N L el.232 = Ii. L (XI -XI.~3) 2 

1 ='N L (¥12 +XI.232 - 2 XIXI'2~) 

112 ='N LXI2 + 'N LXI.232 -'N LX1XI.23 
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1 1 2 =i(L XI 2 + N I.Xl·232 -N I.Xl.232 

= al2 -al.232 (cf. Property 2, § 10'13) 

al2 - al.232 
R 1.23 = -;:::::::;:=::::::::::::::===== 

'" al2(a l2 - al.23~) 

=> R2 - _ al2 - al.232 _ 1 al.232 
1.23", 2 - - 2 

\ al al 

al.232 
1 -R2l-23 = 

al2 

Using (lO·43a), we get 

... (1045) 

where 

1 rl2 rl3 

<0 = r21 1 r21 = 1 - rii-·- rl32 - r23~ + 2r12r13r23(On simplification). 
r31 r31 1 

I 1 r73 I 
CO'll = = 1 - r232 

r:u l 
Hence from (1045), we get 

R 2 _ 1 J!L _ rl2l + ,r132 - 2r12 rl3 r23 
123- - - 2 

. COll L - r23 
... (1045a) 

This formula expresses. the multiple correlation coefficient in terms of the 
total correlation coefficients between the pairs of vari~les. 

Generalisation. In case of n-variate distribution, the multiple correlation 
coefficient of Xl on X2, X3 , ... , X"' usually denoted by R l .23..." , is the 
correlation coefficient between Xl and 

1 1 = NI.Xl el-23 .•. ,, = NI.Xl(XI-Xl'23 ... ,,) 

1 1 =N I.X12 - Ii I.X.Xl.23 ... " 

1 1 • = N I. X 12 - N W l.2:! ... " = a12 .... a21.23 ... " ( ... (*) 

1 '1 r 
V(el.23 ... J = Nl! e21.23 ... ,,= 1i"i;(XI -Xl.23 ... ,,)2 
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1 =N L (X 12 + X21.23 ..... - 2X1X 1•23 ..... ) 

1 ~ 2 1 ~ X2 2 .!. ~v x =N ~,Xl + N ~ 1·23 ..... - N ~1 1·23 ..... 

_.!. ~ 2 .!. ~ X2 _1. ~v2 - N !JX1 +. N ~ 1·23 ..... N ~ 1 .. 23 ..... 

=.(112 - (121.23 ..... 

_ (112.- (121.23..... = (112 - (121.23 ... ~) 112 
.. R 1•23 .. ,,, -.~I· 2( 2' 2 >. (112 

V (11 (1,1 - (1 1·23 ...... 

10·113 

R2 = 1_.(121.23 ..... = 1_.J!L ... (1045c) 
1·23..... (112 COlI 

where co and C011 are defined in (10·38). 

R.~~Jlrk~ 1. It may be poi~ted out here tha~Jl)ultiple correlation 
coefficient can never be negative. because from (*) and (**). we get 

Cov (X.It el.23· ... ,.) = (112 - (121-23 ..... = Var (61.23 ... ,.) ~ 0 
'Since the sign of R 1.23 ... n depends upon. the 'covariance. term 

Cov·(Xi. er.z3 ... ,.). we conclude that R1.23 ..... ~ O. 
2. Since R21•23 ..... ~ O. we have: 

1 _..!!L ~ 0 => CO ~ COlI ••• (1045d) 
COl1 

=> 

From the above results. we get 

I_J!L~1 
COlI ." 

J!L ~O' .~ 
C011 

C011 ~ CO ~ 0 
In general. we have 

COii ~.O".; i = 1 •. ~ ..... n 
4. Since co is symmetric in Ti/S. we have ," 

CO ~ 0 

• COij = COji; i. 'F j = 1.,2: .... n 

10·14'1. Properties or Multiple Correlation Coerricient 

.• ·.(10·45e) 

... (1045.1) 

... (1045g) 

1. Multiple correlation co-efficient, measures the closeness of the 
associati6n between the observed values and the expected values of a variable 
obtained from the multiple linear regression of that variable on other variables. 

2. Multiple correlation coefficient betweep observed values an4 expected 
values. when the expected values ate calculated from a linear relation of the 
variables determined by the method of least squares. is always greater than that 
where expected values are calculated from any. other linear combination of the 
variables. 
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3. Since R 1.23 is the simple correlation between X I and el.l3, it must lie 
between -1 and +1. But as seen in Remark 1 above, R I .23 is a,non-negative 
quantity and we conclude that 0 s R I'l~ S 1. ./ 

4. If R 1.23 = 1, .then association is perfect and all the regression residuals 
are zero, and as such <121.23 = O. In ths case, siqce XI = el.23, the predicted value 
of XIt the multiple linear regression equation of Xl on Xl and X3 may be said to 
be a perfect prediction formula. ' 

5, If RI 'l3 = 0, then all total and partial correlations involving Xl are zero , \ . 
[See Example 10·37). So XI is completely uncoq~lated with all the other 
variables in this case aI\9 the multiple regression equation fails -to 'throw any 
light on the value of X I when Xl and X 3 are known. 

'6. RI .23 is not less than any total correlation coeffici~nt, i.e .• 
R 1.23 ~ r12, r13, rl3 

10'lS. Coefficient of Partial Correlation. Sometimes the 
correlation between two 'variables X I and Xl may be partly due to the correlation 
of a third variable, X3 with both Xl and Xl' In such a situation, one may Want 
to know what the correlation between Xl and Xl would be if the effect of X3 on 
each of XI and Xl were eliminated. This correlation is called the partial 
correlation and the correlation c~mcilmt between:X1 and Xl after the linear. 
effect of X3 on each of them has been eliminated is called the partial correlationl 
coeffiCient. 

The residual X l .3 =X I -b13 X3, may be regarded as that part of the 
variable Xl which remains after the linear effect of X 3 has been eliminated .. 
Similarly, the residual Xl .3 may be interpreted as the part of the variable X; 
obtained after eliminating the linear effect of X3• Thus the partial correlation 
coefficient between Xl and Xl, usually denoted.by '12.3, is given by 

Cov (X 1.3, X l .3) 
r12.3 = ... (1046) 

..JVar (X1.3) Var (Xl .3) 

We have 
1 1 

COV(Xl.3,Xl.3): N I.X1.3 Xl.3': N I.X1Xl.3 

1 1 1 
= N I. XI (Xl -b23 X3) :'N I.XIXl -b23 N I.X1X3 

= r12',<11<12 - r23 ~ • (r13<11<13). 

= ~1<12 (r12 - rl,3 r23) 
1 . 1 

=NI.X1.32= .N:~Xl.3X.13 

1 1 
:'N I.X1Xl,3'=; N I.XI(X1 -b13'x3) 
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1 1 = N l:Xlz -b13 • Ii LX1X 3 

Gl 
= Glz -r13 -r13G1G3 

G3 
L = G1Z(1- r13Z) 

Similarly. we shall get 

V(XZ.3) = G;(1- r23Z) 

Hence 

.10.115 

G1GZ(rlZ - r13 r23) --;::::=r=lZ:::-===r:::13::r=Z:::3::::::;:= 
rIZ·3· = . 

..J G1Z(1 - rqZ) GzZ(1 - r23Z) ",,(1 - r~3Z) (1 - rZ3Z) 
••• (10400) 

Aliter. We have 

o = LXz.~1.Z3 

= LXz.3 (Xlr blZ.3XZ - bl 3-z X3) 

From this it follows that b lZ.3 is coefficient of regression of Xl '3 on Xn 
:: imilarly. hzl.3 is the coefficient of regression of X 2-3 on X 1.3. -

Since correlation coefficient is the geometric mean between regression 
coefficients. we have 

Butbydef .• 

b.1Z.3 = - ?l • CJ?lZ and b Gz roZl 
Gz roll Zl·3 = - Gl • rozz 

( C!! 
,.llZ.3 = - Gz ~). ( GZ ~) _ rolZZ 

roll - Gl' rozz - roll rozz 

(.: rolZ =~roZl) 

=> ·T.1Z·3 = - " roll rozz • 

the negative sign being taken since the sign of regression coefficients is the 
same as that of (- rolz)' 

Substituting the values of rolZ. roll and ro22 from (10·32). we get 

rlZ - r'l3 rZ3 
rlZ·3 = . v (1 - r13Z)(1 - rZ3Z) 

Remarks 1. The expressions for r13.Z and r23 ... can be similarly obtained. 
to give 
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_. T13 - T12 T32 d T23 - T21T31 
T13.2 - an T23.1 = V (1 - T122) (1 - T322) V (1 - T212)(1 - T312) 

2. If TI2-3 = O. we have then T12 = T13 T23. it means tha~ T12 will not be zero 
if X3 is correlated with both Xl and X2• Thus. although Xl and X2 may be 
Uilcorrelated when effect of X3 is eliminated. yet Xi and X2 may appear to be 
correlated because they carry the effect of X3 on them. 

3. Partial correlation coefficient helps in deciding whether to include or nOt 
an additional indePendent variable in regression analysis. 

4. We know that 0"12(1- T12'1) and 0"12(1 - T13'1) are the residual variances if 
Xl is estimated' from X2 andX3 individually. while <J'1,2 (1-R 1.232) is the 
residual variance if:Xl is estimated from X2 and X3 taken together. So from the 
above remark andR1.232 ~ T122 and T132• it follows that inclusion of an additiOlla} 
variable can only reduce the residual variance. Now inclusion of X3 when X2 has 
already been taken for predicting Xl. is worthwhile o!1ly when the resultant 
reduction in the residual variance is substantial. This will be the caSe when r13'2 

is sufficiently large. Thus in this respect partial correlation coefficient has its 
significance in regression analysis. 

10·15·1. Generalisation. In the ~ of n variables Xl. X2 •••• X" the 
partial correla~on coefficient TI2.34 ••• " between Xl and X2 (after the linear effect 
of X3• X4 • •••• X. on them has been eliminated). is giveo by 

,212.34 ... n = bll-34 .•. n X b21 .34 ... 11 

But;we ",aVe' 

bl 7,.34 ..... = - ~. :11~ } 
tnl a 0) [ef. Equation (1040)]. 

b -_ ~ -11 " 
21·34 ... n - al' 0)22 

r2 _ ( ~ 0) 12) ( a2 0)2 f)_...!!!JL 
I~~ ... II - - OJ' 0)1'1' - al' 0)12 - 0)11 0)22 

COil 
~ T1234 = - (1046b\ 

.' ... 11 '" COnC022 J 

negati\1e sign being taken since the sign of the regression coefficient is same as 
that of (-(012)' 

10·16. Multiple Correlation in Terms of Total and Partial 
'Correlations. 

Proof. We have 

T122 + Tli· - 2T12 T13 T23 

1,- T232 

• ,t 
••• (1046c). 
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Also 

_ I (r 13 - r121~23)2 _ I - 1'122 - r23 2 - 1'13 2 + 2rl2rl31 
I - r 13. 2 2 - -'---"'........,,-!-'''--''~~ 

- (l - r122)( I - r23 2) - (I ...; rI22)(1 - r23 2) 

He-nee the result. 

Theorem. Any standard deviation of order 'p' may be expressed ill terms 
of a stalldard deviation of order (p - J) alld a partial correlatiol! coefficient of 
order (p - J ). 

Proof. Let us consider the sum : 

2. X2 1.23 . n = 2. XJ.23 ... nXI.23...11 

=2.[XI23 (1I-I)X1·23 ... n• 

(c.f Property 2, § 10·13) 

= 2.[X r.23,..(11 - J) (XI' - bi2.34 ... 11 X 2 - '" -bl(n _ 1).23. II XII_I 

- b lll .23 ... (I1- I) Xn)] 

= 2. X I.23.(n _I) XI - b lll .23 ,.(n _I) 2. X I·23...(II- I) XII 

(c.f Property 2 § 10·13) 

= 2. X2 1.23,..(II_ I) - bill 23 ... (11- I) 2.X1.23...(1I - I)XII .23...(II- I) 

D'ividing both sides by N (total number of observations), we get 
0'21.23. II = 0'2 123...(11_1) - b1n.23 (n-I) Cov (XI 23 .. (II-I)' X II ·23 .. (n-I» 

The regression coefficient of Xn 23 ... (n _ I) on X I.23,..(II-1l is given by 

Cov (XI.23 ... (II-I),XII.23...(II-I» 
b /II. 23 . (II_I) = -----=....::.;.,;2~-.:..:..:..-----"'c.c..:..:..:~~ 

0' 1·2L.(1I - I) 

0'2 1.23 . ':11 = 0'2'1.2.3 .. (II - I) [I - b lll .23 .. (n - 1)·blll '23...(n -I)] 

= 0'21 23 [I - r2 1')3 ] . . .(11 - I) /I _ .... (11 - I) , ... (10·47) 

a formula which expresses the standard deviation of order (1/ - I) in terms of 
standard deviation of order (n - 2) and partial correlation coefficient of order 
(1/ - 2), If we take p = (II - 1), the theorem is established. 

Cor. 1. From (10-47), we have 

0'2123 .. (11- I) = 0'21.23 ... (11_ 2) (I - r21(n - ).23 ... (11- 2» ... (1O·47a) 

and so on: Thus the repeated application of (1 0-47) gives 

0'2 1.23 II = 0'1 2(1 - rli) (1 - rl3.i) (1 - rI4.'3i) .. ·(1 - ,.2111.23...(1I-1l) 

... (l0·47b) 

Since partial correlation coefficients cannot exceed uni'ty numerically, we 
get from (10·47), (I0·47a), and so on, . 
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(721.23 ... 11 

(721.23 ... (11 -1) 

S (721.23 ... (11_1) 

S (721.23 ..• (11_2) 

~ (71 ~(71.2~(71.23 ~ ••• ~(71·23 ... n 

Cor. 2. Also, we have 

(721.23 .•. 11 = (712(1 - R21.23 ••• II ) 

On using (I047b), we get 

I - R21.23 ... 11 == (1- rI22)(1- rI3.22) ••• (1 - ,-2111.3 ... (11-1» 

This is the generalisation of the result obtained in (IO·46c). 

Since I rij.(s) I S I; s = 0, 1,2, .•. , (n - I), 

... (1047c) 

... (1047d) 

where rij.(s) is a partial correlation coefficient of order s. we get from (1047d) 

I - R21.23 ... 11 S 1'- rli-
I-R21.23 ... 11 S I -r213.2, 

and soon. 
I.e., R21.23 ... 11 ~ r122, r21].2, • ".' r21!'.23 ... (11 -I) ••• (1047e) 

Since R 1.23 ... 11 is symmetric in its secondary subscripts, we ~ve 

R21.23 ... 11 ~ rl?, (i = 2, 3, ... , n) } 
2 ... (I()47j) 

R 1.2LII ~ rlij (i ¢ j = 2, 3~ ... , n) 

and so on 
10·17. Expression for Regress'ion Coefficients in Terms of 

Regression Coefficients of Lower Order. Consider' 

:r. XI.34 ... IIX2.34 ... 11 =:r. X I.34 ... (II_I) X 2.34 ... 11 

= :r.XI.34 ... (II - ~)(X2 - b 23.4 ... II X 3 - ... - b 2ll.34 ... (II_I)X,,) 

= :r. XI.~ .,.(II-I)X2 "" b2ll.34 ... (!'_ .1) :r. Xt.~ .. ,(II-I)XII 

= :r. X I .34 ... (II-1)X2.34 ... ( .. -I) 

- b 2ll•34 ... (II-1) I X 1•34 ••• (II-1)X ... 34 ... (II-1) 

Dividing both sides by N, the total number of observations, we get 
dov (XI.34 ... II.X2.34 ... ,,) = Coy (XI.34 ... (II-I).X2•34 ... (II_1» 

- ~34 ... (II- 1) Cov'(Xl·34 ... (II- J),x 11·34 ... (11-1) 
b l 2-34 ... 11 (722-34 ... 11 = b I2.34 ... (II", I) (722.34 ... (11 - I) 

- b211.34 ... (11 -I) b 111 .. 34 ... (11 -I) (7211.34 ... (11_1) 

On using (10·47), we get 

prakash
Rectangle

prakash
Rectangle
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bI2.34 ... 11 a 22-34 ..• (II -I) (I - ,2211•34 ... (11 _ I)} 

= a22.34 •.. (11 -I) [bI2•34 ..• (11 -I) ~ b 2ll.34 ... (11 -I) b lll•34 •.• (11 - I) 

X a:".34 ... '"-1)] ... (*) 
a 2.34 •.. (11 - I) 

Irt the case of two vatiables, we have 
a.2 

bij ar = bjl t1r =Cov (Xi, Xj) => bij = ~ bji aJ 

b' a 211.34 •.. (11 - I) b 
•• 211·34 ... (" -I) a2'. = 112·34 ... (11- I) 

2·34 ... (,,-1) 

Hence from (*), we get 

bI2.34 ... 11 a22.34 ••. (11 _ I) ( 1 - ,2211.34 .•. (11 - I)} 

-----;. = .a22.34. •• (II':' I) [bu.34 •.. (11 - I) - b lll.34 ..• (11 -I) b ll2.34 .•• (11 -I)] 

b _ [bIB4 ... (II -1) - b lll.34 ... (I1- 1) b Il2.34 ... (11 - 1)] 
12·34 •.. 11 - 1 ,2 

, - 211·34 ... (" - 1) 
... (1048) 

b = ,[bu .34 ... ," - 1) - b l ".34 ... ," 1). b lll.34 ... ,,, 'p] 
12·34 ... 11 1 b b 

- 2,,·34 .•. (11 -I)· ,,2·34 ... (11 - 1) 
=> ... (1048a) 

10·18. Expression for Partial Correlation Coefficient in 
Terms of Correlation Coemcients of Lower Order. By definition, we 
have 

(J.1m. 
bil.k .. t - , .. 1m. X '...b.=! 

• - IJ. ..t aj.k . .t 

b1".34 ... (" - 1).bll2.34 ... (11 - I) 

_ al.34 ... '" -I) x a ll·34 ... (II-1) 
- '111.34 ... (11 -I) a ' '"2.34 •.. (" - I) a 

. 11.34 ••. (11-1) 2·34 .•. (11 -I) 

.. a1.34 ••. (" - I) 
="1".34 •.• (11-1). '112.34 ... (11-1). a 

2·34 ... (11-1) 

Hence from (1048). on using ('!') and ( ...... ). we get 

'12·34 ... )l X ~ . a 
2-34 ... 11 

••• (*) 

... (**) 

_ [(rI2'34 ... (11 -.1) - rl~.34 ... (11 -I) r 112·34 ... (11- t)} 
-. I' 2 

- , 211·34 ••• (" -I) 
a 1·34 ... (1i - I)J ••• (***) 
a2.34 .. ,(I1- I) 

Also on using (10·47), we get 

al·34 ... " = al·34 ... (II-I) x [1 - r~1!!;34.:.{11 u],u?· 
a2·34 ••. 11 a2,34 ... (I1- 1) [1 - r 2/1·34 ••• (11 - I) 

Hence from ( ......... ). we get 
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i 

[ 1 - 1'2110.34 ... (11 _ n] ! 
1'12·34 ••• 11 1 1'2 

- 211·34 •.. (11 - I) 

_ [1'12'34 ... (11 - I) - 1'111·34 ... (11_1) 1'112·34 ... (11 - I)J-

- 1 - 1'2211.34 ... (11 _ I) 

=> 1'12·34 ):J (/12.!" ... (1I-1) - r~i'Jtd"-1(12.34".(1-1~l/1' ... (1049) 
•. , - I' 111.34 •.• (11 - 1 - I' 112·34.,.(11 - 1) 

which is an expression for the correlation Coefficient of order p = (n - 2) in 
,tenns of the correlation coefficient of order (p - 1) = (n - 3). 

Example 10'33. From the data relating to the yield of dry bark (Xl)' 
height (Xi) and girth X3for 18 cinchona plants the following correlation 
coefficients were obtained: 

1'12 = 0·77. 1'13 = 0·72 and 1'23 =.0·52 
Find the the partial. cdrrelation coefficient 1'12-3 and multiple correlation 

coefficient R1.23. " 
~olution. 

0·77 - 0·72 x 0·52 = 0.62 
..}[1- (0·72)2][1- (0·52)2] 

R 2 _ 1'122 +. 1'132 - 21'12 1'13 I'll 
1·23 - 1 - 1'232 

(0·77)2 + (0·72)2 - 2 x 0·77 x 0·72 ~ 0·52 
= 1 _ (0.52)2 = 0·7334 

R 1-23 = :.: 0·8564 

(since multiple correlation coefficient is non-negattve). 
Example 10'34. In a trivariate distribution : 

(J1 = 2, (J2 = CJ3 = 3, T12 = 0·7, '23" 1'31 = 0·5. 
Find (i) r23_1t (ii) RJ-23, (iii) b J2.3, bI3.~; and (iv) (JI.23. 

Solution. We have 

-;=0:::.:::5 -=(=0=.7~1(0:::~5=)= = 0.2425 
..) (1 - 0·49)(1-·0·25) 

_ 1'122 + 1'132 - 21'121'13 r2l 
- 1 - '2,2 

_ 0·49 + 0·25 - 2(0·7)(0·5)(0·5) 0 412 
- 1 _ 0.25 ... -'J 

R I -23 = + 0·7211 
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<11'3 = <11 V(I- T132) = 2 V(1-0 .. 25) = 1·7320 

<12.$ = <12 V (\'''': ;';~2) = 3 V (1 - 0·25) = 2·5980 

J_ 
<11.2 = <11 V (1 - T122) = 2 V (1 - 0·49) = \.4282 

U3.2 = <13 V (1 .,.., Tn2) = 3 V (1 - 0·25) = 2·5980 

Hence b1l.3 = 04 and bU .2 = 0·1333 

(iv) (11.23 = <11 ~ 
-. 

1 Tn T13 

where C.t> = T21 1 T13 = 1 - T122_T132 "- T132 + 2rll1"13T23 = 0·36 
T31 Tn 1 

SId C.t>ll = I T~ T~ I = 1 ~232= 1-0·25 = 0·75 

•• 0'1.23 = 2 x V 048 '= 2 x 0-6928 = 1·3856 
Example 10·35. Find the TegTessio~ equation of Xl on X2 and X3 given 

thefollowing resUlts :-
Trail Mean Standard deviation 

4·42 XI 28·02 
X2 
X, 

4·91 
594 

1·10 -0·56 
85 -0·40 

where Xl -= "Seed peT aCTe; X2 = Rainfallin inches 
X3 = Accumulated temperature above 42°F. 

Solution. Regression equation of Xl on X 2 and X 3 is given by 

(Xl -Xl).!!!!!. + (X2 -Xz) C.t>12 + (X3 -X3) C.t>103 =0 
<11 <12 CJ:J 

where II Tn T13 

C.t> - T21 1 T~ 
- T31 Tn ·1 

C.t>ll = I ;~. T~ 1.= I- T 232 = 1-(-0·56)2 = 0·686 

I T21 T13 I 
C.t>12 ,... - I . = TU Tl3 - T21 = - 0·576 

T31 1 

C.t>13 = T23 T12 - T13 = (- 0·56) (O.go) - ( .... 040) = - 0·048 
: .. Required equation ofpIane of regression of Xl onX2 andX3 is given by 

~ (X .... 28·02) + (..,..0·576) (X .... 4·91) of (-0·048) (X - 594) = 0 
442 1"' 1.10 2' "85.00 3 
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Example 10·36. Five hundred students were examined in three subjects I 

1/ and III; each subject carrying 100 marks. A student getting 120 or more bu; 
less than 150 marks was put in pass class. A student getting 150 or more bur 
less than 180 marks was put iii second class and a student getting 180 or more 
marks was put in the first class. The following marks were obtained: 

, I n I/-

Mean: 35·8 524 48·8 
SD. : 4·2 5·3 6·1 
Correlation: r12 = 0·6, r13 = 0·7 "23 = 0-8 
(J) Find the number of students in each of the three classes. 
(ii) Find the total number of students with total marks lying between 120 

and 190. 
(ii.) Find the probabil.ity that a student gets more that 240 marks. 
(iv) What should be the correlation between marks in subjects I and II 

among students who scored equal marks in subject 11/ '1 
(v) If r23 was not knowri,'pbtain t~ limits within which it may lit from the 

values of r12 and r13 (ignoring sampling errors). . 
SoJution. If Z denotes dte total m~~ o( the students in the three subjects 

and X 1" X 2, X 3 the total, marks of the students in subjects I, II and III 
respectively, then 

Z 

Z =X1 +X2 +X3 
•• E(Z) = E(X1) + E(Xz) + E(X3) = 35·8 + 52·4 + 48·8 = 137 

V(Z) = V(X1) + V(Xz) + V(X3) 
. +2(Cov (Xl'Xz) + Cov (X2,X:i)-+ Cov (X3;X1)] 

= 17-64 + 28.()9 + 37·21 + 26·712 + 35·868 + 51·728 
= 197·248 . [Using Cov (Xi, X)) = rq<Yiap 

=> <Y; = 197·248 or <Yz = 14·045 

Now ; = Z - E(~ - N(O, 1) 
<Yz 

Z-137 ~. Area ,,,.der the Frequenq ; 
14·045 P = J p(;)d; Class curve in this 

500 x (A) 
-00 class (A) 

120 - 1·21050 0·11314 120 - 150 0·70937 354·685 
150 0'92567 0·82251 159 -180 0·17639 88:195 
180 3·06180 0·99890 180 - 0·00102 0·510 
190 3·77400 0·99992 120 -; 190 0·88678 443·390 
240 7·33410 -~1·00000 240- 0·00000 0·000 . 

(I) The number of students in fIrst. second and third class respectiv.ely are 
355, 88 and 0 (approx.) 

(iJ) Total number of students with total marts between 120 and 190 is 443. 
(ii.) Probability that a student gets mo~ than 240 marks is zero, 
(iv) The correlation coefficient betw~n marks in subjects I and.n of the 

Sbldents who secured eqQ81 marlcs in subject m is rl2-3 and is given by 



eorreJationand R.eer-ion 

_ '12 - '13 '23 
'12·3 - = . 0·04 = 0.0934 

V (1 - '132)(1 - '232) ...J (1 - 0·49)(1 - 0·61) 
(v)Wehave. 

2 ('12 - '13 '23)2 S 1 
'12·3 = (1 - '132)f1 - '232) 

. .. 

=> 

(0·6 - 0·7a)2 
(1 _ 0.49)(1- a2) S I, where a = '23· 

0·36 + 049a2 - O·84a S 0·51 (1' - n2) 
a2 -0·840 -0·15 SO 

Thus • a' .lies between the rootS of the equation: 
a2 -O·84a -0·15 ='0, 

which are 0·99 and - 0·15. 
Hence '23 should lie between - 0·15 and 0·99. 
Example "}'0·37. S~w that 

1-R1.232.=(1-'122)(1-'13.22 ) 

Deduce that 

(I) R 1.23 ~ '12. (iI) R 1.232 = '122 + '132, if'23 =.0 

10·123 

(iii) 1 - R1.232 = (1 - ()~ p~ 2p) ,p,ovided all the coefficients of ze,o 

order are equal to p. 
(iv) If R1.23 = 0, Xl is ""correlated with any of othe, va,iables, i.e., 

T12 = '13 = O. [Delhi Uni". B.Sc. (Stat. Hon&)fl989] 
Solution. (,) Since I '13.21 S I, we have from (l0·46c) 

1 -R1.232 S 1 - '122 => R 1.23 ~ '12 
(il) We have 

"13 - '12 '32 _ '13 
'13·2= a' . 2 -a' 2 '4 (1 - '122)(1 -'32 ) '41 - 't2 

•• Ffom (1046c). we get 

l-Rt.232 = (l-r122) [1 .:.. 1 'i32 ~] = 1 .... '122-'132 
- '12 . 

Heoce R 1''+32 = '122 + '132, if '23 = O. 
(iii) Here, we ~ give~ that'12 ='13 ~'23 = P 

.. ' '132 = P - p2 = p(1 - ~) = ~ 
. ...J (1- p2)(1 _ p2) 11 - p) 1 + P 

Hence from (1046c), we have 

1 R 2 _ ( 2) [ . p2 ] _ (1 - p)(1 + 2p) 
- 1·23 - 1,,..,p 1.,. (1 + p)~' - (1 + p) 

(iv) '!IF 1.23 = 0, (1046c) gives 
1 = (1 - '122)(1 - '13.2.2) ... (*) 



Since 0 S r122 S 1 and 0 S r13.22 S 1, (*) will hold if and only if 

r12 = 0 and rl3-2 = 0 

Now r13.2 = 0 => 
r13.- r12 r32 _ 0 

V (1 - r122)(1 - r322) -

r13 , __ 0 ( => .,'r12=0) VI - r322 

=> r13 = 0 
Thus if R1.23 = 0, then r13 = ru = 0, i.e .• Xl is uncorrelated with X2 andX3• 

Example 10'38. Show that the correlatio..n coefficient between the 
residuals ~1.23 and X2.13 is equal and opposite to that between X1.3 and XZ,3. 

[PoonG Univ. B.Sc., 1991] 

~olution. The correlation c~fficient between X1.23 and X2.13 is given by 

Cov (X X ) ~X X N.l LX2.13(~1 - bl~.3 'x2 - b 13.2X3) 1·23, 2-13 ~ 1·23 2·13 
Cll.23 Cl2·13 =N Cll.23 Cl2.13 - Cll.23 Cl2.13 

b LX2.13X2 f = - lZ.3N (c •• Property 1, § 10·13) 
Cll·23 Cl2.U. 

b ·LX2.132 I f Pro 2 = - lZ,3 NCll:21. Cl2.13 ,c. . perty, § 10'13) 

_ b ClZ,13... b (Cl2 ~2) 
- - 12·3 - - 12-3 . 

Cll·23 (CliVW/ooll ) 

1 r12 r13 
where 00 = r21 I r23 

r31 rn '1 

0011= I r~ r: 1= l--r232 and ~= I r~ r~ 1= l-r132 

. Cl2 "1 -rZ3z ~ •• r(Xl.23~ XZ,13) = - b1203 ::;- • 1 r 2 = - b12.3 _ 
VI - 13 vl·3 

[since Cl2032 = Cl22 (1 - r232) and Cll.32 ='Cl12 (I - r132)] 

(X X) ~ov (X1.3, X2.3) Cl2·3 
•• r 1·23, 2·13 = - 2 • -

. CI~3 Cll.3 
COY (Xp, X2•3) r(X X_\ 

=- =- 13 231 Cl203 Cll.3 '. ~. 

Hence the resulL 
EDmpl~ lQ·39. Show tMt if X3 = aXl + bX2, the three partial ~orrelations 
are numerically· equal to unity, r13.2 havmg the 'sign of a, r23·L, the SIgn of band 
rl1-3. the opPosite sign of alb. [Ktmpur Univ. M.Sc., 199J] 
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Solution. Here we may regaraX3 as dependent on Xl andX2 which may 
be taken as independent variables. Since Xl and X2 are independeni, they are 
..,correlated. 

nus r(X1,Xz}r:O ~ Cov(XloXz}=O 
V(X3) = V(aXl + bXz} = a2V(X1) + blV(Xz} + 'lab Cov (Xl> Xz) 

~ tRa12 + JilG';,. 

w!JetC V(X1) = a12, V(Xz} = a22• 

Also X1X3 = X1(aXl + bXz} = a X12 + bX1X2 
Assuming that Xl's are measured from their meIms, on taking expectations 

of both sides, we get . 
COV(Xl,X3) =OO12'+bCov (X1,Xz}-OOI 2 

r _Cov(X .. X3)_ aa12 001 
., 13 - "V(X1) V(X3) - "al2(a2a12+JilG22) = T' 

wherC le2 =a2a12+bla-i. 

Similarly, we will get 
Cov (X2, X3) 002 

r23 = " V(X2) V(X3) = T 

r13- r12 rn ~ Ie ~ ~ 
'132 = = k = _ ~ = ± = ± 1 

, " (I - r122)(1 - r322) V le2 - b2a22 .." dlo12 aal 
according as 'a' is positive ot negative ... Hence. r13.2 has the same sign as 'a'. 

Again 
rn - r21r31 ba., k M.. ±I 

'23,1 = "(1--;:21,:)6 ~r312) = T Vle2_ a2a12 = ~ =, , 
aCcording as 'b' is positive or negative. Hence r2;l.l has the same Sign as 'b'. 
Now 

r12 .... r13r23 ~ ~ k'~ 
'12-3 = .. - Ie • Ie • 

v(1-,r132) (l-r232) v(k2-a2cJ12)(le2_'b20j) 

abalGa _ ~- aib _ -(alb) -:r- 1 
= - ...J tra22 X a2cJ12 - - "QlOl - -"dlnr -± (a/b) - , 

according as (alb) is positive or negative. Hence rl2-3 has the sign opposite to 
~of(oJb). 

Example 10'40. If all the co"e~tion cod/icients of zero order (n a set 0/ 
p-variales are e~ to p, sHow thoJ 

(,? E~ partial co"elDtion of s'th order,is T!;p ... (*) 

(u) The coefficient 0/ multiple correlatiQ.n R 0/ a variate with the othe, 
(p -1) variates is given by 

1-R2=(1-p) [1 +(P-l) P] 
1 + ~ - 2) P' 

rDellai URi.,. M.Sc. (MaIM'); 1990] 
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Solution. We are given that 

r ..... =p.(m.n= 1.2 •...• p;m*n) 

We have 

rij - rit rit (. • k 1 2 . J.' k) 
rift = • I. j. = '. • .... p; I ~ j :I-

~(1- rit2)(1 - rjt2) 

\_ p-p.p _---L 
':"" ~(I _ p2)(1- p2).- 1 + P 

••. (**) 

Thus every partial correlation coefficient of first order is p/( I + p). 

=> (*) is true for s = 1. 

The result will be established by the principle of mathematical induction. 
Let us suppose that every partial correlaq9n coefQcient of order s is given by 
pI(1 + sp). Then the partial correlation coefficient of order (s + I) is given by 

rij.bro. .. t = ~ 2 - • ( 2 ) 
(1 - r it.(;» 1 - r jt.(s) 

where k. m • •••• tare (s + I) secondary subscripts and rij.(s). rik.(s) .. rjt·(s). are 
partial correlation coefficients of order s. Thus 

-:----L--P - ( ---e.-Y ~ (1 _ ~) 
T.. 1 + sp :\t".+ sp) __ I_+_·....:6p'--~_I_+_s..:...p~_ P 

'J·Icm. •• t = = 
1- (~y (1- ~XI+ ~) 1 +(s+ l)p 

1 + sp ) 1 + sp 1 + sp 

Using (**) and (***). the required result follows by induction. 

(;0 We have 1 - R2 =....!!L 
CO 11 

where R is the multiple correlation coefficient of a variable with other (p -I) 
variables and • 

1 P. f' ... p 
pip ... P 

co= P.P 1 ... p • a determinant of order 'p' and 

p p p ... 1 

1 P P •.. P 
P 1 P ••• P 

COlI = P P 1 .•• P a determinant of order (p - 1). 

P P P ••• 1 



~tionaJfdRetP-ion 10·127 

Webave 
1 P P P ... P 
1 1 P P ... P 

0)= [1 + (p -I)p] 1 P 1 P ... P 

1 I I 

i , i ! 
1 P P P ... 1 

1 P P P P 
0 (1- p) '0 0 0 

~ ro=[I+(p-I)p] 0 ;0 (i - p) 0 0 

·0 0 0 0 (1- p) 

[On operating Rj -Rlt (i = 2. 3 •.•. p)]. 

•• CD = [I + (p _ l)p](1 _ py-l 
Similarly. we will have 

0)11 = [1 + (p - 2)p](1 _ p)P-z, 

I_Rz =~=(1_p)[l + (P-I)p J 
roll .1 + (p - 2)p 

Example 10'41. In a p-variate distribution, all the total (order zero) 
correlation coefficients are equal 10 Po ~O. Let Pl denote the partial correlation 
coefficient of order k and R~ be the multiple correlation co'!jficient of one variate' 
on k other variatef. Prove that 

(i) Pn ~ - (p ~ I)' (ii) Pl- Pl-l =- PlPA>-lt and 

(";\ R Z - k Po~ (Delhi Univ. MoSc. (SIaL) 1981] 
lll, 1 - 1 + (k - 1 )Po . 

Solution. (z) We have proved in 'Example 10·40. that 
_ Po 

Pl-l +kpo 

In the case of p-variate distribution, the partial correlation coefficient of the 
highest ord€[, is Pp-z and is given by 

_ Po 
Pp-z-I + (P _ 2)po 

Since I Pp-z lSI ~r -I S Pp-z S 1. 
we have (on considering the lower limit) 

-I SI +:~2)PO or -[I+(p-2)po]Spo 

1 
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= - (I ~PO)(I + (k~ I)PO)=-PtP~l 
(iiI) Taking P = Po and k = P - I in P81l (ii) Exan;aple 1040, we get 

2 . [ 1+ kpo ] 
I -Rt = (1 ~ Po) I + (k - .1')Po 

_ (I - Po)(1 + kpo) _ k p02 ". 
Rt2 - I - I + (k _ I)po - I + (k _ I)po (On simplificatIon). 

Example 10·42. If T12 and T13 are given. show that T23 must /ie in the 
Tange: T12 r13 ± (1 - T122 - T132 + TI22T132)lfJ. 

IfT12 = k and T]3 = -k. show that T23 will /ie between -1 and 1-2fil. 
[&rdar Palel Univ. B.8c. Oct., 1992; Madrae Univ. B.8c. (~tat. Mainj 1991) 

Solution. We have 

. 2 [ T12- T13T23 ] 2 I 
TI2-3 = S 

"'(1- T132) (l-rn2) 

•• (T12 -'T13T23)2 S (1 - TI32)~1 ~ T232) 

~ '1'1+ TI32r232 - 2r12 T13 T23 S I-TIl, -T232 + TI3?:T231-

~ T122 + T132 + T~ - 2r12 T13 T23 S I •.. (.) 
This condition holds for .consistent values of T12, '!t3. and f 23 • • ~) may be 

rewritten as : 
T232 - (2TI2T13)T23 + (T122 + TI32.- I) sO. 

Hence, for given values of T12 and T13, T23 must lie between the roots of the 
quadratic (in T~ equation 

T232 -- (2r12 T13) T23 + (T122 + T132 - I) = 0, 
which are given by, : 

T23 = T12T13 ± "'TI22;'132 - (T122 + Tq2 ~ I) 
Hence 

T12 T13 - -.J I - T,,,2 -'TI32 + TI22r~~2 S T23 S T1.2 T13 

+ -.J (I - Tll'--T-13"2-+-T-12-;;:2T-l-:32::") ... (U) 

In other words, Tz3 must lie in the range 
T12 T13 ± "'-:(-I---T-12-=2:O-_-T-l-:32=-+-T-12"2T-l"""32:-) 

In particular, if T12 = k and T13 = - k, we get froin (**) 

- k 2 - '" (1 - k 2 - k 2 + k4) S T23 oS - k 2 + "~(-I-_-k-2-_-k-2-+-k~4)-
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~ -k2-(I-k2) S T23 S - k2 + (1 - k2) 

ST23 S J _2k2 -1 

'-
EXERCISE 10(g) 

L (0) Explain partial correlation and multiple correJatiOQ. 
(b) Explain the concepts of multiple and partial ~rrelation coefficients. 
Show ihat the multiple correlation coefficient R 1.23. is, in the usual 

notations given by : ro 
R)'232 = I-­roll 

2 (0) In the usual notations, prove that 
R .2 _ T122. + T1?- - 2r1t'2l'31..,. 2 

1·23 - 1 T 2 ~ T12 - 23 
(b) If R 1.23 = 1, prove that T2.13 is alW ~ual to 1. 'If R 1.23 =:= 0, .does it 

necessarily mean thatRz,13 is also ,zero ? 
3. (0) Ol>Wn an expression-for'the variance of the residual X1.23 in terms of 

the corre1ations T12, T23 and T31 and deduce thatR1(23)~ T12 and T13' 

(b) Show that the standard deviation of'oroet'p inay be expressed m terms of 
standard deviation of order (p - 1) and-a correlation coefficient of'oroer (p - 1). 
Hence deduce that : 

(i) 01 ~ °1.2 ~ °1.23 ~ .:. ~ ° 1.23 ... ,. 

(ii) 1 - R~.23 ... " = (1 - T~2) (1 -' T ~3.i) ... (r ..:. T~".23 ..• ("- 1» 

[Delhi Univ. M.Sc. (Stot.) 1981] 

4. (0) In a p:variate distribution all the loal (zero order) correlation 
coefficients are equal to Po *' O. If 1'1 denotes the partial,correlation coefficient of 
order k, fmd Pt. Hence deduce that : 

, 
(,) pk - Pt -1 = - Pk Pt-l 

I:,) Po ~ -1I(P - 1). 
- .. - . -. [Delhi Univ. M.Sc. (Stat.), 1989] • , 

. (b) Show that the.multiI?le correlation coefficient- R1'23 .• J between Xl and 
(X2, X 3, •.• , Xj)' j = 2, 3, ..• , p satisfi~ the inequaliti~~ : 

.. R 1•2 S R 1:23,S .•• S R 1.23 ... P · 

[De~i Univ. M.Sc. (Matias.), 1989] 

5. (0) Xo, Xl' .,., X,. are (n + 1) vaqates. Qbtain a linear function of Xl>. 
X2, ••• , X,. which will have a maximum correlation with Xo. Show that the 
correlation R of Xo with the linear ful}ction is giyen'by . 

. R =(1- c?, J1 
(1),00 
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1 '01 'OZ.···.Ja. -. 
'10 1 '12 ..... Jl" 

<.0= 

'110 'Ill ',a ...... l 
and COoo is the determinant obtained by deleting the fU'St row and the fU'St column 
of <.0. 

(b) With the usUal notations, prove that 
<.0 . 

<721.234 ... /1 = m<712 = <712 (1- '122)(1- '13.22) ... (1- rll /l'23 ... /I_ I) 
11 _ 

(c) For a trivariate distribution, prove that 
_;:::::::.='::!::12~-::::;::'~13='~2~3 ::::::::;;:: '12·3 = V (1 - '132) (1 - '232) 

6. (a) The simple correlation coefficients between tePlperature (XI)' corn 
yield (Xz) and rainfall (X3) are, '12 = ()'59, '13 = 046 and '23 = 0·17. 

Calculate the partial correlation coefficients '12-3, '2H and '31.2' Also 
calculate RI•23• 

~b) If r12 = O·~, '13 = - 040 and '23 = - 0-56, fmd the values of '12.3, '13.1 
and '23:1' Calculate funher R 1(23)' R2(13) and R3(12)-

7. (a) In certain investigation, the following-values were obtained : 
'12 = 0-6, '13 = - 04 and '23 = 0·7 

Are the values consistent? 
(b) Comment on the consistency of 

3 4 1 
'12 = S ' '23 = S' '31 = - 2 . 

(c) SupPose a computer has found, for a given set of values of X I, Xl and 

'12 = 0·91, '13 = 0-33 and '32 = 0·81 
Examine whether the computations may be said to be free from error_ 
8. (a) Show that if '11 = '13 = 0, then R 1(23) = O. WhaJ is the sig'ilificance 

of this result in,regard to the mulQple regression equation of XI 011 X2 and X3 ? 
(b) For what value of R1•23 will X2andX3 be uncorrelated 7 
(c) Given the data: '12 =-0·6, '13 = 04, fmd tile value of '13.80 thittRI.23' 

the multiple correlation coefficient of X I oil X 2 and X 3 should be unity. 
9. From the heights (Xl), weighl$ (Xz) and ages (X3) of a group of students 

the following,staildard deviations tJIld correlation coefficients were obtained : 
<71 = 2·8 iJlches, <72 = 12 lbs, and <73 =,1'5 years, '12 = 0·75, T23 = 0-54, and 
'31 = 0,,43. Calculate (I) partial regression coefficients and (ii) partial correlation 
coefficients. 

10. For a trivariate distribution. : 

XI =40 Xl =70 
<71 = 3 <71 = 6 
'12 = 04 '23 = ().5 

X3 =90 
<73 = 7 
'13 = 0·6 
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Find 
(0 R1.23. (;0 r23.1. (iii) the value of X3 when Xl = 30 and X2 = 45. 
11. (a) In a study of a random sample of 120 students, the following results 

are obtained : 

X r = 68. X 2 = 70. X 3 = 74 
S12 = 100. S22 = 25. S32 = 81. 
rn = 0·60. r13 = 0·70. r2) = 0·65 

[S1 = Var (Xi)]. where X1.X2• X3 denote percentage of marks obtained by a 
sbldent in I test, II test and the final examination respectively. 

(0 Obtain the least square regression equation of X3 on Xl and X2: 

(iO Compute rt2.3 andR3•12• 

(iii) Estimate the percentage marks of a student in the final examination if 
lie gets 60% and 67% in I and II tests respectively. 

(b) Xl is the consumption of mille per head. X2 the mean price of mille. and 
X3• the per capita income. Time series of the three variables are rendered trend 
free and the standani deviations and correlation coefficients calculated ':' 

SI = 7·22. S2 = 547. S3 = 6·87 
rn = - 0·83. r13 = 0·92. r23 = - 0·61 

Calculate the regression equation of X 1 on X2 and X 3 and interpret the regression 
'lIS a demand equation .. 

12. (a) Five thousand candidates were examined in·the subjects (a). (b), (c); 
each of these subjects carrying 100 marks. The following constants relate to 
these data : ./ y 

Mean 
Standard deviation 

(a) 
39·46 

6·2 

Subjects 
(b) 

52·31 
9·4 

(c) 
45·26 

8·7 
rbc = 047 rca = 0·38 rab = 0·29 

Assuming normally correlated population. find· the number of candidates 
who will pass if minimum pass marks are all aggregate of 150 marks for the 
three subjects together. 

(b) Establish the equation of plane of regression for variates Xl. X 2. X 3 in 
the determinant form 

X l/al X2Ial X3Ia3 

rn 1, r2) = 0 

1 

[Delhi Univ. B.Sc. (Matu. HOI&8.). 1986] , 

13. (a) Prove the identity 
b1l.3 b23.1 b31•2 = r12.3 r23.1 r31-2 [GujaraI Unit •• B.Sc .. 199!] 
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(b) Prove that 

2 ~ ~3 
RI.23 = b12.3 rl2 ~l + b13-2 r13 ~I 

[Sardar Pab!l UniV. B.Sc., 1991]\ 
14. (a) If X3 = aX I + bX2 for all sets of values.of X I .X2, and X3• find the 

value of r23.I' 

(b) If the relation aXI + bX2 + eX3 = 0 holds for all sets of.values XI .X2 

and X 3. what must be the partial correlation coefficients ? 
IS. (a) If rl2 = r23 = r31 = P ~ I. then 

p. p...n 
r12·3 = r23-1 = r31·2 = -and RI (23) =R2(13) = R3(12) = ~~/;:::::!===-

I+p ~(I+p) 
(b) Y h Y 2. Y 3 are uncorrelated standard variates. X I = Y 2 + Y 3, 

X2 = Y3 + Ylo and X3 = Yl + Y2• Find the multiple -correlation coefficient 
betweenX3 and (Xl andX~. 

16. X, Y, Z are independent random variables with the same variance. If 
1 (1 1 XI=..{2 X-Z)'X2 =.,f3(X+Y+Z), X3 =..,[6(X+2Y+Z), 

show tharXI , X2, X3 have equal variances. Calculate r12.3 andRI (23)' 

17. (a) If XI ,X2 and X3 are three variables measured from their respective 
means as origin and if el is the expected value of XI for given values of X2 and 
X3 from the linear regression of Xl on X2.and X" prove that 

Cov (Xl. ell = Var (el) = Var (Xl) - Var (Xl - el) 

(b) If rl2 = k and r23 = - k, show that rl3 will lie between -I and I - 2/c2• 
18. (a) For three variables X. Yand Z, prove that 

rXY + ryz + rzx <!: - ~ ., .(*) 

Hint. Let us transform X, Y, Z to their standard variables U, V and lV. 
(say), respectively, where 

U = X - E(X) , V = Y - E(Y) • W = Z - E(Z) 
ax ay a~ 

so that 
E (U) = E (V) = E (W) = 0 
au2 == av2 = aw2 = I => E(U2) = E(V2) = E(W2) = 1 

} ••• (*"') 

Cov (U, -V) E(UV) - E(U) E(V) E(Uv)} 
ruv = '" = auav au av 
l'uw == E(UW); rvw = E(VW) 

.•• (*"'''') 

Since correlation coefficient is independent of change 'of origin and scale, 
proving (*) is equivalent to proving l 

ruv + rvw + ruw ~ -3/2 ... ("''''**) 
To establish (* .. *) let us consider the E(U + V + W)2, which is alwayS 

non-negative i.e., E(U + V + W)2 ~ 0, and use (**) and (***). 
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(b) X,Y,Z are : three reduced (standard) variates and E(YZ) =; E(ZX) = - Itl, 
find the limits between wh~ch the coefficient of correlation r(X, 1') is necessarily 

~ 
Hint. Consider E(X + Y + Z)2 ~ 0 :=> r ~ - t . 
(c) If r12, r23 and r31 are correlation coefficients of any three random variables 

XI ,X2 and X3 taken in pairs (Xl. Xz). (X2.X3) and (X3• Xl) respectively. show 
that I + 2rl2 r23 r31 ~ r122 + r132 + rri 

19. (a) If the relation aXl + bX2 + cX3 = O. holds for all sets of values of 
Xl,X2 and X3• where Xlo X2 andX3 are three standardised variables. find the 
three total correlation coefficients r12. r23 and r)3 in terms of a, b and c. What 
are the values of partial correlation coefficients if a, b and c are positive? 

(b) Suppose Xl> X2 and X3 satisfy the relation alX) + azX2 + a~3 = k. 
(i) Determine the three total correlation coefficients in terms of standard 

deviations and the constants at. a2 and a3' 

(ii) Slate what the partial correlation coefficients would be. 
20. (a) Show that the multiple correlation between Y·and Xl. X2 • .... Xp is 

the maximum correlation between Y and any linear function of X I, X 2 ••••• X po 

(b) Show that for p variates there are pe2 correlation coefficients of order 
zero and'p....ZC". pe2 of order s. Show further that there are pe2• 21'-2 correlation 
coefficients a1tog~ther and pe2• 2P-) regression coefficients. 

ADDITIONAL EXERCISES ON CHAPTER X 

1. Find the correlation coefficient between 
(,), aX + b and Y. (ii) Ix + mY and X + Y, when cQrrelation cQ..efficient 

between X and Y is p. 
2. If Xl andX2 are independent nonnal variates and U and V are defined by 

U=X1 cosa+X2 sina. V=X2cosa-Xl sina. 
show that the correlation coefficient p between U and V is given by 

2-1_ 4G12G; 
p - 4G)2GZ2 + (G)2 - (22) sin2 2a ' 

where Gl2 and C!l are variances of Xl and X2.respectively. 
3. The variables X and Y -are normally correlated. an4 ~, 11 are defined by 

~ = X cos e + Y sin e, 11 = Y cos a -X sin e 
Obtain a so that the distributions of ~ and 11 are independent. 

4. A set of n observations of simultaneous values of X and Y are made by 
an observer and the standard deviations and product moment coefficient about the 
mean are found to be Gx, Gy and PXy. A second observer repeating the same 
?bservations made a constant ·error e in observing each X and a constant error E 
In observing each Y. The two sets of observations are combined' into a single set 
and coefficient of correlation calculated from it. Show that its value is 

(PXy+ ~eE) +~ (Gx2 + ~e2)(Gy2 + ~E2) 
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Hint. here we have two sets of'observations : 

1st Set: (x. Yi). i = 1.2 •...• n; Mean = x . s.d. = a., . 

Product moment coefficient p", = , '" a .. a, 
2nd Set: (Xi + e. Yi + E). i= I. 2 •...• n 

1 I ~ -1y1ean (x' ), = Ii ~(Xj + e) = x + e 

Variance = ai' =! L [(Xi + e) - (x + e»)2~! L (Xi -x )Z=(Ji n . n 

Mean (y') = y + E. a/' = al. 
Product moment coefficient: 

p",' =! L[(Xi + e) - (x + e)][(Yi + E) - (y + E)] = p", 
n 

'To obtain the correlation coefficient for the combined set of 2n observations 
ese Formula (10·5); Exrur.ple 10·1 I (a) page 10·15. 

S. Each of n independent trials can materialise in exactly one of tlte resullS 

AI.Az ..... A ... If the probability of Ai is Pi in every trial (. L Pi = I) ,fmd 
I , = I 

the probability of obtaiping the frequencies '10 'Z ..... 'k for AhAZ ..... A. 
respectively in these trials. Also find E('j)~ Var ('j) and show that the correlation 
coefficient between 'i and 'j is independent of n. . 

6. In a sample of size n from a multinomial population nl' nz • .... nk are of 
type 1.2 ..... k with };Pi,= I. where Pi is the probability of type i (i = 1.2 .... , 
k). Show that the expected value of nz when nl is given is (n - iii) Pil - PI) and 
hence Or otherwise show that the coefficient of correlation between nj and nj is 

I 

[ PiP; J2 
.". (I - Pi) (1 - Pj) 

7. A ball is drawn at random from an urn contaiaing 3 white balIs 
numbered O. 1.2 ; 2 red balls numbered' O. I and I black ball numbered O. If tbe 
cOlours white~ red and black are again numJ>ered O. I and 2 respectively. shOW 
tI¥lt the correlation coefficient between the variables : X, the colour number and 
Y, the number of'the ball is - ~. 

8. If X\ and Xz are two independent normal variates with a common mean 
zero and variances alz and azz respectively. show that the variates defmed by 

az al 
~=~+~~ ~=--~+-~ 

al az 
are independent and that each is normally distributed with mean zero and 
common variance (O:IZ + azZ). 
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9. If X!>,X2 and X3 are uncorrelated variables with equal me~ M and 
variances V12, V22 and V32 respectively, prove that ,correlation coefficient p 

between ZI = ~: and Z2 = ~ is given by 

V32 
P = --;:=::::::::=::==:::::::::=:::::::::=::==:::::;= 

'.}[(V12 + V32)(V22 + V32) 

Hint. Neglecting the cubes and higher powers of ::' x! being the 

deviation of Xi from M and l~tting the means and s.d. 's Qf ZI and Zz to be 11,12 

and Slo S2 respectively, we get 

11 = k L? = k k(Xli +..M)(X3i + M )-1 
3 I 

= ~ L (I + i;) '{ I + i: y1 
_1. ~ [(I ~ x.1C. ') X...Jl Xli X 3i ] 
-N LJ -M+ Ml-'" + M- M2 + ... 

V32 
= 1+ Ml 

V32 
Similarly 12 = 1 + W 

.. h =12 

Now SI~ =kL(~~J -112 

3v32 !:J:. V32 I~? 
(l" S12+ i 12 = I + Ml + Ml ,:'and so we have S12= M2 + M2 • 

Similarly Sz2 = ~ + ~ 

Now NpSlS2 = r~ -11 ) ~: - 12 )b ~ (On simplification) 

Hence p = Np SI S2 _ V32 

SISz • ''';:::(V=3==2=+=V==1==2~) "-;":=(=V==32=+:::;V;::2==2=) 

to 10. (Weldon's Dice Problem). 'n white dice and m reo dice are shaken 
~ether and thrown on a table. The sum of the dots on the upper faces are noted. 

e red dice are. then picked up and thrown again among the white dice left on 
the tabl~. The sum of the dice on the upper faces is again noted. What is the 
COrrelation coefficient between the fll'St and the second sums? 

Ans. n/(n + m) 
11. Random variables X and Y have zero means. anti non-~ero variances ar 

~d, G1-: If Z = Y - X, then find a~ and tfle correlation coefficient p(X. Z) of 
and Z in terms of Gx. Gyand the correlation coefficient r(X; 1') of X and Y. 
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For certain data Y = 1·2X and X = 0·6Y. are the regression lines. Compute 
r(X. Y) and ax/ay. Also compute p(X. Z). if Z = Y -X. 

[Calcutta Unifl. B.8c. (MtJtlu. B~), 198f11 
12. An item (say. a pen) from a production line can be acceptable 

repairable or useless. Suppose a production is stable and let p. q. r (p + q + r ~ 
1). denQte the probabilities for three possible con~itions of an ilem. If the itellls 
are put into lots of 100 : 

(,) Derive an expression for the probability functiop of (~. Y) where X and 
Y are the number of items in the lots that are respectively in the rlJ'st 
two conditions. 

(ii) Derive the moment generating function of X and Y. 
(ii,) Find the marginal distribution X. 
(iv) Find the conditional distribution of Y given :x = 90. 
(v) Obtain the regression function. of Y on X: 

(Delhi Uni~. M4 (Eco.), 1985) 
13. If the regression of XI on X2 • .... Xp is given by : 

E(X1 IX2 • •..• Xp) = a +:P2X2 t P3X3 + ..• + PpXp 
a22 a23 ••• alp 
a32 a33 ••• a3p , ~;; = variances ) 

>0. .. 
aij = covanances 

apl ap3 ••• a pp 

then the constants ,a. P2 •...• Pp are given by 

!!n- 2l. !!u ~ ~. ~ a = III + R • • 112 + R • • 113 + ••. + R . • IIp 
11 <72 11 a3 11 ap 

and A.._ & a. (j= 2 t'}--R ._. -l ••...• p) 
11 Vj 

where Rij is the cofactor of Pi} in the determinant (R) of the correlation matrix 

Pn PI2'" Pip 
P21 Pn .,. Plp 

R= 
! 
I I 

P,I Pp2 ••• Ppp 

[Delhi Univ. M..Sc. (Stal.), iSM· 
14. Let XI andX2 be random variables with means 0 and variances 1 and 

correlation coeffICient p. Show that: 

E[max (.KI1• Xl 2)] ~ 1 + V.l _ p'l 

Using the above inequality. show that for random variables X I and X 1. with 
means III and Ill. variances all and all and correlation ci>efticient.p and for any 
k > O. 
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P[IXI-J.l.ll~kal or IX2-J.l.21~ka2]S:2[1 +..Jl- p2;] 

15. Let the maximum correlation between Xo and any linear function of 
Xl.X2 • •••• X" be~ and if rOl = r02= ••• = rOIl = r 
and all other correlation coefficients are equal to s, flIen show that: 

R = r [1 + (:. _ 1 )sJ/2 

16. If 1= f(x, y) is the p.d.f. of BVN (0. O. 1. 1. p) distribution. verify 

that : g,[ .2!L ()p = axay 
Further. if two new random variables U and V are defm.ed by the relation 

U = P(Z s x) and V = P(Z s y) where Z - N(O. 1). 
prove the marginal distributions of both II and V are uniform in the interval 

( 1 1) dthe' .. 1 - 2' 2 an If common vanance ~ 12 • 

Hence proveJb,a1 R = Corr. (U, V). satisfies the relation: p = 2 sin (1CR/6). 
[Delhi U"iu. B.A. (Stat. Hom. SpL CoUT'lll!). 1988] I' 

17. If (X, y) - BVN (J.Lx. J.l.y• ai. a/, p). then.prove that a + bX + cY. 
(b *' 0, c *' 0) is distributed as N(a + bllx + clly. blal + c2a/ + 2bcpaxa y)' 

~ [Delhi Univ. M.Sc. (StaL). IB89] 
18. Let X It X 2. X 3 be a random sample of size n = 3 from N (0. 1) 

distribution. 
(a) Show that -Y 1 = Xi +- ax 3, Y 2 = X 2+ ax 3 has a bivariate nornial 

distribution. 

(b) Find the value of a so that p(Ylt Y z} = ~. 
(c) What additio~al transformation involving Y1 and Y2 wou,Id produce a 

bivariate normal distribution with means J.l.l and J.l.2. variances (11 2 and a22• and 
the same correlation coefficient p ? 

Ans. (b) -lor l. (c) Zl = alrt + J.l.lt Z2 = a2Y2 + J.l.2. 
19. If (X, y) - BVN (0, O. 1. I, p), prove that: 

E[max (X, Y)] = [(1- p)/n]1I2 and E [mIn (X, Y)] =.., [(1 - p)/n]112 
20. If (X, y) - BVN (0.0, a12, al, p), show that rth cumulant of XY is 

given by: 

lC, = ~(r -I)! at' a2'.'[(p It 1)" + (p -1)"]. 

Deduce that E(XZ f2) = a12 a·i (1 + 2p2). 
21. Letl and g be the p.d.f.'s of X and Y with corresponding distribution 

functions F and G. Also let 
h(x, y) =f(x) g(y) [1 + a (1Jtx) - 9 (2G(x) - 1)] ; I a lSI. 

Show that h(x, y) is a joint p.d.f. with marginal p.d.f.'s/and g. Further, 
let I and g be N (0, 1) p.d.f.' s. Show that Z =:. X + Y, is not normally 
distributed. except in the trivial case a = O. 
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Hint. 'Fmd M-rJ../) = E(elZ ) and use Cov (X. 1) = a/fr.. 
ll. State p.d.f. of bivariate normal distribution. Let X and Y have joint 

p.df. of the form : 

II ':\ L -![au(% - bl)2 + 2aI2(% - bl)(y- b2) + a22<i - bv2); 
J\%' y, = #foe 

-00 < (z. y) < 

Find (i) k. (ii) the correlation coeffICient between X and Y. 
23. Write down. but do not' deriv~. the moment generating functi9n for a 

pair of random variables which have a bivariate normal distribution with both 
means equal to zero. 

The independent random variables X. Y. Z. are each normally distributed 
with mean 0 and variance 1. If U = X + Y + Z and V = X ..,. Y + 22. show that' 
U and V have bivariate normal distribution. Find the correlation of U with 
Vand the expectation of U when V is equal to 1. 

24. Let Xl and X2 'have a joint m.g.f. 

M(llt I~ = [a<e'l + 12 -+ 1) + b(/1 + i~l% 
in which a and b are positive constari~ such. that 2a + 2b = 1. 

Find E(XI). E(X~, Var. (XI)' Var (X~. Cov (Xl' X~. 

,ADS. Means = I, Variances = k. Covariance = 2a - k: 
25. X",X2' X, have joint distribution as a ~ulti}lomia1 distribution with 

parameters N.PltP2,P3' If'ij is the correlation coefficient between Xi.~d Xj' 
find the expression for '12. '23 and '31 and hence depu~ the expression {or the 
partia1 correlation coefficient '1023' 

26. (i)' If all the infer-correlations between (p + 1) variates Xo• X .. X2 •••• 

Xp are equal to,. show that each of ' the partial correlation co-efficien1s of oriIer 
p - 1 is equal to ,/[1 + (p -1),] ,and that the multiple correlation of Xo on XI' 
X2 • .•• , ,Xp is given by 

1 -R.2 - (1 - ,)(1 - p') 
0(l2. • .p) - 1 + (p - I), 

(u) '12 = ('12.3 - '13-2'23.1)1[(1 - r213-~11'1(1- ,.i~I)11l) 
• 27. If R denotes the multiple correlation co-efficient of XJ on X2• X3, •••• 

X"~ in p-variate distribution. prove that 
(z) R2 ~ R02. where Ro is the ~orrelation of Xl with any arbitrary linear 

fun(.;tion of X2• X, •.••• X"~ 
(if) R2 ~ R 12. where R 1 is the multiple CQRelation coefficient of Xl with 

X2.X3 • •••• Xl. Ii: <P 
p 

(iii) 1 - R2 = n (1 - r2lj.23.,,(j -1» 
j-2 



Theory of Attributes 

11'1. Introduction. Literally, an attribute means a quality 0 r 
characteristic. Theory of attributes deals with qualitative characteristics which are 
not, amenable to quantitative measurements and hence need slightly different 
statistical treatment from that of the variables. Examples of attributes are 
drinking, smoking, blindness, health, honesty, etc. An attribute may be marked 
by its presence (possession) or absence (disposSession) in a member of given 
population. It may be pointed out that the method of statisticai analysis 
applicable to the study of variables can also be used to a great extent In the 
theory of attri1>ates and vice-versa. For example, the presence or absence of an 
attribute may De regard~ as changes in th~. values of a variable which can 
possess only two values viz. 0 @lid I. For tJte ~e of clarity and simplicity, the 
theory of attributes has been developed independently. 

11'2. Notations. Suppose- the population is divided into two classes, 
according to .the presence or absence of a single attribute. The positive class. 
which denotes the presence of the attribute is generally written in capital Roman 
letters such as A, B, C. D etc. and the negative class, denoting the absence of 
the attribute is written in conespond}.ng small Greek letters such as a, ~, y, a, 
etc. For example if A represents the ,attribute sickness and B repres~p~ 
blindness, than a and ~ represent the attributes non-sickness (health) and' sight 
respectively. The two classes .viz .• A (possession of the attribute) and a 
(dispossession of the attribute) are S!tid to be complementary classes and the 
attribute a used in the sense of not-A is often called the complementary 
attribute of A. Similarly P. 'Y. S are the complementary attributes of B, C, D 
respectiVely. 

The colJlbinations of attributes are ~noted by grouping toge1her the letters 
concerned e.g. AB is the combination of-the attributes A and B; Thus for the 
auribu~ A (sickness) and B (smoking), AB would'mean the simultaneous 
possessiOh of sicJcnesS and smoking. Similarly AP will represent sickness and 
non~smoking, aB non-sickness (health) and smoking, and a~ non-sickness and 
nQn-smoking. 

If a third attribute be inclUded to re~sent, say ~ale, then ABC will stand 
for sick males who are smOkers. Similar in~rpretations can be given to ABy, 
A~C,A~y.etc. 

11'3. Vjc~otomy. If the universe (pop,ulation) is divided into two sub­
classes or complementary classes arid no more, with respect to each of the 
attributes A. B. C etc., the division or classification is said to be 'dichotomous 
classification". The classification is termed manifold if each class is further sub­
divided. 

11·4. Classes and C'lass Frequencies. Different attributes in 
theQ\Selves are called difft".tent classes and 'the number of observations assigned to 
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them are called class frequencies which are denoted by bracketing the class­
symbols. Thus (A) stands for the frequency of A and (AB) for the number of 
objects possessing the attribute AB. 

Remark. Class frequencies ~f the type (A), (AB), (ABC) etc. are known as 
positive frequencies; (a), (a~), (a~'Y) etc. are known as negative frequencies 
and (DB), (A~C), (a~C) etc. are called' the contrary frequencies. 

11·4·1. Order or Classes aod Class rreq ueocies. A class 
represented by n attributes is called a class of nth order and the corresponding 
frequency as the frequency of the nth order. Thus (A) is a class frequency of order 
1; (AB); (AC), (~'Y) etc. are class frequencies of second order; (ABC), (A~'Y) 
(a~C) etc. are frequencies of third order and so on. N, the total number of 
members of the population, witltout any specification of attributes, is reckoned 
as a frequency of zero-order . 

. Thus in a dichotolpouS cl~ification with respect to n attributes, the 

number of class frequencies of order • r' is ( :. ). 21', since r attributes our of n 

can be selected in (nr ) ways and each of the r attributes contributes two 

symbols, one representing the positive part (e.g" A) and the other the negative' 
part (e,g .• a), Thus the total number of class frequencies of all orders, for n 
attributes is : 

" 
~ (nr ) 2' = 1 + (~ ) 2 + ( ~ . ) 22 + ... '+ ( : ) 2~ =(1 + 2)" = 3" 

... (11-1) 
Remarks 1. lit particular, for.n attributes, the tom! number of class 

frequencies of different orders are given as follows: 

Order o 1 2 r n 

No. of frequencies 1 2" 

2. Since in the case of n attributes, the positive class frequency of order r 

has ( n,. ) elements,. their. total number is : 

3. In ease of 3 attributes A, B ar!d C, the total num~r 9f class frequencies 
is 33 = 27, as given below: 
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Order Frequencies 
0 N 

1 { (A) (B) (C) 
(a) @) (y) 

{ (AD) 
(AI3) (aB) (a(3) 

2 (AC) (Ay) (aC) (ay) 
'(BC) (By) @C) (~y) 

3 { (ABC) (ABy) (AP~ (APy) 
(aBC) (aBy) (aJ3C: (aJ3y) 

... (11·2) 
1I·4·2. Relation Between Class Frequencies. All the class 

frequencies of v;uious orders are not independent of each other ane any class 
frequency can always be expressed in terms of class frequencies of hi". -tier. 
Thus 

N = (A} + (a) = (B) + (13) = (C) + (y), etc. 
Also, since each of these A's or a's can either beB's or J3's, we have 

(it) = (AB) + (AJ3) and (a) = (aB) + (aJ3) 
Similarly (B) = (AB) + (aD) and ( J3) = (AJ3) + (aJ3) 

(AB) = (ABC) + (ABy), (AJ3) = (AJ3C) + (A~y) 
(aD) = (aBC) + (aBy), (a(3) = (aJ3C) + (aJ3y) 

and so on. Thus 
(A) = (AB) + (AP) ~ (ABC) + WJy) + (AJ3C) + (AJ3y) 
@) = (AP) + (aJ3) = (APC) + (Apy) + (aJ3c) + (aj3y), etc. 

The classes of highest order ar"! called the ultimate classes and their 
frequencies, the ulti'r'~te class frequencies. Thus in case of n attributes, the 
ultimate class frequencies will be the frequencies of nth order. For example, the 
class frequencies (ABC), (ABy), (Aj3C), (APy), (aBC), (aBy), (aJ3C), (aJ3y) 
are the ultimate frequencies for three attributes A. B and C. 

Remarks 1. In case of n attributes" 1h~ ultimate class .frequencies each 
contain" symbols and since each symbol may be written in two ways, viz., 
positive p'ait and negative part, e.g., A or a, B or 13, etc., the tot8I number of 
ultimate class frequencies is 2". 

2. By expressing any ciass'·frequency in terms of the class frequency of 
higher order, we can express it ultimately as Jhe sum of some of the 2" ultimate 

. class frequencies. 
3. The total numb~r of ultiJpate cl~s frequencies specify the data. 

completely. 
4. The set of ultimate class frequencies is not the only set which specify 

the data completely. In fact any set of class frequencies which are (i) 2" in 
number and (il) which are algebraically independent of e8~h other, will specify 
the data completely. Such a set is called the Fundamental Set. For example, the 
positive class frequencies form.such a seL Thus for n = 2, the set of positive 
class frequencies 22 = 4 (c.f. 11·2), is N, (A), (8), (AB). If we are given these . " 
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frequencies, then it is obvious from the table that the remaining frequencies, 
viz., (A~), (a~) (aB),(a) and (~) can be obtained by subtraction, e.g., given: 

A a Total 

B (AB) - (B) 

~ - - (~) 

Total (A) (a) N 

(a) = N - (A), (~) = N - (B) 

(A~) = (A) - (AB), (aB) = (B) - (AB) 

(a~) = (a) - (aB) = N - (A) - (B) + (AB) 

11.5. Class Symbols as Operators. Let us write symbolicallY' 

A.N= (A) ... (11·3) 

which means that the operation of dichotomising N according to A gives the 
class frequency equal to (A). Similarly, we write 

a.N=(a) 

Adding, we get 

A.N;: a.N = (A) + (a) 

~ (A + a). N = (A) + (a) 

~ (A + a). N=N 

=:. A+a=l 

Thus in symbolic expression we can replace A by (I - a) and a by (I - A). 
Similarly, B can be replaced by (1 - ~) and p by (I - B), and so on. 

Dichotomising (B) according to A, let u~ write 

A. (B) = (AB) 

Similarly, B. (A) = (BA) 

A. (B) = B. (A) = (AB) = AB.N, 

which amounts to dichotomising N according to AB. 

For example: 

(a~) = a~. N = (I - A) (1 - B). N = N - A. N - B. N + AB. N 

= N - [ (A) + (B)] + (AB) 

(a~y) = a~y. N = (1- A)(J - B) (I - C). N 

=N-AN-RN-CN+ARN+ACN+BCN-ABCN 

= N- rCA) + (B) + (C)] + [(AB) + (A C) + (BC)J - (ABC) 

(A By) = ABy. N = ABO - C). N = AB. N - ABC. N 

= (AB) - (ABC) 

(a~C) = (1 - A)(I ~ lJ) C N = (C -AC - BC + ABC). N 

= (C) - (AC) - (Be) -+- (ABC) 

and so on. 



Example 11·1. An investigation of 23.713 'households was made in an 
. urban and rural mixed locality. Of these 1.618 were farmers. 2.015 well-to-do 

and 770 families were having at least one graduate. Of these graduate families 
335 were those of farmers and 428 were well-to-do. also 587 well-to-do families 
were those of farmers and out of them only 156 were having at least one of their 
family member as graduate. Obtain all the ultimatei:lassfrequencies. 

Solution. Let the attribute 'fannjng' be denoted by A, the attribute 'well­
to-do' by.B and 'having at least one graduate' by C. Then in the usUal notations, 
weare given 

N = 23713, (A) = 1618, (B) = 2015, (c) = 770, (AB) = 587, 
(BC) = 428, (AC) = 335 and (:ABC) = 156. 

For three attributes A. B. c.,the number of ultimate class frequencies is 
23 = 8, one of them being (ABC) = 156. The rerruuning frequencies are obtained 
below: 

(ABy) = (AB) - (ABC) = 587 - 156 = 431 
(APc)· = (AC) - (ABC) = 335 ..oJ 156 = 179 
(APy) = (A) - (AB) - (AC) + (ABC) 

= 1618 - 587 - 335 + 156 = 852 
(aBC) = (BC) - (ABC) = 428 - 156 = 272 
(aBy) = (B) - (AB) - (BC) + (ABC) 

= 2015 - 587 -428 + 156 = 1156 
(aPC) = (C) -(AC) - (BC) +.(ABC) = 770 - 335 - 428 + 156 = 163 
(apy) = N - (A) - (B) - (C) + (AB) + (AC) + (BC) - (ABC) 

= 23713 - 1618 - 2015 - 770 + 587 + 335 + 428 - 156 = 20504 
Example 11·2. (a) Given the following ultimate class frequencies. find 

thefrequencies o/positive .class. . 
(ABC) = 149. (ABr) = 738. (A{3C) = 225. (APr) = 1.196 
(aBC) =204. (aBr) =1.762. (a{3C)=171 em (aPr) =21,842 
(b) Find the remaining class frequencies. given (he following data: 

N = 23.713. (A) = 1618. (B) = 2015. (C) = 770 
(AB) = 587. (AC) = 428. (BC) =335. (ABC) = 156 

Solution. (a) (A) = (ABC) + (ABy) + (APC) + (APy) = 2,308 
(B) = (ABC) + (ABy) + (aBC) + (aBy) = 2,853 
(C) = (ABC):" (APC) + (aBC) + (aPC) = 749 

(AB) = (ABC) + (ABy) = 887 
(AC) :: (ABC) + (APC) = 374 
(BC) :: (ABC) + (aBC) = 353 

aIXI N ::[(ABC) + (ABy) + (APc) + (APy) + (aBC) + (aBy) 
+(aPC) + (apy)] = 26,287 

(b) For three attributes, there are 33 = 27, class frequencies in all. Thus we 
have to detennine the remaining 19 class frequencies: 

Order1 : 
(a) = N - (A) = 22,095 ; (/3) = N - (B) = 21.698 
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(y) = N - (C) = 22.943 
Order2: Order3:' 

(A~) = (A) - (AB) = 1.031 
(aB) :; (B) - (AB) :; 1,428 
(cxP) = (a) - (aB) = 20.667 
(Ay) :; (A) - (AC) :; 1.190 
(aC) = (C) - (AC) = 342 
(ay) = (a) - (aC) = 21.753 
(By) = (B) - (BC) = 1.680 
(~C) = (C) - (BC) = 435 
(~y) = (~) - (~C) = 21.263 

(ABy) = (AB) - (ABC) = 431 
(APc) = (AC) - (ABC) = 272 
(A~y) = (A~) - (A~C) = 759 
(aBC) = (BC) - (ABC) = 179 
(aBy) = (aB) - (aBC) = 1249 
(apC) = (Pc) - (A~C) = 163 
(a~y) = (~) - (a~C) = 20.504 

Example 11'3. Show tllat fo~ n attributes AI. A2• A3 • •••• A" 
(At A2A3 ... A,.) ~ (At) + (A2) + (A3) + ... + (A,.) - (n - 1) N ... (11· 4) 

where N is the total number of observations. 
Solution. We have 

(ataV = ata2. N = (l-At)(1- Av. N =N -' (At) - (Av + (AtAv 
Since class frequency is always non-negative. we have 

(ataV ~ 0 => (AtAv ~ (At) + (Av -N ... (*) 
It follows that (11·4) is true for 2 attributes. 
Let us now suppose that (11·4) is true for r attributes At. A 2 • .... A, so 

that 
(At A2 A3 ... A,) ~ (At) + (Av + (A3) + '" + (A,) - (r - I)N 

Replacing the attribute A, by another compound attribute A,A,...t. we get 

(At A2 A3 ... A,Ar+t) ~ (At) + (Av + (A3) + ... + (A,A""l) - (r - 1)N 

~ (At) + (Av + (A3H· ... + ({A,) + (Ar+t) - NJ - (r - 1)N 

[From (*)] 

= (At) + (Av + ... + (A,) + (A,+t) - rN 

This irpplies that if (11·4) is true for n = r. it is also true for n = r + 1 
attributes. But we have seen in (*) that (11.4>. is true for n = 2. Hence by 
mathematical induction. the result is true for all positive integral values of n. 

Example 11·4. Show that if A occurs in a larger proportion ?f the cases 
where B is than where B is not. then B will occur in a larger proportion of cases 
where A is than where A is not. 

Solution. The problems can be restated as follows: 

Given 
(AB) ~ (AB) (aB) 
(B) > (~) • prove that (A) > (a) 

Now 
(AB) ~ (ill.. ~ 
(B) > (~) => (B) > (AB) 

an. @ll. 
1 + (B) > 1 + (AB) 



N J.&. 
(B) > (AB). 

N, J!lL 
(A) > (AB) 

(A) + (a) (AB) + (aB) 
(A) > (AB) 

{gl (aB)' 
1 + (A) > I + (AB) 

{g1 (aB) 
(A) > (AD) 

(AB) (aB) . 
(A) > (a) , as required. 

EXERCISE 11 (a) 

11·7 

1. (0) Explain the following: (,) Draer of a class, (i,) Ultimate classes and, 
(iiI) Fundamental set of class frequencies. 

(b) What is meant by a class-frequency of (,) flt~t order, (i,) third order? 
How would you express a class frequency of rltst order in terms of class 
frequencies of third order? 

2. Wh.at is dichotomy? Show that the continued dichotomy according to n 
attributes gives rise to 3/1 classes. 

3. (0) Given that (AB) = 150, (A~) = 230, (aB) = 260, (a~) = 2,340; find 
the other frequencies and the value of N. . 

(b) Given the following frequencies of We positive classes, find the 
frequencies of the rest Of the classes : 

(A) = 977, (AB) = 453, (ABC) = 127, (B) = 1.185, (AC) = 284, 
N = 12;000, (C) = 596, and (BC) = 250. 

Ans. (A~) = 524, (aB) = 732. (a~) = 10,291, (~y) = 935, (~C) = 346. 
(~y) = 10,469. (Ay) =693. (aC) = 312. (ABy) = 326. (aBC) = 123. 

"(aBy) =609,(A~C) = 157, (A~y)=367, (a~C) = 189, (a~y) = 10,192. 
4. Given the following data, find frequencies of (i) the remaining positive 

classes; and (ii) the ultimate classes; 
N = 1,800, (A) = 850, (B) = 780, (C) = 326, (ABy) = 200, (A~C) = 94, 

(aBC) = 72, and (ABC) = 50. 
S. (0) Measurements are made on a thousand husbands and a thousand 

wives. If the measurements of the husbands exceed the measurements of the 
wives in 800 cases for one measurement, in 700 cases for another and in 660 
cases for both measurements, in how mapy cases will both measurements on the 
wife-exceed the measurements on the husband ? 

Ans. 160 
(b) Ap unofficial political study was made about the recent changes in 

Indian political scene and it was found that 919 Indira Gandhi Congress 
supporters and 1,268 Organisatidn Congress supporters wanted socialistic 
economy, whereas 310 Indira Gandhi Congress supporters and 503 supporters of 
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the Organisation Congress wanted capitalistic economy in the country. Find out 
the total number of Indira Gandhi's and that of the Organisation's supporters, 
giving the number of capitalistic economy's and of the socialistic economy's 
votaries, out of the individuals, who were surveyed. 

6. At a competitive examinatio~ at which 600 graduates appeared, boys 
outnumbered girls by 96. Those qualifying for interview exceeded in number 
those failing to qualify by 310. The number of Science graduate ~oys 
interviewed was 300 while among the Arts graduate girls there were 2S who 
failed to qualify for intervew. Altogether there were only 135 Arts graduates and 
33 among them failed to qualify. Boys who failed to qualify numbered 18. 

Find (e) the number of boys who qualified for interview, 
(il) the total number of Science graduate boys appearing, and 

(iii) the number of Science graduate girls who qualified. 
ADS. (i) 330, (ie) 310, and (iii) 53. 
7. 100 children took three examinations A, B and C; 40 passed the fust, 39-

passed the second and 48 passed the third, 10 passed all the.three, 21 f~led all 
three, 9 passed the first two and failed the thUd, 19 failed the ftrSt two and passed 
the third. find how many children passed at least two examinations. Show that 
for the question asked certain of the given frequencies are not necessary. Which 
are they? 

ADS. 38. Only frequencies required are (C)" (apC), (ABy). 
8. In a university examination, which was indeed very tough. 50% at least 

failed in "Statistics", 75% at least in Topology, 82% at least in "Functional 
Analysis" and 96% at least in •• Applied Mathematics". IWw many at least failed 
in all the four? (Ans. 3%) 

HiDt. Use the result in Example 11·3. Page 11-6. 
9. If a collection contains N items, each of which is characterized by one 

or more of the aUributes A, B, C and D, show that with the usual notations 
(Q (ABCD) ~ (A) + (B) + (C) + (D) -3N, aJ!d 
(ii) (ABCD) = (..uJD) + (ACD) - (AD) + (AD~y),' 

where p and "f represent the characteristics of the libsence of Band.c 
respectively. 

10. Given (A) = (a) = (B) = (~) = k N; show that (AB) = (a~), (A~) = (aB). 

11. Given that (A) = (a) = (B) = (P) = (C) = (y) = l N 

1 
and also that (ABC) = (a~"f), show that 2(ABC) = (AB) + (AC) + (BC) - 2" N. 

n·6. Consistency of Data. Any class frequencies which have been 
or might have been observed within one and the same population are said'to be 
consistent if they conform with one another and do not ~.any way conflict ~or 
example~ the figures (A) = 20, (AB) = 25 are incons~~nt as (AB) cannot be 
greater than (A), if they are observed from the same population. 

'Consistency' of a set of class frequencies may be defined as the property 
that none of·them is negative, otherwise, the data forcJass frequencies are said to 
be 'inconsistent'. 



Since any class frequency can be expressed as the sum Qf some of the 
ultimate class freqlJCncies, it is necessarily non-negative if all the ultimate class 
frequencies are non-negative. This provides a criterion for testing the consistency 
of the data. In fact, we have the following theorem. 

Theorem 11·1. "The necessary and sufficient condition for the 
consistency of a set of independent class jrer[tu!1lcies is that. no ultimate class 
frequency is neg~tive." 

Remark. We can test the consistency of a set of 2" algebraically 
independent class frequencies by calculating the ultimate class frequenCies. If any 
one of them is negative, the given data are inconsistent 

11·'·1. Conditions for consistency of Data. . Criteria ~r 
consistency of class frequencies are obtained by using theorem 11·1. For a singte 
attribute A we have conditions of consistency as follows : 

(I) (A) ~ 0 } 
(iI) (a) ~ 0 ~ (A) S N) ... (11.5) 

For two attributes A and B, the coJll\litions of consistency are : 

(ilj (A~) ~ 0 ~ (AQ) S (A) 
(iii) (all) ~ 0 ~ (AB) S (B) 

(I) (AB) ~ 0 } 

(iv) (~) ~ 0 ~ (AB) ~ (A) + (B)' ..;. N) ... (11-6) 
Conditions of consistency for three atiributes A. B and C are 

(I) (ABC) ~ 0 
(iI) (ABy) ~ 0 ~ (ABC) S (AB) 

(ii.) (APc) ~ 0 ~ (ABC) S (AC) 
(iv) (oBC) ~ 0 ~ (ABC) S (BC) 
(v) (APY), ~ 0 ~ (ABC) ~ (AB) + (AC) - (A) 

(vi) (C11Jy) ~ 0 ~ (ABC) ~ (AB) + (BC) - (B) 
(vii) (apC) ~ 0 ~ (ABC) ~ (AC) + (BC) - (C) 

(viii) (a~y) ~ 0 ~ (ABC) S (AB) + (BC) + (AC) - (A) - (B) - (C) + N 
, ... (11'7) 

(i) and (viii) in (U ·7) give: 
(AB) + (BC) + (AC) ~ (A) + (B) + (C) - (IV) . } 

Similarly 
(i.) an (vii) ~ (AC)' + (BC) - (AB) s (C) ••• (11.8) 

(iii) sd (v.) ~. (AB) + (BC) - (AC) S (8) 
(iv) ad (v) ~ (AD) + (AC) - (flC) S (A) 

Remark. As already pointed out [cf. Remarks (3) and (4),..§ 11-4·2)],2" 
algebraically independent cJass frequencies are necessary to specify the data 
completely, one such ~t being the set of ultimate class frequencieS and the other 
being the set of positive class frequencies. If the data supplied are incomplete so 
that it is not possible to detennine all the class frequencies, then the conditiqns 
(ll·S), (11-6) and (II·S) for one, two and three, ~ttributes respectively, enable us 
to assign the limits w~thin which an unknown class frequency Can lie. 
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Example 11·S. Examine the consistency of the following data: 
N = 1,000, (A) = 600, (B) = 500, (AB) = 50, the symbols 'having their 

usual meaning. 
Solution. We have 

(aP) =t N - (A) - (B) + (AB) = 1000 - 600 - 500 + 50 = -50. 
Since (aP) < 0, the data are inconsistent. 

Enmple 11'6. Among the adult population of a certain town 50 per 
cent are males. 60 per cent are wage earners and 50 per cent are., 45 years of-age 
or over, 10 per cent of the males are not wage-earners and 40'per cent Of the 
males are u1ll/er 45. Make the best possible inferenc~ about the limits within 
which the percentage of persons (male or female) of 45 years or over are wage­
earners. 

, Solution. LetN = 100. Then denoting males by A, wage-eamers by Band 
45 years of age or over by C, we are give~: 

N = 100, (A) = SO, (B) = 60, (C) = 50 
10 40 

(AP) = 100 x 50 = 5, (A'Y) = 100 x 50 = 20 

•• (AB) = (A) - (AP) = 45, (AC) = (A) - (A'Y) = 30 
We are required to fmd the limits for (~C). 
Conditions of consistency (11·8) give 
(I) (AB) + (BC) + (AC) ~ (A) + (B) + (C)-N 

~ (BC) ~ 50 + 60 + 50 - 100 - 45 - 30 = -15 
(il) (AB) + (AC) - (BC) S A 

~ (BC) ~ (AB) + (AC) - (A) = 45 + 30 - 50 = 25 
(iii) (AB) + (BC) - (AC) S· (B) 

~ (BC) S (B) +. (AC) - (AB)= 60 + 30 -45 = 45 
(iv) (AC) + (BC) -' (AB) S (C) 

(BC) S (C) + (AB) "" (AC) = 50 + 45 - 30 = 65 
(I) to (iv) => 25 S (BC) S 45 
Hence the percentage of wage-earning population of 45 years or over must 

lle between 25 and 45. 
Example 11·7. In a series of houses actually invaded by smallpox, 70% 

of the'inhabitants are tJltacJced and 85% have been vaccintJIed. What is the lowest 
percentage of the vaccinated that must have been attacJced ? 

Solution. Let A and B denote the attributes of the inhabitants being 
aaacked and vaccinated respectively. Then we are given: 

N = 100, (A) = 70 and (B) = 85 
Consistency condition gives': 

(AB) ~ (A) + (B) - N => (AB) ~ 55 
Hence the lowest percentage of inhabitants vaccinated, who have been 

auackedis ~ 
(AB) 55' 
(B) x 100 = 85 x ~OO = 64·7% 



'lbeorY of Attributes 

Example 11·8. Show that if 

@ = x @=2x (O=3x 
N 'N·· , N 

and 
(AB) _ (!!fl_ (CA)_ 

N - N - N -Y', 

then, the vallie of neither x 'nor y can exceed 114, 
Solution. Conditions of consistency give : 

(AB) S (A) => NySNx => ySx 
Also (Be) ~ (B) + (C) - N 

mm > @ (0_1 
=> N -N+N 

=> y ~ 2x+3x-1 
=> 5x -I S.y 
.(1) an4 (il) give 

... (i) 

... (ii) 

1 
5x - 1 S x => 4x S 1 => x S 4 ... (iii) 

. Thus ,from ~l) and (iiI) we have y S.x S ~. ~hich establisheS ~e ,result 

Example 11'9. Show that (i) If all A's are B's and all B's are C;' s then 
aliA's are C's, (ii) IfallA's are Bs.and noB's are C's then no A's are C's. 

Solution'. (i) All A's are B"s => (All) = (A) } 
and all B's are C's => -(BC) = (B) 

To,prove (AC) = (A) 
We have (AB) +- (BC) - (AQ S,an 
=> ,(A) + (B) - (AC) S (B)' 
=>- (A)-S (AG) => (A C), ~ (A) 
But since (A~'; (A), we have (AC) = (A), as desired. 

... (*) 

[Using (*)] 

(il) We are given (AB) = (A) and (BC) = 0 and we want to prove (AC)'= 0, 
'Wehave' • " 

(AB) + (AC) - (BC) S (A) 
~ (A) + (AC) -0 s (tt) 
=> (AC) S.O' , . 
And since (AC) ~ 0, we inust have (AC) = O. 

EXERCISE l1(b) 

1. What do you' understand by consistency of giv~n data ? How do you 
check it? 

2. (a) If a report gives the following frequencies as actually observed, show 
that there must be a misprint or mistake of some sort, and that possibly the 
misprint consists in the dropping of 1 before 85 given as the frequency (BC) : 

N= 1000, (A) = 5 iO., (B) =490; (C)=427, ~1B)= 189,t{AQ= 140, (P9>=8'5. 



(b) A student reported the results of a survey in the followi~g planner, in 
teons of the usual notations : 

N = 1000, (A) = 525, (B) = 312, (C) = 470, (AB) = 42, (BC) = 86, 
(AC) = 147, and (ABC) = 25. 

Examine the consistency of ~e above data. 
(c) £xamine the consistency and adequacy of the following data tQ detemtJne, 

the frequencies of the remaining positi ve and ultimate classes. 
N = 10,000, (A) = 1087, (B) = 486, (C) = 877, 
(CA.~) = 281, (Ca~) = 86, (yAB) = 78, (ABC) = 57 

3. Given that (A) == (B) = (C) =!N and'80 per ce~t of,A's are II's, 75 per 

cent of A's are C's, find the limits to'the percentage of B's that are C's. 
Ans. 55% and 95%. 
4. If (A) = 50, (B) = 60, (C) = 50, (A~) = 5, (Ay) = 20, N = 100, find the 

greatest and the least poss~ble vaiues of (BC) so that the data may be consistent. 
Ans. 25 ~ (BC) ~ 45 

5 5 
5. If 1,000 = N = Ij'(A) = 2(B) = 22' (C) = 5 (AB), and (AC) = (BC), what 

should be the minimum value of (BC) ? 
Ans. 150 
'. . I 
'.-Glven that (A) = (B) = (C) = 2' N = 50 and (AB) = 30, (AC) = 25, find 

the limits within which (BC) will lie. 
7. In a university examination 6,5% of ttte candidate passed in English, 

90% passed in the second language and 60% passed in the optional subjects. 
Find how many at least should have passed the whole examination • 

.-\ns; 15%. Hint. Use Example 11·3. 
8. A market investigator returns the following'data. Of 1,000 people 

consulted 811 liked chocolates, 7S2,liked toffees and 418 tpced boiled sweets, 
570 liJced both chocolates and toffees. 356 liked chocolates and boiled sweets and 
348 liked toffees and boiled sweets, 297 liked all three. Show that this 
information as it stari<is must be incorrect ' . 

9. (a) In a school, 50 per cent of the students are boys: 60 per cent are 
Hindus and 50 per cent are 10 years of age or over. Twenty per cent of the boys 
are not 'Hindus and 40 per cent of die boys are under 10. What conclusions can 
you,draw in regard to percentage of Hindu students of 10 years or over? 

(b) In a college. 50 per cent of the students are boys, 60 per cent of the 
student are above 18 years and 80'per cent receive scholarships. 35 per cent of 
the -students are beys above 18 y~s of age, 45, per cent are'bqys r:eceiving 
scholarships, and 42 per cent are above 'l8 years and receive scholarships. 
Determine the limits to the proportion of boys above 18 years who are in rec~~pt 
of sclioJarsh~ps~ 

ADS. Between 30 and 3~., .' 
10., The following Summary a~ in'a,report on a survey coveriQg 1,000 

fieldS. Scrutinise the numbers and point out 'if there is any mistake or Il}isprint 
in them. ' , 



'lbecry of.AUzibutM 11·13 

Manured fields 510 
irrigated fields 490 
Fields growing improved varieties 427 
Fields both irrigated and manured 1,89 
Fields both manured'and growing improved varieties 140 
Fields both irrigated and growing improved varieties 85 
Hint. Let A: manured fields; 

B: Irrigated fields 
anl C: Growing improved varieties; then (a~'Y) < O. 

11. ~ social survey in a v~llage revealed that ~ere were more uneducated 
employed males than educated ones; there were more educated employed males 
than uneducated unemployed males. There were more educated unemployed under 
35 years of age tl}an emp~oyed uneducated males Qver 35 years of age. Show that 
there are more uneducated employed males under'35 years of age than educated 
unemployed males over 3S years of age., 

i2. In a war between White and Red forces" there are more'Red soldiers than 
White, there are more armed Whites than unarm~ Reds, thety are fewer armed 
Reds with ammunition than unarmed Whites without ammunition. Show that 
there' are more armed Reds without ammunition 'than unarmed Whites ~ith 
ammunition. 

13! Given that (A) = (Bj = (C) = ~ .<~) = CA;! ::; p, find what must ~ 
the greatest and least values of p in order that.. we may infer that (BC)/N, exceeds 
any given value, say q. 

1· 1 
Ans. 4(1-2q)SpS4(1+~). 

11·7. Independence or Attributes. Two attributes A and B are said 
to be independent)f there exists no relationship of any kind between them. If A 
and B are independent, we would expect (I) the same proportion of A 's amongst 
B's as amongst P' s, (ii) the proportion of B' s amongst A's is same as that 
amongst the a's. For example, if insanity and deafness are independent, the 
proportion of the insane people among deafs and non-deafs ~ust be ~e: 

11·7·1. Criterion or Independence. If A and B are independent, then 
(i) in § 11·7 gives, ' 

(AB)· '00 
(B) = (\3) 
@_~, (dID: 

1- (B) -1- (\3) 

(aB) ._(~ 
(B) - @) 

Similarty, (il) in § 11\7 gives 
. " ~-{gID 

(A) - (a) 

~' 
1- (AB) _1_(<<8) 

(A) - (a) 

••. (11·9) 

••• (11·9a) 

••• (11·10) 
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!dID. _!2ID 
(A) - (a) 

In fact (11·9) ~ (11-10) and vice-versa. 
For e~ple. (1.1·9) gives 

(AB) _ ~ _ (AB) + (AS) _!& 
(B) - $) - (B) + (~) - (N) 

(AB) _ @_ (B) - (AB) (aB) 
(A) - N - N - (A) «X). 

... (IHOa) 

(l1·IOb) 

wh~ch is (1 tIO). Similarly. starting from (1l.10):we would arrive at (11·9). 
It becomes easier to grasp the nature of the.~ve relations if the frequencies 

are supposed to.be grouped. into a table-with two rows and two columns as 
follows,: 

Attributes A a Total 

-
B (J\B) (aB) (/J) 

~ (A~) (a~) $) 

Total (A) (a) N 
\ 

SecoQd criterion of independence may' be obtained in terms 'of the class 
frequencies of first order. (I I· lOb) gives 

(AB) =~ 
N 

(AB) ..... ill @ 
N - N' N' 

which leads to the following i~por1a9t fundam~ntal rule : 

... (11·11) 

... (11·11a) 

"[f the attributes A and,B are independent, the proportion of AB' s in the 
population is equal t() the product of the proport!o14S of A's qnd B's in the 
population. " 

We may obtain a third criterion of indepen4{mce in terms of second order 
class frequencies, as follows. 

("AB) ( A.) - ,<A) (B) ~ ~!&OO. (gl@(Using11.11) 
.• al-' N' N - N • N 

(AB) . (aM = (A~). (aB)} 
(AB) ~ 
(aB) = (ap) 

... (11·12) 

Aliter. (11·12) may also be obtained from(11·9) and (11·9a) as explained 
below'; . 

(11·9) and (11·9a) ~ 



=> (AB)(a~) = (A~) • (a~) 
Similarly. (11·10) and (11·10a) give the same resull 
11·7·2. Symbols (AB)o and S. Let us write 

(AB) _IDID 
0- N ... (11·13) 

which is the value of (AB) under the hypothesis that the attributes A and B are 
independenl 

Let S = (AB) - (AB)o ... (11·14~ 
denote the excess of (AB) over (AB)o. Then 

S = (AB) - (A~B) = k [N (AB) - (A)(B)] 

= k [{ (AB) + (Aft) + (aB) + (a~)} (AB» 

- {(AB)+(A~)} {(AB)+(aB)}] 

=k [ (AB) (a~),.... (A~) (aB)] [On simplification] 

~11·12) => S = O. if A and B are independenl ... (11·15) 
Example 11·10. If S = (AB) - '(AB)o. -then with usual notations, prove 

that 
(,) [(A) - (q)][(B) - (~)] +2NS = (AB)2+ (a~)2- (A~)2_ (aB)2 

(il) S=¥ {(t:/- (~)} =(~~a) {(t:/- (~!}} 
. ®ill Solution. (i) We have S = (AB) - (AB)o = (AB) - N 

L.R.S. = [(Ai - (a)][(B) - (~)] + 2NS 
\ 

= [(AB) + (A~) - (aB) - (a~)][(AB) + (aB) - (A~) - (a~)] 

+ 2N [(AB) _ (A!»B'>] 

= [{(AB)-(~)} + {(Aro-(aB)}][{(AB)-(a~)} -'((A~)-(aB)H 
+ 2[N(AB) - (A) (B)] 

= [(AB) - (a~)]2 - [(A~) - (aB)]2 
+ 2[(AB){(AB) + (A~) +.(aB) + (o./J)} - {(AB)+ (A~)} {(AB) + (as)}] 
= [(AB)2 + (~)2 - 2(AB) (a~)] 

-[(A~)2 + (fI,B)2 - 2(A~) (as)] + 2[(.48) (~~) - (A~) (as)] 

(On simplification) 
;:::: (AB)2 + (a~Y~ - (A~)2 - (aB)2 = R,H.S. 

(iJ) ¥ [(1:/ -(A~) ] = h [ (~)-(AB) - (B)(A~).J 



=~[ (AB) (N-(B)}-(B) {(A)-(AB)}] 

= ![ N '. (AB) - (.4)(B) ] = (AB)- (A)li(B) =~ 

Since a is symmetric in A and B, by interchanging ~A and B, we will 
obtain the second resUlt 

11·8. Association 0'" Attributes. Two attributes A and B are said 
to be associated if they are not independent but are related in some way or the 
other. They are said to be 

positNely associated if (AB) > (A}JB) } 
'A\ 'B\ ... (11·16) 

ad negativel associated if (AB) < ~ 

In other words, two attributes A and B are pOsitively associated if ~ > 0, 
negatively associated if ~ < 0 orand are independent if6 = 0 (c.f. § 11·7·2). 

Remarks 1. Two attributeS A and B are said to be completely associated 
if A cannot occur without B, though B may occur without A and vice-versa. In 
other words, for complete association either all A's areB's i.e .• (AB) = (A) or all 
B's areA's i.e .• (AB) = (B) accOrding as eiiher A's or B's are in a minority. 
Similarly, complete dissociation means m. no A's are B's i.e .• (AB) = 0 or no 
u's are (3's i.e .• (uJ3) = 0 or more 'generally when either of tftese state~ents is 
true. 

2. It should be carefully noted that the word 'association' used in Statistics 
is technically different from the general notion of association as used in day-to­
day life. OrdinariJy, two attributes are said to be associated if they occur together 
In a number of cases. But statistically two attributes are said to be associated if 
they occur together in a large .number of cases th~ expected if. t1Jey were 
independent, i.e .• if a = (AB) - (A),(B)/N > O. In Statistics, the Statement that 
"some A's are B' s", however great the proportion, does· not necessarily imply 
association between them. Thus to fmd out if two atlributes are associated, we 
must know (A), (B), (AB) and N. I,ncomplete information will not enable us to 
conclude anything about association between them. For example, consider the 
following statement: 

"90 per cent of the people who drink alcohol die before reaching ~e age of 
7S years. Hence drinking is bad.for longevity of life. " 

The .i~ference drawn is not correct, since the given information is not 
complete for drawing any valid conclusions about association. It'might happen 
that 95% d. the people who do not 'drink. die before reaching 75 years of age. In • 

. ~ ~ drinking might be found good for lOngevity of life. 
3. Sampling jluctua(ions. If ~ ~ 0 and its vlplue is fairly small, then it is 

possible that this association is just by chance (or commonly temied as"due to 
~uctuations of sampling) and not. really significant of any . real association 
between the attributes. We should not, th~ore, draw hasty conclusions about 
association or dissociation unless ~, the difference between (AB).and its expected 
value (under the hypothes~s of independence) (A}(B)/N, is signiti~an.t. The 
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problem: 'how much difference is to be regarded as significant' will be discussed 
in detail in Chapters 12 (Large sample test for attributes) and 13 (Chi-square test 
of goodness of fit). This point has been raised here only as a precautionary 
measure to warn the reader against dmwillg hasty inferences. 

11'8·1. Yule's Coefficient of Association. As a measure of the 
intensity of association between two attributes A and B. G. Udny Yule gave the 
coefficient of association Q, defined as follows: 

_ (AB) (aB) - (AB) (aB) N8 
Q - (AB) (a~) + (A~) (aB) = (as) (a~) + (A~) (aB) •.. (11·17) 

If A and B are inlM:pendent. 8:: 0 => Q = O. 
If A and B are completely associated. then 

either (AB) = (A) => (A~) = 0 
(I' , (AB) = (B) => (aB) = 0 

and in each ~ Q = +1. 
If A and B are iii complete dissociation then either (AB) = 0 or (a~) = 0 and 

we get Q =-1. 
Hence -1 S Q S 1 ... (11·18) 
Remark. An important property of Q ,is that it i'3 inde~ndent of the 

relative proportion of A 's or a's in the data. Thus if all the terms containing A 
in Q are mUltiplied by a constant, k' (say), its value remains unaltered. Similarly 
for B, ~ and a. This property renders it specially useful to situations where the 
proportions are arbitrary, e.g.. experiments. 

11·8·2. Coefficient of Colligation. Another coefficient with the 
same properties as Q. is the coeffIcient of colligation Y. given by 

Y _ {I _ - I (A6)(aB) }' / '{I. + - I (AB)(aB)} -, -'I (AB)(~) -V (AB)(a~) 
. 1 - 1 

Remarks ,1. Obvlously Q = 0 ~ Y = 1+1 = o. 
Q = -1 => Y = -1 and Q = 1 =>' Y = 1 and Conversely. 

(AB) (aB) 
2. If we let (AB) (a~) = k, so that 

Y ,= 1 - {k => y2 = 1 +} - 2;Vk 
1 '+ ~ 1 + k + 2~ k 

1 + yz _ 2(1 + k) _ 2(1 + k) 

- 1 + k + 2~ k - (1 + {k )2 

2Y = 2(1 - {kx (1' + {k). == 1 - k 
1 + y2 2Q + k) 1 + k 

(AS) (aB) 
_ 1 - (AB) (aB) = (AB) (aB) - (AB) (aB) 
- 1 + (AB)(aB) (AB)(a~)'+ (A~)(aB) 

(AB) (a~) 

... (11·19) 
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Q . 2Y 
= 1 + y2 ... (11.20) 

Example 11·11. Find if A and B are independent. positively associated 
or negatively associated. in each of the following cases : 

(i) N = 1000. (A) = 470. (B) = 620. and (AB) = 320. 
(li) (A) = 490. (AB) = 294. (a) = 510. and (aB) = 380. 

(iii) (AB) = 256. (aB) = 768. (AP) = 48, and (ap) = 144. 

Solution. (I) ~ ::;: (AB) _ (A~B) 

= 320 47~;;20 = 320 - 291· 4 = 28· 6 

Since ~ > 0, A and B are positively associated. 
(i,) We have N = (A) + (a.) = 490 + 570 = 1060 

(B) = (AB) + (aB) = 294 + 380 = 674 

:. ~ = (AB) - (A~(B) = 294 ... 49~~74 = 294 - 311.6 '< 0 

Hence A and B are negatively associated. 
(iii) (A) = (AB) + (AP) = 256 + 48 = 304 

(B) = (AB) + (aB) = 256 + 768 = 1024 
N = (AB) + (A~) + (a.B) + (aP) = 256 + 48 + 768 .,.. 144 ::l:: 
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',Heney, A and B are independent 
Aliter. Since all the four frequencies of order 2 are given, using (11·15), 

we have 

~ = ~ [(AB) (a.P) - (AP) (aB)] = ! [256 x 144 - 48 x 768] 

256 [ ] =N 144-48x3 =0 
~ A and B ate independent. 
Example U·U. Investigate the association between darkness of eye-

colour' in father and so'!from the following data : 
Fathers with dark eyes and sons )Vith dar~ eyes: 50 
F athen with dark eyes and sons with not dark eyes: 79 
Fathers with not ~k eyes and'sons with dark eyes: 89 
Fathers with not dark eyes and sons .with not dark eye~ : 782 
Also tabulate for comparison the frequencies that would have been observed 

hod therp been no heredity. 
Sol uti 0 n. Let tl: Dark eye-colour of father and 

B: Dark eye-C9iour of son. 
Then we ate given (AB) = SO, (A~) = 79~ (aB) = 89, (a.P) =.782 



Q _ 50 x 782 - '79 'X' 89 32069 _ 0.69 
- 50 x 782 + 79 x 89 - 46131 - + 

.11·19 

Hence there is a fairly high tlegree of positive association between the eye 
colour of fathers and sons. 

We have (A) = (AB) + (A~) = 50 + 79 = 129 
(8) = (AS) + (aB) = 50 + 89 = 139 
(a) = (aB) + (a~) = 89 + 782 = 871 
~) = (A~) + (a~) = 79 + 782 = 861 
N = (A) + (a) = 129 + 871 = 1000 

Under the condi.tian of no heredity, i.e .• independence of attributes A and B, 
we have . 

'AB) _illill_ 129 x 139 -18' (AR) _ffiiID._ 129 x 861 111 
" 0- N - 1000 - , "'0- N - 1000 

(~D) _.!ID.ill_ 871 x 139 _ 121' (NR) _1rU1ID. = 871 x 861 750 
\AU 0 - N - 1000 - ,"'t' 0 - ,N JOOO-

~.mple 11·13. Can vaccination be regarded as (l preventive measure for 
small pox from the data give below ? . 

, 'Of 1482 persons in a locality exposed to small-pox. 368 in all were 
attacked: 

'0/1482 persons; 343 had been vaccinated and of these only 35 were 
attacked: 

Solution. Let A denote the attribute of vaccination and B that of attack by 
small-pox. Then the given data are : 

N = 1482, (A) = 368, (B) = 343 and (AB) = 35 
(a~) = N - (A) - (B) + (AB) = 1482': 368 - ~43 + 35 = 806 

(A~) = (A) - (AB) = 36a - 35 = 333 
(aB) = (B) - (AB) = 343 - 35 = 308 

Q _ (AB~ (a B) - (AB) (~) _ 35 x 806 - 333 x 308 = _ 0.57 
.. (AB)(aP)'+ (a~)(aB) -35 x 8'06 + 333 x 308 

Th~s, there is negative association between A and iJ i.e .• between 'attacked' 
and 'vaccinated'. In other words, there is positive association between not 
attacked and vaccinated. Hence vaccination can be regarded as a pr~veptive 
measure for smallpox. 

EXERCISE 11(c) • 
1. (a) What 00 you mean by independence of attributes ? Give a cri~rion 

of independence for attributes A and B. 
(b) What are the various methods of finding whether two attributeS are 

associated. dissociated' or independent ? Deduce anyone such measure of 
asso:ciation. 

(c) When are ~o attributesJaid to be positively assOCiated and nep'tive1y 
associated? Also define coniplete association aIld dissociation of two attributes. 

(d) Derive an expression for a m~asure of association between two 
attributes. 



(e) What is association of attributes '1 Write a note o~ the strength of 
association and how it is measured '1 

if) Find whether the attributes a and ~ ~ positively associated, negatively 
asso:ciated or independent. Given (AB) = 500, (a) = 800, (B) = &:IJ.N = 1500. 

2. (a) Define Yule's coefficient of aSsociation and the coefficient of 
Colligation. Establish the following reJation between coefficient of association 
Q and coefficient of colligation Y : . 

2Y 
Q= 1 + yl 

(b) For the following table, give Yule's coefficient of as_soci~tion (Q) and­
coeffICient of Colligation (Y). Examine the cases (,) be :: 0, (i,) ad = 0, and (iii) 
od=bc. 

B notB 
A a b 

not A c d 
ADS. Q = 1 = Yifbe = o and Q =-1 = Yif ad= o and Q = 0 if ad= be. 
(c) Prove that in the usual notatlbns Q = 2Y/(1 + f2). What i~ the range of 

values for Q '1 
(11) If an attribute A is known to be comple~ly associated with an aUJibute 

B, (,) what ~'you infer about the association between a and ~ '1 (a and p are 
'equivalent to 'not A' and 'not B' respectively), (it) a and B '1 

3. (a) The following table is reproduced from a memoir written tiy Karl 
Pearson: 

~ye cqlour} 'Not light 
in [ather Light 

Eye colour in son 
Not lighl Light 

230 148 
151 471 

'Discuss if the colour of son's eyes is ~sociated. wjtl) tha~ Qf. father. 
ADS. Yes. Positively associated, Q = 0·66. 
(b) The following t4ble sltows the result of inocculation against cholera. 

1!ot attacked Attacked 
/nocculaJtd 431 5 
Not-inocculated 291 9 
Examine th~ effect of inoccuJation in controlling susceptibility to cholera. 
ADS. • Il)occulation is .. effective in· controlling cholera. 
4. (a) tmd the association between proficiency.in English 2Ild in Hindi 

among candidates at a certain test if 245--of them passed in Hindi, 285 failed in 
Hindi, 190 failed in Hindi but passe4 in English and 147 ~ in.both. 

(b) TJte'rpaie population of a state is 250 lakhs. The number of li~ra~. 
males is 20 lakhs and total number of male criminals is 26 thouSand. The 
number of literate male criminals is 2 thousand. Do you find any association 
between literacy and criminality '1 • 

ADS. Lite~y and criminality are positively associated. 
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(c) From the following particulars frnd whethec blindness and baldness are 
associated : 

Tot~1 population 
Number of baldheaded 
Number of blind 
Number of baldheaded blind 

1,62,6.4,000 
24,441 
7,26~ 

221 
5. In a certain investigation carried on with regard to 500 graduates and 

1500 non-graduates, it was found that the num~r of employed graduates was 
450 while the number of unemployed non-graduates was 300. In the second 
investigation 5000 cases were examined. The number of non-graduates was 3000 
and the number of employe4 1J0n-graduates was 2500. The number of graduates 
who were fQ1.JDd to be employed was 1600: 

Calculate the coeffICient of association between graduation and employment 
in both the investigations. 

Can any defiriite conclusion be drawn from the coefficients ? 
ADS. Q (lst Investigation) = ~. 38, Q (SeCOnd Investigation) = - 0·11 
6. (a) Three aptitude tests A, B, C were given to 200 apprentice trainees. 

From amongst them 80 passed test A.-78 passed test B and 96 passed die third 
test While 20 passed aU the three tests, 42 failed all the three, l~ p~ it and 
B but failed C and 38 failed A and B byt passed the third. DeterD!ine (i) how 
many trainees pa~sed at least two of the three tests and (ii) whether the 
performances in tests A and B are associated. ADS. (I) 76, (it) ~ = 0·3 ' 

(b) In a survey of a population of 12000, information is gathered regarding 
three attributes A, B and C. In the usual notations, . 

(A) = 980; (AS) = 450, (ASC) = 130 
(fJ) = 1190, CAc) = 280, (C) = 600 and (BC) ~ 250. 

Find : (l) (a~'Y) (ii)QAB = Coefficient of Association between A and I' 
Comment on your findings. 
7. A group of 1000 fathers was studied and it was found that 12·9% had 

dark eyes. Among them the ratio of those having ~ns with dark eyes to diose 
having sons with not daPc eyes was 1 : 1·58. The number of cases where fathers 
and sons both did not have dark eyes was 782. Calculate coefficient of 
association between darkness of eye colour in father and son. Give the 
frequencies that would have been observed had there been completely no heredity. 

HiDt. (AS) = 50, (~~) = 79, (Q.8) = 89 and. (a~) = 782. 
8. A census revealed the following figures of the blind and the insane in 

two ag~-groups in a cectain population: . 
Age-Gro." A'ge-9roup 

15-J5 years over 25 years 
Total population 2,70,000 '1,60,200 
Number of-blind "1,000 2,000 
.Number of insane 6,000 1,000 
Number bf insane among the blind 19 9 

(IJ Obtain a measure of association between blindness and insanity for each 
age-group. . ' • 



(ii) Which group shows more association or dis-a:ssociatiotl (if any) ? 
9. Show that if (AB)1o (as)1' (AP)1o (ap)1 and (ABh. (aSh. (i'\P)2 and 

(ap)2 be two aggregateS corresponding to the same values of (A). (B). (a) and 
(~),dlen • 

(AB)l - (AB)2 = (aB)2 - (aB)l = (AP)2 - (AP)l = (ap)1 - (aPh 

10. Show that if a = (AB), - (AMB) • then 

·a;;: k [(AB)(ap) - (AP)(aB)] 

OBJECTIVE TYPE QUESTIONS 

1. State,. giving reasons, whether each of the :following statements is true 
or false: 

(I) There is no difference ~tween correlation aIJd association. 
(ii) All the class freqqencies of various orders are· independent of each other. 

(iiI) H the attributes'A and,B are positively .assQCj~. then. a and B a;re also 
pp~itively associated. 

(iV) Square. of Yule's coefficient of association cannot exceed 1. 
(v) Yule.'s coefficient of association cannot be negative. 

(vi) FOt: !WO attributes A and B, the coefficient of association Q is O· ~6 .. If 
each ultimate class frequency is doubled then Q is 0:72: 

(vii) If (AB) = 10, (al1)-= 15, (AP) = 20 and (aP) = 30, then A and Q ~ 
associated. 

(viii) If every item which posSesses an aitrlbute A posse~es the attribute B 
as well, then the coefficient of association between A and B'is 1. 

D. Indicate the correct answer: • 
(I) In case of two attributes A and B, the ultimate class frequencies·ate :' 

(0) : (A), (b) : (AB), (c) : (a): (d) : (B) .. 
(ii) The condition fO.r 'the consistency of a set of -independent ciass' 

frequencies is that no ultimate class' frequency is (0) zero, (6) posttive. 
(c) negative.' . I 

(iiI) Attributes A ana B are said to. J>e inde.~ndent if 
(0) (AB) > (A); (B) , (b~ (AB) = (A); .(B). (c) (AB) < (A) ~ (B) 

(iv) Attributes A and B are said to.be pos~tlvely associated if 
(AB) @D. (AB) @D. tAB) @D. (AB) @D. 

(0) (B) < @) , (6) (B) = $) , (c) (B) > @) , (d) (A) < @) 

(v) If N = 50, (A) = 35, (B) = 25,. (AB) = 15, then the a~tributes A and B 
are said to be : 

(0) correlated, (b) independent, (c) negatively associated, (d). J)Qsitively 
associated 

(VI) When there is a p<?rfe.ct IX?sitive association ~tween tw,o attriJ>!1.~s, Q 
would be (0) zero, (b)-0·9, (c)-I,(d) +1. -



CHAP1ER TWEL~ 

Sampling and Large Sam.ple 
Tests 

12·1. Sampling-Introduction. Before giving the notion of 
sampling we will first define population. In a statistical investigati,on the 
interest usually lies in the assessment of the general magnitude and the study of 
variation with respect to one or more characteristics relating to individuals 
belonging to a group. This group of individuals under study is called population 
or universe. Thus i~ statistics, population is an aggregate of objects, animate or 
inanimate, under study. The popula~on may be fmite or infinite. 

It is obvious that ,for any statistical investigation complete enumeration of 
the population is rather impracticable. For example, if we want to have an idea. 
of the average per capita (monthly) income of tue people in India, we will have 
to enumerate all the earning individuals in the country-, which is rather a very­
difficult task. 

If the population is infmite, complete enup1e~tion is not possible. Also if 
the units are destroyed in the course of inspection, (e.g., inspection of cJ;ackers, 
~xplosJve materials, etc.), 100% inspection, though possible, is not at all 
desirable. But even if the population is finite or the inspection is not deSf,rUctive, 
100% inspection is not taken recourse to because of multiplicity of causes, viz., 
~inistrative and financial implications, time factor, etc., and we take the help 
of sampling. 

A finite subset of statistical individuals in a population is called a sample 
and the number of individuals in Ii ~ple is called the sample size.-

For the purpose of determining population characteristics, instead of 
enumerating the entire population, the individuals in the sample only are 
observed. Then the sample characteristics are utilised to r.pproximately determine 
or estimate the population. For example, on examining. the sample of a 
particular stuff we arrive at a decision of purchasing or rejecting that stllff. The 
error involved in such approximation is known ~ sampling error and is inherent 
and unavoidable in any and every sampling ~cheme. But sampling resuJts i'n 
considerable gains, especially in time ~d cost not only in respect o( ma1Q.ng 
observations of characteristics but also in the subsequent handliQg of the data. 

I 

Sampling is quite often used in our day-to-<tay practical life. For example, in 
a shop we assess the quality of sugar, wheat or any other commodity by taking a 
han'dful of it from the bag and then decide to purchase it or not. A housewife 
normally tests the cooked products to find ,if they are properly cQOked and contain 
the proper quantity of salt. 

12·2. Types or Samplingr Some of the commonly known and 
frequently used types ,of sampling are : 
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(i) Purposive sampling. (ii) Random fampling. (iii) Stratified sampiing, 
(iv) Systematic Sampling. 

Below we will precisely explain these terms, without entering into detailed 
discussion. 

12·2·1. Purp"sive Sampling. Purposive sampli~g is one in which 
the sample units are selected with d~finite purpose in view. For example, if we 
want to give the picture that the standard of living has increased in the city of 
New Delhi, we may take individuals in the sample from rich and posh localities 
like Defence Colony, South Ext,ension, Golf Links, Jor Bagh, Chanakyapuri, 
Greater Kailash etc. and ignore the localities where low income group and the 
middle class families live. This sampling suffers from .the drawback of 
favouritism and nepotism and does not give a representative sample of the 
population. 

- 12·2·2 Rando~ Sampling. In this case the sample units are selected 
at random and the drawback of purposive sampling, viz.. favouritism or 
subjective element, is completely overcome. A random sample is one in which 
each unit of population has an equal chance of being included in it. 

Suppose we take a sample of size n from a fmite population of size N. Then 
there are NC" possible samples. A sampling technique in which each of the NC" 
samples has an equal chance of being selected'is known as random sampling and 
the sample obtained by this technique is termed as a random sample. 

Proper care has to be taken to ensure that the selected sample is random. 
Human bias, which varies from individual'to individual, is inherent in any 
sampling scheme adqlinistered by human beings. Fairly good random samples 
can be obtained by the use of Tippet's random number tables or by throwing of 
a dice, draw Of a lottery, etc. • 

The simplest method, which is normally used, is the lottery system which 
is illustrated below by means of an example. 

Suppose we want to select 'r' candi<h¥es out of n. We ~sign the numbers 
one to n, one number to each candidate and write these numbers (1 to n) on n 
slips which are made as homogeneous as possible in shape, size, etc. These slips 
are then put in a bag and thoroughly shuffled and then or' slips are drawn one by 
one. T~e 'r' candidates corresponding to the numbers on the slips drawll, will 
constitute the random sample. ' 

Remark. Tippet's Random Numbers. L.H.C. Tippet's random numbers 
tables consist of 10400 four-digHed numbers, giving in all 10400 x 4, i.e., 
41600 digits, taken from the British census reports. These tables have proved, to 
00 fairly random in character. Any page of M table is selected at random and the 
nu~ber in any row or column or diago~ selected at random may be taken to 
c:onstitute the sample. 

12·2'3. Simple Sampling. Simple sampling is random sampling in 
which each unit of the population has an equal chance, say p, of being included 
in the sample and that this probability is independent of the previous drawings. 
Thus a simple sample of size n from a population may. be identified with a series 
of n independent trials with constant probability 'p' of success for each trial. 

Remark. It may ~ pointed out that random sampling does not necessarily 
imply ~ple sampling though, obviously, the converse is true. For example, if 
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an urn contains 'a' white balls and 'b' black balls, the probability of drawing a 
white ball at the fIrst draw is [a/(a + b)] = PI' (say) and if this ball is not replaced 
the probability of getting a white ball in the second draw is.£(a - 1)(a + b - 1)] 
= PZ * PI, the sampling is not simple. But since in the fJtSt draw each white ball 
has the same chance, viz., a/(a + b), of being drawn and in the second draw again 
each white ball has the same chance, viz., (a - 1)/(a + b - I), of being drawn, 
the sampling is random. Hence in this case, the sampling, though random, is 
not simple. To ensure that sampling is simple, it must be done with 
replacement, if population i~ finite. However, in case of infInite population no 
replacement is necessary. 

12·2·4. Stratified Sampling. Here the entire heterogeneous 
population is divided into a number of homogeneous groups. usually tenned as 
strata, which differ from one another but each of these groups is homogeous 
within itself. Then units are sampled at random from each of these stratum, the 
sample size in each stratum varies according to the relative importance of the 
stratum in the population. The sample, which is the aggregate of the sampled 
uqits of each of the stratum, is tenned as stratified sample and the technique of 
drawing this sample is known as stratified sampling. Such a sample is by far the 
best and can safely be considered as representative of the population from whiCh 
it has been drawn . 

. 12'3. Parameter and Statistic. In order to avoid verbal confusion 
with the statistical constants of the population. viz., mean (JJ,), variance (j2. etc .• 
which are usually referred to as parameters. statistical measures computed from 
the sample observations alone, e.g., mean (i ). variance (sZ). etc .• have been 
tenned by Professor R.A. Fisher as statistics. , 

In practice. parameter values are not known and the estimates based on the 
sample values are generally used. Thus statistic which may be regarded as an 
estimate of parameter. obtained from the sample. is a function of the sample 
values only. It may be pointed out that a statistic. as it is based on sample 
values and as there are multiple choices of the samples that can be drawn from a 
population. varies from sample to sample. The determination or the 
characterisaton of the var!ation (in the values _of the statistic obtained from 
different samples) that may be attributed to chance or fluctuations of sampling is 
one of ~e fundamental problems of the sampling theory. . 

Remarks 1. Now onwards. Il and (jz will refer to the populatipn mean and 
variance respectively whjle the sample mean and variance will be denoted by 
x and s2 respectively. 

2. Unbiased Estimate. A statistic t = t(Xl. Xz • ..... x,.). a function of the 
sample values Xl. Xz • .... XII is an unbiased estimate of population parameter 9. 
if E(t) = e. In other words. if 

E(Statistic) = Parameter. . .. (12·1) 
then statistic is said to be an unbiased estimate oftlie pai'ameter. 

12'3'1. Sampling Distribution of a Statistic. If we draw a sample 
of size n from a given fInite population of size N, then the total number of 
possible samples is : 

N N! 
c'II = '(N _ )' = k, (say). n. n. 
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For each of these k sampl~ we can compUte some statistic t = t(Xll X2, ... , 

x,.}. in particular the mean X, th~ variance s1:, etc., as given below: ,. 

Sample Number Statistics 
t i il .•. . ~.,. ~ 

1 tl il S12 

2 '2 i2 sl 
3 t3 i3 . S32 

k . tl il 's12 
, . 

The set of the values of the stat.istic so obtained, one for each sample, 
constitutes what is called the sampling. distribution of the statistic. For 
exampl~, the values tit t2, t3, •.. , tl determine the. sampli.ng distribution of the 
statistic t. In other words, statistic t may be regarded as a random variable 
which can take the values tit t 2, t3 • •..• tl and we can compute the various 
statistical constants like mean, variance, skewness, kurtosis etc., for its 
distribution. For example, the mean agd variance of the sampling distribution of 
,the statistic t are given by : 

1 1 1 
t =-k(tl+t2+ ... +It>=-k.I.t; .. / 

1[ - -2 - ] Var(/) =i (/1- / )2+(/2- / ) + ••• +(/1- / )2 

1 1 
=- I.(/;-7)2 

k i. 1 

12·3·2. Standard Error. The standard deviation of the sampling 
distribution of a statistic is known as its Slandard Error, abbreviated as S.E. The 
standard errors of some of the well known statistics./or large samples. are given 
below. where n is the sample size, (J2 the population variance, and P the 
'pOpulation proportion, and Q = 1 -Po nl and n2 represent,the sizes of two 
.independent random samples respectively drawn from the given poplilation(s). 

S.No. Statistic Standard Error 

l. Sample mean : x arm 
2. Observed sample propottiQn 'p' V PQln 

3. Sample s.d. : s ~2!2n 
4. Sample variance : s2 a2V2/n 

S. Simple quartiles 1·36263 orm 
6. S·~mple median 1·~331 arm 
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7. 

8. 

9. 

10. 

n. 

12. 

13. 

Sample correlation coefficient (r) 

Sample moment ~3 

Sample moment ~4 

Sample coefficient of vatiation (v} 

Difference of two sample means : ( i~ - Xz) 

Difference of two sample s.d.'s : ($1 - sz) 

Difference of two sample proportions 
(P1 - pz) 

(1- pZ)rrn • 

, p -being the population 

correlation coefficient" 

cr3 V96/n 

a4V96/n 

Remark on the Utility of Standard Error. S.~. plays' a very 
important role in the ,large sample theory and forms the basis of the testing of 
hypothesis. If t is any statistic. then for large samples 

Z = 1 - E(I) _ N(O. 1) '(ef. § 12.9) 
~V(t) 
1- E(t) . -

=> Z .= S~E. (I) - N(O. 1). for lirge samples. 

Thus. if the discrepancy betw~n the observed and the expected 
(hypothetical)' value of a s~tistic is ~ter than Za (c.f~ § 12·7·2) times its S.E •• 
the·null hypothesis is rejected at a level of -significance .. Similarly. if 

II-E(I) 1 S Za X S.E. (I) •. 
the deviation is not regarded significant at 5% level of significance. In otht(r 
words. the deviation. 1- E(I). cOl,1ld have arjsep due to fluctuations of sampling 
and the data do not provide us any evidence against the null hypothesis which 
may,therefore. be accepted at a level of signifiCance. [For details see § 12·7·3] 

(t) The magnitude of the standard error gives an index of the precision of the 
estimate of the parameter. The reciprocal of the sllmdard eqor is taken as the 
measure of reliability or precision of the statistic. • 

S.E. (P) = VPQln [ef. (4b) § 12·9·1J 

aoo S.E. (X) = atTn- [ef. § 12·2J 

10 otl:ler words. the standard errors of p and x vary inversely as the square root of 
the sample size. Thus in order to double the precision. which amounts to 
red,ucing the standard error to one half. the s~ple size ~as to be increased four 
times; 

(ii) S.E. enables u"s to determine the probable limits within which the 
population parameter may be expected to lie. For example. the probable limits 
for population proportion P are given by 
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p ± 3..Jpqln (cf. Rewark § 12·9·1) 
Remark. S.E. of a statistic may be reduced by increasing th~ sample size 

but this results in corresponding increase in cost, labour and time, etc. 
12·4. Tests of Significance. A very important aspect of the sampling 

theory is the study of the tests of significance, which enable us to decide on the 
basis of the ~ple results, if 

(I) the deviation between the observed sample statistic and the hypothetical 
param.eter value, or 

(i) the deviation between two independent sample statistics; 
is significant or might be attributed to chance or the fluctuations of sampling. 
• Since, for large n, almost all the distributions, e.g.. Binomial, Poisson, 
Negative binomial, Hypergeometric (cf. Chapter 7), t. F (Chapter 14), Chi· 
square (Chapter 13), can be approximated very closely by a normal probability 
curve, we use the Normal Test 0/ Significance (c/. § 12·9) for large samples. 
Some of the well known tests of significance for studying such differences for 
small samples are t·test. F·test and Fisher's z-transjormation. 

12'5. Null Hypothesis. The technique of randomisation used for the 
selection of sample units makes the test of significance valid for us. For 
apv1ying the test of signific{lnce we first set up a hypothesis-a definite 
statement about the population parameter. Such a hypothesis, which is usually a 
hypoth(:;sis of no difference, is called null hypothesis and is usually denoted by 
Ho. According to Prof. RA. Fisher. null hypothesis is the hypothesis which is 
.tested/or possible rejection under the assumption that it is true. 

For example, in case of a single statistic, H 0 will be that the sample 
statistic does not dif(er significantly from the hypothetical parameter value and in 
the case of two statistics, Ho will be that the sample statistics do not differ 
significantly. 

Having. set up the nu)) hypothesis we 'compute the probability P that the 
deviation between the observe<\ sample statistic and the hypothetical parameter 
value might have occurred due to fluctuations of sampling (cf. § 12·7). If the 
deviation comes out to be significant (as measured by a test of significance), null 
hypothesis is refuted or rejected at the particular level of significance adopted (cf, 
§ 12·7) arid if the deviation is not significant, null hypothesis may be retained at 
that level. 

12·5·1. Alternative Hypothesis. Any hypothesis which is comple­
mentary to lhe null hypolhesis is called an alternative hypothesis, usually 
denoted by HI' For example, if we want to tes~ the null hypothesis that the 
population has a specified mean Ilo, (say), i.e., Ho: ~ = Ilo, then the alternative 
hypothesis could be 

(,) HI : ~ ~ Ilo (i.e .• ~ > ~o or ~ < Ilo) 

(ii) .HI : ~ > J.1o 
~iii} III : ~ < Ilo 

The alternative hypothesis in (0 is known.as,a.two tailed alternative and the 
alternatives in (it) and (iii) are known as right tailed and left-tailed alternatives 
respectively. The selling of alternative hypodJesis is very important since it 



enables us to decide whether we have to use a single-tailed (right or left) or two­
tailed test [c.f. § 12·7·1]. 

. 12:6. Errors in Sampling. The main objecti~e in sampling theory i~ 
to draw valid inferences about the population parameters on the basis, of the 
sample results. ~n practice we decide to accept or reject the lot after examining a 
sample from it As such we are liable to commit the following two types of 
errors: 
Type I Error : Reject Ho when it is true. 
Type II Error : Accept Ho when it is wrong, i.e., accept No when HI is true. 

lfwe write. 
P(Reject Ho when itis true} =P (RejectHoIHo) =a} 

and P {Accept Ho when i.~ is wrong} = P{Accept.Ho I-Nd =,p ... (12·2) 

then a and p are called the sizes of type I error and type II error, respectively. 
In practice, type.! error amounts to rejecting a tot when it is good and type 

n error may be regarded as accepting the lot when.it is bad. 
Thus P{Reject a lot when it is good} = a} 
.an P{Accept a 101 when it is bad} = ~ ... (12·2a) 

where a and p are referred to as ,Producer's r:isk and Consumer's risk, 
reSPectively. 

12·7. Critical Region and Level of Significance. A region 
(corresponding to a· statistic t) in the sample space S which amounts to rejection 
of H 0 is ~rmed as critical region or region of rejection: If Q) is tpe critical 
region ana if t = t(XI. xz • •..• x,.) is the value of the statistic based on a random 
sample of size n, then 

P (t E Q) I Ho) = a: P (t E co I Ht> = P (I2.2b) 

where m. the complementary set of m. is called the acceptance region. 

We have Q) v ro = S and co (i m ::; • 
The probability 'a' that a random value of the statistic t belongs to the 

critical region is known as the level of significance. In other wordS. level of 
significance is the size of the type I error (or the maximum produc«'s risk). The 
levels of significance usually emplo);ed in testing of hypothesis are 5% anc;l 1 %. 
The level of significance is always fixed in advance before collecting the sample 
information. 

12·7'1. One tailed and Two'Talled Tests. In any test, the critical 
region is represented by a portion of the area under the probability ~e of cbe 
samplin,g distribution of the test ~tatistic. 

A test of any statistical hypothesis whe~ the alternative hypothesis is one 
tailed (right tailed or left tailed) is called a OM tailed IUt. For example, a test for 
testing the mean of a population 

Ho: Ii= Ilo 
against the alte~ve hypothesis: 

HI : J1 ~J1o (Right tailed) or HI: J1 < Ilo (Left tailed). 
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is a single tailed test~ In the right tailed rest (HI: III > 110), the critical region 

lies entirely in the right tail of the sampling distribution of X, while for the le'~ 
tail test (H 1 : 11 <: 110), the critical region is entirely in the- left tail Of the 
distribution. -

• A test of statistical hypothesis where the alternative hypothesis is t\Vo tailed 
such as: 

Ho : 11 = !lo, against the alternative hypothesis HI : 11 :¢:.!lo, (IJ. > !lo andJ,l <: !lo), I 

is known as two tailed test and in such a case the critical region is given by the 
portion of the area lying in both the tails of ~he probability curve of the test 
statistic. 

In a particular problem, whether one tailed or two tailed test is to be applied 
depends entirely on tfte pature of the alternative hypothesis. If the alternative 
hypothesis is two-tailed we apply two-tailed test and if alternative hypOthesis is 
one-tailed, we apply one tailed test. 

Fo~ example, suppose that there are two population -brands of bulbs, one 
manufactured by standard process (with mean life Ill) and the other manufactured 
by some new technique (with mean life Il~. If we want to test if the bulbs differ 
significantly, then our null h!,pothesis is H 0 : III = 112 and alternative will, be 
HI : III :¢:. 1l2' thus giving us a two-tailed test. However, if we want to test if the 
bulbs produced by new process have high~r a,!erage life than those produced by 
standard process, tl}en we have 

Ho: III = 112 and 1:11: III < 1l2' 

thus giving us a left-tail test Similarly, for testing if the product of new process 
is inferior to that of standard process, then we have: 

Ho: III = 112 and HI : III > /lz, 
thus giving us a right-tail test.-Thus, the decision about applYing~ a two-tail test 
or a single-tail (rigllt or left) test will depend on the problem under study-. 

12"·2. Critical Values or Significant Values. The value of test 
statistic which separates the critical (or rejection) region apd ~~ acceptance 
region is called the critical value or significant vatue. It depends upon: 

(I) The level of significance used, and 
(ii) The alternative hypothesis, whether it is two-tailed or single-tailed. 
A.s h3S ~I} pointe4 out e~lier, for l~ge samples, the standardised variable 

corresponding to the statistic t viz. : 
t - E(t)-

Z =-S.E.(t) - N(O, 1), ... (";) 

asymptotically as n ~ 00. The value of Z given by (II<) uniier the null hypothesis 
is known as test statistic. The critical value of the test statistic at level of 
significance (l for a two-tailed test is given by Za where Za, is:determined by the 
equaticn 
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i.e .• Za is the value so that the total area of the critical region on both tails is ex. 
Since notmal probability cutve is a symmetrical curve, from (12·2c), we get 

P (Z> zcJ + P(Z < - zcJ = ex [By symmetry] 

P(Z > zcJ + P(Z > zcJ = ex 

2P(Z > zcJ = ex 

ex 
P(Z> za) ="2 

i.e .• the area of each tail is 0./2. Thus Za is the value such/that area to the right 
of Za is a.[2 and,to the left of - Za is 0/2, as shown in the following diagram. 

, lWO-TAlLEDTEST -
(Livel of Significance 'et) 

Lower 
critical 
value 

Rejection Rejection 
region region ("/2) 

...IIIiolI.\\1i~~-::-l:::_~~a... 

In case of single-tail alternative, the critical value Za is determined so· that 
total area to the right of it (for right-tailed test) is ex and for left-tailed test the 
total area.to the left Qf - Za is ex (See diagrams below), i.e .•• 

For Right-tail Test : P(Z > zcJ = ex 

For Left-tail Test P(Z < - zcJ = ex 
RIGHT-TAI;LED TEST LEFT-TAILED TEST 

(Level of Signifumce ' et) (Level of Significance '(i) 

... (12·2d) 

... (12·2e) 

Thus the significant or critical value of Zfor a single-tailed test (left,or 
right) at le.vel of significance 'a'. is same os' the. critical value of Z for a 'two­
tailed test at level of significance '2«. 

We give on page 12·10, the critical values of Z at commonly used levels of 
significance f9r botJ:t two-tailed and single-tailed tests. These values have been 
obtained from equations (12.2c), (12·2d) and '(l2.2e), on using the Normal 
Probability Tables as explained in § 12·8. 
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CRmCAL VALUES (10) OF Z 

Critical Values Level of sigmftca1ice (a) 

(zeJ 1% 5% 10% 

Two-tailed test 1Za 1=2·58 I Za 1=1-96 I Za I = 1·64S 

Right-tailed test Za = 2·33 Za = 1·645 Za = 1·28 

, 
Left-tailed test Za = -2·33 Za = -1·645 Za = -1·28 

Remark. If n is small, then the sampling distribution of the test statistic 
Z will not.be nonnal and in that case we can't use the above significant values, 
which have been obtained from normal probability curves. In this case, vi% •• n 
small, (usually less than 30), we use the significant values based on the exact 
sampling distribution of the statistic Z. [defined in (*), § 12·7·2], which turns 
out to be I. F. or x.2 [see Chapters 13, 14]. These significant values have been 
tabulated for different values of n and a and are given in the Appendix at the end 
of the book. 

12"'3. Procedure for Testing of Hypothesis. We now summarise 
below the various steps in testing of a statistical hypotheSis in a systematic 
manner. 

J. Nz.,l1 Hypothesis. Set up the Null Hypothesis Ho (see § 12·5, page 12·6). 

1-. Alternative Hypothesis. Set up the Alternative Hypothesis HI' Ths will 
enable us to decide whether we have to use a single-tailed (right or left) test or 
two-tailed test. 

3. Level of Significance. Choose the appropriate level of Significance (a) 
depending on the reliability of the estimates and pennissible risk. rrus is to be 
decided before sample is drawn, i.e.. a is fIXed in advance. 

4. Test Statistic (or Test Criterion). Compute the test statistic 

Z =' -E(I) 
S.E.(t) 

under the null hypothesis. 
5. Conclusion. We compare % the computed value of Z in step 4 with the 

significant value (tabulated value) la, at the given level of significance, 'a'. 
If I Z 1< %a, i.e .• if th~ calculated value of Z (in modulus value) is less than 

la we say it is not significant. By this we mean that the difference t - E(t) is 
just due to fluctuations of sampling and the sample data do not provide us 
sufficientevi~oce against the null hypothesiS whicll may therefore, be accepted. 

If I Z I > la' i.e.. if the computed value of test statistic is greater than the 
critical or Significant value. then we say that it is significant and the null 
hypothesis is rejected at level of significance a i.e.. with confidence coefficient 
(1"- a). 

U·S. Test of Significance for Large Samples. In this section we 
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will discuss the tests of significance when samples are large. We have seen that 
for large values of n, the number of trials, almost all the distributions, e.8., 
binomial. Poisson. negative binomial, etc •• are very closely approximated by 
nonnal distribution. Thus in this case we apply the normal test, which is based 
upon the following fundamental property (area property) of the normal 
probability curve. 

H X - N ijl, ( 2), then Z =..K.::J! = X ~) - N (0. 1) 
a V(X) 

Thus from the normal probability tables, we have 
P(-3 S Z s 3) = 0·9973, i.e., P (I Z 1 S 3) = 0·9973 • 

~ P(I Z I> 3) = 1 -P( 1 Z 1 s 3) ~ 0·0027 ... (12·3) 
i.e., in all probability we should expect a standard normal variate to lie between 
± 3. 

Also from the nonnal probability tables, we get 
P(-1·96 S Z s i.96) = 0·95 i.e:, P (I Z 1 S 1·96) = 0·95 
~ P(I Z 1 > 1·96) = 1 - 0·95 = 0·05 •. . (12·3a) 
ad P (I Z 1 S 2·58) = 0·99 
~ P (I Z 1 > 2·58) = 0·01 •.. (12·3b)-
Thus the significant values' of Z at 5% and 1% level of significance for a 

two tailed ,test are 1·96 and 2·58 respectively. 
Thus the steps to be useei'in the normal test are as follows : 

(I) Compute the test statistic Z under H 0-

(il) HI Z J > 3. Ho is always rejected. 
(iii) HI Z 1 's 3. we test its signficance at certain level of significance, 

usually at 5% and sometimes at 1 % level of· significance. Thus, for a two-tailed 
test if I Z 1 > 1·96, Ho is rejected at 5% level of significance, 

Similarly tf 1 Z 1 > 2·58, Ho is contradicted at 1% level of significance and if 
1 Z.I ~ 2·58. Ho may be accepted at 1 % level ~f significance. 

From the normal probability tables. we have: 
P (Z'> 1·645) = 0·5 - P (0 S Z S 1·645) 

= 0·5 -0·45 
=0·05 

P (Z> 2·)3) = 0·50 -P.(O SZ S 2·33) 
= 0·5 ~049 
=0·01 

Hence for a single-tail test (Right-t3ii or Left-tail),we cOmpare the computed 
value of I Z 1 with 1·645 (at 5% level) and 2·33 (at 1% level) and accept or reject 
Ho accOrdingly. 

Important Remark. In lhe theoretical discussion that follows ill the 
next sections, the samples under cOnsideration are supposed to be large. For 
practical puiposes. sample may be r~ganJed as large if It > 30. 

12-9. Sampling of Attributes. Here we shall consider sampling from 
a population which is divided into two mutually. exclusive and collectively 



exhaustive classes-one class possessing a particular attribute, say A, and the 
other class not possessing that attribute, and then note down the number: of 
persons in the sample of size n, possessing that attribute. The ,presence of an 
attribute in sampled unit may be termed as success a~d its abse~ce as faiJure. In 
this case a sample of n observations is identified with that of a series of n 
independent Bernoulli trials with constant probability P of succesl! fQr ~ch trial. 
Then the probability of x successes in n trials, as given by the binomial 
probability distribution is 

p(x) = "e% P% QII-% ; X = 0: 1,2, ... , n. 

12'9'1. Test for Single Proportion. If X is the number of successes 
in r. independent trials with constant probability P of success for each trial (c/. § 
7·2·1) 

E(X) = nP and V(X) = nPQ, 
where Q = 1 - P, is the probability of failure. 

It has been proved that for large n, the binomial distribution tends to normal 
distribution. Hence for large fi, X - N (nP, nPQ) i.e., 

Z = X - E(X) = X - nP -N(O, 1) (124) 
'" V(X) '" nPQ .. . • 

and we can apply the normal test. 
Remarks 1. In a sample of size n, let X be the number of persons' 

possessing the given attribute. Th~n ~ 

Observed proportion of successes = Xln = p, (say). 

.. E(P) = E (X) =' ! E(X) = ! nP = P 
n n n 

~ £(P) = P ... (12·40) 
'Thus the sample proportion 'p' gives an qnbiased estim,ate of the populatioQ 

proportion P. 

Also V(P) = V(!) = ~ V(X) = ~nPQ = ~ 
•• , S.E.(p) = '" PQln ... (124b) 
Since X and consequently Xln is asymptotically normal for large n, the 

DOim'al test for fhe proportion of successes becomes 

Z = p-E(p) =~ -N(O, 1) 
S.E. (P) '" PQln 

.. :(124c) 

2. If we have ~pling from a [mile population of size N, then 

.... /(N -n) eQ 
S.E.(p) = 'I N - 1 . n ... (124d) 

3. Since the probable limits for a normal variate X are E(X) ± 3 "" V(X) , 
the probable limits for the observed proportion of successes are : 

E(P) ± 3 S.E. (P), i.e .• P ± 3 "" PQln . 
If P is not know.n then taking p (the sample proportion) as an estimate of P, 

the probable limits for the proportion in the population are : 
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, p ± 3 ~ pqln ... (124e) 
However, the limits for P at level of significance a are given by : 

p ± Za. ~ pqln , ... (124.1) 

where \la. is the significant value of Z at level of significance a. 
In particular 95% confidence limits for P are given by : 

p ± 1·96 ~ pqln , ... (124g) 
and 99% CQnfidence limits for P are given -by 

p ± 2·58 ~ pqln ... (124h) 
Example 12·1. A dice is thrown 9.000 times and a throw of 3 or 4 is 

observed 3.240 times. Show that the dice cannot be regarded as an unbiased one 
andfind the limts between which the probability of a throw of 3 or 4 lies. 

Solution. If the coming of 3 or 4 is called ~ success, then in usual 
notations we are given 

n = 9,000,; X = Number of successes = 3-Z40 
Under .the null hypothesis (Ho) that the dice is a,n unbiased one. we get 

P = Probability of success = Probability of getting a 3 ot 4 = ~ + ~. = j 
.f\lternative. hypothesis.lfl : p -:I; t. (i.e .• di~e is biased). 

We have Z = ~ - N(O, 1), since n is large. 
nQP 

Now Z= 3240-9000x 1/3 =~= 240 =5.36 
~9000 x (1/3»( (2/3) ~2000 44·73 

Since I Z I> 3. Ho is rejected and we conclude that the dice is almost 
certainly biased. 

Since dice is not unbiased. P -:I; j. The probable limits for 'r are given 

by : 
A _ f"'i\"A'" _ ~ 
P ± 3 'I PQ/n = p ± 3 "'I pqln • 

A 3240 A 
where P = p = 9000 = 0·36 and Q = q = 1 - P = 0-64. 

Hence the probable limits for the population proportion of sUCCe&SCS may·be 
taken as 

P ± 3 ".j PWti = 0.36 ± 3 .... 10.36 x 0·64 = 0.36 ± 3 x 0·6 x 0·8 
\I 9000 30.m 

= 0·360 J: 0·015 = 0·345 and 0·375. 
Hence the probability of getting 3 or 4 almost certainly lies between 0·345 

and 0·375. 
Example 12·2. A r.andom sample of 500 'pineapples was taken from a 

large consignment and 65 were found to be bad. Show that the S.E. of the 



12.14 Fundamental- of MatbeJQatical Stati.stice 

proportion of bad ones in a sample of this size is 0·015 and deduce that tRe 
percentage of bad pineapples in the consignment almost certainly lies between 
8·5 and 17·5. 

Solution. Here we are given n = 500 
X = Number of bad pineapples in the sample = 65 

p = Proportion of bad pineapples in the sample = : = 0·13 

. . q = 1 - P = 0·87 
Since P, the proportion of bad pineapples in the consignment is not 

known, we may take (as in the last example) 
1\ 1\ 

P' = P = 0·13, Q = q = 0·87 

S£. of proportion = '" PWn = ../0".13 x 0·87/500 = 0·015 
Thus, the limits for the proportion of bad pineapples in the consignment are : 

11., _ f7\i\ 
P ± 3 -V PQJn = 0·130 ± 3 x 0·015 = 0·130 ± 0.()45 =.(0·085, 0·175) 
Hence the percentage of bad pineapples in the consignment lies almost 

certainly betw~n 8·5 and 17·5. 
Example 12·3. A random sample of 500 apples was taken from, a large 

consignment and 60 were found to be bad. Obtain the 98% confidence limits for 
lrt. percentage number of bad app(e~ in the consignment. 

2-33 

[10 g, (t) dl = 0·49 nearly] 

Solution. We have: 

p = Proportion of bad apples in the sample = : = 0·12 

Since the significant value of ~ at 98% confidence coefficient (level of 
signifj.cance 2%) is given to be 2·33, 98% confidence limits for population 
proportion are : 

p ± 2·33 ../ pqln = 0·12 ± 2·33 "/0.12 x 0·88/500 

"" 0·12 ± 2.33 x "/0·0002112 = 0·12 ± 2·33 x 0·0145~ 
= 0·12000 ± 0·03385 = (0'()8615, 0·15385) 

Hence '98% confidence limits for percentage of bad apples in the 
consignment are (8·61, 15·38). 

Example 12·4. In a sample of 1,000 people in Mahafashtra, 540 are rice 
eaters and the ,rest are wheal eaters. Can we assume that both rice and w.heat are 
equally popular in this State at 1% level of significance? 

Solution. In the usual notati~ns we are given n = 1,000 
X = Number of rice eaters = 540 

p = Sample proportion of rice eaters =~ = ~ s: 0·54 
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Null Hypothesis, Ho : Both rice and wheat are equally popular in the State 
so that 

P = Population proportion of rice eaters in Maharashtra = 0·5 
~ Q =1-P=0·5 
Alternative Hypothesis, HI : P:#: 0·5 (two-tailed alternative). 

Test Statistic. Under Ho, the test statistic is 

Z = ~~ - N (0, I), (since n is large). 
-vPQln 

Now Z = 0·54 - 0·50 = 0·04 = 2.532 
"';0.5 x 0.5/1000 0·0138 

Conclusion. The significant or critical value of Z at 1 % level of significance 
for two-tailed test is 2·58. Since computed Z = 2·532 is less than 2·58, it is not 
significant at 1 % level of significance. Hence the null hypotI:tesis is accepted and 
we may conclude that rice and wheat are equally 1Y.>pular in Maharashtra State. 

Example 12·S. Twenty people were attacked by a disease and only 18 
survived. Will you reject the hypothesis that the survival rate, if attacked by this 
disease, is 85% in favour of the hypothesis that it is more, at 5% level. (lise 
Large Sample Test.~ 

[Paino Uni". B.Sc. (Ron •• ), 1992; Bombay Uni". B.Sc. 1987] 

Solution. In the usual notations, we are given n = 20. 
X = Number of persons who survived after'attack by a disease = 18 

P = Proportion of persons survived in the sample = ~~ = 0·90 

Null Hypothesis, Ho: P = 0·85, i.e., the proportion of persons survived 
after attack by a disease in the lot is 85%. 

Alternative Hypothesis, HI: P > 0·85 (Right-tail alternative). 

Test Statistic. Under Ho, the test statistic is : 

Z = ~~ - N (0, I), (since sample is large). 
-vPQln 

Now Z = 0·90 - 0·85 = 0·05 = ().633 
"';0.85 x 0.15/20 0·079 

Conclusion. Since the alternative hypothesis is one-sided (right-tailed), we 
shall apply right-tailed test for testing significance of Z. The significant value of 
Z at 5% level of sigriificance for right-tail test is + 1·645. Since computed value 
of Z = 0·633 is less than 1·645, it is not significant and we may accept the null 
hypothesis at 5% level of significance. 

12·9·2. Test of Significance for Difference of Proportions. 
Suppose we want to compare two distinct populatiolls with respect to the 
prevalence of a certain attribute, say A, among their members. Let X h Xz be the 
number of persons possessing the given attribute A in random samples of sizes 
nl and nz from the two populations respectively. Then sample proportions are 
given by 
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PI = XI/nl and P2 = XlInz 
If PI and Pz are the population proportions. then 

E(PI) = Ph E(pV = Pz [ef. Equation (124a)] 

all V(PI) = P1QI and V(P~ = PzQz 
nl nz 

Since for large samples, PI and pz are asymptotically nonnally distributed, 
(PI - p~ is also normally c;lstributed. Then the standard variable corresponding to 
the difference (PI -~ is given by • 

Z = (PI - pz) - E(PI -'Pz) _ N(O, 1) 

""V(PI - pz) 
Under the null hypothesis flo : PI = Pz, i.e .• there is no significant 

difference between the sample proportions, we have 
E(PI -~ = E(PI) '- E(P~ = PI - Pz = 0 (Under H~ 

,Also V(Pl - p~ = V(PI) + V~, 
the covariance term COV(Ph pz) vanishes, since sample proport~ons are 
independent 

V(PI -p~ = PIQI + PzQz = PQ (.!. + t) , 
r nl ~ nl ~ 

since under Ho; PI = Pz == P, (say), and QI = Qz = Q. 
Hence under Ho: PI = Pz, the test statistic for the'difference of proportions 

becomes 

Z = PI - pz , - N(O, 1) 

- I PQ (l + l) 
" nl "z 

... (12·5) 

In general, we do not have any information as to the proportion ,of A's in 
the populations from which the samples have been taken. Under Ho: PI = Pz = 
P. (say), an unbiased estimate of the populadon'proportion p. l>ased on both the 
samples is given by 

P" '= niP! + n'lPz = XI + Xz ( 25 ) ... 1 . a "1. + nz nl + nz 
The estimate is unbiased, since 

E/n = 1. p[nlPl + n'}/J2] =' ,1 [nIE(PI)'" ~E~] 
nl + nz nl +.,,~. 

= ~ [niP I +nzl'z] =P [':P I =Pz=P, underHol nl nz 
'Thus (12·5) along with (12·5a) gives the requ1red test statistic. 
Remarks 1. Suppose we want to test the sigQificance of the difference 

between PI and P, where 
_ (nlPl + n?/J2) 

P - (nl + n~ 
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gives a pooled estimate of, the population proportion on the basis of both the 
samples. We have 

V(Pt - p) = V(PI)'+ V(P) - 2 Cov (Ph p) ••. (*) 

Since PI and P are not independent, Cov (PhP) 1" O. 
CoV.(PhP) = E[(PI -E(PI» {p.-.£(p»)] 

= E [(PI - E(PI)} { 1 {nIPI + n'JPz - E(nIPI + n'JP2)} }] 
nl + n2 

= 1 E [(PI - E(PI)} {nl(PI - E(PI» + n,.(P2 - E(P~) } ] 
nl + n2 

=nl ~n2 [nlE {PI_E(PI)}2 +nzE{ (PI-E(PI»(Pz-E(piJ)}] 

= 1 [nl'V(PI) + n2 ~ov (Ph pi)] 
nl + nz 

= nl ~ n2 nl V(PI), [.: Cov (PhP~ = 0] 

= nl l!9...= pq 
nl + n2 . nl nl + n2 

Also Var (P) = ( 1 )2 E[(ntPI + n1fJi) -E(ntPI + n~]2 
nl + n2 . 

::: (nl : n~z [n12 Var (PI) + n'; Var (P~ ], 

coyariance term vanishes since PI aDd pz are independent. 

. Var/n\ = 1 [nlz el + nzz l!!1.] 
•• 11'1 (nl + nz)Z • nl • nz 

= /Xl 
nl + n2 

Substituting in (*) and simplifying, we shall get 

V(PI - p) =I!!l.+ /Xl - 2 /Xl =pq[ nz J 
nl nl + n2 nl + n2 nl(nl + n2) 

Thus, the test statistic in this case becomes 

Z = PI, - P - N(O, 1) .•. (12'5b) 
_ I n,. PJl 
V (nl + nz)' nl 

2. Suppose the population proportions PI and Pz are given to be distinctly 
different, i.e .• P I 1"PZ and we want to test'if the difference (PI - P~ in popula­
tion proportions is likely to be hidden in simple samples of sizes nl and n2 
from the two populations respectively. 

We have seen that in the usual notations, 
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Z = (PI'- p,) - E(PI - Pz) __ ~(P:..J.I_--:P~Z~) -=(P~I=-:;:P:::!Z=) 
S.E·(PI ..... pz) ~p Q P Q 

- N(O. 1) 

~+~ 
nI nz 

Here sample proportions are not given. If we set up the null hypothesis 
Ho : PI = Pz, i.e, the samples will not reveal the difference in the population 
proportions or in other words the difference in population proportions is likely 
to be hidden in sampling, the test statistic becomes 

I Z I = I PI - Pz I ,., N(O.I) ... (12.5c) 

.... /P1QI + PzQz 
"nl nz 

Example 12·6. Random samples of 400 men and 600 women were asked 
whether they would like to have aflyover near their residence. 200 men and 325 
women were in favour of the proposal. Test the hypothesis that proportions of 
men and women infavour of the proposal, are same against that they are not, at 
5% level. [Agra U"iv. M.A., 1992] 

Solution. Null Hypothesis Ho: PI = Pz = P, (say), i.e., there is no 
significant difference between the opinion of men and women as far as proposal 
of flyover is concerned. 

Alternative Hypothesis, HI: PI*- P z (two-tailed). 
We are given: 

nl = 400. Xl = Number of men f~vouring the proposal = 200 
nz = 600. Xz = Number of women faVOuring the proposal = 325 
PI = Proportion of men favouring the proposal in the sample 

=!l= 200 = 0.5 
nl 400 

P2. = Proportion of women favouring the proposal in the sample 

_ Xz _ 325 _ 0.541 
-'nz- 6OO -

Test Statistic. Since samples are large. the test statistic under the 
Null.Hypothesis. Ho is: 

=> 

Z = PI - pz _ N (0, 1) 

.... lpQ (l + l) V nJ nz 
P _ nlPI + nzPz _ Xl + Xz _ 200 + 325 _ 525 _ 0.525 

- nl + nz - nl + nz - 400 + 600 - 1000 -

" " Q = I-P = 1-0·525 = 0:475 
0·500 - 0·541 

Z=~=============== 
~0.525 x 0·475 x (~ + ~) 
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- 0·041 

= -J0·525 X 0·475 X (10/2,400) 
-0·041 -0·041 

= = =-1·269 
-J 0.001039 0·0323 

Conclusion. Since I Z I = 1·269 which is less than 1·96. it is not 
significant at 5% level of significance. Hence Ho may be acceptc.. at 5% level of 
significance and we may conclude that men and women do not differ significantly 
as regards proposal of flyover is concerned. 

Example 12·7. A company has the head office at Calculla and a branch at 
Bombay. The personnel director wanted to know if the workers at the two places' 
would like the introduction of a new plan of work and a survey ~as conductedfor 
this purpose. Out of a sample of 500 workers at Calcutta. 62% favoured the new 
plan. At Bombay out of a sample of 400 workers, 41% were against the new 
plan. Is there any significant difference between the two groups in their attitude­
towards the new plan at 5% level 7-

Solution. In the usual notations. we are given : 

n] = 500. PI = 0·62 and !12 = 400. P2 = 1 - 041 = 0·59 
Null hypothesis, Ho : P'l = P2• i.e.. there is no significant diff~rence 

between the two groups in their attitude towards the new plan: 
Alternative hypothesis, HI: P: '*P2 (Two-tailed). 
Test Statistic. Under Ho. the test statistic for large samples is : 

Z = PI - P2 = PI - P2 _ N(O. 1) 

S.E.(p]-PV ~""(1 1) 
PQ - +-

n] ni 

where p = nlPI + 1i?P2 = 500 X 0-62 + 400 x 0-59 = 0.607 
n] + n2 500 + 400 

" " Q = I-P =0·393 
0·62 - 0·59" 

Z=~==========~~~ 
~ 0·607 x 0-393 x (5tm + 4~) 

0·03 0·03 
= -.)0.00107 = 0·0327 = 0-917_ 

Critical region. At 5% level of significance. the critical value of Z for a· 
two-tailed test is 1·96. Thus the critical region consists of all values lof Z ~'1\·96 
or Z ~ -1·96. 

ConcIusi'On. Since the calculated value of I Z I = 0·917 is less than the 
critical value of Z (1-96), it is not Significant at 5% level of significance .. Hence 
the·data do not provide us any evidence against the null hypothesis which -may. 
be accepted, and we conclude that there is no significant diffcrcnre:ootwccn the 
two groups in their attitude,towards the new plan. 

Example 12·8. Before an increase in excise. duty on tea, BOP pets<)ns out 
of a sample of 1 ,000 persons were found to be tea drinkers. After.a(I 'in.cr:ease i .. 
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duty. 800 people were tea drinkers in a sample oll.200 people. Using standard 
error of proportion. state whether ther:e is a significant decrease in the 
consumption of tea after the increase in excise duty ? 

Solution. In the usual notations, we have nl = 1,000 ; n2 = 1,200 
PI = Sample proportion of tea drinkers before increase in excise duty 

800 
= 1000= 0·80 

P7. = Sample proportion of tea drinkers after increase in excise duty 
800 

= 1200 = 0·67 
Null Hypothesis. Ho : PI = P2, i.e., there is no significant difference in the 

consumption of tea before and after the increase in excise duty. 
Alternative Hypothesis. HI: PI > P2 (Right-tailed alternative). 
Test Statistic. Under the null hypothesis, the test statistic is 

Z = PI - pz -- N(O, 1) (Since samples are large) 

\jpa (~I + ~) 
where 

p = nlPl + n?p2 = 800:t" 800 = 16 and Q = 1 _ P = &. 
nl + n2 1000 + 1200 22' 22 

0·80 - 0·67 
.. Z = ---;:==:::::::::=::::::::::======-

... /16 6 (1, 1) 
'122 x .22· x 1000 + 1200 

= ,0·13 = 0·13 = 6.842 
A /16 6 11 0·019 
" 22 x 22 x 6000 

Conclusion. Since Z s much greater than 1·645 ~ well as 2·33 (since test 
is one-tailed), it is highly significant at both 5% and 1 % levels of significance. 
Hence, 
we reject the null hypothesis Ho and conclude that there is a significant decease 
in the consumption of tea after increase in the excise duty. 
Example 12·9. A cigarette manufacturing firm claims that its brand A of the 
cigorettes outsells its brand B by 8%. If it is found that 42 out of a sample of 
100 smokers prefer brand A and 18 out of another random sample of 100 
smokers prefer brand B. test whether the 8% difference is a valid claim. (Use 
59. lcvel of significance.) 

Solution. We are given.: 
X 42 "1 = 200, XI = 42 ~ PI =;:-= 200 = 0·21 

. X2 18 
n2= 100,'\2= 18 ~ P2= 112 = 100=0.18 

, We set up the Null Hypothesis that 8% difference in the sale of two brands 
'If ~Igarclles is a valid claim, i.e., Ho: PI - P2 = 0·08. 

, .... Iternative Hypothesis: HI : PI - P2 ~ 0·08 (Two-tailed). 
l'nd~r 110 • the test statistic is (since samples are large) 



where 

Z (PI - P2) - (PI - P2) _ N(O, 1) 

A IpQ (l + 1..) -'J nl n2 

p X I + X 2 = 42 + 18 = 60 = 0.20 => Q = 1 _ P = 0.80 
nl + n2 200 + 100 300 

z= (0·21-0·18) - (O,~,_ - 0·05 

A I ( 1 1 )' - ~0.16 x 0·015 . 'J 0·2 x 0·8 200 + 100 

- 0·05 - 0·05 . 
= ~ 0.0024 = 0·04899 = -1· 02 

12.21 

Since I Z I = 1·02 < 1·96, it is not significant at 5% level of significance. 
Hence null hypothesis may be retained at 5% level of significance and we may 
conclude that a difference of 8% in the sale of two brands of cigarettes is a valid 
claim by the firm. 

Example 12·10. On the basis of their total scores. 200 candidates of a 
civil service examination are diVided into two groups. the upper 30 per cent and 
the remaini'1g 70 per ·cent. Consider the first question of this examination, 
Among the first grot:p. 40 had the correct answer, whereas among the second 
group, 80 had the correct answer. On the basis of these results, can one conclude 
that the first question is no good at discriminating abiliiy of the type being 
examined here? 

Solution. Here, we have 

n = Total number of caJ:ldidates = 200 
nl = The number of candidates' in the upper 30% group 

30 
= 100x 200 = 60 

n2 = The number of candidates in !he remaining 70% group 
70 = 100x 200 = 140 

X I = The number of candidates, wi!h correct answer in the first group = 40 

X 2 = The number of candidates, wi!h correct answer in !he second group = 80 

XI 40 X2 80 
.. PI =-=60 =0·6666 and P2=-=-=0·5714 

nl n2 140 

Null HypotheSis, Ho : There is no significant difference in the sample 
proportions, i.e ..• PI = P2, i.e.. !he frrst question is no good at dicriminating~the 
ability of the type ~ing examined here. 

Alternative Hypothesis, HI: PI '#P2• 
\ 

Test Statistic. Under Ho !he test statistic is : 

Z = . PI - P2 - N(O, 1) (since samplcS are large). 

~:\ "( 1 1) PQ -+-
nl ~ 
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where 

p = XI + Xz = 40 + 80 = 0.6 Q = 1 _p = 0.4 
nl + nz 60 + 140 ' 

Z = 0·6666 - 0·5714 _ 0·0953 - 1.258 _ I - 0·0756-
-V 0·6 X 0·4 (~ + 110) 

Conclusion. Since I Z I < 1·96. the data are consistent with the null 
hypotHesis at 5% level of significance. Hence we conclude that the first question 
is not good enough to distinguish between the ability of the two groups of 
candidates. 

Example 12·11. In a year there are 956 births in a town A. of .which 
52-5% were rrzales. while in towns A and B combined. this proportion in a total 
of 1.406 births was 0496. Is there any significant differeTtce in the proportion of 
male births in the two towns ? 

Solution. We are given 

nl = 956, nl + nz = 1,406 or ,nz = 1,406 - 956 = 450 
PI = Proportion of males in the sample of town A = 0·525. 

'Let pz be the proportion of males in the sample (of size nz) of town B. 
Then 

" P = Proportion of males in both tlte samples combined. 

nl + nz 
0496 (Given) 

956 x 0·525 + 450 x pz 0 
.. 1,406 = ·496 

~ pz = 0434 (On simplification) 

Null Hypothesis. Ho: PI = Pz, i.e .• there is no significant difference in the 
proponion of male births in the two towns A and B. 

Alternative Hypothesis. III: PI :t:.Pz (two-tailed). 

TesfStatistic. Under JIo, the test statistic is: 

Z = PI ....; pz - N(O, 1) (Since samples are large) 

-VPQ (~I + ~) 
where P = nlPI + n'1Pz = 0496, Q = 1 - P = 0.504 

nl + nz 
0·525 - 0·434 0·091 

.. Z = :;:: 0.027 = 3·368 

-V0.496 x 0·504 (9~ ,+ 4!0) 

Conclusion. Since I Z I > 3: the null hypothesis is rejected, i.e., the data 
are inconsistent with the hypothesis PI :;: Pz and we conclude that there is 
significant difference in the proportion of male biith~ -in the towns A and fj. 
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Example 12·12. In two large populations. there are 30 and 25 per cent 
respectively of blue-eyed people. Is this difference likely to be hidden in samples 
of 1.200 and 900 respectively from the two populations ? 

. [Delhi Univ. B.Sc •• 1992] 

Solution. Here. we are given nl = 1200, nz = 900. 
PI = Proportion of blue-eyed people in the first population 

= 30%=0·30. 
Pz = Proportion of blue-eyed people in the second population 

=25%=0·25. 
QI = I -PI = 0·70 and Qz = I -Pz = 0·75 

We set up the null hypothesis Ho that PI = pz. i.e .• the sample proportions 
are equal: i.e .• the difference ii1 population proportions is likely to be hidden in 
sampling. 

Test Statistic. Under Ho: PI = Pz, the test statistic is : 

I Z I = I P 1- P z I - N(O, I) (Since samples are large.) 

_fP1QI ~ P'& 
-" nl nz 

I Z I = 0,30 - 0·25 = 0·05 = 2.56 
.. /0.3 x 0·7 0·25 x 0.75 0·0195 
" 1,200 + 900 

Conclusion. Since I Z I > 1·96, the null hypothesis (PI = pz), is refuted at 
5% level of significance and we conclude lhat the difference in population 
proportions is unlikely to be hidden in sampling. In other words, these samples 
will reveal the difference in the population proportions. 

Example Ut13. In a random sample of 400 students of the university 
teaching departments. it was found that 300 students failed in the examination. 
In another random sample of 500 students of the affiliated colleges. the number 
of failures in the same examination was found to be 300. Find odt whether the 
proportion of failures in the university teaching departments is significantly 
greater than-the proportion offai/ures in the university teaching departments and 
affiliated colleges taken.together. 

Solution. Here weare given: nl = 400, nz = 500 
300 300 .. 

PI = 400 = 0·75, pz = 500 = 0.6() 

.. ql = I-PI = 1-0·75 = 0·25 and qz =,1 -pz = 040 

Here we set up the null hypot"~sis Ho that PI and p, where p is the pooled 
estJ.mate, i.e .• proportion of failures in the university teaching deparunents and 
affiliated colleges taken together, do not differ significantly. 

S.E. of( P -PI) = .... I ~ L x liz [cf (I2·5b) page 12·18J 'J nl + nz nl 

where 1\ = nlPI + n2Pz ..:;. 400 x 0·7.5 + 500 x 0·60 = 0.67 
p nl+ nz 400 + 500 
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1\ 
q= 1 -0·67 = 0·33 

~~-~---,-~ 

. . S.E. of cP - PI) = O~~~ : ~~; x 54~' = 0·018 

Test Statistic. Under the null hypothesis Ho, the test statistic is : 
;.. ~ ~ 

Z = P - PI - N'O 1) (Since samples are large.) 
S E f '~ ) \ , . 

• • 0 \y - PI 
0·67 - 0·33 g:15 

Z = 0.018 = 0.018 = 8·3 

Conclusion. Since the calculated value of Z is much greater than 3, it is 
highly signifcant. Hence null hypothesis Ho is rejected and we conclude that 

there is significant difference between PI arid p. 
Example 12·14. If for one-half of n events. the chance of success is P 

and the chance of failure is q. while for the other half the chance of success is q 
and the chance offai/ure is P, show that the standard deviation of the nwnber of 
suc~esses is the same as if the chance of successes were P in all the cases. i.e., 

V npq but· that the mean of the nwnber of successes is nl2 and not np. 
Solution. Let Xl and Xl denote the number of successes in the f1fSt half 

and the second half of n events respectively. Then according to the given 
conditions, we have 

E(XI)=~P} E(XZ)=.~q} 
n and n 

V(X I) = 2Pq V(Xz) = 2Pq 

The mean and v<lriance of the number of successes in all the n events are 

given by 

IRl V(XI+XZ)=V(XI} + (Xv =~pq+~qp=npq. 
since the fll'St and second half of events are independent 

Hence the variance is the same as if the probability of success in all the n 
events isp. 

EXERCISE 12(a) 
1. (a) There are 2 populations and PI and P z are the proportion 'Of members 

in the two populations belonging to 'low-income' group. It is disired to test the 
hypothesis ~ : PI = P z. Explaill clearly, the procedure that you would follow to 
carry out the,above test at 5% level of significance. 

State the theorem on which the above test is based. 
In.respect of the above 2 populations, if it is claimed thatPlt the proportion 

of 'low-incomei"group in the fast population.is greater thanPz, how will you 
modify the procedure to test this claim (at 5% level) '1 

(b) Take a concrete illustration and in relation to this illustration, explain 
the.following terms :-
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<0 Null hypothesis and alternative hypothesis. 
(il) Type I and Type n errors. 
(iii) Critical Region. 
(c) Suggest a possible source of bias in the following: 
(l) The mean income per family in a certain town is sought to be estimated 

by sampling from motor owners. I 

(it) Readers of newspapers are sampled by printing in it an invitation to 
them to send up their observations on some typical event. 

(iii) A barrel of apples is sampled by taking a handful from the top. 
(iv) A set of digits is taken by opening a telephone directory at random and 

choosing the telephone numbers in the order in which they appear on the page. 
2. (a) Explain clearly tfte terms "Standard Error" and "Sampling 

Distribution." Show that in a series of n independent. trials with constant 
probability p of success, the .standard error of the proportion of successes is 

...J pqln, where q = 1 - p. 
(b) n individuals fall into one or the other.two categories with probabilities 

p an(j q (=1 - p), the number in the two'categories are XI and X2 (XI + X2 = n). 
Show that covariance between XI and X2 is - npq. Hence obtain the variance of 

the difference (:1 _ ;-), between the proportions. 

(c) Explain clearly the procedure generally followed in testing of a 
hypothesis. Point out the difference between one-tail and two-tail tests. 

(d) What do YOu mean by interval estimation and how would you set up the 
confidence limits for a parameter from a sample? Give the formula for 95% 
col)fidence limits for mean and proportion. What modifcations do you have to 
make if the sampling is done from finite populatiC;>l), (l) without replacement, 
(ii) with replacemeQt ? [Calcutta Univ. B.'A. (Math. Hona.), 1988]' 

3. PI and P2 are the (unknown) proportions of sthdents wearing glasses in 
two universities A and B. To compare PI and P2, samples of sizes n'I and n2 are 
taken .from the two populations and the number of students wearing glasses is 
found to be Xl and X2 respectively. Suggest an unbiased estimate of (P I -: P:z) and 
obtain its sampljng distribution whe~ nl and n2 are large. Hence explail1 how to 
test the hypothesis thatP. = P2• 

4. (a} A coin is tossed 10,000 times and it turns up head 5,195 times. 
Discuss whether the coin may be regarded as unbiased one, explaining briefly the 
theoretical principles you would use for this purpose. (Ans. No.) 

(b) A biased co!~ was thrown 400 times'and head resolled 240 times. Find 
the standard error of the' observed proportion of heads and deduce that the 
probability of getting a head in a single throw of the coin lies almost certail!ly 
between 0·53 and 0·67. (Ans. 0·02445). 

(c) Experience' has shown' that 20% of a manufactured product is of the top 
quality. In one day's production of 400 articles only 50 are of top quality. Show 
that either the prod~ction of the day taken was oot a representative sample or the 
hypotlle.sis of 20% was wrong. (Ans. Z = 3·75) . . 

/ 
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S. (a) In a ,large consignment of oranges a random sample of 64 oranges 
revealed that 14 oranges were bad. Is it reasonable to assume that 20% of the 
oranges were bad? 

(b) By a mobile court checking in certain buses it was found that out of 
1000 people checked on a certain ~y at Red Fort, 10 persons were found to be 
tickeiless travellers. If daily 1 lakh passengers travel by the buses, find out .the 
es~mated limits to the ticketless travellers. (Ans. 997 to 1003) 

(c) In a random sample of 81 items taken from a large con~ignment some 
were found to be defective. If the standard error of the proportion of defective 
items in the sample is 1/18, find 95% confidence limits of the percentage of 
defective items in the consignment. 

[Madras Univ. 11.Sc. (Stot. Moin), 1991] 

6. (a) In some dice throwing experiments Weldon threw dice 75,145 times 
and of these 49,152 yielded a 4, 5 Or 6. Is this consistent with the hypothesis 
that the dice was unbiased ? 

Hint. Ho : Dice is unbiased, i.e., P = ~= k = 0·5; HI : P :¢:. k 
. . P-=.L 0·654- - 0·5 0·154 

Test StatIStic. Under Ho. Z = _ ~ = .1 . = 0 0018 
"'lPQln ~0·5xO·5n5145 . 

Ans. No. 
(b) 1,000 apples are taken from a large ~onsignm~nt and 100 are found to be 

bad. Estimate the percentage of bad apples in the consignment and assign the 
limits within which the percentage lies. 

7. (a) A persoQ!lel, manager claims that 80 per cent of- all single women 
hired for secretarial job get married and quit work within two years after they are 
hired. Test this hypothesis at 5% level of significance if anlong 200 such 
secretaries, 112 got married within two years after they were hited and quit their 
jobs. _ 

(b) A manufacturer claimed that at least 98% of the steel pipes which he 
supplied to a factory conformed to specifications. An examination of a sample of 
500 pieces of pipes revealed ·that 30 were· . defective. Test this claim at a 
significance level of (,) 0·05, (il) 0·01. 

Hili t. X = No. of pipes conforming to specifications in the sample. 
= 500- 30= 470 

P = Sample proportion of pipes conforming to lI'peClflcations 
470 

= 500 ::<0·94 

Ho : P = 0·98, i.e., the proportion of pipes conforming to specifications in 
the lot is 98~, . 

HI: P < 0·98 (Left-tail alternative) 

Test Statistic. Z = l!....::::...L. = 0·94 - 0 .. 98 
...J PQln· ...J 0·98 x 0·02/500 

(c) A social worker believes that fewer than 25% of the couples in a certain 
area ever used any form of birth control. A random sample of 120 couples was 
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contacted. Twenty of them said they had used some method of birth control. 
Comment on the social worker's belief. 

Ho: P = 0·25, HI: P < 0·25 (left-Tailed) 
8. In a random sample of 800 adults from the population of a certain large 

city, 600 are found to have dark hair. In a ran40m sample of 1,000 adults from 
the habitants of another large city, 700 are dark haired. Show that the difference 
of the proportion of dark haired people is nearly 2·4 times,the standard error of 
the difference for samples of above sizes. 

9. (a) In a random sample of 100 men taken from village A, 60 were found 
to be consuming alcohol. ~n another sample of 200 men taken form village B, 
100 were found to be consuming alcohol. Do the two villages differ 
significandy in respect of the proportion of men who consume alcohol ? 

[Delhi Unil1. M.A.. (BlUmeBB Eeo.), 1981] 
(b) In a I'a:Ildom .sample of 500 men from a particular district of U.P., 300 

are found to be smokers. In one of 1,000 men from another district, 550 are 
smokers. Do the data indicate that the two districts lI!e significandy different 
with respect to the prevalence of smoking among men? 

Ans. Z = 1·85, (not significant). (}Jelhi Unil1. B.Se., 1991) 

10. A company is considering two different television advertisements for 
promotion of a new product. Management believed that the advertisemen't A is 
more effective than advertisement B. Two test market areas with, virtually 
identical consumer characteristics are selected; A is used in one area and B in 
other area. In a random sample of 60 customers who saw A. 18 tried the 
product. In another random sample of 100 customers who saw B, 22 tried the 
product. Does this indicate that advertisement A is more effective than 
advertisement B, if a 5% level of significatlce is use<! ? Given cri~cal value at 
5% level i~ 1·96 and at 10% level of significance is 1·645. 

[Delhi Univ. M.C.A.., 1990] 

11. (a) 1,000 apples kept under one type of storage were found to show 
rotting to the extent of 4%. 1,500. apples kept under another kint! of storage 
showed 3% rotting. Can it be reason~bly concluded that the second type of 
storage is superior to the first? 

(b) In a referendum submitted to the students body at a universi,ty, 850 men 
and 566 women voted. 530 of the men and 304 of the women voted, yes. Does 
this indicate a"lsignificant difference of op~nion on the matter at 1 % level, 
between men and women s~<tenl$. [Ans. Z = 3·2, (significant)~] 

(c) In a simple 'sample of 600 high school students from a State, 400 are 
found to use dot pens. In one of 900 from a neighbouring State, 450 are found 
to use dot pens. Do the data indi~ate that the States-are signifiC8l)dy different 
with respect to the habit of using dot pens among the students? (Ans. Yes.) 

12. (a) A fum, manufacturing dresses for·c~ildren, sent out advertisement 
through mail. Two groups of 1,000 each were contacted; the fIrSt group having 
been contacted in white covers while the second in blue covers. 20% from the 
first while 28% from the second replied. 

Do you think that blue envelopes help the 'sales ? 
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(b) A machine puts out 16 imperfect articles in a sample of 500. After 
machine is overhauled, it puts out 3 imperfect articles in ~ batch of tOO. Has the 
machine improved ? 

Hint. We are given: nl = 500, and n2 = 100 

16 3 
PI = -500 = 0·Q32; P2 = 100 = 0·030 

Null Hypothesis, Ho: PI = P2, i.e., there is no·significant difference ig the 
machine before over~uling and after overhaulilJg. In other words, the machine 
has not improved after overhauling. 

Alternative- Hypothesis, HI : P2 < PI or PI> P2• 

P = nlPI + n'1P2 -= 16 + 3 = ~ = 0.032 
- nl + n2 -500 + 100 600 

S.E. (PI -,p~ =~ 0·032 x 0·968 (5~ + -1~) = 0·0193 

0·032 - 0-030 0·002 
Z = 0.0193- 0.0193 = 1·04 

Since Z < 1·645 (Right-tailed test), it is Dot significant at 5% level of 
significance. 

(c) In a large city A, 25% of a randQm sample of 900 scnool b9ys had· 
defective eye-sight. In another large city B, 15·5% of a random sample of 1,600 
school boys had the same defect Is· this difference between the two proportions 
significant? (Ans. Not significant.) 

13. (a) A candidate for election made a speech in city A but not in B. A 
sample of 500 voters from city A Showed that 59·6% of the voters were in 
favour of him, whereas a sample of 300'voters from city B showed that 50% 'of 
the voters favoured him. Discuss whether his speech could produce any effect on 
voters in city A. Use 5% level. 

Ans. I Z I = 2·67. Yes. 
(b) In a large city, 16 out of a random sample of 500 men were found to be 

drinkers. After the heavy increase in tax on intoxicants another. random sample • 
of 100 men in the ~me dty included 3 drinkers. Was the observed decrease in 
the proportion of drinkers .significant after tax increase ? 

Ans. Ho: PI = P2, HI: PI> P2 ; Z = 1·04. Not sigificant. 

14. The sex ratio at birth is sometimes given by the ratio of male to 
female births instead of the proportion of male to total births. If z is the ratio, 

i.e., z = plq, show that the Stan~d error of z is approximately 1 ! z ~ 
n being large, SO that d~viations are small COIl}P~ with mean. 

12·10. Sampling of Variable$. In the .. present sectioq we will 
discuss in detail the ~pling of variables such as height, weight, age, income', 
etc. In the.case of sampling of variables'each member of the population Rrovides 
the value of the variable and the aggregate of.tJ.:tese values forms the-frequency 
distribution of the population. Fro(ll the population, a random sample of size 11 
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can be drawn by any of the sampling methods discussed before which is same as 
choosing n values of the given variable from the distribution. 

12·11. Unbiased Estimate for population Mean (~) and 
Variance (cr2). Let XI. X2 • ...• X" be a random sample of size n from a large 
population XI. 42, ... XN (of size N) with mean ~ and variance cr2. Then the 

sample mean (i) and variance (s2) are given by 

1 " 1 " x = - :E Xj, and S2 = - :E (Xj - X )2 
nj_1 ni~1 

Now E( x ) = E - :E X j = - :E E(xi) (
1 " ) 1 " 

. nj_1 nj_1 

Since Xj is a sample observation from the population Xi, (i = 1. 2, ...• N) it 
can take anyone of the values Xl> X2, ... , XN each with equal probability lIN. 

111 
.. E(xj) =NXI+NX2+ ... + NXN 

1 = N (XI + X2 + ... T XN) = ~ ••• (1) 

E(x) =1 i (JJ.)=!n~ => E(-x)=~ 
n i-I' n 

... (12·6) 

'Thus the sample mean ( x ) is an unbiased estimate of the population mean 
Ut)· 

Now E(s2) ~E[1 i (Xj-X)2] =E [1 i x? _X2] 
ni=1 ni_1 

•.. (2) 

We have V'(xi) = E[xj - E(xi)]2 = E(xj - ~)2, [From (1)] 

1 = N [(XI - ~)2 + (X2 - ~)2 + ... + (XN - ~)2] = cr2 ... (3) 

Also we know that 
Vex) = E(xl) - [E(X)]2 => E(X2) = Vex) + (E(X)}2 

In parl.1cul~ 
Et::r • .2) = V(xi) + lE(xi)} 2 = cr2 + ~2 

~ 

Also from (4), E(X2) = Vex) + (E(x)l2 

.•. (4) 

•.. (5) 

But V( x) = cr2 
• where cr2 is the population viII18Ilce. ·[cf. § 12·13] 

n 
cr2 

E(in =-+ ~2 
n 

Substituting from (5) and (Sa) in (2) we get 

[Using (12·6)] ••• (Sa) 



1 " ( ~ ) E(sZ) =- L (02 + ~2) _ 2- + ~2 
n; _ 1 ·n 

=~n (02 + ~2) _ (~ + ~2)= (1 _~) 0 2 

n - 1 2 =--0 ... (12'7) n 
Since E(S2) ;t 0 2, sample variance is not an unbiased estimate of 

population variance. 
From (12·7), we get 

_n_ E(S2) = 02 ~ E (...!1L) = 02 
n - 1 n - 1 

=> E [n ~ I ;#1 (X; _. X )2]:: 0 2 i.e., E(S2) = 0 2 

1 " S2=-- L (x;-i)2 
n- 1 i_1 

:. S2 is an unbiased estimate of the population variance 0 2• 

Aliter for E(Sl} • 

... (12·8) 

... (12·8a) 

.r2=1[ i (x; - x )2J' =1[ i {(XI -~) - (x -~) PJ 
ni_1 n i-1 

= - L (Xi - ~)2 + n(x - ~)2 ~ 2(x -~) L (X; - ~) 1 [ " " ] 
n _ i =- , i a"1 

But L (Xi - ~) = LXi - n~ = nx - n~ = n( i - ~) 
i i 

1 " . 
E(s2) = - L E(Xi - ~)2 - E(i _ ~)2 

n i-I 

. =1 i E{Xi-E(x;)]2-E{x -E(x)]2 
n i-I 

1 " (I ) =- L V(X;) -'- V(x)= 1 - - 0 2 
ni~1 n 

Remarks 1. Here we see that although sample mean is an unbiased 
estimate of population mean, sample variance is not an' unbiased estimate of 
population variance. However, an unbiased estimate of of 0 2 is given by S2, 
given in equation (12·8a). 
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SZ plays a very important role in sampling lheory, particularly in small 
sampling theory. Whenever (Jz is not known, its estimate SZ given. by (l2·8a) is 
used for practical purposes. 

r .. 
2. We have SZ = - L (Xj - i)Z and 

ni_l 

nsZ = (n - I)Sz 

Hence for large samples i.e., for n ~ Q, we have SZ ~ SZ. In other 
words, for large samples (i.e., n ~ 00), we may take 

, A 

(JZ=s2 ... (l2·8b) 
12·12. Standard Error of Sample Mean. The variance of the 

srlmple mean is cil/n, where (J is the popUlation standard deviation and n is the 
size of the random sample. 

The S.E. of mean of a random sample of size n from a population with 

variance (J2 is (J/..rn. 
Proof. Let Xj, (i = 1,2, ... , n) be a random sample of size n from a 

population with variance (Jz, then the sample mean i is given by 
1 

x = - (Xl + Xz + ... + X,.) 
n 

V( i) = V[ ~ (Xl + Xz + ... + X .. ) ] = ~ V(XI + Xz + ... + X,.} 

= ~ [V(XI) + V(xz} + ... + V(x,.} 1 
the covariance terms vanish since the sample observations are independent, [ef. 
Remark (il) § 6·6] 

But V(x;) = (Jz, (i = 1,2, ... , n) 

V( X- ) 1 ( 2\ (Jz .. = Til n(J~J =-; 

=> 
_ f(j2 (J 

S.E.( i) = -V -;:: ..rn 

[From (3) of § 12·11] 

... (12·9) 

12·13. Test of Significance for Single Mean. We have proved 
that if Xi, (i = 1, 2, ... , n) is a random sample of size n from a normal 
population with mean ~ and variance (Jz, then,the sample mean is distributed 

normally with mean ~ and vari~ce (Jz/n, i.e., i - N(~, (Jz/n). However, this 

result holds, i.e., i - N(jJ., (Jz/n), even in random sampling from non-normal 
population provided the sample size n is large [ef. Central Limit Theorem, 
§ 8·10]. ' 

Thus for Jarge samples, the standard normal variate corresponding to x is : 
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z=x - ~ 
al{;; 

Under the 111111 lIypothesis. Ho that the sample has been drawn from a 
population with mean 11 and variance a2, i.e., there is no signilicant difference 

between the sample mean ( x ) and population mean (11), the test statistic (for 
large samples), is : 

z = £..=.J!. 
al{;; 

.. . (I2·9a) 

Remarks 1. If the population s.d. a is unknown then we use .its estimate 
provided by the sample variance given by [See (12·8b)]: 

" " a2 = s2 => a = s (for large samples). 

2. Confidence limits for 11. 95% confidence interval for jl is given by : 

I Z I $ 1·96, i.e., .t ~~ I ~ 1·96 
al"'lll 

=> x - 1·96al-.[;, ~ 1-1 ~ x + 1·96al{";, ... ( 12· 10) 

and x ± 1·96al{;; are known as 95% confidence limits for 1-1. Similm'ly, 99% 

confidence limits for 11 are x ± 2.58al{-;; and 98% confidence limits for 11 are 

x ± 2·33al{";,. 

However, in sampling from a finite population of size N, the 
corresponding 95% and 99% confidence limits for 11 are respectively 

~ JL .. /N-II -:"+ JL .. /N-II .\ ± 1·96 _r 'V N _ 1 and x _2·58 _r'V N _ 1···(12.lOa) 
"'III "'III 

3. The confidence limits for any parameter (P, 11, etc.) are also known as 
its {tdllciallimits. 

Example 12·15. A sample of 900 members has a meall 3·4 cms,. alld s.d. 
2·61 ellls. Is tile sample from a large poplliatioll of meall 3·25 CIIIS. and s.d. 2·61 
ellis. ? 

If the pop"latioll is 1I0rmai alld its meall is IIl1kllOWII, {tlld the 95% alld 98'% 
fidllciaL limits of true mean. . 

Solution. Null I,ypothesis, (Ho): The sample has been drawn from the 
population with mean 11 = 3·25 ems .• and S.D. a = 2·61 ems. 

Alternative Hypothesis, HI : 11 *- 3·25 (Two-tailed). 

Test Statis{ic. Under Ho. the test statistic is : 

z = £..::J!. - N(O. I). (since /I is large) 
al{";, 
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Here, we are given 

x = 34 ems., n = 900 ems., J.I. = 3·25 ems. and cr = 2·61 ems. 
3·40 - 3·25 0·15 x 30 

Z = 2.61r!900 = 2.61 = 1·73 

Since I Z 1< 1·96, we conclude that the data don't provide us any evidence 
against the null hypothesis (Ho) which may, therefore, be accepted a15% level of 
significance. 

9:>% fiducial limits for the population mean J.I. are : 

x ± 1·96 crt-In ~ 340 ± }-·96 x 2.61/" 900 
~ 3·40 ± 0·1705, i.e.. 3·5705 and 3·2295 
98% fiducial limits for J.I. are given by : 

x ± 2·33 -:;.;, i.e .• 3·40 ± 2·33 x 23~1 
~ 340 ± 0·2027 i.e.. 3·6027 and 3·1973 
Remark. 2·33 is the value %1 of Z from standard normal probability 

in~~grals, such that P (I Z I > %1) = 0·98 ~ P(Z> %1) = 0·49. 
Example 12·16. An insurance agent has claimed that the average age of 

policyholders who insure through him is less than the average for all agents, 
which is 30·5 years. 

A random sample of 100 policyholders ,who had insured through him gave 
the following age distribution : 

Age last birthday No. of persons 
16--20 12 
21--25 22 
26--30 20 
31--35 30 
36--40 16 

Calculate the arithmetic mean and standard deviation ojthis distribution and 
use these values to test his claim at the 5% level of significance. You are given 
that Z (1·645) = 0·95. 

Solution. Null Hypothesis, Ho : J.I. = 30·5 years, i.e.. the sample mean 

(x) and population mean (J.I.) do not differ significantly. 
Alternative Hypothesis. HI: J.I. < 30·5 years (Left-tailed alternative). 

CALCULATIONS FOR SAMPLE'MEAN AND S.D. 

Age last No. 01 Mid-point x - 28 
Id Idl birthday persons (fl x d=-S-

16-20 12 18 -i -24 48 
21-25 22 23 -1 ' -22 22 I 
26-30 20 28 0 0 

o J 31-35 ?O 33 1 30 30 
36-40 16 38 2 32 64 

Total N = 100 Ifd= 16 Ifd2 = ~64 



_ 5 x 16- _ /164 (16 )2 
X = 28 + 100, = 28·8 years s = 5 x . '/100 - 100 = 6·35 years 

Since the sample is large, &:::: s = 6·35 years. 

Test Statistic. Under Ho, the test statistic is 

Now 

Z = i,:;!!' - N(O, I), (since sample is large). 
"'J s21n 

Z 28·8 - 30·5 -1·7 
= 6.35moo = 0·635 = -2·681 

Conclusion. SiI:lce computed value of Z = -2·681 < -1·645 or 
I Z I = 2·681 > 1·645, it is significant at 5% level of significance. Hence we 
reject the null hypothesis Ho (Accept H t ) at 5% level of significance and 
conclude that the insurance agent's claim that the average age of policyholders 
who insure through him is less than the average for all agents, is valid. 

Example 12·17. As an application of Central Limit Theorem, show that 

if E is such that P (I X - J.11 < E) > 0·95, then the minimum sample size n is 
(1·96)2(J2 

given by n = E2 _' where p. and a2 are the mean and variance respectively 

of the population and X is the mean of the random sample. 
Solution. By Central Limit Theorem, we lcnow that X - N(Il, (J2/n) 

asymptotically i.e.. for large n. 

:: Z = X =~ _ N(O, 1), asymptotically i.e .• for large n. 
(Jl~·n 

From normal probability tables, we have 
P (I Z IS 1·96),= 0·95 

~ p[ 1:-;.1 SI'96]=0.95 

~ P [ I X - J.1 I S 1·96 J;] = 0·95 

We are given that 

P [ I X - III < E] > 0·95 
From ("') and (*"'), we have 

1·966 (1·96)2 (J2 
E>...r,. ~ n> e 

... ("') 

... ("'II!) 

Hence minimum sample size n fOl estimating 11 with 95% confidence 
=oefficiel,lt is given by n = 3·84 aZIW, where E is the permissible error . 

• Remark. The minimum sample size for estimating 11 with cogfidence 
coefficient '(1 - a) is given by (J2za2IE2, where zaJs the Significant value of Z 
at level of significance a and E is the permissible error in the estimate. 
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I 

Arguing similarly, the minimum sample size for estimating population 
proportion P with confidence coefficient (1 ~ a) is given by n = P-Q za2/E2, 
where Za is the significant value of Z at 'a' level of significance and E is-the-

" -
permissible error in the estimate. If P is unknown, we may use P = p. 

Example 12·18. The mean muscular endurance score of a random sample 
of 60 subjects was found to be 145 with a s.d. of 40. Construct a 95% 
confidence interval for the true mean. Assume the sample size to be large 
enough for normal approximation. What size of sample is required to estimate 
the mean within 5 of the true mean with a 95% confidence? 

[Colicut Univ. B.Sc. (Main Stat.) 198~] 

Solution. We are given: n = 60, i = 145 and s = 40. 
95% confidence limits for true mean (JL) are : 

i ± 1·96 sl...Jn (02 ~ r, since sample is large) 

= 145 + 1.9~ 40 - 145 ± ~~~~ = 145 ± 10·I:i = 134·88, 155.12 

Hence 95% confidence interval for Il is (134·88, 155·12). In the notations 
of Example 12·17, we have 

/ n = eaE or = C·965X 40Y 

" -[.: Zo-05 = 1·96, 0 = s = 40 and I x - Il I < 5 = E] 

= (15-68)2 = 245·86 = 246 . 
. Example 12·19. The standard deviation of a population is 2·70 inches. 

Find the probability that in a random sample of size 66 (i) the sample mean will 
differ from the population mean by 0·75 inch or more and (ii) the sample mean 
will exceed the population mean.by 0·75 inch or more (given that the value of 
the standard normal probability integral from 0 to 2·25 is 04877). 

Solution. lIere we are givep n ='66, 0 = 2·70 inches. Since n is large, 

the sample lPean i - N{J.1, 02In). 

Z =i ~F -N(O, 1) 
o,-vn 

We want 

P[ Ii - III ~ 0·75] = 1 - P[ Ii - Il I < 0·75] 

=1-p['1 J;zl < 0.75J 

= 1 -P [ I Z 1< 0.75 V; ] 
=-1-2P[ 0 < Z < 0·75 v:; ] 

••• (*) 

,[From (*)] 



= 1 - 2 P [ 0 < Z < O· 7 5 x ~.~ ] 

= 1-2P[ 0 < Z < 0·75 ~.7~~24 ] 

= 1 - 2 prO < Z <2·25] = 1 - 2 x 04877 = 0·0246 

(ii) p( X - ~ > 0·75] = P(Z > 0·75 ..[;,/a) = P(Z > 2·25) 
- = 0·5 - P(O < Z < 2·25) = 0·5 - 0·4877 = 0·0123 
Exa~ple 12'20. A normal population has a mean of 0·] and standard 

del1iation of 2 .]. Find the probaDility that mean of a sample of size 900 will be 
negative. [Delhi Univ. B.Sc. (~t(!.l. Bon •• ), 1986] 

Solution. Here we are given that X - N(~, ( 2), where ~ = 0·1 and 
a = 2·1 and n :: 900. 

Since X - N(p., (2), the sample mean x - N(JJ" a2/n). The standard normal 

variate corresponding to x is given by : 

x - u. X - 0·1 x - 0·1 
Z = ~r = 2.1/30 = 0.07 ann 

x = 0·1 + 0·07Z, where Z - N(O, 1) 
The requirr,d probability p, that the sample mean is negative is given by : 

p = P(x < 0) = P(O·1 + 0·07 Z.< 01 

= P ( Z < - ~~~O) = P (Z < -1.43) = P(~ ~ 143) 

= 0·5 -P(O < Z < 143) = 0·5 -04236 = 0,0764 
(From Normal Probability Tables)-

Example 12·21. The guaranteed average life of a certain type of electric 
light bulbs is JO()() hours with a standard deviation of"125 hours. It is decided to 
sample !he output so as to ensure that 90 per cent of:the bulbs 40 not/all short 
of the guaranteed average by more than 2·5 per cent. What must be the 
minimum size of the sample ? [Madras Univ. B.Sc., Oct. 1991] 

Solution. Here J.I. = 1000 hours, a = 125 hours. 
Since we do not want the sample mean to be less than the guaranteed 

average mean ()1. = 1000) by more than 2·5%, we should have 

x> 1000 - 2·5% of 1000 ~ x> 1000 - 25 = 975 
Let n be the given sample size. Then 

We want 

Z = x =;t - N(O, 1), since sample is large. 
, ann 

Z = i - !.1 > 975 - 1000 > _ ..r;, 
atif; 125rf; .5 

According to the given condition, we have 

(·.·X> 975) 
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P(Z > - ..J nl5 ) = 0·90 ~ P(O < Z < ..J nl5 ) = 040 

•. ..J nl5 = 1·28 (From Normal Probability Tables) 
~ n =25 x(1.28)~=41 (approx) 
Example 12·22. A survey is proposed to be conducted to know the 

annual earnings of the old Statistics graduates of Delhi University. How large 
should the sample be taken in ordeT to estimate the mean annual earnings within 
plus and minus Rs. 1,000 at 95% confidence level? The standard deviation of 
the annual eamings of the entire population is known to be Rs. 3,000. 

Solution. We are given: (J = Rs. 3,000. 
We want: P [ I x-Ill < 1,000] = 0·95 ... (*, 
We know that, in sampling from normal population or for large samples 

from any population X - N{J.1, (J2/n). Hence from normal probability tables, we 
have: 

P [ I Z I S 1·96] = .0·95 

~ p[ I :l S 1'96!1 ] =0·95 

~ P [ I x-Ill S 1·96 x «(JrJn)] = ()'95 ... (**) 

From ~) and ( .. ), we get 

1.91; 3 = 1000 ~ 1·96 J-;,3000 = 1000 

n = (1·96 x 3)Z = (5·88)Z = 34;56 = 35 
Aliter. Using Remark to Example 12·17, 

_ (za . (J)2 _ (1.96 X 3,OOO)Z _ 35 
n - E - 1,000 _. 

12·14. Test of Significance for Difference of Means. Let Xl be 
the mean of a random sample of size nl from a population with mean III and 

variance (J12 and let X2 be the mean of.an independent random sample of size n2 
from another population with mean I1z and variance (Jzz. Then, since sample 
sizes are large, 

XI - N{J.1lt (J12/nl) and Xz - N{J.1z, (Jz2/nZ) 

Also i I - xz, being the difference of two independent normal variates is also 

a normal variate. The Z (S.N. V.) corresponding to XI - Xz is given by 

Z = (x I - X z) - E( X 1 ~ XU' _ N (0, I) 
. S'.E. (XI -xz) , 

Under the null hyPothesis Ho : III = 1l2' i.e., there ·is no significam 
difference between the sample means, we get 

E(xi -Xz} = E(xt) -E(xz} = III -l1z:: 0; 
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V (xi - x:u = V(x.) + V(x:u =.~ + t2t , 
n. n2 

the covariance tenn vanishes, since the sample means x. and X2 are independent. 

Thus under Ho : Il. = 1l2' the test statistic becomes (for large sampl~), 

z = x. - x2 _ N (0,1) ... (12.11) 
" (a.2/n.) + (a22/n:u 

RemarJr.s 1. If a.2 = a22 = a 2, i.e .• if the samples have been drawn from 
the populations with common S.D. a, then under Ho : III = 1l2' 

z = x. - X2 _ N(O, 1) ... [12.H(a)] 
aV (I/nl + 1/n2) 

2. Ifin (l2·11a), a is not known, then its estimate based on the sample 
variances is used. If the sample sizes are not sufficiently large, then an unbiased 
estimate of a2 is given by 

~ _ (nl - I)S)2 + (n2 - I)S22 
- (n. + n2 - 2) , 

since E(a) = 1 2 [(nl - 1) E(SI2) .. (nl- 1) E(Sll)] 
n. + n2-

= 1 [(nl-1)a2+\n2-1)a2]=a2 
n. + n2 - 2 

But since sample sizes are large, 5-.2 ::' S.2, S 22 ::' S12, n 1 - 1 ::' nit 
n2 - 1 ::' nz: Therefore in practice, for large samples, ttte following estimate of 
a l without any serious error is used : 

A2 nls.2 + n2 S22 
a = ... [12·11(b)] 

n) + n2 

However, if sample sizes are small, then a small sample test, t-test for 
difference of means (c/. Chapter 14) is to be used. 

3.1f a •. 2 'I- a21 and al and a2 are not known, then they are estimated from 
sample v~ues. This results in some error, which is practically immaterial, if 
samples are large. These estimates for large samples are given by 
. A 

A (since samples are large). 
a.2=S.2 :s .• 2} 

, a22 = S22 :S22 

In this case, (l2.t1) gives 

, •. [12·11(c)] 

Example 12·23. The means of two single large samples of 1000 and 
2000 members are 67·5 inches and 68·0 inches respectively. Can the samples be 
regarded as drawnfrom the same population ~fstandlJrd deviation 2·5 inches? 
(Test at 5% level 0/ significance). 
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Solution. We are given: 

nl = 1000, nz = 2000; Xl = 67·5 inches, Xz = 68·0 !Dches. 
Null hypothesis. Ho : ~l = ~z and (1 = 2·5 inches. i.e .. the samples have 

been drawn from the same population of standard deviation 2·5 inches. 
Alternative Hypothesis. III : ~l ~ ~z (Two tailed.) 
Test Statistic. Under Ho, the test statistic is (since samples are large) 

z = Xl -Xz -N(O, I) 

.... I (1z (1.. + 1..) . 
V nl nz 

Now 
67·5 - 68·0 - 0·5 

Z = _ I 1 1 = 2·5 x 0.0387 = -5·1 

2·5 x -V 1000 + 2000 

Conclusion. Since I Z I > 3, the value is .hig~ly ~ignificant and, we reject 
the null hypothesis and conclude that sam'ples are cenain~y npt from the same 
population with standard deviation 2·5. 

Example 12·24. In a survey of buying habits. 400 women.shoppers are 
chosen at random in super market 'A' located in a certain section of the city. 
Their average weekly food expenditure is Rs. 250 with a standard deviation of 
Rs. 40. For 400 women shoppers chosen at random in super market 'B' in 
ar.other section of the city. the average weekly food expenditure is Rs. 220 with 
a standard deviation of Rs. 55. Test at 1% level of significance whether the 
average weekly food expenditure of the two populations of shoppers are equal. 

Solution. In the usual notations. we are given that 

nl = 400, Xl = Rs. 250, Sl = Rs. 40 

nz ~ 400, Xz = Rs. 220 sZP·'Rs.55 
Null hypothesis. Ho : J1l = J1z, i.e.. the average weekly food expenditures of 

the two populations of shoppers are equal. 
Alternative Hypothesis. HI : ~l ~ ~z. (Two-tailed) 
Test Statistic. Since samples· are large, under Ho, the test statistic is 

?: = _;:X:::l =-=x::z ===-:.. N(O, 1) 

(~+ (1ZZ). 
nl nz_ 

Since (11 aM (1z. the population standard deviations are no~known. we can 
~e'for large samples (c/ § 12·15, Remark 3).: ~ 

" " (1lZ,= Slz and (12Z= si 
and then Z is given. by 

= 8·82 (approx.) 
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Conclusion. Since I Z I is much greater than 2·58, the null hypothesis 
011 = Ili) is rejected at 1 % level of significance and we conclude that the average 
weekly expenditures of two populations of shoppers in markets A and B differ 
significantly. 

~ample 12'25. The average hourly wage of a sample of 150 workers 
in a plant 'A' was Rs. 2·56 with a standard deviation of Rs. 1·08. The average 
wage of a sample of 200 workers in plant 'B' was Rs. 2·87 with a standard 
deviation of Rs. 1·28. Can an .applicant safely assume that the hourly wages 
paid by plant 'B' are higher than those paid by plant tA' ? 

. Solution. Let Xl and Xz denote the hourly wages (in Rs.) of workers in 
plant A and plantB respectively. Then weare given: 

nl = 150, Xl = 2·56, Sl = 1·08 = ~l 
nz = 200, Xz = 2·87, Sz = 1·28 = ~z 

Null hypothesis, Ho: III = Ilz, i.e., there is no significant difference 
between the mean level of wages of workers in plant A and plant B .. 

Alternative hypothesis, HI :. Ilz > III i.e., III <" Ilz (Left-tailed test) 
Test Statistic. Under Ho, the test statistic (for large samples) is : 

Xl - Xz 
Z = --;:=::::=:::::::::.. = _;:X::l ~-:::::xz==. _ N(O, 1) 

Z= 

( O'IZ + 0' z~ ) :(SIZ + SiZ) 
nl nz . nl nz 

2·56 - 2·87 - 0·31 - 0·31 

{
(1.08f (l'2inz} = -V6.016 = 0·126 = 

. 150 + 200 

-2:46. 

Critical region. For a one-tailed ·test, the critical value of Z at 5% level of 
significance is 1·645. The critical region for left-tailed test thus consIsts of all 
values of Z ~ -1·645. 

Conclusion. Since calculated value of Z,(-246) is less than critical'value 
(-1·645), it is significant at 5% level of s,ignificance. Hence the null hypothesis 
is rejected at 5% level of significance and we conclude that the average hourly 
wages paid by plant 'B' are certainly higher than those paid by plant 'A'. 

Example 12'26. In a certain factory there are two independent processes 
manufacturing the same item. The average weight in a sample of 250 items 
produced from one process is found to be 120 ozs. with a standard deviation of 
12 ozs. while the corresponding figures in a sample of 400 items from ihe other 
process are 124 and 14. Obtain the standard e"or of difference between the twa. 
sample means: Is this difference significant ? Also find the 99% confidence 
limits for the difference in the average weights of items produced by the two 
processes respectively. 

Solution. We have 

- 1\ } nl = 250, Xl = 120 oz., Sl = J2 oz. = 0'1 . • ' 
_ 1\ J (smce samples are,large). 

n2 = 400, X2 = 124 oz., Sz = 14 o~. = O'z 
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S.E. (Xl-X2) =V(CJ12/nl)+(CJl/nz) =v(s~2/nl)+'(sl/n~ 

= (~~ + 'I:~) = ~ (0·576 + 0·490) = I· 034 

Null' Hypothesis. Ho: III = 1l2' i.e.. the sample means do not differ 
significantly. 

Alternative Hypothesis. HI : III * 112 (Two-tailed). 
Test Statistic. Under Ho, the test statistic is : 

Z = Xl - X2 = 120 - 124 _ N (0, I) 
S.E. (Xl - xz) 1·034 

4 
. . I Z I = I.O~ = 3·87 . 

Conclusion. Since I Z I > 3, the null hypothesis is rejected and we conclude 
that there is significant difference between the sample means. 

99% confidence limits for I III - 112 I, i.e .• for the difference in the average 
weights of items produced by two processes~ are . 

I Xl ",-X2 I ± 2·58 S.E. (Xl -,- xz) = 4 ± 2·58 x 1·034 
= 4 ± 2·67 (approx.) = 6·67 and 1·33 

.. 1·33 < I III - 112 1<6·67 
Example 12·27. The mean height 0/50 male students who showed 

above dverage participation in college athletics was 68·2 inches with a standard 
deviation 0/2·5 inches; while 50 male students who showed no inter~st in such 
participation had a mean height 0/67·5 inches with a standard deviation 0/2·8 
inches. 

(i) Test the hypothesis that male students who participate in college 
athletics are taller than other male students. 

(ii) By how 1t{uch should the sample size 0/ each 0/ the two groups be 
increased in order that the observed diffetence 0/0·7 inches in the mean heights 
be significant at the 5% level 0/ significance. 

Solution. Let X 1 and X 2 denote the height (in inches) lof athletic 
participants and non-athletic p~c~~n~ respectively. In the usual notations, we 
are given : 

nl = 50, Xl = 68·2, Sl'= 2·5; n2 = SO, X2 = 67·5, S2 = 2·8 
Null hypothesis. Ho: III = 1l2' ' 
Alternative hypothesis. HI : III >'1l2 (Right-tailed). 
Test Statistic. Under Ho"the test statistic for large samples is : 

Z = _;:X:!:;l =-~X2='=. _ N (0, I) 

( s.z + S22) 
nl 1lz "-

Z = _;::68~.=2 =-=67::.5::;,;::::;;:. 

{~ (~} 
50 + 50 



For a right-tailed test, the critical (significant) value of Z at 5% level of 
significanCe is 1·645. 

(i) Since the calculated value of Z(1·32) is less than the critical value 
(1·645), -it is not significant at 5% level of significance. Hence the null 
hypothesis is accepted and we conclude that the college athletes are not taller 
than otber male students. 

(ii) The difference between the mean heights of two groups, each of size n 
will be significant at 5% level of significance if Z ~ 1·645 

68·2 - 67·5 
~ 1·645 

{(2;)2 + (2'!)~} 
0·7 ~ 1.645 ~ '0·7 ~ 1.645 

..J 14·09/n' 3.754rJn 

n ~ (1.6450~3.754y = (8·~219)2= 77.8J:78 

Hence the sample size of each of the two groups should be increased by at 
least 78 - 50 = 28, in order that the difference between the mean heights of the 
two groups is significant 
12·15. Test of Significance for the Difference of Standard 
Deviations. If SI and S2 are the standard: deviatiens Of two independent 
samples, then under null hypothesis, Ho: 0'1 :::'0'2, i.e .• "i.e .• the sample 
standard deviations don~t-differ significantly, the statistic 

SI -: S2 z = S E ( ) - N(O, I) for large samples. 
" : SI - S2 

But in case of large sampl~,'ihe S.E of the difference of the ,SaJpple ~tandard 
deviations is g~ven by , 

~."...---

... 10'12 <!t. 
S.E. (SI -s~ = '17nl + ~ 

z = _-;S=I=-=S::2 ===- - N (0, I) ... (12.12), 

(~ 0'£) 
2nl + ~ 

0'12 and 0'22 are usually unknown and for large samples, we use their 
estimates gi,ven ~y the cdrresponding sample variances. Hence the test statistic 
reduces to 

si - S2 
Z = ---;==::=. -N (0, I) ... (12·13) 

( S12 + Sz2) 
,2n1 2n2 

Example 12·18. Randol'lj samples drawn from two countries gave the 
following data relating to the heights of adult males: 



Sampling and Large Sample T~ 

Mean height (in inches) 

Standard deviation (in inches) 

Country A 

67·42 

2·58 

CountryB 

67·25 

2·50 

Number in samples 1000 1200 

(i) Is the difference between the means significant? 

(ii) Is the difference between the standard deviations significant? 
Solution. We are given: 

nl = 1000, XI = 6742 illches, Sl = 2·58 inches, 

n2 = 1200, X2 = 67·25 'inches, S2 = 2·50 inches. 
As in the last examples (since sample sizes are large), we can take 

1\ 1\ 
(JI = Sl = 2·58, (J2 = S2 = 2·50 

(,) Ho : III = 1l2' i.e .• the sample means do not differ significantly.. 

HI : J.lI -:;:. J.l2 (fwo tailed). 
Under the Null hypothesis Ho, the test statistic is 

z = '" XI - x~ '_ N(O, 1), sjnee samples are large. 
(sI2/nl) + (sl/ni) 

Now z = 67·42 - 67·25 0·17 

(2.58)2 (2·50)2 
1000 + 1200 

= 
( 6.66 6.25) 

1000 + 1200 

= 1·56 

Conclusion. Since I Z I < 1·96, null hypothesis may be accepted at 5% 
level of significance and we may conclude that there is no significant difference 
between the sample means. 

(if) Under flo : that there is no signifiCant difference between sample standard 
deviatio~. 

Z= Sl -S2 
S.E. (Sl _ si) - N(O, 1), since samples are large. 

( (J12 (J 22) :. Now~. (Sl -si) = 2n1 + ~ - (
' Sl2 sl) 
2n1 + ~ , 

• 1\ 1\ 
if (JI and (J2 are not known and' (JI = SI, (J2 = S2. 

: •. ' S.E. (Sl - sz) = . (2.58)2 (2·50)2 = 0.07746 
7 x 1000 + 2 x 1200 

2·58 - 2·50 0.08 
Z = 0.07146 0.07746 :..1·03 

Conclusion. Since I Z I < 1;96, the data.don't pIO"ide us any evidence 
against the null hypothesis which ~ay be acCepted at 5% level of significance. 
Hence the sample standard deviations do not differ sigriificantly. 



Example 12·29. Two populations have their means equal. but SD. of 
one is twice the other. Show that in the samples of size 2000 from each drawn 
under simple sampling conditions. the difference of means will. in all 
pr.obability, not exceed 0·15u. where u is the smaller SD. What is the 
probability that the difference will exceed half this amount? 

Solution. Let the standard deviations of the two populations be CJ and 2CJ 
respectively and let J.1 be the mean of each of the two popu~tions. Also we are 
given nl = n2 = 2000. If XI and X2 be the two sample means then, since samples 
are large. 

Z=(XI-xV-E(XI-X,) _ N(O,I) 

S.E. (XI - X2) 

Now E(x I - X2) = E(xi ) - E(X2) ='J.1- J.1 = 0 and 

S.E. (il -i,J=.y {~ +(2~'} = G. -Y (~ + 

z = X I - Xl _ N(O. I) 
S.E. (XI - X,) 

_4 _) _ 0.05CJ 
2000 -

Under simple sampling conditions, we shOuld in all probability have 

IZI<3 => IXI-X21<3S.E. (XI-X2) 

=> Ix; -X21<0·15CJ, 
which i~ the required resl,llt. 

We want 'p=P[lxl -xil>kxo.15CJ] 

p = p[ 0·05CJ I Z I > 0.075CJ] 

=. P [ I Z I > 1·5]. = 1 - P [I Z I S.I·5 ] 
= 1 - 2 P (0 S Z s 1·5) = 1 - 2 x 0·4332 = 0·1336 

EXERCISE 12·2 

I.-Define sampling distribution and standard error. Obtain standard error of 
mean when population is large. 

2. Find the standard .error of a linear function of a fnumber of variables. 
Deduce the standard error of the mean o~ n UJ.1correlated variables following the 
same distribution. 

3. Deri,:e the expressions fOl: the standard error of 
(I) the mean of a random sample of size n. and 

(il) the difference of the means of two independent random samples of sizes 
nl andnz. . 

4. (a) What is meant by a statistical hypothesis? What are the two types 
of errors of decision that arise in testing a liypothesis ? Briefly explain how a 
sta$tical hypothesis is tested. 

The manufacturer of television tubes Icnows from past experience that the 
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average life of a tube is 2,000 hours with a standard deviation of 200 hours. A 
sample of 100 tubes has an average life of 1950 hOurs. Test at the 0·05 level of 
significance if this sample came from a nonnaI population of mean 2,000 hours. 

State your null and alternative hypothesis and indicate clearly whether a one­
tail or a two-tail test is used and why? Is the result of the test significant? 

[Calcutta Univ. B.Sc. (Math •• Hon •• ), 1990] 

(b) A sample of 100 items, drawn from a universe with mean value 64 and 
S.D. 3 has a mean value 63·5. Is the difference in the means significant? What 
will be your inference, if the sample had 200 items? 

[Madras Unit!. B.E., Not!. 1990J 

(c) A sample of 400 individuals is found to have a mean height of 67·47 
inches. Can it be reasonably regarded as a sample from a large population with 
mean height of 67·39 inches and standard deviation 1·30 inches ? 

ADS. Yes, Z = 1·23. 
(d) The mean 'b~ng strength of cables supplied by a manufacturer is 

1800 with a standard deviation 100. Bya new techniqu~ in the manufacturing 
process it is claimed that the breaking strength of the cables has increased. In 
order to test this claim a sample of 50 cables is tested. It is found that the mean 
breaking strength is' 1850. Can we support the claim at 0·01 level of 
significance ? 

ADS. Ho: 1.1 = 1800, H t : J.l > 1800, Z = 3·535. 
(e) An ambulance service claims that it takes on the average 8·9 minutes to 

reach its destination in emergency caIls. To check on this claim, the agency 
which licenses ambulance services has them timed ,on 50 emergency caIls, 
getting a mean of 9·3 minutes with a standard deviation of 1·6 minutes. What 
can they conclude at the level of significance a = 0·05 ? 

ADS. Z = 1·768. 
(f) A paper mill in U.P. has agreed to buy waste paper for recycling from a 

waste collection fum, under the agreement that the waste collection fum, will 
supply the was~e paper in packages of 300 kg each, for which the paper mill 
will pay by the package. To speed up their work the waste collection fmn is 
making packages by some approximalion procedure. The paper mill does not 
object to this procedure as long as it gets 300 kg. per package on the average. 
The waste collection firm has an interest not t9 exceed 300 kg. per package, 
because it is n~t being paid for more, and not to go und~r 300 ,kg. because the 
paper mill migbt tenninate the agreement if it does. To estimate ttie mean 
weight of waste paper per package, the waste collection firm weighed 75 
randomly selected packages and found. that 'the mean weight was 290 kg and 
standard 'deviation was IS kg .. Can we infer that the mean weight per package in 
the en~ supply wa.~ 300 kg ? [Dellai Univ. M.A. (Reo.), 1987] 

ADS. Ho: 1.1 = 300 kg; HI ~'1.1 ~ 300 kg. (Two-tailed). 

Z 290 - 300 5 77 S' 'fi = ISms =. ; Ignl IC8pL 
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(g) The wages of a factory's workers are,assumed to be nonnaIly distributed. 
with mean 1.1 and variance 25. A.random sample of 25 workers gives the total 
wages equal to 1250 units. 

Test the hypothesis: 1.1 = 52, against the alternative: 1.1 = 49, at 1 % level of 
significance. 

1 J-2.32 
- exp (- !u2) du == 0·01. Th -00 2 

[Coleutta Un;,,; B.Sc.(Math •• Hon •• ), 1988] 

Ans. Ho : 1.1 :;: 52, HI : 1.1 = 49 < 52, (Left-tailed test). 
Z =, -2, Not significant 

S. (a) A sample of 450 items is taken from II population whose standard 
deviation is 20. The mean of the sample is 30. Test whether the sample has 
come from a population with mean 29. Also calculate the 95% confidence limits 
for the population mean. 

(b) A sample of 400 observations has mean, 95 and standard d~~iation 12, 
Could it be a random sample from a population with mean 98. ? What can be the 
maximwn value of the population mean '/ 

6. (a) If the mean age at death· of 64 men el]gaged in an occupatiQD-iS 52·4 
years with standard deviation of 10·2 years, what are the 98% ,confidence Ii.mits 
for the mean age of all men in that.population ? / 

[Calic"' Uni". asc. (Su,?s.), 1989] 

(b) The weights of 150()'ball bearings are nonnally ~stributed with mean 
22·40 and standard devi~tio~ 0·048. If 300 random samples of size 36 each are 
drawD from tt,is population, detennine the expected mean'andstandard devi~tion 
of the sampling distribution of rpeans, if Sampling is done with replacement. 

How many of the random samples in the a~ve problem would-have their 
means between 22·39 aQd 22·41 ? [Madras Uni". B.E., April 1989] 

Hint. E (X) = 1.1 = 22·40; SE, (X) = orr; = 0.048rf36"= 0·008' 
Required number of samples (out of 300) is :.300 x P (22·39 < X < 22·41) 

= 3'00 x P (22·~~.ooi2'40 < Z < 22.410:<xi82.40) ; Z - N(O, I) 

= 300 x P(-1·25 < Z < 1·25) = 6OO'x P(O < Z < 1·25) z 237 
7. (a) A random sample of 500 is drawn froin a large number of freshly 

minted coinil The mean weight of the coins in the sample is ~8·57 gm. and the 
standard deviatioq is 1·25 gm. What are the limits which have a 49 to 1 chance 
of including the mean weight of all d1e cOins ? How large a sample would have 
to be drawn to m~e,these limits differ by only 0·1 gm, assuming that the 
standard deviation of tJie whole distribution is 1·25 gm. 

(b) A research woiter wishes to estimate the mean of a population by using 
sufficiently large sample. The probability is 0·95 that the sample mean will not 
differ from the true mean of a nonnat population by mor~ than 25% of the 

. standard deviation. How large a sample should be taken? (Ans. n = 62.) 
8. (a) A normal distribution has mean 0·5 and standard deviation 2·5. Find: 
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(,) The probability that the mean of a random sample of size 16 from the 
poPl.llation is positive. 

(ii) The probability that the mean of a sample of size 90 from the 
population will be negative. 

(b) The mean of a certain normal distribution is'equal to the standard error of 
the mean of a random sample of 100 from that distribution. Find the 
probability, (in terms of an integral), that the mean of a sample of 25 from the 
distribution will be negative. (Ans. 0·3085.) 

(c) The average value x of a random sample of observations from a certain 

population is normally distributed with mean 20 and standard deviation 5Nn. 
How large a sample should be drawn in order to have a probability of at least 

0·90 that x will lie between 18 and 22. <Karnataka Univ. B.E. 1991) 

9. (a) From a population of 169 units it is desired to choose a simple 
random sample of size n. If the population standard deviation is 2, determine the 
smallest 'n' for which the probability th~ the sample mean differs fI:om the 
population mean by more than 0·75 is controlled at 0·Q5. 

(b) An economist would like to estimate the mean income (J..l) in a large 
city. He has decided to use the sample mean as an estimate of ~ and would like 
to ensure that the error in estimation is not more than ~s. 100 with probability 
()'9O. How large a sample should he take if the standard deviation is known to be 
Rs. I,OOO? [Delhi Univ. M.A. (Eco.), 1986] 

_ [za . oJ Z _ [1.645 x 1 oooJ 2 _ 270.6 071 
Ans. n - E - 100 - ::: .. 

(c) The management of a manufacturing firm wishes to determine the 
average time required to complete a certain manual operation. There should be 
()'95 confidence that the error in th~ estimate will not exceed 2 minutes. 

What sample size is required if the standard deviation of the time needed to 
complete the manual operation is estimated by a time and motion study expert 
as (I) 10 minutes, (il) 16 minutes? Explain intuitively (without referring'to the 
formula) why the sample size is large in (il) than in (I). 

(Given 497S = 1·96 and 49S = 1·645) 
[Delhi Univ. M.e.A., 1987] 

za . 0 1·96 x 10 . 1·96 x 16 ( )2 ()2 ( 2 
Ans. (l)nl= -E- = 2 =96, (ll)nz=· :2 .) =246. 

10. (a) Two populations have the same mean, but the slar!dard deviati9n of 
one is twice that of the other. Show th~t ~ samples of 500 each drawn.under 
simple random conditions, the difference-of the ineans will, in all probability, 
not exceed 0·3a, where CJ is the smaller standard deviation, and assuming the 
distribution of the difference of the means to be normal, (md the probability that 
it exceeds half that amount. (Ans. 0·1336.) 

(IJ) A simple sample of heights of 6,400 Englishmen has·a mean of 67·85 
inches and S.D. 2·56 inches, while a simple sample of heights of 1,600 
Australians has a mean of 68·55 inches and a S.D. of 2·521nches. Do the data 
indicate that Australians are, on the average, taller than Englishmen ? 



Fundamentals ofMathematica1 StatiBtic» 

ADS. H 0 : III = 1l2' HI : III < 1l2' Z = 9·2, (sjgnificant). 
(c) In a random sample of 500, the mean is found to be 20. In another 

independent sample Qf 400, the mean is 15. Could the samples have been drawn 
from the same population with standard deviation 4 ? 

11. (0) The following table presents data on the values of a harvested crop 
stored in the open and inside a godown : 

Sample size Mean L (~- :i 'fZ 
Outside 40 117 8,685 
Inside 100 132 27,315 
Assuming that the two samples are random and they have been drawn from 

norm~l populations with equal variances, examine if the mean value of ta'le 
harvested crop is affected by weather conditions. 

ADS. Z"" 0·342; Not significant. 
(b) Samples of students were drawn from two universities and from their 

weights in kgm., means and standard deviations are calculated. Make a large 
<mrnple test to test the significance of the differeqce between the means. 

Mean S.D. Size of sample 
University A 55 10 400 
University B ~7 15 1,00 
Ans. Z.= 1·2648; Not significant. 
(c) A storekeeper wanted to, buy a large quantity of light bulbs from two 

orands labelled 'one' and 'two'. lJe bought 100 bulbs from each brand and found 
by testing that brand 'one' had meaillifetime of 1120 hours 'and the standard 
deviation of 75 hours; and brand 'two' had mean lifetime of 1062 hours and 
standard deviation of 82 hours. Examine whether the difference of means is 
significant. 

12. The mean yield of two sets of plots and their variability are as given. 
below. Examine 

(l) whether the difference in the mean yields of the two sets of plOts is 
significant, and 

(ii) whether the difference in the variability in yields is significant. 

• Mean yield per plot 
S.D. per plot 

ADS. (i) Z = 2·3, (ii) Z = 1·3. 

Set of'40 plots Set of 60 plots 
1258 lb. 1243 lb. 

34 lb. 28 lb. 

13. (0) In a survey of incomes of two c'asses of :.yorkers, two random 
samples gave the following details. Examine w:lether the differences between the 
(,) means and (il) the standard deviations, are'significant. 

Sample 
I 
II 

Size 
100 
100 

Mean annual 
income (in rupees) 

582 
546 

Standard 
d~iation (in rupees) 

24 
28 

Exarnille also whether the fIrSt sample could have come -from a population 
with annual mean incom~ of 500 rupees. -
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(b) The electric light tubes of manufacturer A have a lifetime of 1400 hours, 
with a standard deviation of 200 hours, while of manufacture B have a mean 
lifetime of 1200 hours with a standard deviation of 100 hours. If rarldom 
samples of 125 tubes of each batch are tested, what is the probability that the 
brand A tubes will have a mean time wltich is at least (l) 160 hours more than 
the brand B tubes, and (il) 250 hours more than' the brand B tubes ? 

Hint. Under the assumption of normal population, the sampling 

distribution of (il - x:0 would have mean; J.i.l - J.i.2 = 1400 -" 1200 = 200 hours 
and standard deviation: 

S.E. (Xl -:%:0= (;;+ a~) =..y {(l~~t + (2~~t } =20hours. 

(I) The required probability is given by : 

p{(xl-x~~I60} =p[(Xl-%2~-(~:-~2) ~16020200] 
S.E. (XI - Xv 

= P(Z ~ -2) = 0·5 + P (-2 < Z < 0) 
(il) The required probability is given by : 

P (Xl -X~ ~ 250) = P (Z ~ 2·5) = 0·5 - P(O < Z < 2·5) 
= 0·5 - 04938 = 0·0062 

14. A random sample of 1,200 men from one State gives the mean pay as 
Rs. 400 p.m.with a standard deviation of Rs. 60, and a random sample of 1,000 
men from another State gives the mean pay as Rs. 500 p.m., with a standard 
deviation of Rs. 80. 

Discuss, (stating clearly the result or theorem used), whether the mean 
levels of pay of men from the two States differ significantly. 

15. (a) A normal population has a mean 0·1 and a standard deviation 2·1. 
Find the probability that the mean of a sample of size 900 will be negative, it 
being given that the probability that the absolute value of a standard normal 
variate exceeds 1·43 is 0·153. 

(b) A random sample of 100 articles selected from a batch of 2,000 articles 
shows that the average diameter of the articles is 0·354 with a stanthrd deviation 
0·048. find 95% confidence interval for the average of this batch of 2,000 
articles. 

Hint. We are given n = 100, N = 2,000, X = 0·354, s =0·048. 

The.Standard Error of sample mean'i in random sampling from the batch of 
N = 2,000 is given by: [c.f. (16·23)]. 

__ ~ a _~ s" . 
S.E.( x) = 'J 'N:l x {;;:: 'J N::l x {;(.: (J = s, for large n) 

= 2000 - 100 x 0·048 = 0.00468 
2000 - 1 ~hoo 

Hence ~~% confidence limits for Il are given by : 



i ± 1·96 S.E. (i) = 0·354.;!: 1·96 x 0·00468 = (0·3448,0·3632) 
16. (a) Explain the tenos : 

(i) Stati$tic and Parameter 
(il) Sampling distribution of a statistic, and 

(iii) Standard error of a statistic. 
(b) Explain why a random sample of size 30 is to be preferred to a random 

sample of size 2S to estimate the.population mean. 
17. (a) Obtain the expressions for the standard error of sampling 

distributions of : (l) sample mean (i ), and (il) sample variance (sZ), 
in random sampling from a large population. Assume that n, the sample size, is 
large. 

(b) Let Xl> X2, ••• , X" be a random sample from a population which has a 
fmite fourth moment J.I,. = E( Xi - J.1Y, T = 4; E(Xi) = \.t and Var (Xi) = 0'2 ; and 

let: 

1 "" Show that: (I) S2 = L L (Xj - Xj)2, 
2n(n - 1) i-I j _ 1 

(ii) Var(S2) = ~ [J.14 - .(: = n 0'4]. 

(iii) Cov (i ,S2) = J.13! n 



CHAPTER THIRTEEN 

Exact Sampling Distributions 
(Chi-square Distribution) 

13'1. Chi-Square Variate (Pronounced as Ki - Sky without S). The 
square of a standard normal variate is known as a chi-square variate with 1 degree 
of freedom (d.f.) 

Thus if X - f.V (J.t. 0'2). then Z = X;; 11 - N(O. 1) 

ad Zl = (X ~ l.l :; • is a chi-square variate with 1 d.f. 

In general. if Xi. (i = 1.2; .... n) are n independent normal variates with 
mean. IIi and variance O'r. (i = 1.~ ..... n). then 

1,2 = i (Xi"" l1i)2. is a chi-square variate with n d.f. ...(13·]) 
i-I O'i 

13·2. Derivation of the Chi-square Distribution. 
First Method-Method of Moment' Generating Function. 
If Xi. (i = 1.2 ..... n) are independent N{J.tj, O'r>, we want the distribution of 

1.2= L • ,.... = L Ue. whereUj :; !. ,.... 
/I (X . _ ... )2 II X. _ 1\ • 

i • I O'j i • 1 O'j 

Since X/s are independent. U/S are also independent. 
/I 

M.,z(/) = MI.uz(/) = . n M UZ (I) = [Muz(/)]/I. 
At i, _ 1 i , 

since Ui's - N (0. 1) are identically diStributed. 
Now 

Mu~(t) = E[exp (IU?)] = Joo exp(lur)f(xi)tixj 
, _ClIO. 

1 Joo = _ r:::- exp (tur) exp (- url2) dUi 
:v2n -00> • 

[ 'x;-~11 
U·::!--

I (J J 

prakash
Rectangle

prakash
Rectangle



= _~ J GO exp {_ (1 -; 2/)" U;2}dlh v21t __ 

I ..{; • = - = (1 - 21)-1/2 

~.c ;2/J'2 I 

" M 2(t) = (1- 2/)-"/2 
X 

which is the m.g.f. of a Gamma variate with parameters i and ~ n. 

Hence by uniqueness theorem of m.g.f. 's, 

X2 = 4J • ,.., ~ (X. _ II .)2 
; C1; 

is a Gamma variate with parameters ~ and ~ n. 

(l'(2)1II2' 
.. dPf:/..Z) = r(n!2) . [exp (- !XZ)] f:/..Z)Wl>- ldX2 

= tt!2 1 . [exp(-xll2)] f:/..'Z)Ctt!2)-I,dX1 O<X2<oo 2 r(n/2) , -

... (13-ia) 

... (13.2~ 

whic~ is the required probability density function of chi-square distribution with 
12 degrees of freedom. 

Remarks 1. If a' random variable X has a chi-square distribution with' 12 

df.,we write X -X2(11) and itsp.df is.given by: 

It,);) _ 1 .~"'2 ';'CII/2) -1 ··0 ...... ". < 00 
~\cA. - 2tt12 r(n/2) ....... .~ .... ••• (13·20) 

2. If X - X2c .. ). th~n (X/2) - y(h(l). 

Proor. The' p.d.f. of Y = kx. is given by: 

~ I dx I g(y) = f(x). dy " 

1 , (2 )tttl2)-1 2 = 211(}. r(n/2) C '; .y • 

1 = r(n!2) e-' yCII/l) -I : 0 ~ y < 00 

~ Y ,;. (XI2) - y(n!2) 

Second Method-Metbod or Induction 
If X; is aN (0. I), then X?12 is a y(112) so that Xr is a x2-variate with 

dJ. 1. 



If X 1 and X 2 are independent standard normal variates then X 12 + X 22 is a 
chi-square variate with 2 dJ. which may be proved as follows: . 

The joint probability differential of Xl and X2 is given by : 

dP(X1. x~ = f{X1.X~ t41 dx2 = ft(x1)f2(x~dx1 dx2 

= 21n exp {-(X12! xi)12} dx1 dx2• - 00 < (Xl> x~ ~ ~ 
Let us now transform to polar co-ordinates by the su1?stilution Xl = r cos 9. 

Xz = r sin 9. Jacobian of transformation J is given by 

aXl aX2 
~~ cos 9 sin 9 

J= = =r 
-r sin 9 r cos 9 

Also we have r2 = X1~ + X22 and tap 9.= X2IX1' As Xl and X2 range from 
- 00 to + 00. r varies frolJl c;> to 00 and 9 from 0 to 2n. The joint probilbility 
differential of r and 9 now becomes 

1 
dG(r. 9) = 2n exp (-1212) r drd9; 0 ~ r ~ 00, 0 ~ 9 ~ 2n 

Integrating over 9. the marginal distribution of r is given by 

dGt(r) = S02" dG(r, 8) = r exp (- r2fl) dr[ :n ]:11: 

= exp (- r2fl) r dr 
1 

=> d G1(,:2) = 2: exp (- r2(2) dr2 

1 = r(l) exp (- r2fl) (r2fl)l-l d(rlfl) 

r2 X 2 +X 2 
Thus "2 = 1 2 2 is a y(1) variate and hence r2 = X 12 + X 22 is a 

X2-variate with 2 dJ. 
For n variables Xi • .(i = 1.2 ..... n) we transform (Xt>X2 ..... X,.) to 

(X, 91> 92 ..... 9;""1); (I - 1 transformation) 'by 

Xl = X cos 9 1 cos 9 2 .. , cos 9"_1 

x2 = X cos '91 cos 9~ .. , cos 9,._2 sin 9,._1 

• X3'= X cos 9 1 (:OS.o'2 ... coss 9"_3 sin 9,._2 

... (13·3 
Xj = X cos 9 1 cos 92 ... cos 9"-i sin 9"-i+ 1 
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where X > O. -1t < 9, < 1t and -1t/2 < 9; < 1t/2 for i == 2. 3 •... (n - 1). 

Then X12+ xl + ... + x,? = X2 
ad J J I = XII-I cos ..... 2 91 cosll-3 92 ... cos 9 ..... 2 

(cj. Advanced Theory of Statistics Vol 1. by Kendall and Stuart.) 
The joint distribution of XI> X2 • •••• X" viz .• 

1 " " 
dF(XI.X2 • •••• xJ= (_~) exp(-I. xl!2).rr dxi 

,,21t ' • I 

transfonns to 

i.e .• 

dG<X .• 91• 92 •...• all-I) = exp (-X2/2) X ..... I COS ..... 291 cosll-3 92 ... COS 9,,-2 
dXd91d02 ••• dO ..... 1 

Integrating over 91• 92 •... 9,,_1. we get the distribution of X2 as 
dP(XZ) = k exp (_X2/2) <x2)(11/2}-1 dX2. 0 S X2 < 00 

The constant k is detennined from the fact that the tatal probability is unity. 

1 
k = 211/2 r(n/2) 

dPf'Vz.. = 1 ( 2/2) f"'z..~- I 0 2 
v.,,-, 2"I2r(n/2) exp -X v.,,-' • Sx < 00 

Hence ~22 = -21 i:. Xl is a y(n!2) variate. 
; - 1 

" => X2 = 1: xl is a chi-square variate with n degrees of freedom 
; - 1 

(d.f.5 and (13·2) gives p.d.f. of chi-square distribution with n d.f. . 
Remarks t. If X; ; i = 1.2 •...• n are n independent nonnal variates with 

mean iJ.; and S.D. a;. then i '(Xi - J.1i)2·is a x2~variate with n d.f. 
; _ I ai 

2. In random sampling from a normal population with mean J.1 and S.D. a. 
~ is distributed nonnaiiy about the mean J.1 with S.D. arf;, . 

-
X --J.1 

-;;rt:;: - N (0. 1) ; : ., i::.;~~,., 
[~;l.r ;s a X'-variate wQh I d.t : ' I; ;,:' 

. -
3. Nonnal distribution is a particular' case of X2-distribution when' n = 1. 

since for n = ). . ',-
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= 1 exp (-X}/2) (X2); - 1 dX2,O S X2 < 00 

~ r(1/2) 

= _ ~ exp (_X2!2) dX, - 00 S; X < 00 

" 21& 
Thus X is a staildard nonna! variate. 

13·3. M.G.F. of X2-distribution. Let X - X2(!'). then 

Mx(t) = E(elX),= J 00 e'''f{x)dx 
o 

_ I1C -}l/2 rt/2) - 1 1 J 00 

- 2"'2 r(n/2) 0 e . e x< dx 

_ 1 J 00 [(l..=..1t)] -.lrt/2) - 1 dx 
- 2rt/2 r(n/2) 0 exp - 2 ~. A;' 

_ 1 r(n!2) 
.,... 2n(2 r(n/2) [(1 - 2t)/2]II/2 [Using Gamma Inlegral] 

= (1 - 2t)-rt/2 , I 2t I < 1 ... (13-4) 
which is the required m.gJ. ofax2-variate with n dJ. 

Remarks 1. Using Binomial expansion for negative index, we get from 
(134) if I t I < ~ . 

~ - -+ 1 
n 2 2 

M(t) = 1 + 2 (2t) + 2 ! (2t)2 + ... 
~ (~+ I,) (~+ 2 ) ... (~+ r - I') 

+ , ( (2tY + ... r. 

Ilr' = Coefficient of~ in the expansion of M(t) r. 

=2r~ (~+ 1 )(~+ 2 ). .. ?{~+ r -1 ) 

= n(n' + 2)(n + 4) ... (n + 2r - 2) ... (1341) 
Remark. If n is even so thai n!2 is a positive integer, then 

J.lr' = 2r r[(nl2) + r]/r(n!2) . . .. (134b) 

13,3,1. Cumulant Generating Function of X2-distribution. If 
X - X2(II)' then 

n 
KXJ-(t) = 10~ Mx(t) = - 2 log (1- 2t) 



:Fwmamentals ofMad1ematical Statistics 

n [ (2/)2 (2/)3 (zt')4 
=2" 21 + 2 + 3 + 4 + .. J 

Kl = Coefficient of I in K(/) = n 

Kl = Coefficient of ;2! in K(/). = 2n 

K3 = Coefficient of ;3! in K (I) = 8n 

~ = Coefficient of t, in K(/) = 48n 

In general, 

K,. = Coefficient of :f in K(/) = n 2 .... l (r - 1) ! ••• (134c) 

Hence 

Mean = Kl = n, Variance = J.l2 = KZ = 2n } 
113 = K3 = 8n, Il4 = ~ + 3K22 = 48n + 12n2 

J.l32 8 Il4 12 
~l = 1123 = Ii and ~2 = J.l; = -;;- + 3 

..• (134d) 

13·3·2. Limiting Form of XZ Distribut~on for Large 
Freedom. ~f X - X2(1J)' then M:x(I) = (1-2~)-II/l, I I I < ! 

Degrees 0' 
The m.g.f. of standard Xl-variate Z is given by 

M x - J1(/) = e;uIcJ M (I/a) -- x UJ. = n, a2 = 2n] 

<1 

Mz(/) = e -pt/a (1 - 211af"1/2 

- ..N~( ..1LJ-"'2 -e .L-{2;, 

Kz!.I) = log Mz</) = - t -{f- .~ log ( 1 - I -V D 
=-t"f+~[t.-V~+~. ~+ li(~Y/\ ... J 
=-/roJ'f + I. -{f + ~+O(n-lfl) 

p 
= 2' + O(n-l12), 

where O(n-lfi) are tenns containing nl12 and higher powers of n in the 
denominator. 

lim Kz<t) = ~ => Mz (I) = ;1/2, as n ~oo, 
II~OO 
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which is the m.g.f. of a standard nonnal variate. Hence by uniqueness theorem of 
m.g.f. Z is asymptotically nonnal. In other words, standard' X2 variate tends to 
standard normal variate as n ~ 00. Thus, X2-distribution tends to normal 
distribution for large d.C. 

In practice for n ~ 30, the x2-approximation to nonnal distribution is fairly 
good. So whenever n ~ 30, we use the nonnal probability tables for testing the 
significance of the value of X2. That is why in the tables given in Lite Appendix; 
the significant values of X2 have been tabulated till n = 30 only. 

Remark. For the distribution o( x2-variate for .large values of n; see 
Example 13·7 and also Remark 2 to § 13·7·1. 

13'3·3. Characteristic Function of X2-distribution. 
If X - X2(ft), then 

~(t) =E{exp (itX)J = r exp (itx)J(x) dx 
o 

1 J- { (1 - 2i t) } i -1 = 2..n. r(n/2) 0 exp - -. -2-- x (x) dx 

= (1 - 2it)-..n. 
13·3·4. Mode and skewness of X2-distribution. 

Let X :- X2(ft), so that 

J(x) = ..n. 1 e-~ x(..n.)-l 0 ~x < 00 
2 r(n!2) , 

Mode of the distribution is the solution of 
f'(x), = 0 and fH{x) < 0 

Lo&arithmic djfferentiation w.r.L x in(*) gives : 
M_ ! (a ) !_n-2-x 
J(x) - 0 - 2 + 2 - 1 • x -:- 2x 

Since J(x) :It- 0, I'(x) = 0 ~ x = n - 2 
It can be easily seen that at the point, x = (n - 2),/" (x) < O. 

Hence mode of the chi-square distribution with n d.f. is (n - 2). 
Also Karl Pearson's coefficient of skewness is given by . 

SI. . Mean..,. Mode n - (n - 2) ~2 
... ewness = S D. = _r-- = -

• • -v2n n 

... (l34e) 

... (*) 

••. (13·5) 

••• (13-6) 

Since Pearson's·coefficient of skewness is greater than zero fot n ~ I, the 
X2-distribution is positively skewed. Further since skewness is inversely 
proportional to the square roc;>t of d.f., it rapidly tends to symmetry as the'd.f. 
increases and,consequendy as n ~ 00, the chi-square distribution tends to normal 
distribution. 

13·3·5. Additive Property of x 2-variates. The sum of independent 
chi-square variates is also.a x2-variate More precisely, ilX;. (i = 1,2, ... , k) are 
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k 

;;;,dependent xl,variqtes witli n; df. respectively. then the sum I X; is also a 
i .. 1 . 

k 

chi-square variate with I n; df. 
i - 1 

Proof. We. have 
Mx.(t) = (1 - 2t)-IIP· ;.·i = 1.2 •...• k . . 

k 

The m.gf. of the sum L Xi is given by 
i:= 1 

Mrx/I) = Mx.(t) MxY) ...• MxY)· [.: X;'s ru:e independent] 

= (1- 2t)-1I112 (1- 2t)-"7fl ... (1- 2t)-Ittfl 
= (1 _ 2t) - (II. + ", + ... + ".)12 

which is the m.gf. of a xl-variate with (nl + nl + ... + nk) df. Hence by 
k k 

uniqueness theorem of m.g f.' s. L Xi is a xl-variate with L nj df. 
i'-I i-I 

Remarks 1. Converse is also true. i.e .• if X j; i = 1. 2 •...• k are 
k 

x2-variates with nj; i = 1.2 •...• k df. respe<;tively and if t Xi is a xl-vaiiate 
• j - J 

k 

with L n; dj .• then X;'s are independent. 
; - I 

2. Another useful version of the converse is as follows : 
If X and Y are independent non-negative variates such that X + Y follows 

chi-square distributi9n with nl + nl df. artd if one of them. ·say. X is a Xl -
variate with nl df. then the otlle~. vi~ .• Y. is a Xl-variate with nldj. 

Proof. Since X and Yare independent variates, w~ have 

M x + y(t) = M;x(t) My{r) 

=> (l - 2tf (II. + n,)12 = (1 - 2tt "J12 • M y{t) 

[':X+Y-xl and X_Xl ] 
("J.+ "2> ("J~ 

=> My(t) = (1 - 2tt",12 

which is the m.g.f. of xl-yariate with nl df. Hence by uniqueness theorem of 
m.g.f.'s. Y .... Xl(n,) 

3. Still another form of the' above theorem is "Cochran theorem" . which is 
as fo.lows: • -.. 

Lei X It Xl •...• XII be independently distributed as s!andard normal vaiiates. 
i.e .. N(O. 1). Let ' 

II 

L Xi l = QI + Ql + ... T QK. 
; -'I 



where each Q; is a sum of squares ot linear comb~nations 'of X'l. Xz; ...• X,. with 
n; degrees of freedom. Then if n{ + nz + '" + n" = n. the quantitieS Qt. Qz ...• 
Q" are in4.ependent il-variates with nt. nz • ...• ;,,, dJ. respectively. 

13~4. .Chi-square Probability Curve. We get from (13·5) 

!'(x) = [n - ix - ..e)-f(X). ...(13.7) 

Since x > 0 and f(x) being p.d.f. is always non··negative. we get from 
(13·7) : 

!'(x) < '0 if «(1 - 2) ~ O. 
for all values of x. Thus the xl-probability ~curve for 1 and 2 degrees of freedom 
is monotonically. decreasing. 

When n> 2, 

{ 
> O. if x < (n - 2) 

!,(x)= =O.ifx·=n-2 
< O. if x > (n - 2) 

This implies that for n > 2./(x) is monotonically increasing for 
o < x < (n - 2) and monotonically decreasing for (n - 2) < x <00, while at 
x = n - 2. it attains the maximum value. ' 

For n ~ 1. as x increases, j\x) decreases rapidly and Enally tends to. zero as 
x ~ 00. Thus for n > I, the xl-proba~ili~y curve is. posi~ively skewed [c.f. 
(13·6)] towards higher values of x. Moreover, x-axis is an asymptote to the 
cuneo The shape of the curve for n = I, 2, 3, ... ,6 is giveO· .below. 

f(x) 

For n = 2, the curve will meet 
the y = f(x) axis at x = O. i.e .• 
atj\x) = 0·5. For n = 1. it will 
be an inverted I-shaped curve. 

)( 

PROBABiLITY CURVE OF an~UARE DIS1RIBUTION 

Theorem 13·1. llxll and Xll are two independent xl-variates with 
nt and nl df. respectively, the" 
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xC . (Ill 112)- . X,? IS a ~2 2"' 2" vartate. 

(Gauhati Univ. M..Sc., 1992) 

Proof. Since XIZ and Xzz are independent xZ-variates with nl and nz d.f. 
respectively, their joint probability d!fferential is given by the compound 
probability theorem as 

dPUI2, 'X:l) = dPlf.:x.lZ) dPz Ckz) 

= ['i"f}. 1 exp (-XI2fl) (XI~) (11,/2) -I dx12] 
r(1l112) 

x [z:12 1 exp (-X22/2) <Xz2) ("212> - I dxz2] 
r(n,j2) 

= 2(11, + "2>12 r(!tl2) r(n,j2) exp (.". f.:x.12 + Xi2)fl) 

!!L '!2: 1 
x <X12)2 -I <X22) l - ~12dX22, 0 _S.<X12, X22) < 00 

Let us make the transformation : 
u = X12fx.22 ad 

so that XI2 = uv ad 
Jacobian of trahsfonnation J is giveQ by 

J = a<X12, Xi) _I- v u 1 = v 
a(u, v) 0 1 

Thus the joint distribution of random variables U and V becomes 
1 

'!L. t '!2.. t • 
x (uv) 2 - V 2 - V I du dv, 

1 
= 2(11, + "2>12 r(nl/2) r(n,j2) exp (- (1 + u)vfl) 

!!L ~ 
Xu 2 - I V 2 -I du dv, 0 s (u, v) < 00 

Integrating w.r.t. v over the range 0 to 00, we get the marginal distribution 

of U as: tKll(u) = J .... dG(u, v) 
o 
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i".I2) - 1 r[ (nl + n~12) 
= 2('" + n.J12 r(nl12) r(n,j2) • [(1 + u)/2]('" + n.J12 du 

, 1 uv..I2H 
= . (" + "2)12 duo 0 S u < 00 

( n1 nz) [+ u] • 
B 2 • ,2 

xC· R (~nz) . Hence U = 'Xi IS a .. z 2 ' '2 vanate. 

13.11 

Theorem 13·2.I/X1Z and Xzz are independent xZ-variates with n1 and nz 
d/. respectiVely. then 

X1Z 
U =X1~XZZ and V=X1Z+XZZ 

are independently distributed. U as a /31 (T ' n f ) variate and Vasa XZ variate 

with(n1 +n~d/. 
Proof. As the Theorem 13·1, we have 

1 
dPf.x1Z, Xz2) = 2('" + "2>12 r(nl12) r(n,j2) exp (- f.x1Z + Xz2)12) 

x f.x1Z)("'~1 f.xz2)(~1 dX1Z ttxzZ, 0 ~ (X1Z, XZZ) < 00 

Let us trcmsfonn to u and v dermed. as follows: 

X1Z d Z Z 
u = X1Z + Xzz an v = Xl + Xz 

sothat X1Z =uv ~d XZZ=V-X1Z~(1-U)v 
As X1Z and Xzz both range from 0 to 00; u ranges from 0 to 1 and v from 0 

to 00. 

Jacobian of transformation J is 
v u 

J = =V 
-v 1 - u 

.• dG(u v) = ( n.J12 1 exp (-v12) (uv)( ... I2)-l 
• 2 ". + r(nl12) r(nzl2) ,", 
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'Since the joj~t probability differential of U and V is, the product of their 
respective probability differentials. U and V are independently distributed. witfl 

dGI(u) 1 u("tf1.}-l (1 - u)(,.,;'l)-l duo 0 ~ u ~ 1 

B(i . n;) 
d Giv) - 1 exp (-vf2) v «"I +112)/2} -I ,dv. 

- 2("1 + "2>n r{ (nl + n:0/2} 
O~v<oo 

i.e .• , U as a ~I (~I . n;) variate and Vasa x?-variate with (nl + n:0 d.f 

Remark. The results in Theorems 13·1 and 13·2 can be summarised as 
follows ':' 

If X - x.2 and Y - X} f.\ are independent chi-square yariates then: 
("t> \.,.' 

(I) X + Y - X2 ) i.e •• the sum of two indep~ndent chi-square 
("I + "2 

variates is also a chi· square variate. 

(il) t - ~ 2 (~I . nt) i.e .• the ratio of t~o independent chi-square 

variates is a ~-variate. 

( "r\ X R (nl n2) 
lU, X + Y - 1-'1 '2' '2 

Theorem 13·3. In a random and large sample. 

X2 = i [<nj - npj)2J. 
i-I npi 

. .. (13·8) 

follow.s chi-sql:l(Ue distribution approximately with (k - 1) degrees of freedom. 
where n;'is thto observed frequency and npi is the corresponding expected 

k 

frequency of the ith' class. (i = 1.2 ..... k). I. nj = n. 
i-I 

Proof. Let us consider a random sample of size n. whose members are 
distributed ~ random in k classes or cells. Let Pi be the probability that sample 
observation will fall in the i th cell. (i = 1.2, .... k). Then the probability P of 
there being ni members in the ith cell. (i'= 1. 2. ..... k) respectively is given oy 
the multinomial probability law. by the expression 

n ! 
P = nl! n2! 

k k 

where I. ni = ~ and I. Pi = 1. 
; ~ t i.1 
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H n is sufficiently large so that nj, (i = 1,2, ..• , k) are nQt small then using 
Stirling's approximation to factorials for large n, viz .• 

lim (n!) ... ~ crt n II + i. we get 
11-+ 00 

where C _ 1 
- (21&) (1- 1)12 n (1 - 1)/2 (PtPz ••• pJI12 • 

is a constant independent of n;'s. 
1 

. . log P .... log C + L (nj + ! ) log (!!8) 
j • 1 2 nj 

1 

log (PIC) ... I (nj +!) log (A~). 
j _ 1 n. 

where Ai = npj is the expected frequency for the ith cell. i.e., 

E(nj) =,npj = Aj. (i = 1.2 •...• k). 
Let us defme 

nj - Ai 
~j = --n:; · 

so that nj - Aj = ;j..Jr; ~ nj = Aj + ;j ..Jr; 
Substituting in (*), we get 

k - A' 
log (PIC) ... L (Aj+;j --n:; +!) log [ "" {I;] 

j.l A; +;; Aj 
1 

= L (A;-+;; --n:; +1) log [I/{ I + ~;/~}] 
.j. 1 

k -

= ~ L (A; + ~; ~ + ~ ) log (1 + (;;r,JI;)) 
; .. 1 

. .. ("') 

... ("'''') 

If we assume that ;j is' small compared with Aj. the expansion of 

log 1 + {;J~} in ascending powers of ;;/~ is valid. 
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neglecting, higher powers of ;;/...ff; if ;; is small compred with A;. 
Since n is large, so is A; = np;. Hence 0(A;-112) ~ 0 for large n. 

t t t t 
Also L ;;..JI; = L (n; - A;) = L n; - L A; 

;.1 ;-1 ;-1 ;-1 

t t 

= L n; - n L p; = n - n = 0 
i-I i-I 

t t t 
log (PIC) '" - [ L ;i{):; +! L ;? + O<Arlt2)] .... - 1. L ;;2 

i .. l 2 i _ 1 2 j .. l 

t 

=> P .... C exp (-!.. L ;r)' 
2 i-I 

which shows that ;i, (i = 1,2, ... , k) are distributed as independent standard 
DOnnal variates. 

Hence 

being the sum of the squares of k independent standard normal variates is a X2-
variate with (k - I),d.f., one d.f. being lost because of the linear constraint 

t t t 
L ;. {):; = L(ni - A;) = 0 => L n; = L Ai •.• (**.) 

i-I i-I i-I 

Remarks 1. If 0; and E; (i = 1, 2, ••. , k), be a set of observed and 
expected frequencies, then 

t [(0. _ E;)2J t t 
X2 = I ' , (L 0, = L E;) 

. • _ 1, E; i-I i-I 
... (I3·8a) 

follows chi-square distribution with (k - 1) d.f 
Another conv~ient fonn of this fonnu!4 is as follows: 

X2 = i (0;2 + Er- 20iEi)= i, (O? + E. _ 20.) 
; ,_ 1 E. • _ J E; 

t (0 ,2 ) t t 
= L -E' + L E;-2 L'O; 
i-I f i-I .-t 
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t (01- ) =.L E.' -N, 
1- 1 I 

... (l3.8b) 

t t 

where L 0; = L E; = N(say), is the total frequency. 
i-I i .·1 

2. Conditions for tbe Validity of X Z-test. X 2-lesl IS an 
approximate test for large values of\n. For the validity of chi-square test of 
'goodness oj fi" between theory and experiment, the following conditions must 
be satisfIed : 

(l) The sample .()bservation~ should be independenL 
(ii) Constrain~ on the cell frequencies, jf any, should be linear, e.g .• 

LA;= LAiorL 0;= LE;. 
(iiI) N, the total frequency should be reasonal>ly large, say, greater than ~O. 
(iv) NQ theoretical cell frequency should be less than 5. (The chi square 

distribution is essentially a continuous distributibn but it cannot maintain its 
character of continuity if cen frequency is less than 5)~ If any theoretical cell 
frequency is less than ~, then for the application of X2-tes~, it is pooled with the 
preceding or sucCeeding. frequency so that the pooled· frequency is more than 5 and 
finally adjust for the d.f. lost in pooling. 

3. It may. be noted that the X2-test depends only oil the set of observed and 
expected fI:equencies 'and on degrees of freedom (d!.). It does not make any 
assumptions regarding the parent population from which the observations are 
taken. Since 'X? dermed in (13·8) does not involve any populauon parameters, .it 
is termed as a statistic and the test is known as. Non-Parametric Test or 
Distribuiion-Free Test. 

4 • .critical :VaIJles. Let xl(a) denote the value of. chi-square, for. n.d/. 
such that the area to the right of this point is a, i.e., 

2 
P(XJ 

P[X2 > XII2(a)] = ci ... (13·8c) 
,> ; • ,r \ 

Critical 'value . 
Rejection 
. region(,,) 

The value XIl2(a) defIned in (13·8c) is known as the upper (right-taiied) 
a-point or Critical Value or Significant Value 'oj chi-square jor n d!. and has 
been tabulated for different values of n and a in Table VI in the Appendix at the 
end of the book:- From these tables we observe that ~he. critical v~l~es. of X~ 
increase as n (d.f.) increases and level of significance (a) dec,reases. 
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The critical values for left-tailed test or two tailed tests can be obtained froin 

the above table, as discussed in Remark 1 to § )6·7.4. 
13·6. Linear Transformation. Let us suppose that the given 

set of variables X' = (XI' X2' .••• x,,) is transformed to a new set of variables 
y' = 01' Y2: ••• , yJ by means of the linear transformation: .. 

)'1 ~ 0IlXI .+. 012X2 + ... + O ... X" ]. 
y~;a 02iXI + 022X2 + .,. + 02"X" 

y,..= O,,)Xl T 0IllX2 + ... + O""X" 

•.. (13,9) 

i.e.. Yj = 0HXI + 0nX2 + ... + OJ,.%,, ;'i = 1.,2, ... , n 
In J!t.atrix notation, this system of linear equations can be expressed 

symbolically as 
y = AX ... (13·10) 

( 
YI) (XI) '( 011 Oi~ ••• ~1II' ) 

;where 
]2 X2 0Zl 022 ••• 02" 

y= ,X= ,A= :. ': ::: . . . .,. 
y" . X" a,,1 0lll ••• 0"" 

From matrix theory, we know that the system (13·10) has a unique solution 
iff I A I * O. In other words, we can express X uniquely. in terms Y if A is non­
singular and the solution' is given by 

X = kly ... (IHOa) 
where A -I is the inverse of the square matrix A. 

The linear transformation defined in (13·9) or -(13·10) is said to be 
orthogonol if 

X'X = Y'Y 
=> X'X = (AX)' AX = X'(A'A)X 
=> A'A = I" 
=> A is an orthogonal matrix. 
More elaborately 

X'X = Y'Y 

" " " 

•.• (13·11) 

.. (13·110) 

=> I. x? = I Y? = I. (onxi + 0'~2 + ... + 0u.XJ2, • " .(*) 
i-I' i-I i-I 

for every set of variables, (Xit X2, ... , !;,). 

" If we write ~ij = I Oil: 0tj' (i. j = 1,2, ... , n), 
1:-1 . 

" ·i ,. 
then (.) implies that ~ij is a Kronecker delta so that 

~ .. ={' 1, i = j 
'/O,i'y:j 

whmce it Tollows that A is'an orthogonal matrix. 

... (I3·lIb) 
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Linear Orthogonal Transformation. Def.:.A linear transformat;i:}[l 
"'i = AX. is said to be otthogonal if A is an orthogonal matrix. 

Remarks 1. It is very easy to verify the equivalence of the .following two 
defmitions of an orthogonal matrix. 

De! 1. A square matrix A (n x n) is said to be b~thogonal if 
A'A =AA'=I". 

De! 2. A square matrix A is said to be orthogonal if the transfonnation 
"'i = AX transfonns X'X to Y'Y . 

2. If Y = AX is an orthogonal transformation, then Y'Y = X'X and 
A' A = AA' ::;.1". 

Theorem 13·4. (fisher'.s Lemma)./f Xit (i = 1. 2 ..... n) are independt;.nt 
N(O, 02) and they are tr~nsformed to a new set of.variables Yi, (i = 1.2 .... , n). 
"y means of a linear orthogonal transformation. then Yi , (i = 1. 2 ..... n) are also 
independent N(O. (2). 

Proof. Let the linear orthogonal trMsfonnation be 
Y = AX so that Y'Y = X'X and A'A = I" 

Since X;, (i = 1, 2, ... ,~) are independent N(O, aZ), their joint density 
function is given by 

1" (n ) J(Xh Xl, ... , X,,) = ( _ ~) . exp - .L x?/2aZ , - 00 < (Xh Xl, ... , X,J < 00 

~a"2n •• 1 

=(~~J exp (-X'Xt2al ) 

The Joint density of (Y1> Yz, •• :, Y,J becomes 

( "1 )" . ' g(YnYz, ... , Y,J = ~a{2n exp (-Y' YlaZ) I J I 

Now 

=> 
=> 
=> 

1 = a(Ylt 1z, ... , y,,) = I A I 
J a(Xh Xl, ••• , X,,) 

A'A =1" 

I A' A I = II" I = 1 
. I A' II A I = 1 

I A IZ = 1 

IA I =± I 
IJI =1±11=1· 

.. g61~YZ' · .... Y.J .;. (~r exp (- Y'Y/2Gl;) 

" '1 
= n ,[ _~ exp (-y,.i(1al ») 

i •• 1 'G"\' 2n 1 
Hence Yi , (i' = '1,'2, ... , Ii) are.independC~t' N(O, <JZ). 

('l I A' I = I A. I) 
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Theorem 13·5. Let Xl. XZ' •••• X" be a random sample from a normal 
population with mean J.l and variance (72. Then 

(i) ~ - N(p. aZln), 

(ii) L Xi - X is a z2-variate with (n - J) d/.. and "( -)2 
i-I a 

- 1 " ns2 ~ (X. _ i)Z 
(iii) X = - L Xi and 2" = k' are independently distributed. 

n i _ 1 (J i-I a 

Welhi Univ. B.Sc. (Math. Bon •• ) 1987; 
SarJar Polel Univ. B.Sc. 1992] 

Proof. The joint probability differential of X .. X2 • ... , X" is given by 

dP (XI' Xz, ... , x,,) = ( _1,-:-.)". exp [ ~ ~ .i (Xi - ~)2]dxl dxz ... dx" ; 
~V2n .-1 

- 00 < ~lt Xz • ... , x,J < 00 

Let us transfonn to the variables Y;. (i = 1.2, ... , n) by means of a linear 
orthogonal transfonnation (Y = AX) (c/. § 13·6, page 13·16). 

Let us choose in particular 

all = a12 = ... = al" = 1I~ 
~ Yl = j;(XI +XZ +"r +'xJ = {; i ... (*) 

(It can be easily seen that the above choice of all "aI2 • ... , alII satisfies .the 

" condition of orthogonality; viz.. L a;f = 1). 
; - 1 

Since the transfonnation is orthogonal, we have 

" " " L Yi2 = L Xi 2= L (Xi-i)2+ni2 
i-I i-I i-I 

" = L (x,X)2+ yI2 LFrom (*)] 
; - I 

" " L Yi2 = L (Xi -i)2 ... (**) 
; - Z ; - 1 

" " " 
Also L (.ti-~)Z = L (x;-.i+X_~)2= L (x;-x)2+n(.i-~)2 

i.1 i.1 ; .. 1 

" f>.-
= L Y? + n( .i - ~)2 

; .2 

As in Theorem i 3·4, the Jacobian of transformation J = ± 1. 
Thus the joint density function of Xh X2, ... , X" transfonn~ to 

[From (**») 
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dG(YIoYi, ···,yrJ =(~..kcJ exp [ - ~2 t~2 y;1 + n(x- J.l)2}] 

X IJ IdYl dY2'" dy,. 

=[ -fbc(~rr;,) exp {- ~ (I - J.l)2}dX] 

[( 1 ),,-1 { ,. Y?} ] 
X ~ exp - ; ~2 2a2 4Y2 dY3··. dy,. 

(.: dYI =...In dx) 
,. ,. 

Thus X and r y;2 = r (X; - X)2 = ns2, (where S2 is the sample 
;.2 ;. I 

variance), are independently distributed, wh,i~h establishes part (iii) of the 

Theorem. MoreoverX - N (J.l, a2ln) and Y;, (i = 1,2,,3, ... , n) are independent 
N(O, ( 2). Hence 

being the sum of squares of (n - 1) independenntandard normal variates is 
distributed as x2-variate with (n - 1) d~f. 
Aliter. The a1ternativ~ proof of the abQve Theorem is based on the use of 
m.gf.'s and is given below. 

We shall fust prove that : 
1 ,. 

X = - r X; and X; - X, i = 1; 2, ... n 
n;!"l 

are independently distributed. 

The jOint m.g.f. ot X and (X; - X) is given by : 

M(/1o IU = E[ i;:X + '2 (X,- X)] '? E [/'1 - '2> X + '2 X, ] 

=E[exp {II -/2 •. f x;'+ 12 ~;}] 
n ,.1 . 

.•. (1) 
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=E[exp { (~+ h ) Xi}] .E[exp (~ jtl XjJ~ l U .. i) ~ 
.•. (u) 

('.: X .. XZ • ...• X" are independent) 

" Now U = L Xj' being the sum of (n - 1) i.i.d. N (JJ.. aZ) variates 
j - 1 ~ 
<i_i) 

is a N{ (n - 1)J.1, (n -I) aZ} variaCe. 
" Mu{/) =exp[/. (n - I) J.1 + IZ. (n - I) a Z/2] ... (ii,) 
~ 

+xp {'' : I, ~~) Xl}] = E[exp (', : I, . U ] 
= M,,'((tl- Iz}/n] 

= exp[Cl ~/Z)(n - 1.) J.1 + ('1 ~ IZJ (n - I) a;] 

• [On using (ii,)] ... (iv) 

andE[C:XP { ('1 ~ Iz +.IZ)Xi}J=MXiCI ~ Iz + IZ) 

r I =ex~.[ Cl ~ Iz + IZ}l + II ~ Iz + Iz )z,a;J 

['.' Xi - N (JJ.. aZ)] .•. (v) 
Substituting from (iv) and (v) in (i,). we get 

., M (11. Iz) = exp [{ll ~/i)(n' -'1) + ('1 ~ Iz + 12)} J.11 

x exp [.{(/l ~. I~J . (n - 1) + ('1 ~ Iz + Iz J} ~;] 
=exp[/1 ~1+'~~1:2{ct:] xexp[~/22 (~~ I)crz] 

~ (On simplification) 
= M(/l)" M(/z}'" I ... 

=> (a) X and Xi - X; i = 1.2 •...• n are independently. distributed ... (vi) , : 

nJ (b~ j ,- N .. {JJ.. (jz/n) • ( I ••• (vil) 

... (viil) 



Since X and Xi -' X ; i = 1. -2 ••••• n are independently distributed. 

X and S2=J i (Xi-X)Z. .,.(viiia) 
n i = 1 

are independently distributed 
To derive the distribqtion of r. we note that: .. .. 

L (Xi - ~)2 = L (Xi --X + X _ ~)Z 
i-I i-I 

.. 
= L (Xi - X)Z + n (X - ~)Z, 

i .. 1 -, 

.. 
the product tenn vanishes since L (Xi - X) = o. 

i-I 

~ r--- ~)Z ~ (X--X)Z [_X - ~JZ L. ~ = L. ~--+~ --
i-I a i-I cfl arm 

'" 

.... (u) 

=> V ~·w + Z, , .. (ixa) 

where V = f. (! i - ~)Z , being the sum of squares of n ind~pendent 
i-I l... a 

standard nonnal variates is a XZ ( .. ) variate. Hence f 

Mv(I) = (1 - 2I)-IIIZ ; I 1 I < Itl, .. . (x) 

AlSo X:.;. 'N (J.1;\ aZ/n). => X - i ~ #'(0. 1) arm 
Z ,[UJ~ z· ,. . =. arm . -'X (1) 

Mz{I) = (1 - 21)-112 
- , 

.. :(:xi'j 

Further. since X and sZ ate independent, [see viii (a)], 'Wand Z'"are 
independently distributed· • 

.. Mv(I) = Mw+z (I) =-Mw(I). M'J}.I) 

( ... WandZare independent). 
=> (1- 21)-fI/Z .= Mw(I) • -(1 - 21)-112 [From (x) and (XI)] 

=> Mw(I) = (1 - 21>:-('" - 1)12 • I 1 I . < Itl 
which is the ~.g.f. of XZ-variate with (n -1) d.f. Hence by uniqueness theorem > 

of m.g.f. 
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" 
Remarks 1. p.d/. of the sample variance s'l = n-l l: (~; - X)'l. 

;. 1 

2. We have 

.. E (~) = n-I 

~ :'lE(sZ) =.('! - 1) 

~ E(sZ)= (n ~ I)a'l = (I - ~) al ::: a'l, for large n. • .. (*) 

Also var(~) =2(n·~ 1) 

=2(n- n n'l 
~ 04 Var(sZ) 

= ~ (1 -:!-) 04 ::: 2~ , forlarge n. . . .. ~*~) 
It n n ~ Var.(sZ) 

~ S.E.(s'l) = a'l·x -h/n . .. . (* .. ) 

Theorem 13·6. Let X;, (i =,,1, 2" ..... n) be independent N(O, 1) variates. 
-II 

Then the conditional distribution of Xl =: L X;'l, subject to m « n,) (say), 
•• 1 

independent hom(?geneous linear constraint~ viz., 

C11X'l + Cl1Xl + ...... + Cl"X" = O} 
C'lIX\ + c'l'lX'l + ...... t c'l"X" = 0 
::: ... (13·12) .. ... . 

c",iX) + C",zXl + ...... + c",,,X,, = ° 
is also Q'X'l-distribution with (n - m) degrees offreedom. 

Proof. Equivalently, the constraints (13·12) can be ex~sed as 

aliXl + aUXl + ...... + al"X" = O} 
a'lIXl + a'l'lX'l + ...... + a'l"X" = 0 .. . .. . .. . 

a",)X1 + a",'lX'l + ...... + a",,, X" =-0 

••. (13·120) 
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where ai = (aito a.'2 • •••• ai,.); i = 1.2 ••.•• mare m unitary. mutually orthogonal 
vectors. 

Let us now transfonn the. variables 
(X1.X2 • •••• X",.X"'+lt •••• X,,) to (Y .. Y2 • •••• Y",. Y "'+h •••• Y,,) 

by means of a linear.orthogonal transfonnation 
Y = AX ••• (13·12b) 

where 
Y1 an a12 tlt", 
Y2 il2l a22 0]. 

y= . Y", .A= a...t a..a a- andX= X", 
Y",+1 alt"'l.1 a_l.2 a",+I." X",+t 

Y" ~ ~ ~ X" 
(13·12b) implies that the constraints ,(13·12a) are equivalent to 

Yi = O. (i = 1.2 ..... m) ... (13·12c) 
By Fisher's Lemma (Theorem 134) Yj,(i = 1,2, ... , n) are also independent 

N(O, I) variables and 

" " L 'Xl = L Y? 
j .'1 i. 1 

[.: Transformation (l3·2b) is onhogonal] 

[Using (13·12c)] 

" 
Thus the c~mdition~ distribution of L Xi2 subje~~ tq the -conditions 

i. 1 

" 
(13··12) is same as the unconditienal distribution of L Yl; where Yi 

i.",}1 ~ 

(i =m + I, m + 2, ... , .n) are independent standard normal vartates without any 
constraints on them. Hence 

" " 
X2;;: L :Xl = L Y?, 

i.l i.",+1 

being the,sum of squares of (n - m) independent standard norinal variates follows 
X2-distribution with (n -.m) degrees of freedom. 

~xample 13·1. (~) Sho~ that for 2 df. t~ probability P of a value of X2 
greater'than Xo2 is exp (- tXo2), and hence thai 

Xo2 = 2 log. (lIP) 

Deduce tlie value of'li when P = O'()S, 
[&ardor Patel Ulli~. B.Se., 1991) 
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~) Qive~ different probabilities fl. P2 • •••• P" obtained from n independent 
tests of significance. explain how you will pool them to get a single probability 
in order to decide about the sig,uficance of the aggregate of these tests. 

JDelhi Univ. B!Sc. (Stat. Hom.), 1990] 
Solution. (a) The p·.d.f. of X2.distribution with 2 d.f. is 

1T",'l:\ _ [ 1 .. ( 2/2) ( 2)(11/2) - 1 ] Jv,,-, - 211/2 r(nI2) expo -X • X 
,,·2 

=! exp (-X212). 0 s X2 < 00 

f = 1!CX2 > 'Xg2) = to ! exp (~X212) dX,2 
. 10' 

... (*) 

=_1 I exp (-x2/2) 
2 - 1 

-2 

10~P =-'hNl 

xJ ==..; 2 log" P = 2 log" (liP) 
t. • 

When P = 0·05. we get Xo2 = 2 log.. 20 ;i: 3·012 

Remark.-The value Xo2 of X2 defiped in (*). is known as the significant or 
critical value '[cf. Remark 4. to Theorem 13·3. page -13·15] of X2 corresponding 
to the probability level P. Thus if P is the signific~t probability. then 

Xl = -2 log" P = 2 log" (lIP) ••. (13·13) 

is a X2-variate with 2 dJ. 

'(b) -2108., P; (i' = 1.2 ..... n) are independent X2-variates each with 2 d.f. 
(cf. Remark above and the fact that P/s obtained from independent tests of 
significance are. independent). Hence by additive propeny of chi-square 
distribution 

Xl = _ ~ (-2 los.. Po = 210~ (p pI p) ... (13.130) 
•• Ill·.. " . 

is a chi-square variate with 2n di. 
If x2 > X!05 for 2n d.f.. then we conclude, that tJJe pooled result (aggregate 

of the tests) is signifJCant at S% level of significance. 

Example 13'2. (Pearson's Pl.-Statistic). The variables XIt X2 • .... X" are 
independently distributed in the rectangular form ' 

dF=dx.OS~S 1 

Then if P. = Xl X2'''X", show thOt -2 log"p has xl-distribution with 2n 
degrees offreedom. <A'liIarla Unio. RSe., 199%) 

Solution. -2 log., P = -2 los.. (Xl X2 •••• X,.) 



" 
= ~1 + ~2 + ... + ~,,= k ~i' 

i. 1 

where ~i = -2 log Xi ~ Xi = exp (- ~fl). 
The probability function, of ~ is given by 

g~ =ftx~ 1 ~ 1 

Since dF(x) = dx, j(x) = 1 'V x in [0, 1] 

•• g(~ = 1 . 'I exp(:- ~;/2) x '( - ~) I = t exp (- ~i/2) 
which is the probability function of X2-distri1)ution with 2 d.f. 

:. ~,(i = I, 2, ... , k) are independent X2-v~tes each with 2 d.f. Hence by 
additive property of X2-distribution, . ' 

" 
-2 101- P = L ~i' 

; _rl 

is a X2~variate with 2n d.f. 
Remark. The significance' Qf' this resUlt lies in testing of hypothesis as 

explained in Example 13·1. 
Example 13'3. Show that if v is even, 

1 s-P ~ 2(. - 2)I2r(vfl) x exp (-X2fl) X·-1ttx 

=exp(-X2fl)[1 + (X2/2.) +1:1+ ... + 2.4.~(~2_2)] 
and hence the val~s of P for a given 'X.2 can be lkrivedfrom tables of Poisson's 
exponential limit. 

Solutiop. Let us consider the incomplete Gamma- integral 

1 f .... I,.=;:! ~ e- t t" dt, , 

where r is a positive integer. Integrating by parts, we get 

I' eO-t.t" \- I r- e -/S. 13" I,. = - -, + ( 1)' r ,,.-1 dt ,= , t -I,. -1 
r /S r-. /S r. 

which is a reduction fonnula. Repeated application of this gives 
_ e -J! 13" e -/S 13r-1 e ~.132 e ~.B 

I,. - T! + (r _ 1) ,+ ... + 2! + I! + 10 

But 10= f:- e-tdt= \- e-t 1 : =e-/S 
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Putting· P = X2/2 and r - v 2-2 = ~- 1, (since r-is an integer, v =2r + 2 must 

be even), we get 

1 foo 
{(v/2) - I} I til 

e-I 1M2) - 1 d I 

= exp (_X2/2) [ 1 + .~ + ~ + i~~6 + .... +2.4.l~.~~2)] ... (*) 

Taking t = X2/2 in the integral.on·.the L.H.S., 'we. get 

1 foo L.H.S. = {(v/2) _ I}! x exp .(_X2/2) u,2/2) M}4 dU,2/2) 

1 foo = 2(11-2)(2 r(v/2) x exp (_X2/2) XII-I ttx 

From (*) and (**), we·get the required resulL 
Let the given value of X2 be '1..02, then 

p = p<x2 > Xo2) = 2(1/ - 2)d r(v/2) f: exp (-:X2/2) XII-I ttx 

••• (**) 

_ 2 [. ~ ~ XO"-2] 
- exp (-X~·1'21 1 + 2 + 2.4 + ... + 2;4 •.• (v .-: 2) 

r i.,2 A3 A~-l] 
=e-~tl + A + ZT '+ 3i +····+.[(v/2) - 1] I ' 

where A = '1..02/2. 

The tenns on the right hand side viz., e -~, A e -~, ;2, e.:-~ ... etc. are the 

successive tenns of the Poisson distribution with parameter 'A = '1..02/2. 
Hence the resulL 
Example 13·4. If X and Yare independent 1I()rmal variates with means 

I1h 1128nd variances a12, a22 respectively, derive the distribution of 
Z = (X ... 111)/(Y - 112). 

What is the name of the distribution so obtained? Mention one importam 
property of this distribution.. 

?'l _ (X - 111)2 ci;??'l _ [(X - 111)/al]2 
Solution. Here L- ~ L-

- (Y.,..·l1v2 a12 ' - [(Y _ I1V/~]2 

But {{X - 111)/a.12 and {(Y - 112)/a2)2, being the squares of independent 
standard nonnal variates, are independent X2-variates with 1 df. each. 
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Thus CJl; • being the quotient of two independent X2-variate~ each with ) 
CJl 

d.f. is a P2 (k. k) variate (CJ. Theorem 13·1). 

Hence its probability differential is given by 

(
a,.2) I (CJlz2/CJI2)(lfl)-1 

dF -"'2:;2 = ( ) XII d(a,.2z2/CJIZ) 
CJl B! !. (CJ 2 2) - + -2' 2 I + ..1..!.... 2 2 

CJ12 

(~)\-1 
r( ~ + ~) CJ12 CJ22 

= r(!) r(-:h:( CJ22Z2) • CJ12 d(zZ) 
~, 2 .I+. CJ2' 

.1 

CJICJ2 2 0 ' 2 
- (2 22\ dz. <z<oo 

1£ CJl + CJ2 z-JZ 
[.: r(ll2) =~] 

Thus the probability differential of Z is given by 
CJla,. 

dF(z) =j{z)dz = (2 2 2) dz. - 00 < z < -
1£ CJl + CJ2 Z 

If CJl = CJ2 = 1. then it confonns to staJ)dard Ca~chy distribution • 
. ) dz • 

dF(z) =i. (1 + z2) • _00< z < 00 

[For its properties cf. Chapter 8]. 

Aliter Z = X ~ III • 
1;' - 112 

CJ2 Z _ (X - 111)/CJ1 

~1' - (Y - 112)/.CJ2 

Now ~ Z. being the ratio of two independent standard nonluU variateS is a 
. 1 

standard Cauchy vaJjate 

= ( 2 '2 2\ dz. -.00 < z < 00 
1£ CJl + CJ2 Z-J 

Example 13·5. Xi. (i ,= 1. 2 •...• n) are lndepeniJently and normally 
distributed with zero mean and common variance CJ2• 

~ ~ 

Let ~i=.l: CiIXj.; j.= '1.2 •...• n. w.here ,l:. CijCi'j= Si;' 
J-l J-t 
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where 8;;' is Kroneur delta. Show that 

is distributed as X2 -variate with'(n - p) degrees offreedbm. 
- [Delhi Ulliv. M.Sc. (Slol.),,1990] 

II 

. Solution.- Since 8ij' = L Cjj C;'j 
j - 1 ' 

is a Kroneker delta. we have 

L c··c"·= 
" {a. i 'I:. i' 

j .. 1 &J 'J 1. i = i' 

~ 

i.e .• Xi's are transformed to ;;'s by means of a linear orthogonal transformation. 
Hence by Fisher's Lemma. ~i. (i = 1.2 •...• n) are independent normal variates 
\Yith zero mean and common variance (12. 

Since the transformation is orthogonal. we have 
II II 

L Xj2 = L ~2 J 

., i-I ;-1 

II ~ 

Now L (~;/a)2. 
i-p+,1 

being the sum of the squares of (n - p) independent standard normal variates is a 
X2-vaiiatewith (n - p) degrees of freedom,. Hence the result A 

Example 13'6. Show that the m.g!. of Y = log X2. where X2 follows 
chi-square distribution With n ~f.. is given by " . 

Mr{t) = 2' r(~ + t)/ r(nJ2) 

JfxI 2 and b 2 are independent x~varitJtes each with n.d./. and U = X12/X22• 
deduce that for positive integer /C. 

E(Ul)=1~+ k )r(~~ k)/ [r ( ~)J 
Solution. j = log X2 => X2 =-e' =>. dX2 = eY dy. 
The probability differential of X2 viz •• 

- 1 !!- 1 
dP(:x.'Z) =?~ r(n!2ye ,p/2 (:x.'Z) ~ ax~. 0·< X2 < 00 

transforms to 
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dG(y) 

(2z = eY) 

... (*) 

=E [e k log 1..'2 - k Jog 1.22] 

= E'(ek log 1.12) . E (e-k log 1.22) 

L· X} and xi-arc independent] 

= A1 (k) A1 (-k) log1.\2 . log 1.22 

[From (*)] 

Example 13·7./f X is chi-square variate with n.d.f, then prove that for 

large 11, -fiX - N ('f2;, . 1) [Delhi Univ. B.Sc. (Stat. Hons.), 1989] 
Solution. We have E(X) = n, Var (X) = 2" 

X - E(X) X - II . 
Z = - = _ ~ - N(O, 1), for large,lI. 

<Jx "'1211 

Consider. 

P (X - 1/ $. z) = P(X $. 11 + Z {2,; ) 
{2,; 

= P [iiX $. (211 + 2z {2,;)II2] 

= { £X $. ~2,1 (1 + Z ~ ~ )"2] 
= P [ fu $. ~l (I + k -i:r + ,. ")J 
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- P [~2X ~ {2n + z), for large n. 

=P[~2X - {2n s;. z], for large n. 

Since for large n, (X - n)rf£, - N(O, I), we conclude that 

~ 2X - {2;, - N(O, I) for large n. 

~ ~ 2X is asymptotically N({2;" I). 

.. 

Remark. This approximation is often used for the value of n larger than 
30. This result does not reflect anything as to how good the approximation is, 
for moderate values of n. R.A. Fisher has proved that the approximation is 

improved by taking ~ (2n - I) instead of {2;, . A still better approximation is 

(:x,2/n)lll _ N (I _ 1.. 1..1 
9n ' 9nJ 

Example 13·S. For a chi-square distribution with n df. establish.the 
following recu"ence relation between the moments: 

J.l .... l = 2r{1J.r + nJ.lr-l), r ~ 1. 
Hence find ~l and ~. 

[Delhi Urdu.B.Sc. (SIal. HOM.), 1991] 

Solutio~. If X - XZ(II) then its m.gf. about origin is 

Mx{t) = E(erX) = (1 - 2t)-II/2; t < ! 
Also E(X) = n = J.l (say). 
Hence m.gJ. about mean, say, M(t) is 

M(t) = Mx -Il (t) = E(f!CC -Il» = e - II' • E(etX) 

= e -III (1 - 2t)-11/2 

Taking logarithms of both sides, we get 

log M(t) = -nt - ~ log (1 - 2t) 

Differentiating w.r. to t, we have 

M!t) _ .!!. 2 _ 2nt 
M(t) - - n + 2 . (1 - 2t) - (1 - 2t) 

~ (1- 2t) M'(t) = 2nt M(t) 

.Differentiating r' times w.r. to t by Leibnitz thoorem, we get 

(1 - 2t) Mr+l(t) + r(-2) Mr(t) = 2nt .~lr(t) + 2"r Mr-l(t} 

Putting t = 0 and using the relation, 

J.lr = [ :... M(t)], = 0 = Mr(o),. we get 

J.l .... l - 2r J.lr = 2nr J.lr-l 

~ 1J.r+ 1 = 2r (J.1.r + nJ.lr-l), r?! 1. 

Substituting r = 1,2,3 ; we get 

••. (*) 

[Using (*») 
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J12 : 2nlJo : 2n 

lS.s1 

113 : 4{J.12 + nlll)-: 8n [.: JlI = 0 and I..lo = 1] 

J.4 = 6{J.13 + nll~ = 48n + 12n2 

~ 8 ~ 12 
~I = 2=- and fh= 2=3+-

112 n 112 n 

EXERCISE 13(a) 

1. (a) Derive the-p.d.f. of chi-square distribution with n degrees of freedom. 
(l?) If ¥.has a chi-square distribution with n d.f •• fmd m.g.f. MX<t). 
Deduce that : 

(l) Il,' = EX" :;;: 2" I'[(nll) + r] / F(nll)· 
(il) Ie,. = rth cumulant = n 2"-1 (r - 1) ! 
(ji,) kl k3 = 2kz2. 2132 - 3~1 - 6 = O. 

2. If X - X2 (II) • shQw that : 
(l) Mode is at x'= n - 2. 

(;,) The points of inflexion are equidistant from lite mode. 
Hint. Points of inflexion are at x = (n - 2) ± [2(n - 2)]112 
3. If X - X2(II)' obtain the m.gJ. of X. Hellce find the m.gJ. of standard 

chi-square variate and obtain its limiting form as n -+ 00. Also interpret the 
resulL 

4. (a) Let X - N(O. 1) and Y =}(2. Calculate E(y) in two different ways. 
ADS. E(Y) = 1. (Use Normal distribution and chi-square distribution). 
(b) Let X I and X2 be independent standard normal variates and let 

Y: (X2 -XI)2/2. Find the. distribution of Y. 

~ns. Y - X2(1)' 

S. If Xh X2, .... XII are i.i.d. exponential variates with'parameter A, prove 
that· 

" 2A I Xj - x2(lA) 
I. I 

~. (a) If X - U [0 1]. show that -2,log X -- X2(2)' 

Hence show that if XI. X2 • .... X" are Ud U [0. 1] variates. and if 

P = XI X2 ... Xia. then - 2 log. P - X2(2A) 

Hint. Find m.g.f. of - 2 log X. 

(b) If Xit X 2 • .... XII are· independent random variables with continuous 
distribution functions Fl. F2 • ... , F" respectively, show that 

-2 log [FI(XI). Fzf..X~ ... F,,(xJ] - X2(211) 

Hint. Usc F(X) - U [0, 1] and Part (a) above. 

7. (a) Let X arid Y be two independent random variables having chi-square 
disb'ibutioTI with degrees offrecdom m and n respectively. 
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(I) 9btain the distribution of U = X ! Y • 

(iI) When m = n. show that the distribution of U is symmetrical about ~. 
Hence or otherwise derive the rth moment about the mean of U when m'= n. 

(iii) Deduce the distribution of U when m = n = 1.. A 

(b) If X and Yare independently distributed chi-square variates with m and n 
degrees of freedom respectively. shOw that U = X + Y and V = X IY' are 
independently disU'ibuted. (Gqjoral Uni." ~~ •• 1992] 

(c) IfX12 and X22 are independent X2 variates with nl and'n2 degrees of 
freedom respectively. then show that: 

(I) X2 = X12 + X22 is a X2-variate with (nl + n~ C1egrees of freedom 

/'1\ ~ xC· A (~'!l.) . ,u, r = '1:1.2 IS a ... 2 \2' 2 variate. 

(Dellai Uni.,. BoSC. (MoIh •• Bon •• ), 1981] 
S.lf Xi (i = 1.2 •...• n) are n independent normal variates with zero means 

" " and unit variances. show that :E X i and :E (X i-X)2 are independ~ntly 
i-I i-I 

disuibuted. 
Hence or otherwise obtain the distribution of 

" ':E Xi 
i-I 

U =....:.... -;::::====_ 
.... 1 i (X;,,=X)2 

" ; -·1 

9. (a) Prove.that n: is distri~uted like X2 with (n - 1) degrees oHreedom. 

where S2 and a 2 are the variances of sample (of size n) and the population 
respectively. .(BunfUlCDa UniD. BoSc. (MoIIa •• ) Bon •• ). 1992] 

(b) LetX/a12 and Y/a22 be two independent chi-square variates with n and m 
degrees of freedom respectively. Find an unbiased estimate of (a./ai)2 and find 
its variance. Show that XIY and (X/al~ + (Y/a2~ are independently distributed. 
Name the distributions of XIY and (Xlal~ t (Y/al"). 

10. X denotes the random variable with chi-square distribution having n 
degrees of freedom. Show that for suitably chosen constants a" and b". the 

X-a 
moment generating function of ~ !~nds to that of the staqdard normal 

distribution as n:-t 00. From this what would you conclude about' the 

behaviour. for large n, of P r- ~~ a,. ~. x ) ~ 
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11. S how that 

1 fOG ~ e-A 'A! 
P(rz,,+l~2A}=-, • cYy"dy= ~ --,-

V. A r_Or. 

I 
whereA=iXol . 

Bxplain tlie uses of tttis result.[Delhi Univ. B.Sc. (Stat. Hons.), 
1990] 

12. X is a Poisson variate with panlmeter A and Xl is a chi-square variate 
with 2/c d.f. Prove that for all positive inteters k. 

P{X S k-l} = P{X2 > 2A} 

Hint. P(Xl > 2A) = 21 i(k) f: exp (_iXl) <X2)1-1 dxl 

1 foo =(k - I)! A trYyl-ldy 

- 1 {A1- I e-A + (k _ 1) f~ r' y1 - l dY} 
- (k - 1) ! ... 

By repealed inr:egration. we g~t the required resulL 
13. Let X .. Xl, ... , X.", and Ylo Yl • .... Y" be independent random samples 

from a normal population with mean zero and variance (1l. Let their means be X 
and Y and their variances be Sil and Sy2 respectively. 

Let the pooled variance S/ be dermed as: 
Sl- (m-I)Sxl+(n-I)Syl 

I' - (m + n - 2) 

Prove that {X - nand (m + n - 2) S/Ia2 are independently distributed, the 
former as a normal variate with zero mean and variance (1l {(I/lTl) + (lIn) 1 and 
the latter as a chi-square variate wi.h (m + n - 2) d.f. 

[Nqgpur Univ B.E., .J992] 
14. If X is a random variable following Poisson distribution with 

parameter A, and A is also a random variable so that 2aA is a chi-square variate 
with 2p degrees of freedom. obtain the unconditional distribution of X. Give the 
name of this distribution and find its mean. 

15. Xl. Xl' and X3 denote independent central chi-square variates with VI. 

Vz and v3 d.f. respectively. 
(i) Show that X I/(X I + Xi) is independently distributed of 

(Xl + Xi)/(XI + X2 + X3). 

(ii) dbtain the joint density function of the distribution of 
X=XI/(XI +XZ +X3) and Y=Xz/(XI +X2+X,) 

(iii) Hence or otherwise obtain the mean and variance of X and Y and 
Cov (X. Y). 

16. Prove that each linear constraint on if;). i = 1,2 •...• n reduces by' 
unity the number of degrees'of freedom of the chj-square. 
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" L { (Ii - ej)2/ej) , 
; - 1 

. where ej = Elf/). 

17. If X follows a chi-square distribution with n d.f. so that ~(X) = n and 

V(X) = 2n, prove that (X - n)/Th is aN (0,1), for large n. " 
18. If ydx is the probability that X lies between x and x + ax and if y is 

,given by the solution. of the differential equation 
4l_ y(a - x) 
dx- bx + c 

show that, (for suitable values of the constants a, b and c), a certain linear 
function of X has the X2-distribution with n degrees of freedom, where 

n=2(1+~+~) 
19. If Xl and X2 are independently distributed, each as X2 variate with 

2 d.f., show that the density function of Y = t (X 1 ...:.. X~ is 

1 -Iy 1 
g(y) = 2" e , - 00 < y < 00. 

20. If X and Yare 'independent r.v.'s having rectangular distribution in the 
interval (0, 1); show that 

U = "'-2 log X cos 21tY and V = '" -2 log X sin 21tY 
are independently distributed as N(O, 1). Hence ,show that U2 and V2 are 
independently distributed as X2-variates, each with 1 d.f. 

H• t !_ a(u.v) _ 2n;, 
lD. J - a(x.y) - - x 

and u2 + v2 = -2 log x ~ x = exp [ - ~ (u2 + v2) ] 

21. Find the p.d.f. of X" = + ...jx,.2, where X,,2 is a x2-variate with n d.f. 
and show that 

, _ E"" ') - 2rf}. n(n:to r)/2] 
J,l, - \A." - r(n/2) 

Hence establish that for 18lge n, 
/ E(x,.2) = [E(x,.)]2 

'[Hint. E(x,,2) = n and E(XJ = J,lt' = 21f}. rr(~(~l/2] 
r(n + k) .k 

Now use rn = n, for large values of n. [c.f. Remark to § 14·5·7] 

22. Let 
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Show that 
n 

x<~ 
" 

13035 

[Delhi U"iv. B.8c. (Stat. Bo" •. ), 1990] 

23. Let X 1> X 2 ••••• X" be a random sampie from N (J.t.. cr2). and k be a 
positive integer. Find E(S2k). In particular. find E(S2) and Var (Sl). 

[ S2 = (n - 1)-1 i (X i - X)2; X = n-I i Xi] 
i", \ i = \ 

ADS. ( 2) r(k+ y) 
E(S2k) = ~ .; k > O. n > 1 

n - 1 rt 2 1) 
E(Sl) = cr2 • Var (Sl) = 2cr4/(n - 1). 

24. Let X I an~ X2 .be independent random varial?les. each N(O. 1). Find the 
joint distribution of fl = X 12 + X22 and f2 = X dX2. Find the marginal 
distributions of fl and f 2. Are fl and f2 independent? 

ADS. f\ - X2(2) and f2 is standard Cauchy variate. Yes. 
25. Let X I and X2 be independent standard normal variates. Let 

fl =XI +X2 and f2 =X12 + Xl. 
(I) Show that the joint m.gJ. of f\ an f2 is : 

M (I .. I~ = 1 -\12 exp [1 ~22IJ; - 00 < II < 00. - 00 < 12 < ~ 
(il) Hence or otherwise, show that 

fl is a normal variate and· f2 is a chi-square variate. 
(iii) Are f I and fi independent? H not, find the correlation coefficient of 

YI and f 2• 

[Delhi U"iv. B.8c. (Math •• Bon •• ), 1989) 

.ADS. (f .. f~ are not independent. p(f .. y~ = O. 
26. If X I, X2• • ••• X,. are independently and normally distributed with the 

same mean but different variances cr12• cr-;? •••• cr,,2 and assuming' that 

r(X;lcr,.2) " [(X i - U)2] 
u= l:(I/ .2) and V=.L .l . cr, , • \ cr, 

i 

are independently distributed. show that U - N (0. 1I(l: cr?) 1 and V has X 2 
i 

distribution with (n - 1) dJ. 
27. If X .. X2 • •••• X" is a random 'sample from N (J.t.. cr2). find the mean 

and variance of 



Fundamentaltl ofMat.bematical Statistic:. 

s = [ . f (Xi - X)~/(n _ l)Jlfl 
1- 1 

[Della; Univ. ASc. (Matla •• Hon •• ), 1988] 

28. Let X I. X2 • •••• X A be a random sample from N (0. 1). Define: 

-It - 1 " i 
XA:=-k l: Xi and X"-"=--k l: Xi 

i-I n- i.1 .. l 

(a) What is the distribution of ! ( X" + X" _ 1) ? 

(b) What is the distribution of k X.? + (n - k) X2,,_1 '! 
(c) What is the distribution of Xl-IX? i * j? 
-(d) What is the distribution of Xi/Xj • i * j ? 

Ans. (a) N (0. 4k (: _ k»): (b) i~(2) 

(c) 132 0 . ~) or F(I. 1) [See § 14·5]' 

(d) Standard Cauchy distribution. 

OBJECTIVE TYPE QUESTIONS 

I. Choose the correct answer from B and match it with each item in A. 
A B 

(a) ~2 for a chi-square distribution (1) (1 - 2it) -A(l 

(b) ~1 for a chi-square distribution· (2) 8/n 

(c) Mean for a chi-square distribution (3) 2n 
(d) Variance for a chi-square distribution (4) (1 - 21) -11(2 

(e) Characteristic function for X2 distribution (5) (12In) + 3 

(f) Mode of X2-distribution (6)..J 2/n 
(g) M.G.F. of X2-distribution (7) n 
(h) Skewness of X2-distribution (8) (n - 2) 

II. State which of the following statement are-True and which are False. In 
case of false statements. give the correct statemenL . . 

(I) Normal distl'ibution is particular case of X2-distribution for one 
d.f. 

(h) For large degrees of freedom. chi-square distribution tends to 
nonnal distribution. 

(iiI) The sum of independent chi-square variates is also a chi-square 
variate. 

(iv) For the validity of x2-test. it is always necessary that the sample 
observations should be independel1t. 

(v) The chi-square distribution maintains its character of-continuity 
if cell frequency is less than 5. 



(vi) Each linear constraint reduces the number of degrees of freedom 
of chi-square by unity. 

(vii) In a chi-square test of goodness of fit, if the calculated value of 
'1.2 is zero then the fit is a bad fiL 

III. Mention the correct answer: 
(I) The mean of a- chi-square distribution with 11 d.f. is 

(a) 2n, (b) n2, (c) {;, (4) n 
(ii) The characteristic function of chi-square distribution is 

(a) (I - 2 it)lIi2, (b) (I + 2 it)lIi2, (c) (I - 2 it)-otI2 
(iii) The range of X2-variate 'is 

(a) - 00 to + 00, (b) 0 to 00, (c) 0 to 1, (4) - 00 to O. 
(iv) The skewness in a chi-square distribution will be zero if 

(a) n ~ 00, (b) n = 0, (c) n = 1, (d) n < 0 
(v) The moment generating function ofax2-distribution with n, 

degrees of freedom is 
(a) (1- t)-otI2, (b) (1- 2t)~, (c) (1-3t)-otI2, (d) (1 - 2t}11i2 

(iv) Chi-square distribution is 
(a) Continuous, (b) multi modal, (c) symmetrical. 

IV. Mention some prominent features pf the chi-square distribution with n 
degrees of freedom. 

V. If X and Y are independent random variables having chi-square 
distribution with m and n degrees of freedom respectively, write down 
the distributions of (,) X + Y, (il) X/Y, (iii) XI(X + Y). 

V I • (a) For how many degrees of freedom does the X2-distribution reduce 
(0 negative exponential distribution? 

(b) Give-an example of two independent variates none of which is a 
chi-square variate, although their sum is a chi-square variate. 

13·7. Applications or Chi-square Distribution. X2-~istribution 
bas a large number of applicatioils in Statistics, some of which are enumerated 
below: 

(i) To test if the hypothetical value of the population variance is 0 2 = 002 

(say). 
(il) To test the 'goodness of fit'. 

(iii) To test the independence of attributes. 
(iv) To test the homogeneity of independent estimates of the population 

variance. 
(v) To combine various probabilities obtained from independent 

experiments to give a single test of significance. 
(vi) To test the homogeneity of independent estimates of the population 

correlation coefficienl 
In ~e following sections we shall briefly discuss these applications. 
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13,·7·1. Chi-square Test ror Population Varianc!e. Suppose we 
want to test if a random sample Xi' (i = I, 2, ... , ~) has been drawn from a 
normal population with a specified variance O'~ = 0'02, (say). 

Under the null hypothesis that the population variance is 0'2 = 0'02, the 
statistic 

x.z = . t ,[(X; - : )2] = ~ [. t X? _ (U;)2] = nr/0'02 ... (13.14) 
,.1 ao 0'() ,.1 n 

follows chi-square distribution with (n -1) d.f • 
. By comparing the calculated value with the tabulated value of 'X.z for (n -1) 

d.f. at certain level of significance, (usually 5%) .. we may retain or reject the null 
hypothesis. 

Remarks. 1. The above te~t (13·14) can .be applied only if the 
population from which sample is drawn is normal. 

2. If the sample size n is large (>30), then we can use Fisher's 
approximation 

"./2x~ - N ("./2n -1, 1) 

i.e., Z = "./2x2 - ... l2n - 1 - N (0, 1) •• r(13·14a) 

and apply Normal Test. 
3. For a detailed discussion on the sig~ificant values, (critical values), for 

testing Ho : 0'2 = 0'02 against various alternatives: (00'2> 0'02; (ii) 0'2 < 0'02 

and (iiz) 0'2 'II: 0'02, see Remark 1 to § 16·74. 

Example 13·9. It is believed that the precision (as measured by the 
variance) of an instrument is no more than 0·16. Write down the null and 
alternative hypothesis fo.r testing this belief. Carry out the test at 1% level, 
.given 11 measurements of the same subject on the. instrument ; 

2·5, 2·3, 2·4, 2·3, 2·5, 2·7, 2·5, 2·6, 2·6, 2·7, 2·5. 
[Calicut UnifJ! B.Sc. (Main Stal.), AprlI1989] 

Solution. Null Hypothesis. Ho: 0'2 = 0·16 
Alternative Hypothesis : HI : 0'2 > 0·16 . 

COMPUI'ATION OF SAMPLE VARIANCE 

x X-X (X _X)2 

2·5 - 0·01 0·0001 
2·3' - 0·21 -0,0441 
2·4 - 0·11 0·0121 
2·3 "" 0·21 0·0441 
2·5 - 0·01 0·0001 
2·1 + 0·19 0·0361 
2·5 - 0·01 0·0001 
2·{; + 0·09 0·0081 
2·6 + 0·09 0·0081 
2·1 + 0·19 0·0361 
2·5 - 0·01 0·0001 

- 21·6 
X=l1= 2·51 !.(X _X)2 = 0·1891 
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Under the null hypothesis Ho: (J2 = O· 1 6, the test statistic is : 

X2 = ns2 = L(X - X )2 = 0·1891 = '.182 
(J2 (J2 0"16 

which follows X2·distribution with d.f (II - I) = 10. 

Since the calculated value of X2 is less than the tabulated value 23·2 of X2 
for 10 d.! at I % level of significance, it is not significant. Hence 1-10 may be 
Hccepted and we conclude that the data are consistent with the hypothesis that the 
precision of the instrument is 0·) 6. 

Example 3'10. Test the hypothesis that (J = la, given that s = 15 for a 
random sample of size 50 from a normal poplllation. 

Solution. Null Hypothesis, Ho : (J ;: ) O. 

We are given n = 50, s = IS 

2 ns2 50 x 2'25 
• • X = (J2 = ) 00 = I 12·5 

Sinee n is large, using(13·) 4a), the test statistic is 

Z = ~ 2,! - ".1211 -) - N ~O, ) 

Now, Z = ~225 - m = 15 - 9·95 = 5·05 
Sine I Z I > 3, it is significant at all levels of significance and hence No is 

rejected and we conclude that (J '#. ) O. 

13·7·2 •. Chi.square Test of Goodness of Fit. A very pQwerl,'ul test for 
testing the significance of the discrepancy between theory, and experiment was 
given by Prof. Karl Pearson in J 900 and is known as "Chi·square test of 
goodness of fit." It enables us to find if the deviation of the experiment from 
theory is just by chance or is it really due to the inadequacy of the theory to tit 
the observed data. 

If 0;, (i = 1,2, ... , n) is a set of observed (experimental) frequencies and E; 
(i = I, 2, ... , II) is the corresponding set of expected (theoretical or hypothetical) 
frequencies, then Karl Pearson's chi-square, given by 

2=± [(O;-E;>2J, (± 0;= ± E;) 
X ;=1' E; ;=1 ;=1 

follows chi-square distribution with (/I - I) dJ. 

Remark. This is an approximate test for large values of II. The 
conditions for the validity of'the x2-test of goodness of fit h,flve already been 
given in § 13·5 on page 13·15. 

Example 13·11. The followillg figwes show the distriblltiOIl of digits ill 
nllmbers chosen at random from a telepholle directOl)' : 
Digits: 0 I 2 3 4 5 6 7 8 9 Total 

Frequency: 1026 1107 997 966 1075 933 j 107 972 964 853 10,000 
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Test whether the digits inay be taken to occur equally frequently in the 
directory. [O.rnonio Univ. M.A. (Reo.), 1992] 

Solution. Here we set up the null hypothesis that the digits occur 
equally frequently in the directory. 

Under the null hypothesis, the expected frequency for each of the digits 
0, 1,2, ... ,9 is 10000/10 = 1000. The value of X2 is computed as follo~s : 

CALCULATIONS FOR 'X;Z 

Observed Expected 
Digits Frequency Frequency (0 _E)2 (0- E)2/E 

(0) (E) 

0 1026 1000 676 0·676 
1 1107 1000 11449 11·449 
2 997 1000 9 0·009 
3 966 1000 1156 1·156 
4 1075 1000 5625 5·625 
5 933 1000 4489 4·489 
6 1107 1000 11449 11·449 
7 972 1000 784 0·784 
8 964 1000 I 1296 1·296 , 
9 853 1000 21609 21·609 

Total 10,000 10,000 58·542 

The number of degrees of freedom = 10 - 1 = 9, (since we are given 10 
frequencies· subjected to only one linear constraint I 0 = IE = 10,000). 

The tabulated X2o.os for 9 di. = 16·919 
Since the calculated X2 is much greater than the tabulated value, it is highly 

significant and we reject the null hypothesis. Thus we conclude that the <Jjgits 
are not uniformly distributed in the directory. 

Example 13·12. The following table gives the numlrer of aircraft 
accidents that occurs during the various days of the week. Find whether the 
accidents are uniformly distributed over the week. \ 
Days .• , Sun. Mon. Tues. Wed. Thus. Fri. Sat. 
No. of accident/! •. , 14 16 8 12 11 9 14 
(Given: the .values of chi-square significant at 5, 6, 7, df. are respectively' 
1l·()7, 12·59: 14·07 at the 5% level of significance. 

Solution. Here we set up the null hypothesis that the accidents are 
uniformly distributed over the week. 

Under the null hypothesis, the expected frequencies of the accidents on' each 
of the days would be : 
Days Sun. Mon. Tuel. Wed. nus. Fri. Sat. Total 
No. of accidents •• , 12 12 12 12 12 12 12 84 
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2 (14 - 12)2 (16 - 12)2 (8 - 12)2 (12 - 12)2 
X = 12 + 12 + 12 +. 12 

(11 - 12)2 (9 - 12)2 (14 - 12)2 
+ 12 + 12 +, 12 

1 50 
= 12 (4 + 16 + 16 + 0 + 1 + 9 + 4) = 12 

=4·17 
The number of degrees of freedom 

= Number of observations - Number of independent constraints. 
=7-1=6 

The tabulated X2o.()S for 6 d.f. = 12·59 
Since the calculated X2 is much less than the tabulated value, it is highly 

insignificant and w~ accept the null hypothesis. Hence we conclude that the 
accidents are uniformly distributed over the week. 

Example 13·13. The theory predicts the proportion of beans in the four 
groups A, B, C and D should be 9 : 3 : 3 : 1. In af! experiment among 1600 
beans. the numbers in the four groups were 882. 313. 287 and 118. Does the 
experimental result support the t/;leory 7 [Agro U"i". B.Sc., 1991] 

Solution. Null Hypothesis : We set up the null hypothesis that the 
theory fits well into the experiment. i.e .• the experimental results support the 
theory. 

Under the null hypothesis, the expected (theoretical) frequencies can be 
computed as follows: 

Total number of beans = 882 + 313 + 287 + 118 = 1600 
These are to be divided in the ratio 9 : 3": 3 : 1 

9 3 
•• E(882) = 16 X 1600 = 900, E(313) = 16 X 1600 = 300 

3 . 1 
E(287) = 16 X 1600'= 300, E(118) :; 16 X 1600 = 100 

X2 = DW iE)2] 
... .<882-900)2 (313-300)2 (287-300)2018-100)2 
- . 900 • + 300 + 300 + 100 
= 0·3600 + 0·5633 + 0·5633 + 3·2400 = 4·7266 

d/. = 4 - 1 = 3, and tabulated X~o.os for 3 d.f. = 7·815 
Since the calculated value of X2 is lesS' than the tabulated' value, it is not 

significant. Hence the null hypothesis may be accepted at 5% level of 
significance and we may conclude that there is good correspondence between 
theory and experimenL 

Example 13'14. A survey of 320 families with 5 children each revealed 
the following distribution : 

No. of boys : 5 4 3 . 2 1 0 
No. of girls : 0 1 .2 3 4 5 
No. of families: 14 56 110 88 40 12 



1942 
I 

Is thjs result consistent with the hypothesis that male and female births are I 

equally probable ?' 
Solution. Let us set up the null hypothesis that the data are consistent I 

with the hypothesis of equal probability for male andfemale births. Then under· 
the null hypothesis : 

p = Probability of male birth = ~ = q 

p(r) = Probability of 'r' male births in a family of 5 ~ 

=(5r )prqS-c=(5r )(~ J 
The frequency of r male births is given by : 

ifr) = N. p(r) = 320 x (5r ) x (~ J 
= 10 x (5, ) ••. (*) 

Substituting r = 0, I, 2, 3,4 succesSively in (.), we get the expected 
frequencies as follows : 

J(O) = 10 x 1 = 10, 
/(2) = 10 x sCz = 100, 

/(4) = 10 x sC4 = 50, 

/(1) =,10 x SCI = 50 

/(3) = 10 x sC3 = 100 

/(5)= 10x sCs= 10 

CALCllLATIONS FOR 'X! 
Observed Expected 

o FreqlU!1lCies Freqwerv:ies (0 _E)z 
(0) (E) 

14 10 16 
S6 SO 36 

110 JOO 100 
88 100 144 
40 SO 100 
12 10 4 

Total 320 320 

~[(O_E)2J .,,,2= £..J E = 7·16 

Tabulated X2000s for 6 - 1 = 5 d.f. is.U'()7. 

(0 -E)2/E 

1·6000 
0·7200 
1·0000 
1·4400 
2·0000 
0·4000 

7·1600 

Calculated value of X2 is less than the tabulated value, it is not significant 
at 5% level of significanCe and hence the null hypothesis 'of equal probability for 
male and female births may be accepted. 

Example 13·15. Fit a Poisson distribution to the following data and test 
the goodness of fit. .. 

x: 0 1 2 3 4 5 6 
f: 275 72 30 '1 5 2· 1 
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Solution. Mean of the given distribution is : 

- f..JiXi 189 
X =N= 392= 0482 
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In order to fit a Poisson <Jistribution to the given data. we take the mean 
(parameter) m of the Poisson distribution equal to the mean of the given 
distribution, i.e., we take. 

m=X=0·482 
The frequency of r succ~ses is given by the Poisson law as : 

e-4482 (0.482t 
J(r) = Np(r) = 392 x I ; r = 0, I, 2, ••• , 6 

. r 

Now J(O) = 392 X ~'2 = 392 x Antilog [- 0482 log e) 
= 392 x Antilog [.:.. 0·482 x log 2·7183] ( ... e = 2·7183) 
= 392 x Antilog [- 0·482 x 04343] 
=.392 x Antilog [- 0·2093] 

= 392 x Antilog [1,7907] = 392 x 0·6176 
= 242·1 

J(l) = m xj(O) = 0482 x 242·1 = 116-69 

J(2) =I'Xj(I) = 0·241 x U6·6~ = 28·12 

m 0482 
J(3) ='3 x j(2) = -3-x 28·12 = 4·5\8 

m 0482 
J(4) = 4" xft3) = -4 - x 4·S18 = 0·544 

m 0-482 
(J(S) = 5 xj(4) = -S- x 0·544 = 0·052 

m 0·482 
J(6) = 6" xj(S) = -6-x 0·OS2 = 0·004 

Hence the theoretical Poisson frequencies correct to one decimal place are as 
given below: 

K 0 1 2 3 4 5 6 Total 

Expected 
Frequency 242·1 116·7 28·1 4·5 0·5 0·1 o 392 

CALCULATIONS FOR CHI-SQUARE 

Observed Expected , 
frequency frequency (O-E) (0_E)2 (0 _E)2/£ 

(q) (E) 

275 242·1 32·9 1()82·41 4·471 
72 116·7 44·7 1998·09 17·121 
30 28·1 1·9 3·61 0·128 
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HiS 0·5 '"1 ~'1 5·1 9·9 98·01 19·217 

392 392·0 40·9~7 

Degrees offreedom = 7 - 1 - 1 - 3 = 2 
(One d.f. beit;lg lost because of the linear constraint ~ 0 = ~ E; 1 d.f. is 

lost because the parameter m has been estimated from the given data and is then 
used for computing the expected frequencies; 3 d.f. are lost because of pooling 
the IasLfo~ expected cell frequencies which are less than five.) 

Tabulated value of 1.2 for 4 dJ. at 5% level of significance is 5·99. 
C01Jclusion. Since calculated value of X2 (40·937) is much greater than 

5·99, it is highly significant. Hence we conclude that Poisson distribution is not 
a good, fit to the given data. . 

EXERCISE 13(b) . 

1. (a) Define Chi-square and obtain its sampling distribution. Mention 
')r.te prominent features of its frequency curve. Obtain the mean and the 

,.uiance of the chi-square distribution. 
«(1) Show that the sum of two independent variates having chi-square 

distributions, has a chi-square distributiO.I1. 
2. (a) Write a short note on the Chi-square test of goodness of fit of a 

random sample to a hypothetical distribution 
(b) Describe the Chi-square test of significance and ~tate the various uses to 

which it can be puL 
(c) Discuss the X2-test of goodness of fit of a theoretical distribution to an 

observed.frequency distribution. How are the degrees of freedom ascertained when 
some parameters of the.theoretical distribution have to be estimated from the 
data? . 

3.·(a) The following table gives the number of aircraft accidents that 
occurred during' the seven days of the week. Find whether the accidents are 
uniformly distributed over the week. 
Days ~ : Mon. Tue. Wed. Thur. Fri. Sat. Total 
No. of acci~ts: 1,4 18 11 11 15 14 84 

Ans. H 0 : Accidents are 'Uniformly distributed over. the week. X2:: 2·143; 
Not significain. Ho may be accepted. 

(b) A die is thrown 60 times with the following· results. 
Face 1 2' 3 4 ~ 6 
Frequency '. 8 7 12 8 14 11 

Test at 5% level of significance if the die is honest,. assuming that 
P (12 > 11·1) = 0·05 with 5 dJ. [Burdwcm Un.iv. B.Sc. (Bo" •• ), 1991] 
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4. (a) In 250 digits from the lottery numbers. the frequencies of the digits 
O. 1. 2 •...• 9 were 23. 25. 20. 23. 23. 22. 29. 25. 33 and 27. Test the 
hypothesis that they were randomly drawn. 

(b) 200 digits we chosen at random from a set of tables. The frequencies of 
the digits were : 
Digits : 0 1 '2 3 4 5 6 7 8 9 
Frequency : 18 19 23 21 16 25 22 20 21 15 
Use 'X2 test to assess the correctness of hypothesis that the digits were distributed 
in equal numbers in the table. given that the values of 'X2 are respectively 16·9. 
18·3 and 19·7 for 9.10 and 11- degrees of freedom at 5% level of significance. 

[Delhi Univ. B.Sc., 1992] 

Ans. 'X2 = 4·3. Hypothesis seems to be correcL 
S. Among 64 offsprings of a certain cross between guinea pigs. 34 were 

red. 10 were black and 20 were w,hite. According to the genetic model these 
numbers should be in the ratio 9.: 3 : 4. Are the data consistent with the model 
at 5 per cent level 'l 

[You are given that the value of 'X2 with the probability 0·05 being exceeded 
is 5·99 for 2 d.f. and 3·84 for 1 dJ.J 

6. In an experiment on pea-breeding. Mendal obtained the following 
frequencies of seeds: 315 round and yellow. 101 wrinkled and yellow; 108 round 
and green. 32 wrinkled and green. Total 556. Theory predicts that the frequencies 
should be in the proportion 9 : 3 : 3 : 1 respectively. Set up proper hypothesis 
and te~t it at 10% level of significance. 

Ans. 'X2 = 0·51. There seems to be good correspondence belween ~eory 
and experiment. 

7. (a) Selfed progenies of a cross between pure strains of plant segregated 
as follo~s: 

Tall 
Early flowering 

120 
Late flowering 

48 
Short 36 13 

Do the results agree with the theoretical frequencies which specify a 
9:3:3: lratio'l 

(b)Children having Qne parent of blood-type M and tile other type N will 
always be one of the three types M. MN. N and average proportions of these 
will be 1 : 2 : 1. 

Out of 300 children having one M parent and one N parent. 30% were 
found to be of'type M. 45% of type MN and the remaining of type N. Use 'X2 
to test the hypothesis. [Patna Univ. B.Sc., 1991] 

(c) A genetical law says that children having one parent of blood group M 
and the other parent of blood group N will always be one of the three blood 
groups M. MN. N; and that the average number of children in these groups 
will be in the ratio 1 : 2: I. The report on an experiment states as follows : "Of 
162 children having one M parent, and one N parent. 284% were found to be of 
group M. 42% of group MN and the rest of the group N". Do the data in the 
report conform to the expec,ted genetic ratio 1 : 2 : 1 'l 
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(d) A bird watcher sitting in a park has spotted a number;of birdS belonging 
to 6 categories. The ,exact classification is given below': 

Category 1 2 3 4 5 6 
Frequency: 6, 7 13 17 6 5 
Test at 5% level of significance whether or not the data is compatible with 

the assumption that this particular park is visited by birds belonging to these six 
categories in the proportion 1 : 1 : 2 : 3 : 1 : 1. 

[Given P (y} ~ 11·07) = 0·05 for 5 degrees of freedom] 
[Calcutta Univ. B.Se. (Math •• Bon •• ), 1991] 

(e) Every clinical thermometer is classified into one of four categories A, B, 
C, D on the basis of inspection and test From past experience it is known that 
thermometers produced by a certain manufacturer are distributed among the four 
categories in the following proportions: 
CategorY ABC D 
Proportion 0·87 0·09 0·03 0·01 

A new lot of 1336 thermometers is submitted by the manufacturer for 
inspection and test and the following distribution into four categories results : 
Category ABC D 
No. of thermometers reported : 1188 91 47 10, 

Does this new lot of thermometers differ from the previous experience with 
regards to proportion of thermometers in each category ? 

8. (a) Five unbiased dice were thrown 96 times and the number of times 4, 
5 or 6 was obtained is given below. 
No. of dice showing 4, 5 or 6 : 5 4 3 2 1 0 
Frequency 8 18 35 24 10 1 

Fit a suitable distribution and test for the goodness of fit as far as you can 
proceed without the use of any tables and state how you would proceed further. 

[Gauhali Univ. 8.&., 1992] 

(b) In 120 throws of a single die, the following distribution of faces was 
obtained : 
Faces 1 2 3 4 5 6 Total 
Frequency 30 25 18 10 22 15 120 

Compute the statistic you would q~e to test whether the results constituted 
refutation of the "equal probability" (null hypothesis). Also state how you 
would proceed further. [Nagpur Univ~ B.Sc., 1992] 

(c) Given ~Iow i~ the ~umber of male and, female births in 1,000 families 
having five children: 

. Number of Number, ~J Number of 
male births female births families 

o 5 40 
1 4 300 
2 3 250 
3 2 200 
4 1- 30 

Test whether the given data is ,conSllllent with the hypothesis that the 
binomial law holds if the chance of a male birth is equal to that of a female 
birth. . 



18-4.'7 

Six-pig litters (tI) Five-pig litters 
Number of males Number of Number of males Number of 

in litter ,litters in litter litters 
o 2 o 3 
1 20 1 16 
2 41 2 53 
3 3~ 3 78 
4 14 4 53 
5 4 5 18 

6 0 
Test whether each of the above two samples is a binomial sample (I) with p 

= 0·5, given 0 priori and (ii) with p determined from the data. Test the 
significance of the difference between the two sample p's. 

9. (0) The following table gives the count of yeast cells in square of a 
cyclometer. A square millimeter is divided into 400 equal squares and the number 
of these squares containing 0, 1,2, ... cells are recorded-
Number of cells : 0 1 2 3 4 5 6 7 8 9 1 0 

Frequency: 0 20 43 53 86 70 54 37 18 10 5 
Number of cells : 11 12' 13 14 15 16 

Frequency: 2 2 0 0 0 0 
Fit a Poisson distribution to the data and test the goodness of fit. 
(b) The following is the distribution of the hourly number of trucks arriving 

at a company's warehouse. 
Trucks arriving per hour : 0 1 2 3 4 5 6 7 8 
Frequency : 52 151 130 102 45 12 5 1 2 

Find the mean of the distribution and using its mean, (rounded to one 
decimal) as the parameter A., fit a Poisson distribution. Test for goodness of fit 
at the level of significance a = 0·05 

[Madra. In.titute ofTechnowgy, 1992] 
(c) Obtain the equation of the normal curve that may be filled to the 

following data : 
Class : 60--65 65-70 70-75 75-80 80-85 85-90 90-95 95-100 
Freqruncy 3 21 150 335 326 135 26 4' 

Obtain the expected normal frequencies and test the goodness of fit 
10. Aitken gives the following distribution of times shown by two 

samples of 504 watches each, displayed in watch-malcer's windows: 
Class interval for Frequency of watches Frequency of watCMS 

time shown from sample I from ~ample il 
0-2 75 83 
2--4 93 86 
4-6 94 94 
6-8 76 72 
8-10 80 82 
10~12 86 87 

-,-
Total 504 504 
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Calculate the expected frequencies of watches in the various class intervals 
under the hypothesis that the times shown are uniformly distributed over the 
interval (0. 12). separately for the two samples aqd also for the combined sample 
of all the 1.008 watches. 

Test the goodness of fit for the two samples separately and for the. combined 
sample. Test also the significance of the sum of the values of X2 for the two 
separate samples. • 

11. The following independent observations were made on the price of 
grain in 10 consecutive months: 
Month 1 2 3 4 5 6 7 8 9 10 
Price (in Rs.): 115 118 120 140 135 137 139 142 144 150 

Test the hypothesis that the expected price in the ith month is 
Rs. (100 + 3;). i = 1. 2 •...• 10 with a standard deviation of Rs. 5 under the 
assumption that the prices are normally distributed. 

12. To test a hypothesis Ho. an experiment is performed 3 times. The 
resulting values of chi-square are 2·37. 1·86 and 3·54. each of which corresponds 
to one degree of freedom. Show that while Ho cannot be rejected at 5% level on 
the basis of any individual experiment, it can be rejected when the three 
experiments are collectively counted. [Poono Unil1. B.Sc., 1991J 

[Hint. Use additive proper:.ty of chi-square variates.] 
13. (a) Describe the chi-square test for testing a hypothesis that a t:lormal 

population has a specified variance (52. 
(b) Give the approximation to the test statistic in (a) if n. the sample size. 

is sufficiently large. 
(c) A sample of 15 values shows that the s.d. is 64. Is this compatible 

with the hypothesis that the sample is from a normal population with s.d .. ~ ? 
ADS. Ho : (1 = 5. X2 = 24·58;' Significant Population s.d. is not 5. 
(d) Test the hypothesis that (1 = 8. given that s = 10lor a random sample of 

size 51 from a normal I population. 

Ans. Z ::; '\12X2 - ~ (2n - D = "''"2-X-7-9-·6-9 - {Wi = 2·57. Significant 
at 5% level of significance. 

14. (a) A manufacturer claims that the life time of a certain brand of 
batteries produced by his factory has a variance of 5000 (hours? A sample of 
size 26 has a variance of 7200 (hours)2. Assuming that it is reasonable to treat 
these data as a random sample from a normal popul2lion. test the manufacturer's 
claim at the a = 0·02 level. 

Hint. Ho: (12 = 5000 (hours)2; HI: (12 ¢ 5000 (hours)2 (Two-tailed) 
Critical region is : X2 < X2(25) (0·99) ar: j X2 > X2(25) (0·01). 
(b) A manufacturer recorded the cut-off bias (Volt) of a sampl~.of 10 tubes 

as follows: 
1~·1. 12·3. 11·8. 12'(). 12·4 •. 12·0. 12·1. 11·9, 12·2. 12·2 

The variability of cut-off bias for tubes of a standard type as measured by 
the standar4 deviation is 0·208 volts. Is the variability of the new tube with 
respect to cut-off bias less than that of the standard type ? 
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Hint : Ho": (J2 = (0·208)2 (VollS)2 = (J20 (say) ; HI : (J2 < (J02 

Critical region is : "X.z < X2(1I_1) (1- a) =: X2(9) (0·95); a = 0·05 
13·7·3. Independence of Attributes. Let us consider two attributes 

A and B. A divided into r classes A\t A2 • .... A, and B divided into s classes 
Bl. B2. "'! B$' Such a classification in which attributes are divided into more 
than two classes is known ~s manifold classification. The various cell 
frequencies can be expressed in the following table known as r x s manifold 
contingency table where (Ai) is the number of persons possessing the attribute 
Ai. (i = 1.2 ...... r),'(B) is the number of persons posse.Jing the_ attribute B j 

(j = 1 •. 2 ..... s) and (AiBj) is the number of persons possessing both the 
attributes Ai and Bj • [i = 1.2 ..... r;j = 1.2 •...• s]. Also 

, $ 

L (Ai) = L (Bj) = N. is the total frequency. 
j _ I, j --I 

r x s CONTINGENCY TABLE . 
A 

.. 
AI Al ....... AI ...... A, Total 

B 

BI' (AIBI) (A1BI) ...... (AiBI) . ..... (A.BI) (B I) 

" . 
Bl (AIBJ (A1BJ ...... (AIBJ . ..... (A,BJ (BJ 

.- . " ': . 

. 
Bj (AIBj) (A1Bj) ...... (AIBj) . ..... (A,Bj) (Bj) 

.. .. 

B, (AlB,) (AlB,) ...... (AiB,) . ..... (A,B,) (B,) 

.. , 

Total (AI) (AJ ...... (Ai) ....... (A,) N 

The problem is to test if two attributes A and B und~r co~sideration are 
independent or nol. 

Under the n~1I hypothesis that the allributes arf! independent. the theoretical 
cell frequencies ate calculated as{ollows: 

P[AJ = Probability that a person possesses the. ~urjbute Aj 
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(A-) . = N ; ,= 1, 2, ... , r 

P[Bj ] = Probab~lity that a person possesses the attIjbute Bj 

(B.) . = It; J = 1, 2, ... , s 

P[A;Bj] = Prob:-bility that a person possesses the attributes A; 'lind Bj 

= P(Aj)P(Bj} 

(By compound probability theorem, since the attributes A; and B j are 
independent, under. the: null hypothesis). 

P[A ·R ] - (Aj) f!!il .. - 1 2 . . - 1 2 
.. ' j<Jj - N . N ,'- , , ... , r ,J - , , ... , s 

•. (AjBj)o = Expected number of persons possessing both the ,~ttributes 
A; andBi, 

= N.P[A;Bj ] = (Ai~Bi) 

(A B') (A;)(Bj) (. 1 2 . 1 2 ) 
j j 0 = N ,'=" ... , r ; J = , \ ... , S - (13·16) 

By using this formula we can find out expected frequencies for each of the 
cea-fr.e.quencjes (A.;,Bj ), (i = 1,2, ... r. r ; j = 1, 2, ... , .s), under the. null 
hypothesis of independence of attributes. 

The exact test for the independence of attributes is very complicated but a 
fair degree of approximation is given, for large sampleS, (large N), by the x2-test 
of goodness of fit, viz., 

X2= i i [(~~;Bj~i~~;Bi)oJ2J ' ... (-13·160) 
j.lj-I 'jO 

which is distrtbuted as a x2-variate with (r - 1)(s' - U d.f. [cf. Note below on 
qegrees of freedom]. 

Remark. 4'2 = X2/N is known as mean-square contiTigency. 
Since the limits for X2 and 4'2 vary in different cases, they cannot be used 

for establishing the closeness of the relationship between qualitative character~ 
under study. Prof. Karl Pearson suggested another measure, known as 
'~coefficient of mean square contingency" which is denoted by C and is given by 

C _ .... I X2 _ .... I f2 
-V X2 + N - V 1 + 4'2 ... (13·17) 

Obviously C is always less than unity. The maximum' value of"C depends 
on rand s, the number of classes into which A and B are divided. In a r x r 

contingency tab!e, the maximum value of C = ~ (r''':''' l)if . Si.pee ~e maximum 
.value of C differs for different classification, viz.! r x r (r = 2, 3, 4, ... ), strictly 
speaking, the values of C obtalned'from different types of classifications are not 

. comparable. 
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NOle on Degrees or Freedom (d.r.). The number of independent 
variates which make up the statistic (e.g .• X2) is known as the degrees of 
freedom (df.) and is usually denoted by v (the letter 'Nu' of the Greek alphabet). 

The number of degrees of freedom, in general, is the total nun:tber of 
observations less the number of independent constraints imposed on the 
observations. For example, if k is the number of independent constraints in a scI 
of data of n observ~tions then v = (n - k). 

Thus in a set of n observations usually, the degrees of freedom for X2 are 
(n - 1), one d.f. being lost because of the linear constraint ~ 0 i = ~ E i = N. on 

I I 

the frequencies (c/. Theorem 13·3, page 13·12.) 

If'r' independent linear constraints are im}J9Sed on the cell frequencies, then 
the dJ. are reduced by 'r'. 

In addition, if any of the population parameter(s) is (are) calculated from the 
given data and used for computing the expected frequencies then, in applying 
x2-test of goodness of fit, we have to subtract one d.f. for each parameter 
calculated. Thus if's' is the number of population'parameters estimated from 
the sample observations (n in number), then the required number of degrees of 
freedom for x2-test is (n - s ~ 1). 

If anyone or more of the theoretical frequencies is less than 5 then in 
applying x2-test we have also to subtract the degrees of freedom lost in pooling 
these frequencies with the preceding or succeeding frequency (or frequencies). ' 

In a r x s contingency table, in calculating the expected frequencies, the row 
totals, the column totals and the grand totals remain fixed. The fixation of 'r' 
column totals and's' .row t9tals imposes (r +.v constraints on the 'ce,lI 
frequencies. But since 

r , 

r (Aj) = r (Bj ) =N, 
i-I j-I 

the total number of independent constraints is only (r + s - 1). Funher, since 
the total'number of the cell-frequencies is r x s, the required number of degrees 
of freedom is : 

v = rs - (r + s - 1) = (r - l)(s - I) 

Example 13'6. Two 
sample polls of votes for two 
candidates A and B for a 
public office are taken. one 
from among the residents of 
rural areas. The results are 
given in the table. Examine 
whether the nature of the area 
is related to voting preference 
in' this election. 

Votes 
for 

Area 

Rural 

Urban 

Total 

A 

620 

550 

J170 

B Total 

380 JO()() 

450 1000 

830 2000 

[GiVarat Univ. B.Sc., 1990] 
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Solution. Under the null hypothesis that the nature of the area is 
independent of the voting preference in the electioq" we get the observed 
frequencies as follows: 

£(620)= 117~~000=585, E(380)= 83~~00Q=.415, 

£(550);:: 117~~000 = 585, and £(450) = 83~~000 = 415 "­

Aliter. In a 2 x 2 contingen£y table, since· 
d.f. = (2 - I) (2 - I) = I, 

only one of the cell frequencies can be filled up independently and the remaining 
will follow immediately, since the observed and theoretical marginal totals 
are fixed. Thus ~aving obtained anyone of the theoretical frequencies, (say). 
£(620) = 585, the remaining theoretical frequencies can be easily obtained as 
follows: 

E(380) = 1000 - 585 = 415, E(550) = 1170 - 585= 585. 
E(450) = 1()()()-585~415 

2 _ ~r (0 - E)2J _ (620 - 585)2 (380 - 4(5)2 
X - ~ E - 585 + 415 

(550 - 585)2 (450 - 4(5)2 
+ 585 + 415 

= (35)2 [5!5 + 4!5 + 5!S' + 4!5] 

= (1225)[2 x 0·002409'+ 2 x·0·OOI709] :: 10·0891 

Tabulaied X2o.()s for (2 - I) (2.:;- I) = I d.f. is 3·841: Since calculated X2 is 
much greater than the tabulated value, it ·is highly significant and null 
hypothesis is rejected at 5% level of significance. Thus we conclude that nature 
of area is related to 'voting preference in the election. 

Example 13·17. (2 x 2 contingency table). For the 2 x 2 table. 

a b 

c d 

[,rove that chi·square test of independence ~ives 

2 _ N(ad - bc)2 _ . ...(13·18) 
X - (a' + c) (b + d) (0 :.. 'b) (c'+ d) ,N - a + b + c + d 

[Gauhati Univ. B.sc., 1992) 

Sulution. Under the hypothesis of independence of attributes, 
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E(a);:: (a + b1 (a + c). 

E(b) = (a + b1(b + d) 

E(c) = (a + cvc + d) 

lJXl E(d) = (b + d1 (c + d) 

a 

c 

aTC 

b 

(J 

b+d 

X2 _ [a _. E(a)]2 [b - E(b}]2 [c - E(c)]2 [d - E(d)]2 
- E(a) + E(b) + E(c) + E(d) 

a-E(a) = a _ (a + b1(a + c) 

_ a(a + b + c + d) - (a 2 + ac + ab + bc) _ad - bc 
- N - N 

Similarly, we will get 

ad - bc ad-bc 
b-E(b) =- N =c-E(c);d-E(d}= N 

Substituting in (*), we get 

X2 (ad-bC)2[_I_ I I I ] 
N2 E(a) + E(b) + E(c) + E(d) 

=(ad~bC)2[{(a + b)l(a + c) + (a + b)l(b + d)} 

13·53 

a+b 

c+d 

N 

: .. (*) 

+ {(a + C)\C + d) + (b + d)\C + d\}] 
(ad-bC)2[ b+""'d+a+c b+d+a+c J 

= N (a + b)(a + c)(b + d) + (a + c) (c + d) (b + d) 

- (d b )2[ ,c + d + a + b J 
- a - C (a + b)(a +c)(b +d)(c+d) . 

_ N(ad - bC)2 
- (a + b)(a +. l:)(b + d)(c + d) 

Example 13·18. A random sample of students of Bombay University 
was selected and asked their opinions about <autonomous colleges'. The results 
are given below. T,'te same number of each sex was included within each class­
group. Test the hypothesis at 5% level that opinio~ are independent of the class 
groupings ;-



. 
Numbers 

Total 
Class Favouring Opposed to 

'autonomous 'autonomous 
colleges' colle,es' 

F.Y. B.A.IB.Sc.IB.Com. 120 80 
; 

200 
S.Y. B.A.lB.Sc.lI!.Com. 130 70 200 
T.Y. B.A.lB.Sc.lB.Com. 70 30 100 
M.A .IM:Sc.lM.Com. 80 20 100 

Total 400 200 600 

[Bombay Univ. asc., April 1989] 

Solution. We set up the null hypothesis that the opinions about 
autonomous colleges are independent of the class-groupings. 

Here the frequencies are arranged in the fonn of a 4 x 2 contingency table. 
Hence the d.f. are (4 - 1) x (2 - 1):; 3 x 1 = 3. Hence we need to compute 
independently only three expected frequencies and the remaining expec~d 
frequencies can be obtained by subtraction from the row and column totals. 

Under the null hypothesis of independence: 

E(120) = 400 x 200 = 133.33 E(130) = ~OO x 200 = 133.33 
600 600 

E(70) = 40~~00=66.67 
Now the table of expected frequencies can be completed as shown below: 

Number 
Class Tolal 

Favouring Opposed to 
, alllonomous ' alllonomous 

colleges' colleges' 

.F.Y.B.A./B:Sc./B:Com. 133·33 200 - 133·33 200 
= 66·67 

S.Y.B.A./B.Sc.JB.Com. 133·33 200 - 133·33 200 
= 66·67 

... 

T.Y.B.A./B.Sc./B.Com. 66:67 100 - 66·67 100 
= 33·33 

-
M.A.fM.SC';/M.Com. 6~·67 100 - 66·67 100 

= 33·33 
... 

Total 400 .200 600 
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CALCULATIONS FOR CHI-SQUARE 

13.55 

; 

-
'0 e O,-E (0 _E)2 : (0 -E'fIE 

120 133.33 -13·33 177·6889 1,3327 

130 133·33 -3·33 11·0889 0·0832 

70 66·67 3·33 , 11·0889 0·1~63 

80 66·67 13·33 177·6889 2·6652 

80 66·67 13·33 177·6889 2·6652 

70: 
, 

66·67" 3·33 , 11·0889 0·1663 

30 33·33 -3·33 11·0889 0·3327 

2~ 33·33 I -13·33 17,7·6889 5·3312 
~ 

Total 409 400 12·7428 

~ (O~E)i 
'X.z =-~ E = 12·7428 

Tabulated (critical) value of X2 for (4 - 1) X (2 - 1) = 3- d.f. at 5% 'level of 
significance- is, 7 ·815. 

ConClusion. Since calculated value of X2 is greater than the tabulated value. 
it is 'significant at 5% level of significance and we reject the null hypOthesis. 
Hence, we conclude that the opinions about ~QlQnomous colleges' are dependent 
on the class-groupings. 

F;xample )3'19. Two r(!searchers adopted different sampling techniques 
while investigqting t~e same group of students to find the number of students 
falling in' di!ferenJ int~lligence levels. The results are as follows: 

I 

Researcher No. of students in each level· 'Total 
Below Average Average Above Average Genius 

, 
I 

X 86 60 44 10 200 

Y 40 33 .. ,25 2 100 

Total 126 93 69 12 300 

Would you -say that the sampling techniques ~pted by the two researchers 
are significantly differen.t ? (Given, 5% value. olr for 2 dJ. and 3 dJ. are 5·991 
and 7·82 respectively.) 

Solution. We 'Set up the null hypothesis that the data obtained' are 
independent of the sampling techniques adopted by the two· researchers. In 
other words, the null hypotheSis is. that their is no signiijcantdifference between 
the sampling techniques used by the two researchers for collecting the required 
data. . 
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Here we have a 4 ~ 2 contingency tabl~ and d.f. == (4 - 1) x (2 - 1) = 3 x 1 
= 3. Hence we need to compute only 3 independent expected frequencies and the 
remaining-'expected frequencies can be obtained by subtraction from the marginal 
row and column totals. 

Under the null hypothesis of independence, we have 

E(86) = 12~~ 200 = 84; E(60) = .93 3';i°0 = 62 ;' 

E(44) = 693';i°0 _ 46 

The table of expected frequencies can now be.completed as shown.~low : 

No. oJ s,wk",s ill each level 
, 

ReseorcMr Total 
Below Average Average. Above tJ,verag~ Genius . . .. 

X 84 62 46- 200 -192 = 8; 200 

-
Y 126 - 84 = 42 93-62=31 69-46=23 12 - 8 = 4 10'0 

Total 126 93 69 12 . 300 
. . 

l 

_ Since we cannot apply 'the xl_test straightway here as the last frequency is 
less than 5, we ,sh?uld use the technique of poc;>ling in 'this case as given below: 

CALCulATIONS FOR em-SQUARE . , 
0 E O-E (0 _E)l (0 -EiIE 

86 84 2 4 
, 

0'048 
, '. 

60 62 -2 4 0·064 
44 46 , -2 4 .- 0·087 
10 8· 2 4 0·500 
40 42 -2 4 b·095_ 
33 ~1 2 4 9·129 

2S} 23} 
2 '27 27 0 0 0 

4· 
" • I 

Total 300 300 0 0 0'·923 I 

After pooling, Xl = L [<0 E E)l ] = 0·923 

and'the d./., :; (4 - 1) ~ (2 - I) '- 1 = 3 - 1 = 2, since 1 df. is' lost in the 
methOd of poQling. 

Tabulated value of t Z for 2d./. at 5% level of significance is 5·991'. 
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Conclusion. Since calculated value is less that the tabulated value, null 
hypothesis may be accepted at 5% level of significance and we may conclude 
that there is no significant difference in the sampling techniques used by the 
twO researchers. 

13'8. Yates' Correction. In a 2 x 2 contingency table, the number of 
df, is (2 - 1) (2 - 1) = 1. If anyone of the theoretical cell frequencies is less 
than 5, then the use of pooling method for x2-test results in X2 with 0 d.f. 
(since 1 d,f. is lost in pooling) which is meaningless. In this case we apply a 
correction due to F. Yates ,1934), which is usually known as "Yates' Correction 
for Continuzty". [As already pointed out, X2 is a continuous distribution and it 
fails to maintain its character of continuity if any of the expected frequency is 
less thaIl' 5; henc-e the name 'Correction for Continuity']. This consiSts in 
adding 0·5 to the cell frequency which is less than 5 and then adjusting for the 
remaining cell frequencies accordingly. The i~-test of goodness of fit is then 
applied without pooling method. 

I-[bl' 
For a 2 x 2 contingency table, ~ ,we have 

'2 _ Nead - be)2 
X - (0+ e) (b + d) (a + b) (e + d) 

According to Yale'S correction, as explained above, we subtract (or add) i from a 

and d and add (subtract)! to b and c ~ that the marginaItotals are not disturbed 

at all. Thus, corrected value of X2 is given as 

N[(o + ~) (d + ~) -'(b ± ~) (e ± ~)t 
X2 = (a+ e) (b + d) (a + b) (e + d) 

Numerator = N[(ad - be) 'f ~ (a + b + e +,d)]2 

=N[ I'ad - be 1- ~T 
2 _ N [ I ad - be I - N /2]2 . 

X - tP + c) (b + d) (0 + b) (c + d) 
..:(13·18a) 

Remarks 1. If'N is large, the use of Yate's correction will make very 
little diffcrence in the value of X2. If, however, N is small, the application of 
-Yates' correction may overstate the proba\?ility. 

2. It is recommended by many l!uthors and it se'ems quite logical in the 
light of llle above discussion that Yates' correction be applied to every.2 x 2 
table, even if no theoretical cell frequency is less than .5. 

13·9. Brandt and Snedecor Formula for 2 x k Contingency 
Table. Let the observations Oij' (i = I, 2;j = 1,2, ... , k) be arranged in a 2 x k 
contingency table as follows: 



130&8 

A 
B 

Bt 

B2 

Total 

. . . 

At A2 ...... 

(.Iu (.It2 ...... 

Gzt Gz2 ...... 

ftt "2 ...... 

Aj . ..... Ai Total 

.' 

(.Ili . ..... (.IIi mt 

tIJl . ..... 0Ji ~ 

ftj . ..... fti N 

" .' a. 



=- l: niP? + p2 l: ni - 2p l: Pini 1 [ l l l] 
pq i-I i-I i-I 

=1.[i niP?'O"' Np2] 
pq j-1 

l l 1 

But l: np? = l: njpj,Pi = l: aUPi 
i-I i-I i-I 

'1.2 =- l: aliPi-Np2 =- l: '!1L_Np2 1 [ l ] 1 [ .l J. ] 
pq i-.1 pq i-I ni 

... (13·19) 

_1.[ ~ t!!l ] _1.[ ~ ~ m?] - ~ - mlP - ~ -
pq i-I ni pq i-I ni N 

••. [13·19(0)] 

Example 13'20. The following table shows three age groups of boys 
ar.d girls. (a) the number of children affected by a non-infectious disease and (b) 
the total number of children exposed to risk. 

(a) 

(b) 

I 
60 

240 

Boys 
n 
25 

470 

m 
48 

35Q 

I 
96 

530 

Girls 
n 
18 

200 

HI 
42 

210 

(i) Test whether there are differences between the incidence rates in the three 
age groups of boys. 

(ii) Test whetl(er the boys and girls are equally susceptible or not. 
Solution. (i) We set up the null hypothesis (H 0) that there is no 

significant' difference between the incidence rates in the three age-groups of boys. 
In the notations of § 13·9. we have 

all = 60, 012 = 25, a13 = 48. m1 = 13~} 
n1 = 240, 112 = 470,113 = 350, N = 1060 

~ 133 
P = N = 1060 = 0·1255, q = 1 -P = 0·8745 

Substituting these values in (13·190). we get 

'X}'= (0.1255~(Q.8745) [15·OP + 1·33 +·6·58 -133 x 0.1255] 

_ 6·2187 _ 56.688 
-0·1097 -

Here y = (3 -1)(2 - 1) = 2. 
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The tabulated value of XZ for 2 degrees of frycdom at 5% level of 
significance is 5·991. Since calculated value of Xl is much greater than tabulated 
value, we reject the null hypothesis and conclude that the incidence rates in the 
three age-groups of boys differ'iignificantly. 

(ii) Here we set up the null hypothesis that the boys and girls are equally 
susceptible to the disease. In the usual notations, we have 

all = 60 + 25 + 48 = 133 and alZ = 96 + 18 + 42 = 156, {lI1 = 289 

nl = 240 + 470 + 350 = 1060 and nl = 530 + 200 + 210 = 940, N = 2000 

289 
.• p = 2000 = 0·1445, q = 1 - p = 0·8555 

Npl = 289 x 0·1445 = 41·76 

.. XZ = (0,1445)\0.8555) [16.69 + 25·89 - 41.76] = 6·605 

Here v = (2 - 1)(2 - 1) ='1 
From the tables, the value of Xl for 1 degree of freedom at 5% level of 

significance is 3·841 which is much less than the calculated value. We, 
therefore, reject the null hypothesis and conclude' that boys and girls are not 
equally susceptible to the disease. . 

Example 13·21. Two samples 01 sizes Nit N l have respectively 
jrequenciesll,fl, ... ,f,. andll',/z', ...• 1,.' under the same headings. Show that 
Xl lor such a distribution is equal to 

[
(fL._ Il...Y] 

,. ~ 
L NINl ~ + ~, 

rDl J, J, 

[Allahabad UniV: B.Sc., 1992] 

Solution. The 2 x n contingency table for which Xl is to be calcu~ted is 
given below: 

" 

B 

A 
Al A~ ... A, . .. A,. 

BI II h ... I, . .. III 

Bl II' f{ ... I: . .. I,.' 

Under the hypothesis of independence of attributes, we have 

Elf,) = N1lfr.+[,') , Eif,')=Nllf,+[,') 
N1-rN". NI+Nl 

Xl =·f [if, -E(f,)J2 + if:- Elf,')J2] 
,-I Eifr) Elf~ 

Total 

NI 

Nz 
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EXERCISE 13(c) 

I. (a) What is contingency table? Describe how $e '1.2 distribution may be 
used to test whether the two criteria of classification in an m x n contingency 
table are independent 

(b) State the hypothesis you test using the Chi· square statistic in a 
contingency lable. 

(c) Describe the '1.2 test for independence of attributes, stating clearly the 
conditions for the validity. Give a rule for calculating the number of degrees of 
freedom to be assigned to '1.2• Illustrate your answer with an m x n contingency 
table explaining the null hypothesis that is being tested. 

2. Of 'A' candidates taking a certain paper, 'a' are successful, of 'B' taking 
another paper, 'b' are successful. Show how the significance of the difference 
between the ratios alA, bIB may be tested (I) by ax2 test on contingency table 
and (il) by comparing the difference with its standard error assessed by means of 
a binomial distribution. (You may assume all frequencies are sufficiently large.) 
Prove algebraically that the value of '1.2 is the square of the ratio of (alA - bIB) 
to its standard error. 

3. (a) Show that for the entries in the following 2 x r contingency table, 
AI A2 Aj Ar Total 

BI al ~ OJ ...... : ar a 

B2 bl b2 bj br b 

Total nl n2 nj nr n 

the value of '1.2 is 
r 

'1.2 = L 
j. 1 

CJ)j (pj _ 'p)2 
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~ a n· b where pj= ,p=....,., roj=~ and qj= I-pj, q=-
nj n pq n 

(Maduroi Univ. B.Sc., Oct. 1988] 
(b) Given X2 contingency table representing two independent samples : 

Total 
Sample I 
Sample II 
Total 

Il, m 
v, n 

Il, + v, m + n. 
show that 

X2 =- I [ i Iliroi - mroJ ro(l-ro) i-I 

where roo = ~ and ro = _m_ 
, Ili + Vi m + n ' 

Can be used to test whether the samples are drawn from the sample population. 
Clearly state the underlying assumptions, and give the number of degrees of 
freedom. 

(c) In a 2 x 3 contingency table if N = x + y + Z, N' = x' + y' of: z' and 
N = N~ show that 

2_(X-X')2 ()I-f')2 (z-z')2 
X - ,+ ,+ , x+x y+y z+z 

(Poona Univ. B.sc., 1990) 

(4) Show ,that for a 2 x 2 table, the value of X2, after applying Yates' 
correction for continuity is 

~ (ad_bc_~)2 or ~ (ad_bc+~)2 
according as ad - be > 0 or < 0 respectively, where 

D = (a + b) (a + c) (b + d) (c + tI). 
(e) What is Yates' correction? Show that for a 2 x 2 contingency table, the 

value of X2 after applying this correction is : 

2_ N[Jad-.bcJ-N/2]2 
X - (a + b) (a + c) (b + d) (c + d) 

[ManJIhwada Univ. M.Sc., 1991] 

4. Consider the following 2 x 2 table of observed frequencies based on 
random samples (with replacement) of sizes n.l and n.2 from two populations: 

Population I J'opulation 1/ Total 
Class A n11 n12 nl' 

Class B "21 n22 n2' 
Total n.l ".2 n 

(;) Define me X2-statistic to be used for test of homogeneity of the two 
populations. 

(il) Show that 
X2 = n(nl1 n22 - n12n21)2 

{nl. n.l n2. n.2) 
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(iil) Let 

u =nl1_~ 
n.l n.2 

13-63 

Calculate the mean and variance of u and indicate how you may estimate 
them. 

5. (a) In an epidemic of certain disease 92 children contracted the disease. 
Of these, 41 received no treatment and of these IO showed after-effects. Of the 
remainder who did receive treatment, 17 showed after-effects. Test the hypothesis 
that treatment was not effective. 

(b) Can vaccination be regarded as a preventive measure of small-pox as 
evidenced by the following data 7 

"Of 1482 persons exposed to smallpox in a locality, 368 in all were' 
attacked. Of these 1482 persons, 343 were vaccinated and of these, only 35 were 
attacked". 

6. (a) Define '1.2. Ote some statistical problems where you can apply '1.2 for 
testing statistical' hypothesis. 

In an experiment on immunization of cattle from tuberculosis the following 
results were obtained : 

Affected Unojfected 
Inoculated 12 28 
Not inoculated 13 7 
Examine the effect of v~cine in controlling the incidence of the dJo;ease. 
(b) What are cont!nge~cy tables 7 What is tested there? Explain the test 

procedure therein;. 
The folIowing data is collected on two characters : 

Cinegoers Non-cinegoers 
Literate 83 57 
Illiterate 45 68 

Based on this, can you conclude that there is no relation between the habit 
of cinema going and literacy? 

7. (a) To find whether a certail,l vaccination prevents a ce$in disease or 
not, an experiment was conducted and the following figures in various classes 
were obtained, A showing vaccination and B attacked by the disease. 

A a Total 

B 69 10 79 

91 ~o 121 

Total 160 40 200 

Using x2-test, analyse the results of the experiment for'independence 
between A and B; examine whether Yate's correction modifies the conclusion or 
not. Test also the significance of the difference between the proportions of 
persons attacked by the disease among vaccinated and non-vaccinated which are 
69/160 and 10/40. 

(6) A theory in finance known as Random Walk Theory suggests that short 
term changes in stock prices follow a random pattern. According to this theory, 
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yesterday's price change can tell us vinually nothing of value about to-day's 
price change. Let us denote the change in price of a stock on day t by 11 P, and 
the change on the next day by 11 p,.!. Suppose we observe price changes of 240 
stocks that have been randomly selected and obtain the results shown in the table 
below: 

.1 P, > 0 .1 P, 5 0 Total., 

I1P,.l>'O 47 53 100 

77 140 

Total 110 130 240 

Test the hypothesis that the change in stock price on 'day (t + I) ·is 
independent of that on day t. 

[DellJi U"iv. M.A. (Eco.), 1.987] 

8. (a) Show that the value of '1.2 for 2 x 2 r,ontingency table 

t!jb' z_ N(ad-bc)2 .. 
is X - (a + c) (b + d) (a + b) (c + d) , 

c d 

where N = a + b + c + d. 
(b) Let X and Y denote the number of successes and f~ilures respectively in 

n independent Bernoulli trials with p as the probability of success in each trial. 
Show that 

(X - np)2 [Y - n{l- p)]2 
+ ' 

np n(1 - p) 
can be approximated by a chi-square distribution with one degree of freedom 
when n is large. [Delh; Un;v. M.A. (Eco.), 1986] 

9. Show that for r x s contingency table: 

(a) Number of degrees of freedom is (r - I) x (s - I) 

(b) '1.2 = N (s - 1) or '1.2 = N (r -I), whichever is less 
(c) E(xZ)=N(r-l)(s-I)/(N-I) 

(cI) max(C)=[(s-I)/s]lf2, r= s, 

where C is the coefficient of contingency and N is the total frequency. 
10. (a) 1072 college students were classified acco~ing to their intelligence 

and economic conditions. Test whether there is any association between 
intelligence and economic cQnditions. 

~conomic 

Condition~ 
} Go?d 

Not good 

E;ccellent 
48 
81 

Intelligence 
Good Mediocre 
199 181 
185 ,190 

D~ll 
82 

1.06, 

(b) Below is given the distribution of hair colours for either sex in a 
university: 



(1) (2) (3) (4) (5) 
Hair coloUr Fair Red Medium Dark Jet black foud 
Boys 592 119 849 504 36 2100 
Girls 544 97 677 451 14 1783 
Total 1136 216 1526 955 50 3883 
Test the homogeneity of hair colour for either sex. If the result is 

significant at 5 per cent level, explain the reason why it should be so. 
U. (0) The following data are for a sample of 300 car owners who were 

classified with respect 10 age and the number of accidents they had during the 
past two years. Test whether there is any relatif'lnship between these two 
variables. 

Accidents , 

0 lor 2 3 or more 

S 21 8 23 14 
Age 22 -26 21 42 12 

~ 27 71 90 19 

(b) For the data in the following table. test for independence -between a 
person's ability in Mathematics and interest in Economics. 

Ability in Mathematics 

Low Average High 
I 

Low 63 42 15 
Interest 
in Average 58 61 31 
Economics 

High 14 47 29 

State clearly the as~un'lptions underlying your test procedure. 
[Delhi Univ. M.A. (Eeo.), 1988i 

11. The following table gives for a sample of married women, the level of 
educaJion and marriage adjustment score : 

Marriag~adjustment score 

Very low Low High Very hig~ 

Coll~ge ,24 97 62 58 
Level of -

Education 
High school 22 28 30 41 

Middle School 32 10 11 20 

Can you conclude from the above, 'the higher the level of education, .the 
greater is the degree of adjustment in marriage' ? 
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13. (0) The table below shows results of a survey in which 250 
~ respondents were categorized according to level of education and attitude towards 

students' demonstrations 3,t a certain college. Test the hypothesis that the two 
criteria of classification are independent. Let a = 0'()5. 

Attitude 

Education Against Ne/llral For 
Less than high school 40 25 5'; 
High school 40 20 5 
Some college 30 15 30 
College graduate 15 15 1 0 

(b) Test the hypothesis that there is no difference ~ the quality of the four 
kinds of tyres A, B, C and D based on the data given below. Use 5% level of 
significance. 

Tyre Brand 

A B C D 

Failed to last 40.000 kms. 26 23 15 32 

Lasted from 40,000, kms. to 118 93 116 121 
60.000 kms. 

Lasted more than 60.000 kms. 56 84 69 47-

[Bangolore Uni". B.E., 1992] 
(c) The results of a survey regarding radio listeners' preference for different 

types of music are given in the following table, with listeners classified by age 
group. Is preference of type of music influenced by age? 

Type of music Age group 
preferred J9-25 26-35 Above 36 
National music 80 60 9 
Foreign OJusic 210 325 44 
Indifferent 16 45 132 

14. (0) If Xl, X2 • ••• , XA: represent the re~tive number of successes in k 
samples each of n trials, by considering a suitabl~ 2 x k contingency table. 
derive an expression for X2 to test the homogeneity of this data. 

(b) It was decided to check the dental health of children in 8 districts of a 
town. The condition of the teeth of 36 children from each district was examined 
and classified as either good or poor. The number of children with teeth in a poor 
conditi~n from each of the districts was 9. 14, 12. 18. 7, 10, 15. 11. Can ·it be 
concluded that the dental health of children does not vary between districts ? 

13·9·1. x2-test or Homogeneity or Correlation Coefficients. 
u.~t '" '2, .... 'k be k estimates of correlation coefficients from independent 
~unplcs of sizes nlo n2; ,'" nA: respectively. 

We want to test the hypothesis that these sample correJation coefficients are 
the 'estimates of Lhe same correlation coefficient p from a bivariate normal 
population. 
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Obtain the values of Zit Z2 ••••• Zl from the Table of Fisher' Z -

uansformation or from 

1 I (1 + r;) hi' 12k z;=2 0g• l-r; =tan-rj;l= ••.•.• •.. (13·20) 

These z;'s are normally distributed about a common mean 

~ = ~ log. e ~ p) and variance = ftj ~ 3 ... (13·21) 

The minimum variance estimate z of the common mean ~ of Z's is Obtained 
by weighting the values z;'s inversely with their respectively variances. The 
estimate of % is. therefore. 

~;(nj - 3) - , 
z = .L1:=-(n-;-_-~-)­

; 

(c.f. § 14·7·2) 

so that (Zj - z) '" nj - 3 ; i = 1.2 ..... k are independent standard normal 
k 

variates. Hence 1: (n, - J) (Zj - Z )2 is a x2-variate with (k - 1) d.f. [By 
j - 1 

additive property of x 2-distribution. one d.f. being lost since Z has been 
detennined from the data.] 

If X2 value thus ~btaine~ is greater than 5 per cent value of X2 for (k - 1) 
d.f .• the hypothesis of homogeneity of correlation coefficients is rejected. If not. 
the correlation coefficients are supposed to be homogeneous in which case we 

1\ • 
combine tl)e sample correlation coefficients to find the estimate p of the 
population correlation coefficient p. 

We have Z =~log (1 + i) 
1 - P 

1\ 1\ E 
~ (I + p) = (l - p ) e-

::;> (1 + eli") P = eli - 1 

1\ ezZ- 1 _ 
...::) P = _ = tanh Z ••• (I3·2~) 

t?z + 1 
Remark. For testing the homogeneity of independent estimates of .he 

parent partial correlation coefficient. the above formulae hold' with the OIlly 
difference that for a partial correlation c()j!ffi\ .ient of order s. n; will be rep~cC(1 i·y 
n,-s. 

Example 13·22. The correlation coefficient between daily ration of green 
grass and rate of growing calves on tlte basis. of observations la~n on 10,14. 
16, 20, 25.and 28 cows at six farms were found to be 0·318, 0·106. 0·253. 
0·340,0·116 anrJ O·l]? Can these be considered homogeneous? If so, estimate 
the common correlatiQn coefficient. 
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Solution. Ho : The given values of sample correlation coefficients are 
homogeneous or the samples arc from equally correlated populations. 

Using (13·20), we get 
ZI = 0·3294, Z2 = 0·1063, Z3.= 0·2586 
Z4 = 0·3541, Zs = 0·1165·, and Z6 = 0·1125 ., 

z = ~ Z; (n; - 3)/~ (n; - 3) = 0·1919 , , 
Now X2 = L (n; - 3) (z;- z)2 = 0·1008 
Tabulated value of X2 for (6 - 1) = 5, degte:es of freedom at 5% level. of 

significance is 11·070. 
Since the calculated value is less than the tabulated value, we may accept 

the null hypothesis that the sample correlation coefficients are homogeneous. 
1\ 

If P is tbe pooled estimate of the population correlation coefficient, then 
using (13·22), we get 

1\ eb- 1 1·468 - 1 
p= eb + 1 =1·468 + 1 -:-0·1894 

13·10. Bartlett's Test for Homogeneity of Several Independ­
ent Estimates of the Same Population Variance. Let 

"i' 
S.2 __ I _ ~ (X .. X.)2 (i-I2 "k) , - 1 ~ 'J - .', -" ••• , n; - j _ 1 

be the unbiased estimate of the population' variance, obtained from the ith 
sample Xii' (j = 1,2, ... , n;) and based on v; = (n; - 1) degrees of freedom, all the 
k samples being independent. 

Under the null hypothesis that the samples come from the same population 
with variance (J2, i.e., the independent estimates Sr, (i = 1,2, .•. , k) of (J2 are 
homogeneous, Bartlett proved that the statistic 

l 

X2 =;~ (v; log %;) / [1 + 3(k 1_ 1) {f, ( ~) - ~}J ... (13·23) 

l 
S2_Lv;Sr_Lv;Sr ~ ._ 

where - ~ - , . ~ v, - v 
~V; v ; _ 1 

... (*) 

follows chi -square distribution with (k - 1) degrees of freedom. 
Remarks 1. S2 defined in (*) is also an unbiased estimate of CJ2, since 

E( C'?) _ LV; E(S?) _ (Lv;) (J2 _ 2 
.)- - '\.~ - ~ (J 

~Vj ~Vj 

z. ~t S? ~!1 S/; i ~ j, 1 ~ (i, J) S k be the smallest and the. largest 
val'ues or the estimates respectively. If on the basis of F-test (c/. Chapter 14), 
these do not differ significantly, then all the estimates S,2 which lie between Sr 
and S/ won't differ significantly either and consequently all tile estimates can be 
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reasonably regarded as homogeneous. coming from the same population. In this 
case. therefore. there is no need to apply Bartlett's test. 

13·11. x2-Test for Pooling the Probabilities from Independent 
Tests to give a Single Test of Significance (P). -Test). See Examples 
13·1 and 13·2 for detailed discussion. 

EXCERCISE 13 (d) 

1. Define X2-statistic. What are its uses? What is Fisher's z-transformation 
for correlation coefficient and what are its properties? How is it used to combine 
the correlation coefficients 'between two random variables computed 
independently from different sources. 

Z. Explain the use of the chi~square statistic for testing the homogeneity of 
several independent estimates of population correlation coefficient. clearly 
stating the underlying assumptionS'. 

3. (a) The correlation coefficients between wing length "and tongue length 
were estimated from 2 samples each of size 44 to be 0·731 and 0·690. Test 
whether the correlat,ion coefficients are significantly different or not. If not. 
obtain the best estimate of the common correlation ~ .;efficienL 

(b) Test for equality of the correlation' co-efflcients between the sCores in 
twO halves of a psychol9gical tesl.applied to different groups of sizes 30. 20 and 
25 if the corresponding sample values are 0·63. 048. 0·71. respectiyely. 

4. (a) Independent samples of 21. 30. 39. 26 and 35 pairs of values yielded 
correlation coefficients 0·39. 0·61. 0·43. 0·54 and 048. respectively. Can these 
estimates be regarded as homogeneous ? If so. find an estimate of the correlation 
coefficient in the population. . 

(b) Test whether the following set of correlation coefficien'ts between stature 
and sitting heights obtained for persons from 8 districts can be regarded as 
homogeneous. 

Sample site 130 60 338 78 125 299 170 139 
Oorr. coefficient: 0·718 0·961 0·825 0·685 0·700 0·548 0·793 0·687 
(c) The correlation coefficients between fibre weight and staple length in six 

colton crosses were estimated as : 
- 0·129. 0·1138. - 0·2780. 0·0033. 0·2~31 and 0·0550 

based onr samples of sizes 73. 81. 67. 83. 71. 57 respectively. Test the 
homogeneity of r/s and" obtain their'best estimate. 

13·12. Non-central 'x2~distribution. The" X2~distribution defined as 
the sum of the squares of independent standard normal variates is often referred to 
as the central X~-distribution. The distributiop of ihe sum of the squares of 
independent normal variates each having unit variance but with possibly non­
zero means is known as non'-Central chi-squart; distribution. Thus if Xit (i = 1. 2 • 
..•• n) are independentNUti. 1). r.v.'s then 

••• (13·24) 
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has the non-central Xl distribution with n d.f. Intuitively, this distribution would 
seem to depend upon the n parameters J.1lt J.1l, •.• , J.1 .. but it will be seen that it 
'iepends on these parameterS only through the non-centrality parameter 

1 
A = i (J.Ltl + J.122 + ... + J.1,. 2) •• ,(13:24a) 

and we write.x'2 - X'2 (n, A). 
13·12·1. Non-central X2-distribution with 

Parameter A. The p.d/. is given by 

I. '2 (A) = L -'-1 
00 [~)j 

x,. j-o} 

Non-centrality 
( 

... (13·25) 

wlzere P(:X} 10+1;>' is the p.d/. 0/ (central) xl-variate with n + 2j d/. 
Thusl. '2 (A) is the mixture of central X2-distributions with d.f. n, n + 2, 

x,. 
n + 4 ..... the corresponding weights being the successive terms of the Poisson 
distribution with parameter A.. 

Derivation .of p.d.f. or X'l. We shall obtain the p.d.f. 'of non-central 
Xl-distribution through moment generating function (m.g.f.). by using the 
uniqueness .theorem of m.gJ. 

13'12· 2. Moment Generating Function oJf Non-central X 2_ 
Distribution. If X - N (J.L. 1) then 

M xf-tl = _1_ f - e'" 2 • e- (z - P.-r,,:dx . 12n -00 

exp[txl_~(X-J.1)2] =exp[- {(k- t)Xl-J.1X+~;}] 

= e~p [ - (1 ; 2t) { x2._ I 2~t + I ~2 2t } ] 

=exp [- (1'2 2t) { (x - ~)2 + I ~2 2;. - (l ~~t)2} ] 

=exp (I t~22tJ exp [~ (I "221) (x - I ~21)1 
.. 'M)(l(t) = exp (t' ~~t) ~ f~ooexp [- (I "22t)(x - I ~2;)2] dx 

("i-)_l f- (L 2) til = exp 1 _ 2t 12n __ exp - 2 U (l _ 2t)11l 

=# (I ....: 2trlfl exp (I I~~t) : I -2t > 0 ~ t < ~ ... (.) 

If Xi (i = 1.2, ••.• n). are independent N(JJ.;, I) then the m.gl. of the rion-
" central XZ-variate X'2 =< I Xil is given by 

i .1 
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Il 

MX'2(t) =M.:. /t) = n MX:l(I) 
~ Xi i- I • 

(since Xl-.S are independent) 

i-I 

= i~1 [(1 - 2t)-1/2 exp (1 '~t)] 

= (1 - 21)-11/2 exp [(1 ~ 21) i ~I Il?] 

= (1 - 2t)-Ilf2. exp [2At I (1 - 2t)]. t < 4 
Il 

where A = ~ 1: Ill-. is the non-centrality parameter. 
i-I 

(13·26) can be re-written as' 

MX'2(t) = (1 - 2t)-1112 expo [A( - 1 + 1 ~ 21) ] 

= (1 - 2t)-N2 e -l. exp (I : 21) 

- ( A )r I = (1 - 2t)-1112 e -A. L -, -- x-
r-O 1-21 rl 

- -l.~ I = 1:. e __ ,_ (1- 21)-(r + 1l/2); 1 < i 
r-O r. 

[From (*)] 

... (13·26) 

... (13·200) 

Thus the m.g.f. of a non-central X2 distribution is seen to be a convex­
combination of X2 m.g.f.'s with d.f. n, n + 2. n + 4 .... The coefficients 
appearing in the convex combination are merely the Poisson probabilities. 

Hence by the uniqueness theorem of m.g.f.·s the p.d.f. of non-central X2-
distribution with n d.f\ and w~th non-centrality parameter A is given by 

- e-A. Ar 

fl:x?) = 1: -r-'-x pf.:x2" + Zr). 
r-O • 

I ! 2 !! 
where . P(Y}".2r) = () e-2X f.:x'?) 2+ r - I; 0 S X2 < 00 

2(1l + 2r)/2 r ,.,./r r 

is the p.d.f. of central X2-distribution with (n + 2r) d.f. 
Remarks 1. We can also write the m.g.f. of non-central X2 distribution 

with non-centrality parameter A as 
-!!.-y 

E[«(1-2I» 2 ]. 

where Y is a Poisson variate with parameter A .. 
2. If we take A = 0 ~ Ili = 0 Ir/ i = 1.2 ..... n. the m.g.f. of the non­

central X2 distribution reduces to the m.g.f. of central X2 distribution; viz., 
(1 - 21)-1112. 

3. Taking A = 0 in the p.d.f. of non-central xl-variate •• i.e., in (13·25). 
we get 
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t !! 
1'(1V''1: I ... 2)· 1 - 2<X2\2- 1 0 2 
Ju". ) = pv.". = 211/2 r(nf}.) e-, • S X < 00 

[.: we get contribution only when r = O. the other tenns vanish when A = 0]; 
which is p.d.f. of central X2-distribution with n dJ. 

13·12·3. Additive or Re-productive Property of Non-c,entral 
Chi-Square Distribution. If fi. (i = 1. 2 •...• k). are independent non-

k J. 

central ;i2-variates with nj df. and non-centrality element A;. then 1: fj is also a 
j - 1 

k k 

non-central ~-variate with 1: ni d/. and non-centrality element ~ = 1: Ai. 
i-I i-I 

Proof. We have from (13·26). 

My.(t) = (1 - 2trlli12 exp [2t Aj I (1 - 2t)]. (i = 1.2 ..... k) , 
k 

.. MI,y.(t) = II My.(t) = (1 - 2t)-~!'if2 ~xp [2t ~ A;I (1- 2t)]. 
,. j -1 ' , 

which is the m.gJ. of a non-central x2-variate with l:nj dJ. and non-centrality 
j , 

parameter A =~. Hen.ce by uniqueness theorem of m.g.f.·s , 
k 

1: fj - X'2I:.'. (1: AJ j _ 1 n, j 

13·12'4. Cumulants of Non-central Chi-square Distribution. 
Cumulant generating func~on is given by 

KX'2(t) = log MX'2(t) = - ~ log (1 - 2t) + 2tA (1 - 2t)-1 

=~[2t+ (2f'+ ... + (i~Y + ... }2A.t[1+2t+ (2t)2 + ... +(2t)"·+ ... J 
the expansio~ing valid for! < If}.. 

. . (2 ..... 1 ) 
:. Kx?(t) = (n + '2A)t + (n +4A) t2 + ... + r' n + 2A2,.-1 t';to ... 

K~, = Coeffident of :", in KX'2(t) = r I (; + 2A) 2"-) 

- '= 2"-I(r - 1) , (n+ 2M) ... (13·27) 
K,._1 = 2,.-2 (r - 2)', [n + 2A (r - 1)] 

d dA. { K,. - tl = 2,.-2 (r - 2) I 2(r - 1) = 2,.-1 .(r - 1) I 

[From (13·27)] 

•.• (13·28) 



Exact Sampling Distributions 
(CONTINUED) 
(t, F AND Z DISTRIBUTIONS) 

14·1. I~troduction. The entire large, sample theory was based on 
the application of "Normal Test" (~f. § 12·9). However. if the sample size n 

Is small.the distribution of the various statistics. e.g., Z = x :F or 
(J(Vn 

Z = (X ... np)rJ nPQ etc .• are far from normality and as such' normal test' cannot 
be applied if n is small. In such cases exact sample tests. pioneered by W.S. 
Gosset (1908) who wrote under the pen name of Student, and later on developed 
and extended by Prof. R.A. Fis~er (1926). are used. In- the foUowing sections we 
shaD discuss 

'(i) t-test, (i.) F-test, and (ii.) Fisher's z-transformation. 
The exact sample tests can, however .. be applied to large samples also 

though the converse is not true. In all the exact sample tests. the basic 
assumption is that "The population(s) from which samplers) are drawn is (are) 
normal, i.e.,the parent population(s) is (are) normally distributed." 

14·2. Student's 't'. Definition. Let %j. (i = I. 2 •...• n) be a random 
sample of size n from a normal population with mean I.l and variance 0 2• Then 
Student's t is dermed by the statistic 

i-ll t -
- SI...Jn 

i =! i Xj. is the sample mean and n j _ 1 

1· " ~~ =--1 t (%j_i)2. n - j _ I 

... (14·1) 

. .• (14-la) 

is· an unbiased,estimate of the population vanance 0 2• and it follows Student's 
t-distribution with v = (n - I) df. with probability density function. 

·11 
j{t) = _ r (1 v)· [ t':']("~.j. 1)/2 ; - 00 < t < 00 ••• (.14·2) 

-vv B - - 1 + 2' 2 v 
Remarki 1. A statistic t following Student's I-distribution with n d.f. 

'will be abbreviated as t - tIl. 
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2. If we take v = 1 in (14·2), we get 
1 1 

f(1) = (1 L) . (I + t2) , 

B z. z 
1 1 1 _r 

=-'(12);-00<t<00 ['.·q-Z)="\In] n +, t 
which is the p.d.f. of standard Cauchy distribution. Hence, when v = F Student's 
I distribution reduceS to Cauchy distribution. 

I4~2·I. Derivation or Student's t-distribution. The expression 
(14.1) can bere~written as 

t2 _ n{ i - uY _ n{ i -u.)2 [.: ns2 = (n _ 1) S2] 
- S2 - ns2/{n - 1) 

12' _ (i - U)2 _1 __ (i -u)2f«12/n) 
~ (n - 1) - (12/n ns2/(12 - ns2/~ 

Since xi, (i = 1,2, .... n) is a random sample from the normal population 
with mean J.1 and variance (12, 

i "" NOl, (12/n) ~ (i ;In'> "" N (O, '1) 
(J n 

(- )2 
Hence x ¥ U , being the square of a standard normal variate is a chi-(1 n 

square variate with 1 d.f. 
2 

AlsO~ is ax2~variate with {n -1)'d.f. (cf, Theorem ]3-5). 

Further since i and s2 are independently disttibuted (c/. Theore", 

13·5), ,---L..1' being the ratio of two independent X2-variates with"1 and (n - 1) 
n-

d~ . I . ~ (1 n - 1). d' di hl:b' . . b 
I. respecUv~ y"ls a 1-'2 2' -2- vanate an Its SUI utlon IS gIVen y: 

! - 1 

dF{t) = 1 . (t2/V)Z ( d{12/V), 0 s t2 < 00 

B(~, ~) [1 +. t~l Y + 1)/2 [where v = (n _ 1)] 

1 1 
= . dt; - 00 < t < 00 

W B (1 v) [1 + t-=-J{Y + 1)12 2 I 2( v 

the factor 2 disappearing since the integral from - 00 to 00 must be unity. This is 
the required probability function as given in (14·2) of Studeilt's I-distribution 
with v = (n - 1) d.f. 

Remarks on Student's 't'. I. Importance of Student's t-distribution in 
Statistics. W.S. Gosset, who wrote under pseudonym (pe~-name) ot Student 
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defined his' in a slightly different way, viz., , = (i -Il)/s and investigated its 
sampling distribution, somewhat empirically, in a paper entitled 'The probable 
error of the mean', published in 1908. Prof. R.A. Fisher, later on defined his 
own 't' and gave a rigorous proof for its sampling distribution in 1926. The 
saJient feature of • t' is that both the statistic and its sampling distribution are 
functionally independent of G, the population standard devia~on. 

The discovery of 't' is regarded as a landmark in the history of statistical 
inference because of the following reason. Before Student gave his 'I' it was 

customary to replace G2 in Z = i =;t , by its unbiased estimate S2 to give 
GI'II n 

t = i ~;t and then normal test was applied even for small samples. It has been 
SI'II n 

found that although the distribution of , is asymptoti.cally normal for large n 
(c/. § 14·2·5), it is far froQ'l normality for small samples. The Student's t 
ushered in an era of exact sample distributions (agd Jest,$.) and $ince its discovery 
many important contributions have been made towards the development and 
extension of small (exact) sample theory. 

2. Confidence or Fiducial Limits for JJ.. If to.os is the tabulated value of t 
for v = (n - 1) d.f. at 5% level of significance, i.e., 

P ( I , I > to.os) = 0·05 ~ P ( I , I S to.OS) = 0·95, 
the 95% confidence limits for Il are given by : 

I tiS to.os, i.e., Ii ~F I ~ to·os 
,Slvn 

- S. - - S 
x - to·os • Vn S Il S .t + to.os Vn 

Thus, 95% copfidence limits for Il are : 
,... S 
x ± to·os • V; 

Similarly, 99% confiden.ce limits for Il are : 
- S 
x ± tC.OI Vn 

l 

... [14.2(a)] 

... U4·2(b)] 

where to.OI is the tabulated value of t for v = (n - 1) d.f. at 1% level of 
significance. 

14·2'2. Fisber's 't' (Definition). It is .the ratio of a standard normal 
variate to the square root of an inde~ndent chi-s<!uare variate divided .by its 
degrees of freedom. If ~ is aN (0, 1) and X2 is an independent chi-square v~te 
with n d/.. then Fisher's t is given by 

t=~/~ ... (14·3) 

and it follows student's • t' distribution with n degrees of freedom. 
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14·2·j. Distribution of Fisher's 't'. ~ince ; and X 2 are 
independent, their joint probability differential is given by 

II 

-2 2 2 - 1 
dF (~, xl) = _1_ . eip (.:. ~212) exp (,--X 12) <x ) dl; dx,2 

~ 't"2 r(n/2) 

Let us transfonn to new variates , and u by the substitution 

,=-L and u=X2 = ~=,~ and X2 =u 
Vx2/n 

Jacobian of transfonnation J is given by 

J _ d(I;, xl) _ V uln ,/(2 &) = - f!!n 
- a(l, u) - 0 1 -V ; 

The joint distribution of , and u becomes 

dG(t,u) = {2; 1 {;exp {- ~ (1 +- '2)~}- ~du'dt; 
21t 21112 r(n/2) n n ~. 

Integrating w.r.L 'u' over the range 0 to 00, the marginal distribution of' 
becomes 

dG1(t)=& 1 {;[f""exp {- ~ (1 + e.)tCII-l)/2 dU Jell 
21t 211/2 r(nI2) non r 

= 1 r[(n + 1)/21 dt 

&"211/2 r(n/2) ~ [~ (1 + '~ )J<" + 1)/2 

:. dGt(t) = r (n + 1)/2) . 1 dl, __ < 1<-
...r,;-r(nl2)r(~ [1 + ~J"+ 1)/2 • 

1 = dl, - 00 < , < -

~ B H ,i) [1 + t~T"+l)/2 

which IS same as the,probability function of Student'S '-distribution with n dJ. 
Remark~ t. In Fisher's- 'I' the d.f. is the same as the d.C. of chi-square 

variate. 
2. Student's ',' may be regarded as a particular case of Fisher's ',' as 

explained below. 

Since i - N (J.I., CJ21n), i-u 
~ = Mr -N(O, 1) 

CJ{-vn 
... (*) 
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is independently distributed as chi-square variate with (n - 1) d.f. Hence Fisher's 
I is .~iven by 

; {; (i - 11) (J , = = 
"x2/(n-l) (J '.1 

~ t(.x; -i )2/(n- 1) 

{; (i - u) i - !.l 
= S = SNn •.. (***) 

and it follows Student's ,-distribution with (n - 1) d.f. (cf. RemaIk 1 above.) 
Now, (***) is same as Student's 't' defined in (14·1). Hence Srudent's 'I' is 

a particular case of Fisher's ','. . 
14·2·4. Constants of t-distribution. Since /(1) is symmetrical 

about the line 1= 0, all the moments of odd order about origin vanish, i.e., 
Il'lr+ 1 (about origin) = 0 ; r = 0,1,2, ... 

In particular, 
J.I-t' (about origin) = 0 = Mean 

Hence central moments coincide with moments ~bout origin. 

.. Illr+ 1 = 0, (r = 1, 2, ... ) ... (144) 

The moments of even order are given by 
~ = Il'lr (about origin) 

= J 00 Ilr J(I) dl = 2 Joo IlT )(0 dl 
_00 0 

1 J 00 1'2r 

=2. (1 ny' 0 [ 12 J<" + 1)12 dl 
B - - n 1+ 

2' 2 n 

This integral is absolutely convergent if 2r < n. 
~ 1 n 

Put 1 + -= - = 12 = n(1 - y)/y i.e .• 21dl = - . .2 dy n y r 
When t= 0, Y = 1 and when I = 00, Y = O. The~fore, 

2 JO Ilr -n 
J.I.2r = (1 n) 1 (1/y)(1\ + 1)12 • 2ty2 dy 

-r-nB - -
2' .Z 

= n f(12)(2r-l)l2 y Htl+l)J2}-2 dy 

{; B (~, I) 0 

~ (~4~[n (I ; 'l~Y«"''''J-2dy 
B 2' 2 
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.. 
n' JI 2 - , - 1 , L -=--- Y (1. -y) - 2dy 

B (k,~). 0 

= n' . B (g - r , r + ~). n > 2r. 

B (k, ~) 
1 

r[(n/2) - r] r(r + 2) 
= n' 1 

r(Z) r(n/2) 

. .. [144(a)] 

1 3 3 f 1 
• ,(r - 2) (r - 2) ... 2 2 r(2) r[(n/2) - r] 

= n' 1 . . 
r(Z) [(n/2) - 1][(n/2) - 2] ... [(n/2) - r]r[(~/2) - r] 

= n' (2r - 1 )(2r - 3) ... 3 ·1 , ~ > r 
(n - 2) (" - ,4), .. (n - 2r) 2 

... [144 (b)] 

In particular 
1 n 

Ilz = n (n _ 2) = n _ 2 ,.[n > 2] ... [144(c)] 

and 
3·1 3nz 

J4 = nZ (n _ 2) (n _ 4)= (n _ 2)(n _ 4)' [n > 4] ... I144(d)] 

Hence ~ .&- (n - 2 ) ~1 = 3 = 0 and \~z = Z = 3 --4 
Ilz Ilz n -

Remarks 1. As n ~ 00, ~1 = 0 and 

I, 3 (n-2) I' [1-<2/n)] ~Z= 1m ----=--4 = 3 1m 1 _ (4/ ) = 3 
II~OO n II~OO n 

... [144(e)] 

2. Changing r to (r - I) in [144(b)], dividing and simplifying, we shall 
get the recurrence relation for the moments as 

~= n(2r- 1) ~> r [144( )] 
( 2) '2 ... ·c Ilz, - z n - r 

3. Moment Generating FJI.nction 3r t·distrrbution. From 
[144(b)] we observe that if t - t .. , then all the moments of order 2r < n exist 'but 
the moments of order 2r ~ n do not exist. H~nce the m.gJ. of t-di5tribution does 
not exist. 

'Example 14'1. Express the constants Yo, a and m of the distribution : 

dF(x) = Yo [ 1 - ~l dx, -a S x Sa .. ,(*) 

in terms of its Ilz and ~z, 

Show that if x is related to a variable t by the equation 

at 
X={2(m+l)+ tZ}l/Z' 

... (**) 



then t has Student's distribution with 2(m + 1) degrees of freedom. Use the 
transformation to calculate the probability that t ~ 2 when the degrees of 
freedom are 2 and also when 4. (Madras Univ. M.Sc., 1991) 

Solution. First of all we shall determine the constant from the 
consideration that total probability is unity. 

yoJ:a (1 - x;) dx ='1 

=> 2yo J;(1 -x;) dx = 1 
(.: Integrand is an even function of x) 

=> J, fC/2 
2yo 0 cos2m O. a cos 0 dO = 1 (x= a sin 9) 

=> I fC!2 
2ayo cos2m + 1 OdO = 1 

o 

But we have the Beta integral, 

2 J:!2 sirl'OcosqOdO =B{P; 1 , q -; 1) ... (1) 

=> 

JfC!2 
ayo.2 0 cos2m+l o sino OdO = 1 

I 
aYoB(m + I, 2) = 1 

1 
yo= 1 

a B(m + I, 2 ) 

[Using (1)] 

... (2) 

Since the given probability fU!lction is symmetric~ about the line x = 0, 
we have as in § 14·2·4. 

~2r+ 1 = ~2'r+ 1 = 0; r = 0, 1,2, ... [.: Mean = Origin] 
The moments of even order are given by 
, ~2r = ~2r' (about origin) 

= J:a x2r f(x) dx=Yo J:a x2r (1 -~) dx 
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= 2yo J~ (a sin O)2r cos2m O. a cos 0 dO 

= Yo a2r + 1. 2 J~ sin2r 0 . cos2m + 1 0 dO 

= Yo a2r + 1 B(r + t. m + I) 

[x = a sin 0) 

[Using (1»)) 

B(r+t. m + I) ~r + ~)r(m + ~) 
= a2r B(m + I. -21) =a2T

• rf 3) (1 ) ... (***) 
• \m + r + 2 r 2 

• 2 r{m + (3/2») . ~r(1/2) a-
In partIcular.llz= a . (m + (3/2») r{m+ (3/2») r(1/2) = 2m + 3 

. . a- = (2m + ~)Jl2 

Also 
_ r(512) r{m + QLlli. 

~ - a4 r{m + (7/2») x r(ll2) 

3a4 
-(2m + 5) (2m + 3) 

~ _~_ 3(2m + 3) 
- Jl;' - (2m ..: 5) 

... (3) 

(On simplification) 

9'- SP2 
m - -

- 2(~2 - 3) 
(On sImplification) ... (4) 

Equations (2). (3) and (4) express the constants Yo. a and min tenos of 
Jl2and.~. 

at x2 ,2 

x = [2(m + I) + t2]1/2 ~ Ql. = 2(m + 1) + t2 

i.e .• I _ x~ = 2(m + I) 2 (I + t':)-1 (n = 2m + 2) 
cr 2(m + I) + t n) , . 

Also [ d t 1 2t dt J 
dx =a (n + (2)1/2 - t • "2 (n + (2)3/2 

Hence the p.d,.f. of X transfonns to 
I L dt 

t2]'" . {; [ t2J312 - 1+-
n n 

dF(t) = Yo [ 
I + 
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1 a ~ 

= ( 1 ) • ...In '[ ~J'" + (3/2) 
aBm+I - 1+ , 2 n 

= .(,;B('i.~)" [1+ ~rl)l2 .-~<' <~ ... (5) 

which is the probability differential of Student's I-distribution' with 
n = 2(m + 1) d.C. Hence'the result. - , 
For 2 d.t. i.e., n = 2, we get 2(m + 1) = 2 ~ m = O. Hence from (**), 
we get (Cor m = 0), ' 

al 12 
x = (2 + 12)112 ~ x = {3 a, when 1= 2. 

Sa 1 
= Idx 

1l'J(2I3) a B(I, 2) 
[From (*), since m = 0] 

_1.( ~) {3 - ..J2 
-20 a- J:: a = J:: 

"13 2"13 

[ 
1 n r(/2) , r(1/l) ] 

·:B(I, 2) = r(3/l) = (1/2) r(I/2) = 2 

For 4 d.t., i.e., n = 4, we get m = 1. Proceeding exactly similarly we 
shall obtain 

1. (a) Given that 

1 s..J2 
P(I.~ 2) = 2-16 

EXERCISE 14(a) 

(I) u is normally distributed with zero mean and unit variance, 
, (il) v 2 has a chi-square distribution with n degrees of freedom. and 
(iii) u and v are independently distributed, 

find the distribution of the variable 

u..fn 
1=­

v 
(b) Find the variance of the 1 distribution with n degrees of freedom. (n > 2), 
(c) If the variable I has Student's I distribution with 2 degrees of freedom. 

prove that 
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.r(1 ~ 2) = 3 '6 {6 . 
, [Shivoji Univ. B.Sc., 1990] 

2. (a) State, (without proot), the sampling distribution of Student's t. Who 
discovered it? 

(b) 'Discovery of Student's I is regarded as a landmark in the history of 
statistical inference'. Elucidate. , 

(c) Let I be distributed as Student's I-distribution with 2 d.f. Find the 
probability P(- ...fi ~ I ~ ..fi). 

3. (a) Show that 

E Tr :::::0 {krfl rC ; r). r e 2 r). . 
( ) r(1/2) . r(k/2) , If r IS even for - 1 < r < k 

0, if r is odd 

where T has Student's I-distribution with k degrees of freedom. 
(b) For the I-distribution with n d.f., establish the recurrence relation 

n (2r - 1) 
1l2r - (n _ 2r) . 1l2r"T 2 , n. > 2r 

[Poona Univ. B.Sc., 1990;'Delhi Univ. B.Sc. (Stat. HonB.), 1992] 

(c) For how many d.f. does (I) X2-distribution reduce to negative exponential 
distribution and (ii) I-distribution reduce to Cauchy distribution? 

4. Suppose Xh X2, ••• , XII (n > 1) are independent variates each distributed 
~ . as N (0, (J ). Find the p.d.f. of 

W =X1 / {! . i X?}I12 
, n ,= I 

Why does not W follow the I-distribution' ? 
fDelhi Univ. B.Sc. (Stat. HonB.), 1988] 

S. Let XI' X2, "'f XII be independent observations from a normal universe 
wi,th mean Il and variance (f2 an<;l .let i and S2 be the sample mean and sum of the 
squares of the. deviations from the mean respectively. Let x' be one more 
1lbseryation independent of previous ones. Show that 

X I - x [n<n - 1)J.1I2 
s n + 1 

has a Student I-distribu'-!on with (n - 1) degrees of freedom. 
fDelhi Univ. B.Sc. (Stat. HonB.), 1989) 

6. (a) Let X I and X2 be two independent normal variates with the same 
normal distribution N{J.1. (f2). Obtain the distribution of 

y = Xl + X 2 - 21l 

", Xl '- X2 12 
Ans. Stannard Cauchy distribution. 
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(b) If X is l-distributed with k degrees of freedom. show that. 
1 

1 + (Xl/k) • 

haS a beta distribution. 
[Delhi Univ. B.Sc. (Math •• Hon •• ), 1988] 

7. Derme Student's I-statistic and state its probability density function. 
If Xi (i = 1.2 •..•• n). is a random sample of n independent observations 

(rom a normal population with mean Il and variance al • sl10w that 

U:: ex - u) '" n (n - 1) • where i::! i Xj 

~ 
nj= I 

i (Xj - x)2 
i • I 

conforms to Student's I-variate. If X is an additional observation drawn 
independently from the same normal population. show that \ 

W _ ( x- - X ) .. I n(n - 1) 
- . x 'I 
~ I i (Xi _ x )1 n + I 
''I ; - 1 

also conforms to Student's I-variate. 

S. Let Xlt X2 ..... X" be a random sample from N(U. 0-2), and X and S2, 
respectively, be the sample mean and sample variance. Let XII + I - N (JJ., 0-1), 

and assume that X I. 42, ... , X-,u X" + I are independent. Obtain the sampling 
distribution of 

u (X ... I - X) ~ n . 
-. S . n + I' [ S2 = _1 -1 :i (X j - i)2l 

n- i-I J 
9. If the random variables X I and Xl are independent and follow chi-square 

d" "b' . h d f h th -..In (X 1 - X 2) • d" "b ed S d ' IStn uuon Wit n .. , S ow at _ ~ IS IStn ut as tu ent s I 
2-VX1X2 " 

with n dJ., independently' of .XI + X:l' 
[Calcutta Univ. B.S~. (Hons.), 1992] 

Hint, ( -\ ,I e-(1:1 + 1:1)12 XI(nI2H X2(nI2H ", 
P XI' Xu = 2" [r(n/2)]2 . 

Put 

=> 
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CJ(.XI • xi) 
Jacobian of transfonnation is J o(u, v) 

2{;, [I + u 2/n)3/2 
The joint p.d.f. of U and V becomes 

I ... e -y/2 v II-I 
g(u, v) = p(, '10 xi) I J I = _ r . (1 ZI )(11+1)/2 ; 

2211 -1 r(n!2) r(n!2) -v n + U In 
- 00 < u < 00, 0 S; v < 00 

Using Legender's duplication formula, viz .• 

( n + 1) -" rn ...r; rn = 2"-1 r(n/2) r -2- -v 1t => r(n/2) =. , we get 

2"-1 r(n ; I) 
2211-1 r(n/2) r(n/2) ~ = 2211-1. ~ ...r; r (~ ) ~ 

2r.~1 r~ ~ I) 2 
= 2" ~ ~ B ~, n/2) [.: ~ = r~)] 

g(u v) - (--L e- y/2 V"-I J [I I l' 
• - 2" rn Vn B (!. n/2) . ( u2)" + 1)/2 • 

. 2' 1 + - J 
r n . 

o < v < 00, .... 00 < u< 00. 

10. LetXt>X2, ... ,X", and Ylt Y2 • ... , YII·be.independent random samples 
.. i , .. , '.~ __ 

from N(Ilt. ( 2) and N(1l2, ( 2), respectively. If X and Y denote the 
corresponding sample means and if 

'" II 
(m-l)SI2= L (X j -X)2, (n-l)S22= L (Yj _f)2, 

j .. I' i",1 

obtain the sampling distribution of 
- -

a(X - Ill) + b(Y - 112) 

[{(m - 1) S l 2 + (n - 1) Sa2 } {fi. + b2}] 1/2 

(m + n - 2) m n 

where a and b are two fixed real numbers. 
[Delhi Univ. ASc. (Stat. Hon8.), 1989] 

11. If Ix (p. q) represents the incomplete Beta function defined by 

I J% Ix (p. q) = B(p. q) 0 tJ>-1 (1 - t)9-1 dt; p > 0, q > 0, 

show that the distribution function F(.) of Student's t-distribution is given by 

F(t) = 1-i/" (~, ~). where x ='(1 + ~)I. 
IDelhi Vniv. M.Sc. (Stat.), 1990; Nagpur Univ. M.Sc. (Stat.). 1991] 
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Hint. IfJ(.) is p.d.f. of t-distribution with n d.C, then 

F(t) = r f(u) du = 1 - J GO f(u) du 
-GO t 

1 J'" ( U2 )(II+l)/2 =1- 1+- du 
_r (1 n) t n 
-vnB 2' 2 

= 1 + _---"1'--_ Jo -1/2 

2B(~'~) 
(1 + ~ 51 z(III2)-I(1- z) dz. 

[ I ",,+J where ;= 1 + 

1 f" 
=1- 1 h 0 

2B(2' 2) 
=I-~I,,(~. ~) 

12. Show that for .t-distribution with n d.f., mean deviation about mean i~ 
given by 

Vn r(n 2 l)Jfic r(nl2) 

(Shivqji Univ. B.Sc. Oct., 199.2) 

Hint. £(t) = O. 

M.D. about mean = J GO I 1 If (I) dt 
-00 

1 Joo Itldt 

= _ r (' 1 1i) -oo( t2 )11+1)12. 
-vnB 2''2 1+-;) 

= _ r 2(1 n) J; ( ':]"+1)12. 
-vnB - - 1+-

2' '2 n 

_ ...r,; J 00 ' dy [( f!:. = y)~ 
~ (i.!!..) 0 (I + yi"+ 1)/2 ' ~ ~ 

B 2' 2 



, , 

. for large n. 
You may assume that for large n. 

1~+ ~) 1 

{~+. }.if.: ,. (1 -4.) 
- h 

14. If X and (j2 = 52 be the usual sample m~ and sample variance based' 

on a random sample of n observations from ,N(Il, ( 2), and if T = (X - 1.1) ""'S. prove that -
(i) Var (1) = (n - 1)/(n - 3) 

(iJ) COy (X ~ T) = ~ {;::I nCn - 2)f21, 
...J'}.n T[(n - 1)/2] 

- I 1/'11 -
(iii) r (X • T) = L2(n - 3)] r[2 (n - 2)]/ r[k(n - ~)] 

14'2·5. Limiting Form of t-distributiob. As n -+ "". the p.d./. 0/ 
t-dis'ribution with n df. yit:, 

1 (t2 )<11+ 1)12 1 1-/'1 

JtfJ - .r,. B (t. ~) 1 + -.) --> .J2x' - . · - ~ <t < ~ 

Proof. lim 1 = lim _1_ n(n + 1)12] 

It .... 00 ~ B (!,~) It .... ~ ~ ~(i) r(n/2) 

1 1 (n 'i 1 
= ",,' {; . "2 ) :; "2ft ' 

[.:r~i) = {; and ~:o:. r~(::) = ni. (c.f. Remark to § 14.5.7)] 
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... lim j(1)= lim 1 . lim [(1+ ':JJ~ 
II ~ 00 11-+ 00 _ r (1 "') II ~ -

-vnB 2' 2 

( 12j! 
x lim 1 + -; '1. 

11-+00 

= _ ~ exp (- 12(2), - 00 < I < 00 

-v 21t 
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Hence for large d.f. I-distribution tends to standard normal distribution. 

14·2·6. Graph or t-distribution. The p.d.f. of I-distribution with .n 
d.f. is 

-[ t2 ]-<11+1)/2 
j(t) = C. 1 + -; ,-00 < t < 00 

Sincef(-I) = j(t), the probability curve is symmetrical about the line t = O. 
As t increases,j(t) decreases rapidly and tends m tero as t -. 00, so that t-axis is 
an asymptote to the curve. We have shown that 

n 3(n - 2) 
~ = n _ 2' n > 2; ~2 = (n _ 4) ,n > 4 

Hence fOr n > 2, 112 > 1 i.e.. the variance of t-distribution is greater than 
that of standard norm8J' distribution and for n > 4, ~2 > 3 and thus t-distribution 
is more flat on the top than the normal curve. In fact, for small n, we have 

p[ 1/1 ~ to] 2 P[I Z' ~ /0]' Z - N (0, 1) 

i.e.. the tails of the. t-distributioQ have a greater probability (area) than the tails 
of standard normal:'distribution. Moreover we bave also seen [§ 14·2·~] that for 
large n-(df,). t-distribution tends to standard normal distribution. 

f(t) 

-CD -{. -3 '-2 -1 t=o -+1 • +2 ~3' +4 C) 

14·2·7. Critical Values or t. The critical (or significant) values of t 
at level of significal)ce a and d.f. '\) for two-tailed test are given by the equation' 

P [-, t' > tl1 (a)] = a ... (14·5) 

:::> P [ , t , S tl1 (a)l = 1 - a' ... (14·Sa) 



14·16 .Fundam.mtals of ~tbematieal Statistics 

CRITICAL VALUES' OF I-DISTRIBUTION 

The values I" (a) have been tabulated in Fisher- and Yates' Tables, for 
different ~alues of a and v and ~ given in the Appendix.at.the end of the book. 

Since I-distribution is symmetric about'l = 0, we get from (14·5) 
P (I> tv (a)] + P [t < - tv (a)] = a 

=> 2 P [t > tv (a)] = a 

=> P[t> tv (a)] = a/2 
=> P[t> tv (2~)] = a ., .(14·5p) 
tv (2a) (from the Tables in the Appendix) gives the significant value of't for 

a single-tail test, [Right-tail or Left-tail-since the distribution is symmetrical],.at 
level of significance a and v df. 

Hence the significant values of t at level of significance 'a' for a single 
tailed test can be obtained from those of two-toilet! test by looldng the values at 
level of significance '2«. ' 

, For example, 
ts (0·05) for single:tail test = t8, (0·10) for two-tail test = 1·86 
tl5(O·OI) for single-tail test = t15 (0·02) for two-tail test = 2-60. 

14·2·S. Applications 01 t-dist~ibution. The I-distributien 'has a 
wide number of applications in Statistics, some-of which are enumerated below. 

(i) To test if the simple mean '( i ) differs significantly from the 
hypothetical value J.1 of the population mean. 

(il) To test the signifiC8l!ce-of th~ difference betWeen two sample means. 
(iii) To test the significance of an observed sample correlation co-efficient 

and sample regression c;:oefficient , 
: (iv) To test the significance of observed partial and mUltiple correlation 

coeffi"ients. 
In the following sections 'Ye will discuss these ~pli~ons in detail, one 

oyone. 
14·2'9. I-Test lor SiJ;lgle Mean. Suppose we want to test: 
(l) if a random SADlple X; (i = I, 2, •••• n) of size n· has been drawn from a 

normal- population with a sPecified mean, say J.Io, or . , 
- (il) if the sample mean differs significantly from the, hypothetical vallie J.Io ' 

of the population mean. 
UndC~ the null hypothesis Ho : 
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(i) The sample has been drawn from Ihe populalion wilh mean Jl 
or (ii) Ihere is no significanl difference between lhe sample mean i and lhe 
population mean Jl, 

lhe slalislic 

where 

i - "0 
I~'~ 

srJ7a 
1 " I" 

x=- I. Xi and ;)'2=--1 I. (Xi _x)2, 
ni_1 n- i-1 

follows Student's I-distribubon with (n -I) d.f. 

... (1'4'6) 

... [14·6(a)] 

We now compare the calculated value of I with the tabulated value at certain 
level of significance. If calculated III > tabulitted I, null hypothesis is rejected 
and if calculated III < tabulated I, Ho may be a~pted at the level of significance 
adopted. 

Remarks 1. On co",pUlalion of 52 for numerical problems. If x comes 
oot in integers, the fonnula{14.6a) can be c~>nvenient1y used for computing 52. 
However, ifi comes in fiactions then the formula (14·60) for computing S2 is 
very cumbersome and is not recommended. In that case, step deviation method, 
given below, is quite useful. , 

If we take, di = Xi - A, where A is any arbitrary number tJtela , 

1 [ 2] 1 [ (I.x;)2] 52= ia _ 1 I.(Xi -x) = n _ 1 I.x?- -n-

= _I _ [ I.d.2- (I,d;)2] 
n-I In' 

since variance is independent of change of origin. 

.. - 'I,di Also, m thIS 'Case X = A + - . 
n 

2. We know, tJ:te sample variance 

sl =! I.(Xj - i)2 n , 
nsl = (n - I) 52 
52 _1-
n-n-I 

... [l4·6(b)] 

•.. [14·6(c)] 

...[14.6(d)] 

... [14·6(e)] 

Hence for numelrical problems, the test statistic (14·6) on using [l4-6(~)] 
~~ , 

x - 1.10 i - 1.10 
I = _~ = - I" 1 ... [14-6(1)] 

'152/n V s2/(n - I) -
3. Assumptions for Student's 't-test. The following assumpt~,ons 

are made in the SbJdent',s I-test: . 
(.) The parent population from which the samp,le is drawn is normal. 

(ii) The sample observations are independent, i.e.. the sample is random. 
(iii) The population standard deviation (J is unkno~. 
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Example 14·2. A machinist is making engine parts with axle diameters 
of 0·700 inch. A random sample.,of 10 parts. shows a mean diameter of 0·742 
inch with a standard deviation of 0·040 inch. 'Compute the statistic you wou.ld 
use to test whether the work is meeting the specifications. Also state how you 
would proceed ftvther. 

Solution. Here we are given : . 

Il = 0·700 inches, i'= 0·742 inches, s = ()'040 inches and n= 10 
Null Hypothesis, Ho: Il = 0·700, i.e .. the, product is conforming to 

specifications. 
Alternative Hypothesis, III: Il ~ 0·700 
Test Statistic. Under Ho, the test statistic is : 

i -f,l ,.x - U 
t = ..J $lIn = ..J s2/(n _ 1) - t(II_I) 

Now 
V9(O.7'42 - 0·700) 

t = 0.040 - 3·15 

How to proceed rurther. Here the test .statJ.stic 't' follows Student's t­
distribution with 10 - 1 = 9 d.f. We will now compare this calculated value with 
~ tabulated value of t for 9 d.f. and at certain ·level of significance, say 5%. Let 
this tabulated value be denoted by to. 

(i) If calculated 't' viz., 3·15> to, we say that the vaiue of ris significant. 
Ibis implies that i differs significantly from Il and Ho is rejected at this level of 
sign~cance and we conclude that the product is not meeting the specifications. 

(ii) If calculated t < to, we say that the value of t is not significant, i.e., 
there is no significant difference between i and Il. In other words, the-deviation 
(i;.a.) is just due to fluctuations of sampling and null hypothesis Ho may be 
fe~ed at 5% level of significance, i.e., we may take the pr<><bJct conforming 
to specifications. 

Example 14'3. The mean weekly sales of soap bars in departmental 
stores was 146·3 bars per store. After an advertising campaign the mean weekiy 
sales in 22 stor~sfor a typical week increased to 153·7 and showed a standard 
deviation of 17·2. Was the advertising campaign successful? 

Solution. We.are given: n = 22, i = 153·7, s =17·2. 
Nuil Hypothesis. The advertising campaign is not successful, i.e., 

Ho: Il = 146·3 
Alternative Hypothesis. HI : Il> 146·3.(Right-tail). 
Test Statistic. Under the null hypothesis, the test statistic is: 

i-u 
t = - t22 _I = t21 

..J s2/(n - 1) 

, 153·7 - 146·3 7·4 x {2t , 
Now t = '= = 9·03 

, ..J(17.2)2/1.1 17·2 
Conclusion. Tabulated value of t for 21 df. at 5% level of significance 

for single-ta#ed test is 1·72. Since calculated value is much greate,( than the 



tabulated value. it is highly significanL Hence we reject the null hypothesis and 
conclude that the advertising campaign ~as definitely successful in promoting 
sales. 

Example 14·4. A random sample of 10 boys had the following I.Q.' s : 
70, 120, 110, 101, 88, 83, 95, 98, 107, 100. Do' these data support the 
assumption.oj a populatwn mean I.Q. of 100 ? Find a reasonable rOlJge in which 
most of the mean I.Q. values of samples of 10 boys lie. 

[Mtulrcu Uni". B.E., April 1990] 

Solution. Null hypothesis, Ho: The data are consistent with the 
assumption of a mean I.q. of 100 in the population, i.e., Jl = 100. 

Alternative hypotheSis, HI : ~ * 100. 
Test Statistic. Under Ho. the test statistic is : 

(i - !J.) 
t = ~ $lIn - t(II_I). 

where i and $l are to be computed from the sample values of I.Q. ·s. 

CALCULATIONS FOR SAMPLE MEAN AND S.D. 

x , 
(X -x) (X -x 'f 

70 -27·2 739·84 
120 22,8 519·84 
110 12·8 163·84 
101 3·8 14·44 
88 -9·2 84·64 
83 -14·2 201·64 
95 ~2·2 4·84 
98 0·8 0·64 

107 9·8 96·04 
100 2·8 7·84 

Total 972 1833·60 
~ 

. - 972 1833·60. 
Hencen=10'~=W-=97.2and$l= 9 =203·73 

• 1 t 1 = '197·2 - 1001 = 2·8 =...£!..= 0-62 
~203.73/10 ~20.37 4·514 

TablJlated t().()5 for (10 - 1) i.e., 9 d.t for two-tailed test is 2·262. . 
Conclusion. Since calculated t is less than tabulated to.os for 9 d.f .• 1!.0 may 

be accepted at 5% level of significance and we may. conclude that the data are 
consistent with the assumption of mean I.Q. of 100 in the population. 

The 95% confidence limits within which the meah I.Q. values of samples 
of 10 boys will lie are given by 

i ± to.os S If;, = 97·2 ± 2·262 x 4·514 
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= 97·2 ± 10·21 = 10741 and 86·99 
Hence the required 95% confidence interval is [86·99, 10741]. 

Remark. Aliter for computing i and ~2. Here we see that i comes 

in fractions and as such the computati9n of (x _x)2 is quite laborious and til1le 

consuming. In this case we use the method of step deviations to compute x and 
Sl. as given below. 

X d.==X-90 d 2 

70 -20 400 
120 30 900 
110 20 400 
101 11 121 . 
88 -2' 4 
83 -7 49 
95 5 25 
98 8 64 , 

107 17 289 
100 10 100 

Total Id== 7~ Id2 == 2352 

Here d = X -A, where A = 90 
1 72 

.. x =A + ;;l:tl= 90+ 10= 97·2 

am Sl = 11 ~ 1 [l:d2- (~] = ~ [2352- (7;t] = 2Q3·73 

Example 14·5. The heights of 10 males of a given locality are found to 
be 70 •. 67. 62. 68. 61. 68. 70. 64. 64. 66 inches. Is it reasonable tll believe that 
the average height is greater than 64 inches? Test at 5% significance level. 
assuming thatfor.9 degrees offreedom P (t > 1-83) = 0·05. . 

Solution. Null Hypothe!is, Ho: J.I. = 64 inches. 
Alternative Hypothesis, Hi: J.I. > 64 inches. 

CALCULATIONS FOR SAMPLE MEAN AND S.D. 

x 70 ~ 67 62 68 61 68 70 64 64. 66 Total 
660 

x -x 4 1 -4 2 -5 2 4 -2 -2 0 0 

(x ~ 'i)2 16 1 16 4 25 4 16 4 4 0 90 

I.x 660 
x = -;;- = 10 = 66 
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S2 = _1 - L (x - i)2 = 990 = 10 
n - 1 

Test Statistic. Under Ho, the test statistic is 

t - j - U _ 66 - 64 - 2 
- ...j S2/n -...j iO/l0 - , 

which follows Student's t-distribution with 10 - 1 = 9 df. 
Tabulated value of t for 9 df. at 5% level of significance for single (right) 

tail-test is 1·833. (This is the value to-IO for 9 df. in the two-tailed Table given 
in the Appendix.) 

Conclusion. Since calculated value of t is greater than the tabulated value, 
it is significant. Hen~ Nu is rejected ~t 5% level of significance and we conclude 
rrlai ihe average height ,is greater than 60 inches. 

Example 14·6. A random sample of 16 values from a normal population 
showed a mean of 41·5 inches and the sum 'Of squares of deviations from thi; 
mean. eq'.Jal to 135 square inches. Show that the assumption of a mean of 43-5 
inchesfJr the population is nor reasonable. Obtain 95 per cent and 99 per cent 
fiducia. limits for the same. 

Y';u may use the following information from statistical tables: 

{ p = 0·05, t = 2·131 
v = 15. P = 0.01, t = 2.947 

Solution. We are given n = 16, i = 41·5 inches and 

. L(X - i )2 = 135 sq. inches. 

1 - 135 sz=-- L(X -x)2=-=9 
n - J 15 

Null Hypothesis. Ho: J.1 = 43·5 inches, i.e., the data are consistent with 
the assumption that the mean height in the population is 43·5 inches. 

Alternative Hypothesis. HI : J.1';f: 43·5 inches. 
Test Statistic. Under Ho, the test statistic is : 

j - U " 
t= _r - t(lI-l) 

Stvn 

Now 1 t 1 = 1 41.53#.43.5 1-~= 2.667 

Here number of degrees of freedom is (16 - 1) = 15. 
Weare given : 

to.os for 15 dJ. = 2·131 and to-Ol for 15 d.f..= 2·947 
Conclusion. Since calculated I t I is greater than 2·131. null hypothesis is 

rejected at 5% level of significance and we conclude that the assumption of mean 
of 43·5 inches for the population is not reasonable. 

Remark. Since calculated I t I is less than 2·947, null hypothesis 
(J.L = 43·5) may be accepted at 1% level of significance. 



95% fiducial limits for J1 : (dJ .. = 15) 

i ± to.os x J; = 41·5 ;1:2·131 x ~= 41·5 ± 1·598 

. . 39·902 < J1 < 43·098 
99% fiducial limits for J1 : (dJ. = 15) 

'S 3 
i ± to.Ol x {;, = 41·5 ± 2·947 x 4'= 43·71 and 39·29 

39·29 < J1 < 43·71 

EXERCISE 14(b) 

1. (a) Write a shOn note on' Student's t-disbibution and point out.its uses. 
(b) Show how' the t-distribution has been found useful in testing whether 

the mean of small saltlple is significantly different from a hypothetical value. 
(c) It is desired to test the hypothesis that the mean of a nOnJ\aI popufation 

is J1 = J10 ~ainst the alternative that J1 *' J10. Explaining the assumptions 
involved, develop the statistic suitable for testing this hypothesis if the size of 
the sample is smaIl. What modification do you sQggest when the sample size is 
large? 

2. What is a test of significance ? 
To test the hypothesis that the meag of a nonnal distribution is zero, two 

independent observations Xl and X2. are ·taken from the disttibution. Show that 
the hypothesis is rejected at 10% level of significance, using t test with equal 
tail ends, if 

!-xl +Xli > lXI-Xli tan 810 

3. It is required to test that the mean of a nonnal population is zero. A 
random sample drawn from the PQpulation ·gives the values Xlt Xl, ... , XII' 

Show that the t-test for acceptance of the hypothesis reduces to 

(i .) < n . tal. (. i .2.) 
\i _ 1 XI - tal -+ (n - 1) i-I XI 

where ta is-the value of Student's t at the desired level of Significance a. for 
(n - 1) df. 

4. (a) Find the Student's t for following variate values in a sample of 
eight : -4, -2, -2, 0, 2, 2, 3, 3, taking the mean of the univers~ to be zero. 
How would you proceed further? 

(b) Ten individuals are chosen at random fm.'ll a normal populabon and :their 
heights are found to be 63, 63, 66, 67, 68, 6<) 10, 70, 71, 71 inches. Test if ~e 
sample belongs to the populat~on whose mean heights is 66" 

[Given to.os = 2-62 for 9 dJ.] 

(c) A random sample of9 experimental animals under a certa,in diet gave the 
following increase in lNeight : Lxi = 45 lbs, Lx? = 279 lbs., where Xi denotes 
lh~ increase in weight of the ith animal. Assuming that the i.ncrease in weight is 
r.onnally distributed as N (J1, 0'2.) variate, t~t Ho ::J1 = 1 against H.I : J1 "" 1 at 
5% level. Given P (I t I > 2·?06) = 0·05 for 8 dc~ of freedom. 

[Calcutta Univ. R.Sc. (Maths.Hons.), 1991] 



S. A manufacturer of gunpowder has developed a new pdwder which' is 
designed to produce a muzzle velocity equal to 3000 ft/sec. Seven sheIls are 
loaded with'the charge and the muzzle velocities measured. 

The resulting velocjties are as follows: 3.005; 2~935; 2.965;' 2.995; 3.905. 
2.935; and 2.905. Do these data present sufficient evidence to indicate that the 
average velocity differs from 3.000 ftJsec. 

~. ne average leng\h of time for students to register for summer classes at 
a certain coIlege has been 50 minutes with a standard deviation of 10 minutes. A 
new registration procedure using modem computing machines is being tried. If a 
random sample of 12 students had an average registration time of 42 minutes 
with s.d. of 11·9 minutes under the new system~ test the hypothesis that the 
population mean has not changed. using ·05 as level of significance. 

7. The nine items of a sample had the following values: 45. 47. 50. 52. 
48.47. 49. ~3 .and 51. . 

Does the mean of the nine items differ significantly from the assumed 
population mean of 47·5 ? G'iven that 

{ p = 0·945 for I = 1·8 
1I = 8. P = 0.953 for t = 1.9 

8. A time study engineer developed a new sequence of operation elements 
that he hopes will reduce'the mean cycle time of a certain production process. 
The results of a time study of 20 cycles are given below: 

, cycle tiIM in minutes 
12·25 11·97 12·15 12·08 12·31 12·28 11>94 11·89 12·16 12·04 
12·09 12·15 12·14 12·47 11·98 12·04 12·11 12·25 12·15 12·34 

If the present mean cycle time is 12·5 minutes. should he adopt the new 
sequence? 

9. (a) The average breaking strength of steel rods is specified to be 18·5 
thousand pounds. To test this a sample of 14 rods was tested. The mean and 
standard deviations obtained were 17·85 and ].·955 thousand pounds respectively. 
Is the result of the experiment significant? Also obtain the 95 per cent fiducial 
limits from the sample for the average breaking strength of stee1 rods. 

(b) A sample of 9 shafts ~ inspected from a production line. The following 
measurements are the diameters (in mm.) of shafts: 45·010.45·020. 45·021. 
45·015, 45·019. 45·018. 45·020. 45·023 and 45·005. If the production line 
meets the specifications laid by the I.S.I .• with S.D. 0·006 mm. estimate the 
95% confidence interval within which the bUe diameter of the shaft lies. 

(Madl'CUl Univ. B.E., 1989] 
10. a random sample of 8 envelopes is taken from letter box of a post 

office and their weights in grams are found to be 12·1,11·9, 12·4. 12·3, 11·9, 
12·1. 12·4. 12·1. 

(a) Find 99% confidence limits for the mean weight of the envelo~ 
received at that post office. 

(b) Using the result of part (a). d~S this sample indicate at 1 % level that 
the average weight of envelopes received at that post office is 12·35 gms. 

11. A ran~om sample of nine from men of a large city gave a me~ height 
68 inches and the unbiased esti~te of the population variance found from the 



14024 Fundamentabl of Mathematical Statiatlee 

sample was 4·5 inches. Proceed 'as far as you can to test for a mean height of 
68·5 inches for the men of the city. Also state how you would proceed further. 

14·2·10. t-Test for Difference of Means. Suppose we waht to test 
if two in<;tepeJ)dent samples Xi (i'= 1.2 .... , n1) and Y" (j = 1,2, ... , ni) of sizes 
n1 and n2 have.been drawn from two normal populations with means Ilx and IlY 
respectively. ' • 

Under the null hypc,thesis (Ho) that the samples have been drawn from the 
normal populations with means Ilx and Ily and under the assumption that ,the 
population variance are equal. i.e .• a;' = ay2 = (j2 (say), the statistic 

(i - y ) - (Ilx - J.1y) 
t = ... (14·7) 

~ Il+ l 
.l "n1 n2 . 

1"1 1'"2 
where i = - I Xi' Y = - I' y n1 i-I n2j _ 1 J 

ad S2 = + I 2 [~ (Xi - X )2 + ~(YJ - Y )2J ... [14·7(a)] 
n1 n2 - I J 

is an unbiased estimate of the common population variance a 2, follows 
Student1s t-distribution with (n1 + n2 - 2) d.f. 

Proof. Distribution of t defined in (14·7). 

; = ex :- y ) - E ( x - y ) _ tJ (0, I) 

...JVCi - Y ) 
But E( i - y) = E( i ) - E( Y ) = Ilx - J.1y 

~ V( i - y) = V( i ) + V( Y ) 
[1be.covariance term vanishes since samQles are independent] 

(By assumption) 

... (*) 

= [7 (Xj - x )2/a2] + [7 ~Y j - Y )2/ a~ ] = ~~2 + n2~i2 
... (**) 

Since n1sX?/a2 and n2Sy2/a2 are independent x2-variates with (n1 - 1) and 
(;'2, -1) d.f. respectively" by the additive property of chi-square distribution, '1.2 

defined in (**) is a x 2-variate with (n1 - I) + (n2 - I), i.e.. n1 + n2 - 2 d.f. 
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Further. since sample mean and sample variance are independ.ently distributed. ~ 
and Xl are independent random variables. 

Hence Fisher's t statistic is given by 

t = ---;::::::::S==~ 
... I X2 
V nl + n2 - 2 

_ (i - Y) - (gx - Il y). 

- '" I cr2 (l + l) 'I nl n~ 
1 x ... 

[ 1 {I, (Xi - i ).2 + I, (y. - y) 2licrz]11 
nl + n2 - 2 i .i J f 

where 

and it follows Student's t-disUibution with (nl + n2 - 2) d.f. (cf Remark' 
§ 14·2·3. page 14·4). 

Remarks 1. S2. defined in 14·7(a) is an unbiased estimate of tt 
common population variance crz• since 

E(S2) = 1 E [I,(Xi - i )2 + I,(y. - y )zJ 
nl +. n2 - 2 i j J 

= 1 2 E[(nl -1) Sx2 + (n2 - DS~] 
nl + nz -

= 1 2 [(nl - 1) E(S~) + (nz -1)E(S~)] 
nl+ n2-

= 1 2 [(nl-l)crz+(n2-1)cr2] =crz 
nl + n2 -

2. An important deduction which is of much practical l,ltility is discuss, 
~~~ . 

Suppose we want to test if': (a) two independent samples Xi (i = 1. 2 •. 
nl). and Yj (j = 1.2 •...• nz). have been drawn from the populations with sarI 
means or (b) the two sample means x and y differ significantly or not. 

Under the null hypothesis 110 that (a) samples have been 'drawn from tI. 

populations with the same means,i.e., J.l~;;: jJ.y or (b) the sample meanj X al 
y do not differ significantly, [From (14.7)] the statistic: 
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X - y 

t= ~(~, + ~) 
[.,' Ilx = Ily. under Hol ... (14,8) 

where symbols are defined in (14·7a).follows Student's t-distribution with 
(n1 ..:- n2 - 2) d.f. 

3: On the assumption of t-test for difference of means. Here we make the 
follewing three fundamental assumptions: 

(i) Parent populations. from which the samples have been drawn are 
normally distributed. 

(iJ) The population variances are eqiJal and unknown. i.e .• aX" = a'; = a2• 

(say). where 0 2 is unknown. 

(iiI) The two samples are random and independent of each other. 

Thu~ before applying t-test for testing the equality of means it is 
theoretically desirable to test the equality of population variances by applying F­
tist. If the variances do not come out to be·equal then t-test oecomes invalid and 
jh that case Behren's 'd'-test based on fiducial intervals is used. For practical 
problems. however. the assumptions (,) and (iJ) are ~en for grante4. 
4. Paired t-test For Dirrere~ce of Means. Let us now consider the case 
when (0 the sample sizes are equal. i.t .. n1' = n2 = n (say). and (il) the two 
samples are not independent but the sample observations are paired together. i.e .• 
the pair of observations (Xi. Yi). (i = 1.2 ..... il) corresponds to the same (ith) 
sample unit. The problem is to test if the sample means differ significantly or 
not. 

For exampIe.suppose we want to test the efficacy of a particular drug. say. 
for induc!ng sleep. Let Xi and Yi (i = 1. 2 ..... n) be the readings. in hours of 
sleep. on the ith individual. before and after the drug is given respectively. Here 
instead of applying the difference of the means test discussed in § 14·2·10. we 
apply the paired t-test given below. 

Here we consider the increments. di = Xi - Yi. (i = 1.2 •...• n). 

Under the null hypothesis. H 0 that increments are due to fluctuations of 
sampling. i.e., the drug is not responsible for these increments. the statistic. 

d 
t = -- ... (14·9) s,{; 

where 
- 1 " 1" 
d = - 1: d i and S2 = --1 1: (d; - d )2 

ni_1 n- i-1 
... [14·9(a)] 

follows Student's t-distribution with (n - 1) dJ. 

_ Example 14·7. Below are given the gain in weights (in lbs.) of pigs fed 
on two diets A an B. . 

. Gain in weight 
Diet A : 25. 32. 30, 34, 24. 14. 32, 24, '30. 31, 35, 25 
-O,et-B : 44,34,22,10,47,31.40,30,32,35,18,21,35,29,22 
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Test. if the two diets differ significantly as regards their effect on increase in 
weight. 

Solution. Null hypothesis. Ho: Ilx= Ilr. i.e .• there is no signijico,nt 
tJiffereflCe between the meall increase in weight due to diets A and B. 

Alternative hypothesis. H\: Ilx ~ Ilr (two-tailed). 
Diel A Diet jj 

x X -X (X -X)~ 
"'-

(Y -n2 Y Y-Y 

2S -3 9 
32 4 16 

44 14 196 
34 4 16 
22 -8 64 

30 2 4 10 -20 400 
34 6 36 47 17 289 

24 -4 16 31 1 1 
40 10 100 

14 -14 196 30 0 0 
32 4 16 32 2 4 
2~ -4 16 
30 2 4 

3S S 25 
18 -12 144 
21 -9 81 

31 3 9 35 5 25 . 
0 3S 7 49 

2S -3 9 

29 -1 1 
22 -8 64 

Total Total " 

336 0 380 450 0 1410 

Under null hypothesis (Ho) : 

- -
I x-V _I 

= ..... I SZ (1.:+- 1.) "1 + "2 -: 2 

V nl n2 

Here nl = 12, } n2= 15 ) 
Ix = 336 aid Iy = 450 r 

I(X_X)2= 380 I(y_y)2=: .410) 

- 336 28 - 450 x=12= · y=15=30 

SZ=f n} + !z '- 2 [I.(x - i)2:+- I.(y - Y )2] =71·6 

x - y 28 - 30 
1= =~=====-
~S2 (~ +~) ~71-6 (1~ + :5) 
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= -2 =-0.609 
..J 10·74 

Tabulate to.05 for (J 2 + 15 - 2) = 25 d.f. is 42·06. 
Conclusion. Since calculated ,I t'l is less than 'ta.bulaied t, Ho may be 

accepted at 5% level of significance and we may conclude that the two diets do 
not differ significantlY.. as regards their effect on increase in weight. 

Remark. Here x and y come out to be integral values and hence the direct 

method of computing l:(x - x ) 2 and l:(y <- Y ) 2 is used. In case x and (or) y 
comes out to be fractional, then the step deviation method is recommended for 

computation of l:(x - x)2 and l:(y _ Y )2. 

Example 14'8. Samples of two types of electric light bulbs were tested 
Jor length of life andfollowing data were obtained: 

Sample No. 

Sample Means 

Sample S.D.'s 
I 

Type I 

ni=8 

XI = 1.234 hrs. 

Sl = 36 hrs. 

Type II 

n2 = 7 

X2 = 1.036 hrs. 

S2 =40 hrs. 

Is tne difference in the means sufficient to warrant that type 1 is superior to 
type II regarding length of life? 

Solution. Null Hypothesis. 110 : Jlx = Jly, -i.e.. the two types I and II of 
electric bulbs are indentical. 

Afternative Hypothesis. HI : Ux> Jly, i.e .• type 1 'is superior to type II, 
Test Statistic. Under Ho; the test statistic is :' 

XI - X2 
t -t 
"l + ",2 - 2 - 13, 

where S2 = 1 2 [l:(Xl - Xl)2 + l:(X2 - X2) 2 ] 
nt + n2 -

= 1. 2 [nlSt2 + n2s;] = 113 [8 x (36)2+ 7 X (40)2] = 1659·08 
nt + n2 - . • 

.. t =' 1234 - 1036 198 = 9.39 
A I ~ 1659·08 x 0·2679 
- 'J 1659·03 (k + ~) 

Tabulated value of t for 13 df at 5% level o,f significance for right (single) 
tailed test is 1·77. [This is the value of t()'IO for 13 df from two-tail tables 
given in Appendix]. 

Conclusion. Since 'calculated 't' is mucti greate't' than tabulated 't', it is 
highly significant and Ho i.s ~jected. Hence·the two types of electric bulbs differ 

SIgnificantly. Further since XI is much greater than X2' we conclude that type I is 
definitely superior to type II. 
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Exan:-ple 14·9. The heights of six randomly chosen sailors are in 
inches: 63. 65. 68. 69. 71. and 72. Those of 10 randomly chosen soldiers are 
61.62.65.66.69.69.70.71.72 and 73. piscuss. the light that these data 
throw on the suggestion that sailors are on the'-average taller than soldiers. 

Solution. If the heights of sailors and ~oldiers be represented I)y the 
variables X and Y respectively then ,the Null Hypothesis is, 1I0 : ~x = ~y, i.e .• 
the s.a.ilors are not on the average taller than the soldiers. 

Alternative Hypothesis. HI ~ Jlx > ~y (Right-tailed). 
Under 110, the test statistic is : 

Sailors 

X d=X-A dZ 

=X - 68 

63 -5 25 
65 -3 9 
68 0 0 
69 I 1 
71 3 9 
72 4 16 

Total- 0 60 

Y 

61 
62 
65 
66 
69 
~9 
70 
71 
72 
73 

Totol I 

Soldiers 

D = Y-B 
= Y -66 

-5 
-4 
-1 

0 
3 
3 
4 
5 
6 
7 

18 

- LO 
OJ =B+­nz 

DZ 

25 
16 

1 
0 
9 
9 

16 
25 
36 
49 

c -_.-

= 68 +;0 = 68 
18 

= 66'+ 10 = 67-8 

an l:(y - y )Z = L DZ.- (LO)2 
nz 

, 324 = 60 -0 =60 = 186-10= 153·6 

S2 = 1 2 [L(x - xV + L(y - Y)zl"= 114 (60 + 153·6) = 15·2571 
nl+ Jl Z- _ I 
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t,= 68 - 67·8 = 0·2 = 0.099 

( 1 1 )112 ,·h5·2571 X 0·2667 
" 15·2571 - + -6 ·10 

Tabulated to-Os' fo" 14 dJ, for single-tail test is 1·76., 
Concl~sion. Since calculated t is much less than 1·76, it is not at all 

significant at 5% levels of significance. Hence null hypothesis may be retained 
at 5% level of significance and we conclude that the data are inconsistent with 
the suggestion. that the sailors are on the average taller than soldiers. 

Example 14·10. A certain stimulus administered to each of the 12 
patients resulted in the following increase of blOod pressure: 

, 5.2.8. -1. J'. O. -2.1.5, O. 4 aM' 6 
Can ii be concluded that the stimulus will, in general. be accompanied by 

an increase in blood pressure? [Delhi Univ. B.Sc. 1989] 

SolutiDn. Here we are given th~ increments in blood pre~~l,Ir~ i.,e .• 
d; (= X; - yi). \ 

Null Hypothesis. Ho: ).1x = ).1y, i,e., there is no significant difference in the 
blood pressure readings of the patients before and after the drug. In other words. 
the given increments are just by chance (fluctuations of sampling) and not due to 
the stimulus. 

Alternqtive Hypothesis. Hi : I.1x < l.1y, i.e' l the <;timulus results is an 
increase in blood pressure. 

Test Statistic. Under Ho, the test statistic is : , , 

d 
t = --I - t(1I- 1) 
S,~ 

d 5 2 8 -1 j 0 .. -2 1 5 0 4 6 31 

d2 25 4 64 1 9 0 4 1 25 0 16 36 185 
..... --

S2 =_1_l:(d_d)2=_1_[l:dz_ (~] 
n-I n-I n 

-= 1\ [ 185- (3 :t] = 1\ (185 - 80.0~) = 9·5382 

ad d =l:d=31 =2.58 
,!. 12 

t = L = 2·58x m = 2·58 x 3·464 = 2~89 
. . S,..Jn ..J 9.5382 3·09 
Tabulated to-os for 11 d.f. fOr'right-tail test is 1·80. [This is the value of 

to.l0 for 11 dl in the Table .for two-tailed test given in the Appendixl. 
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Conclusion. Since calculated t > to-os. Ho is rejecte<l at 5% level of 
significance. Hence we conclude that the stimulus will. in general. be 
accompanied by.an increase in blood pressure. 

Example 14·11. In a certain experiment to compare two types of pig 
fOods A and B. the following 'results of increase in weights were observed in 
pigs: 

Pig n~er 1 2, 3 4 5 6 7 8 Total 

Increase in Food A 49 53 51 52 47 50 52 53 407 
weight in 

lb Food B 52 55 52 53 50 54 54 53 423 

(i) Assuming that the two samp'les of pigs are·independent. can we conclude 
that food B is better than food A? 

(m Also examine the 'case when the same set of eight pigs "'tere used in 
both the foods. 

Solution. Null Hypothesis. Ho. If the in~rease in weights due· to foods A 
and B are denoted by X and Y respectively then Ho : ).1x = ).1y, i.e .• there is no 
significant difference in increase in weights due to diets A and B. 

Alternative Hypothesis. H1 : ).1x < ).1y (Left-tailed). 

(l)if the two samples of pigs be assumed to be independent, then" we will 
apply t-test for difference of means to test Ho• 

Test Statistic. Under Ho : ).1x = ).1y, the test criterion is 

t = _--;::=x::::-=V====- - t ... I "I + "a - 2 

VS2 (~l ~ ~;) 
Food A FoodB 

. 
X d = X-50 d 2 Y D = Y -52 D2 

49 -1 1 52 0 0 
53 3 9 55 3 9 
51 1 1 52 0 0 
52 2 4_ ~3 1 1 
47 -3 9, 50 -2' 4 
50 0 0 54- 2 4 
52 2 4 54 2 4 
53 3 9 53 1 1 

7 37 7 23 

:. i = 50 + ~= 50·875 } y == S2 + ~ = 52·875 
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r.(x - i)2 = UP-~ } L(y _W=W2-
(W)2 

} ai)"d nl nz 
= 37 _ 49 49 = 23 - -' 

8 8 
= 30·875 = 16·875 

1 
= 14 (30·875 + 16·875) = 341 

I - y 50·875 - 52·875 = = 

~ S' (~I +~) ~J.41 (i+ t) 
= - 2·17 

Tabulated lo.os for (8 + 8 - 2) = 14 dJ. for one-tail test is 1·76. 
Conclusion. The critical region for the left-tail test is I < -1·76. Since 

calculated I is less than -1·76. Ho is rejected at 5% level of significance. Hence 
we conclude that the foods A and B differ significantly as regards their effect 6n 

increase in weight. Further. since y > i, food B is su~rioqo food A. 
(ii) If the same set of pigs is used in both the cases. then the readings X and 

Yare not independent but they are paired together 'and we apply the paired I-test 
for testing Ho• 

Under Ho : J.1x = J.1y, the test statistic is 

X 49 

Y 52 

d=X-Y -3 

d2 9 

53 

d 
t = _r - '(It-l) 

Stv n 

5.1 52 47 

55' 52 53 50 

-2 

4 

-1 -1 -3 

1 1 

- I.d -16 d=-=-c::-2 
n 8 

9 

50 52 

-54 54 

-4 -2 

16 4 . 

ad ' SZ= n~ 1 [r.d2 _.(r.~)2J =~[ 44- 2~6J = 1·714 

Id I 2, 2 . 
Itl=-- = ---=4·32 

..J SZ/n ..J 1.7143/8 0·4629 
Tabulated 1().()5 for (8 - 1) = 7 dJ. for one-tail test is 1·90. 

, 

53 Total 

53 

0 -16 

0 44 
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Conclusion. Here also the .observed value of 't' is significantat 5% level 
of signifi~ance and we conclude that food B is superior to food A. 

EXERCISE 14 (c) 

1. Explain, stating clearly the assumptions involved, the Hest for testing 
the significance of the difference between ,the two sample m~. 

'2. Two independent samples of 8 and 7 items respectively had the 
following values 

Sample I... 9 11 13 U 15 9 1 2 14 
Sample IT... 19 12 10 J4 9 8 10 
Is the difference between, the means of samples significant? 
3. (a) Two horses A and B were te~ted accord~g. to the time (in seconds) to 

run a particular track with the following results : 
Horse A 28 30 32 33 33 29 34 
Horse B 29 . 30 30 24 27 29 
Test whether the two horses have the same running capacity. [5 per cent 

values of t for II and 12.degrees of freedom respectively ~ 2·20 and 2·18]. 
Ans. Calculated t = 2·5 (approx,) 
(b) The gain in weight of two random samples of rats fed on two different 

diets A and B are given below. Examme whether the difference in mean increases 
in weight is significant 

DietA: 13. 14 \0 11 12 16 10 8 
Diet ~: 7 10 12 8 10 11 9 lO 11 
4. (a) Show how you would use Student's t.-test to decide whether the two 

sets of observations . \ 
[17,27.18.25.27.29.27.23, 17] and [16.16.20.16.20, 17. 15.21] 

indicate samples drawn froJ)) the same universe. 
(b) A reading test is given to an elementary school class that consists of 12 

Anglo-American Children and 10 Mexican-American children. The results of the 
test are : 

Anglo-American Mexican-American 

.xl = 74 X2 = 7(5 

~~8 .~=w 
Is the difIerence'betw~n. the means of the two groups significant at the Q·05 

level ? Given t20 = 2·086, tn = 2·074 at 5% level. 
[Delhi Univ. M.C.A.. 1986] 

S. (a) Fol' a random sample of 10 pigs, fed on a diet A ,the increases in 
weight in a certain period were 10.6, 16,17, 13, 12,8,-14, J5, 91bs. 

For anbther random sample of 12 pigs fed on diet B, the increases in the 
same period were 7, 13, 22, IS, 12,14, 18, 8, 21, 23,.10, 17 lbs. 

Find if the two samples are significantly different.regarding the effect of 
diet. given that for d~f. v = 20, 21, 22, the five pet cent values of t are 
~tively 2·09, 2·07,2·06. 

Ans. t = 1·51; Sample means do nol differ significantly. 
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(b) Two independent samples of rats chosen among both the series had the 
following increase in weights when -fed on'a dieL Can you say that the. mean 
increase in weight differs significantly with sex?' 

Male: 96, 88, 97. 89, 92, 95 and 90 
./ . 

Female: 112, 80, 98, 100, l!4, 82, 89, 95, 100 and 96. 
6. (0) Ten soldiers visit a 'rime range for two consecutive weeks. For the 

first week their scores are 
67, 24, 57, 55, 63, 54, 56, 68, .33, 43 

and during the second week they score in the same order-
70, 38, 58, 58, 56, 67, 68, 72, 42, 38 

Examine if there is any significant difference in their performance. 
(b) Two independent groups of iO children were tested to find how many 

digits they could repeat from memory after hearing them. The results are as 
follows: . 

Group A 8 6 5 7 6 8 7 4 5 6 
Group B 1 0 6 7 8 6 9 7 6. 7 7 
Is the difference between the mean scores·of the two groups 'significant ? 
(c) Measurements of the fat content of two kinds of ice cream, Brand A and 

Brand B, yielded the following sample data : 
'BrandA 13·5 14·0 13·6 12·9 13'0 
Brand B 12·9 13·0 12·4 13·5 12·7 
Test the null hypothesis ).11 ,= ).12, (where III and 112 are the respective true 

average fat contents of the two kinds of ice cream), against the alternative 
hypothesis III ¢: Ilz at the level of significance ex = 0·05. 

[M~rG8 UnirJ. B.E;, 1990] 
7. (0) A random sample of 16 values from a normal population has a mean 

of 41·5 inches and sum of squares of deviations from the mean is equal to 135 
inches. Another sample of, ~O v~ues form, an unknown population has a mean 
of 43·0 inches and sum of squares of deviations from their mean is equal to 171 
inches. Show. that the two samples may be-regarded as coming from the same 
normal population. 

(b) A company is interested in knowing if there is a difference in the average 
salary received by foremen in two divisions. Accordingly samples of 12 foremen 
in the flrst division and 10 foremen in the second division are selected at random. 
Based upon experience, foremen's salaries are known to 00 approximately 
normally distributed, and the standard·deviations are about the same. 

Sample size 
Average monthly salary 

of foremen (Rs.) 
Standard deviation of 

First Division 
12 

1,050 

Second division 
10 

980 

salarie~ (Rs.) 68 74 
The ta1?l~ value of t for 20 d.f. at 5% level o( significance is 2·086. 
ADS. t = 2·2. Reject Ho : ).1x = Ilv 
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(c) The average number of articles produced by two machines per day are 
200 and 250 with standard deviations 20 and 25 respectively on the basis of 
records of 25 days production. Can you regard both the machines equally 
efficient at I % level of significance? 

Ans. t = -7-65. Hint. Here nJ ="2 == 25. 

8. Eleven school boys were given a test in Statistics. They were given a 
month's tuition and a seeond test was held at the end of it. Do fhe marks give 
evidence that the students have benefited by the extm coaching? 
Boys 1 2 3 4 5 6 7 8 9 10 I I 
Marks in 1st test 23 20 19 21 18 20 18 17 23 16 19 
Marks in 2nd test. 24 19 22 18 20 22 20 20 23 20 18 

Ans. H 0: Jl J = Jl2; H J : j.lJ < Jl2 . Paired I t I :: 1·483. Not significant. 
Hence, students have not benefited from-extra coaching. 

9 .. (a) The fo1\owing table gives the additional hours of sleep gained by 10 
patients 'in an experiment to test the eHcct of a drug. Do these data give evidence 
that the drug produces additional hours of sleep? 

Patients 1 2 3 4 56? 8 9 10 
Hours gained: 0·7 0·1 0·2 1·2 0·31 0·4 3·7 0·8 3·8 2·0 
(b) A drug was administered to 10 patie~ts, and the increments in.their 

blood pressure were recorded to be 6, 3, -2; 4, -3, 4, 6,0, 3, 2. Is it reasonable 
to believe that the drug has no effect on change of blood pressure '? Use 
5% significance level, and assume that for 9 degrees of freedom, 
P(t> 2·26) = 0·025. [C~]cutta Univ. B.Sc.(Maths. Hons.), 1986] 

(c) The scores of 10 candidates prior and after tmining are given below: 
Prior 84 48 36 37 54 69 83 96 90 65 
After 90 58 56 49 62 81 84 86 84 75 
Is the training effective? [Calicut Univ. B.Sc., Oct. 1992] 
10. The following table gives measurements of blood pressure on subjects 

by two investigators: 
Subject No. 1 2 3 4 5 6 7 8 9 1 0 
Investigator I 70 68 56 75 80 90 68 75 56 58 
Investigator II 68 70 52 73 75 78 67 70 54 55 
No other details of the experiment were given. 
(i) if a valid inference has to be drawn about the diHerence between the 

investigators, mention the precautions that should have been taken in 
conducting the experiment with respect to the time of measurement, interval 
between the first and second measurements, the order in which the investigators 
measure, etc. 

(ii) After the experiment was conducted it was discovered that all the 
subjects were unrelated except that No. 10 was the father Of No.9. Assuming 
that all the precautions you mention in (a) hre satislied, analyse-the data to draw 
an inference on the difference between the investigators. 5- per cent values of the 
,-statistic corresponding to various degrees of freedom are as follows: 

5 per cent values of t... 2·40 2· 31 2·26 2· 23 2·10 2·09 
Degrees of freedom... 7 8 9 1 0 I 8 1 9 
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11. The follQwing are the value,s of the cephalic index found in two 
samples of skulls, one consisting of 15 and the other of .13 individuals. 

Sample I: 74·1 77·7 74·0 74·4 73.·8 79·3 75·8 82·8 
72·2 75·2 78·2 77·1 78·4 76·3' 76·8 

Sample II: 70·8 74·9 74·2 70·4 69·2 77·2 76·8 72·4 
77·4 78·1 72·8 74·3 '14·7 

(i) Test the hypothesis that the- means of population 1: and population II 
could be equal. 

(il) Is it possible that the sample II has come from a population of l"Qean 
72·0 ? 

(iil) Obtain co~fidence limits for the mean of population I and for the mean 
of population II. 

(Assume that the distribution of cephallic indices for a homogeneous 
pOpulation.is nonnal.) 

12. (a) The following table gives the gain in weight in decagram's in a 
feeding experiment with pigs on the relative value of limestone and bone meal 
for bone development 

Limestone 49·2 53·3 50·6 52·0 46·8 50·5 52·1 53·0 
Bone meal 51·5 54·9 52·2 53·3 51·6 54·1 54·2 53·3 
Test for the significance of difference between the means in two ways: 
W by assuming that the values are paired. 
(il) by assuming that the values are. not paired. 
(b) The f,ollowiJ:)g table shows the mean' number of bacterial colonies per 

plate obtainable by four slightly different method,s -from soil samples taken at 
4 P.M. and 8 P.M. respectively. 

Method ~ Be .. D 
4 P.M.- 29·75 27·50 30·25 27·80 
8 P.M. 39·20 40·60 36·20 42·40 

Are there si~nificantly more bacteria at 8 P.M. than at 4 P.M. ? 
[Given to-os (3)= 3·18 and to-Ol (3) = 5·84] 
13. (a) it is believed that glucose treatment will extend the sleep time of 

mice. In an experiment to test this hypothesis ten mice selected at random are 
given gl.uc9se treatment and are fOUAd to have a mean hexabarbital sleep time of 
~7·2 min with a standard deviation of9·3 min. A further sample of.ten untreated 
mice are found to have a mean hexab~b~tal sleep time of 28·5 min. with a 
standard deyiation of 7·2 min. Are these results significant evidence in favotp' of 
the hypOthesis? 

Find 95% confidence limits for the population mean difference in. sleep 
time. State any assqmptions made concerning the data in carrying out the test 
and fmding the lim~ts. • [Bangczlore Univ~ B.E., Oct. 1992] 

(b) An expeIiment was performed to compare the abqlSive wear or ~wo 
different lami~ated materials. Twelve pieces of matenal I Y'er,e tested, by 
exposing each pi~.to a machine measuring wear. Ten pieces of material II. were 
similarly tested. In ~ch case the dep,tl;t of wear was observed. The sample of 
material I gave an average (coded) wear 8·5 units with a standard deviation 9f 04 
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while the sample of material II gave an average of 8·1 and a standard deviation of 
0.5. Test the hypothesis that the two types of material exhibi,t the same mean 
abrasive wear at the O·lO level 'of significance. Asslime the P9Pulations to be 
approximately normal with equal variances. 

If the level of significance is 0·01, what will be your conclusion? 
[Delhi Univ. M.E., 1992] 

14·2·11. t·test For Testing Significance of an Observed 
sample Correlation Coefficient. If r is ';the, observed correlation 
coefficient in a sample of n pairs of observations from a bivariate normal 
population, then PrQL Fis~er proved that under the null hypothesis Ho : P = 0, 
·i.e.,populalion correlation coefficient is zero, the statistic: 

1= r ..J (n - 2) ... (14.9) 
" (1 - r2) 

follows Student's I-distribution with (n ,- 2) d.f. (c.f. Remark to § 14·3 page 
14·41). 

If the value of t comes out to be significant, we reject H 0 at the level of 
significance adopted and conclude that P ::F- 0, i.e., "r' is significant of correlation 
in the population . 

.If t comes out to be non-significant then #0 may be accC(pted and we 
conclude that variables may be regarded as uncorrelated in ~e population. 

Example 14,'-12. A random sample of 27 pqirs of pbservations from a 
normal" popl,l.lation gave a correlation coefficient of 0·6. Is this significant of 
correlation in the population? ' 

Solution. We set up the null hYPQtJtesl~"Ho : P = 0, i.e .• the observed 
sample correlation coefficient is not significant of any correlation in the 
population. 

r ...}·(n - 2) 
UnderHo: t= .1 - t(II_2) 

'4 (1 - r2) 

Here t = 0·6...}27 - 2 == _3_ = 3.75 
{(l- 0·36) ...} 0·64 

Tabulated to.os for (27 - 2) = 25 dJ. is 2·06. 

Conclusion. Since calculated t is much greater than the. tabulated t,. it is 
'significanLand hence Ho is discredited af 5% level of significance. Thus we 
conclude that the variabl~s are correlated in the population. 

Example 14·13. Find the least value of r in a sample of 18' pairs of 
observations from a bi-variate normal population. significant at 5% level of 
sigllijicance. . 

Solution •. Here n = 18. From the tables to.os for (18 - 2) = 16 dJ. is 2·12 

r...} (n - 2) 
Under Ho : P = 0, t =. ,- t(II-2) 

1(1 - r2) 
In order that the calculated value of t is significant at 5% level of _ 

Significance, we should have 
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Ir~1 ~ > to·OS 
(1- r2) 

=> .IJ ill I > 2·12 
(1- rl) 

16r1 > (2·12)2(1- r2) => 20493r2 > 4·493 
2 4·493 

r > 20.493 = 0·2192 

Hence I r I > 04682 
Example 14·14. A coefficient of correlation of 0·2 is derived from a 

random ~ample of_625 pairs of observations. (i) Is this value of r significant ? 
(U) What are the 95% and 99% confidence limits to the correlation coefficient i,. 
the population ? 

Solution, Under the null hypothesis Ho : p = 0, i.e., the value of r = 0·2 
is not significant; the test statistics is : 

Now 

r..r;;::2 
t = _ r:-----;, - tll-2 

"1/ 1 - r2 

t = 0·2 x ~ (625- 2) = 5.09 
~(l- 0·04) 

Since df. = 625 - 2 = 623, the significant values of t are same as in.the 
case of normal distribution, viz., to.05 = 1·96 and to-Ol = 2·58. Since calculated t 
is much greater than these values; 'it is highly significant. Hence Ho : P = 0 is 
rejected and we conclude that the sample correlation is significant of correlation 
in the population. 

95% Conful.ence Limitsfor p (population co"elation coefficient) are 

r ± 1·96 S.E. (r) = r ± 1·96 (1- r2)r[;, [Since nlarge] 

= 0·2 ± (1·96 x 0.96N 625) 
= 0·2 ±0.();5 = (0·125,.0·275) 

99% Confidence Limits for pare: 
0·2 ± 2·58 x 0·0384 = 0·2 ±'0·099 = (0·101, 0·299) 

EXERCISE 14 (d) 

1. A restaurant owner ranked his 17 waiters in .terms of their speed and 
efficiency on the job. He correlated these ranks with the total ~ount of tips 
each of these w~ters received for a one-week period. The obtained value of 
correlation coefficient is 0·438. What do y~11 'conclude 'I 

Giyen: ttS (0·05) = ~·131, '16'(0·05) = 2·120 for two-tailed test. 
[Delhi Univ. M.C.A., 1990] 

2. Test the significance of the values of correlation coefficient 'r l obtained 
from samples of size n pairs from a bivariate normal population. 

(I) r = 0·6, n = 38 (it) r = 0·5, n = 11 
An s', (l) t = 4·5; Significant at 5% level; Ho : P = 0 rejected. 

(il) t = 1·73; Not significant at 5% level. 
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(,) Consistent Statistic 
(i,) Unbiased Statistic 

(iiI) Sufficient Statistic 

16039 

(i\l) Efficiency. [Delhi Uraiu. B.Sc. (Stat. ROM.), 1987. 1982] 

2. What do you understand by Point Estimation ? When would you say 
that estimate of a parameter is good ? In particular. discuss the requirements of 
consistency and unbiasednt(ss of an estimate. Give an example to show that a 
consistent estimate need not be unbiased. 

[Delhi Uraiu. B.Sc. (Stat. Ron •• ), 1992, 1986] 

3. Discuss the terms (l) estimate. (ii) consistent estimate. (iii) unbiased 
estimate. of a parameter anti· show that sample mean is both consistent and 
unbiased estimate of the population mean. 

[Calcutta Uniu. B.Sc. (Math •• Ron •• ), 1986] 

4. (a) If Si2• S22 • ...• s,'lare r sample variances based on random samples of 
sizes nit n2 • ...• n, respectively. and if T is some statistic given by 

T = nlsl~ + nzs22 + ... + n,srz 
a 

for estimating aZ as an unbiased estimatOr. find the value. of a. supposing 
population is very large and fdr every sample 

s2 =! l:(x; - i )2 

Ans. a '='(nl + nz + ... + n,) - r. 

(b) If Xl> X~. X3 • •••• X, are the sample means based on samples of sizes 
n., n2. n3 • ..•• n, respectively. an unbiased estimator; 

nlXl + n2X2 t· ... + n,~, 
t= k 

has been defined to estimate J.l. Find the value·ofk. , 
Ans. k =.nl + nz + .:. + n,. 
S. (a) For the geometric distribution. 

f(x, 9) = 9 (1 - 9)~ - I. (x = 1. 2 •... ). 0 < 9 < 1". 

Obtain an unbiased estimator of 1/9. [Ans. E(X) = 1/9.] 
(b) The random variable.X takes the values l' and 0 with res~live 

probabilities 9 and 1-.9. Independent observations X"X2' ...• X"onX are 
available. Write ~ = Xl + Xz + ... + X". 

Show that; (n - ;)In(n - 1) is an unbiased estimate of 9(1- 9). 
6. Show that if T is an unbiased esti~atOr of a parameter 9. then ):1 T + Az 

is_an, unbiased estimator Of'AI 9 ~ Az. where A,I and Az are known constants. but 
'J'l is a biased .estimator of 92• 

7. For the following cases determine if the giv,en esli!nator is unbiased for 
the parametric function. When it is biased. derive an unbiased estimator from it 
i is the sample mean. 
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Proof. Let (Xi. Yi). (i = 1. 2 ..... n) be a random sample of sjze II 

drawn from an uncorrelated bivariate normal population (p = 0) in which 
E(X) = E(Y) = 0 and V(X) = ar-. V(Y) = ail. Let the variable Y be transfOrmed 
to the variable Z by means of a linear orthogonal tran~formation. viz., 

Z = cy 
where ZIl)( 1= (zl. z2 • ••.• zJ'. YIll( 1= (YI.Y2. ·· •• YJ'and CIl)(1l = (cii)' C is an 
orthogonal matrix. Let us. in particular. take 

cII = CI2 = ... = CIIl = l/~ • 
1 _r-

so that ZI = -..In (Yl + Y2 + ... + yJ = V n Y 

Now proceeding as in (Theorem 13·5). we get 
Il Il 

I. z1= I. (Yi-y)2= nsfl 
i.,2 i.1 

Since in a bivariate nonnal distribution. the marginal distributions of X and 
Y are also normal. we have Y - N (0. afl). Hence by Fisher's Lemma 
(Theorem 13·4) Zit (i = 1.2 ..... n) are independent N (0. afl')·. 

Il 

Now 
I. (Xi - x) (Yi - Y ) Cov(X, Y) ,-i.~I ____________ _ 

r= -
n Sx Sy 

Il Il 

Il 

I. (Xi - X )Yi = _________________________ = ~i.~l ______ __ 

n Sx Sy nsx Sy 

_ r L(Xi - i) Yi 
V n Sy r = ':'r = %2. (say). 

vn Sx 
...(**) 

[since the 'Sum of the squares of coefficients of Yl. Y2 • •.•• '" in (.*) is unity.1 
From (*) ~d (**). we get 

• "" " 
nsil = I. z1' = I. z1 + Z22 = I. z1' + nr2sil 

;.2 i.3 ;.3 

" 
~ (1 .:..,.2) n sil = . I. z1' 

';,.3 

Since zi. (i = 1,2 ..... n) are indepemientN (0. ail); 
.. (Zi/ay). (i = 1.2 ...... n) are independent N (0. 1). 

Hence from (**). 

U _ Z22 _ nr2s'; 
- a'; - afl 

... (***) 

hei.,g' the square of a standard normal variate is a x2-variate with 1 d.f. and from 
(* .... ). 
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V = i zl/ar'l = i (z;/ay)Z = (l - rZ~ n ~r'l • 
j.3 j.3 a 

being the sum of squares ,of (n - 2) independent standard nonnal variates is ~n 
independent XZ~variate with (n - 2) d.f. " "-

Further. since %z and (%3. %4 ••••• % .. ) are independent r.v.' s, U and V are 
independent chi~square variates with 1 and (n - 2) df. respectively. 

U _ nr2s';/ai _ (! n - 2) 
•• U,... V - [nrzsr'l + 0- rZ) n syZ]/~r'l ~1 2' 2 

[et. Theorem 13·2] 

(1 n - 2) ~ r2-~1 2' -2-

HeQce the probability function of r2 is given by 
.. -2 

1 - 1 dF(r2) = ' (r2)(1(2)-1 [1- r2] 2 - d(r2), 0 ~ r.2 ~ 1 

B(!. n "2 2) 
dF(r) = 1 (1 - r2]( .. -4)(2 dr, - 1 ~ r ~ 1 

8(!. n -; 2) . 
the factor 2 disappearing from the fact that total prQbability in the range 
-1 ~ r ~ 1 rpust be unity. 

Remark. If p = 0, then t =" r "(~ - 2) is distr.ibuted as SJudent's 
(1 - r2) 

t with (n - 2) d. f. 

Proof. . .. (*) 

... (**) 

From (*). 

dt = " (n - 2) d[rl" (1 - r2) ] 

dJ = V (n - 2) [ .J (I~ P) + H) J~¥;;" ] 
dt = " (n - 2) "dr [1 + 1 r2 2J 

(l-r2) -r 

d _If 2) dr ", ,. d ,1 (1 2)3f2d t =."V n - x (1 2)312' J.e., r = - r t 
- r V(n - 2) 
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As r ranges from -1 to I, from (*),1 ranges from - 00 to 00. 

When p = 0, the p.d.f. of 'r' is given by (14·12) and it transforms to 

dG(/) = 1 [1 _ r2](11 - 4)12 1 (1 _ r2)3fl dl 

B(! , n 2 2) V (Ii - '2) , 

1 1 
= 

V (n - 2} B G, n 2 2)" [ 1 + n ~ i]<" -1)/2 

f 
[From (**)] 

1 1 

- (1 '!....::...1 1" [1 + ~J(II -2 + 1)/2 ' 
V (n - 2) B 2' 2 \J n - 2 

\ - 00 < I <00 
which is the p.d.f. of I-distribution with (n - 2)d.f. 

Hence I = V r • V (n - 2) - '(11- Z) 
(1 - r2) 

Example 14·15. (a) If (Xj, Yj) is a random sample drawn from an 
uneorrelated bivariate normal population, derive the diSlribulion of . 

r= L(Xj - x)'{Yj - Y ) 
~ L(Xj - xV L(Yj - y)2 

(b) Furllier, when n = 5 and if P ( I r 12 C) = a, show lhal C is a root of 
lhe equation, 

C" (/ - <;2) + sin- I C + 1t(a; 1) = 0 

Solution. (a) cf. § 14·3. 
(b) P (I r I ~ C) = 1 -P (I r I S C) == 1 -P (- C S r S C) 

=1-2P(OSrSC)=1-2 f: f(r)dr 

[.: fir) is symmetrical about r = 0] 

Whenn = 5, 
1 1 

f(r) = . (1 - ,.2)2 dr 

B G, ~) 
[ef. Equation (14.12)] 

P(I r I ~ C) = 1 - 2 r(1~~~3,2) f: (1- r2)lfl dr 

1 I I C = 1 - 2 X -I [2 r (1 - rZ) 1/2 + 2 sin-1 r] 
~1t 0 

= I - inc (1 - C,2)'/2 + ~ sin-IC } = ',a, (Given) 
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2[ . !. ] 1 -i C(1 - C2)2 + sin-1.c = a 

C(l - C2)112 + sin-1 C + (a - 1) ~= 0 

14·4. Non-central t.distribution. The non-central I-distribution -is 
the distribution of Ihe ratio of a nonnal variate with possibly non·zero mean and 
variance unity. to the square root of an independent x2-variate dividedlby its 
degrees of freedom. If X ,... N {J.L. 1) and Y is ~ independent -x2-variate with 
n d/., then 

, X 
I =--

~Yln' 
... (14.13) 

is said to have a non-central I-distribution with n df. and non-centrality 
parameter Il. Non-c~ntral I-distrib.utio~ is required' for -the power functions of 
certain tests concemmg nonnal populatIon. 
p.d.f. of 'I'". Since X,... N (JJ,. 1). its p.d/. f{.) is 

f{x) = _~ exp [- ~(x -1l)2] 
v2n 

= _~ exp [- ~ (1l.2 + X2)] 
v2n 

Since y,... X2(II)' its p.df. g(.) is 

00 ill& ~ l: ., ._00 <.x<oo 
; .'0 ' . 

g(y) = 211/2 ;(n12) e-yfl y (1112) - 1 • 0 < y < 00 

Since X and Y are independent. their joint p.d.f. becomes 

1 00 (1I .. \i 
f(x,y) =V2; , exp[-~(1l2+x2+y)]y(tt/2)-L t J7T 

2n·211/2 r(n/2) ; • 0 ' • 

Let-us transform to new variables 1/ and z by ihe substitution: 

, x -{; x _r 
I = ~ yIn = {] • z = + V Y 

~ x = z/'l-{; • y = z2 

Jacobian of transfonnation J is 
ax ax 
ai' az 

J= ~ Qy = 
ai' az 

The joint p.d.f. of I' and z becomes 

o 2z 

II 
2 - 1 

h(t', z) = exp (- U /2) (z2) 2-

fu 211/2 r(n/2) 

2z2 
=-{; 
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1 t'Z 
x exp [--2 (1 + - )%z]; .- 00 < t' < 00, 0 < % < 00 , n. 

_ exp (- uZ/2) 00 [ ,(uQi, e {_ 1..(1 + t'Z l Z}Z1l + J 
- {; 2(11-1)(2 r(n/2) i ~o i! n(i + I)/Z' xp 2 n} J 

Integrating w.r.t. % in the range 0 to 00, we get the p.d.f. of t' 

hl(t') = exp (:.... uZ/2) . 
{; 2(11 -1)(2 r(nl2) 

00 [ (Ut')i J 00 {I ( t 'Z) } . 1 
Xi ~o i! n(i + 1)(2 0 exp - 1: 1 + -;;- Z z1I+ • dZJ 

exp (- p}/2) 
= {;2(1I-1)(2 r(n/2) 

00 (aU')i . 00 t'Z (II + i-I )/Z [ 'J { } 'J X i::'O i! n(i+ I)/Z 0 exp - (1 + n}' (2v) dv 

exp (- p.2l2) 00 2 [

lli2ilZ rr + i + 1) 
= {; r(nI2) j ~o i ! n(i + 1)/2 

1" ] 

... [14·13(a)] 
which is the p.d.f. of non-central t-distribution with n d.f. and non-centrality 
element Il. 

Remark. If Il = 0, we get from [14:·13 (a)] 

hl(t' = 1 . r[(n + 1)/2] • 1 
..J;r(n/2) {;, [ t'ZJ(1I+I)/Z 

1 +-
n 

1 [ t'Z] - (II +1)12 , 
=.r 1 /I 1+ -. ,-oo<t <_ 

'V n B(2' -:p n 

which is the p.d.f. of central t-distribution with n d.f. 
14'5. F-statistic:. Definition. If X and Yare two independent chi­

square v~riates with VI and Vz df. respectively. then F.-statistic is defined by 
X/VI 

F = Ylv2 ... (14·14) 

In other words, F is defined as the ratio of two independent chi-square 
variates divided by tlteir respective degrees of freedom and it follows Snedecor's 
F-distribution with (v), v~ dJ. with probability function given by 
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!L 
(~)2 !! 1 
~ F2 -

I(F) = . '-.0 S F < 00 ••• [14·14(a) 
- B (VI V2) [1 + "...!. F]("'I + "'v12 

2 • 2 V2 

Remarks 1. The sampling distribution of F~statistic does not involve any 
population parameters and depends only on the degrees of freedom VI and V2-

2. A statistic F following Snedecor's F -distribution with (Vlt vi) df will 
be denoted by F - F (Vlt vi). 

14'5·1 Derivation of Soedecor's F-distributioo. Since X and Y 
are independent chi-square variates with VI and V2 d.f. respectively. their joint 
probability differential is given by 

dF(x, y) = {"112 I exp -(-x/2) i"'IJ2)-1 dX} 
2 r(vl/2) 

x { M 12 I exp (-y/2) /"',/2)-1 dY} 
22 r(v2f2) 

= ) 2' I exp {- (x + y)/2) 
2("'1 + "'2 I r(Vl/2) r(v2f2) , ' 

x i"'l/2) - 1 Y ("212) - 1 dx dy. 0 s (x, y) < 00 

Let us make the following transformation of variables : 
xlVI ' 

F =-/- and u=y.sothatOSF<oo.O<u<oo 
y v2 

VI v, 
X = -.Fu = -L Fu and y = u 

"2' v2 

Jacobian of transformation'! is given by 

VI 0 -u 
J _ a(x. y) _ V2 

-a(F, u)-
VI F 1 
v2 

Thus the disttibution of the transformed varia1>le is 

dG(F,u) = I exp {- Ii (1 + "...!.F)~ 
2("1 + "'2)12 r(vl/2~ r(v2f2) 2. V2 If 
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'Integrating out u over the range 0 to 00, th~ distribution of F becomes 

dF _ (VI/V,/'"Ifl)r."1fZ>-1 dF 
gl(F) - 2(111 +1IV/2 r(vd2) r.(v2I2) 

Aliter 

:. VI F =!.. being the ratio of two independent chi-square variates with 
Vl y .-

VI and Vl d'.f. respectively is a ~l (i ' ";) variate. Hence the probability 

function of F isjgiven by 

1 d P(F) = -.-;.....---'-
B (VI Vl) 

2 ' 2 

(~y.a 
~ F(lIl12) -I . 
=. dF, 0 S F < 00 

B (~ V..l.) [1 + VI FJ(II' +·VfZ 
2 ' 2 vl 

-)4'5-2. Constants or F-distribution. 

J.1.',. (about origin) = E(F") = f: F" f( F) dF 

(V f',l- \ 'v{Z fao F(III!2) - 1 
= IV 'F" dF 

B (!l ~) 0 [1 + ~ F](III + "2)12 
'2'2 Vl 

to evaluate the integral, put 

VI . vld' - F=y ,sothatdF =-:- 'Y 
vl ,VI 

••• (*) 
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Il/ = .[vl/vilV"z foo 
B(~ V~) 0 

2 ' 2 

(~y 
~ foo {+(v\/7)-1 

= ) [1 + y](v\/2)+r+{(vz/2)-r) dy 

(
VI Vz 0 

B 2 ' 2 

= (::J. (VII VZ) • B (r + V~ , V; - r} Vz > 2r 

B 2 ' 2 

... (14.15) 

Aliter for (14,15). (14·15) could also be obtained by substituting 

~ F = tanZe in (*) and using the Beta integral : 
Vz 

r 1t /2 ( ~ tL.±...!) 
2 J~ sinP9cosQ9de=B \. 2 ' 2 

II: _ (vz)r r[r+ (vtl2)] r[(vzI2) - r] ~ 
.... - v~· r(VI12) r(v~)" ,r < 2 . ... (14·16) 

In particular 
Il'l - Vz F[1 + (VI12)] r[(vzl2) - 1] 

- VI r(VI12) r(vzI2) 

Vz = -'--2' Vz > 2 [.: r(r) = (r - 1) r(r- 1)] ... [14·16(0)] va-
Thus .the mean of F -distribution is independent of VI. 

Ilz' _ (~)Z n(vd2) + 2] n(vzl2) - '2j 
- VI' r(VI12) r(vz,l2) 

(Vz)Z [(vtl2) + .1] (vtl2) 
= VI • [(vzI2) - 1] [(vzI2) - :] 

VZi(VI + 2). 4 
-vI(vz-2)(vz-4)'vz> . 

_, '2_ :Vl'(VI + 2) ,vzz-. 
Ilz -Ilz -Ill -vI(vz-2)(vz--4) -(vz,,-2)Z 

2vzz (vz + VI - 2) 4 
= VI{VZ - 2)2(vz _ 4) ,Vz > ... [14·16(b)] 

Similarly, on putting r = 3 and 4 in Il/, we get 1l3' and J.14'respectively, 
from which.the central mQmenlS 113 and J.!.4 can be obtained. 
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Remark. It has been proved that for large degrees of freedom, VI and va, 
Ptends toN[), 2 ((I/VI) + (l/Vv)] variate. 

14·5·3. Mode and Poin~ of Innexion of F-distribution. We 
have 

log/(F)= C + (vll2) - I) log F - (VI ~ va}Og (1 + (VI/V') F) 

where C IS a constant independent of F. 

~[I' j{1:'\) ":(!l_ I) 1 _ (VI '+ Va) 1 ~ 
dF o~ "J - 2. . F 2' [ ]. V 

1 +''!.1. F 1 
Va 

o 
r(F) = iJFj{F) = 0 ~ 

VI - 2 _ VI (VI + va) = 0 
2F 2(va + vIF) 

Hence F = Va (VI - 2) 
VI (va + 2) 

It can be easily verified thatat this poiilt/"'(F) < O. Hence 
Mode _ ..... vl"-( ..... v ..... 1'_-_2 .... ) 

VI (va + ~) 
Remarks 1. Since F> 0, mode exists if and only if'vi > 2. 

2. ~ -(vaV! 2} Cl V~ 2) 
Hence mode of F -distribution is always less than unity. 

••• (14·17) 

3. The points of inflexion of F-distribution exist for VI > 4 and are 
, eqU::1istant from mode. 

Proof. We have ;~ F':: N JJa (I, m), (*) 

where 1'= vtJ2 and m = vzI2. We nOw find, the points 'of inflexion 'of Beta 
distribution of second kind with j>ammeters I and m. 

If X - J3a (I, m), its p.d/. is 
1 x I-I 

j{x) =J3(/.m).~I+x)' .. 1II ;OSxc;:oo ... (*.) 

Points of inflexion are the solution of 
f"'(~) =0 and l-(~) ,*0 

From (**), 
logj{x), = -lpg 13(/, m) + (1- I) log x - (I + m) log (I +~) 

Differentiating twice w.r.tx. we get 
M _L:..1. 1+ m 
~) - x .1 '" x 

[(x)f'" (x) - [('(x)]2 = _ (I - n 1+ m 
£1\%)Ja ' l~ x2 ) + (1 + x)a 
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Iff"'(x) = 0, then we get 

-[f}:l J =-(' ~ -l} (~: ~2 

1449 

=> .- ['~ 1 _ '1 ++ :r .r: - (' :;z 1) + (:++ ~)2 [On using (***)] 

=> .!...=-.! (I - 1 - 1) _ 2 (1- 1)(1 + m) + I + m x (I + m + 1) = 0 
x2 x(1 + x) (1 + x)2 

=> (1-1)(1-2)(1 +x)2 - ~(l +x)(I- 1)(1 + m) + r(1 + m)(1 + m + 1) = 0 
... (****) 

which is a quadratic in x. It can be easily verified that at these values of x, 
f "', (x) ~ 0, if I > 2. 

The roots of (****) ~ive the points of inflexion of Ih (I, m) distribution. 
The sum of the points of inflexion is equal to the sum of roots of (****) and is 
given by: 

_ [coefficient of x in (****)] 
Coefficient of x2 in (****) 

_ [ 211 - 1)(1 - 2) - 2(1 - 1)(1 + m) ] 
-- (1- 1)(1- 2) - 2 (1- 1)(1 + m) + (I + m)(1 + m + 1) 

2(1- 1)[(1 + m) - (1- 2)] 
= (I - 1)(1 - 2) ~. (I - 1)(1 + m) - (I - 1)(1 + m)+ (I + m)(1 + m + 1) 

_ 2(1- 1) (m + 2) 
- (1- 1)[(1- 2 - 1- m] + (I + m)[1 + m + 1 - I + 1) 
_ 2(1 - l)(m + 2) , 
- -(1- l)(m+ 2) + (l + m) (m + 2) 
_ 2(1 - 1) _ 2(1 - 1) 

- I + m ~ I + 1 - (m + 1) 

. . Sum of points of inflexion of (:~ F ) distribution 

2 (~- 1) _ 2(1 - 1) _ 2, _ 2(v! - 2). 
-(m+ 1)- (v ) -(V2+ 2) 

...1.+ 1 
2 

=> Sum of points of inflexion of F(vt,v~ dis~~ution 

~ 2(vt - 2) . !!. . = . ( '2) ,provided 1='2 > 2 Vt V2 + 
= ,2 v2 (VI - 2) 

. Vt(v2 + 2) 
= 2 Mode, provided Vt > 4 

Hence the points of inflexion of F(Vh v:z) distribution, when they exist, 
(i.e., when Vt > 4), are equidisiant from the mode. ' 
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4 .. Karl Pearson's coefficient of skewness is given by 

SL = ~M~ea=n_--,M=o:.:::d~e . .. >0, 
(J 

since mean> 1 and mode < 1. Hence F-distribution is highly positively skewed. 
5. The probability p(F) increases ~teadi1y at first until it reaches its peak 

(corresponding to the modal value which is less than 1) and then decr~ses 
slowly so as to become tangential at F= 00, i.e., F-axis is an asymptote to the 
right tail. 

Example 14'16~ When VI = 2, show tbat the singificance level of F 
corresponding to a significant probability p is 

F = ;2 (~-{1Iv-J) _ 1) 
where VI an V2 have their usual meanings. 

Soluti~n. When VI = 2, 

dP(F) 1 
= ( V)'VZ'[' Bl,~ . 1+ 

2 dF 
(c,f. §14·14a) 

00 

F 
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-<JIv.J I 2F F v., [ - rJ.!V2) I] => P = +- => =-- p -
V2 2 

Example 14·17. If F(nh n7J represent an F-variate with nl and n2d/.. 
prove that F(n2. nl) is distributed as l/F (nh n7J variate. Deduce that 

P[F(nt • n7J ~ c] = P [F(n2' n~) ~ ~] 
Or 

Show how the probability points of F(n2; nl) can be obtained from those of 
F(nh n7J. 

Solution. Lei X and Y be independent chi-square variates with nt and n2 
dJ. respectively. Then by definition. we have 

(Xlnl) 
F = (Yln7J - F(nl. n7J 

1 (Yln0 
Ii = (Xlnl) - F(n2. nl) 

Hence the resulL 
Wehave: 

P[F(nh n7J'~ c] = ~ [F(ntl• n7J S ~ J 

... (*) 

=p[F(nz• nt) ~ ~J 

Remark. P[F(nh n7J=c] =P[F (n2. nt) = !J 
[From (*)] 

Let P [f'(nh n7J ~ c] = a 
i.e .• let c be the upper a-significant point of F(nh n7J distribution. 

.. I-a =1-p[F(nhn2)~C]='1-P[F(nl~n7J ~~] 

=> a =p[F(n2.nt) ~ ~]=I-p[F(n2.nl) ~ ~J 

=> P [F(n2' nl) ~ ~ ] = 1 - a 

Thus (1- a) significant points of F(n2. nl) distribution are the reciprocal 
of ~-significant points of F(nh n7J distribution. e.g .• 

. 1 
Fa.4 (0·05) = 6.()4 .=> F4• a (0·95) = 6.04 

Example 14·18. Prove that if nt = n2. the median of F-distribution 'is at 
F·= 1 and that the quartiles QJ and Q3 satisfy the condition QlQ3 = 1. 

[l)ellai UnifJ. B.Sc. (Stat.HoM.), 1989] 
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Solution. Since nl = n2 = n. (say). the median (M) of F(nl.n2) = F(n. n) 
distribution is given, by : 

P [F(n. n) :s; M] = 0·5 ... ("') 

=> P [;(~. n) ~ !] = 0·5 

=> P[F(h. n)~ !J = 0·5 [ .. , F(~. n) = F(n. In)] 

PIF(n. n):S !J = 1-{F(n. n)~ !J 
= 1 -0·5 
=0·5 

From (*) and (**). we get 
1 

M=M => M2=1 => M=1 

the negative value M = -1. is discarded since F > 0. ." 
Hence the median of F (n. ~) distribution is at F = 1. 
·Similarly. by defInition of Ql and Q3. we have: 

P[F(n. n):s; QI] =.0·25. 

md p[F(n. n) ~ Q3] = 0·25 

~. 

... ( .. ) 

. .. ( .... ) 
P [F(~. n) ~ ~;] = 0·25 

P [F(n. n)S ~J = 0·25 [ •. , F(~. n) = F (n. 1lI)] ... ( ••• ) 
From .(***) and (****). we get . 

Ql =.~ =;> ·Ql Q'3 = 1 

Example 14·19. LeI Xl X2 • .... X" be a random sample from N(O. 1). 

- 1 i_I " 
Define Xi = -" II XI and X._ i = ----::-" I X, 

Find the distribution of.: 
1 (- - \ (a) '2 Xi ;+ X. _ ",. 

n - i+ 1 

(b) "Xi+ (n - k) X2 ,,_ i 
(d) XiIX2 

[Delhi Ulliri. B.A, (Stat. Bo" •• spi. Coune), 1989] 

Solution. (a) S~nce Xh X2 • ••• )(" is a rando~ sample from N (0. 1). 

Xi-N(O.l) and X"_i-N.(O.~~,,) ... ("') 



-

14-53 

Further. since (Xt>Xl •.•.• X,J and (X" ... t>X""'l~ •..• X,,) are independent. X" and 

X tH are independent Hence. 

~(X"+XII_t>=~'X,, +~XII_J;-N(O. ik + 4(nI_k») 

=> k<XJ;+X,,-l)-N(0'4k(:_k») 
(b) From (*). we get 

=> 

~-N(O.I) 
..JI/k . 

k Xk~ - 'X}(l) 

and..J XIO-I; - N (0. 1) 
I/(n - k) 

Since X" and X 11_" are independent. by additive property of chi-square 
distribution. 

k X,? + (n - k) il,,_k - Xl(l'" 1) = XZ(2) 

(c) Since XI - N(O, 1) and Xl - N (0.1) are independent. 

X1l - XZ(l) and XZl - Xl(l). 
are also independent Hence by definition of F-statistic, 

Xl l/1 . Xlz 
X;Nl - F(1.1) => Xzz - F(l'. I) 

(d) Xl/Xz. being the ratio of two independent standard normal variates is a 
standard Cauchy variate. [See Example 8·43]. 

EXERCISE 14(e) 

1. (a) Derive the distribution of F = slzl SlZ. where Sll and Sll are two 
independent unbiased estimates Qf the common population variance aZ• defined 

by 1 "1 _ l' It2 '_ 
SIZ=-- r (XU-Xl)l; S2Z=--,-, r (X1j-Xl)Z 

nl-I;_l nz-I j _ l 

(b) Find the limiting form when the degrees of freedom of the XZ ip the 
denominator tend to infinity and give an intuitive justification of the result. 

2.(a)lfXt>Xz ••.•• X"'.X"'.h ....... X"' ... " are independent normal 
variates with zero mean and staqdard deviation a. obtain the distribution of 

'" / "''''" r Xl r xl 
; .. 1 . ; .. ",+1 

Ans. F(m. n). . 
(b) If X has an F distribution with nl and nz d.f .• find the distribution of 

l/X and give one use of this result. 
(c) If X is t-distributed. show that Xl is F-distributed. 

rDelhi Univ. B.Sc. (Maths. Hons.), 1990] 
Hint. See § 14·5·6. 
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3. (a) Derive the distribution 'of the F -statistic on (nit n2) degrees of 

freedom and show that the statistic (1 + ~ F r has a Beta distribution. 

(b) Show that the probability curve of the distribution of F is positively 
s~wed. ' 

4. Prove the fo1l9wing : 

(iJ) F "1."2 = n2 • -I x ,where x has Beta-distribution. 
nl - x 

5. If X and Y are independent chi-square variates. with VI and V2 d.f. 

respectively, show that U = X + Yand V = V7Xy are independently distributed. 
. VI 
Hnd the distri~ution 9f V. 

6. Prove that if X has the F -distribution with (m. n) d.f. and Y has the 
F-distribution with (n. m) d.f., then for every a > 0, 

P (X:5; a) + P {Y :5; ~}= 1 
7. Show that the mode of the F-distribution with VI ( ~ 2), v2 dJ. is given 
v2 (VI - 2) . .. ' 

by ( 2) and Is'always less than umty. VI V2 + 
8. X is F-variate with 2 and n (n ~ 2) degrees of freedom. Show that 

P (F ~ k) = (1 + 2: )""/2 
[Gujarqt Univ. B.Sc., 1992] 

Deduce the significance level of F corresponding to the significance level of 
probability P. 

9. Let X!, X 2 be independent random variables following the density law 
f(x) = e-", 0 < x ~ 00. 'Show that 

Z =XdX2, has an F-distrihution. 
10. (a) If X - F (nit nz), show that its mean is independent-of nl. 
(b) Obtain the'mode of F-distribution w'ili (nit niJ d.t. and show that it lies 

between 0 and 1. 
(c) Sllow that for F-distribution with nl and n2 d.f., the poines of inflexion 

exist if nl > 4 and are equidistant from the mode. 
11. X is a binomial variate with parameters nand p and F "1."2 is an 

F-statistic with VI and V2 dJ. Prove that 

P(X:5;k-I)=P[F2k• 2(,,_k+l» n -~ + I. 1 :PJ 
[Delhi Univ. R.Sc. (Stat. Bon •• ), 1985] 

Hint. If X,., B (n. p), 'then we have [c.f. Example 7·23] 
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P(X ~·k -1) = (n -k + 1). (k ~ 1) Joq 1,,-1:(1-·/)1:-1 dl 

1 Jq = B(k. n - k + 1) 0 1,,-1: (1-1)1:-1 dl 

[ n - k + 
P F ZI:.Z(" - I: + I) > k 1 G ~ p)] = J 00 .P[F2k.2(,,-h I)] dF 

,,- I: + I e 
I: 'q 

1 100 [k/(n - k + 1)]1:. FI:-I dF 

,,-I: + 1 e = B(k, n - k + 1) [kF J" + I 
I: 'q 1 + n _ k ,.. 1 

. 1 J q ,,-I: (1 ) 1:-'1 ely = B(k, n - k + 1) 0 Y -y 

1 + kF 1 
where n-k+ 1=,' 

12. (a) If X - F (nit nz) distribution. show that 

u = n I X .., ~I (nil. nz) 
nz + nl X 21. 

[Delhi Univ. B.Sc. (Math •• Hon'!.), 1992] 

Hence obtain the distribution' function of X. 
Hint. The distribution fU1)ction of X - F (nl. nz) is given by 

GX<~) = JoX j(F) dF = JoY h(u)du. [Y - nl x ] - nz + nl x 

~ B (~ ~)J: 
2 • 2 

~ '2. 
Z-1 Z-1 

u (1- u) du 

= 'y (;1 . nt). 
1 JX where Ix (p, q) = B(P, q) 0 I p-I (1- I)q-l dl, 

is the incomplete Beta function. Hence the distribution function of F 
distribution can be obtained from the tables of incomplete Beta functi9~. 

(b) X - F (m, n). show that 
In Xln (I I) w= 1 + (m Xln)-~I 2m , zn 

Deduce the variance of X from p.d.f. of W. 
, [Delhi Univ. B.A. (Stat •. Rons. Spl. Course), 1989] 



13. Let X I and Xl be a raqdom, sample of size 2 form N "(~, I) and YI and 
Yl be a random sample of size 2 from N 0,'1), and let the Y;'s be independent 
of the X;'s. Find the distribution of the following: 

(I) (XI -Xz)t{Z (il) (XI + Xi'l/(Xl-XI)l 

'(iiI) X + Y (iv) (YI + Yl -2)l/(Xl -XI)1 

v) (XI +Xz)/,J[(Xl :.... XI)l + (Yl - y l )l]/2 
II) [(YI - yz)l + (XI _Xz)l + (XI + Xz)l]/2 

[Delhi Univ. B.Sc. (Matha. Bona.). 1988. 1987] 
ADS. (i) N(O.I). (i.)F(I.I). (;;.)N(I.I) 

(iv) F (I, I). (v) tel). ,(vI) Xl (3)' 

14. Let Xi - ,N (i. iZ). i = I, 2j 3, be independent random variables. Using 
only the three random variables X I. Xl. and X 3, give an example of a statistic 
that has: 

(I) A c;hi-square distribution with 3 d.f. 
(il) An F-distribution with (1. 2) d.f. 

(iiI) A t-distribution with 2 d.f. 
[Delhi, Univ. B.A. (Stat. Bon •• Spl. Course). 1986] 

Ans. Hint. Zi = (Xi - .)/i, i = 1,2.3. are ,i.i.d. N (0. I). 

( :'\ ~ Z.l 1 (.:'\ 1. Zil F(l '2) ("') ZI 
" i:-I ,-X (3); II, Zll + Z31 - . • ; III [(Zll + ~1)I2]lf2 -t(2J 

15. Let X .. Xl ..... X",be a random sample from N (JJ., ( 1). Define: 

- Ik - I" - I" 
Xk=k-I,X i • X,,-k=--k- I, Xj. X=-I,Xj 

I n- k+1 nJ 

1 k - 1"-
Skl=--I, Xj_Xk)l. Sl,,_k= I, (X;_X,,_k)l 

k-II n-k-Ik+1 
I" -

all SZ=n_It(Xi-X)l. 

Answer the following questions : 
(,) What is the distribution of 

o -1 [(k - 1) Slk + (n - k - I) S2" _ k] ? 

(il) What is 'the distribution of SZk/Sl,,_k? 

(iii) What is the distribution of (X - J.I.) 4'; / S'? 
[Delia,i Univ. B.Sc. (Math. Bon •. ), 1989] 

(iv) What is the distribution of t(X A: + X" _ k) ? 

(v) What is the distribution of (Xi - J.I.)l/02? 

Ans. (I) X?(k-I) + ("-k-l) = Xl(,,_l) ; (it) FCk_I.,,_A:_I) 

(ii,) t(,,-1); (iv).N G. 4k(;: k»). (v) X?(l) 
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16. If X - F(1. n). show that 

(n - ~)tOg [1 + (Xln)] -Xl (I)' 

for largen. 
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17. If Xl.X l .X3 and X4 are iqdep~ndent observations from N (0. 1) 
populatic;m. state giving reasons. th~ Sampling distributions o( 

{2 X3 . 3X4l 
(0 U = and (n) V = X l X l X l 

"X1l + Xll 1 + l + 3' 

Ans. (l) U - 1(2); (il) V - .f(1, 3). 
18. Let (Xl> Xz) be a random sample from N(O, I). Answer the f~)nowing, 

giving reason,s : 
(0 What is the distribution of (Xl - X l)l/2 ? 

(il) What is the distribution of (XI + X z)l/(X l - X l)l 'r 
(iil) What is the distribution of (Xl + x,)/.J (X, - Xz}l? 
(iv) What is the disuibution of lIZ. if Z = X IllXll? 

[Delhi Uniu. B.Se. (Math •• Hon •• ).1992] 

Ans. (i) Xl(1); (ii) F(1, I) ; (iiO Standard Cauchy; (iv) F(1. 1) 

14· 5·4. Applications of F -distribution. F -distribution has the 
following applications in Statistical theory. 

14·5·5. F-test for Equality of Population Variances. Suppose 
we want to test (l) whether two independent samples Xi. (i = 1; 2 ..... nl) and Yj. 
U = 1.2 ..... nz} have been drawn from the normal populations with the same 
variance (Jl. (say). Of' (ii) whether the two independent estimates..of the 
population variance are homogeneous'or noL 

Under the null hypothesis' (Ho) that (l) iJl: = (Jf2 = (Jl. i.e., the population 
variances are equal or (ii) Two independent estimates of the population variance 
are homogeneous, the statistic F is given by 

S~ 
F =sz ... (14·18) 

1 "l y. 1 nz • 
where SXl = --1 I. '(Xi - i)l and Syl = --I I.':"}Ij - y)l .. :(14·18a) 

n 1 - i-I "l - . j _ 1 

are unbiased estimates of the common popuiation variance (jl obtained from two 
independent samples and it follows Snedecor~s F -distribution with (VI. vz) d.f. 
[where VI' = nl - 1 and Vl =.nl - 1]. 

( 

Proof. F = Sx~ ='[_n_l - sxlJ/ [~ . SylJ S.I nl - 1 nl - 1 

=[n~:r . (nl ~ 1)J / In~1 ' (nl ~ 1)] 
(.: (Ji- = (J~ = (J2 under-Uq) 
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Since nl~f and ~ are independent chi-square variates with (nl - 1) and ar ar . 
. (n2 -1) dJ. respectively, F follows Snedecor's F-distribution with'(nl -I, n2-1) 
, d:f. (c.f. § 14·5). 

.... Remarks 1. In (14·18), greater of the two variances Sx2 and S'; is to be 
: taken 'in the numerator and nl corresponds to the greater·vaiiance. 

By comparing the calculated value of F obtained by using'(14·18) for the 
two ~iven samples wi~ the tabulated value of F for (nit n,) dJ. at certain level 
of significance (5% or 1 %), Ho is either rejected or accepied. 

2. Critical values of F -distribution. T~e a~ailable F -~bles (given in the 
Appendix at the end of the book) give the critical values of F for the right-tailed 
test, i:e.. the critical region is determined by the right-tail areas. Thus the 
significant value Fa (nit n~ at level of significance a and (nit n2) d/. is 
determined by 

P[F > Fa (nit n,)] = a, ... (*) 
as shown in ~e followiilg diagram. 

CRmCAL VALUES OF F-DISTRffiunON 
P(F) 

Critical value 
Rejection 
regi 0 n (ClC.) 

~~~~~~~~~F 
F«(n1 ,n2) 

From Remark to Example 14'17, we have the following"reciprocal relation 
between the upper an,d lower (x'-significant points of F -:distribution : 

. 1 . 
Fa (nit n,) = F ( ) I-a n2, nl 

~ Fa (nl' n,) X Fl-a (n2, nl) = 1 ... (**) 
The critical values of F for left tail test H 0 : a 12 = a 22 against 

HI: al.2 <<122 are given by F'< F"i- It 112"'l(1~a), and for the 'two tailed ~st. 
Ho : all: a22 against HI : al2 ~ G22 are given by F > Flit -It ~_I(a/2) and 
F < F "I_"~_I (1~- a/').) [For details, see § 16·7:5]. 

Example 14'20. Pumpkins were grown under tw(J experimental 
conditio.ns. Two random samples of 11 and 9 pumpkins show the sample 
standard deviations of their weights as 0·8 and 0·5 respectively. Assuming that 
the weight distributions are normal. ,test the hypot~esis that the true variances 
are equal. against the alternative that lhey are not. at the 10% level. [Assume 
that P (FlO. a ~ 3:35) = O.()S aTl;d P (Fa. 10 ~ 3·07) = 0·051· 

Solution.· W_e want to test Null Hypoth~sis. Ho: ax2 = ~1.:2. 
agai~st the Alt~rnative Hypoth,esis, HI ': ax2 ~ a'; (Two-taded). 
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We are given: 
nl = II,n2=9,sx =0·8 and Sy= 0·5. 

Under the null hypothesis, Ho : (Jx = (Jy, the statistic' 

F _s~ -sy2 
follows'F.-distribution with (nl - 1, n2 - 1) d.f. 

Now nl s~ = (nl - 1) S'x2 

.. S~ = ('n l n2 1 )s~ = (\~ )x (0·8)2 = 0·704 

Similarly, Sy2 = (.....!!i.....)sy2 = (~ )x (0·5)2 = 0·28125 
n2 - 1 8 

0·704 
.• F = 0.28125 = 2·5 
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The significant values of F for two tailed test at level of significance 
a = 0·10 are: 

F > F 10•S (a/2) = F 10•S (0'05)} 
and F < F 10.8 (1 - a/2) = F 10.8 (0·95) ... (*) 

We are given the tabulated (significant) values : 
P [F10•S ~ 3·35] = 0·05 ~ FIO•8 (0·05) = ~·35 ... (**) 

Also P[F8• 10 ~ 3·07] = 0'()5 ~ iF:.10 ~ 3.~i] = 0·05 

~ P [FlO, 8 ~ 0·326] .,. 0'()5 ~ PW 10.8 ~ ()'326] = 0·95 ... (***) 
Hence from (*). (**) and ( ... ). the critical values for testing H 0 : 

(Jx2 = (Jy2. against HI: (Jil rI: (Jy2 at level of significance a = 0·10 are given 
by: 

F'> 3·35 and F < 0·326 =-0·33 
Since, the calculated value of F (=2·5) lies between 0·33 and 3·35, it is not 

significant and hence null hypothesis of equality of population variances may be 
accepted at level 'of significance a = ()'10. 

Example 14·21. In one sample of 8 observations, the sum of the squares 
of deviations of the sample values from the sample mean was,84.4 and in the 
other sample of 10 observations it was 10216.. Test whether. t"is difference is 
signifu:ant at 5 per cent level, given that the 5 per cent point of F./or nl =·7 and 
~ = 9 degrees offreedom is 3·29. [Delhi Urai.,. BoSc. (Math. Hon •• ), 1986) 

Solution. Here nl = 8 .. n2 = 10 

l:(x - x-)2 = 844, l:(Y - y)2 = 102·6 

Sx2 =_I_l:(x_i)2= 844 = 12.057 
nl - 1 7 

1 - 102·6 s,z =--L(y-y)2=-= 114 
n2 - 1 9 



14-60 FU:ndaiiJ.ental of Mathematical S1atistica 

Under Ho : (1J?- = (1'; = (12, i.e .• the estimates of (12 given by the samples 
are homogeneous, the test statistic is 

Sx2 12·057 
F = S.; = --.-.:4 = .1·057 

Tabulated Fo.Q5 for (7, 9) d.f. is 3·29. 

Since calculated F < Fo-os, Ho may be accepted at 5% level of significance. 

Example 14·22. Two rando~ samples gave the following results : 

Sample Size Sample mean Sum of squares of 
deviations from the mean 

1 

2 

10 
12 

15 

14 

90 

108 

Test whether the samples come from the same' normal population at 5% 
levell!f significance. 

[Given: Fo.os (9, 11) == 2·90, Fo-Q5(1l,9) = 3·10 (approx.) 

and to-os(20) = 2.086, to.os(22) = 2.07] 

[~elhi UnirJ. MeA, 1987] 

Solution. A normal population has two parameters, viz.. mean J.1 and 
variZ:llce (12. To test if two independent samples have been drawn from the same 
normal population we have to test (i) the equality of population means, and 
(U) the equruity of population variances. 

Null Hypothesis :, ')'he two samples h~ve'been drawn from the same normal 
population, i.e .• Ho : J.11 = J.12 and (11 2 = (1l. 

Equality of means will be tested by applying t-test and equality of variances 
will be tested by applying F-test Since t-test assumes (112 = (122, we shall fiJ:st 
apply F-test and then t-test 

Weare given nl = 10, n2 = 12; XI = 15, X2 = 14} 

L(XI - XI)2 = 90, L(X2 - X2)2 = 108 

F-test 

Here 

Since SI2 > S22, under 110: (11 2 = (122, the test statistic is 

S)2 
F = S22 - F (ni - 1, n2 - 1) = F(9, 11) 
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Now 
10 

F = 9.82 = 1'()18 

Tabulated F().os (9,11) = 2·90 

Since calculated F is .less than tabulated· F it is not significant. Hence null 
lIypothesis of equality of population variances may be accepted. 

Since alz = azZ, we can now apply t test for testing 110 : III =. Ilz. 

t-test. Under 110': III = Ilz,. against alternative hypothesis, HI': III -¢ Ilz, 
the test statistic is 

t =t'n "I + "Z - Z .• 

where SZ = . + 1 2 [L(XI - XI)Z + L(Xz - xz)2] 
nl nz-

1 = 20 [90 + 108] = 9·9 

= 15 - 14 = ---;:=1~:;.... 
~ I ( 1 1)'" '9.9 x ~ 
\j 9·9 10 + 12 " 

1 
= ~ 1.815 = 0·742 

Now to.os for 20 df. = 2·086 

Since I t I < to.os, it is not significant. Hence the hypothesis Ho': III = 112 
may be accepted. Since both the hypotheses, i.e., Ho': III = Ilz and 
Ho: alz = azz are accepted, we may regard that the given samples have been 
drawn from the Same normal population. 

EXERCISE 14(0 

1. (a) If XIZ and xl are independent chi-square variates with nl and nz d.f., 
obtain the probability density function .of F -statistic defined by 

F- (xlz/nl) 
- <xi/nz) 

Men.lion the types of hypotheses which are tested with the help of this statistic. 
(b) Explain why the larger variance is placed in the numerator of the 

statistic. F. Discuss. the. application of F -test in testing if two variances are 
homogeneous. 

2. An. investigator, newly appointed, was milde to take ten independent 
measurements on the maximum internal diameter of a pot at speci~ed equal 
intervals of time and the standard deviation of these te~ observations was found 
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to be 0·0345 mm. Mter he had been some time on similar jobs, he was asked to 
repeat this experiment an equal.number of times and the standard deviation of the 
new set of ten obserVations was found to be 0·0285 mm. Can it be concluded 
that the investigator has become 1}10re consistent (i.e. less variable) witli 
practice? • 

3. (a) Two independent samples of 8 and 7 items res~tively had the 
following values of the variables. 

Sample I 9 11 13 11 15 9 12 14 
Sample n 10 12 10 14 9 8 10 
Do the estimates of population variance differ significantly? 

Welhi Unjv. B.Sc., 1992] 

(b) Five measurements of the output.of two, units have given the following 
results (in Idlograms of material per one hour of operation). 

Unit A 14·1 10·1 14·" 13·7 14·0 
Unit B 14·0 14·5 13·7 12·7 14·1 

Assuming that ,both samples haVe been obtained from normal populations, 
test at 10% significance level if the two populations have the same variance, if 
being given that FO,9S (4,4) = 6·39-

[Calcutta Unjv. !J.Se. (Moth •• Bon •• ), 1991] 

(c) In one sample of 10 observations from a normal population, the sum of 
the squares of the deviations of the sample v8lues from the sample mean is 
102·4 and in another sample of 12 ob~ervations from another normal 

. population, the suin of the squares of the deviations of the sample values from 
the sample mean i~ 120·5. Examine whether the 'two normal populations have 
the same variance. 

4. (a) Two random samples of siZes 8 and 11, drawn from'two normal 
populations, are charac~rised as foll~ws ; 

, Population/rom wldch lhe Size 0/ 
~ample is drawn sample 

r 8 
n 11 

Sum 0/ 
observations 

9:6 
16·5 

Sum 0/ squares 0/ 
observations 

61·52 
73·26 

You are to decide if the two populations can be taken to have the same 
variance. What test function would you use ? How is it distributed 'and what 
value it has in this sampling experim~t ? 

(b) The following are qte values in thousands of an inch obtained by two 
engineers in'10 successive measurements wi~ the same micrometer. Is one 
engineer significantly more consistent ~ the other? ' 

Engineer A .:~,503, 50S, 497, 50S, 495, ~02, 499. 493, 510, 501 
Engineer B : 502, 497, 492, 498, 499, 495, 497, 496, 498, 
Ans. Ho : 0'12 = 0'22 (both engineers are equally' consistent). F = 24. Not 

significant. 
(c) The nicotine content (in miligrams) of two samples of tobacco were 

found to be as follows: 
Sample A 24 27 26 21 25 
Sample 'B : 27 30 28 ~ 1 22 36 
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Can irbe said thanhe two samples come from the same normal population? 
ADS. Ho: JlI = Jlz : t = 1·9, Not significant 

Ho': <1IZ= <1zz·, F= 4·08< 6·26 [Fo.()s(5, 4»). Not significant. 
lIenee the two samples have come from the same normal population. 

S. (a) Two random samples drawn from two normal populations are : 
Sample I : 20, 16, 26, 27, 23. 22, 18, 24, 25,' 19 
Sample 1/ : 27, 33, 42, 35, 32, 34, 38, 28, 41, 43, 30, 37 
Obtain estimates of the variances of the populations and test whether the 

populations have same variances. 
[Given F ().os =.3: 11 for 11 and 9 degrees of freedom.] 

(b) Test Ho: <1IZ= <1z2 against HI: <112 *<1z2 

given nl = 2S, }: '(x; - i )2 = 164 x 24, 

ni;;: 21, }:(yj - Y )2 = 190'x 21. 
Make necessary assumptions, stating them. 

'[Calcutta Uni". B.Sc. (Math •• Ron •• ), 1987] 

(c) The diameters of two random sampleS. each of size' 10, of bullets 
produced by two machines have standard deviations SI = 0·01 and Sz = 0·015. 
Assuming that the diameters have independent distributions N(Jlh (112) and 
N(Jl2,<12Z), test the hypothesis that, the two machines are equally good by 
testing: 

Ho: <11 = <12 against HI : <11 * <12' 

6. The following table shows the yield of com in bushels per plot in 20 
plots, half of which are treated with phosphate as fertiliser. 

Treated :508361 0331 
Untrealed:l 4 123 Z 5020 
Test whether the treabnent by phosphate. has 
(,) changed the variability of the piot yields, 
(i,) improved the average yield of com. 
7. (a) The. following figures give the prices in rupees of ~ certain 

commodity in a sample of IS shops ~elected at random from a city A 8I!d those 
in a sample of 13 shops"froqt another city B. 

City A': 7·41 ·;·77 7·44 7·40 ~·3.8 7·93 7·58 
8·28 7·23 7·52' 7·82 7·71 7·84 7·63 7·68 

City B 7·08 7·49 7·42 7·04. 6·92 7·22 7·68 
7·24 7·74 7.·81 3·28 7·43 7·41 

Assuming that the distribution of prices in the two cities is normal, answer 
the following : 

(,) Is it possible that the average price of city B is Rs. 7·2O? 
(ii) Is the observed variance in the first sample consistent with the 

hYP9thesis .. that the standard deviation of prices in city A is Rs. 0·30 ? 
(ii,) Is it.reasonable to say that ,the variability of prices in' the .two cities is· 

the same ? 
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(iv) Is it reasonable to say that the average prices are the same in two 
cities? 

14·5·6. Relation between t and F distributions. In F -distribution 
with (vI' vz) d.C. [c.f. 14·5 (0)], take vI = I, Vz = v and ,z = F, i.e., dF = 21 dl. 
Thus the probability differential of f transfonns to 

I 

(11 :\112 ( 2) '2 - I 
dG(/) =V, .' . 21 dl, 0 S; ,z < 00 

(1 ~) [1 + I:"J<. + 1)12 

B 2' 2' v 

1. 1 d' . = .... 1- 00 <1<00 

~ B(~' ~y [i + ~;J,,"l)JZ ' 
the faclOr,2 disappearing since the total probability in the range (- 00, 00) is 
unity. This is the probability function of Student's I·distribution with v d.f. 
Hence we have the following relation between I and F distributions. 

'If 0 ~/olisl;c I follows Sludenl's ( dislribulion with n d/.: lhen ,Z follows 
Snedecor's F-dislribution with (~, n) d/. Symbolically, 

if 1- ,< .. ) } 
then ,z - F(l, .. ) ... (l4·1~ 

Aliter Proof of (14'19). If ~ - N (0, 1) and X -' Xz< .. ) are independent 
r.v.'s then: 

U = ~z_ XZ(l) [Square of a S.N.V.] 

mel I =...:L - 1(If) 
~Xln 
_L_~ 

~ (l - (Xln) - (){In) , 

being the ratio of two independent chi-square variates divided by their respective 
degrees of freedom is F(J , n) variate. 
Hence ,Z - F(I, n) 

With the help of relation (14·19), all the uses of I-distribution can be 
regarded as the applications of F -distribution also, e.g., for test for 3' single 
mean, instead of compllting 

we m.ay compute 

i -'J.L 
1= _r' 

Srvn 

F _,2 _ n( i- 1J')z 
- - SZ 

and then apply-F-test with (I, n) d;f. and so on. 
Similarly,we can write the test statistic F from § 14·2·9, § 14·2·10 and 

§ 14·2·11 for testing tile· significance of an observed sample correlation 
coefficient, regression coefficient and partial correlation coefficient ~tiVely. 



Example 14·23. Given: P[F(lO. 12) > 2·753] = 0·05 
= P[F(l.12) > 4·747] 

find P[F(12. 10) > (2·753)-1], and P[-",,4.747 < /12< ",,4.747] 
Soluti'on. 

P[F(12,10»(2·753)-I] =P[F(li, 10) < 2'753] 

= P[F(10, 12) < 2.753] 
= I-P[F(IO, 12) > 2·753] 

= 1 - 0·05 = 0·95 

p[ - ",,4.747 < 112 < "" 4· 747] = p(/212 < 4·747) 
= P[i:(I, 12) ~ 4·747)] 
= 1 -P[F(l, 12) > 4.747] 

= 1-0·05 = 0·95 
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14·5·7. Relation between F and X2. In F (nit n2) distribution if we 
let n2 -+ 00, then X2 = nlF follows X2·distribution with nl d.f. 

Proof. We have' 

(nl/nv"th F(tt,!2) -I r(nl + nv!2] 

p(F)= r(.,f2) r(n,/2) . [1 + ;;; F 1""" · 0 < F <-

In the limit as n2 -+ OO,we have 

r(nl + nv!2] (nzf2) .... 11. 1"' 
-+ --

~"tll r(nzf2) n2"t1l - 1:"1l 

[ 
r(n + k) I: /.. ] 

'.' nn) -+ n as n ~ oo.(c/. Remark below.) 

prakash
Polygonal Line

prakash
Polygonal Line



14066' Fundament:aJ. of. Matbema&al StatistiCs 

. r<n + k) r (n + k - 1) I 
Remark. lim r()' = 1m ( . _ 1) I ' (for large n) 

II~OO n II~OO n 

• ~ e-(II + 1-1) (n + k _ 1)" 'I; 1- (1/1) 

::: hm. ~ e-(If -1) (n _ I)" - (1/2) 

(On using Stirling's approximation for n I as n ~ 00.) 

1( )+t-!. n." + 1-2 1 + k ~ 1 2, 

=e-1 lim _ _ 
, II~OO ('r 1 

n"- ~ 1 - ;) - 2 

1 

lim (1 + k - 1)' lim (1 + k - 1"f - 2 
II~OO ~ )1I~00 n) 

= e- 1 n1 -----------------

lim (1 _ !.)' lim (1 - !.nY ~ 
II~OO n) lI~o:' ) 

[
e(l-l) IJ 

=er-1n1 -1' =n1 
e . 1 

lim r(n + k) \ 1 
II ~ 00 rn ;;::: n 

14'·5·8. F·test for Testing the Significance of an Observed 
Multiple Correlation' Coefficient. If l? is the observed' multiple 
correlation coefficient of a variate ~ith k other variates in a random sample of 
size n from a (k + 1) variate population, then Prof. R.A. Fisher proyed that 
under the null hypothesis (Ho) th(Jt t~ multiple correlation coefficient in the 
population is zero, the statistic 

R2 n - k - 1 
,F=I_R2' k ... (14·20) 

conforms to F ·distribution with (k, n -.k - 1) d.f. 
14·5·9. F·test for significance of an observe~ sample 

correlation i!atio 1'Irx. Under the null hypothes~s that population correlation 
ratio is zero, 'the test statistic is 

_~ N-h_ 
F - I 2' t. h 1 F(h - I, N - h) ... (14·21) -1'1 ' - . 

where N is the size of the sample (from a bi·variate normal population) arranged 
in harrays. 

14·5·10. F·test for Testing the Linearity of ·Regression. For 
a sample of siZe N arranged in h arrays, from a bi·variate non:nal population, the 
test statistic for testing the hypothesis of linearity of regression is. 

!]2-r2 N - h 
F = 1 -1'12 h _ 2 - F(h -2,N -h) ... (14.22) 
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14·5·11. F-test ror EquaJity or: Several Means. This test is 
carried out by the technique of 'Analysis of Variance, which plays a very 
important and fundamental role in Design of Experiments in Agricultural 
Statistics. 
14·5. Non-Central F-distribution. The ratio of two independent X2 
variates each divided by the corresponding d.f. has a non-centraI F -distribution if 
the numerator has a non-centtal X2-distribution and the denominator has a central 
X2-distrib~tion. Thus, if X has a non-centtal X2~tribution with nl d.f. and non-
centrality parameter A, i.e.. if X - X'2nl and Y is an independent (central) 
X2-variate witll 1'2 d.f. i:e.. if Y - X2n2' then the non-central F -statistic is 

detinedas : 

F' = X1nl = n2 X 
Y/n2 n1Y 

p.d.t. or F'. Since X and Yare independent, their joint p.d.f. is given by· 

• [ ,00 e-~ A; e-llf}. x ("if}.) ... ; - 1 'J 
p(x. y) = Pl(X). P2(Y) = ; ~ 0 it . 2(111'" 2;)f}. r[(nl' + 2i)nJ 

• 
e-y/2 y (11212) - I 

x ......n. ; 0 ~ (x. y) < 00. 

£."- r(n,j2) 

Let us transform to the new set of r.v.'s F' and U aefined by the 
tr8nsfonnation; 

niuF' 
'Y=u, x=--

~ 

I 
The jOint p.d.f. of F' and U is given by 

{ [ _ n1uF'] (nuF' ),,112) .... ; ~ I} 
exp "'_ • . 

, 00 e-). A; ·UJ2 n2 
g(F ,u) = ; ~ 0 {I 2;'" (III ... "2)12 r(n,j2) r[(nl of" '2i)/2) 

x e-"fl u (1I2f1.) - 1 • (:;) u 

00 {. (nl F ,)(111/2) ... ; - ~ 
_!!l. e -~ A' _1Iz_ 
- ~ ; ~ 0 i I' -2':"'"; "'-:(-III-"'-"2~)I2=--r-(n.L.,j2-)-r-[-(n-l-+-· -2,-r)/-2-] 

x ,.,p[ - ~ (1 + ';:;F'l :"-T-"- I} 
o S F' < 00, 0 < u < 00 
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Integrating it w.r.t. u between the limits 0 to 00 and using Gamma Integral. 
we obtain the marginal p.d.f. of F' as 

n 00 { -~ .. i 
g(F')=...! L ~ 

n2i_O t. 

{e~~ Ai 
.• t 

t • 
B ( nl . . n...1.) 

2 + t. 2 

x ; 0 S F' < 00 ... (14·23) 
1 '} (1 + ~~ F ,) i + (11\ + 112)/2 

Remarks. 1. For A = 0, we get· 

(
nl ) (11112) - 1 
-F' 

g(F') = ~ I n2 ; 0 SF'< 00, 

n2 (nl n2) (1 + '!J.. F;) (11\ + 112)/2 
B 2 '2 n2 

since for A = O. we get the contribution from the sum only when i = 0 and all 
other terms vanish. Thus for A = O. g(F) reduces to the p.d.f. of central F­
distribution with (nl , n~ dJ. 

2. The hyper-geometric· function of first kind is define~ by 

~ rca + &) rb .i.. 
IFI (a. b. y) = L r r(b .) .. , i_O.a. +t t. 

F (n l +n2 "..l AnlF' ) 
1 1 2 • 2' 

n2 (1 + ~F') 

.•. (14·23b) 



E(F') = J: F' g(F') dF' 

.. [e-~ AJ nZ (nl + 20J = L -.-,- . ( 2); nz > 2. t _ 0 ,. nl nz-
• •• (14·23c) 

If A. = 0 (in which case we get contribution from the sum only when i = 0), 

we get 'E(F') = ~2 ' ... (14·23d) 
nz -

which is the mean of ceqtral F -distribution 'with (~I' ni) df. 
14·7. Fisher's z-distribution. In G.W. Snedecor's F-distribution 

with (VI> vi) d.f., if we put 
1 F = exp (2Z ) ~ Z = 21o~ F ... (14·24) 

The distribution of Z becoJlles· 

g(z) = p(F).1 d; I 
_ (vl/vVvlll (eZztl12) - 1 2eZI 

- B (.!l. ~)' -[ 1 + ~ eZz]<vl + vz)12 

2 ' 2 . Vz 

(VI/Vi) vlll '. eVI' = 2. ; - 00 < z < 00 ••• (14·25) 

(.!l. ~) [1 + ~ eZz]<vl + vz)12 
B 2' 2 Vz 

which is the probability fllnction of Fisher's z-distribution with (VI> vz) dJ. The 
tables of significant values Zo of z which will be e~ceeded in random sampling 
with probabilities 0·05 and 0·0 i, i.e .• P(z > zo) = 0·05 and P(z > zo') = 0·01 

prakash
Rectangle
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corresponding to various dJ. (Vit Vv were published by Fisher (c/. Statistical 
Methods for Research Workers) in 1925. From these tables, Snedecof_{1934-38) 
by using (14.24) deduced the tables of significant values of the, variance ratio 
which he denoted by F in honour of Prof; R.A. Fisher. 

Remark. With the help of relation (14·24), all the applications of 
F -distribution may be regarded as the applications of z-distribution also. 

14·7·1. Moment Generating Function or z-distribution. 

Mz(t) = e(e' z) = ro ell g(z) dz 
_00 

[.: e~= F] 

Since J.l: (about origin) for F -distribution is 100 F1(F) dF, we can find 
o 

m.g.f. of the z-distribution by putting r = t/2 in the expression for J.l: for 
F -distribution. 

Hence M'-' '\ - (~J'/2. r{(vi + t)/2) r{(V2 - t)/2} [ ~ Eq . (14.15)] 
£.\t, - VI· r(vtl2) r(v,j2) ~". uabon 

=> Kz(t) = log Mz(t) 

t = 2" [log V2 -log VI] + log r{(vi + t)/2} 

+ log r{(V2 - t)/2} -log r(VI/2) -log r(v2I2) 
Using Stirling's approximation for n I, when n is large, viz., 

I 
lim r(n + 1) = lim n I ... :{2; e-II n"+i 
11__ II -+ 00 

log r(n + 1) = (n +~) log n -n + 10g..J?;, we get 

. I (1 1 ) lei = J.l1 = 2 - - -
Vz VI 



Remark. z~distribution tends to normal distribution with mean 

-21 (l _ lj and variance ~ (l + l), as VI and Vl become large. 
V2 VI/ VI vl 

14·8. Fisher's z-transformation. To test the significance of an 
observed sample correlation coefficient from an uncorrelated bivariate normal 
population, t-te~t (cj. § 14.2·10) is used. But in random sample of size nj from a 
bivariate normal population in which p :¢ 0, Prof. R.A. Fisiter proved that the 
distribution of 'r' is by no means normal and in the neighbourhood of p = ± I, 
its probability curve is extremely skewed even for latge n. If p :¢ 0, Fisher 
suggested the following transformation ' 

Z = ! log 1 + r = tanh -I r (14 26) 2 cl_r .... 

and proved that even for small samples, the distribution of Z is approximately 
normal with mean . 

1 ..l±.Q.. ~ ::0'2 log. 1 _ P = tanh;-I p ... [14·26(a)] 

and variance l/(n - 3) and for large values of n, ~ay > 50, \he approxiplation is 
fairly good. 

z-b'ansformation has the following applications in Statistics. 
(1) To test if an observed value of 'r' dirrers significantly 

rrom a. hypothetical value p or tbe population correlatio~ 
coefficient. 

Ho : Therds no significant differen,:e between rand p. In other words. the 
given sample has been drawn from a bivariate normal population with 
correlation coefficient p. 

Hwetake 
I I 

Z = 2 log. {(l + r)/(1- r)} and ~ = 2 log. ~(l + p)/(1- p)}, 

then under Ho, 

Z-N(;'n~3) => Z - S _ N(O, 1) 
V I/(n - 3) 

Thus if (Z - ;) V (n - 3) > 1·96, H 0 is rejected at 5% level of significance 
and ,if it is greater than 2·58, Ho is rejected at 1 % level of significance, where Z 
and; are dermed in (14·26) and (14·260). 

Remark. Z defined in equation (14.26). should not be confused with the Z 
used in Fisher's z-distributi~n (c/. § 14.7). 

Example 14·24. A correlation coefficient of 0·72 is obtained from a 
sample of29 pairs of observations. 

(i) Can the sample be regarded as dr,awnfrom a bivqriate normal population 
in which true correlation coefficient is O;B ? 

(U) Obtain 95% confidence limit~ for p in the light of the information' 
provided by the sample. 

Solution. (I) Ho : There is no, significant difference ~tween r·= 0·72; and' 
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p = 0·80, i.e.. the sample can be regarded as drawn from- the bivariate normal 
population with p = 0·8. 

Here Z =~ log. G ~ ;)= 1·1513 log 10 G ~;) 
= 1·151310g10 6·14 = 0·907 

1 (!..±..Q.)' (1 + 0·8) l; =2 10g• 'I _ P ~ 1·151310g10 (1 _ 0.8) 

= 1·1513 x 0·9541 = 1·1 
1 1 

S.B. (Z) = _,--;. = _ r.:: = 0,196 
-Vn - 3 -V 26 

Under Ho, the test statistic is 
Z-~ 

U = _,--;. ""' N(O, 1) 
llvn - 3 

Now U = (0.906.~9~·100) = - 0·985 

Since I U I < 1·96, it is not significant at 5% level of significan,ce and H 0 
may be accepted. Hence the sample may be regarded as coming from a bivariate 
nonnal population with p = ()'8. 

(ii) 95% confidence limits for p on the basis of the infonnation supplied by 
the sample, are given by , 

I U I 51·96 
.1 

I Z - ~ I 5 1·96 x _,--;. = 1·96 x 0,1,96 
-Vn - 3 

:::) I 0·907 -l; I S 0·384 
:::) 0·907 - 0·384 5 ~ 50·907 + 0·384 
:::) 0·523 S l; S 1·291 

, 1 (!..±..Q.) :::) 0·523 5 '2 log. 1 _ P S 1·29. 

:::) 0·523 50.151310g1O O ~ g)51.291 
0·523 (!..±..Q.) ,}·291 

:::) }.1513 510g10 1 _ P S 1:1513 

- (l+i) 0'4~3 S IOg10' 1 _ P S 1·-1213 ... (*) 

Now IOg10 G ~ g) = 0·4543' and I~glo (\ ~ :} 1·1213 

~ .!...±..J!..11 + = Antilog (0:4543) = 2·846 -p :::) 11 +. P = Antilog (1·1213) = 13·22 
-p 

2·846 - 1 1·846 
~ p =2.846 + 1 -.:q~.il:' = 0·4799· 

13·22 - 1 12·22 
:::) P ='13.22 + 1 -14.22 = 0·86 



Hence. substituting in (*) we get 0·48 S P s 0·86 
(2) To test the significance of the difference between, two 

independent sample correlation coefficients. Let rl and rz be the 
sample correlation coefficients observed in two independent samples of sizes nl 

and nz reSpectively' then 

ZI =! log~ G : ;:) and Zz =! log~ G : ;:) 
Under the null hypothesis Ho : that sample correlation coefficients dq., not 

differ significantly, i.e., the samples are drawn from the same bivariate normal 
population or from different populations WIth same correlation coefficient p, 
(say). the statistic \ 

Z _ (ZI - Z2) - E(ZI - Zz) _ N(O. 1) 
S.E,(ZI - Zz) 

Now E(ZI - Zz) = E(ZI) - E(Zz) = ~1 - ~z = 0 

[ •• , ~l = ~z = ~ log" ~ ~ p (under Ho»)] 

and S.E. (ZI - Zz) =..J V(ZI) + V(Zz) 
, [Covariance tenn vanishes since samples are independent) 

~{., 1. I} = nl - 3 + nz - 3 

Under H o. the test statistic is 
ZI -,Zz . 

Z = -N(O.I) 

~{nl ~ 3 + " ~ 3} 
By comparing this value with 1·96 or 2·58. Ho may be accepted or rejected 

at 5% and' 1 % level of significance respectively. 
(3) To obtain pooled estimate of p. Let r .. rz • ...• rl: be observed 

correlation coefficients in k-independent samples of sizes nit nz • .. :. nA; from a 
bivariate normal popUlation. The problem is to combine these estimates of p to 
get a poled estimate for the parameter. 

1 (1 + ri) . If we take Zi = 2 log" 1 _ r i ; I = 1. 2 ..... k 

then Zi; i = 1.2 •...• ic are independent normal variates with variances (ni ~ 3) ; 

i = I. 2 •.. ,. k and common mean 

~ =!IOg~ G ~ p) 
The weighted mean (say Z) of these Z/s is given by 

k I: 

Z = L WiZi I L Wi • 
i=1 i-I 
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where Wi is the weight of Zi' 

Now Z is also an unbiased estimate of~. since 

E(2) = ~l . [E . i WiZi] = ~1 . [~Wi E(Zi)]' =;1 . [~Wi~J = ~ 
.L..w. • _ 1 .L..W. • .L..W •• 

and V(Z) :: a:~y V,[I.WiZ,] = (I.~y [I.wl V(Z;)] 

The weights w/s. (i = 1.2 •...• n) are so chosen that Z has minimum 
variance." 

-In order that V,(~) is minimum for variations in Wi. we should have 
d - . 
~ V(Z) = 0; ,= 1. 2 •...• k 
OWi 

(I.Wi)22w.iV(Zi) - [~wlV(ZJJ 2(~wJ 

(I.~J4 • = 0 

I.w·2 V(Z·) 
WiV(Z;) = l:wi·' a con~tant. 

.. Wi oc V(~i) = (ni - 3) ; i = 1. 2 •...• k ... ("') 
- Hence the minimum variance estimate of ~ is given by 

A; A; 

I. WiZi I. (ni - 3)Zi 
-Z _ i-I = ;;....i -_1::..-__ _ 

- A;. ~ [gll-usmg (*)] 

I. Wi I. (ni - 3) 
i-I i-I 

'land the best estimate of p is then gwen by .- - - " 

- 1 l..±:...Q. 1\ [I.(ni - 3)Zi] 
Z =2 log. 1 _ P => p=tanh I.(ni- 3) (c/. § 13·9·1) 

R'emark. Minimum variance of ~ is given by 

, "t".{ ( -I' )~-L(ni- 3)2 --
_ -:.( ni - 3 I.(ni - 3) 
tv(Z)J"u1l = {I.(ni - 3)}2 = {I.(ni - 3)}2 = .i 1 

(ni - 3) 
i -/1 



Statistica'l lnference-l 
'(Theory of Estimation) 

15·1. Introduction. The ,theory of estimation was founded by ;frof. 
R.A. Fisher in a series of fundamental papers round about 1930 .. 

Parameter Space. Let us consider a random variable X with p.d.f. 
j(x. 0). In most common applications. though not always. the functional form 
of the ,population distribution is assumed to be kitown except for the value of 
some unknown parameter(s) 0 which may take, any value on a set 8. This is 
expressed by writing the p.d.f. in the form !(i. 0). 0 e 8. The set 8. which is 
the set of all possible values of 0 is called the parameter- space. Such a situation 
gives rise not to one probability distribution ~ut a family of prQbability 
distributions which we write as rt (x. 0). 0 e 8}. For example if X - N {JJ.. (J2). 

then the parameter space 

8 = {{JJ.. (Jl) : - 00 < J.l < 00 ; 0 < (J < oo) 
In particular. for (J2 = 1. the family of probability distributions is give:l by 

(N{JJ.. 1) ; J.l e 8}. where e = {J.l: - 00 < J.l < oo} 
In the following discussion we shall consider a general family. of 

distributions 

(f(X.; Oh O2 ••••• Ot>: OJ e 8. i = 1.2 ...... k). 

Let us consider a random sample Xl. X2 • •••• XII of size n from a population. 
witH probability function j(x ; Oh 0l •...• 0t). where Oh 0l •...• Ot are the 
unknown population p~eters. There will then always be'an infinite.number 
of functions of sample values. called statistics. which may be proposed as 
estimates' of one or ~ore of the parameters. 

Evidently. the best estimate would be one that falls nearest to the true value 
of the parameter to be estimated, In other words. the statistic whose distribution 
concentrates as closely as possible near the true value of the parameter may be 
regarded the b~st e~f.imate. Hence the basic p~blem of the eitj11)ation in the 
above case. can.be formulated as follows: 

'We wish to determine the functions of the sample observations : 
N A A 

T1 = 01 (xl> Xl • .. '. XII) • T2 = 9z (xl> Xl • .. '. X,.) • .. '. Tt = Ot (xl> X2 • .. '. x,.). 
such that their distribution is concentrated as closely as possible near the true 
value of the parameter, 

The estimating functions are then referred to as estimators. 
15·2. Characteristics of Estimators. The following are some of the 

criteria that should be satisfied by a good estimator. 

(I) ConsisJency 
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(ii) Unbiasedness 

(iit) Efficiency and 
(iv) SUfficiency 

Fundamentals of Math_tical Statistics 

We,~ha11 now. ·briefly. explain the~e,tenns one by one. 

15:3. Consistency. An estimator Tit = T(x .. X2 • •.••• x lt). based on a 
random sample of size n. is said to be consistent estimator of y (9). 9 E e. the 
parameter space. if T" converges to y (9) in probability. 

p 
i.e., if Tit ~ y(9) as n -+ 00 ••• (15·1) 

In other words. T" is a consistent estimator of y(9) if for every e > O. 
11 > 0; there exists a positiv~ integer n ~ m (e. 1'1) such that 

P [IT" -y(9)l < e] -+ 1 as n ~ 00 ::.(15·2) 

~ P [IT" - y(9) 1< e] > 1 -1'1 ; 't:I n ~,m ... (15·2a) 

where m is some very large value 'Of n. 
Remark. If X .. X2 • •••• X" is a random sample fr:om a population with 

finite mean EX; = J.l < 00. then by Khinchine's weak law of large ·numbers 
(W .L.L.N), we have 

- I" P 
X" = - LXi ~ E(Xj) = J.l , as n -+ 00. 

nj_lJ 

Hence sample mean (X,.) is always a consistent estimator of the population 
mean u...). 

15·4. Unbiasedness. Obviously, consistency is a property concerning 
the behaviour of an estimator for indefinitely large values of the sample size n, 
i.e., ~s n -+-00. NOI,t1i{lg is reg~ded of its behaviour for finite n. 

Moreover, if there exists a consistent estimator, .say, T" ofy (9), then 
infinitely many such estimators can,be constructed, e.g .• 

T",~(: ~~ )~,,=[ II ~(t1t:3 JT,,~T,,-.!~Y(9), asn -+ 00 

and h~nce. for different values of a and b, T.,,' is also. consistent for "«9). 

l:lnbiascdness is a propertY' associated 'With finite n. A statistic 

Til = T(x .. X2 • •••• x,.}. is said to be an unbiased estimator of y(9) if 

E(T,.} = ,,«9). for all 9 E e ... (15·3) 

We have seen (c.r. ,§ 12·.12) that in sampling from a population with mean J.l 
mid variance.02• 

£(i) = J.l and £(s2):;.. 0 2 but E(S2) = 0 2.­

Hence there is a reason to prefer 

S2 = _1_} i (Xj - X )2, to th~ sample variance S2,=,!. i (Xj:"" x f. 
n- i=! nj=1 
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Remark. If E(T,.) > 9, T" is said to be positively biased and if E(T,.) < 9, 
il is said to be negatively biased, the amount of bias b(9) being given by 

b(9) = E(T,.) - y(9), 9 E e .. . (15·3a) 

15·4·1. Invariance Property of Consistent Estimators. 
Theorem 15·1 .. 1fT" is a consistent estimator of reB) and lfI (r(B» is a 

continuous function of r(B), then. yl(T,.) is a consistent esti"'.ator of lfI (}(B». 

Proof. Since T" is a consistent estimator of y(6), T" ..J!~ y(6) as n ~ 00 

i.e., for every £ > 0, T) > 0, 3 a positive integer n ~ m (£, T) such that 

P [IT" -y(9) 1<£] > 1 -T) ,'t:I n ~m ... (*) 

Since 'JI(') is' a 'continuous function, for every £ > 0, however small, 3 a 
pOsitive number £1 suc~,that.1 'JI (T,.) - 'JI(y(9» 1< £., whenever IT" -y(9) 1<£ 

i.e., IT" -y(9) 1<£ ~ ;I'JI (T,,) - 'JI (y(9» 1<£1 ... (**) 

For two events A and B. 

if A ~ B, then A 5. B ~ P(A) ~ P(B} ~ P(B) ~ P(A) ... (***) 

From (**) and (**~), we get 

P [I'JI(T ,.) - 'JI(y(9)1 < £1] ~ P [IT" - y(9) I < £] 

P[I'JI(T,.) - 'JI(y(9) 1< £1] ~ 1 -T) ; 't:I " ~ m 
p 

'JI (T ,.) ~ 'JI (y(0», as n ~ 00 

'JI(T,.) is a consistent estimator of r(9). 

15·4·2. Sufficient Conditions for Consistency. 

[Using (*)] 

Theorem IS·2~. Let (T,,) be a sequence of estimators such that for all 
BE 8, , 

(i) E8 (T,.) ~ r(B), n ~ 00 

tnI. (ii) Var8 (T,.) ~ 0, as n ~ 00. 

Then T" is a consistent estimator of reB). 

Proof. We have to prove that T" 'is a consistent estimator of y(0) 

i.e., T" ..J!~ y(9), as n ~ 00 

i.e., P [IT" - y(0) 1<£] > 1 -T) ; 't:I11 ~ m (£, Ti) ... (15·4) 

where £ and T) are arbitrarily small positive numbers and m is some large value 
ofn: 

Applying Chebychev's inequality to the statistic T", we get 

[ ,] Yare (T,.) 
P IT,,-E8(T,.)I~o ~I- Ol ... (15·5) 

We have 

IT" - y(0) I = I T" - E(T,.) + E(T,.) - Y (0) I 
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SIT" -Ee(T,J I +.1 Ee(T,J - 1.(9) I ... (15·6) 

Now 
IT" - ce (T,,)I S a ~ IT" - y(9)1 ~ a + I Ee(T,,) - y(9)1 .•. (15·7) 

Hence, on using (**.) of Theorem 15·1, we get 

p [IT" ~ -y(9) I S a of lEe (T,J - -y(9)1] ? P [IT" - Ee (T,J I S a] 

1 Yare (T,J 
? - fi2 [From (15·5)] ... (15·8) 

Weare given : 
Ee (T,,) -+ ')'(9) IrI 9 e e as n -+ 00 •• 

Hence, for every al > 0, 3 a positive integer n ? n() (a1) ~uch that 

I Ee(T,J - -y(9) I Sa" IrI n ? fio (at) 
Also Vare(T,J -+,0 as n -+ -,(Given). 

Vare(T,J , az S11 , IrI n ? no (11) 

where 11 is arbitrarily small positive number. 
Substituting from· (15·9) and (15·10) in (15·8),.we get 

P [IT" ~"«9) I:sa + all ~ 1 -11: n ~ m.(a",ll) 

~ P[IT,,-'Y(9) I se] ?1-11 ;'n?m 

where m = mai (no, no') and e = a + a1 > o. 
p . 

... (15·9) 

•.. (15·10) 

~ T" ~ "«9), as n -+ - [Using (154)] 
~ T" is a'consistent estimator of'Y (9). 

Example 15·1. x" X2, ••• X" is a random sample from a ntzrmal 
. " ' 

population N(p.. 1). Show that t =!.. 1: xr, is an unbiased estimator ofp.z + 1. n i _ 1 ; 

Solution. (a) We are given 
E(x;) = J1, V(x;) = 1 'V i = 1", 2~ ... , n 

Now E(x,J:> = V(x;) + {E(x;»)Z:= 1 + ~ 

Hence t is an unbiased estimator of 1 + J11 • 
•• t;.. • 

Example IS·t. If T is an unbiased estimator for 8. show that T2 is (J 

biased estimator for 82. 
Solution. Since T is an unbiased es~mator for 9, we have 

E(1)=9 
Also Var (T) =·E(p) - [E(1)]1 =E(Tl) - ez 
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~ E(TZ) = 02 + Var(7). (Var T> 0). 
Since E(Tl) ¢ 02• Tl is a biased estimator for 02• 

E' I 15 3 Sho ha [I;x; ( I;x; - 1)] . b' d' .1 "amp e '. w t t n(n -1) IS an un lase estimate OJ 

lJl./or the sample XJ, X2 • .... x" drawn on X which takes the values 1 or 0 with 
respective probabilities 9 and (1 - 9). 

Solution. Since 'XI' X2 • .... Xi. is a' random sample from Bernoulli 
population with parameter a. 

" 
T = I Xi .... B(n. a) 

;.1 

~ E(7) = nO and Var(7) = n a (1' - a) 
E [ ~~i "(I~i - ,1) "J = E [ T(T -:- I) ] 

n(n - 1) n(n - 1) 

= n(n 1_ I) [E(T2).-E(7)] 

= n(n 1_ 1) [Var(7) + (E(7))2-E(7)] 

= n(/- 1) [n a (1 - a) + n2 02 - nO] 

_ n 02 (n - 1) 02 
- n(n - 1) -

~ [Ui ~i - 1)] I [n(n - I)J is an unbiased estimator of 02, 

Example 15·4.,Let X be distributed in the Poisson form with parameter 

9. Show that the oialy unbiased estimator of exp [- (k ... 1)9], k > '0. is 
T(X) = (- k)x so that 

T(x) > 0 if;c is even 

cnl T(x) < 0 if X is odd. 
[Delhi Ulliu. ASe, (Stot. HOII •• ), 1998, 1988J 

Solution. E{T(X)}=E[(-kf].k>O= '"I (-k'f{e~ ?X} 
• .1: = 0 X • 

-9 ; [<-kat] 9 LB' -(1 +1:)9 = e ~. = e - . e -,. = e 
.1:- 0 x! 

~ T(X)= (- k)X is an unbiased estimator for exp [ •• (1 + k) a]. k > O. 

Example 15'5. (a) Prove that in sampling from a N(p.. 02) population. 
the sample mean is a consistent estimator of p.: . 

(b) Prove that for Cauchy's distribution not sample mean but sample 
median is a consistent estimator of the populatio!, me(ln. 
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Solution. In sampling from a N(J1, (J2) population, the sample mean i is 
:aI~o..nonn~lly distributed as N (JJ., (J2In). " 

~ E( i ) = J.1 and V( i ) = (J21n 

Thus as n ~ 00, 

E( i ) = J.1 and V( i ) = 0 

Hence by Theorem 15·2, i ,S a consistc,;nt estimator for J.1. 
(b) The Cauchy's population is given by the probability function 

1 dx 
dF(x) = - . 1 ( )2 ,- 00 < x < 00 

1t + x-J.1 
The me;m 9f the distribution, if we conventionally agree to assume that it 

exists, is at x = J.1. 

If i, the sample mean is taken as an estimator of J.1, then the sampling 

distribution of i is given by 
I 

... (I)~ , 

because in Cauchy's distribution, the distribution of i is same as the 
distribution of x. 

Since in this case, the distribution of i is same as the distribution of any 
single sample observation, it does not increase in accuracy with increasing n. 
Hence we have 

E(i ) = J.1 but V( i ) = V( x ) ~ 0, as n ~ 00 

Hence by Theorem 15·2, i is, not a consistent estimator of J.1 10 utis c~e. 

Consideration of symmetry of (I) Is enough to sI:tow that the sample median 
Md is an unbia..l".d estimate of the population mean, which of course is same as 
the population median. 

E(Md)=~l 

Fer large n, the ~pling distribution of median is asymptotic~ly normal 
and is given by 

dF oc exp [-2n/12 (x - J.1)2]dt 
where II is the median ordina~ of the ,parent population. 

i.e.. dF oc exp { - (V(2n'f~~ ~ ... (iil) 
But II = Median ordinate of (i) 

= Modal ordinate of (I) [Because of symmetry] 

1 = f/{x)].¥_" = i 
Hence, from (iii), the variance of the sampling distribution of median is : 
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1 1 n2 
V(Md} ='4h/12 = 4n(1/1t)2 = 4n -+ 0 as n -+ 00 

... (iv) 

Hence from (ii) and (iv), using Theorem 15·2, \'ye conclude that for 
Cauchy's distribution, median is a consistent estimator for Il. 

Example 15·6. II Xl. X2 • •••• X" are random observations on a Bernoulli 
variate X taking the value J with probability p and the value 0 with probability 
(I - p). show that: 

'p', 

L Xi (1 LXi) . . ,. f (1 ) -;- - --;;- IS a consistent. eSl1mator 0 p - p . 

[Delhi Univ. B.Sc. (Stot. Hons.), 1988] 

Solution. Since X I, X 2, ... , X" are i.i.d ;Bernoulli variates with parameter 

" T =. L Xi-B (n.p) 
i-I 

E(1) = np and Var(1) = npq 

- 1" T 
X =- .L Xi=-

n i-I n 

- 1 1 
E(X) = - E (1) = - . np = p 

n n 

Var (X) = var( ~ )= ~. Var (1) =~ -+ 0 as n -+ 00. 

Since E(X) -+ p and Var (X) -+ 0, as n ~, 00; X is a consistent estimator 
ofp. . 

AlS9 L:i (t -L:i) = i (I - i), bein~ a polynomial in X, is a 

continuous function of X. 
,Since X is consistent estimator of p, by the in variance ,property of 

consistent estimators (Theorem 15·1), X. (1 -i) is ~ consistent estim~tor of 
p(1-p). 

15·5. Efficient 'Estimators. Efficiency. Even if we confine ourselves 
to unbiased estimates, there will, in general, exist more than one consistent 
estimator of a parameter. For example, in sampling from a nonnal population 

N (J.l, (J2), when (J2 is known, sample Inean X is an unbiased and' consistent 
estimator of Il [cf. Example 15·5a]. 

From symmetry it follows immediately that sample median (M d) is an 
unbiased estimate of Il, which is the same as the population median. Also for 
largen, 

. I 
V(Md) = 4n/12 [cf. Example 15·5(b)] 
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Here 

Since 
and 
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fl = Median ordinate of the parent distribution. 

= Modal ordinate ,of th~ parent distribution. 

= [ _ ~ exp {- (x - f.1)2/2a2J ] = _1,-:-
~2n %_~ a~2n 

V(Md) 
1 'na2 

= 4n . 2na2 = 2n 

E(Md) = f.1 } 
V(Md) ~ 0 ,as n ~ 00 

median is also an unbiased'and consistent estimator of f.1. 
Thus', there is a necessitY of some further criterion which will enable us to 

choose between the estimators with the common property of consistency. Such 
a criterion which is based on the variances of the samp~i!lg distribution of 
estimators is usually known as efficiency. 

If, of the two consistent estim~tors TI , T2 of a certain paran:teter'9, we have 

V(T1) < V(Tv, for all '! ... (15·11) 

dlen TI is more efficient than T2 for all samples sizes. 

We have seen abov~ : 

= ~2 V(i) v 
n 

For all n, 

and, for large n, V(Md) = 1tCJ2n2 = 1.57 a2 
. n 

Sinc~ V( i) < V·(Md), we conclude that for nomia! distribution, sample 
mean is more efficient estimator for f.1 than the sample median, for large samples 
at least 

15· 5·1. Most Erlicient Estimator'. If in a class of consistent 
estimato1'S for a parameter. there exists one whose sampling variance is less than 
that of any such estimator. it is called the most efficient estimator: Whenever 
such an estimator exists. it provides a criterion lor measurement of efficiency of 
the other e~timators.· 

Efficiency (Def.) If TJ is the most efficient estimator with variance VJ 
and T2 is any other estimator with variance V2• then the efficiency E of T2 is 
defined as : 

... (15·12) 

Obviously. E cannot exceed unity. 
If T, Th T2, ... , T" are all estimators of y(O) and Var(T) .is -minimum; then 

the efficiency Ej of Ti , (i = 1,2, ... , ,n) is dermed as : 

Ej =~:~; i = 1,2, ... , n ... (15·120) 
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Obviously Ei So I, i = I, 2, ••. n. 

For example, in the normal samples, since sample mean i is the most 
effic;~nt estimator of).1 [c.f. Remark; to Example 15·31], the efficiency E of Md 
for such samples, (for large n), is·; 

V( i) . (12/n 2 
E = V(Md) = 7t(12/(2n) = it =. 0·637 

Example 15·7. A random sample (XI' X2• X3 • X.,. Xs) of size 5 is drawn 
from a normal population with unknown 'mean Jl.. Consider the following 
estimators to i;stimate J.l.. : 

. XI + X2 + X3 + X., + Xs 
(,) tl = . 5 

( .. ) XI+X2 X ("1\ 2X 1 +X 2 +AX3 
U t2 = . 2' + 3, m J t3 = 3 

where A. is such t!z4t h is {In unbiq.sed e~timator oj J;L 
Find .t Are tl and t2 unbiased? State giving reasons. the estimator which is 

best among tl, t2 and t3' .. . . 

Solution. \We are given 
E(Xi) = ).1,'¥s&:.(Xi) = (12, (say)'; Cov (Xi, Xj) = 0, (i ~ j = 1,2 •...• n) 
.•• (*) 

1 5 1 ,5 1 
E(tl) = -5 . ~ E(Xi) = -5 . ~ ).1 = -S • 5).1 = ).1 .-1 .-1 

'I is an unbiased.estimator of).1: 
I 

E(t~ =2 E(XI + X2) + E(X3) 

I 
= 2 ().1 + ).1) + ).1 

= 2).1 
- ~ t2 is not an unbiased estimator of ).1. 
(iil) E( t3) =).1 

=> 
=> 
=> 

I· 'I. 
3'E(2XI +X2 +Jl.X3) =).1 

2E(XI) + E(Xv + )., E(X3) = 3).1 

2).1 + it + ?:~l == 3).1 
A).1 = 0 => A = 0 

Using (*), we get. 

V(tl) = ~[V(XI) + V(Xv + V(X3) + V(X4) + ~(Xs)] = ~(12 
I I 3 

V(t~ = 4 [V(X I ) + V(X2)] + V(X3) = 2(12 + (12 = 2<12 

[Using (*)] 
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(.:.). = 0) 

Since V(It) i$, t11e least, tl is the best estimator (in the sense o( ,least 
variance) of Il. 

Example IS·S. X J' X2 , and Xl. is a random sample of size 3 from d 
PQPulation with mean value J.l and variance (72, Ib T2 , T3 are the estimators 
used to estimate mean value Il, where 

TJ =XJ +X2 -X3, T2 =2XJ +~X3-4Xz, and T3=(AXI +Xz +X3)!3 

(i) :Are TJ and T2 unbiased estimators? 
(ii) Find the value of A. such that T3 is unbiased estimator/or J.l. 

(iii) With this value of A. is T3 a consistent estimator? 
(iv) .Which is the best estimator? 
Solution. Since X I' X Z, X 3 is a random sample from a population with 

mean J.1 and variance oZ, 

E(X;) = Il, Var (X;) = OZ and Cov (X;, Xj) = 0, (i ~ j = ·1, 2, ... , n) ... (*) 

(I) E(Ti) = E(XI ) + E(X~ - E(X3) = Il + Il-"":: Il 
~ TI is an unbiased estimator of Il 

I . 

E(T ~ = 2E(X 1) + 3E(X3) - 4E(X~ = 21l + 3~ - 41l = Il-
~ Tz is an unbiased estimator of Il. 

(il) We are given: E(T3) = J.1 
1 

~ 3 [U(X1) + E(Xz) + E(X,) = Il 

~ } (}.Il + Il + Il) = U ~ }.Il + .21l == 31l ~ }.:. 1. 

(iiI) With}. = I, T3 = } (Xl + Xz + X3) = X 
Sinee s~mple mean is a consistent estimator of population mean J.1, .by 

Weak Law of Large Numb~rs, T3 is a consistent estimator of J.1. 
(iv) We have [on using (*)] : 

Var(TI) = Var(XI) + Var(X~ + Var(X3) = 30z 
Var(T ~ = 4 Var(XI) + 9 Var(X3) + 16 Var (X~ = 29 02-

• 1 1 
Var(T3) =9[Var (Xl) + Var(X~+ Var(X3)] = 30z (.:). = 1) 

Since Var(T3) is minimum, T.3 is the best estimator in the sense of 
minimum variance. 

IS·S·2. Minimum VarIance Unbiased (M.V .U.) Estimator~. 

If a statistic T = T(Xb X2, .•• , x,J, based on sample of size (I is such that: 
(i) TIs unbiasedfor ){(J),for a/l () E 8 and 

(ii) It has the smallest variance among the class of 0/1 unbiQSed,-estimotors 
of r«(J), 



Statistical Inference ('Iheory of Estimation) 15·il 

then Tis called the minimum variance unbIased estimator (MVUE) 0/r(6). 
More precisely. Tis MVUE 9f Y (0) if 

E9(1) = Y (9) for all 9 E e 
and Vare(1) S Vare(T') for all 9 e e 

where T'is any other unbiased estimator of '¥ (0). 

... .05·13) 

... (15·14) 

We give below some important Theorems concerning Mvu estimators. 
Theorem 15·3. An M.v.U. is unique in the $ense t,hat if T1. and I:z are 

M.v.U. estimators/or r(6). then TI = Tz• almost surely. 

Pr09f. We ru:e given- that 

E9 (T1) = Ee (T ~ = y (9). for all 9 E e 
and Vare(Tl) = Vare(Tz) for all 9 E e } ... (15·15) 

CQn~i!ier a new estimator 

T =~(Tl + T~ 
, -

which is also unbiased since 

E(1) = HE(Ti) +'E(Tz}]::; 0 

1 1 . -
Var (1) = Var [i (Tl + T z)] = 4 Var (T1 +T z) L· Var (eX) = C2 Var (X)] 

1 =4 [Var(Tl) + Var (T~ + 2 Cov (Tl> T~] 

= ~ [Var (T1) + Var (T z) + 2p V Var (T I) Var (T z) ] 

... [From (15·15)] 

where p is Karl #earson's co-efficient of correlatio'l between Tl and Tz. 
Since rl is the MUV estimator. 

Var (1) ~ Var (T1) 

=> ! Var (T1)[1 + p] ~ 'Var (T1) 

=>. t (1 + p) ~ 1. i.e.. p ~ i 

Since I pIs 1. we must have p = 1. i.e., Tl and Tz must have a linear 
relation of the form : 

... (15·16) 

where ex and:~ are constants ~ndependent of Xl> xz • .... XII Qut may depend on 9. 
i.e.. we may have ex = ex(9) and ~ = '~(9). 

Taking expectation of both si!ies in (15· 1'6) aDd using· (15·15). we get 

0= ex + ~9 ... (15·17) 
Also from (15·-16). w~ get 
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Var(~l) = Var(~+ ~ ~~= ~Z Var (T~ 
=> 1 = ~z ? ~ = ± 1 ... [From (15·15)] 
But since P(TI' T z) = +11 the coefficient of regression of TI and Tz must be 

positive. 

~ = 1 [From 15·17)] 
Substi,tuting in (15·16), we get Tl = Tz as desired; 
Theorem 15·4. Let TJ and T2 be unbiased ~stimators of"r(6), with 

efficiencies eJ and e2 respectively and p = P8 be tHf correlation coefficient 
between them. Then 

"eleZ - " (1 - el) (1 - ez) :s p :s "el ez + " (1 ..:. el) (1 - ez) 
Proo,f. Let T be the minimum variance unbiased estimator of 1'(9). Then 

we are given : 
Ee(TI) = 1'(9) = Ee(T Z), V 9 E e ... (15·18) 

... (15·19) ax} 
Ve(1) V V 

el = Ve(TI) = VI ' (say) => VI =-
el 

Ve(1) V V 
ez = Ve(Tz) = Vz ,(say) => Vz=~ 

ez 
... (15·20) 

Let us consider another estimator 

T3 = ATI + IlTz ... (15·21) 

which is also unbiased estimator of,),(9), 
i.e.. E(T3) = (). + 'Il) 1'(9) = 1'(9) [Using (15· ~8)] 

=> ). + Il = 1 ... (15·22) 
Va (T3) = V ().TI + J.1 T z) 

But 

= ).Z V(Tl) + J,lz V(T z) + 2)'J,l Cov (Tit T z) 

= V - + + 2 . _,.-- . [Using (15·19) and (15·20] [
).z ~ M!Q.] 
el ez "I.elez 

Ve (T3) ~ V , since V is the minimum variance. 
.).Z 'liZ 2n).11 
- + 1::'_ + =-== ~ 1 = (). + Il)Z [Using (15·22)1 
el . ez " eleZ 

=> (1._ 1));'Z + (1._ 1)J.1Z + ~).J.1 ("P - 1) ~ 0 
el ez eleZ, 

=> GI- 1)(~) +2{~- 1)(~ )+G> 1) ~O ... (15·23) 

which is. quadratic expression in (A/J.1). 
Note that: 

ej< 1 
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We know that 
AX2 +BX + C ~ 0 'v' x, A > 0, C > 0; 

if and only if 
Discriminant =' B2 - 4AC ~ 0 

Using (15·24), we get from (15·23) : 

(~- \J -GI ~ I)(i- I)~ 0 
( P - ~ ele2 )2 - (1 - el)(1 - e2) ~ 0 

=> p2 ._ 2..J el e2 P + (e, + e2 - 1) ~ 0 
This implies that p lies between the roots of the equation 

p2 _ 2 ..J el e2 P + '(el +'e2 - 1) = 0 

which are given by 

i [2 ~ ele2 ± 2 ~ ele2 - (el + e2 - 1) ] 

= ~el e2 ± ~ (el - 1) (e2 - 1) 

Hence we have: 

... (15·24) 

... -.v el e2 - ...j'-(e-I---·I--:-)--,.(e-2---I"'7) S; p ~ ~ el e2 + ~ (e i-I)· (e2 - 1) 

=> ~ el e2 - ~ (1 - el) (1 - e2) S; P S; ~ el e2 + ~ (1 - el) (1' - e2) 

Corollary. If we take el = 1 and e2 = e in (15·25), we get 

...r;.~ p 1:..J; => p = . ..J; 

... (15·25) 

This leads to the following important.resu~t, which we state in the form of 
a theorem. 

Theorem 15·5.·/fTJ is an MVU estimator of reO). 0 E e and T2 is any 
other unbiased estimator of reO) with efficiency e = e9. then the correlation 
coefficient between TJ and T2 is given oy 

p = {; i.e.. Po = ~ , 'v' 9 e 9. 
For an alternate proof, see Examples 15·9 and 15·10. 

Theorem 15·6. IfTJ is an MVUE ofr(O) and T2 is any other unbiased 
estimator of reO) with efficiency e < 1. then no unbiased linear combination of 
TJ and T2 can be an MVUE ofr(O). 

Proof. A linear combination, 

T = IITI + 12T2 
wUl be unbiased estimator of -y(9) if 

E(1) = IIE(TI) + l-#(T ~ = ')'(9), for all 9 e e 
=> 

... (15·27) 

... (15·27a) 
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since we are given E(TI ). = E(T ~ = 'Y(6). 
WehaVl'~ 

Var(TI ) 

e = Var (:r~ =7 ... (15·28) 

p = p(TIt T~= Ve [c.f. Theorem 15·5] 

From (15·21), on using (15·28), we get 
Var T = 112 Var (TI) + 122 Var (T ~ + 2/1/2 Cov (Tit T ~ 

= 112 Var (TI) + 122 Var (T ~ + 211/2 p v~V"-ar----""(T---I)""'V:-:-ar----'(T~~~ 

= Var(T1) [/12 + I~ + 2/1/2~J 

= Var (TI) [/12 + 2/1/2+ I~J 
~ Var TI [112 + 2/1/2 + 122] 

(.:p...Je) 

( .. 0 < ~ S 1 => ;. ~ 1) 

= Var TI (II + 1~2 
= Var(TI) [From (15·27a)] 

==> T cannot be an MVU estimator. 
Example 15·9. If TI and T2 be two unbiased' estimators of r(8) with 

variances ui, CJ22 and correlation p. what is the best unbiased linear 
combination of TJ and T2 ' and what is the variance of such a combination? 

[Delhi Univ.B.Sc. (Stat. Hom.), 1990] 

Solution. Let TI and T2 be two unbiased estimators of -y(9). 

.. E(TI ) = E(T ~ = y(9) ... (1) 

Let T be it linear combination of TI 'and T2 given 'by 

where II' 12 are arbitrary constants. 

E(1) = IIE(TI) + 12E(T2) ='(h+ I~ y(6) 
:. T is also an unbiased ~timator of y(6). if and o:J1y if 

II + 12 = 1 

Noy( V(1) = V(/ITI + 12T7J 

= 112V(TI) + 122V(J',).+ 2/1/2 COV,(TH T2) 

(*) 

[From (1)] 

... (2) 

= 112cr12 + 122 CJ22 + 2/1/2P CJICJ2 ... (3) 

We want the minimum value of (3) 'for variations in II and 12• subject to the 
condition (2). 

() 
.. oil V(1) = 0 = I1CJ12+ 12f? CJI CJ2 



d 
olz V(n = 0 = Iz GZZ + 11 p GIGZ 

Substracting. we get 
11 (<11 Z - PGIGV = Iz (Gzz- pGlav 

. Iz II +" Iz 
=C1lz-palaZ ;: C11Z+dz:::-2pC1IC12 

1 , 
[From (2)J 

C1l- pC1tC1Z alZ - PC1IC1Z 
.• II = Z z 2 and Iz= z Z 2 ... (4) C11 + Gz - pC11aZ C11- '+ az - p.GlaZ 

With these values of II and Iz• T given by (.) is the best unulased linear 
combination of TI and Tz and its _v.~ance is given by (3). 

Example 1S·10. Suppose TI in the above example is an unbiased 
minimum variance estimate and T2 is an.y other unbiased estimate with variance 

<ife. Th£n prove that the correlation between TJ and Tz is ..r; \ 
Solution. The coefficients of the best linear unbiased combination of Tl 

and Tz• given by (*) in Example 15·9 m:e given.by (4). 

We are given that alZ = V(TI) = C1~ 
V(T1) C12 z 2 

3d e = VeT V = VeT z} => VeT z} = C12 = a Ie 

SubstiPlting in (4) of Example 15·9. we get 

I _ I - p{'; } 
1- D 

_, ,where D ='1 + e -2p...Je 
e-p-ve 

Iz :: D 

.•• (5) 

Hence from (*), the unbiased statistic is 

T _ [(I - P {;) Tl + (e - p{;) T21 
- D 

and from (3) the minimum variance is : 

V(7) = ~;[ (l-p...re)ZaZ + (e-(1"Ie)Z a; + 2(I-pV";)(e -p ...Je). p.C1.al...Je ] 

= tz[ (1 + p2e-2p-Ve>+: (e2 + p2e-2pe...Je) +'2 (l-pV";)({;-p)p ] 

= ;. [ 1 + p2e-2p...Je + e+ 'p2-~2p {; + 2 (p{;_p2e_ pz + p'...Je) ] 
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= ~[ 1 - p2e + e - p2 - 2p {; + 2 p3{;] 

=;[ (1 + e - 2p...Je) - p2(e + 1 - 2p...Je) ] 

0 2(1 - p2)(1 + e - 2p {;) 
= (1 + e - 2p ...j e'fl ,,= 1 + e - 2p ...j e 

0 2 (1 - p2) . 

= (1'~ p2) + (...Je _ p)2 

V(P = 1 - p2 S 1 
o (1 _ p2) + (...Je _ p)2 

Since T1 is the most efficient estomator, 

V(n < 0 2 ~ V(1) ~ 1 
cP 

From (6) and (7), we get 

!ID 0 2 = I, i.e., 
1 _ p2 

. -1 
(1 - p2) + (...Je _ p)2 -

_ ~ ({; _ p)2 = 0 ~ p = {; 

... (6) 

..• (7) 

Aliter. From (5) onwards. Since T. is given to be the most efficient 
estimator, it cannot be improved upon (cf. Theorem l5·6). Hen~e, in order ~hat 
T defined in (*) is minimum variance unbiased estimator we must have 

11 = 1 } _r 
12 = 0 ~ p = "'Ie ... [From (5)] 

Remark. This problem leads to the following very important result : 
"TJie correlation coefficient between a most effici~nt estimator and any other 

estimator with efficiency e is {;." 

Example 15·11. (a) S/zow that if a most efficient estimator A and a less 
efficient estimator B with efficiency e tend to joint normality for large samples, 
B - A tends to zero correlation with A. 

[Delhi Univ. B.Sc. (Stat. Hons.), 1988] 

(b) Show that the errur in B may be regarded as composed (jor large 
sample's) (}f two parts which are independent, the error in A and the error in 
(B -A). 

(c) Show furtl:er tha, 

V(.A - B)-= ( -.: - 1) V(A) 

Solut!on. (a) We have to prove that 
rfA. (B ·-A)l = 0 ~ Cov (A, B -A) = 0 
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COy [A, (B -A)] = COy (A, B) - V(A) = P(JA(Jp - (JA2, 

where P is the correlation coefficient between A and B. 

If we take CIA = CI, then CIa = {; and P = {; (ef. Theorem 15·5) 

•• COy (A, B -A) = {; • (J. {; - (J2 = 0 

Hence (B -A) has zero correlation with A. 
(b) We haveB =A + (B -A) 

.. V(B) = V[A + (B -A)] = V(A) + V(B -A) + 2 COy (A, B -A) 
= V(A) + V(B - A) [Using part (a)] 

=> Error in B = Error in A + Error in (B - A) 
ruid since A and (B - A) are independent, [ef. part (a) viz., r(A, B -A) = 0 and 
A and B tend to joint normality], the resultJollows. 
(c) V(A - B) = V(A) + V(B) - 2 COy (A, B) 

= (JA2 + (Ja2 - 2 P.(JA (Ja 

=(J2+ (J2 -2 re. (J. _~ 
e "Ve 

= ~2 _ (J2 = ( ; _ 1) (J2 

Example 15·12. If TJ and T2 are two unbiased estimators of r(9), 
having the same variance and p is the correlation betlyeen them, then show that 
p ~ 2e - 1, where e is the efficiency of each estimator. 

Solution. Let T be MVUE of y(9). Then, sihce' V(T.) = V(Tz), tile 
efficiency e of each estimator is given by : 

_Yill._YQl 
e - V(T1) - V(T z) ••• (*) 

Consider anoth«r unbiased estimator of )'(9) viz .• 
I 

T3 =2(T1 + Tz} 

1 
=> V(T3) =4 [V(T1) + V(Tz) ~ 2 Gov (TI' Ti)l 

=~[V~D + V(;> + 2p ~ V~D. V(;> ] 

Ym [1 1 2] _ (1 + p) V(T) 
= 4e + + P -' 2e 

Since V(D is the minimum variance, 

V(T3) = (1 + p~. V(T) ~\V(1) 
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~ I + P ~ 2e ~ P ~ (2e - I). 
Aliter. Deduction From (15·25). If T I and' T'}. have same 

variances/efficiencies i.e., el = e2 = e. (say) then (15·25) gives 

e - (1 - e) ~ p ~ e + (1 - e) :::::) p ~ 2e - 1. 

15·6. Sufficiency. An estimator is said to be sufficient for a parameter. 
if. it contains all the information in the sample regarding the parameter. More 
precisely. if T = t(X., X2 • .... XII) is an estimator of a parameter O. 'based on a 
sample x .. X2 • ..•• XII of size n from the population with density f(x, 0) such that 
the conditional distri,?ution of XI. X2 • ...• XII given T, is independent of O. then T 
is sufficient estimator for O. 

Illustration. Let XI. X2 • .... XII be a random sample from a BemouIii 
population wi~ parameter 'p'. 0 < p < I. i.e., 

{ I • .with probability p 
Xj = O. with probability q = (I - p) 

Then T= t (X"X2 • .... xJ =X1.+X2 + ... + XII - B(n.p) 

.. P(T=~)=(~ )Pl:(1-P)~1: 
The conditional distribution of (Xlt X2 • ..•• xJ given T is 

P[ I T -k]' _P[xtnx2n ... nxllnT=k] 
Xlr'lX2n · .. r'lXlI - - P'(T = k) 

pI: (1 _ p)"-I: = _1_ 

= (~) pI: (1 _ P )"-1: (~) 
, II 

O. if I. Xj ~ k 
,j .. I 

II 

Since this does not depend on 'p'. T = I. Xj. is sufficient for 'p'. 
; - 1 

The9rem 15·7. Factorization Theorem (Neyman). The nec.essary 
and suffiCit;nt condition for a distribution to admit sufficient statistic is provided 
by the 'factorization theorem' due to .Neyman. 

statement T =' t(x) is sufficient lor 8 if and only if the joint density 
funciion L (say), 01 tire. samPle values'can be expressed in theform 

L = g8[t(x)].h(x) t ... (15.29) 

wll~"'e (as indicqted) g9[t(X)] depef)ds on- 8 and x only through the value olt(x) 
and h(x) is independent 018. 

Remarks 1. It spould be clearly understood that by 'a function 
independent 9f O· we not only mean that -it dOes not involve 0 but also that its 
domain dUes not contain e.-For example. the function 

I . . 
f(x) = 2a ' a - 0 .< X .< a + E) ; - 00 < 0 < 00 

dC'l'c'nds on 9. 
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2. It should be noted that the original sample X.= (Xl> X 2 • •••• X,,). is 
always a sufficient statistic. 

:'3. The most general fonn of the distributions admitting sufficient .statistic 
is Koopman's form and is given by 

L = L ~x. 9) = g(x).h(9). exp (a(9)",(x)} ".,(15·30) 

where h(9) and a(9) are functions or-the parameter 9 only and g(x) and 'I'(x) are 
the functions of the sample observations only. 

Equation (15·30) represents the famous exponential family of distributions, 
of which most of the common distributions like' the binomial. the Poisson and 
the nonnal with unknOwn mean and variance. a,re the members. 

4. Invariance Property of Sufficient Estimator. 

If T is a sufficient estimator [Qr the parameter 8 and if '" (T) is a one to one 
Junction of T. then '" (T) is sufficient for 'I'f 8). 

5. Fisber-Neyman <;riterion. A statistic t) = t) (Xl> X2 • .... x,,) is 
sufficient estimator of parameter 8 if and only if tlie likelihood function (joint 
p.d/. of the sample) can be expressed as : 

" L = n j(x;.8) 
; -) 

... (15·31) 

where g/ (t/.8) is thl; p.d/. of statisti'C t/. ~nd k (X/t X2' .... x" ) is a function o/' 
.. tample observations on/~ i!Jdependent o[ a -

Note that this method reqUires the working out of the p.d.f. (p.m. f.) of the 
sliltistic t) = t(x~. X2 • .... x,.). which is nqt alw~ys easy. 

Example 15·13. Let Xl> X2 • .... x" /,1e a random sample from a I,lniform 
population on [0. 9]. Find a sufficient estimator for·8. 

[Jfooras Uni.v. B.Sc.; Oct. 1992] 

Solution. We are given 

Let 

fe(xi) ={ ~. 0 ~ Xj ~ 9 
O. otherwise 

{ I. if a ~ b 
k(a. b) = . O. if,! > b 

k(O. x;) k(x;. 9) 
Then fe(X;) = 9 

k(O. min Xi) k (m~l'x xi> 9) 
lSiSn"' iSiS/I 

=-----------------------9" 

... 
ge [t(x)] h(x) 



Fundamentale of Mathematical Statlstice 

k{t(x). a} 
where,ge [t(x») - a" • t(x) = max .~; and h(x) = k(O. min xi) 

IS;S" IS;S" 

Hence by Factorization Theorem. T = max x;. is sufficient statistic for a. 
1 SiS .. " 

. ." 1 
Abte •• We have L = ,IT f(Xi. a) =4 a"; 0 < Xi < a ... (1) 

1- 1 . 

If t = max (XI. X'Z • •••• x,J = X(,,). then p.d.f. of T is given by : 

g(t. a) = n [F(A(,,»],,-I .f(x("V •.. (il) 

We have F(x) = P(X Sx) = f: ftx. fJ) dx = f: ~. dx =.~ 

g(t. a) = nT X.1f J" -l' Cij ) [From (il)] 

n [ ]" - 1 = a" A(,,) 

Rewriting (i). we get 
,,- 1 

L _ Ii [X,,,,] 1 
- a" . n [X("») " - ~ 

= g(t. a). h (XI' x'Z • •••• xJ 
Hence by Fisher-Neyman criterion. 'the statistic t = x(,,). is sufficient 

estimalQr' for a. 
Example 15·14. Let Xl> x'Z • .••• x" be a random sample from N(J.l. (12) 

population, Find sufficient estimatorsfor'J.l and (72, 

Solution. Let us write 
a = (J,t. a'Z) ; - 00 < J.1'< 00. 0 < a'Z < 00 

Then 

It. 1" [1" ] L = ,n fe(x;) = ( -'-"J' exp ....!. 2IJ'Z .,~ (x; - J.1)'Z 
, - 1 a"V 21t ' • 1 

. =(~J.exp[- ~2 C'~I X? - 2J.1LXi + nI.L2 )] 

= ge [t(x»). h(x) 
where 

"~to 1)" [ 1 1 ge [t(x») ~ .aTh exp - 2<J2 ( t'Z(x) - 2J.1tl (x) + nJ.1'Z } _' 

t(x) = (tl(X). 't'Z(x») = (Lx;. Lx,,> and h(x) = 1 

Thus t(x) = Lxi is sufficient for J.1 and t2(X) = Lx? is sufficient for a2, 
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Example 15·15. Let Xit X 2, ... , X" be a random sample from a 
distribution with p.d/. 

j(x. 0) = e-(z-8), 0 < x < 00 ; - 00 < 0 < 00 

Obtain sufficient statistic/or O. 
Solution. Here 

" " L = IT j(Xj.O)= IT [e-(Zi- 8 )] 
i-I i-I 

= exp [-. i Xi] X exp (nO) 
• - I 

... (*) 

Let f .. f 2, ... , f" denote the order statistics of the random sample such 
that Y I < f 2 < .,. < f II' The p.d.f. of the smallest observation f I is given by 

gl (YI , 0) = n[1 - F(YI»)" -I / (y .. 0) 

where F(·) is the distribution function corresponding to p.d.f.j(·). 

Now F(x) = IX e-(z-8) t!x=le-(Z.-8)'I~. = l-e-(z-8) 
'9 -1 8 

.. gl(YI'O) =n[e-(Yl-8)]"-I. e-<Y1-8) 

=ne-"<Y1-8) ,0<YI<00 

= O. otherwise 
Thus the likelihood function of X I. X 2, •••• X" may be expressed as 

L =li) exp (- i Xi) 
, ; - 1 

[
exp (- i Xi)] 

i-I 

[ 
'exp (- i Xi) ] 

= gl (min Xi, 0) n exp i-I; ~in Xi) 

Hence by Fisher-Neyman criterion, the rust order statistic 
f I = min (X I. X 2 ..... X,.) is a sufficient statistic for O. 

Example 15·16. Let XI' X2 • •••• X" be a rand~m sample "'om a 
population with p.d/. 

. • 9-1 
f(x. 8) ~ 8 x. .. 0 < X < 1. 8 > O. 

" Show that tl = II Xi. is sufjicieni/or 8. 
i-I 

[Delhi Uni". B.Sc. (Stat. Bon •• ), 1988; Agra Uni.,. B.Sc., 1992] 
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" " Solution. L (x. Q) = n j(x;, G) = 9" n (x;9 -1) 
;-1 ;-1 

( " J8 1 = 9" n x; • ---=---

;-1 (:ii Xi) , _ 1 

= g(t., 9). h (X., xz, ... , x,.), (say). 
Hence by Factorisation Theorem, 

" tl = n Xi, is sqfficient estimator fQr 9. 
i-I 

Exampie 15·17. Let XI' X2 , .... X" be a random sample from Cauchy 
population : 

, 1 1 
fix. 8) = 1C • 1 + (x _' 8)2 " - 00 < x < 00, - 00 < 8 < 00. 

Examine if there exists a sufficient statistic for 8. 

• . ", 1 ,,[ 1 J 
Solution. L (x, 9) = ,n j(Xi, 9) = -,,' n 1· '( ,_ 9)Z , _ 1 '~i _ , + x, 

* g (t., 9) . h(x., xz, "', x,.). 

Hence by Fa<;torisation Theorem, there is no single statistic, Which alone. 
is sufficient estimator of O. 

However, 
L (x, 9) =kl (X .. Xz, ... ,X", 9). kz (X .. Xz, ... ,X,.) 

~ The whole set (X .. Xz, ... , X,.) is joipdy sufQcient for O. 
15·7. Cramer-Rao Inequality 

Theorem lS·8~ If t is an unbiased estimator for r(6). a function of 
parameter 8. then 

[£.1(9) J [y'(O)]z 
Var (t) ~ [a ]Z = 1(9) 

E aa log L 

•· •• (15·32) 

where 1(8) is thl! information on 8, supplied by the sample. 
I 

In other wQrds, Cramer-Rao inequality provides a lower bound [1'(9)]21/(9), 
to the v~ce of an·unbiased estimator of "iC9). 

Proof. In proving this result, we assume that there ,is ~nly ,a sir:tgle 
parameter 9 which is unknown. We also take the case of continuous r.v. The 
case of descrete random variables can be dw.t with similarly on replacing the 
inultiple integrals by appropriate multiple sums. . 
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We further make the following assumptions, which are known as the 
Regularity conditions for Cramer-Roo Inequality. 

(1) The parameter space e is a non-degenerate open interval on the real line 
RI (- 00, 00). 

(2) For almost all x = (Xl> Xl, ••• , X,.), and for all 9 e 9, :9 L(x, 9) exists, 

the extyeptional set, if any, is independent of 9. 
(3) The range of.integration is independent of the parameter 9, so thatj(x, 9) 

is differentiable under integral sign. 
If range is not independent of 9 and f is zero at the extremes of the range, 

i.e .• j(a. 9) = 0 = j(b. 9); then 

:91. fdx= f: ~t4·'-f(a,9):+f(b.9)~: 

=> :9 J. fdx= J. ~'dx,Sincef(a,9)=O=f(b.9) 
(4) The conditions of uniform convergence of u,tegrals are satisfied so that 

differentiation under the integral sig!11s valid. 

(5) 1(9) = E[ {:9 log L(x, 9) YJ ' exists and is positive for all ge 9. 

Let X be a r.v .. following the p.d.f. j(x. 9) and let L be the likelihood 
function of the random sample (Xl> Xz, ••• , x,.) from this population. Then 

" L =L (x, 9) = n j(xi,9) 
; - 1 . 

Since L is the joint p.d.f. of (Xl> Xl, ~ •• '; X,.), 

I L(x. 9) dx = I, 

wtae I dx = II ... I dxl dxl ... dx". 

Diff~r:entiating w.r. to 9 ~d ~sing regularity conditions given above, we 
geJ : 

=> • E (! 199 L )= 0 ... (15·33) 

Let t = t (Xl> Xl' ••• , X,.) be an unbiased estimator of 'Y (9) such tliat 

E(t) = 'Y (9) => Jt .. L dx '= 1(9) .•. (15·34)" 

Differentiating w.r. to 9, we get 

It. ~; dx = 'Y'(9) => It (:9 leg L ). dx = i(~) 
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=> E (I . :9 log L ) = y'(9) ... (15·35) 

COY (I. ! log L }E[' . :9 log L ]-E(/).E (;9 log L) 
= y'(f}) [From (15·33) and (15·3:;)] 

Wehave: 
2· 2 

[r (X. Y] ~ 1 => [COY (X. Y)] ~ Var (X). Var (Y) 

[ COY (,. :9 log L )J~ Van. Var (;9 log L) 

[1'(9)]2 S Vat I[ E {:a log ~}2_ {E (;9 log L )Y] 

[Y'(9)]2 S Var I • E [(Ie,!Og L JJ [Using (l5~33), .•. (15·36) 

2 

Var(,) ~ rQ'(O)] J] ... (15·360) 

E L 09 log L 

which is Cramer-Rao rnequality. 
Corollary. If I is an unbiased estimator of parameter 9 i.e .• 

E(/) = 9 => l(9) = 9 => y'(9) = 1. 
then from (15·300). we get 

where 

r 

Var(t) ~ J( 0 1 'liJ = I(~) 
It \aa'log L Ii 

: .. (15·37) 

.... {15=37a) ·/(9) =E[~9 log L JJ 

is called by RA. Fisher as, the amount o[ i'n/ormalion on 9 supplied' by the 
sample. (x." X2, ... , x,J and its reciprocal 1//(9). as the information limil to the 
variance of estimatOr t = t(x" X2 • ...• x,J.. 

Remarks. 1. An unbiased estimator t of y(9) for which Cramei'-Rao 
lower bound in (15·32) is attained is called a minimum variance bound (MY B) 
estimator. 

2. We have: 

1(9; =E[(;910g L J]=-E[~IOg L] 

1(9) ::;'n [:9 log f(x. 9)]2 = - n [~ 10g!J 

Proof. We ~ave proved in (15·33). 

... (15·38) 

... (.15·38a) 
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... (*) 

Also 

(~IOg L)L =;0[(;0 log L). L ]-(;OIOg L). ~~ 
. =;01(;0 log L) L] - (;0 log L Y'.L 

Integrating both sides w.r. to x = (XI>~' .... x,j. we get 

E(::2 10g ~) = :O·E (~ log L )-E (;0 log L J 
= - E (;0 log L J [Using (*)] 

(a J '(iP.,) ~ /(0) =E oologL = .... E o02logL . 
a form which is more convenient to use in practice. 

Also /(0) = E[(;OIO~ L.y] ='E L ~1 ;olog/(x;. 0)] 2 

.. [" {o }i = E ; ~1 oolog/(xit 0) 

T ;~fo-l {(;o~o~f(Xit O>)-(;OIOgf(Xj. a»)}] 
= n . E [;0 log /(x, 0) r, (On using (*)] 

since x;'s; i = 1,2, .... n are i.i.d. r.v.'s. 
15·7·1. Conditions for the Equality Sign in Cramer-Rao (C.R.) 

Inequality. 
In proving ~15·32) we used [cJ, (15·36) that 

h' (0)]2 S E [/- ')'(0)]2 . E (;9 log t ) ... (15'·39) 

The sign of equality will hold in C.R. Inequality if and only if the sign of 
Cq~ity holds in (15·39). The sign of eq~ity will-hold in (15·39) ~y Cauchy 

Schwartz Ih~ual~ty, ~ and only if qt~ variables [/- r (0)] and (;0 lo~ L ) are 

propo~onal to each oth((r, i.e., 

1 - y(O.) A = )..(0) o 00 log L 



16-28 Fundamentals ofMatbematica1 Sta~C8 

where :\. is a constant independent of (Xl' X2, ••• , ~J but may depc;nd on O. 

a t - no) [ ] 
.. 00 log L = ).(0) =. t· - y(0) A(O) . \.(1540) 

where A = A(O) = 1/[A.(O)], say. 
Hence a necessary and sufficient condition for an unbiased estimator t to 

attain the lower bound o/its variance is given by(J'540) .. 
Further, the C-R minimum variance bound is given by: 

,oar (t) = [Y'(O)];/E, (:. log 1J 2 uu] ... (1541) 

But E (;0 log L J = E [A(O) . (t - y(O)} r [From (15·40)] 

2 2 
= [A(O)] ~E[t-;'(O)] 

2 
= [A (0)] . Var (t) 

Substituting in (i541), we get 
2 

Var (t) = [y; (0)] . 
[A(O)] . Vat (t) , 

1 'tID I ' Var (t) = 'A(O) = I Y (9).A.(0) I ... (1542) 

.I!ence if the likelihood/un.::tion L is expressible in. the/orm (1540) viz .• 
a t - r(O) . [ ] 
i)6 log L AlO) = t - r(O) . A(O). 

then 
(i) t is an unbiased estimator o/r{O). 

(ii) Minimum Variance Bound (MVB) estimator (t)for .r(O) exists. and 

(iii) Va,(t} = 1 ::(~).I = l'y'(O) Ale) I 

'Ute, impOrtance of this result lies in .that fact that C.R. in~q4~ity. in 
addition to find if MVBU estimator for y(0) exists, also gives us the variance of 
such an estimator, which is given by (15.42)1 

Remarli's 1. If y(O) = 0, i.e., if t is an unbiased estimator of 0, then 
(15·40) can be written ~ : 

·a t- 0 
00 log L = -A.-

'Hence if (1543) holds, then t is an MVB estimator for'O with 

... (1543) 

Vat (t) = I A. (~) 1= 1 1 I A(9) I' .. • (1543a) 
2. We have seen in (1540) that an MVB estimator exists for ;'(0) if 

a t - y(O) l' 
00 10gL = A. = [t-y(O)]'r, ... (*) 
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where ) •. = A.(9)~ say .. If we write 

I t dE) = a(9), 

then integrating (*) w.r. to 9 (by parts), we get 

log L = [t - 'i(9)] a (9) + I a(9). l' (9) d9 + k (x) 

=> log L = 'It - "«9)] a (9) + ~(9) + k (x) ... (1544) 

where a(9) and ~(9) are arbitrary functions of 9 and k(x) = k(xl> X2, ••• , x,.}, is 
an arbitrary function of Xi'S iIidewndent of 9. 

Hence logAx,9) = [t -"«9)] A1(9) + B1(9) + k1(x) 

=> A~, 9) =.g(x). h(9) • exp [a (9) . 'I' (x)] ... (1544a) 

which is the necessary and sufficient condition for the existence of a sufficient 
statistic [c/. Koopman's form, EquatiQn (15;30) in Remark 3 to § 15·6)]. 
Hence an MVB .estimator for y(O) exists if (J1Jd only if there exists a sufficient 
estimator for y(O). 

This suggests that in our search for an MVB estimator for 1 (9),we need to 
confme ourselves to sufficient estimators of 1 (9) alone. 
This explains why the method failed in the case or Cauchy population [c J. 
Example 15·19], where no sufficient estimator exists and its success in the case 
of normal poPula~on [c/. Example 15'1~, where i is suffici~nt for Il and 

Example 15·20, L x?-/n is sufficient for cr2]. 
i = 1 

Example 15·18. Obtain the MVB estimator for Jl in the normal 
population N(J.l, (12), where cf2 is known. 

Solution. If Xl> X2, ... , x" is a random sample of size n from the normal 
population, then 

" 1 " { " } L = .n f(xi, Il) = ( -{2;)' exp - . L (Xi - 1l)2/2cr2 
I - 1 cr 21t ' - I 

1 " log L = - n log (-fbt cr) - ~-2 L (Xi - 1l)2 
~' i= 1 

1 II 

= k - "1-2 L (xj -1l)2, 
~. i-I 

where k is a nnstant independent of Il, (cr being known). 

a' 1" 
-;-log L = --2 :2 L [2(xj-Il)(-1)] 
all OJ_l 

" L (Xi - Il) _ 
i • 1 LXi - nil (X - u) 

= (J2 = a2 = (j2/n 

which is o~ the form (15·40). 
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Hence i is an MVB unbiased estimator for J1 and V W,) = V( i) = a2 
• 

n 

EX:lmple 15·19. Find if MVB estimator exists for 8 in the Cauchy's 
population : 

1- 1 
dF(x,8) =i'}'+ (x_e)2'- 00 <X<00. 

Solution. Here 
• " (1 ) ". 1 L =. n f(Xi. e) = 1t- . n [1 + (x. _ e)2 ] 

, - 1 , - 1 , 

" 
log L = - n log 1t - I. log [ 1 + (x; - 0)2 ] 

i-I 

Since this cannot be expressed in fonn nS·40). ~VB estimator does not 
exist for 9. in the Cauchy's population and so Cramer Rao lower bound is not 
attainable by the variance of any unbiased estimator O. 

Example 15'20. A .random sample Xlt X2 • ... , x" is taken from a normal 
" 

population with mean zero and variance (12. Examine if I. xlln is an MVB 
j - 1 

estimator for (12. 

~O~utiOD. Since X - N(O. 0'2), 

t (xl) f(x, 0'2) = Cf'!2ir. . exp - 2a2 ' - 00 < x < 00 

" 1 " {" } L =. n f(Xj, a~ = ( _ r:) exp - 1 I ~xl/2(2) 
, - 1 C1'I 21t ' - 1 

" 
" I..·x? - na2 

anI I. .2 ; .. :....:i~--,-__ . 
0c:J2 log L = - '2a2 + 2a4 i-I x, = - . 2a4 

_ G ~l·xi2Jn) - a2. 
- (2J:14/n) 

which is of the form (1540). 

Hence 
A "x·2 
0'2 = I ....L. is an MVB estimator ~m:l 

i = 1 n 
" 2a4 V(a2)=-

n 
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" Example 15·21. Show that X = l: X;/ n. in random sampling/rom 
i .. 1 

, {(l/O) exp (-x/9), 0 < x < 00 

j(x, 9) = . 
0, ot~erwlse 

. .. (*) 

where 0 < 8 < 00, is an MVB estimator l!! 9 and has variance fJ2/n. 
Solution. Let Xl. Xz • •••• X" be a raridom sample of size n from 

population with p.dJ. in (*). Then 

. . ,. 

" 1 [" ] L =. n j(Xi' 0) = 0" . exp - . l: Xi /0 
'.- 1 1_ 1 

1 " 
10gL = -n'log 0 -'9' L Xi 

i. 1 

d n 1 Il 

dO log L = - '9 + az . j ~ 1 Xi 

;p. n 2 " 
d92 log L = az - 03 i ~ 1 Xi 

1(0) = - E [ ~ log L ] = - ~ + ~ .. i E(xi) 
'-<,,-1 

In sampling from exponential population (*), we have ' , 
E(X) = 0 and Var (X) = Oz ·.·r*) 

n 2 " 
1(0) = -.-2 + "-, . _, I. (9) 

v- v- ,.1 (.: x;'s are i.i. d) 

n, 2 n = - az + 03 • IJ9 = ez 
Also -y(9) = 9 => "(.'(9) = 1. 
Hence Cramer Rao lower bound to the variance of an unbiased estimator of 

o is:' 
[1' (9»)2 __ 1 __ ez 

1(9) (n/O%) - n 

Consider the estimator X = 1 i Xj. 
n i-I 

We have : 

Also 

- 1" 1" 
E(X)="- L E(xi)=- 1: (9)=9 

nj_l ni,.1 

X is an unbiased estimator of 9. 
- 0 2 VarX az 

Var(X)=-=--=-
n n n 

•.• (***) 

Wrom r*)] 
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Thus we see that Var (X) .cQincides with the Cramer-Rao lower bound 

obtained in (***). Hence X, the sample mean is an MVB unbiased estimator, for 
O. 

Aliter. A more convenient way of doing this problem is as follows : 

We have 

x-o x-o = (&lIn) = A(O) ,(say) 

which is of the form (15·40). 

Hence X is an MVB unbiased estimator of 0 and Var \X) = A (0) = 02/n. 
Example 15·22. Given the probability density function 

f(x: 0) = [Tt{1 + (x - 0)2}]-1; - 00 < x < 00, - 00 < 0 < 00 ••• (*) 

show that the Cramer-Rao lower bound of variance olan unbiased estimator of 8 

is ~ • where n is the size of the random samplefirom this distribution. --n ' 
[Sri VenkateBwClnI Univ M.Sc., 1992] 

Solution. logf ... -logTt-log £l+ (X-0)2] 

a log f _ 2(x - 0) 
ao - [1 + (x - 0)2] 

( lli&.l\2 fOO 4(x..:: 0)7 
E ao ) = _00 [1 + (x- 0)2]2 j(x. O)dx 

Put x-O 

:.E (;0 log f)2 

4 sin2~ COS2~ d~ = ~ r 
Tt 0 

8[1 7t 3.1 7tJ 
=;t 2' '2-"4.2' '2 

( Using reduction fonnula for r cos" x dx ). 
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_![!!._ 37t]_! 
- 7t 4 16- 1 

Hence Cramer-Roo lower bound is 
1 . 1 2 

.E (r~g[f· HJ =;;. 

Examp:. 15·23. Prove that under certain ge:eral conditions of regularity 
to be stated clearly the mean square deViation £. (9 -' 9) 2 of an estimator ~ of 
the parameter 9. can never fall below a positive limit depending only on the 
density function f (x. 9). the size of the sample and the bias of the estimate. 

SolutiQn. We have proved Cramer-Rao's 'inequality 

V (9) ~ ~:t ,where£ (9) = 'I' (9)- ... (*) 

Now 
1\ 1\ 

£(9 - 9)2 = £[9 - ",(9) + ",(9) - 9]2 
1\ 1\ = £[9 - '1'(9)]2 + [9 - '1'(9)]2 + 2[",(9) - 9]. £[ 9 -''1'(9)] 
1\ = V(9) + [9 - ",(9)]2 

£ (9 - 9)2 > [\11'(9)]2 + [9'- ",(9)]2 [Using (*),] 
- 1(9) ... (**), 

1\ 
Let 9 be a 'biased' estimator of 9 with bias given by b(9) 

1\ 

i.e .• E(9) = 9 + b(9) = '1'(9), (say). 

",(9) - 9 = b(9) 
From (**). we get 

[1 + :9b(9)J 
E(9 - 9)2 ~ 1(9) + [b(9)]2> 0, ' 

where 1(9) = n f:- (~ log f J j(x. 9) cU> 0 

This proves the result. 

15·8. Complete Family of Distributions. Consider a statistic 
T ::: (Xl, x2, .•. , x,J, based on a random sample of size n (rom the popillatio~ 
f(x. 9), 9 'E e. The distribution of the statistic T will, in general. depend on e. 
Hence corresponding to T, we aga~n have a faqliIy of distributions, say, 
(g(t. e), e E 9}. - ,-

Definition. The statistic T = t (x), or more precisely the family of 
distributions {g (t. e). a E 9} is said to tie complete for e if 

Ee [h(D] = 0 for all 9 => Pe [h(D = 0]::: I ... (1545) -
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i.e., 

or 

J h(t) 8(t, 9) dt = 0 for all 9 e e} 
l: h(t) g(t, a) = 0 for aU a e e , 

... {l545a) 

~ h(1) = 0, for all 9 e 9, almost surely (a.s.). . . . (1545b) 
The concept of complete sufficient statistic is specially useful in Rao­

Blackwell Theorem ~cf. § 15·9]. 
Example 15·24. Let Xl' X2, ••• , X" be a'random sample from Bernoulli 

distribution : 

{Oll (1 - a)l-lI ; X =·0, 1 
f(x, 0) = . o , otherwIse 

" Show thaI l: Xi, is a complete sufficient statistic/or 8. 
; - 1 

Solution. The likelihood function of the sample (Xl> X Z, ... , X,,) is given 

by: L = ,n !(Xi.o)=[aPi(1- a)"-fll;]x 1 
, '" 1 

= g [t(x). 0]. h (Xlo X2 •••• x,,) 

" where t(x) = t Xi and h (Xl> Xz • .... xJ = 1 
; .. 1 

" 
Hence by Factorisation Theorem. T = l: X;. is sufficient estimalOr of a. 

; - 1 

SinceX;'s are i.i.d. Bernoulli variates wiih parameter a. 
" T = l: Xi - fJ (n. a). 

i-I 

with p.m.f. 

P (T = k) =: {"C t at (1- 9),,-t.1C = O •. 1, 2 ..... n 
o . otherWISe 

" " E9 [h(1)) =: I h(k). P(T = k) = I h(k). "Ct 01: (l - 9),,-1: 
t.o t-& 

II 
= l: A(k). 9t (1- 9)II-t;. A(k) = h(k). ACt ... (*) 

t-O 

= A(O) (1- 9)" + A(1) 9(l - 9)"-1 + .,. + A (n). 9" 
Now 

E9 [h(1)} = 0 for all 9 e e = (9 : 0 < 9 < 1) 

~ A(O) (1- 9)" + A(l) 9 (1- 9),,-1 + ... ... A(~) 9"= O. 'V 9 

=> A(O) + AI [9/(1 - a)] + ... + A(n) [0/(1 - a)]" = 0 'V 9 e [O~ J) .. :.(**) 

=> A(O) = A(l) = A(2) = ... ;= A(n) =, O. 



since a polynomial of degree n in x is identically zero (for all x), if all the 
coefficients are zero. 

F~m (.) and ( •• ), we get 

h(k) = 0, k = 0, 1,2, ... , n 
::::) h(t) =0, t = 0,1,2, .... , n 
Hence T is a complete (sufficie~t) statistic for O. 

Example 15·25. Let XI' X2 . .... X,. be a random sample. 0/ size n,/rom 
II (9,1) population. Examine ifT = t(x) = XI is complete for 9. 

Solution. We have T = Xl; e = {O : - 00 <: 0 <: 00 } 

. . Ee [h(7)] = 0 

f~­
J~-

_( .. _e)2/2 
h(u) e du = 0, for all 0 E e 

{ -'/-/1.} h(u) e . eeu • du = 0, for all 0 E e 

This is a bilateral Laplace transform in O. Since these are unique : 

h(u). e-,}a = 0, a.s. 

~ h(u) = O. a.s. 

~ P [h(D = 0] = I, 'V 0 e e 
T = X I, is complete statistic for e. 

,. 
Remark. It can be easily seen that Tl = L Xi, is a sufficient estimator 

; - 1 
of 0 and since Tl - N (nO, lin), by proceeding as in the above problem, we can ,. 
prove that Tl = L Xi, is a. complete sufficient statistic for 0 aIid the family of 

i-I 

distributions {gl (tlo 0), ge e}, is complete. 

Example 15·26. Let XI> X2 , ... , X~ be a random sa'!tPle from N(O, 9). 
Prove that T' = XI is not a complete statistic for 9 but TI = X 12 is complete for . 
I . 

Solution. Here T = I(X) = Xl; e = {O ; 0 <: 0 <: 00 } 

Ee [h(n] = 0, f9r all 9 e e 

=> f~oo h(u)exp[-u~/(29)]du=O,foralI0'e ~ 
This holds only for all odd functions h(u) of u, for which the integral exists 

i.e., for all functions S.I. 



h(u) = - h(-~); for all u 
=> h(u) ~ 0, a.s. 
=> T = Xl is not comple~ statistic for e., 
Let us now consider the statistic Tl = Xl z. 

Ee [h(Tl)] = 0; for all e,e e 

h(r) exp (-r(l.e) dx = 0, for all e e e 

=> 
h(u) , 
~ exp (- u(l.e) du = 0, 'V 0 e e 

This being a Laplace transform in (I/O), we have 
h(u) 
{; =0, a.s. 

=> h(u) = 0, a.s. 
=> Tl = Xl Z, is complete statistic for O. 

Remark. We can easily see that Tl = X 12, is sufficient statistic for e. 
Hence Tl = Xlz is a C9~plete suffic.ient statistic for e. 

Example 15'27. Let XI, X2 , ' ••• , XII be 'a random sample from uniform 

UfO, 6J. 6 > 0 population. Show that T = max (X;);: X(II)' is a complete 
IS; S II 

sufficient statistic for 6. 
Solution. T = X(II) has,p.dJ. 

__ {n etllll-· 1 
; OS t S 0 

g(t, e) ° '. otherwise 
Ee [h(1)] = 0, for all 0 e 8 = {e: 0< 0 < oo} 

n (9 
=> Oil J 0 h(u). U"- 1 du= 0, for all 0 e e 
Differentiating w.r. to e, we get from the fundamental theqrem of integral 

calculus, . 
h(O) • 9"- 1 = 0. 'Vee 8 

=> h(1) = 0, a.s. 
=> T = max (Xl> Xz, ... , X,J = X(II)' is complete for O. 
We have also proved in Example 15·13, th~t r = X(II)' is sufficient for 9. 

Hence T = X(II) , is complete sufficient statistic for e. 
, 15·9. MVU and Blackwellisation. Cramer-RaQ inequality 

(c.r. § 15·7) provides us a technique or finding if the unbiased estimator is also 
an MVU estimator or not. Here, since the .regularity conditiQns are very. strict, 
its applications become quite restrictive. More-over MVB estim4tor is not the 
s.'UllC as an MVU estimator since the Cramer-Rao lower bound may not always 
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be attained. More-over, if the regularity conditions are violated, then the least 
attainable variance may be less than the Cramer-Rao bound. [For illustration see 
Example 15·30]. In this section we shall discuss how to obtain MVU estimator 
from any unbiased estimator through the use of sufficient statistic. This 
technique is called Blackwellisation afte~ D. Blackwell. The. result is contained in 
the following Theorem due to C.R. Rao and D. Blackwell. 

Theorem 15·9. (Rao-Blackwell Theorem) .. Let X and Y be random 
variables such that 

E(Y) = Jl and Var (Y) = O'y2 > 0 

Let E(Y I X = x) = ~ (x). then 
(i) E{lKX)] :: Jl 

and (ii) Var [¢(X)] 5' Var (Y) 
Proof. Letfxy (x. y) be the joi~t p.d.f. of random variables X and Y'/I (.) 

and Iz (.) the marginal p.d.f.'5 of X and Y respectively and h(y I x) be the 
conditional p.d.f. of Y for given X = x such that 

=> 

&J1' 
h(y I x) :; fl(x) 

E(YIX=x) == f-: y. h(ylx)dy 

f 00 iJbJl iJy 
= -00 y. fl(X) 

= fl~X) f-: y J(x. y) dy = ~(x). (say) ... (1546) 

From (154~) we observe that the conditional distribution of Y given ~ = x 
does not depend on the parameter~. Hence X is sufficient statistic fQr~. -

Now 
E[«X)] = E[E(Y IX)] = E(Y) = ~, 

which establishes part (I) of the Theorem. 
We have ' 

Var (Y) = ElY - E(y)]2.= Ery _.~]2 

= ·,t;;[Y - «X) + ~(X) - ~]2 
'" E[Y - ~(X)]2 + E[«X) -~]2 

+ 2E[{Y - «X)} {(~X) -~}] 
The producttcrm giyes 

-

... (15·47) 

... (15·48) 



E[{Y - tfJ(X)} (4J(X) - ~J] == I_oooo I_oooo (y - 4J(x» (4J(~)-- ~)ftx. y)dtdy 

= I-: I-: (y --.4J(x))[4J(x) - ~]f;(x) h(y I x)dtdy 

:;: I_oooo [4J(~) - ~]{ f-: [y - 4'(X)]h(~ I x)dy J ~ 

But J-: [y - 4J(x)]h(y I x) dy = 0 [.: E(Y I X = x) = 4'(.1;) 

•• E[(Y - f(X»(4J(X) -~)] ~ 0 
Substituting in (1548), we get 

Var (y) = E[Y - tfJ(X)]2 + Var [4J(X)] ••• (1549) 
~ Var Y ~ Var [tfJ(X)] (.: E[Y - 4'(X)F ~ 0) 

~ Var [4J(X)] :s; Var Y,. • •• (15490) 

which completes the proof of me theorem. 
Remarks. 1. From 0549), it 'is obvious that the sign of equality holds 

in (15·49a) iff 
E[Y --f(X)f = 0 

~ Y - 4'(X) = 0, almost surely. 
i.e .. iff P(x,y) :y - 'tfJ(x) =01 = 1 .. ;(15·50) 

, }. Here we l\ave proved the theorem for continuous r.v.'s. The result can 
be similarly rroved for discrete case, replacing iIltegration by summation. 

3. Rao-Blackwell theorem enables uS to obtain MVU estim~tors through 
,sufficient statistic .. If a sufficient· estimator ~ists for a parameter, then in our 
search for MVU estimator we may' restrict ourselves to functions of the 
sufficient statistic. The theorem can be stated Slightly different as follows: 

Let U = U(x., X2, •.. , ·x,.) lJe an unbiased estimiitor bfpdrameter r (9) and 
let T = T(Xlo X2, ... ; x,J be'sufjiciint statistic for r(8). Consider tlie function 
~(r> 'of the sufficient statistic defi~d as 

4'(t) = E(U IT = t) : .. (15.51) 

which is independent 'of 8 (since T is sufficient for r(8». Then 
E«T) = r(8) 

cn:J Var 4(7') SVar (U) ... (15·~2) 
This result implies that starting wi~.an unb~ed estimator U, we can 

improve upon it by defining a function 4J(1) of the sufficient statistic as given 
in (15·51). This lechnique of ob~ining improved estimators is .called 
Blackwellisation. 

If in addition, the sufficient statistic T is also complete, then the estimator 
tXT.) discussed above will not only be an improved estimator over U but also the 
besi (unique) estimator. We.state below the relevant theorem. 
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Theorem 15·10. Let T be a complete sufficient statistic for reO), 0 E 8. 
Then 4(T), thefunction ofT defined in (15·51) is the unique unbiased estimator 
of reO). . 

Combining the results of the two Theorems 15·9 and 15·10, we have the 
following resulL. 

Corollary. If T is a complete sufficient statistic for r(O) and i/we can 
find some function of T, say 8(T), which is unbj~ed estimator of r( 0), then 
g(T) is the MVU estimator of r( 0). 

Example 15·28. Let Xl> X2 , ... , X,. be a random sample from N(O, 1). 
Ol/am MVUE of O. 

Solution. it can be easily proved [cf. Example 15·25] that the statistic 

" 
T=X. +Xz+ ... +X,.= ~ ,Xi 

i-I 

is complete sufficient statistic for 9. , 
- 1 II' - T 

Consider X,.=- ~ X;=-='8(I),(say) n ; _ 1 n 

Since X" = 8(1), is unbiased estimator of 9, by corollary to Theorem 15·10, 

X" is MVUE of 9. 
Example 15029. Let Xl' X2 , ... , X" be a random sample from UfO, OJ 

population. Obtain MVUE for O. 
Solution. We have seen that in sampling from U [0,0] population, the 

statistic: 
T = X(,.) = max· (Xi) 

1 ~; s" 

is sufficient (Exampl~ 15·13) and complete (Example 15·27) for O. Also 

E(1)=E[X(h)] = (n : 1)0 lSeeExample 15·30] 

~ E [en +n l)T],= 0 

Hence by corollary to Theorem IS·lO, [(n of: t)T/n] = [(n + 1) X(nYn] is an 
MVU estimator of 0; 

'Example 15·30. Given : 
1 

f(x, 0) ='9' 0 < x < 0, 0> Q 

= 0, elsewhere, 
compute the reciprocal of' 

n E[O IO\~X' O>J} 

... (*) 

and compare this with the variance of (n + 1) Yin, where Y" is the larges; item 
of a random sample of size nfrom this distributio,n. Comment on the result. 



a 1 
Solution. log f(x. a) = - log a =>. aa ~ogf = - e ' 
=> n-~:910g f] =nE( ~ )= ~ \ 

Elf a 1 /92 HencereciP~ofnlLaa logf(x. a)] =" ... ( .. ) 
Eor'the rectangular population (.), the p.d/. of nth orde~ statistic (the 

largest sample observation),Y" is 
g(y) = n • [F(y~ a)]lI-l .fly. 9) 

Where· F(x. a) = P(X s x) = Fo J(u)du = to 1 =: 
( " )a-I f n 

g(y) ,= n e) e = a'" y" - 1 ; 0 S Y < a 

f8 n to na' E(Y') = '" . g(y)dy = - y'+ ,,-I dy =--
II 0 J a" 0 n +' r 

Taking r = 1 and 2, we get .' 
na ~ nez 

E(YJ = n ~ I'; P(YII-, = n. + 2 

E[n: 1. y,,] an: lE(YJ=a 

(n ~ I)Y,,/n is an unbiased estimator of &. 

Now [Using ••• ] 

var[n: ly~] =(n: 1). Var(YJ 

= (n: IJ [EY,.2- (EYJ2] 

( n + 1)[ nf)2. n1:f)2] 
= -n-) Ln + 2 - (" +,1)2 

[Using ( ••• )] 

[ <n + 1)2 ] &Z a2, 
= ez n(n + 2) - 1 = n(n + 2) < n 

=> var[ n.; 1 . y,,] ~ 1./[n E(:e lo~ f J] 
Hence (n + l)Y In is an MVUE. 

Remark. This example illustrates that if the regularity conditions 
underlying Cramer-Rati'lnequality are violated, then the least attainable variance 
may be less than the Cramer-Rao lower bOund. 

EXERCISE lS(a} 

1. What do you understand by Point Estimation ? Define the foJ)owing 
~rms and give one example for each : 



Stati8tical Interence ('Ibeory of Emmation) 

(,) Consistent Statistic 
(il) Unbiased Statistic 

(iiI) Sufficient Statistic 

16039 

(iv) Efficiency. [Delhi Unill. B.Sc. (Stat. HOM.), 1981, 1982] 

2. What do you understand by Point Estimation ? When would you say 
that estimate of a parameter is good ? In particular. discuss the requirements of 
consistency and unbiasednt(ss of an estimate. Give an example to show that a 
consistent estimate need not be unbiased. 

[Delhi Unill. B.Sc. (Stat. Hon •• ), 1992, 1986] 

3. Discuss the terms (l) estimate. (il) consistent estimate. (iil) unbiased 
estimate. of a parameter anti· show that sample mean is both consistent and 
unbiased estimate of the population mean. 

[Calcutta Unill. B.Sc. (Math •• Hon •• ), 1986] 

4. (a) If SlZ. szz • ...• s,'lare r sample variances based on random samples of 
sizes nit nz • ...• n, respectively. and if T is some statistic given by 

_ nlsl~ + nzszz + ... + n,srz 
T- . a 

for estimating a2 as an unbiased estimatOr. find the value. of a. supposing 
population is very large and fdr every sample 

s2 =! L(Xj - i)2 

Ans. a ·='(nl + n2 + ... + n,) - r. 

(b) If Xl> X~. X3 • •••• X, are the sample means based on samples of sizes 
nit nz. n3 • ...• n, respectively. an unbiased estimator; 

nlXI + nzXz t· ... + n,~, 
t= k 

has been defined to ~stimate J.l. Find the value·ofk. 
Ans. k =.nl + n2 + .:. + n,. 
5. (a) For the geometric distribution. 

f(x, 9) = 9 (1- 9)~-1. (x = 1.2 •... ).0 < 9 < r. 
Obtain an unbiased estimator of 1/9. [Ans. E(X) = 1/9.] 
(b) The random variable.X takes the values l' and 0 with res~live 

probabilities 9 and 1-.9. Independent observations XhXZ • •••• X,.onX are 
available. Write ; = Xl + X2 + ... + X,.. 

Show that; (n - ~)/n(n - 1) is an unbiased estimate of 9(1- 9). 
6. Show that if T is an unbiased esti~atOr of a parameter 9. then 'XIT + ~ 

is_an. unbiased estimator Of'A,1 9 ~~. where Al and ~ are known constants. but 
']'2 is a biased ~timator of 92• 

7. For the following cases determine if the giv,en esli!nator is unbiased for 
the parametric function. When it is biased. derive an unbiased estimator from it 
i is the sample mean. 
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(a) Xl' ••. , XII is a random sample from a distribution with variance 0'2: The 

estimator n-1 [(Xl _x)2 + '" + (X" _ X )2] 

is 'used to estimate (j2. 

(b) Xl' ••• , oX" is an independent s~ple frOm an exponential distribution 

with mean e. The estimator' (1 - n~ J -1 is used to estimate exp (- k) when 

nX> 1 and zCfI'o is used when ,& < 1 . 
. (c) r successes are observed in n Bernoulli trials with success probability p, 

(r/n)2 is used to estimate pl. 

8./(x ;~, 0') = ~ exp [-r ~ u )]: ~ $ X < oo,,} - 00 < ~ < 00 

andO<O'<oo 
Oblain 

(I) an unbiased ~ti.mate of J.L when 0' is known, 
(it) ari unbiased estimate of 0' when Jl is known, 
(il) two unbiased estimators of 0'2 when ~ is known., 
Hence obtain an infmity of unbiased estimators'of 0'2 in this case. 
[Hint. The exponential distribution has mean ~ + 0' and variance alJ 
9. Suppose X and 'Y are independent random variables with· the same 

unknown means~. Both X and Y ha~e variance as 36. Let T = aX + bY be an 
estimator of Jl •• 

(I) Show that T is an -unbiased estimator of ~ if a + b = 1. 

(ii) If a = k and b == ~, wh~t is the'variance of T ? 

(iiI) If a = ~ and b =~, w~t is the' variance. of T :? 
'(iv) What choice of a and b minimizes 'the variance of-t subject to the 

'requirement that T is an unbiased estimate of Jl. ? 
10. (a) Examine the,unbiased.ness of the following estimates: 

1 II 

(I) Si2 = - I (Xi .-i)2 
,n i-I 

for 0'2, the popuJatiot! vanance. 
[Delhi Uniu. RSc. (Stot. Hon.~), 1982] 

ADs. E(Sll) = 0 ~ 1)0'2~0'2'(ii)E(S2l)=0'2. 
(b) Let Xl> X2, ••• , XII be a random sample of size n drawn from a population 

with mean Jl and variance 0'2. Obtain an unbiased. estimator for Jl2. ' 
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Hint.E(X) =E[1 i ;{;]=J.I.; Var(X)=a2In 
n ;.1 

~(XZ) ;:: Var 00 + [E(X)]2 = J.l.2 + (a2In) 

Ans. X2 - (a2In). if a2 is known ;' 

1641 

apd XZ - (~/n) = XZ - '( 1 1) i (Xi -' X )2. if a2 is. unkJiown. 
n n- i-I 

11. If X It X2 • ... ; X,.. is a random sample of size n from N ijl.. ( 2). where 
J.I. is known and if 

1 ,. 
T = - I. IX; - J.l.1 n i·. 1 

texamine if T is unbiased for (J.1f JlQt, obtain an unbiased estimator of a. 
~ [Delhi Ullil1. asc. (Stat. ROll •• ), 1981} 

Hint. E(T) = 1 iE' Xi - J.I. ,.:: ..J (21ft) • a. 
ni_l 

since. for N(J!. (2). Mean Deviation about mean = ..J (21ft) d 

Ans. No;..J ('ItI2) T. 
lZ. If Xl. Xz, •••• XII is a random sample from the population 

j(x,9)=(9+1).x9·; O<x< 1; 9>-1 •.• ("') 

show that {i~~~ ~ - 1] is unbiased estimator of 9. 

Hint. In'sampling from (*), U = -log X has an exponential distribution 
willi parameter (9 + 1) . 

i.i.4. 

Ui = -log Xi - Y (9 + 1. 1); i ='1, 2 ..... n 

h 9+1 
Y = - L log Xi - Y (9 + 1. n); E [l/Yl = --1 ; _ 1 n -

13. Suppose X\,fW a truncated Poisson distribution with p.m.f. 

{ 
exp'(- 9).9% 

/(x.9)= [1-exp(-~)]xl' x=I.2,3 .... 

° otherwhe 
Show that the only unbiased estim'ator of [l .... exp (- 9)] based on X is the 

statistic T, defined as: 

{O. when x is odd 
T(x) = : 

2. when x IS even 
Note. This is I!n Example of absurd unbiased esti.mator~ 



14. Consider a random sample X1,X2, X3 of size 3 from unifo~ p.d.f. 

{
I/O, 0 < x < 0 

f(x, 0) = o , otherwise 

Show that each of the statistics 4X(ll' 2X(2) and t X(3), where X(i) is the ith 

order statistic is an unbiased estimator for O. Find the variance and hence the 
efficiency of each. 

15. Obtain an unbiased estimator for .(1) 0, and (il) 02, in case of binomial 
probability distribution : 

f(x. 0) = "C" OJ: (1 - 0),'-1; X '9 0, 1,2, ... , n ; 0 < 0 < 1. 

Hint. E ( ;; )= 0; E [ ~<~ ~ !~ }= 02• 

If we write T = xin, the observed proportion of successes then 

E(1)= 0; E{'f2)=~ +(n ~ 1). 02 ~02. 
This illusttates that we may have: 

I,. unbiased for 0 but 1;.2 not unbiased for 02• 

l6. Define 'efficiency of an estimator'. 
X is a uniform random v~ab.e \Vith range [0, OJ. Xl' X2, ... , x,. are 

independent observations on X. Define 

~ 2 j [<n+l)]_ 
til = - (Xl + X2 ... + x,.) ; ~ = max (Xl> x2, ... , x,J. 

n . _ n . 
'It. j 

Show that 01 and ~ are unbiased for O. Ev~uateitheir relative efficiency. 
17. (a) The observations Xl> X2, ... , x,. represent a random sample from a 

uniform distribution over ~e interval (0, 0). where 0 is an unknoWII parameter. 

The statistics X, m and M are the mean, th~ smallest value and'the largest value 
respectively for the sample. Find- values for ,k so that, kl is an unbiased 
estimator for O' where 

(a) I =X 
'(b)t=M, 
(c) I=M -m, 

Of the three '\U1biased estimators which is the best? Give your reasons. 
(b) LetX .. X2, ... ,X,. (n > 2) be a random sample of size n from the 

distribution having density t~n~tion-: 
f(x. ; 0) = oxe -1 ,0 < x < 1, 0 > 0 

If Z = - i log Xi, show that n Z- 1 is an unbiased esumator for 0 al1d 
; - 1 

its efficiency is (n - 2)/n. 
Hint. See hint to Question 12. 
18. (a) Suppose Xlo X2, .... X,. are sample values independently drawn 

from population with mean m and variance (12. Consider the estimates :-
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X I +X 2 +···+X,. Z _ XI +2X2 +3X3 + ... + II X,. 
Y,. " + I n - ,,2 

Discuss whether they are unbiased, consistent for m. What is the efficiency 
of Y,. over Zn ? 

(b) Let X" X 2, X3 and X4 be independent random variables such that 
E(X;) = J..l and Var (X;) = cr2 for i = 1,2,3,4. 

and 

examine whether Y, Z and T are unbiased estimators of J..l ? What is the 
efliciency of Y relative to Z? 

(c) Let x" X2' x), X4, be a random sample from a N(J..l, cr2) population. Find 
4 

the efficiency of T = t (x) + 3X2 + 2x3 + X4) relative to X = ~ t x;. Which' is 

relatively more efficient? Why ? 
19. A simple random sample of size 2 is drawn from a population 

containing 3 units, without replacement. Let )'1' Y2, Y3 be the value of a 
characteristic measured on the three units and let T;j be the estimator of the 

population mean Y for the sample that has units i and j ; i, j = I. 2, 3, i * j. 
1£ T I.2 = (YI + Y2)/2, TI3 = (YI/Z) + (2Y3/3 ), T23 = 0'212) + 0'3/3). show 

that T';j is unbiased for Y. Find the variance of T ij and hence show that 
the variance of T;j is smaller than that of the sample mean estimator if 
)'3 (3)'2 ~ 3YI - Y3) = O. [Indian Forest Service, 1991) 

20. Let x. the earnings of a commercial banI<, be a random variable with 
mean J..l and variance cr2• A random sample of earnings of" banks is denoted by 
XI. X2 • ••• , xl/' However, because of the disclosu~e laws, individual bank earnings 
arc not disclosed and only the following average values are made available to the 
researcher: 

where 11 is an even number and Tn = 1l12. 
(i) Devise the best linear unbiased estimator of J..l, given the available 

information. What is the variance of the proposed estimator? 
(ii) Devise an unbiased estimator of cr2• [Delhi Univ. M.A. (Eco.), 1990] 
21. (a) Define a cOl1sistent estimator. 
Let T,. be an estimator of a with variance cr,? and I;(T,.) = a,.. Prove tbat if 

a" -? a and cr,? -? 0, as II -? 00 then T,. is a consistent estimator of a. 
Hence obtain consistent estimators for: 

(I) Mean of the normal distribution. 

. .. 
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(il) Variance of the nor:mal distribution when mean is' known. 
[Delhi Univ. B.Sc. (Stat. Bons.). 1989] 

(b) Give an example of an estimator: 
(l) which is consistent but not unbiased. 

(il) w~ich i~ unbiased but not consistent 
[Delhi Univ. B.Sc. (Stat. Bons.). 1988] 

22. (a) State and prove a sufficient condition for 'the consistency of an 
~timator. Define the invariance property of a consistent estimator and establish 
it. - [Delhi Univ. B.Sc. (Stat. Bons.). 1985] 

(b) Given a random sample Xl. X 2 • •••• X,. from a normal (Il. ( 2) 

distribution. examine unbiasedness and consistency of 

(I) X for Il. (il) 1 I. (X; - X)2 for 0 2. 
n . 

23. (a) When would you say that estimate of a parameter is good '1 In 
particular. discuss the requirements of consistency and unbiasedness of an 
estimate.. Give an example to show that a consistent estimate need not be 
unbiased. 

Show that an unbiased estimator whose variance tends to zero as the sample 
size increases to infmity is consistent. 

(b) Define unbiasedness and consistency of estimators. Let XIt X2 • •••• X,. 
be a random sample from the N {IJ.. ( 2) distribution. Propose three estimators of 
Il based on this random sample such that the flfSt is unbiased but not consistent, 
the second is consistent but not unbiased and the third is both unbiased and 
consistent. [Puldab Univ. M.A. (Eco.). 1990] 

24. (a) Define an unbiased and consistent estimate of a parameter in a 
population distribution. 

Prove that fqr a sample of size n from a normal (m. 1) population. the 
arithmetic mean is an unbiased estimate of m and by Chebyshev's inequality or 
otherwise. show that the estimate is consistent too. 

[Calcutta Univ. RSc. (Maths. Bons.). 1991] 
(b) If'XIt X 2 • •••• X,. is a random .sample obtained from the density 

function: . 
j(x, a) = 1. a < x < a + 1 

= O. elsewhere 

show that the sample mean X is an unbiased ~.,d consistent estimator of a :.. t . 
25. (a) Define a consistent estimator. Let T I .,. and T2.,. be con~i~tent 

estilllator~ of gl(a). and g2(a) respectively. Prove that aTI .,. + b T2.,. is a 
consistent estima~r of agl (a) + bg2(a). where a and b are constants independent 
ofa. . 

(b) Define consistent estimator. If the esti'mator ttl based on a random 
sample of size n is such that 
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as n -+ 00. then prove that I,. is a consistent estimator for O. Hence prove that 
sample mean is always a consistent estimate for population mean. 

Welhi r/"iv. M.Sc. (Maths), 1990] 

(c) If I" is a biased estimate of paramater 0 based on a random sample of size 
n. and E(I,.) = 0 + b,. ~nd if l?,. -+ 0 and V(I,.) -+ 0 as n -+ 00. show that I,. is 
consistent estimator of O. 

(d) Define a consistent estimator of parameter O. If T is a consistent 
estimator of O' and if tP is any continuous function of itS argument. show that 
4J{n is a consistent estimator of «0). 

26. (a) Show that i = 1 i. Xi and S2 = 1 i. (Xi -x )2. are joint 
ni_l ni=l 

consistent estimators for J.l -and (J2 respectively. if Xl. X2 • •••• X" is a random 
sample from a normal population N{J.l. (J2). 

Also find the efficiency of nf/(n - 1). 
(b) Show that if I is a'consistent estimator of a parameter O. then e' is a 

consistent estimator of e8. 
(c) Prove that in case of Binomial distribution with parameter O. tIl defined 

as rln is a consistent unbiased estimator for O. but I,. defined as (rln)2 is 
consistent but not unbiased estimator for 02• 

27. Show that in sampling from Cauchy distribution 
1 

j(X. 0) = 1t[1 + (x _ 0)2] • - 00 < X < 00. 0 > 0 ; 

(I) Samp~e mean X is not a consistent estimator of O. 
(il) Sample median is a· consistent estimator of 0 and its asymptotic 

efficiency is 8/1t2• 

28. (a) If Tl and T2 are consistent estimators of 1(0). show that 
01 Tl + aiT2' such that al + a2 = 1. is also consistent for 1(0). 

(b) fpr a Poisson distribution with par&.meter O. show that 1/K is 

consistent estimator of 1/0. where X is the mean of a random sample from the 
given, population. 

Hint. Prove that i is a consistent estimator of 0 and then use Invariance 
Property (Theorem 15.1). ' 

29. Define MVU estimator. If Tl and T2 are two unbiased estimators of a 
parameter O. with variances (J12 ~d (J22 and correlation coefficient p. then 
obtain tl}e best unbiased linear combination of Tl and T2• Also obtain its 
variance. Welhi ~niv. B.Sc. (Stat. Ho" •• ), 1990] 

30. (a) Let Tl and T2 be two unbiased estimators of 1(0) having the same 
variance. SJ'low -that their correlation coefficient Pe cannot be smaller than 
(2 ee - 1). where ee is the efficier,cy oteach estimalQr. 

Further show that if Tl is MVU estimator and T2 is any unbiased estimator 
with efficiency e. then 



1546 

V(TI-T~= (~- I)V(TI)' 

[Delhi Uni". RSc., (Stot. Bon •• ), 1989] 

'(b) If TI is a MVU for 0 and T2 is any other unbiased estimator of 0 with 
efficiency ee then prove that the correlation between TI and 1'2 is {4. 

[Delhi Uni". B.A. -(Stat. BOM.), 1987] 

31. (a) Define MVU estimator. Show that an MVU estimator is unique. 
[Delhi Uni". RSc. (Stat. Bon •• ), 198;7] 

(b) If TI and T2 are two unbiased statistics having the same varianCe and p 
is the correlation between them then show that p ~ 2e - I, where e is the ratio 
of the variance of the best estimator to the common variance of TI and T2• 

[Delhi Uni". RSc. (Stat. Bon •• ), 1992] 

32. (a) Let T be an MVU estimate for y(O) and:'1'I• T2 be two -other 
unbiased estimators of -y(0) with efficiencies el and e2 respectively. 

If Pe is the correlation coefficient between TI and T2• then 
(elevll2 - {(I - el)(1 - ev) 112 ~ Pe ~ (elevll2 + {(I - el)(1 - eJ) 112. 

[Delhi Uni". B.Sc~ (Stat. Bon •• ), 1993, 1988, 1986] 

(b) Let II and 12 be two unbiased estimates of 0 with variances GI2 and G22, 

(both known) and correlation P (known). Consider the estimate 
/I, 

o = atl + (1 - a) 12. 
/I, /I, 

Show that 0 is unbiased. Find a such that 0 has minimum variance. 
[Delhi Uni". M.A. (Eco.), 1986] 

33. Suppose X and Y are independent unbiased estimates of Jl. It is known 
that the variance of X is 12 and the· variance of Y is 4. It is desired to combine 
two estimators in order to obtain a more efficient estimator: Let T = ax + bY. 
be the new estimator. 

(i) In ordel"that T be an unbiaSed estimator of J1,. what conditions must be 
imposed on a and'&-'! 

(ii) Find the values of a and b that minimize the variance of T subject to ~ 
condition that Tbe an unbiased estimator. 

34. (a) What, is an.efficient estimator? 

If TI• T2 are both efficient estimators with variance v and if T. = ! (TI + 'Tv. 
show that variance of T is ,(v/2)(l + P), where P is the coefficjent of correlation 
between Ti and T2• Deduce that P = 1 ~ti that T is also efficient. 

(b) If T and T' be two consi~tent estimators of which T is the most 
efficient, p.-ove that the correlation coefficient between them is 

-\j ~~ry j . where V(1) and V(T') are the variance of T and T"respectively. 

Show also that the correlation coefficient between two most efficient 
estimators is unity. [Allahabad Uni". AI.A. (Eco.), "1993] 
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35. Define a sufficient statistic. Explain the method of finding sufficient 
estimator. If (Xl' X2, ••• , X,.) is a random sample from a distribution: 

j(X,p)=pX(1_p)l-%;X=O, 1 andO~p~I, 
find the' sufficient estimator of p. [Madrcu Unil1. B.Sc., 1988} 

36. State the factorisation theorem on sufficiency. Obtain a. sufficient 
statistic for the parameter a in the following distribution : 

1 
j(x: a) = e' 0 < X < a. 

(b) Define a sufficient statistic. 
If Xl, X2, ••• , X,. is a random sample from a distribution : 

j(x, a) = a" (1 - a)% ; X = 0, 1', 0 < a < 1 
= 0, elsewhere. 

Show that Yl = Xl + X2 + ... + X,., is a sufficient statistic for a. 
[Madrcu Unil1. B.Sc., 1987] 

(c) Let Xl, X2, ... , X,. den<;>te, a random sample from a popplation with p.d.f 
fix, a) = a.x8 -1 , 0 < X < 1. . 

Show that Y = Xl x2 ... x,., is a sufficient statistic for a. 
37. (0) Let X be a random sample of size one from a nonnal distribution 

N(O, (2). 
(i) Is X a sufficient statistic for a1 ? 

(ii) Is I X I a sufficient statistic for a2 ? 
(iiI) Is X2 a sufficient statistic for a2 ? .(Gujarat Unil1. B:Sc., 1992) 

(b) Examine which of the following distributions admit sufficient 
estimators for their parameters : 

. (i) f(x, a) = a.x8 -1· , 0 ~ X ~ 1 

(il) j(xy, p) = ~ 1 exp {- 2(11 2) (x2 - 2pxy + y2)} 
. 21t (1 - p2),- - P 

38, (0) Show that if a sufficient estimator exists, it is also the maximum 
likelihood estimator. Is the converse true ? Explain. I' 

(b) Do tJ\e following distributions admit of sufficient estimators ? 
1 

(I) j(x, a) = e; ka ~ X ~ (k + l)a, where k is an integer. 

. 1 + a 
(il) . fix, ~) = (x + a): ' 1 ~ x < 00 • 

39. (a). Prove that if an unbiased estimator and a sufficient statistic exist 
for V(a) and the density functionj(x, a) satisfies certain regularity conditions (to 
be stated by you), then the best unbiased estimate of V(a) is an explicit function 
of the sufficient statistic. 

Examine if the following distribution admits a sufficient statistic for the , 
parameter a. 

f (x, e) = (1 + !}) x8 ; 0 ~ X ~ I, a > 0 
(b) DfScuss if a sufficient statistic exists for the parameter a, in.sampling 

from double exponential distribution with p.d.f. .' 
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fl.x. 9) = ~ exp (- 1 x - 91) ..... 00 < x < 00. 

Hint. Proc~d as in Example 15·17. 
Ans. No sufficient estimator for 9 exists. 
(c) Obtain jointly sufficient estimators for a and ~ it:' a random sample 

X .. X2 • •••• XII from the uniform population with p.d.f. 
1 

fl.x. a,~) = /3 _ a' a S x S ~ 

= 0 • otherwise 
Ans. T I = X (1) and T 2 = X (II)' are jointly sufficient for a and /3 

respectively. 
40. (a) Show that a necessary and sufficient condition for a statistic T to be 

sufficient for 9 is that the probability function Ie (x) should belong to an 
exponentially family. 

(b) Let x .. x2 • ••• XII be a random sample from a distribution with p.d.f. 
j(x: 9) = e -(x-e). x ~ 9. - 00 < 9 < 00. Obtain a·sufficient statistic for 9. 

[Delhi U"iv. B.Sc. (Stat. No" •• ), 1987, 1985] 

41. Define a sufficient statistic. State and prove the Factorisation theorem 
, on sufficiency. [Delhi U"iv. B.Sc. (Stat. Bo" •• ), 1986] 

42. (a) Let (X .. X2• X3) be a random sample from the probability mass 
function: P(X = x) = 9x (J - 9)I-x. (x = O. 1; 0 < 9 < -1). 

If t = XI + X2 + X3. show that the conditional distribution of the .random 
sample given t = r. does not depend on 9. Interpret this result in the light of 
sufficiencY-COlJcepL 

(b) Let (X .. X2) be a random sample from a Poisson distribution with 
parameter 9. Prove that t = XI + 2 X2 is not sufficient for 9." 

(c) Let(X"X2) be a random sample from N (9.1). IfT=XI +X2 and 
U = X2 ,... X I. show that the conditional distribution of U given T = t. does not 
depend on 9. Intetpret this result in the light of sufficiency-concepL 

(d) For a random sample X j (i = 1,2 •...• n). from an exponential 
distribution with p.dJ. 

fl.x. 9) :;: t exp.[ - ~ J. x -> 0; ~ > O. 

obtain an unbiased and sufficient estimator for 9. 
Welhi U"iv B.Sc. ·(Stat. iii", •. ) 1983, 1988] 

43. Prove that under certain regularity conditions to be stated by you. the 
variance of an unbiased-estimator T for "rt9). satisfies the inequality 

Vare(1) ~ [1'(9)]2 . 

&[(3 log Ie (X la9X2 ..... XII) J 
, [Delhi Univ: B.Sc. (Stat. Bon •• ), 1992, 1986] 

44. (a) If T is an unbiased.estimator of a parameter 9. based on a random 
~anip'e of size n. prove that 
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Vat (1) ~ Il[nl(O»), where 1(0) is the infonnation function. 
(b) Show that under certain regularity conditions, an unbiased estimate T of 

a parametric function '1'(0) attains a Cramer-Rao bound, for the variance of 
unbiased estimator of ",(0), if and only if T satisQe$ the relation 

o log L _ n/(O) {'T _ (O)} 
aa - ",'(0) '" 

where L is the likelihood function of a sample of n observations and 

nl(6) = E (0 I~: L) 
What IS the variance of T in such a case? Show that an estimator T satisfying 
the above relation is unique when it exists. Further a parametric function 
admitting such an estimator T is unique except for an additive and multiplicative 
constant. (Meerut URiv. B.Sc., 1992) 

45. (a) State and Prove Cramer-Rao Inequality. 
(b) Let Xl> X2, ••• , XII be,a random sample fro·m.a population with p.d.f. 

f(x. 0) = 0·e":8%; x > 0,.0 > O. 
Find Crarner-Rao lower bound for the variance of the unbiased' estimator 

of O. [D~lhi URiv. B.Sc. (Stat. HonB:),1987] 

46.f(x, O) is a probability density function and (Xl> X2, ... , x,,) is a random 
sample from it. Prove mat if an unbiased minimum ~ariance bound (MVB) 

estimator.T exists, it must be of the form T = 0 + At ';0 ~og f(Xj, 0), in ~hich 
A does not depend on sample values. 

Show that the variance of T is A and is given by 

1 {;p. } yar T = n E 092 log f(xj, 0) . 

Write a note on the connection between MVB estimators a~d sufficiency, giving 
example. 

47. (a) Define Minimum Variance unbiased estimator and Minimum 
Variance Bound unbiased estimator and explain clearly the difference between 
them. Prove that minimum variance unbiased estimator is essentially unique. 

(b) Verify that there exists an M.V.B. estimator for the parameter 0 of the 
e - 9·0% 

distribution: f(x. 0) - , ; x = 0, 1,2, ... x. 
and hence obtain the value of M.V.B. (Marathwada Univ. M.Sc., 1993) 

(c) Show that there exists a parameter function ",(9) in-the case of lhc 
geometric distribution : -

f(x, 0) = (1 - 0) 0% ; X = 0, 1,2, ... ; 0 < 0 <: 1 
such that there exis~ an M.V:B. unbiased estimator T of ",(0). 

Ob~n ",(0), T and V(1). [Agra URiv. M.Sc., 19881 

48. (a) Define minimum variance unbiased estimator (MVUE). How-is' 
Cramer-Rao inequality useful in obtaining such an estimator? Derivc'this 
inequality. 
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(b) Obtain minimum variance unbiased estimator of 0 from. a sample of n 
independent observations Xl> Xl • •••• X ... drawn from the binomial.B (N. 0) 
population' having probability function : 

f(x'; 0) = NC" 0" (l-'O)N-".x = 0.1'.2 •....• N. 
Also obtain variance of this estimator of O. 
49. (a) If b(O) is the bias iii the estimator T of O. then show that (under 

conditions to be stated by you). 

E(T - O)l ~ {I + /~~)(8)J2 + (b(0)J2 • 

. where/(O) is the information on 0 supplie4 by a sample of n obser,vations. 
(b) Prove the following ,result: 

f: 00 (x ~ 9)l . g(x. 0) dx f: 00 • e) l~ g) g(x. 0) dx ~ ( ~ J 
where g(x. 0) is the frequency function in X having the first moment ",(0) and 
finite second moment. Discuss when the equality sign holds. 

50. For the gamm,a distribution 
1 

j(x. 0) = OP rp x p d exp (-x/O); 0 S x < 00. 0 > O. p (known). 

find the expectation of )(2. Use it to obtain an unbiased estimator T of Ol. Find 
V(n. 

Evaluate Fisher's information function /(0) about Ol and verify the truth of 
the inequaIlty : 

51. State and prove Rao-Blackwell theorem and explain its significance in 
the theory of point estimation. 

Let Xl> Xl • .... X" be a random sample from Poisson distri.bution with 
parameJer A. Obtain Cramer-Rao lower bound to the variance of an unbiased 
estimator for A. Hence find the M.V.U.E. for A. 

[Delhi Univ. M.Sc., (Math •• ), 1990] 

52. State. and prove Rao-Blackwell theorem and explain its significance in 
point estimation. 

Let XI. Xl' ...• X .. be a random sample from a rectangular distribution with 
p.dJ. 

j(x .. O) = 1/0, 0 ~ x SO. 
Find MVU estimators of 0 and 30 + 5. 

[Delhi Univ. RSc. (Stat. Hons.), 1993, 1987] 

53. Define completeness of a statistic T. Let X I, Xl, .... X .. be a random 
sample from uniform population U[O. OJ. 01;?Win -sufficient statistic for O. Show 
that 'it is complete. Hence obtain MVU estimator for O. 

[Delhi 'Univ B.Sc. ($tat. Hons.), 1988] 

54. De(ine a complete sufficient statistic. 
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If T is a complete sufficient statistic for y (9). and E [c\l(n] = y(9). then 
show that C\)(n is the unique MVUE of y(9). 

Use this property and obtain MVU es~mator of 0 based on a random 
sample X 1. Xz • •••• X,. from the distribution with p.mJ. 

{9" (1 - 9)1-". x = 0 1 1 
f(x.9) = 0 • elsewhere 

[Delhi Univ. B.Sc. (Stat. l!ons.), 1990] 

55. Show that the family (f(x. 9). 9 e (0. I)} with 
f(x.9) = zc" 0" (1- 9)Z-" , x = 0, 1,2, 

is complete. [Delhi Univ. B.Sc. (Stat. Bons.), 1993] 

56. Let X 10 X Z • ••• , X,. be a random sample from 

Ie (x) = i ' 0 < x < 9 for all 9 e e 
Show that X(,.) = max (X1.XZ • .... X,.) is sufficient for 9 and (n ; 1) X(II) 

is an unbiased estimator for 9. 
Comment on the result. lAgro Univ. M.Sc., 1988] 

57. Let the random variables X and Y have the' joint p.d.f. 

f(x. y) = ;z exp [- (x ~ Y>]. 0 < x < y < 00 

and zero elsewhere. 
(a) Show·that: E(Y I x) = x + 9 
Obtain the expected value of X + 9 and compare the variance of X + 9 with 

that of Y. [Delhi Univ. B.Sc. (Stat. Bons.), 1992, 1986] 

(b) Show that: E(Y) = ~ 9. Var (Y) ::;: ~ 9z. 
[A(adraB Univ. B.Sc., 1988] 

58. (a) A random sample of size n is drawn from a Poisson 'l0pulation 
with parameters A. Obtain the minimum variance unbiased estimator of A. 

[Delhi Univ. M.A. (Eco.), 1992] 

(b) Establish a necessary and sufficient conditioQ for an unbiased estimator 
to be an MVU estimator. 

Let X10 Xz • •••• X,. be a random sample frollJ a J:>oisson distribution with 
parameter 9. Find an MVU'estimator for )'(9) = e-6 04/24. 

59. Derme sufficiency of an estimator 
Let Y1 < Yz < Y3 < Y4 < Ys be the order statistics of a random sample of 

size 5 from the uniform distribution'with p.d.f. 

f(x. 9) = { k; 0 < x < 9. 0 < 9 < 00 

O. elsehwhere 
Show that 2Y 3 is' an unbiased estimator of 9. Find the conditional 

expectatiol\ E [2Y3 I Ys) = C\)(Ys). say. Compare the variances of 2Y3 and C\)(Ys). 
[Delhi Univ. B.sc. (Stat. Bons.), 1989] 
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60. Let XI. X2 • •••• X" be a random sample from the Bernoulli population 
with parameter 0.0 < 0 < 1. Obtain a sufficient statistic for 0 and show that it 
is complete. Hence obtain MVU estimator of O. 

[Dellai Unit). B.Sc. (Stot. Hon •• ). 1989] 

" 61. Show that T = L Xj, is a complete sufficient statistic for the 
j - 1 

parameter 0 in a random sample it. X2 • •••• XII drawn from the population with 
p".dJ. 

(a) f{x,O) = 0" (1- 0)1-,,; X = 0, 1 
= O. elsewhere 

= {'t -e 0" Ix I , x = O. 1. 2. 
(b) f{x, 0) 0, elsewhere 

62. If X 10 X 2, •••• X" is a random sample from N (J.I.. ( 2). show that : 

(a) T = X, is complete sufficient statistic for J.L. (- 00 < J.L < 00). when 0 2 
is known. 

" (b) T= L (Xj - J.L)2. is ~omplete suffj.ciet:lt statistic for 0 2, (0 0 2 < 00)._ 
; = 1 ' 

when J.L is known. 
IS·10. Methods or Estimation. So far we have been discussing the 

requisites of a good estimator. Now we shalf briefly outline ~ome of the 
important methods for obtaining such estimators. Commonly used methods are 

(l) Method of Maximum Likelihood Estimation. 
(il) Method of Minimum Variance. 

(iiI) Method of Moments. 
(iv) Method of Least Squares. 
(v) Method of MinImum Chi-square 

(VI) Method of Inverse Probability. . 
In the following sections, we shall discuss b~iefly the first four methods 

only. 
IS· t~. Method 'or Maximum Likelihood Estimation. From 

dl~retical point of view, the most general method of estimation known is the 
method of Maximum Likelihood Estimators (M.L.E.) which was initially 
formulated by C.F. Gauss but as a general method of estimation was first 
introduced by Prof. R.A. Fisher and later on developed by him in a series of 
papers. Before inp-oducing the' method we will rust define Likelihood Function. 

Likelihood Function. Definition, Let Xl> X2, .... x" be a random 
sample ~f size n from a population with density function j(x. 0). Then the 
likelihood function of the sample values Xl> X2 • •••• x". usually denoted by 
L :;: L(O) is their joint density function; given-by 

" 
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L gives the relative likelihood that the random variables assume a particuIr.r set 
of values Xlt X2 • •••• XII' For a given sample xlt X2 • •••• XII' L becomes a 
function of the variable O. the parameter. 

The principle of maximum likelihood consists in finding an estimator 
for the unknown parameter 0= (Oh O2 ••••• OJ. say, which maximises the 
likelihood function L(O) for variations in parameter i.e.. we wish- to find 
/I "" " 0= (01) O2, ••• , OJ so that 

" L(,O) > L(O) 'V a E ~ 

" i.e.. L( a) = Sup L(O) 'V a E e. 
" " 1bus if there exists a function a = a (XI' x2' •••• XII) of the sample values 

" which maximises L for variations in a, then a is to be taken as an estimator of 
" / . " ·0. a is usually called Maximum Likelihood Estimator (ML.E.)."Thus a is the 

solution, if any, of aL ,;)2L • 
ao = 0 aJ!d ~ < 0 ... (15·54) 

Since L > 0, and lQg L is a non-decreasing function of L ; It and log L 

" attain their extreme values (maxima or minitna) 'at the same value of O. The 
first of the two equations in (15·54) can be rewritten as 

1 aL _ 0 a log L - '0 
L . ae - => ao -. . .. (15·540) 

a form which is muclf more convenient from practical point of view. 

" "" " If a is vector valued parameter. then 0= (OJ, 02. •..• OJ. is given by the 
solution of simultaneous equations: 

aao; log L = ;0; log L (OJ, O2 ••••• OJ ;:: 0; i = 1.2, ...• k 

... (15·S4b) 
Equations (15·540) and (lS·54b) are usually referred to as tJ;le Likelihood 

Equations for estimating the parameters. 

" Remark. For the solution a of the likelihood equations. we have to see 
that the second derivative of L w.r. to a is negative. If a is vector valued. then 
for L to be maxilJlum. the matrix of derivatives 

(a2 log L ~ h old be 'd fi . ao; aOf ~ _ ; s 0 negeuve e mite. 

15·11·1. Properties of Maximum Likelihood Estimators. 
We make the following assumptio~s, known as the Regularity Conditions: 

( " Th fi d d d d" .. a log L d a2 log L . I, e ITSt an secon or er envauves. Vl~.. ae an a02 eXist 

and are continuous fl,lDctions of a in a range R (including the true value 00 of the 
parameter) for almost all x. For every a in R 

'I :0 log L 1 < FI(x) and 1 ~ log L 1 < F2(x) 
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where Ft(x) and F1(x) are integrable functions over (- 00,00). - l 

. (ii) Th~ thUd order derivative ~ log L exists such that 

I~· log L I <M(x) .. 
where E(M(x)] < K, a positive quantity. 

(iii) Por every 0 in R, 

E(- ~IOgL)= J:. (- ~logL )LdX 

is finite and non-zero. 
=/(0), 

(iv) The.. range of integration is independent of O. But if the range of 
mtegration depends on 0, thenj-(x, 0) vanishes at the extremes depending on O. 

This assumption is to make the differentiation under the integral sign valid. 
Under the above assumptions M.L.E. possesses a number of important 

properties, whi~h will be stated in the form of theorems. 
Theorem 15·11. (Cramer-Roo Theorem). "With probability approaching 

unity as Ii ~ -, the lilcelihood. equa#on :e log L = 0, has a solution whiCh 

converges in probability to the true value 80". Iii other words ML.E: s are 
consistent. 

Remark. MLE's are always consistent estimators but need not be 
unbiased. For example in sampling from N Ut, 0'2) population, [c.f. Example 
15·31], 

MLE(Il) = i (sample mean), which is both unbiased and consistent 
estim:>tor of Il. 

MLE(0'2) = S1 (sample variance), w~ich is consistent but not unbiased 
estimator of 0'2. . 

Theorem 15·12. (Hazoor Bazar's Theorem). Any consistent solution of 
the likelihood equation provides a maximum of the -likelihood with probability 
tending to unity as the sample siz~ (n) tends to infinity. 

Theorem 15·13. (Asymptotic Normality o( MLE's). A 
consistent solution of the lilcelihood equation is ~mptotically normally 

distributed about the true value 80. Thus, e is asymptotically N (00, I(~) as 
n -+ 00. 

Remark. Variance of ML:E. is give~ by 
1\ I i. 

V(O) = 1(0) = [ (;p )n 
E - .~log L U 

. •. (15·55) 

Theorem 15·14. If ML.E. exists, it is the most efficient in the class 0/ 
such estimators. 
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Theorem 15·15. If a sufficient estimator ,f.X#t~. it i~ a function of the 
Maximum Likelihood Estimator. 

Proof. If t = t(XI, x2' ... , x,j} is a sufficient estiJ1l8.tor of e, then Likelihood 
Function can be written as (c/. Theorem 15·7) 

L = g(t, e) h(XI' X2' X3, .•• , X" It) 
where g(t. e) is the density function of t and h(xh X2, .:., x" I t) is the density 
function of the sample, given t, and is independent of e. 

.. . log L = log g(t, e) + log h(Xh X2, ... , XII I t) 
Differentiating w.r.t. e, we get 

a log La. 
ae = ae log,g(t. e) = w(t, e), (say), .•. (15·56) 

which is a function of t and e only. 
ML.E. is given by 

~ 

a 10gL 
ae = 0 ~ ",(t, e) = 0 

1\ e = 11(t) = Some function of sufficient statistic. 
1\ 
t = 'I'(e) = Some function of M.L.E. 

Hence the theorem. 
Remark. This theorem is quite, helpful in finding if a sufficient estimator 

exists or nol. 

If :e log L can be expressed in the form (15·56), i.e .• as a function of a 

s~stic and parameter alone, then the statistic is regarded ~ a sufficient 

estimator of the parameter. If :a log L cannot be expressed in the form (15·56), 

no sufficient estimator exists in that case. 
Th~orem 15·16. If for a given population with p.d/. f(x. 6). an MVB 

estimator T exists (or 6. then the likelihood equation will have a solution equal 
to the estimator T. 

Proof. Since T is an MVB estimator of e, we have [c.f. (1540)], 
a T-e 
ae log L = ).(e) = (T - e) A(e) 

MI..E for e is the solution of the likelihood equation 
a 1\ 
aelogL=O ~ e=T 

asrequired. 
. Theorem' 15·17. (Infariance ~operty or ~LE).If T is.the MLE 

oj6and VJ(6) is one to one function of6. then VJ(T) is the MLE ofVJ(6). 
Example 15'31. In random sampling from normal population N(Jl; ~), 

find the maximum likeUhood estimators for 
(i) Jl when cil is known. 

(ii) t:i when Jl is known. and 
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(iii) the simultaneous estimation of Jl and 0'. 

or 

[Mculros Un;v. B.Sc. Sept., 1987] 

Solution. X - N (JL, ( 2) then 

L = i~l [~ exp {- ~2 (x; _ ~)2)] 

1 " {'" 2/} = (~) exp - i ~l (x; - J.1) 2a2 

n n 1" 2 
log L = - 2" log (2n) - 2 log a2 -''la2 ; : 1 Cxi - ~) 

Case (.). When a2 is known, the likelihood equation for estimating ~ is 
I 

a 1 " 
~logL=O ~ -"-2 I. 2(Xi-~)(-1)=0 
Q~ ~ i-I 

" " I. (Xi - J.1) = 0 ~ I. xi - nIJ. ~ 0 
; - 1 ; - 1 

AI" 
IJ. =- r x; = x 

ni.l 

Hence M.L.E. for J.1 is the sample mean x. 
... (*) 

Case (fl). When ~ is known, the likelihood equation for estimating a2 is 

anI 1 " 
:1-2 log L = 0 ~ - -2 x '2 + "...4 _ I (x; - J.1)2 = 0 
QU !' ~', - 1 

1 " n -2: r (x; - ~)2 = 0, i.e., 
aiol 

AI" 
~;==- I. (x;-~)2 

ni_l 
... (**) 

Case (ii~). The likelihood equations 'for simultaneous estimation of J.1 and (12 

:~ log L =.0' and ~2 log L == 0, thus giving 

" -IJ. =X 
AI" A 
a 2 = - r (xi - IJ.)Z 

n i-I 

[From (*)] 

[From (**)] 

= 1 i (x,- - X)2 = s2, the sample variance. n i _ i _. 

Important Note. It may be pointed out here that though 
A ' 

E( ~) = E(.i ) = ~} (cf. § 12.12) 
E(~2) = E($2) 'I' a2 
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Hence the maximum likelihood estimators (M.L.Es.) need not necessarily 
be unbiased. 

Remark. Since MJ: .. E. is the most efficient. we conclude that in 

sampling from a nonnal populati~n. the sample mean i is the most efficient 
estimator of the population mean j.l. 

Example 15'32. Prove that the. maximum likelihood estimate of the 
parameter a of a population having density function: 

2 
a 2 (a - x). 0 < x < a 

for a sample of ,unit size is 2x. x being the sample yalue. Show also that the 
estimate is biased. [BurciwOII Univ. B.Se .. (Motlas. Hons.), 1991] 

Solution. For a random sample of unit size (n = 1). the likelihood 
function is :. 

'. 2 
L (0.) = f (x. a) = o.l (a - x) ; 0 < x < a 

Likelihood equatiO!l gives: 

fa 10gL = fa [log 2 -2 log a + log (a -x)] = 0 

2 1 => --+--=0 => 2(0.-x)-0.=0 => 0.= 2x a a-x 
Hence MLE of a is given by ~ = lx. 

E(~) ='E(2X) = 2 f: x.f{x. a) dx 

=.!. (a x(a-x)dx=~ lcul _ x3 I a =~(l' 
.al J 0 . al 2 3 0 3 

Since E(a) * a. & = 2x is not an unbiased estimate of a. 
Example 15'33. (a) Find the 'maximum likelihood estimate for the 

parameter A of a Poisson distribution on the basis of a sample of size n .. .."Iso 
find its variance. 

(b) Show theit the saf!lple mean i. is sujJlcient for estimating the parameter 
.t of the Poisson distribution. 

Solution. THe probability function of the Poisson distribution with 
parameter A. is given by 

e-~)..~ . 
P(X.= x) = {(x. )..) - x 1 ~ x = O. 1. 2 .... 

LikeliJtood function of random sample Xl. Xl ••••• XII of'n observations from 
this population is 

" L = IT f(xi. A:) 
; - 1 

=' I I • Xl • Xl.' ... x" . 
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II II 

log L = - nA + ( 1: xJ log A - 1: log (Xi I) 
i-I i-I 

II 

= - ,.A + iii log A - 1: log (Xi I) 
i-I 

The likelihood equation for estimating A is 

o nx 
OA log L = 0 ~ - n + T = 0 ~ A = i 

Thus the ML:E. for);. is the sample mean x. 
The variance of the estimate is given by 

~ =E[- O~2 (log L)] [cf. (15·55)] 
V.(A) 

= E [- ;A (- n + n:)J = E [- (- ~~) J = ~2 E('i) = I 
A 

V(A) = ')..In 
(b) For the Poisson distribution with parameter i, we have 

oIL ,nx 
OA og =-n +1'" 

=n( t- I)='I'(X,A), afuncu<?nof~ and A only. 

H~nce (c! Remark Theorem 15·15), x is s,ufficient for estimating ~. . 
Example 15·34. Let Xl> X2, ••• , XII denote random sample of ·size n from 

a uniform population with p.d/. 

j(x, 9) = I ; 9 - t ~ X ~ 9 + ~, - 00 < 9 < 00 

Obtain ML.E.for 9. [Delhi Univ. M.Q.A..1987] 

Solution. Here 
1 1 

L = L(9; Xl> X2, .;., X,,) = l, 9 - '2 S Xi S 9 + '2 

= 0, elsewhere 
If .%(1), x(2), : •• , .%(11) is the ordered sample then 

1 1 9 - '2 S X(I) ~ x(2) oS ••• S X(II) S 9 + '2 

Thus L a,ttain$ the maximum if 
1 

9-'2Sx(l) A <0 1 
X(II) - Q'+ '2 

--. 0< +1 A ' I.JOO 
- Q - X(I) '2 X(II) - '2 ~ 

Hence every statistic t = t(XI, X2, ... , x,,) s,uch' that 
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1 1 
X(,,) - 2 s t (XI> X2 • •••• x,.) S X(I) + 2 

provides an ML.E.for O. 
Remark. This example illustrates ~t M.L.E. for a parameter need not be 

unique. 
Example 15·35. Find the ML.E. of the parameters a and A, (A being 

large). of the distribution: 

j{x; a. A) = r~A) (~ ) e -A x (a X A-I; 0 S X < 00. A > 0 

You may use that for large values of A. 
d 1 

1p(A) = dAlog ITA) = log A- 2A 
1 1 

~ ""(A) = I + 2A2 
[Delhi U,du. B.Sc. (Stat. Bo" •• ). 1985] 

Solution. Let Xl. X2 • •••• X" be a random sample of size n from the given 
population. Then • 

" (1 l' (A r . [ A " ] " L = ; ~l j{x;; a. A) = r(A»)' a . exp - a ; ~l x; '; ~l (xl-... l ) 

A " " .. log L = - n log r(A.) + nA(log A -log a) - - I. x; + (A. - 1) I. log X; 
<X;-l i-I 

If G is the geometric mean of Xl' X2 • •••• X". then 
1 " " 

log G = - I. log Xi ~ n log G = I. log Xi 
ni_l i-.l 

log L = - n log r(A) + nA (log A - log ~ - ~ ni +' (A - 1). n log G 

where G is independent of A and ex. 
The likelihOQd equations for the simultaneous estimation of a and A are : 

a a 
aa log L = 0 ... (1) and aA log L = 0 ... (2f 

(1) gives 

nA A - 0 X 0 1\_ - ex + a2' nx = => -1 + ex = => ex = X •.. (*) 

(2) gives (for large values of A), 

-n (lOg A - 2i)+ n [1.(10g A -log ex) + A. ~J -n; + n log G = 0 

A + (1 - log a + log G - !) = 0 
1 +2A(logG-logi) =0 [From (*)] 
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1 - 2A log (~) = 0, i.e .• 
1\ 1 
A =---=---

2 log CilG.) 
Hence the M.L.E.s for a and A are given by 

1\ _ 1\ 1 
a=x and A= • 

2 log CiIG) . 
Example 15·36. In sampling from a power series distribution with p.d/. 

f(x, 8) = a,,8"1yt(8) : x = 0,1.2, ... 
where a" may be zero fot some x, show that MLE of 8 is a root of the equation 

- 811(8) 
X - 'll(8) = J.l(.8). ...(*) 

where J.l(8) = E(X). 
rDelhi Univ. B.Sc. (Stat. Bon •• ), 1989] 

Solution. -Likelihood 'function is given by : 

.. .. [a aXil [ ] aV' 
L =;I]IJtx;,a)=;I]1 ~a) = ;I]I ax; ['I'(a)i .. 

.. .. 
=> log L = l: log a + log a. l: X; - n log 'I'(a) 

;_I;tl ;-1 

Likelihood equation for es!imating a gives: 

l... _ _ Lx; ~ aa log L - 0 - a - 'Jf{a) 
- Lx; a ",'(a) 
X = -;; = 'Jf{a) = ~(a), (say). 

Hence MLE of a isa root Qf equatio~ (*). 
Wehave: 

- - a ax 
l: fl,.x, a) = 1 => l:"~9) = 1 => 

" .. 0 " .. OT' 

Differentiating w.r. to a, we get 
I [ax. xa" - I] = 'I"(a) 
" 

[
X a"] _ a.,!«a) 

~ a". 'Jf{a) - '1'(9) 

... 
".0 

... (**) 

E(X) = ~a) = X, [From (**) and (*)] 
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Example 15·37. (4) Let Xl. X2 • •••• XII be a random sample from the 
uniform distribution with p.d/. 

f(x. 6) =i. 0 < X < 00 • 6> 0 

= O. elsewhere 
Obtain the maximum likelihood estimator for 6. 

[Lucknow Univ. B.Sc., 1992] 

(b) o.btain the M L.Es./or a and fJ for the rectangular population 

n. fJ)_{_fJl .a<x<fJ 
J\X' a. - - a 

0, elsewhere 
[Delhi Univ. B.Sc. (Stat. Ron •• ), 1989; Gujara.t Univ. B.Sc. 1992] 

Solution. (0) Here 

nil 1 1 1 (1 r 
L = i = 1 J(x;, 9) = 9 . 9 ... 9 = .9) ... (*) 

Likelihood equation, viz., :9 log L = 0, gives 

a - n 1\ 
09 (- n log 9) = 0 => -0 = 0 => 9 = 00, 

obviously an absurd result 
In this case we locate M.L.E. as follows: 
We have to choose 9 'so that L in (*) is maximum. Now L is maximum if 

9 is minimum. 
Let XCI)' x(Z), ••• , X,II) be the ordered sample of n independent observations 

from the given population so that 
o S x(l) S XCl) S ... S XCII) S 9 => 9 ~ XCII) 

Since the minimum value of 9 consistent ~ith the sample is XC,,), the 
1\ 

largest sample observation, 9 = XCII)' 

. . ML.E. for 9 = XcII) = The largest sample observation. 
(b) Here 

L =(_1 r 
\~ - a) 

. . log L = - n log (f} - a) 
The likelihood equations for a and f} give 

~logL = 0 =_n_} oa ~ - a 
a -n 
of} log L = 0 = ~ _ a 

... (**) 

Each of these equations gives ~ - a = 00, an obviously negative result So, 
we find M.L.Es for a and ~ by some other mellDS. 
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Now L in (**) is maximum if (P - a) is minimum. i.e .• if P takes the 
minimum possible value and a takes the maximum possible 'value. 

As in part (a). if X(I). x(2) • •••• X(II) is an ordered random sample from this 
population. then a ~ x(1) ~ X(2) ~ .... ~ X(II) ~ p. Thus P :2: X(II) and a ~ x(1). 

Hence the m~imum possible value of p consistent with the sample is X(II) and 
the maximum possible value of a consistent with the sample is x(1). Hence L is 
maximum if P = XcII) and a = XcI)' 

. • M.L.E. for a and p are given by 
1\ 

a = x(1) = The smallest sample observation 
1\ 

an p = XcII) = The largest sample observation. 
Example ·15·38. State as pr.ecisely as possible the properties of the 

ML.E.Obtain the M.L.Es. of a and fJ for a random sample from the 
exponential population 

f(x; a. p) = yoe -P C%-a)"a Sx S 00. P > 0 

YO being a constant. 
Solution. Here first of all we shall determine the constant Yo from the 

consideration that the total area under a probability curve is unity. 

.. Yo f: exp [- P(x- a)] dx= 1 

I e - P(%;- a) I 00 ~ 
~ Yo _ P a = 1 ~ - P (0 - 1) = 1 ~ Yo = P 

.. f(x;a,p)=pe-p(%-a),a~ X<oo 

If x., X2, ... , XII is a random sample of n observations from this population, 
then 

L= n f(Xi; a."p) = p"exp - P I. (Xi- a) =p'le-..p(%-a) II {"}_ 

i.1 ;.1 

.. log L = n log p - np(x -'a) ... (*) 
The likelihood equations for estimating a and ~ give 

a 
aa 10gL=0=np ... (**) 

an :pIOgL=o=~-'n(x-a) ... (***) 

Equation (**) gives p = 0, which is obviously inadmissible and this on 
substitution in (***) gives a = 00, 'a nugatory result. Thus the likelihood 
equations fail to give us valid estimates of a and p and we try to locate M.L.Es. 
for a and p by maximising L directly. 

L is maximum ~ log L is maximum. 

From (*), log L is maximum (for any value of P), if (x - a) is minimum, 
which is so if a is maximum. 
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If XCI)' X(2)' ••• , XCII) is ordered sample from this population then 
a S x(t) S X(2) S ... S XCII) < 00, 

15083 

so that the maximum value of a consistent with the sample is x(1), the smallest 
sample observation, i.e., 

Consequently, (***) gives 
I _ 1\ _ 

~ = X - a :::; X - xCI) ~ 
1\ I _ 
~ =-----=-....;~ 

x - x(1) 

Hence M.L.Es. for a and ~ are given by 
1\ 1\ 1 
a = XCI) and ~ =-_---.;..,-

X - XCI) 

Remarks 1. Whenever the given probability function involves a constant 
and the range of the variable is dependent on the parameter(s) to be estimated, 
first of all we should detennine the constant by taking the total proJ)abiJity as 
unity and then proceed with ~e estimation part. 

2. From the last two examples, it is obvious that whenever the range of 
the variabie involves the parameter(s) to be estimated, the likehhood equations 
fail to give us valid estimates and in this case M.L.Es arc obtained by adopting 
some other approach of maximising L or log L directly. 

Example 5'39. Obtain -the maximum likelihood estimate of 0 in 
f(x, 0) = (1 + 0) x9, 0 < X < 1. 

based on an independent sample of size n. Examine whether this estimate is 
sufficient for O. 

Solution. 

L (x,9) = i~1 f(Xi' 9) = (1 + 9)". C~I XiJ 
II 

log L = n log (1 + e) + o. L log Xi 
i. I 

o II 
~e log L = -1 n e + L log Xi = 0 {] + i-I 

n + 9 1: log Xi + 1: log Xi = 0 
i i 

1\ -n e =-II-.!..:....- ... (*) 

1: log Xi 
i-I 

Also L(x, 9) 
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Hence by Factorisation theorem" T = (.Ii x;) is a sufficient statistic fOr 
. ' .. 1 

e, and 9 being a one to one function of sufficient statistic (. ii x;), is also 
... 1 

sufficient for e. 
Example 15·40. (a)Obtain the most general/orm 0/ distribution 

differMtiable in O,/or which the sample mean is the MLE. 
[Delhi U"iv. RSc. (Stat. Bo" •• ), 1988] 

(b) Show that the most gen'eral continuous distribution for which the 
MLE. 0/ a parameter 0 is the geometric mean of the sample is 

8. iJ'If 
iJ8 

j(x. 0) = ( ~ } up [tp(0) + ·~(x)J. 
where tp( 0) and ~(x) are arbitrary functions olO and ,; respectively. 

II 

Solution. (a) We have L = n j(x;, e) 
1- 1 

II 

log L = l: logj(xi' e) = l: log/, 
I .. 1 s 

[/=j(x, e)l 

the summation extending to all the values of x = (Xl' xz, ••• , x,.) in the sample. 
The likelihood equation is 

i1 ae 10gL = 0, i.e., ~ ( t log/) = 0 

191. t/· ae=O 
a f ae log/ =0 

W are given that the solution of (*) is 

e =! I.t or ne = I.t n 

.•• (*} 

~ l: (x -'e) = 0 ... (**) 
s 

Since this is true for all values of x and e, we. get from (*) and (**), 

191. 7 . ae = A(x - e), 

where A is independent of x.but may be function of e. Let us take 

A = ~ where 'I' = 'I'(e) is any arbitrary function of e. 

a ~ Thus ae log/ = aez (x - e) 
Integrating ws. to e (partially), we get 

log/ = (x- 0). ~ - ~(-1) de + ~(x) + k 

wl1('.re ~(x) is &Ii arbitrary function of x and k is arbluary constant. 
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•• log! = (x - a) • ~ + '1'(0) + ~(x) + k 

Hm:e ! = Const exp [(X - a') ~ + '1'(0) + ~(X)] 

which is the probability function of the required distritiution. 
Remark. In particular, if we take. 

~ x2 
'1'(0) = '2 and ~(x) = - '2 ' then 

! =Const exp[(x - a). 0+ ~; _ x;] 
= Const. exp [-! (xl + 02 - 20x)] 

= Const exp {-! (x - 0)2 ) 

which is the probability function of the normal' dislribution with mean a and 
unit variance. 

(b) Here the solution of the likelihood equation 
a a 
':\n log L = L "\.~ log! = 0 ..• (!) 
au x -:"0 

is· a = (Xl' X2, ••• , x,JlI .. 
1 

~ log a = - L log x ~ L Oog x -log a) = 0 .•• (**) 
n:l :I 

Since this is true for all x and alia, we get from (*) and (**) 
a ae log! = (log x -log a) A(O) 

where A (a) is an ~itrary function of e and is independent of x. 
Integrating w.r. to a (partially), w.e get 

log! = log x J A(O) dO - J A(O) log OdO + ~(x) 
where ~(x) is an arbitrary function of x alone. 

If we take J A(O) dO = A 1(0), then 

log! = log x . Al(O) - [Al(O) log a - J Al(O) . kdOJ + ~(~y-

= Al(O) log (x/O) + J A~~O) dO + ~(x) 
Let us take 

. ~ 
Al(O) = a ae ' (suggested by the answer) 

where 'I' = '1'(0) is an arbitrary function of a alone. 

.. log! = O~log (x/O) + J~dO+ ~(x) 
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= 9 ~ . log (x/9) + ",(9) + ;(x) 

= log [( ii )'i'] + V(O) + ~(r) 
e~ 

Hence f = f(x, 9) = (~ J ae. exp [",(9) + ;(x)]. 

Example 15'41, A sampie of size n ,is drawn from each of the four 
normal populations which have the same vari@ce cPo The means of the four 
populations are a + b + ( a + b - c, a - b + c and a - b - C. What are the 
M.L.Es.for a, b. c. and dl? 

Solution. Let the sample observations be denoted by Xjj' i = 1,2, 3,4; 
j = 1,2, ... , n. Since the four samples. from the four normal populations are 
independent, the likelihood functio~ L of all the sample observations Xii' 
(i = 1,2,3, 4;j = 1,2, ... , n), is given by 

1 4" {I 4 /I. 2} 
L = (...[2; ) . exp - 2c::J2 "l: "I (Xij - J.l.i) 

21t (1 • - 1 J" 1 

where J.l.j, (i = 1,2,3, 4)'is mean of the ith population. 

.. L = (~ )4/1. exp [- ,,:2 {~XU - J.l.l)2 + ~ (X2j - J.l.2)2 
·21t (1 ~. J - J } 

+ I(X3" - J.l.3)2 + I(X4" - J.l.4)2 J 
j J j J 

.. log L = k - 2n log (12 

-,,~[I(Xl"- a - b - C)2 +. I(X2"- a -6 + C)2 
u"r j J j .J 

+ I(X3" - a + b - C)2 + l:(X4" - a + b + C)2J 
j J j J 

where k is a constant w.r. to a. b. c and (12. 
The M.L.Es. for a. b. c and (12 are the solutions of the simultaneous 

equations (maximum likelihood equations for estimating a. b. c and cP) : 
d d aa log L = 0 ... (1) db log L = 0 ... (2) 

.•• (3) 
d 

()o-2 log L = 0 ... (4) 

(1) gives 

- 2~ [r(Xlj - a '- b - c)(-~} + r(X2j - a - b + c)(-2) 

+ I(X3" - a + b - c)(-~) + I(X4" - a + b + C)(-2)J = 0 . J " J 
J " I . 
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=> ~(Xlj + X2j + X3j + X4j) 
J 

11;·67 

+n [« -a-b-c)+ (-a-b+ c)+ (-a+ b-c)+ (-a+ b+ c)] = 0 

=> i (i Xij) + n(-4a) = O. 
j - I i = I - -

" 1 4" _ 
a=- I I Xi"=X 4n j .. Ij _ I J 

Now (2) gives 

- ~~? [~XI"- a - b - c) (-2) + L(x2j-a - b + c) (-2) 
~ J J ". J 

+ "~(X3j - a + b - c) (2) + ~~4j':' a + b + c)(2)] = 0 
J J 

=> ~ Xlj + ~ Xlj - ~ X3j - ~ X4j 
J J J J 

+n[(- a - b - c) + (- a,... b + c) - (- a-+ b - c) - (- a + b + c)] = 0 

=> I Xlj + I Xlj - I X3j - I X4j - 4nb = 0 

" 1 [1 1 1 1 J b =4-. - IXlj + - IXlj - - I X3j - - Lx4j 
n n n n 

" => b=(xi +Xl-X3 -x4)/4, 

where Xi is the mean of the ith sample. 

Similarly (3) will give 

Equation (4) gives 

" 1 (- - - -:.\'A c=4 Xl -Xl+X3- X4J/-' 

-!~ + ~[7(Xlj - a - b - c)l + 7 (Xlj - a - b + C)l 

+ ~(X3j - a + b - C)l .+ ~ (X4j - a + b + C)lJ = 0 
J J 

""" "" "J + ~(X3j - a" + b ~ C)l + ~ (X4j - a + b + c)l 
J. J 

Example 15·42. The following table gives probabilities and observed 
frequencie~ in four. classes AB Ab, aB and ab in a genetical experiment. Estimate 
the parameter 8 by the method of maximum likelihood and find its standard 
error. 
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Class Probability Obst;rved frequency 

~(2 + 9) AB 108 

Ab 1 27 -(1- 9) . 4 

aB 1 30 - (1- 9) 4 

ab !9 
4 8 

Solution. Usi,ng multinomial pl'Obability law, we have 

L = L(9) = ! ~! I I PI"I 1'2"2 P3t1; pl·. !.pi = I, In; = II 
"l "2 113 114 

=> log L = C + "l log PI + n2 log P2 + 113 log P3 + 114 log P4, 

where C = log [ I ~ I I I ]. is a constanL 
"l • n2 . 113 "4. 

... log L=C+ 111 log (2; 9 } 112 log e4 9 } 113 log (\;,9}n. IOg (~) 
Likelihood equation gives : 

a log L _ 2L ....!!L- -!!L. 114 _ 0 aa - 2 + 9 - 1 - 9 -- 1 - 9 + 9 - ... (*) 

__ -2!L- _ (n2 + 113) 114 _ 0 
-- 2+9 1-9 +9-
Taking ~I = 108, ~ = 27, 113 = 30 and 114 = 8. we get 

108 (27 + 30) ~_ 0 
2+9- 1-9 +9-

=> 1089 (1- 9) - 579(2 + 9) + 8(1-9)(2 + 9) = 0 
=> 173 92 + 149 - 16 == 0 

=> 9 = - 14 ± ..J ~6 + 11072 = _ ()'34 and ()'26 

But 9, being the probability cannot be negative. Hence M.L.E. -of 9 is 
1\ 

given by 9 = 0·26 ... ( •• ) 
Differentiating (*) again partially w.r. to 9, we get 

a2 10g L. - III (il2 + 113) ~ 
()92 = (2 + 9)2 - (1 - 9)2 - 91 

E (il2 log L) _ B(n1) B(n,) + E("3) E(n..) 
- l iJ92 - (2 + 9)2 + (1 - a)~ + 8,2 

_ '¥'1 n(p2 + P3) ~ 
- (2 + 9)2 + (1 - 9)2 + Q1 

11(2 + 9) n(1 - 9) 119 

... 4(2 + 9)2 + 2(1 - 9)2 + 492 

II "" 1(8) = 1\ + A +A';II=In;= 173. 
4(2 + 9) 2(1 - 9) 49 
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[ 1 1 1 J ~ 173 4 x 2.26 + 2 x 0·74 + 4}< 0·26 

= 173 [o·n + 0·67 + 0·96l= 173 x 1·74 = 301'()2 

S.E.( 9) = V 1/1(9) = 1 = 0'()S76 
V301.02 

[el (15·55) Th(lOrem 15·13)] 
15·12. Method or Minimum Variance. [Minimum Variance 

Unbiased Estimates (M.V.U.E.)]. In this section we shall look for esti(Jlates 
which (I) are unbiased and (il) have minimum varillllce. 

Il 

If L = n f(x •• 9). is the likelihood function of a random sample of n 
•• I 

observations Xl. Xz • •••• X .. from a population with probability function~. 9). 
then the problem is to find a statistic 1 = 1 (Xh Xz • •••• xJ;such that 

E(I) = f:oo I.L dx = "«9) => f: 00 [1-"«9)] L dx = 0 ... (IS·S7) 

and V(I) = f: 00 [I - E{t)]2 L dx = f= 00 [I - y(9)]2 L dx 

is minimum. where 

roo 

dx represents the n-fold integration 
J-OO 

foo foo foo lttl dxz .;. ,dx .. 
_00 _00 -00 

... (IS·S8) 

In other words. we have to minimise (15·58) subject to ,the condition 
(15·57). 

For detailed disCuSsion of this method see MVU Estimators~§ 1'·5·2) IUld 
Cramer-Rao Inequality (§ 15·7). 

15·13. Method or Moments. This method was discovered and studied 
in detail by Karl Pears~n •. 

Letf(x; 91t 9z • .••• 9J be the density function of the parent population 
with k parameters 91~ 9z • •••• 9A:. If J.1'r denotes the rth moment about origin. 
then .. 

J.1r' = f: 00 xr f(~ ;,9 .. 92 •••.• 9J dx. (r ~ 1.2 •...• k) ••• (15·59) 

In general J.11'. J.12'~ ••• ' J.1. will be functions of the parameters 9 .. 92 ••••• 

Let x •• i = 1. 2 •••.• n t)e a random sample of size n from the given 
population. The method of moments. consists in solving the k-equations (15·59.) 
for 91'. 92 •••.• 9k in terms of J.11'. J.12' ••.•• J.1. and then replacing these moments 
~'; r = 1.2 •...• k by the sample moments. 



e.g., 
II ,II, II, II, 
0i = 0i'< J.111. J.12 •••• , J.1k ) 

= 0i (ml'.m2', ....• m/); i = 1,2 .... , k 
where m; is the ith moment about origin in the ~ple. 

II II II 
Then by the method of moments 91• 9z•• ...• 9" are the required estimators 

of 91• 9z• : ..• 9k respectively. 
Remarks. 1. Let (XI. x2 • •..• x~) be a random sample of size n from a 
populatfon with p.d.f. f{x. 9). Then Xi. (i = 1.2 •...• n) are i.i.d. ~ X{. 
(i = 1.2 ...... n) are i.Ld r.v·s: Hence if E (Xf)-exists. then by W.L.L.N .• we get 

1" p 

- 'l: x;' ---+ E (XI') n; _ I p 

::) m,' ---+ J.1,.' ••• (15·60) 
Hence the sample moments are consistent estimators of the corresponding 

population mome"ts. 
2. It has been shown that under quite general conditions, the estimates 

obtained by the method of moments are asymptotically normal but not. in 
general. efficient. 

3. Generally the method of moments yields less efficient estimators than 
those obtained from the principle of maximum likelihood. The e~timators 
obtained by the method of moments are identical with those given by the 
methOd of maximum likelihood if the probability mass function or probability 
density function is 9f the form 

ft..x. 0) = exp (bo + b1x + b~ + ... ] ... (15·61) 
where b's are independent of x blJt may depel)d on 9 = (010 Oz •••• ). 

(15·61) implies that 
L (%10 XZ • •••• x" ; 9) = exp [nbo + bll:~; + bzl: xl + .•. ] 

~ ,~"Og L = ao + all:xi + az LXi2 + a3l: x~ + .:.] ... (15·610) 
I 

Thus both the methods yield i4entical estimators if MLE's are obtained as 
linear functions of the moments. 

Example 15·43. Estimate a and fJ in the case of Pearson's Type III 
disiribution by the method of moments. 

«x' a R) = ~ xa - I rib 0 Sx < 00 
. • .... r(a) • 

(Delhi Univ. BoSc. (Stal. H01lll.). 1981, 1988] 
Solution. We have 

, _L JOO -1 _ L rca + r) _Da.+ r) 
J.1,. - r(a). 0 x" ~ ~ -Ih tit - r(a)' pa +I' '- r(~) W-

, -_ r-(a.+ 1) _ a , _ rca + 2) _ (a + 1) a 
J.11 - r(ci).p - p' ~z - T(a) pz:- IF 

J!i..=_a+ 1=1.+ 1' 
J.11'2 a a '. 
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~'2 a .... 1 

a=Il' 1l'2'~=-'=' '2 
l - 1 III 112 - III 

/I ml'2 /I ml' 
Hence a '=, '2 and ~ = '2 m2 -ml m2 - ml 

where m{ and ml' ~ the sample moments. 
Example 15·44. For the double Poisson distribution: 

I e-"'l ml" I e-"'z m2" 
p(x)=P(X=x)=-2' '+-2' " :x=O,I, 2, ... x • x . 

show that the esti,!,ates for ml and m2 by the method of moments are: 

~l' ± V1l2' - Ill' - Ill'l 
.[Delhi U"it). B.Sc. (SIal. Ho" •• ). 1993] 

Solution. We have 

1 I 
=2'ml+2' m2 ... (*) 

(since the fU'St and second summations are the means of Poisoon distributions 
with parameters ml and m2 respectively). 

GO 

Ilz' = L x2 • p(x) 

=f[ t x2 .(e--lll] 71") + t xl. (CWl. 72")~ 
".0 X. ".0 x. ~ 

= ~ [(mlZ + ml) + (mi + mz)] [~f. § 7·3·3] 

Ilz' =f[(ml+mz}+(mI2 +mz2)] .•• (**) 

= l [21l1' + ml2 + (21l1' - ml)2] [Using (*)] 

=~ [2JX{ + ml2 + 41l1'2 + mlz -4ml,J/] 

1l2' = Ill' + ml2 + 2J,l,'2 -21l1'ml ~ ml 2 -2mlllt ' of. "(21l1 '2 + Ill' - 1l2J=O 

/I 21lt' ± ..J~hl)~Z - 4(21l! '2 + 11/ - 1l2') _ ' + _,, , ,z 
~ ml = 2 - III - "I III - III - III 

Similarly on substituting for ml in tenns 'of mz from (*) in (**), we get 

m22 - 2m2J.'I' + (21l1'2 + Ill' - Ill') = 0 
Solving for mz, we will get 

/I 

mz = Ill' ± ..Jill' - Ill' - IlI'Z 
Example 15·45. A random variable X takes 'hI' values O. 1. 2. with 

respective probabilities 



JL+L(1 _.!!.) JL'+~(I"", 1) and .!..+ 1 -a (1 _.!!.) 
~ 2 N'm 2 N ~ 2 N 

where N is a known number and a. 6 are unknown parameters. Jf75 independent 
ol!.servations on X yielded the vallUs O. 1. 2 with frequencies 27. 38; 10 
respectively. estimate (J and a by the method 01 moments. 

[Delhi U,.iv. B.Sc. (Stat. Ho,. •• ), 1988] 
Solution. 

E(X) =0''[4~+ ~ (1 -~)]+ 1.[~+ i{1 -.~)] 
+ 2[4~ t 1 2 a (1 -~)] 

=!+(1 -!)[I+ (1- a)] 
~ ~t' =!+(1 -!)(1- ~) 

= l-I(1 -!) ... (*) 

E(X2)· = 12 . [~ + ~ (1 -!)] + 22 . [ 4~ + 1 2 a (1 -~)] 

=~+ (1 - !)[~ + 2(1- all 
=~+(l- !)(2_3~) 

~ l12" = 2 -~-~a (1 -~) •.. (*.) 

The sainple frequency distribution is : 

% I 0 1 2 
1 '~1 38 10 

J.l.t'= ~ !./% = ;5 (38 + 20) = ~~ 

~I= ~ !./r = i5 (38'+ 40) = ~~ 
Equating the sample moments to theoretical moments, we get 

1 -~(1- !)=~~ 
a ( 0) 58 17 ~ "2 1 - N = 1 - 75 = 75 ... ( ... ) 



Substituting in (**). we get 
9 17 78 

2 - 2N - 3 x 75 = 75 ~ 
Substituting in (***). we, get 

Cl( 42) 17 "34 2" 1 - 75' = 75 ~ a = 33 

11-'7S 

is·14. Method' or Least Squares.· The principle of least squares is 
used to fit ~ curve of the fonn-

y = f(x: 00. alt ..•• a,J ... (15-62) 
where a/s are unknown parameters. to a set of n sample observations (Xi. y;); 
i = 1.2 ..... n from a bivariate population. It <:Olll>ists in minimising the sum of 
squares of residuals; viz.. . 

/I 

E = "I [Yi - J(.t;, 00. al ..... a,,)]:2 
i. 1 

... (15-63) 

subject to variations in 00. alt .... all' 
The nonnaJ equations for estimating flo. al •.••• ·all are given by 

~ = 0; i = 1 .. 2 ..... n .:.(15-64) 

Remarks. 1. In cluq>ter 9. we have discussed in detail the method of ieast 
squares for fitting linear regression (§ 9·1.1). polynomial regression (§ 9·1·3) 
and the exponential family of curves reducible to linear regression (§ 9~3). In 
chapter 10 § 10·12·1. we hav.e discussed the method of fitting multiple linear 
regression. 

2. If we are estimating f(x. ao. alt .... all) as a linear function of the 
parameters ao. al ••..• all. the x· s being known given values. the least square 
estimators obtained as linear functions of the y's will be MVU.estimators. 

EXERCISE IS(b) 

1. (a) State and explain the principle of maximum likelihood' for 
estimation of population parameter. 

(b) (i) Describe the M.L. method of estiml.:ion and discuss five of its 
optimal properties. 

(ii) Examine a situation when M.L. method fails and explain how you 
tackle such situations. 

«(:) Define the likelihOQd function for a randoD. sample drawn from (I) a 
discrete population. (u) a continuous population. 

Find the likelihood function for a random sample of size It from each of .the 
following populations : 

(a) Nonnal (m. cs2). (b) Binomial (n.p). (c) Poisson (J.L). (4) Unifonn on 
(a. b). [Calculta U"i". B.Sc. (MatM. No-.), 1991] 

• For detailed ctiscollion ICe Chapter 9. 
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2. (a) A random variable X takes the values 0 and 1 with respective 
probabilities p and 1 - p. Obtain on the basis of randQm sample of size n, the 
maximum likelihood estimator of p. 

(b) Obtain the maximum likelihood estimator for the distribution having 
the probability mass function: 

j(x. 9) = 9x (l - 9)1-% , X = 0, 1 : 0 ~ e ~ 1 
[Calcutta UnirJ. B.Sc. (Math •• Hon •• ), ,,986] 

(c) Obtain the maximum likelihood estimator of 9 in ~ foJlowing cases.: 
1 ' 

(0 j(x. 9) = e . exp (-x/e) : x ~ 0, 9 > 0 

(jz) f(x, 9) = "C" 911 (1 - 9)"-ll : x = 0, 1,2, ... , n 
3. Suppose that X has a distribution N ()J., 0'2), that iS1 the p.d.! of X is 

j(x) = _1 exp [_ 1 r!..=.J!. TiJ 
~ 2 \ 0' J. 

Using M.L. estimation, determine J1 and 0'2. What conclusions do you 
draw on the nature of the result so obtained? . 

4. (a) Explain the technique of the method of maximum likelihod and give 
a formula for the large sample standard error of the maximum-likelihood 
estimator. 

(b) For the distribution with p.d.f. 
fix, 9) = ge ~", (x ~ 0 ; 9 > 0), find the maximum likelihood estimators of 

9 and E(X), and obtain their large. sample $tandard ~rrors. 
(c) X is a random variable such that 

P(X s x) = 0, for x < 0 
= 1 - e-,,8, for x ~ 0 

Based on n independent observations on X, obtain the maximum likelihood 
estimatOr of E(X). 

5. (a) LetX1,X2, ... ,X,. be a random sample from the distribution with 
probability density function: 

1-
f{x, a):;; ee-%l9; 0 <.x < 00, 0 < e < 00 

Find the maximum likelihood estimator of e. 
[Madra UnirJ. B.Sc •. Sept., 1988] 

(b) For the distribution: 
1 

dF(x)= 9 p r(p) exp (-x/a) XP-l : () ~x < oo,p > 0, e > 0 

where p is known, find out the maximum likelihood estimate of a on the basis 
of a random sample of size n from the distribution. Find the variance of the 
estimate. 

6. (a) lf Xi (i = 1,2, ... n) is an observed random sample from the 
distribution having p..d.f. 

Ahl xl exp(-Ax) 
J,.(x) - r(k + 1) ,x> 0 
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1\ 

where A'> 0 and k is a known constant. show that the Mt estimator A for A is 

(k + 1)/i Show that the corresponding estimator is biased but consistent and 
that its asymptotic distribution for large n is 

N (A. V/[n(k + OJ). 
[Delhi Univ. B.Sc. (Stat. Ron •• ), 1986] 

(b) Derive the MLE of the mean ~2 of the beta distribution: .a + 
f(x) = [B (a. 2)l-1 X a-I (I-x), 0 < x ~ 1. a > O. 

[Delhi Univ. B.Sc. (Stat. Ron •• ), 1990) 

7. (0) From a sample of size n from the population of X. detennine the 
maximum likelihood estimates of the parameters 0 and b of the probability 
density 

j(x) = Constant exp [- (x - o)/b]; x ~ o. b > O. - 00 < 0 < 00 

[Calcutta Univ. B.Sc. (Maths Rons.), 1991) 

(b) Let Xit X2 • .... XII be a random sample from the distribution with p.d.f. 

{~ e-(x-9t)1II2 • x ~ 9 1 • - 00 < 9 1 < 00. 92 > 0 
f{x; 91• 9z} = 

O. clsehwere 
Obtain the maximum likelihood estimatoJ;'S for 91 and 92-

[Delhi Univ. RSc. (Stat. Hons.), 1992] 

(c) Given a sample of n independent observations from the distribution with 

density: j(x. 91t 9u = 92- 1 exp [- (x·- ( 1)/0z]. 91 ~ x < 00 

Find the maximum-likelihood estimator of 92 when 91 is known and the 
maximum likelihood estimator of 9t when 92 is known and also the joint 
maximum likelihood estimators of 91 and 92, Comment on the estimators you 
obtain. 

S. (0) A r:.mdom variable'X has the probability density'function : 
j(x) = <p T 1) x p. for (0 < x < 1). (P > -1). 

= O. otfterwise_ 

'Based on n-independent observations on X. obtain the maximum likelihood 
estimator of ~ and an unbiased estimator of (~ + 1)/(~ + 2), when p ~ -2. 

(b) A random vruiable X has a distribution with densiw function 

f(x) = (a + 1).rx • (0 ~x ~ 1. a > -1) 
= O. otherwise 

!lDd a random sample of size 8 produces the data : 
0·2.04.0-8.0·5.0·7.0·9. O·S. 0·9. 

Find the maximum likelihood estimate of the unknown parameter a. it 
being given that In (0·0145152 = - 4·2326 (In.denotes nalUrallogarithm). 

[Burdwan Univ. B.Sc. (lIons.), 1989] 
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(c) Find the MLE of 0 for a random sample of ~e n from the disttibution : 
A%. 0) = (0 + 1).x8. 0 S% S 1 

= O. otherwise 
Show that it is also sufficient statistic for O. 

ADS. MLE (0) = [_ ,. n - I'] 
I. log %i 

i-I ' 
,. 

T = n Xi. is suffici~nt estimator for 0 
i-I 

~ 0 = [Iog-(?x.> - 1]- being a one to one function of 

sufficient statistic. is also a sufficient statistic for O. 
9. (a) Obtain the MLE for the pm:ameier 0 in a random sample of size n 

from the uniform population U[O. 0]. 
A 

ADS. 0 = %(11). the largest sample observl!lion. 
(b) Show by means of an example. that MLE are not, in general unique. 
ADS. See Example 15·34. ' . 
(c) Show that in a random sample from ~ distribution with p.d.f. 

A%. 0) = Oe- 8Z• % ~ 0 • 
1!X is the MLE for 0 and has greater -variance than the unbiased estimator 

(n - 1)/(~ ~). 
Aln ,. --

Hint. MLE O=-=-T' T = I. Xi ~ I1X = T. X i-I 

Xi. (, = 1. ~ •.•.• n) are i,i~d. y(O. 1) 
~ T = l-X i - y(O. n) 

i 

[n - 1] [n - IJ E: nX' ,=E,-T-, =(n-l)E(lm=O. 

(n - I\, (n - 1'1 (1) (!) A var, nK f,-n-) var\j <varl.j =VarO 

10. (a) Let %1: %1 ••••• %,. be a random sample from a population with 
density: 1 ' 

A%. 0) = 2 exp [- I % .... 0 i J - 00 < % < 00. 

Find the estimator for 0 based on the method of maximum likelihood. 
[Madrcu Unifl. B.Sc., 1989] 

IIii'll. !.;: ~ l2 "r exp [- ,i I,(i - 0 I] is maximum. if ,i I%i - 01 ,,) .-1 .-1 
A 

is mir.i.~!t..wn. ~ 0:- Median of (%It %~ ••••• %,.). 
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(b) Obtain the maximum likelihood estimator of 8 based on a random 
sample of size n fr9m the population with p.d.f. 

(i) j(%. 8) = e-( ... -8); 8 S% < 00. - 00 < 8 < 00 
(ii)j(%.8) = 8,x8-1 ; 0 < % < 1.0 < 8 < 00. 
Examine in each C@SC. whetl)er 8 is uqbiased. 

IJ 

Hint. (i) L is maximum if L (%i - 8) is minimum. 
i-I 

A 
~ Each deviation (%i - 8). i = 1. 2 •.••• n is minimum ~ 8 = %(1). 

11. (a) Explain what is meant by an estimate of a population parameter. 
Find the maximum likelihood' estimate of the parameJer 8 of a population 
having den~ity functio" : 

2(8 _%)/02• (0 < % < 0) 
for a sample of unit size and examine whether the estimate so obtained is biased 
or not. [Colcutto Univ. RSc. (Moth •• Bon •• ), 1981] 

A 
Ans. 8 = 2x ; biased. 
(b) Obtain Maximum Likelihood Estim~r of 0 for the distribution: 

CoO'" 
j(%. 0) =-,-;% = 0.1.2 •... ; 0 > O. 

% . 

Co is a constant. Also write the Maximum Likelihood Estimator of 
302 + 40 + 5. <A6ro Univ. BoSc., 1988) 

Hint. For MLE of 302 + 40 + -5. use Invariance Property of MLE (c/. 
Theorem 15·17) 

(c) A population has a density (unction given by : 

~) =2V~%2e-",!l; -00 <% <00 

Find the max~um Iilcelihood estimate for v. 
[Calcutta Univ. BoSc. (Moth •• Bon •• ), 1988] 

12. (a) Consider a population made up of 3 different types of individuals 
occurring in the population with probabilities 82• 20 (I - 8) and (1 - 0)2. 
respectively where 0 < 0 < 1. Let n .. n2 and n3 denote the respective random 
sample sizes of the above three types of individuals. Determine the maximum 
Iilcelihood estimator for O. [Rqja.t',on PCB, 1989] 

(b) Obtain the maximum likelihood.estimate of O. if the variable takes the 
values 1. 2. 3 and 4 with probabilities (1 - O)fl. (1 - O)fl. 0(1-0) 'and 02 

respectively and the observed frequencies are n .. 1l2. n3 and n4 ~tively. 
13. In life-testing it is sometimes assumed that the life-time of an item is 

a random variable which is greater than or equal to % with probability 

exp [ - ( ij )"]. 
% ~ O. m > 0 is known ana e > 0 is unknown. Suppose n such items are tested 
and field' Xl> X2 • •••• X .. as their times of "d~th". 

Find the maximum likelihood estimate of O. 
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t4. Xl' Xl' X3,- X4 are h.uependent norinal random variables with means 
a + P. a - p, a + 2p. a - p respectively and a common variapce O'l. on the 

basis of one observation on each Xi ; obtain the maximum likelihood estimators 
of a, ~ and 0'2. What is the asymptotic variance of a~ ? 

[Bhurati,cm Un.ifJ. M.Sc. (Maths), 1998] 

IS. (a) For the bivariate normal distribution i\\J1lt J1l, 0'12, O'l, p) find the 
maximum likelihood estimators 

(,) of 0'12, O'i and p when J11 and J12 are known, 
(il) of all five parameters of the distribution. 
(b) Describe clearly- the important propertie$ to be possessed by a good 

estimator. 
If (Xi, Yi). (i = 1.2 ..... n) come from a bivariate normal population with 

zero means, unit variances and co-efficient of correlation p. obtain the maximum 
likelihoOd estimator of p. 

16. (a) Show that the most general continuous distribution for which the 
M.L.E. of a parameter e is the sample harmonic mean is : 

Ax, 0) = exp [ ~ {o ~- "'(O)} ~ ~ +,l;(x) ] 

where ",(0) and ;(x) are arbitraly functions of 0 and x ,respectively. 
(b) Explain lbe principle of maximum likelihood estimation. Give 

examples to show that MLE need not be unique and also not necessarily 
unbiased. 

Show that the mos,t general form of the distribution for which the sample 

arithmetic mean X is the MLE of 0 has the p.d.f. 

Ax. 0) = exp [(x - 0) A'(O) + A(O) + B(x)] 
[Delhi Un.iv. B.Sc. (Stat. Hons.), 19881 

17. (a) Suppose that distribution of X is represented by the function: 
A.% 

P(X = x) = e -A -, ; X = 0, 1, 2, ... x. 
where A. "> O. Given a ~ndom sample of size n, show that the sample mean is 
the maximum likelihood estimate of A.. Show further that this estimate is 
(I) !xist wibiased, ,and (il) consistent. [De~i Univ. M.A. (EcD.), 1986J 

(b) Consider the estimation of the Poisson parameter from a random 
$3IIlple. 

(i) Work out the maximnm likelihood ~stimator and its variance. 
(iO Work out the Cramer - Rao Lower bound and show that it is equal 10 

the variance worked out in (i). Comment on the significance of this result. 
[Delhi Un;v. M.A. (EcD.), 1990] 

18. X is a discrete random variable and 
P(X=r) =(t _p)p'-l; r= 1,2.,3, ... 

~ind the MLE of p based on a random sample of n obset:Vations and its variance 
in large samples. 
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Show that the variance attains the lower bound of C.R. inequality. 
19. Explain the terms: (;) sufficient estimator. (ii) efficient estimator. 

(iiI) Cramer-Rao lower bound to the variance of an estimator. (iv) maximum 
likelihood estimator; and de~ribc the relations amongst these four concepts. 

20. (a) Descfibe the method of moments for estimating the parameters. 
What are the properties of the estimates obtained by this methOd ? 

(b) Let (Xl' X2 • •••• X,J be a random sample from the p.d.f. 

j(x. a) = ae-III:. 0 < x < 00. a > 0; 
= O. elsewhere 

Estimate a using the method of moments. 
(Madra Univ. B.Sc., 1988) 

21. Xit X2 • •••• X" is a random sample from 
1 

j(x; a. b) =-b--; a <x < b 
-a 

= O. elsewhere 
Find estimates of a and b by the metftod of moments. 

[Gujarat Univ. B.Sc. Oct., 1993] 

22. Explain the methods of estimation-method of momenlC; and maximum 
likelihood. Do these lead to the same estimates in respect of the standard 
deviation of a normal population? Examine the properties of the estimates from 
the point of view of consistency and unbiasedness. 

23. (a) Estimate a in the density function 
j(x,a) = (1 + a) x 9 ; 0 < x <: 1 

by the-method of moments and ob~n the standard error of the estimator. 
(b) The sample valu~ from population with p.d.f. 

j{x) = (I + 9) x 9. 0 < X < 1.9> O. 
are given below : 

046, 0·38, 0·61. 0·82. 0·59. 0·53. 0·72. 0·44. 0:59. 0·60 
Find the estimate of 9 by (i) method of moments and (ii) maximum 

likelihood estimation. 
14. (a) For the distribution with probability function: 

/ e -9 9z 
j(x.9) = x! (1 _ e- 9);x = '1, 2i 3 .... 

obtain the estimate of 9 by the method of moments. 
(b) For the following probability function: 

( 
3 )PX (1 _ p)3-x 

j(x.p) = . x 1-(1-p)3 .£X=1 •. 2.31 

obtain the estimator of p by the method of moments. if the irequencies at 
x = 1,2 and 3 are respectively 22. 20 and 18. 

-25. Let X\o x2 • •••• XII be a sample from a distribution with density. 
function: 

f9(X) = 9(9 + 1) x9-1 (1 -x). 0 < x < 1,9 >0 



Detennine the estimate of 9 by the method of moments. 
[Indian Ci.,il SeroiceB. 1981] 

26. Explain the method of minimum chi-square in estimation, with a 
suitable example. [Madras Uni.,. H.Se •• March 1989] 

27. Describe the method of moments and discuss, when the estimates 
obtained by the method of moments are identical with those of maximum 
likelihood estimates, 

Estimate a and ~ by the method of moments for the distribution : 

f(x; a, ~) = &:-1 e~:I ,OS x < 00, 

[Delhi UnilJ. B.Sc. (Stat. Hons.). 1987, 1983] 

28. State the conditions under which Maximum Likelihood Estimators of 
the parameters are identical with those given by the method of moments, 

Examine if the MLEs of the parameter(s) are identical with those obtain,ed 
by the method of moments in random sampling from the following 
distributions : 

(,)f(x, 9) = ~, exp{ -~); 0 < x < 00 

(i,)f(x, Il, ( 2) = ,_II-""" exp [- (x - J1)2/2a2 ] ; - 00 < x < 00. 

a "V 21t 

" " Ans. (i) MLE ( 9) = x:; 9 (Method of ¥oments) 

" - " (il) MLE (J.t) = X = J.I; (Method of Moments) 

" " MLE' (a2) = s'- (sample variance) = a2 (Method of MomentS). 
29. Independent samples of sizes nl and n2 are taken from tw'o nonnal 

populations with equal means -Il and variances respectively equal to w2, a2, 

Find the maximum likelihood estimator of Il based on (nl ... n2) sample 
observations and show that ,its large ~ple variance is 

Var ~) = a21(i + nz) 

Hence show that the unbi~ estimator, t = (nlxl + n2x)/ (nl + n~ 

has ffi ' Mnl + n~z , h' h ' th al 1 'f d 'I if e IClency, ('I _ \( ''1) W IC attatns e v ue I an on y nIl\. + n'll nl + n21\. 
A. = 1. 

Ans. MLE ~) = (nrl + n2X2)/(r+ n2) 

~, 

OBJECTIVE TYPE QUESTIONS 

1. Comment on the following,statements : 

(i) In case of.tlie Poisson distribution with parameter A, i is sufficient for 

(ii) If (X It X2, ,.,' X,.) be a sample of independent observations from the 
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uniform.distribution on (9,9"+ I), then the maximum likelihood estimator of 9 
is unique. 

(iii) A maximum likelihood estimator is always unbiased. 
(iv) Unbiased estimator is necessarily consistent 
(v) A consistent estimator is also unbiased. 
(vi) An .unbiased estimat6r whose variance tends to zero as sample size 

increases is consistent 
(vii) 1ft is a sufficient statistic for 9 thenf(t) is a sufficient stati'stic fOf 

flO). 
(vim If It and 12 are two independen~ estimators of e, then I) + 12 is less 

efficient then both t) and t2' 

(ix) If T is consistent estimator of a parameter e, then. aT + b is a 
consistent estimator of ae + b, where a and b are constants. 

(x) If x is the number of successes in n independent trials with a constant 
probability p of success in each mal, then xln is a consistent estimator of p. 

n. Fill in the blanks : 
(i) In a random sample of size n from a population with mean Il; the 

sample mean (i ) is .•. estimate of ... 
(ii) Tbe. sample median is '" estimate for the mean of normal population. 

(iii) An estimator G of a parameter" e is said to be unbiased if ... 
(iv) The variance S2 of a sample of size n is a ... estimator of population 

variance (12. 

(v) If a sufficient estimator exists, it is a function of the ... estimator. 
(vi) ... estimate may not be unique. 
111. (a) Give example of a statistic I which is unbiased for a parameter e 

but t2 is nol unbia~oo for 02• • 

(h) Give example of an ML. estimator which is not unbiased. 
IV. What is the relationship between a sufficient estimator and a 

max'mutn likelihood estima~r ? 

V. (;) If i is an unbiased estimator for the population mean Il, state which 
of the following are nn,biased estimators for 112 : 

(a) i 2, (b) i 2 _ (12 «(12 is known/unknown). 
n 

(ii) If I is the maximum likelihood estimator for 0, state the condition 
under whichf(l) will be the maximum likelihood estimator forj(O). 

(iii) Write down the condition for the Cramer-Rao lower bound for the 
variance of an unbiased estimator to be attained. 

(iv) Write down the general fonn of the distribution admitting sufficient 
statistic. 

VI. A random variable X takes the values 1 .. 2, 3 amI 4, each with 
probability ~ . A random sample of three values of x is taken, x is the mean and 
m is the median of this sample. Show that both i and m are unbiased estimators 
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of the mean of the population, but x is more zfficient than m. Compare their 
efficiencies. 

Vll. Give an example of estimates which are 
(l) Unbiased and efficient, (if) Unbiased and inefficient 
15·15. Confidence Interval and Confidence Limits. Let Xi. 

(i = 1,2, ... , n) be a random sample of n observations from a population 
involving a single unknown parameter e (say). Letj(x. e) be the probability 
function of the parent distribution from. which the sample is drawn and let us 
suppose that this distribution is continuous. Let t = t(Xl> X2' ••• , x,.}, a function 
of LfJe sample values be an estimate of the population parameter e, with the 
sampling distribution given by g(t, e). 

Having obtained the value of the statistic t from a given sample, the 
proble!ll is, "Can we make some reasonable probability statements about the 
unknown parameter a in the population, from which the sample has beeD 

-lirawn 1" This..question is very well answered by the technique of Confidence 
Interval due to Neyman and is obtained below: 

We choose once for all some small value of a (5% or I %) and then 
determine two constants say, Cl and C2 such that 

P(CI < e < C21 t)::: I - a ... (15,65) 

The quantities CI and C2. so determined. are known as the confidence limits 
or fiducial limits and the interval [CI' cil within which the unknown value of 
the population parameter is expected to lie. is called the l;onfidence interval and 
(I - a) is called the confidence coefficient. 

Thus if we take a = 0·05 (or 0·01), we st,all get 95% (or 99%) confidence 
limits. 

How to find Cl and C2 1 Let TI and T2 be two statistics such that 

P(Tt > e) = al ... (15·66) 

ad P(T2 < e) = a2 ••• (15·600) 
where al and ~ are constants independent-of e, (15·66) l;lnd (1·5·600) can be 
combined to g!ve 

P(TI < e < T -» = 1-a, .. ,(15·66b) 
where a = al + ~. Statistics Tl and T2 defined in (15-66),and (15·600) may be 
taken as C1 and C2 dermed in (15·65). 

For example" if we take a large sample from a nonnal population with 
me:an ~ and standard deviation (1, then "'7 

Z = X = F -N(O, 1-) 
(1{'Vn 

P(-1·96 < Z < 1·96) :: 0·95, 
[From Normal Probability Tables] 

P (-1::6 <X2 < 1'96} =0·95 
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[ - 6cr - crJ ~ P x - 1·9 {";; < ~ < x + 1·96 {;; = 0·95 

Thus x ± 1·96 _ c;.- are 95% confidence limits for the unknown parameter ~, 
-Vn 

the population mean and the interval 

[x - 1·96 :h ' .r + 1 ·96 .J,;] is called the 95% confidence intervaL 

Also P(-2·58 < Z < 2·58) = 0·99 

P (-2'58 < x - 11 < 2'58J = 0.99 
cr/{;; 

P r -2 '.5 8 ~ < ~ < x + 2.5 8 1,;) = 0·99 

Hence 99% confidence limits for ~ are x ± 2·58 _ c;.- and 99% confidence 
-V 11 

r . [- cr - cr ] interval.or ~ IS X - 2·58 {;; , x + 2·58 -{;; . 

I Remarks 1. Usually cr2 is not known and its unbiased estimate S2 

.obtained from the ~~inples, is used. However if n is small, 

x -'- 11 . z= _r IS.not N (0, I) 
S/-v 11 

and in this case the confidence limits and conjidence intervals for ~ are obtained 
by using Student's 't' distribution. 

I 2. It can be seen that in many cases there exist more than one set of 
confidence intervals with the same confid'ence coefficient. Then the problem 
'adses as to which particular set is to be regarded as better than the others in 
'Isome useful sense and in such cases we look for the shortest of all the intervals. 

Example 15·45. Obtaill 100 (1 - a)% confidence illtervals for the 
parameters (a) (} and (b) aZ, of the normal distriblltioll 

j(x, a; cr) = cr~ exp [ (- t (X ~ a) 2 ] , - ex> < X < ex> 

Solution. Let Xi' (i = I, 2, . '" n) be a random sample of size 11 frpm the 
density j(x ; a, cr) and let 

_In In _. In _ 
X=- 1: Xi' S2 = - 1: (Xi _X)2, S2 =--1 1: (Xi _X)2 

l1i=1 l1i=1 II - i=1 

(a) The statistic: x-a t=--
S/{;; 
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follows student's I-distribution with (n - 1) degrees of freedom. Hence 
100(1 - 0;)% confidence limits for e are given by 

P[II 1 :S: la] = 1 - a 

=> P [I i - e 1 :S: {; '0. ] ... 1 - a 

=> P [X - la . {; S e :S: i + la . J;] = 1 - a •.• (567) 

whe.e la is the tabulated value of 1 for (n - 1) d.f. at significance level 'Q'. 
Hence the required confidence interval for e is : 

(X - la {; .-X + la {;) 

(b) Case (i) e is known and equal to Jl (say). 

Then 
l:(X j - ~)2 ns2 2 

a2 -o2- X (II) 

If we defme Xo? as the value of Xl such that 

PC:x,l > Xa'1 = roo PCX'1 dxl = a 
JI«? . 

where p(Xl) is the p.d.f. of Xl-distribution with n dJ., then the required 
confidence interval is given by 

P[ Xli -(all) S Xl S Xlall] = 1 - a 

p[ Xl l_(an) S '::::S: Xlan] = 1 -a 

Now nsl :S: xla/l => , nsl, . :S: al 
a l Xlan. 

1 nsl 1 nsl 
X 1-(aIl):S: _'1 => a:S: Xl 

0- 1-(011) 

nsl nsl ] p[-l-:s:als 1 . =1-a 
Xan Xl-(aIZ) 

where Xlan. and Xll-(aIZ) are obtained from (*) by using n d.f. 
Thus e.g .• 95% confidence interval for a l is given by 

p[~:s: al:s: L..]=o.95 
Xl~025 Xl~915 

Case (ii). e is unknown. Iii this case the statistic 

l:(X j - X)l ns2 
a2 = ci - Xl ( .. _1). 

Here also confidence interval for ci is given by (***) where now Xla is the 
significant value of Xl [as defmed in (*)] for (n - 1) d.C. at the significance level 
'a'. . 
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Example 15·46. Show ttlDt the largest observations L of a sample of n 
observations from a rectangular distribution with density junction : 

J(x. 0) = ~. 0 s X 's 0 ... (*) 

= 0, otherwise 
has the distribution 

( L 1'-1 dL 
dG(L) = nO") • '0 . 0 S L sO 

Show that the distribution of V = LIB is given by p.d/. 
h(v) = nv _I. 0 Sv S 1 

Hence deduce thai the confidence limits for B co"esponding to confidence 
-L 

coefficient a are L and (1 _ a)JlII 

[Delhi U,#v. ·B.Sc. (Stat. H01lll.), 1982, 1983] 
Solution. Let X It X 2 .... X II be a random sample of size n from the 
population (*) and let L = max (XI. Xl •...• XJ. The distribution of L is given 
by dG(L) = n[F(L)]tt-I.j{L) 4 
where F(.) is the distribution function of X given by 

F(L) = fo f(x. O)dx = ; 

•• dG(L) = n.( ~ jl . ~ . 0 S L so 

If we take V = LlO. the· Jacobian of transformation is 0 .. Hence p.d.f. h(.) of 
Vis given by 

1 -
h(v) = nv-I• e IJ I = nV"-I. 0 S v S 1 

which is independent of O. 
To obtain the confidence limits for O. with confidence coefficient a. let us 

define Va suCh that f l h(v)dv=a 

~ 

P(va < V < 1) = a ~ 
Ya 

n (I vtt-1 dv = a ~ I-Va" =-a 
JYa 

Va = (1 - a)I/II 
From (*.) and (*.*). we get 

PHI - a)I/II < V < 1] = a 

~ p[(1-a)I'"<;< 1]=a 

~ P[L < 0 < (I_La)I/II]=a 

Hence the required confidence limits for 0 are L and LI(l - a)I/II. 

••. (**) 

... (***) 
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Example 15·47. Given a random sample from a population with p.d! 
1 

f(x. f!) = 6' 0 S x S (J 

show that 100 (1 - a)% confidence interval for (J is given by R and RI'I' where 
'l'is given by 

.,-1 [n-(n -1)'I'J = a. 
and R is lhe sample range. 

Solution. The joint p.d.f. of XI> X2 • ••• , X" is given by 
1 

L = 0" . 0 S Xi S 0 

_ If X(l)' X(2)' ••• , X(II) is the ordered sample dien the joint p.d.f. of XcII) and 
x(1) is given by 

n(n - 1) 11-2 
g(X(I) ,x(,,~ = &' [XII) - X(l)] ,OS X(l) S XC,,) sO 

To obtain the distribution of the sample range R, let us mak~ the 
transformation of ~Ies 

R = X(II) - x(1) and v = x(J) ~ v = X(II) - R S 0 - R 
The Jacobian of transformation is I J I = 1 and the jOint p.d.f. of R and 

V~comes 

n(n - 1) 2 • 
h (R, 11) = 0" R"- ,0 < v < O-R 

The marginal density of R is $iveD by 

hl(R) = J ~ n(nO: 1) . RII-2 dv 

= n(n - 1) R"-2 (0 - R) 0 <: R < 0 
0" ' - -

The density of U = RIO is 

h2(u) ~ hJ(R) 'I d~ 1,= n(n - 1) ~:-2 (0 - R) '.0 

= n(n ""' l)u .... 2 (1 - u), 0 SuS 1 
100 (1 - a)% confidence interval for 0 is given by 

P('V SUS I) = 1 - a ... ("') 
where 'V is obtained from the equation 

f: !.J.u)d = a 

n(n - 1) J: u--2 (1 - u)du = a 

Inu ... 1 - (n - 1) 1£11 t: = a 
..,--J [n-(n- I)'Vl .=a ... (**) 
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From (*), we get 

p[",~~~ 1]=I-Cl 

~ P [R ~ a ~ ~] = 1 - Cl 

16087 

Hence the required limits for a are given by R and R/'V, where", is the 
solution of (**). 

Example 15·48. Given one observation /mm a population with p.d! 
2 

j(x, a) == az (a - x), 0 ~ x ~ a, 
obtain 100 (1- a)% confidence intervall!)r 9. 

[Delhi Unil1. B.Sc. (Stat HolUl.). 1991] 

Solution. 'The density of u = x/a is given by 

g(u) = j(x, a) ·.1 : 1 = ~ (8 - x). a 
= 2(1 - u), 0 ~ u ~ 1 

To obtain 100 (1- Cl)% confidence interval for a, we choose two quantities 
Ul and U2 such that 

P[UI ~ U ~ u:zJ = 1 - a ... (*) 

IRf P[u < utl = P[u > u:zJ = 0/2 

P[u< ud 
a f:1 

Cl 
='2 ~ 2(1 -u)du ='2 Now 

U12 
a 

... (**) - 2Ul +'2= 0 ~ 

Similarly, P(u> uz} 
Cl J~' Cl 

='2 ~ 2(1-u) du ='2 

~ U22 - 2u2 + (1 -~)= 0 .. J*.*) 

From (.), we get 

1 u 1 ~ i ~ U2] = 1 - a ~ P [~ ~ a ~ :1] = 1 - a 

Hence the required interval for a is (x , ~), where Ul and u2 are given 
liz Ul 

by ( •• ) and ( ••• ). 
15·15·1. Confidence Intervals (or Large Samples. It has been 

proved that under certain regularity conditions, the first derivative of the 

logarithm of the likelihood function w.r.t parameter a viz., ~ log L, is 

asymptotk:ally normal with mean zero and variance given by 
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var(:OIOg L )=E(:OIOg L J =E(- ;IOg L) 
Hence for large ,1. 

a -log L 
Z = aa - N (0. 1) 

~var(:olOg L) 
.•. (15·68) 

The result enables us to obtain confidence interval for the parameter 9 in 
large samples. Thus for large samples. the confidence interval for 9 .with 
confidence coefficient (1 - a) is obtained by converting the inequalities in 

P [I Z 1 s Au] = 1 - a ... (15·69) 
where Au is given by 

1 f>.a exp (-ul/1.) du = 1 - a 
Th ->.0 

.•• [l5-69(a)] 

Example 15·49. Obtain 100 (1 - a)% confidence limits .(jor large 
samples)/or the parameter lofthe Poisson distribution 

e-l.. A... , 
j(X.A) = , ;x=0.1J.2 •... x . 

Solution. We have 

;A 10gL =:A[-nA + C~l Xi)lOg A - i~l log Xi] 

=_n+~i=n( f- 1) 
var(1A10gL) =E(- af210V;L )=E(~) 

=~2E(i):;:r 

·n ~- 1) 
.. Z= _r:::- =V(n/A.)(i ..... A)-N(O.I) 

'V n/A. 
[Using (15-68)] 

Hence 100 (1 - a)% confidence interval for A is given by (for large 

samples) P [IV(n/A) (i' - A)I ~ Aa1 = I-a 
~ the required limits for A are the roots of me equation: 

IVn/A. (i' -A)I = Aa 
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=> V_A(2X+A:2)+iZ= 0 

(2 X + ¥) ± [(2 X + ¥ J -4 X 2 In 
=> A= 2 ... (*) 

For example, 95% confidence interval for A is given by taking 1t.a = 1·96 in 
(*). thus giving 

1 - 3·84 3'·84i 3·69 - i ~
-

A'=2(2x+ -;;-)±~(--;-+ 7)=X±I.96 ;;. 
to order rrln. 

Example 15·50. Show that for the distribution : 
dF(x) = 9 e -d ; 0 < x < 00 

central confidence limits for (J for large samples with 95% confidence coefficient 

are given by 

Solution. Here L = 9" exp [-9 . i x;] 
• - I 

a d aa log L = aa [n log 9 - 9 LX,] 

=i-'~Ixi=n(~-x) 
;p. n 
()91log L = -G1 

.. var(!,IOg L) =E~ ~IO~ L )=~ 
Hence, for large samples, using (15·68) we have: 

~ Z= n _~ x _ N(O,I) => {; (1-6i)- N(O,I) 
'4n/fP . 

Hence 95% cmfJdence limits for e are given by 

P[-I.9.6 ~ {; (1 - 9 x) ~ 1.96] = 0·95 

Now .r,; (1 - 9i ) ~ 1·96 => (1 - 1.96)~s; 9 
-{;, x 

-1·9(; $ -f; (1 - e~). => e~. 1 + - -( 1.96) l' 
...[;,i 

... (*) 

... (**) 
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Hence, from (*) and (*>t), the central 95% confidence limits for 0 are given 
by 

0=(1 ± \~!} i 
EXERCISE IS (c) 

1. Discuss the concept of interval estimation and provide suitable 
illustration. [Delhi Ullil1. M.A. (Eco.), 1981] 

2. Critically examine how interval estimation differs from point 
estimation. Give the 95% confidence interval for the mean of the normal 
distribution, when its variance is known. 

[ModrOB Ullil1. B.Sc. Sepi., 1988] 

3. What are confidence intervals? How are they constructed using t­
distribution? 

[Madra. Ullil1. B.Sc.,.March, 1989] 

4. The random variable X is uniformly distributed in (a. 0 + 2). Obtain 
limits XI and ~ such that 

P(X S XI) = P(X'~ x,) = 0·025 

The random variable is observed once, the value being XcI. Give a.method of 
obtaining an interval estimate for' a' which you expect to be correct in 95% of 
trials. [Calc~tta Ulli". RSc. (Math •• ROil •• ), 1990] 

S. Obtain 100 (1 - a)% confidence interval either for the unknown 
parameter p of a binnomial distribution when the parameter 11 is known or for 
the population correlation coefficient when the population is Normal. 

[Delhi Ulli". RSc. (Stat. ROil •• ), 1983] 

6. Let fe(x) = 1/0, 0 S X SO and let L be the largest observation of a 
sample of size 11 from the above distribution. 

Obtain the distribution 6f (UO) and hence deduce that the confidence limits 

corresponding 10 confidence coeIDcient a are L, and (1-~)Ih' respectively. 

[Delhi Un.i". B.Sc. (Stat. Ron. •• ), 1992 

7. (0) What are confidence intervals? , is the largeSt observation in a 
sample of size n drawn from a rectangular population in (0, 0). Find the 
confidence coefficient corresponding 10 the confidence inteI'Yal 

(y, ,/(1 - a)th.) 
where 'a' is the level significance. 

[Bharti,an Ulli", M.Sc. (Math •• ), 1991] 

(b) Prove that the confidence interval for 0 obtained in (0) part above is 
shorter than the one-obtained in Qlestion 9 below. 

8. Develop a general method for constructing confidence intervals. 
Consider a random sample of size n from the exponential "distribution with p.dJ. 

j(x, 0) = e -~-e), e Sx < 00, _00 < 0 < 00. 
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Show that P [x(t) _1 log a sa s x(1)] = 1 - a 
n 

where symbols have their usual meanings. Also interpret the result. 
[Delhi Uniu. B.Se. (Stat. Bon •• ), 1989J 

9. Consider a random sample XIt X2 • •••• XII from an U[O. aJ population. 
S.how that R and Rtr., are the confidence limits for a with confidence coefficieni 
(l - a). where R is the sample range and ~ satisfies the equation: 

~"-l (n-(n-l)~} =a 
£.Delhi Univ. B.Se: (Stat. HOM.), 1993, 19~] 

10. Explain the difference between point estimation and interval 
estimation. 

Obtain 100 (1 - a)% confidence interval for the population correlation 
coefficient 'p' when the random sample of size n has been drawn from bivariate 
normal population. 

(Delhi Univ. B.Sc. (Stat. Bon •• ), 1988] 

n. Describe the pivotal quantity method for constructing confidence 
intervals. 

Obtain a large sample 100 (1- a)% confidence interval for the parameter a 
in random sampljng from the population : 

dF(x) = a e -8x ; X > O. a > 0 
[Delhi Uniu. B.Se. (Stat. Bon •• ), 1990] 

12. Develop a general method for obtaining confidence intervals. Obtain a 
100(1 - a)% confidence interval for large sample size for the panuneter a of the 
Poisson distribution : 

e-8 ax 
f(x. a) = -x-I- • x = O. 1. 2 •... 

[De~i Uniu. B.Se. (Stat. Hon •• ), 1987] 

13. Describe the general method of constructing the confidence interval. for 
large samples. 

If Xt>X2 ••••• XII is a random sample from an exponential distribution with 
mean O. obtain 95% confidence interval for 0 when n is large. 

[Delhi rTniu. B.Se. (Stal. Hon •• ), 1993] 

14. (a) Show that with the exponential distribution 
dF(x) = ae -8x. X ~_O 

central confidence -limits for a for large samples of size nand 95% confidence 
coefficient are : {I ± 1.96r1n}/ i • 

where i is the mean of-the sample observations Xl. X2 • •••• XII drawn randomly 
from the exponential population. 

fl~cm Civil Service., 19&'1] 

(b) LetXl .X2 ••••• XII be a random sample ciom a distribution with density 
function: f(x. 0) = Oe-8x. 0 S X < 00 
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Find a 100 (1 - a) (when 0 < a < 1) percent confidence interval for the 
mean of this population, for large samples. 

[Madra. Univ. B.Se., 1991] 

15 .• (a) Discuss the problem of interval estimation. Obtain the minimum 
confidence interval for the variance for a random sample of size n from a normal 
popul~tion with unknown mean. 

[lndi01J Civil Se",ice., 1991] 

(b) Give a method of detennining the confidence limits for a single 
unknown p¥3flleter. stating.the conditions of validity. From amongst intervals 
of Confidence Coefficient «. how will you decide one as being superior to 
another? 

[lndi01J Cioil Se",ice., 1989] 

16. Consider a random sample X to X 2, ... , X" from the exponential 
distribution with p.d!. 

J( 9 ') - exp (-x/O). xp -I 0 
X, ,P - rp fJP ' x > 

= 0 , otherwise 
If p is known, obtain 8 confidence' interVal for 9. starting frem the sufficient 

statistic X/po 
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CHAPTER SIXTEEN 

Statistical Infer~nce-II 
( Testing of Hypothesis, Non-parametric 

Methods and Sequential Anal9Sis J 

16·1. Introduction. The main problems in statistical inference can be 
broadly classified into two areas : 

(I) Tb.e area of estimation of population parameters and setting up of 
confidence intervals for them, i.e., the area of point and interval 
estimation and 

(il) Tests of statistical hypothesis. 
The first topic has already been discussed in Chapter 15. In this chapter we 

shall discuss: (a) The theory of testing of hypothesis initiated by J. Neyman and 
E.S. Pearson (Section 16·2), (b) Sequential analysis propounded by A. Wald 
(Section 16·4). and (c) Non-parametric tests (Section 16·3). In Neyman-Pearson 
theory, we use statistical methods to arrive at decisions in certain situations 
where there is lack of certainty, on the basis of a sample whose size is fixed in 
advance while in Wald's sequential theory the sample size is not fixed but is 
regarded as a random variable. Before taking up a detailed discussion of the topics 
in'(a), (b) and (c), we shall explain below certain concepts which are of 
fundamental importance. 

16-2. Sta~istical Ilypotbesis-Simple and Composite. A 
statistical hypothesis is some statement or assertion about a population or 
equivalently about the probability distribution characterising a population which 
we want to verify on the basis of i", :"rmation available from a sample. If the 
statistical hypothesis specifies tbe por,ulation completely then it is teaned as a 
simple statistical hypothesis. otherwise it is called a composite statistical 
hypothesis. 

For example, if X l'](l' ., _, X" is a random sample of size n irom it normal 
population with mean J1 and variance (J2, then the hypothesis 

I/o.: J1 = ~ (J2 = (102 

is a simple hypothesis, whereas each of the following hypotheses is a composite 
hypothesis: 

(I) J1 = J1o. (il) f!" = (101, 

(iii) J1 < J1o. ~2 = (Jo" 

(v) IJ. = J.1o, (J2 < (J02, 

(vii) J1 < J.1o. (12 > (102• 

(iv) ;J1 > J1o. (Jl = (JO" 

(VI) J1 = J1o, (1l> a02 

A hypothesis ,!\,hich does not specify cc;>mplele.1y ·r' parameters of a 
population is termed as 'a composite hypothes.i~ ,":,ii~ '~~rees (Jf freedom. 
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16·2·1. Test or a Statistical Hypotbesis. A test of a statistical 
hypothesis is a two-action decision problem after the experimental sample 
values have been obtained. the two-actions being the acceptance or rejection of 
the hypothesis under consideration. 

16'2·2. Null Hypothesis. In hypothesis testing, a statistician or 
decision-maker should not be motivated by prospects of profit or loss'resulting 
from the acceptance or rejection of the hypothesis. He should' be completely 
impartial and should have no brief for any party or CC?mpany nor should he allow 
his personal views to iufluence the decision. Much. therefore. depends upon how 
the hypothesis is framed, For example, let us consider .the 'light-bulbs' 
problem. Let us suppose that the bulbs manufactured under some standard 
manu(acturing process have an average life of J.l hours and it is proposed to test 
a new procedure for manufacturing light bulbs. Thus, we have twQ populations 
of 1>ulbs, those manufactured by standard process ~d those manufactured by the 
new process. In this problem the following three hyPotheses may be set up : 

(I) New process is better than ~tandard process. 
(it) New process is inferior to standard process. 

(iiI) There is no difference between the two processes. 
The first two statements appear to be biased since they reflect a preferential 

attitude to one or the other of the two ,processes. ·Hence the best course is to 
adopt the hypothesis of no difference, as stated in (iil). This suggests that the 
statistician should take up the Mutral or null attitude regarding lhe outcome of 
the test. His attitude should be on the null or zero line in which the 
experimental data has the due importance and complete.say in the matter. This 
neutral or non-committal attitude of the statistician or decision-maker be/ore the 
sample observations are taken is the keynote of the nidi hypothesis. 

Thus, in the above example of light bulbs if ~ is the mean life (~ hours) 
of the bulbs manufactured by the new process then the null hypothesis which is 
usually denoted by Ho, can be stated as follows: 

H9: J.l = J.lo . 
. As another example let us suppose that two different concerns manufacture 

drugs for inducing sleep, drug A manufactured by first concern and drug B 
manufactured by second concern. Each company claims that its drug is superior 
to that of the other and it is ~ired to test which is a superior drug A or B ? To 
formulate the statistical hypothesis let X be a random variable which denotes the 
additional hours of sleep gained by an individual when drug A is given and let 
the random variable Y denote the additional hours of sleep gained when drug B is 
used. Let us suppose that X 8Ild Y follow the probability distributions with 
means J.lx and J.ly respectively. Here our null hypothesis would be that there is 
no.difference between the effects of two drugs. Symbolically, 

Ho : J.lx = J.lY. 
16·1'3. Alternative Hypothesis. It is de.sirable to state what is 

called an alternative hypothesis in respect of every statistical .hypothesi~ being 
tested because the acceptance or rejection of null hypothesis is meaningful only 
when it is. being tested against a rival hypothesis which should rather be 
explicitly mentioned. Alternative hypothesis is usually denoted by H •. For 



Statib-ticaJ Inference -n ( Testing of Hypothesis ) 16·3 

example, in the example of light bulbs, alternative hypothesis could be 
HI : ~ > J.lo or ~ < J.lo or ~ "" ~o. In }he example of drugs, the alternative 
hypothesis could be III : ~x > J.ly or ~K < ~y or ~x '* IJ.Y. 

In both the cases, the first two of the alternative hypotheses give rise to 
what are cal1ed 'one tailed' tests and the third alternative hypothesis results in 
'twO tailed' tests. 

Important Remarks 1. In the fonnulation of a testing problem and de­
vising a 'test of hypothesis' the roles of 110 and 1/1 are not at all symmetric. In 
order to decide which one of the two hypotheses should be taken as null hypoth­
esis Ho and which one as alLefllative hypothesis 1/1' the intrinsic difference be­
tween the rol.~s and the implifications of these two terms t;hould be clearly un­
derstood. 

2. If a particular problem cannot be SUIted as a test between two simple 
hypotheses, i.e., simple null hypothesis against a simple alternative hypothesis, 
then the next best alternative is to formulate the problem ao; the test of a simple 
null hypothesis against a composite alternatIve hypothesis. In other words, one 
should try to structure the problem so that null hypothesis is simple rather than 
composite. 

3. Keeping in mind tbe potential losses due to wrong decisions (which 
mayor may not be measured in terms of money), the decision maker is 
somewhat conservative in holding the null hypothesis as true unless there is a 
strong evidence from the experimental sample observations that it is false. To 
him, the consequences of wrongly rejecting a null hypothesis seem to be more 
severe than those of wrongly accepting it. In mot of the cases, the statistical 
hypothesjs is in the fonn of a claim that a particular product or product process 
is superior to some existing slJlIldard, The null bypothesis 110 in this case b 
that there is no difference between the new product or production process and the 
existing standard. In other words, null hypothesis nuJlifies this cJai.m. The 
rejection of the null hypothesis wrongly which amounts to the acceptance OJ 
claim wrongly involves huge ampunt o( pocket expenses towards a substantive 
overhaul of the existing set-up. The resulting loss is comparatively regarded as 
more serious than the opportunity loss in wrongly. accepting 110 whi~h amounts 
to wrongly rejecting the claim, i.e., in sticking to the less efficient existing 
standard. In the Iight-b'llbs problem discussed earlier, suppose the research 
division of the concern, on the basis of the limited experimentation, claims that 
its brand is more effective than that manufactured by standard process. If in facl. 
the brand fails to be more effective the loss incurred by the concern due to an 
immediate obsolescence of the product, decline of the concern's image, etc., will 
be quite serious. On the other hand, the failure to bring out a superior brand in 
the market is an opportunity loss and is not a consideration to be as serious as 
the other loss. 

16'2'4. Critical Region. Let xI> X2, ••• , XII be the sample observa­
tions denoted by o. All the values of 0 will be aggregate of a sample and th~ r 
constitute a space, called the saml!'e space, which is denoted by S. 

Since the sample values XI, x2, ••• , XII can be taken as a point in 
n-dimensional space, we specify some region of the ,i-dimensional space and see 
whether this point lies within this region or outside this region. We dividl~ lhl! 
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whole sample $pace S into two.:lisjoint parts Wand S - Wor Wor W: The 
null hypothesis H 0 is rejected if'the observed sample point falls in W and if it 
falls in W" we reject H 1 and acceplHo- The regwn of rejection of Ho when Ho is 
true is that region of the outcome set where Ho is rejected if the sample point 
falls in that region and is called critical region. Evidently, the s~ 'of the critical 
region is a, the probability of committing type I error (discUssed below). 

Suppose if the test is based on a sample of size 2, then the outcome set or 
the sample space is ~e first quadrant in a two-dimensiQnal spac~ and a test 
criterio!1 will ena~e us to separate our outcome set into two complementary 
subsets, W and W. If the sample point falls in the subset W. Ho is rejected, 
otherwise Ho is .accePted. This is shown in the fo1lowing diagram : 

~2 

t 
Acceptanct 

region 
W 

--- %1 
16·1·S. Two Types or Errors. The decision to accept or reject the 

null hypothesis H 0 is made on the basis of the infonnation supplied by the 
observed sample observations. The conclusion dl3wn on the basis of a particular 
.sample may not always be true in respect of the population. The four possible 
situations that arise in any test procedure are given in the f9110wing table. 

True 
State 

OOUBLE DICHOTOMY RELATING TO-DECISION AND 
HYPOTIIESIS 

. " 

Decision From Sample 

· · : \ · RejectHo · AcceptHo · · · · · , , , , · : , , , , : · Wrong Correct , , , , ,. 
HoTrue (Type I Error) : , , , , : , , , , , , 
HoFalse ,Correct 

, 
Wrong , · , i , 

(H, True) (Type II Error) , , , 
" 

" 

From the above table it is obvious that in any testing problem we are liable 
to commit two types of errors. 
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Errors 01 Type I and Type II. The error of rejecting Ho (accepting 
HI> when i/o is hue is called Type I error and the error of accepting Ho when Ho 
is false (HI is true) is called Type II error. The probabilities of type I and type IT 
errors are denoted by a and ~ respectively. Thus 

a '= Probability of type I error 
= Probability of rejccting H 0 when H 0 is true. 

~ = Probability of type II error 
= Probability of accepting Ho when Ho is false. 

Symboiically: 

P<x~ WIHo)=a, where~=(X"Xl"";XJ} 
~ JwLodx=a ... (16·1) 

where Lo is the likelihood function of the sample observations under 110 and Jdx 
represents the n-fold integral 

Again 
I I ... I dx1 dx1 .•• dx •• 

P (x E W I HI) = /3 
J .-:Ll dx = /3 

w 
} ... (16·2) 

where Ll is the likelihood function of the sample observations under HI. Since 

JwLI dx+ J-Ll dx = 1, 
w 

we get 

Jw L, dx = 1 - J<- Ll ,dx = I - /3 ... (16·20) 
w 

~ P (x E W.I HI) = 1- ~ ... (16·2b) 
'16'2·6. Level of. Significance. a, the probability of type 1 error, is 

known as the level of significance of the test. It is also called the size of the 
critical region. 

16'2·7. Power 01 the Test. 1 - /3, defined in (16-20) and (16·2b) is 
called the power function of the test hypothesis Ho against the alternaitve 
hypothesis HI' The value of the power function at a parameter pOint is called 
the power of the test at that point. _ 

Remarks 1. In quality control termipology, a and It are termed as 
producer's risk and consumer's risk, ,espectively. 

2. An ideal test would be the one which p,roperl>.' keeps under cOlltrol both 
the types of errors. But since the commission of an error of either type is a 
random variable, equivalently an ideal test should minimise the probability of 
both the tyIXtS of errors, viz., a and 13. But unfortunately, for a fixed sample size 
n, a and ~ are so related (like producer's and consull)er~s risk in sampling 
inspection plans), that the reduction in one results in an increase in the other. 
Consequently, the simultaneous minimising of bolh lhe errors is not possible. 
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Since ~e I error is deemed to be more serious than the typ~ II error (c.r. 
Remade 3, § 16·2·3) the usual practice is to control a at a predetermined low 
level and subject to this constraint on the probabilities of type I error, choose a 
test which minimises 13 or maximises the power junction 1 - p. ·Generally, we 
choose a = 0·05 or 0·01. 

16·3. Steps in Solving Testing of Hypothesis Pr:oblem. The 
major steps involved in the solution of a 'testing of hypothesis' problem may 
be outlined as follows : 

1. Explicit knowledge of the nature of the population distr l ,uon and the 
parameter(s) of interest, i.e., the parameter(s) about which the hypotheses are 
set up. 
" 2. Setting up of the null hypothesis Ho and the alternative hypothesis HI 
in terms of the range of the parameter values each one embodies. 

3. The choice of a suitable statistic t = t (XI, XZ, ••••• ,xJ called the test 
statistic, which will best reflect upon the probability of Ho and HI' 

4. Partitioning the set of possible values of the test statistic t into two 

disjoint sets W (called the rejection region or critical region) and W (called the 
acceptance region) and framing the following test: 

(l) Reject Ho (i.e., accept HI) if the value of rfalls in W. 

(i,) Accept Ho i( the value of t falls in W. 
S. After framing the above test, obtain experimental sample observations, 

compute the appropriate test statistic and take action accordingly. 
16·4. Optimum Test Under Different Situations. The discus­

sion in § 16·3 and Remark 2, § 16·2·6 enables us to obtain the so called best 
test under different situations. In any testing problem the first two steps, viz .• 
the form of the population distribution, the parameter(s) of interest and the fram­
ing (.of Ho and II. should be:obvious from the description of the problem. The 
most crucial ~tep is the choice of the 'best test, i.e;, the best statistic 't' and the 
critical region W where by best test we mean one which in addition to con­
trolling a at any desired low level has the minimum type II error p.or maximum 
power 1 - 13. compared to 13 of all other tests having this a: This leads to the 
following definition. 

16·4·1. Most Powerful Test (MP Test). Let us consider the prob­
lem of testing a simple hypothesis 

Ho: 9=90 
against a sit'lple alternative hypothesi" 

fft : 9 = 91 

Definition. The critical region W is the most powerfUl (MP) critical 
rq,ion of size a (and the corresponding test a most powerfUl test of level a) for 
I~ stillg 110 : 6 = 60 against H. : 9 = 91 if' 

P(xeWIHo) = fwLodx=a ... (16·3) 

nI P(x E W I Iii) ~ P (x E WI 11ft) ... (16·3a) 
for every other critical region WI satisfying (16·3j. 
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16·4·2. Unirormly Most Powerrul Test (UMP Test). Let us 
nOW take up the case of testing a simple null hypothesis against a ~omposite 
alternative hypothesis. e.g: of testing 

Ho: 9=90 

agairlst the alternative 
HI: 9~90 

In such a case. for a predetermined a. the best test for H 0 is called the 
uniformly most powerful test of level a. 

Definition. The region W is called uniformly most powerful (UMP) 
critical region of size a [and the co"espoTiding test as uniformly most powerfuL . 
(UMP) test of level a]for testing Ho: 9 = 90 against HI : 9 ~ 90 i.e .• 
HI : 9 = 91 ~ 90 if 

P(x e WI Ho) = Jw Lo dx = 'a ... (16·4) 

ani P(x e W I HI) ~ P(x e WI I H1)for all 9 ~ 90. ... (164a) 
whatever the region WI satisfying (164) may be. 

16'5. Neyman J. and Pearson, E.S •. Lemma. This Lemma pro­
vides the most powerful test of simple hypothesis against a simple alternative 
hypothesis. The theorem. known as Neyman-Pearson Lemma. will be proved 
for density functionj(x. 9) of a single continuous variate and a single parameter. 
However. by regarding x and 9 as vectors. the proof can be easily generalised for 
any number of random variables Xl. X2 ..... x" and any number of parameters 91• 

92 •••.• ~. The variables Xl. X2 • ••••• x" occurring in this theorem 3re understood 
to represent a random sample of size n from the population whose density 
function is f(x, 9). The lemma is concerned with a simple hypothesis 
Ho: 9 = 90 and a simple alternative HI : 9 = Qr. 

Theorem 16·1. (Neyman-Pearson Lemma). ~ k > O. be a constant and 
W be a critical region of size a such that 

W - J s . f(x, ( 1) k} - lX e . j(x, ( 0) > 

=> W = {x e S : ~ > k] ... (16.5) 

axI W == {~ e S : ~ ~ k} ... (16.5a) 

where Lo and LJ are the likelihood functions of the sample observations 
x = (Xl> X2 .. •••• x,.) under Ho and HJ respectively. Then W is the most powerful 
critical region of the test hypothesis [{o : 6 = 60 against the alternative 
"I: 6 = 6J. 

Proof. We are given 

P(x e W 1110) =.J Lo dx = a 
w 

'" (16·6) 
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The ppwer: of tl}e. Ngion is 

P (" e W I HI) = f LI dx = 1-~, (~y). . .. (16·00) 
W 

In order to establish the lemma, we have to prove that there exists no other 
critical region, of size less than or equal to a, which is more powerful than w. 
Let W. be another critical region of size a. S a and power I - ~l so that we 
have 

P(" e W.IHo)= fwILodx=a. 

P (x e W.I H.) = f L. d" = 1-~. WI 

Now we have to prove that 1 - ~ ~ I - ~. 

5 

w W1 

Let W = A v C and WI = Bt.:JC 
(C may be empty, i.e., Wand WI may 'be disjoint). 
H a. S a, we have 

fw.Lodx s: fwLo d" 

Si.nce A c W, 

(16·5) => fA 1.. ~> K fA Lo dx ~ " f~ Lo dx 

. ... (16·7) 

• •• (16-7a) 

... (16·8) 

••• (16·80) 

[Using (16·8)] 



Also [16·5 (a)] implies 

:t 's k \;/ x E W 

Jw LI dx S kfwLo dx 

This resu1~ also holds for any subset of W. 'say W n WI = B. Hence 

IB Ll dx SkI B Lo dx S I A Ll dx [From (l6·8a)] 

Adding Ie LI dx to both sides. we get. 

IWl Ll dx S Iw LI dx 

=> 1- ~ ~ 1- ~I 
Hence the Lemma. 
Remark. Let W defined in (16,5) of the above th{orem be the most 

powerful critical region of size a for testing Ho : 0 = 00 against HI : 0 = 91• and 
let it be incle)Cndent of 01 E 9 1 = 9 - 9 0• where 9 0 is the parameter space 
under H o. Then we say that C.R. W is the UMP CR of size a for testing 
Ho: 0 = 00• against HI : 0 E 9 1, 

16'5·1. Unbiased Test and Unbiased Critical Region. Let us 
consider the testing of Ho: 0 = 00 against HI : 0 = 01, The critical region Wand 
consequently the test based on it is said to be unbiased if the power of the test 
exceeds the size of the critical re~ion. i.e .• if 

Power of the test ~ size of the C.R. . .. (16.9) .... 
=> I-p ~ a 
=> P fit (W) ~ P90(W) 

=> P [x: x E WI Htl ~ P [x : x E WI Ho] ... (16·9a) 
In other words, the critical,:egion W is said to be unbiased if 

P,(W) ~ P80 (W). \;/ e (¢ 00) E 9 ••• (16·9611) 

Theorem 16·2. Every most powerful (MP) or uniformly most powerju~ 
rUMP) critical region (CR) is necessarily unbiased. ' 

(i) If W be ,an MPCR of size afor testing 110 : 0 = 00 against /// : 0 = 0/. 
lell it is necessarily unbiased. 

(ii) Similarly if W be UMPCR of size a for testing Ho : 0 = 00 against 
H/ : 0 € 9/. then it is also unbiased. _ 

Proof. Since W is an MPCR of size a for testing H 0 : 0 '= 00 against 
H\: 0 = 01• by Neyman-Pearson Lemma, we-have; for''V k > 0, 

W = {x: L (x. 91) ~ k L (x. Oo) = {x: Ll ~ k·Lo} 

mxl W' = {x: L (x. 91) < k L (x. 90)} = {x : Ll < k Lo}. 

where k is determined so that the size of the test is a i.e .. 
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P 8o(W) = P [X e W I Hol = J w Lo dx = a ' •• (1) 

To prove that W is unbiased, we have to show that : 
Power of W ~ a i.e., P 81 (W) ~ a ... (it) 

Wehave: 

[-: On W,L 1 ~kLo and Using (I)] 
fe., P 81 (W) ~ k~, V k > 0 •.. (iil) 

Also 
I-P~(W) =1-P(xe WIH1)=P(xe W'IH1) 

= Jw,L1 dx 

< k Jw~ Lo'dx = k P (x: x e W'I Ho) 

[.: On W',L1 <kLoi 
= k [1 - P (x : x e W I H 0)] 

= k (1-a) 
i.e., I-P~(W) <k(l-a), Vk>O 

Case (I) k~ 1. ~f Ie ~ ~, then frolg (iii), we g~t 
Pel (W) ~ ka ~ a 

~ W is unbiased CR. 
Case (il) 0 < k < I. If 0 < k < 1, then from (iv), we get : 

1 - Pel (W) < 1 - a 

~ Pel (W) > a 

~ W is unbiased C.R. 
Hence MP critical region is unbu.sed. 

[Using(m 
..• (iv) 

(it) If W is UMPC~ of size a th~n also the above proof holds if for 91 we 
W(j.te 9 such that 9 e 8 1, So we have 

Pe (W»a, Vge 8 1 

~ W is unbiased CR. 
16·S·1. Optimum Regions and Sutticie~t Statistics_ Let X h Xl, ... , XII 
be a random sample of size n from a population with p.m.f. or p.d.f . .f{x, 9), 
where the parameter 9 may be a vector. Let T be a sufficient statistic for e. 
Then by Factorization Theorem, 

II 

L (x, 9) = n f(x;, 9) = g8 .(1 (x»: Ia(x) 
i-I 

.... (.) 
where ge (I(X» is the marginal distribution of the statisitc T = t(x). 
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By Neyman-Pearson Lemma, the MPCR for testing Ho: 9 = 90 against 
HI : 9 = 91 is given by : ' 

W = {x : L (x, 91) ~ k L (x, 90)}, V k > 0 •.. (**) 

From (*) and (**), we get 
W,= {x: gBl (t (x». h (x) ~k. gBo (t(x». h(x)}, V k > 0 

~ {x: gBt (*» ~ k. gBo (t(x»}, V. k > 0 

Hence if T = t(x) is sufficient stati~tic for 9 then the MPCR for the test 
may be defined in terms of the marginal distribution of T = t(x), rather than the 

. joint distribution of X 1, X 2, ••• , X,.. 
Exampie 16·1. Given the frequency function : 

1 
f(x, 9) = '9' 0 S x S 9 

= 0, elsewhere 
and that you are testing the "ull hypothesis Ho': 9 = 1 against HJ : 0 = 2, by 
means of a single observed value of x. What would be the sizes of the type 1 and 
tjpe 1/ errors, if you, choose the interval (i) 0·5 S x, (U) 1 S x S 1·5 as the 
critical regions? Also obtain the power function of the test. 

[Gouhaii Univ, B.Sc. 1993; Calcutta Univ. B.Sc. (Moth. Hon •• ), 1987) 

Solution. Here we want to test 
Ho: 9 = 1, against HI : 9 = 2. 

(I) Here W = (x: O·S S x) = (x: x ~ O·S) 

IIlI tv = (x:xSO·S) 
a = P (x E W I Ho) = P (x ~ O·S I 9 = 1) 

=P(O·S SxS919 = 1) =P(O·S SxS 119 = 1) 

11 ' : 11 
= [j(X,9)] .. I"tU = l.tU=O·S 

~, ~, 

Similarly, 

P =P (XE WIH;) =P (xSo.SI9=2) 

= I:' [J{x,9) ]e_2 tU = J:' ~ tU=O·25 

Thus the sizes of type I and type II errors are respectively 

·a = o.S and I} = 0·2S 
and power function of !he test = 1-P = 0·7S 

(il) W == (x:lSx~I·S) 

a =P(XE WI9=O= 1:'5 [j(x,9)]e_ltU=0, 

since under Ho: 9 = I,Ax, 9) = 9. for J Sx S I·S. 

I} =P(XE WI9=2)=I-P(xE W19=2) 
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I1'S 
=1-

1 

:. POWel" Function = 1- P = 1 - 0·75 = 0·25 
Example 16·2. If x ~ 1. ;s the critical 'rtgio~ for testing Ho : 8 = 2 

against the alternative 8 = 1. on the basis of the single, observation from the 
population. . ( 

f(x. 8) = 8 exp (-8x). 0 S x < ~. 
obtain the values of type I and type 1/ errors. 

[PoonG Univ. M.C.A. 1993; All(JIaCJbad Univ. B.Sc., 1993; 
Delhi Univ. B.Se (SIaL Bon •• ), 1988] 

Solution. Here W = (x: x O!: I) and W = (x : x < I). 
and Ho: e = 2, HI : e = 1 

a = Size of Type I error 
=.P [x e W I-Ho] = P[x O!: 1 I e = ~J 

= foo [I{x.e) ]e-2dx 
, I 

=2 r~dx=2!:.... foo I '~Ioo 
I. -2 I 

=e-1 = I/e'l 
P ,= SiZe of type n error 

=P[x~ WIHd =P(x< Ile .. ·f) 

= Il. r"dx='1 rl 1 

o -I 0 

= (I _ e-1)'= e - 1 
e 

Example 16'3. Let p be the probability that a coin will fall head in a 

single toss in order to test Ho : p = t against HI : p = ~. The coin is tossed 5 
times and Ho is rejected if more than 3 heads are obtained. Fi",d the probability 
of type I error and power of the test. 

Solution. Here 

Ho:p. =tand HI :p=~. 
If the r.v. X <lCnotes the number of heads in n tosses of a coin th\;n 

X - B(n,p) so that 

P(X=x) ~ ~)p"(l-PY'-1I 



=~)r (l_p)S-x. 

since 11 = S. (given). The cqtical,region is given by 

W = (x:x~4) => W = (x.:x~3) 
a... = Probability of type I error 

, .:: P [X ~ 4 I Ho] 

= P[X = 4 I p = ! ] + P[X = Sip .. ! ] 
= (S)<! )4( !)5 -4 + (S) (!) S l4 2 2 \5 2 

= S ( ~ )5 + ( ~ )5 = 6 ( ~)5 
3 

= 16 

P = Probability of Type IT error 

=P[xe WIHd = 1-" [xe W IHd 

= 1 - [P(X = 4 I p = ~ ) + P(X = Sip = ~] 

= 1-[(~ )(~t(~ + (~)(~i] 
= 1 - (~t { ~ + ~ } 

81 47 
= 1 -128 = 128 

:. Power of the test is 
1 A. _li 

-.., -128 
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• .• (*) , 

[From (*)] 

Eumple 16·4. Let X - N(Il. 4).1l unknowII. To test Ho : Il = -1' 
against HI : Il = 1. based 011 a sample of size 10 from this population. we use 
the critical regioll XI + 2X2 + ... + 10xlo ;;? O. What IS its size? What is the 
power of the test? 

Solution. Critical Region W = [x: xl + 2x2 + ... + 10Xl0 ~ 0). 
Let U.: Xl + 2x2 + .... + IOxlo 
Sinc~ x;'s are i.i.d. N(Jl. 4). 

U - N [(1 + 2 + .' .. + 10) .... (12 ~ 22 + ... + 1(2) a2] = N (SS .... 38S(2) 
=> U - N(SS .... 38S 'x 4) = N(SS .... 1540) ... (*) 

~ size 'a' of the critical region is given by : 
cx=P(xe WIHo1=P(U-ZOIHo) 

Under Ho : .... -1. U - N(-SS. 1540) 
••• (**) 
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, Z = U "- E(U) = U + 55 
(Ju "J540 

55 Ii 55 
.. Under Ho, when U = 0, Z = "1540 = 3~.2428 = 14015 

•• ex = P (Z ~ 1·4015) 
= 0·5 -P(O SZ s 1·4015) 
= 0·5 - 0·4192 (From Normal Probability Tables) 
= 0·0808 

Alternatively, ex = 1-P(Z S.1·401S) = 1 -~(1·401S), 
where ct» (.) is the distribution function of ~tandard nonna! variate. 

Power of the test is given by : 
1 -~ =P(XE WIHI)=P(U~OIHI) 

Under HI : ~ = I, U - N(55, 1540) 

Z = U -E(U) =....=2L =-140 
(Ju "l54O 

1 - ~ = P(Z ~ - 140) 

Alternatively, 

=P(-1·4 S Z S 0) + 0·5 
='P(O s Z s 1·4) +-0·5 
= 04192 + 0·5 
=0·9192 

1- ~ = 1-P(Z S -1·40) = 1-~ (- 140). 
Example 1(i·S. Let X luwe a p.d/. of the form : 

1 . . 
f(x,8j ='9Czl';O <x < -, 8> 0 

= O. elsewhere. 

(when U=O) 

'(By symmetry) 

To test Ho : 8 = 2. against HI : 8 = 1. use the random sample XI. X2 of size 
~ and define a critical region: 

W =. {(XI. X2) : 9·5 5xI + X2) 
FiTId: (i) Power of the test. 

(ii) Significance level of the test. 
Solution. We are given the critical region: 

W = {(XI'X:z): 9·5 s Xl +Xl} .;. {(XI x:z): Xl +Xl ~9.5} 
Size of the critical region i.e .• the significance level of the test \S given by : 

ex = f(x E W I H~ = P[XI + Xl ~9·5 I Ho1 ••• (~) 
In sampling from:tbe given exponential disUibution, 

• [c.f. Example 16·8] 
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[FOl'J1l (*)] 

= p [X2C4> ~ 9·5] 
=> a=0·05 

(.: Under Ho. 9 = 2) 
[From Probabilit)' Tables of X2-distribution] 

Power of the test is given by 
I-p = P(xe WIHI)=P(XI+X2~9·5IHI) 

=P [;(XI + X2) ~;x 9·5 I HI] 

=P [XC;) ~ 19] (.: Under HI. 9 = 1) 

Example 16'6. Use the Neyman-fearson Lemma to obtain the best 
critical region/or testing 6 = 60 against ,6 = 61 > 60 and 6 = 61 <' 60, in the case 
of a normal population N( 6, ( 2). where 0 2 is known. Hence find the power 0/ 

the test. 
[Delhi Univ. B.Sc. (Stal. Ron.), 1986; Guja.rot Univ. B.Sc. 1992] 

Solution. 

L = ,n j(Xi' 9) = ~ exp - ",,-, ,l: (Xi - 9)2 " (1)" [1" J ,-I CJV2n ~-,-I 

Using Neyman-Pearson Lemma, the best critical region (B.CR) is given 
by (for k > 0) 

[ 
1" , 

exp - -us2 .l: (Xi - 91)2 
L ,-I 

~= [1" 'J exp ...,. -us2 i~1 (Xi- 90)2 

exp[- 21 (2 {, i (Xi - 91)2 - ,i (Xi - 90)2}J 
(J ,-I .-1 

Case (l) If 91 > 90, 

lest) : 

(si~ce log X is an increasing function of x) 
(12 9 2 -9 2 

i(9 - 9 ) ~ - 10"''' + ~_o_ 
I 0 'n~' 2 

the B.C.R. is determined ~by the relation (right-tailed 
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- a2 log k 01 + 00 
X >-. + 

n 91 - 90 2 

i.e.. x > AI' (say). 

:. BCR is W = (x : x> Ad [ ... (16·10) 
Case (it) If 01 < 00, the B.C.R. is given by the relation (left tailed test) 

- a2 log k 01 + 00 'l _ ( ) 
X <-. 0 0 + 2 ="'2, say 

n 1 - 0 

Hence B.C.R. is WI = (x: x ~ A2) ... (16·11) 
Tht( consw"ts Al and ~ are so chosen as to Il)ake the probability of each of 

the relations (16·10) and (16·11) equal to « when the hypothesis Ho is true. The 

sampling disttibutioq of x, when Hi is ttue is N (0 i " a:), (i = 0, 1). 

Therefore the constants Al and ~ are detennined from the relations: 

P[ x > Al I Ho] =. «. and P[ x < ~ I Ho] = g. ( 

[ Al - 00 ] I 
P( x> Al I Ho) = P Z > ~ r = « ; Z - N(O, 1) 

ann 

•.. (16·12) 

where Za is the upper «.point of the standarci"nonnal variate given by 
P(Z> zrJ = « ... (*) 

Also P(~<~IHo) =« ~ P(x ~A2.IHo) = 1-« 

'( A2- 00) 
A2 -: O2 

~ PZ~ rr;. =1-« ~ arr;. = ZI-a a n 
~ ~ 

a 
= 00 + ...r;, ZI-a •.. (16·120) 

Note. By symmetty of normal distribution, we have ZI -a = - Za • 

Power of the test. By definition, the power of the test in case (i) is : 

I-P =P[xe WI~tl=P[X~AlIHtl 

[ Al-01J [ X-Ol ] = P Z ~ arr;. .,' Under H10 Z = arr;. -N(O, 1) 

( 00 +tnza-01] 
=P Z~ •. :r 

al'# n 
[Using (16·12)] 

[ 01 - O2] 
=P Z ~ Za'- aNn 
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= 1-P(Z sA,) [A3 = za - O~;'o ,( say).] 

= 1 -~ (A3), ... (16·13) 
where ~ (.) is the distribution function of stancJard ~oqnal variate. 

Similarly in case (il), (01 < 00), the power of the test is 

1-P =P(X< Az IH1)=P(Z < A~;'l) 

[Using (16·120)] 

•.. (16·130) 

... (16·13b) 

UMP Critical Region. (16·10) provides best critical region for testing 
Ho: 0 = 00 against the hypothesis, HI: 0 = 01> provided 01 > 00 while (16·11) 
defines the best critical region for testing Ho: 0 = 00 against HI : 0 = 01> 
provided 01 < 00, Thus the best ' critical region for testing simple hypotliesis 
Ho: 0 = 90 against the simple hypothesis, HI: 0 = 91 + c,-c >.0, will not serve 
as the best critical region -for testing simple hypothesis H 0 : 0 = 00 against 
simple alternative hypothesis 111 : 0 = 00 - c, c > O. 

Hence in this problem, no uniformly ll10st powerful test exists for testing 
the simple hypothesis, Ho: 0 = 00 against the composite alternative hypothesis, 
HI: 0 .,,00 • 

. However, for each alternative hypothesis, HI: 0 = 0 1 > 00 or 
HI: 0 = 0 1 < 00,0 UMP test exists and is given by (16·10) and (16·11) 
respectively. 

Remark. In ·particular, if we take n = 2, then the B.C.R. for testing 
Ho: 0 = 00, against HI : 0 = 01 (> 00) is given by: [From (16·10) and (16·12)] 

W = (x:(xl+x~/2~00+(Jzat"2l [·:i=(Xl+X~/2] . 

= (x : Xl + X2 ~ 200 + {2 (J zal 

= (x : Xl + X2 ~ C), (say),. • •• (*"'). 

where C = 200 + {2 (J Za = 200 + {2 (J x 1·645, if a = 0·05. 

Similarly, the B.CR for testing.Ho: 0 = 9tta~ainstHl : 0 = 01 « 00) with 
n = 2 and a = 0·05 is given by [From (16·1i) and (16·120)]: 

I 
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WI = {x: (XI + xi)fl ~ 90 -oza/V2} 

= {x: (XI + xi) ~ 290 - V2 0 x 1-64S} 
= {x: XI + Xl SCI} ,(say), ... (***) 

where CI = 290 - V2 oZa = 290 - V2 0 x toMS. 
The B.C.R. for testing Ho : 9 = 90 against the two tailed alternative 

HI : 6 = 61 (;t ( 0), is given by : 
Wz = {x: (XI + Xl ~ C) U (xl + Xl ~ C I)} ••• (****) 

The regions in (*"'), (***), and (~***) are given by the shaded ponions tn 
the following figures (i), (il) and (iiI) respectively. 
'2 

Fig. (.) 

8CR } Ho: 0 = 00 

for :H.:O=OI(>Oo) 

Filt. (ill) 

8CR}Ho:0=90 

for : H. : 0 = 01 (~ 00) 

Example 16·7. Show that for the normal distr.ibution with zero mean 
and.variance,02, the b~st critical region for 110: U = Uo against the alternative 
HJ :,U= uJ is of the form : II 

I, xl S aa ,for Uo > UJ 
;-1 II 

ati I xl ~ba ,for Uo < UJ 
; -= 1 

Show that the power of the best critical regi~n when Uo > uJ is 

F (gl2 . X2a II) where X2all is lower 100 a-per cent point and F(·) is the 
\UJ' • 

distribution.function of lh~ r- distribution with n degrees of freedom. 
Solution. Here we are given: 

1 (Xl) f(x,o) = _r:- ~xp - 2CJl ; - 00 < X < 00, 0 > O. 
O"'l21t 

The best critical region (B.C.R.), according to.Neyman-Pearson Lemma, is 
given by (for ka > 0) 

Lo 1 L ~ k=Aal (say) 
I a 
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Slog Aa 

(since log x is an increasing function of x). 

=> ~~O;~r i~1 xl S [lOg Aa - n log C::O )] · ... (*) 

Case (i). If GI < Go. then B.C.R. i~ given by [From (*)] 

i xl s.[IOg Aa - n log (<!!. )~ ~;GI22 =aa".(say). 
i-I Go U Go -GI 

i.e .• w={x: .ix,zsau}.fOrGI<Go, ... (16·14) • _ I 

Case (ii). If GI > Go. then B.C.R. is given by [From (*)] 

i x? ~ [lOg Aa - n log (<!!. )~. 2~02 GI22 - ba. (say). 
i-I Go U Go -GI 

i.e.. WI = {x : . i Xi2 ~ ba }. for GI > Go " .(16·14a) • _ I 

The constants aa and ba are so chosen that the size of the critical region 
is a. 

Thus au is determined so that P[x e If I Ho] = a 

=> P [. i x? S aa I H 0] = a 
• - 1 

=> p[i x.-: s. ~IHo] =a 
i_I<Jo Go 

... (**) 

Since under HOt 

2 .:. K.. 2 • ·th df. X<II) = ~ 2 • is a X -Vanale WI n ..• 
i .. I<Jo 

P [X(II)2 S ~J = C;X 

~ 2 2 2 => a; ;= X a, II => GO X 0,11 = ila ••• (16·15) 

where X2a, II is the lower 100 a-per cent point of chi-sqW(r~ ~istllbution with 
n df. given by 

... (16·15a) 
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Hence the B.C.R. for testing 110: (J = (Jo against HI: (J = (JI « (Jo). 'is 
given by [From (16·14) and (16·15)]: 

W={~ : i x? S;·(J02X2a II} ... (16·15b) 
; - 1 • 

where 'X,z a." is defmed in (16·15a). 
Also by definition. the power of the test is : 

I - ~ = P[x E w' lid = P [. i xl s; Qa , HI J 
• '" I 

[i Xi2 ..] [i Xi2 ] i-lOa, i-I 2, = P CJo2 S a; HI = P ----c;;:- S; X a." HI 

[ i Xi2 2 ] i-I (JO 2 
=P --2-S; 2X a ,,' HI (JI (JI • 

~P[X2(,,) S ~ X2a.,,] . 
since under HI. I.xl/<r12,is a x2-variate with n df. 

Hence. power of the test = F (~. X2a." ). ... (16·15c) 

where F(·) is the distribution function of chi-square distribution with n df. 
Remarks 1. Similarly. for testing Ho : (J = (Jo against III : (J = (JI (> (Jo). 

ba in (16·14a) is determined so that: 

P [x E Wi 'Ho] = a 

=> P [x : . i Xi2 ~ ba I 'JI oJ = a 
~ • - I 

~ p[x: l:~~ ~ ~" HoJ =a 
[ 2 baJ => P x : X (,,) ~ CJo2. = a 

=> p[x : X2(,,) S; ~] = 1 -a 
ba 2 

=> aJ = X I-a." => ba = (J02. X21_a." ... (16·16) 

where X2 a." is defmed' in (16·15a). 

Hence the B.C.R. for testing Ho : (J = (Jo against HI : (J = (JI (> (Jo). is 
give,n by: 
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••. (16·160) 

The power of the test in this case is given by 

1 ..... ~ .:: P(x E WI I Ill) = P [ i x? ~ (J02 X21 - a " I HI] 
; - 1 ' 

II 

since under H., 1: x? I (J12 is a x2.variate with 11 dJ. 
i-I 

1-~ = I-pIX2(1I> ~ ~~:. X2 • . a.lI] 

•.. (16·16b) 

= 1- F (~~:. X 21 _ a." ). , .. ~16·16c) 
where F(.) is the distribution function of chi-square distribution with 11 d.f. 

I z. Graphical represelllalioll o!the B.C.R.for the p~rticular case 11 = 2. . 
For 11 = 2. the B.C.R: for testing 110: (J = (Jo. agamst Ill: (J = (JI « (JO)'1S 

'given by [From ~16·15b)J 

W = {x : . i x? ~ (J02 • X 2a. 2} 
I'"' I 

= {x : Xl2 + X22 ~ a 2 } • 

where (P = (J02X2a. 2. Thus the B.C.R. is the interior of the circle with centre 
(0. 0) and radius • a' and is shown as the shaded region in Figure (I) on page 
16·22. 

Similarly. from (16·160). the B.C.R. for testing 110: (J = (Jo. agsinst 
HI : (J = (Jl (> (Jo) for 11 = 2 is given by : 

WI = {x: Xl2 + X22 ~ (J02 X21_a.2} = {x: XI 2 + xl ~b2} 
where b2 = (J02 • X21 -a, 2' ThuS. B.C.R. is the exterior of the circle with centre 
(0, 0) and radius b and is shown as the shaded region in Figure (il) on page 
16,22. 

Similarly the B.<;:.R. for testing 110 : (J = (Jo ag:,lirist the two-tailed 
alternative HI: (J= (JI (~(Jo). for 11 = 2 is given by : 

W3 =Wl uW2 

= {x: XI2 + X22 ~ a 2 } u {x: Xl 2 + x2i ~ b 2 } 
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and is shown as the shaded region in the Figure (iil) below. 

~ro ~w ~~ 
3. (16,14) defines an UMP test for testing simple hypothesis Ho : a = 0t 

against simple alternative hypothesis HI : a = a1 « Go) whereas (l6·14a) 
defines an UMP test for testing simple hypothesis Ho : a = <10 against the 
simple alternative hypothesis HI: a::; al (> ao). However no UMP test exists 
for testing simple hypothesis Ho: a = ao against the composite alternative 
hypothesis HI : a ~ ao. 

Example 16'8. Given a random sample Xl. X2 • •••• X,.Jrom the distri· 
bution with p.d/. f(x, 9) = 0 e - 9z • X > 0 
show that there exISts no UMP test for testing 

Ho: 9 = 90 against HI: 9 ~ 90• 

[Delhi Univ. B.Sc. (Stat. Bon •• ), 1988; Gorakhpur Univ. B.Sc., 1993] 

L = it ·f(Xi. 0) = 0" • exp [- 0 i Xi] 
i-I i-I 

Solution. 

Consider HI: 0 = 01> (01 ~ ( 0). 
The best critical region. using Neyman-P~n Lemma is giyen by : 

Ol"exp ['- ~I I.xJ ~ k .,00" exp [- 00 I.,Xi] ; k >0, 

exp ~(90-'Ol)'I.xJ ~ k .'(~ r' . 
(00 - ( 1) LXi ~ -I:g G . t ~ )"] = k .. (say) • 

... (*) 
-Case W'lfOI > 00• thenB.C.R. is gi~n'by [From.(*)] 

. kr 
I. Xi S II II = A.h (say). 

'110 - vI 

Case .(iJ) If 91 <. 00• then B.e.R. 'is given' by [From (*)] 
'k 1 

I. Xi ~ II I II .~. (say), 
'110 - '111 

The cOnstants A.I and ~ are so detennined that 
P.[Lxi S AI I Ho] = Cl' and P[Lxi ~ ~ I Ho 

=> pr29Lxi S 20 AI 1110] = Cl I=> P[20 Lxi ~ 29 ~ I Ho] 
=Cl 

=Cl 
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But in random sampling from the given exponential distribution, 
/I /I 

M'f){.(I) =. n MX.w = [MX ((I)] 
I ,.1 I I 

~ (1 -~) /I 
=> . M20IXi (I) = M IXi (219) = (1 - 21)-/1, 

which is the m.g/. ofax2.variate with 2n. d/. Hepce by uniqueness theorem 
of m.g.f.'s, 

/I 

29 I. Xi - X2(2/1) 
i.l 

Using this result in ( •• ) 
P[290 Ui S; J.Ld = p[x2(211) S; J.Ld = (X 

=> J.Ll = X21_0,211 
where X2o./I is the upper 'a' point of X2-distributio,n with n.d/. given by 

P(X? > X2a,J = a ... (/) 
Hence B.C.R. for testing Ho: 9 = 90 against HI: 9 = 91 (> 90) is given by 

Wo -= {x : 290Ui S; X21 -O,2II} 

= {x: Ixi S;2~OX21-0.2II} 
and since it is independent of 9 .. Wo is U.M.P.C.R. for Ho : 9 = 90 against 
HI: 9 = 91 (> 90). 

Similarly from ( ••• ), we gei 
P[290Ui ~ J.LiJ = p[X2(211) ~ J.L2] = a 

=> ~ =X2a,~ 
Hence B.C.R. for testing H 0 : 9 = 90 against HI: 9 = 91 « (0) is given by : 

WI = {x: 290Ui ~X20. 211} 

= {x: Ixi ~~X2a,2II}, 
and ~·nce it is independent of 0 .. WI is also UPM C.R. for Ho: 9 = 90 against 
HI: = 91 « (0). . 

owever, since the two critical regions W 0 and WI are different, there 
exists no critical region of size a which is U.M.P. for Ho : 9 = 90 against the 
two tailed alternative, HI : 0 ;I: 80. 

Power of the test. The power of the test for testing Ho : 9 = 90, against 
HI : 9 = 91 (> 00) is given by 

1 - P = P[x e Wo I /ft1 

=P ~~ IX; S; ~ XZl_ 0, 2111 HI] 
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~ P [20. ; ~. X; ~ O~ X 2. _ a. 2,. I H. ] 

=P [X2(211) ~ ~ X 21_a, (2,.) J. ... (") 
since under H •• 20 •. I. X;-X2(2,.), .-1 

Similarly the power of the test for testing, H 0 : 0 = 00• against HI: 0 = 91 
« (0) is given by : 

1- p = P [x e WI I Hd 

= P [. i x; :<!: ... ~ X 2 a. 2,. 11 H • ] 
•. -1 61110 

=P[201 i~lx; ~ ~X2a, 2,. I H t ] 

[ 2 Ot 2 ] = P X (211) ~ 90 X a, 2A ... (.') 

Remark. The graphic representation of the B.C.R. for Ho : 0 = 00 againsl 
different alternatives H. : 0 = Ot (> 00>. H t : 0 = O. « 00> and H. : 0 = Ot (~Oo) 
for n = 2. can be' done similarly as in EXample 16·6. for the mean of normal 
W~tribution. ' 

Example 16·9. For the distribution: 

dF = {P exp {- P (x - y)) dx. x ~ Y 
O. x < y 

show that for a hypothesis H 0 that P = Po. y = Yo and an alternative HI thaI 
P = Pl. y= ~. the best critical region is the region given by 

- 1 { . lIb} x S PI _ po Y1Pl - YoPo - -; log k + log Po 
provided that the admissible hypothesis is restricted by the condition 

Yl S Yo • P 1 ~ Po (Gauhati Uni". M.Sc., 199J) 

Solution. f(x ; P. y) = P exp {- P (x -y»). x ~ y 
= O. otherwise ,. ,. 

n f(x;; P. y) = l3"exp {- P ,1: (x; - y)}; Xl> X2 • .... x. ~'Y 
i-I i-I 

= O. otherwise 
Using Neyman-Pearson Lemma. the B.e.R. for k > O. is given by 
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/I 
~I" exp -~I L (Xi - YI) 

i = 1 
~k 

~o" exp [-~o . i (Xi - Yo)J 
• - I 

A exp -~I.L (Xi-YI) + ~o.L (Xi'-YO) ~k (~I)" [ " /I] 
t'O .-1 .-1 

(~ r exp [- ~I n( i -YI);+ ~o n( i -Yo)] ~ k 

n log @I/PO) - ni (~I. - ~o) + .n~1 YI - n~oYo ~ log k 
(since log X is an increasing function of x). 

~ i(~1 - ~o) S {YI ~I - Yo~o - ~ log k + log (~~ ) } 

~ i S ~I ~ ~o {YI~I - Yo~o - ! I~g k + log (~ ) } 

provided ~I > ~o. 
Example 16·10. Examine whether a best critical region exists for 

testing the null hypothesis Ho : 8 = 80 a"gainst the ·alternative hypothesis 
HI : 8 = 81 > 80 for the parameter 8 of the distribution: 

1 + 9 
/(x. 9) = (x + 9)2 , I S x < 00 

[Bangalore Univ. B.Sc., 1992] 

" " 1 
Solution. II /(xi' 9) = (1 + 9)/1 II ( 9)2 

i-I i-I Xi + 

By Neyman-Pearson Lemma, the RC.R. is given by 
"1 "1 

(1 + 91)" II ( 9)2 ~ k (1 + 90)" II ( 9 )2 i-I Xi + I i _ l Xi + 0 

" 
~.n log (1 + 91) - 2 L log (Xi + 91) 

- i a I . 

" ~ log k + n log (1 + 90) - 2 L log (Xi + 90) 
i-I 
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Th th ...; I (Xi + eo) h' h be' th us e test cntenon IS ~ og e' w IC cannot put In e 
i.l Xi + 1 

fonn of a function of the, sample observations, not depending on the hypOthesis. 
Hence no B.C.R. exists in this case. 

EXERCISE 16(8) 

1. (a) What are simple and composite statistical hypotheses? Give 
examples. Define null and alternative hypotheses. How is a statistical 
hypothesis tested? ' 

(b) Explain the following tenns : 
(,) Errors of fllSt and second kinds. 

(;,) The best critical region. 
(ii,) Power function of a test. 
(iv) Level of significance. 
(v) Simple and composite hypotheses. 

(v,) Most powerful test 
(vi,) Unifonnly most powerful test. 

(c) Identify the composite hypotheses in the following, where Il is the mean 
and 0'2. is the variance of a distribution. 

: (,) Ho : 'llS 0, 02 = 1 

(;,) Ho: Il = f), 0'2. = ° 
(ii,) Ho: Il S 0, 02 = arbicrary 
(iv) Ho -: 02 = 020 '(a given value), Il arbitrary. 

(d) (,) Explain the concepts of Type I and Type n errors, with examples and 
bring out their importance in Neyman and ·Pearson testing theory. 

2. "In every hypothesis testing, the two types of errors are always present." 
H this is true then explain what is the use of hypothesis testing. 

[Delhi Uni.,. M.e-A., 1990] 

3. What is a statistical hypothesis ? Define (i) two types of errors, (ii) 
power of a test; with reference to teSting of a hypothe~ Explain how the best 
critical region is determined. State clearly the theorem which is used to 
detennine the best -critical region for simple· hypothesis at a given significance 
level. 

(ColeMlto U.i.,. 11.&. (Mal"'. 8ona.), 19ft] 

4. Explain the concept of the most powerful tests and discuss how the 
Neyman-Pearson lemma enables us to obtain the most powerful critical region 
for testing a simple hypothesis. against a simple alternative. 

. . . . [Ma.cIrcu Unil1. BoSc., i988) 

'5. What is meant by a statistical hypothesis ? Explain the concepts of type 
I and type,D euors. Show that a most powerful test is necessarl1y unbiased. 

[Delhi Uni.,. BoSc. (SIal. 80,...), 1992, 1985] 
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6. What are simple and composite statistical hypotheses ? State and prove 
Neyman-PearsOn Fundamental Lemm_a for testing a'simple hypothesis against a 
simple alternativ~. [Delhi Univ. B.Sc. (Slat. Ron •• ). 1993. 1986] 

7. (a) Expliun the basic concepts of statistical hypothesis. Discuss the 
problems associated with the testing of simple and composite hypotheses. Show 
that a most powerful test is necessarily unbiased. 

\ [Delhi Univ. B.Sc. (Slat. Bons.), 1983] 

8. State Neyman-Pearson Lemma. 
Prove that if W is an MP region for testing Ho: 9 = 90 against HI : 9 = 91• 

then it is necessarily unbiased. Also prove that the same holds good if W is an 
UMP region. [Delhi Uni,,-. B.Sc. (SIal. Bon8.), 1982] 

9. (a) Let p denote the probability of getting a head when a given coin is 
tossed once. Suppose that tl)e hypOthesis H'O : p = 0·5 is rejected in favour of 
HI: P = 0·6 if 10 trials result in 7 or m.?re heads. Calculate the probabilities of 
type I and type II errors. [Calcutta Univ. B.Sc. (Math. Bon •• ), 1989] 

(b) An urn cOntains 6 marbles of which 9 are white and the others black. In 
order to test the null hypothesiS Ho : e = 3, against the alternative HI : 9 = 4, 
two marbles are drawn at random (without replacement) and Ho is rejected ifboth 
the marbles are white; otherwise H 0 is accepted. Find the probabilities of 
committing type I and type /I errors. _ 

If it is decided to reject H 0 when both marbles are black and to accept it 
otherwise, fmd the probabilities of rejecting Ho (I) when Ho is true and (it) when 
HI is true. Comment on your results. 

10. (a) p is the probability that a given die shows even number. To test 

Ho : p = ~ against Ji 1 : P = t, following procedure is adopted. Toss the die twice 

and accept Ho if both times it shows even number. Find the probabilities of type 
I and type II errors. 

(b) Let P be the probability that a coin will fall head in a single toss. In 
orde~ to test the hypothesis H 0 -: p = ~, the coin is tossed 6 times and the 

hypothesis Ho is rejected if more than 4 heads ~ oblained. Find the probability 

of the error of first kind. If the alternative hypothesis is HI: P = ~ , find the 
probability of the error of second kind. 

(c) In a Bernoulli distribution withpanuneter P. Ho: P = ~ against 

HI: p = } , is rejected if more than 3 heads are oblained out of 5 throws of a 

coin. Find the probabilities of Type I and Type n c;rrors. 
£Delhi ll.nil1. B.Sc. (Slot. Bon •• ), 1987] 

11. (a) LetX .. Xz, ... ;X, be a random sample from N(9, 25).If, fo~ 
testing Ho : e = 20, against HI : e = 26, the cripcaI region W is defined by 

W = (x I X > 23·266), 
then fmd the size of cri1icalregion and -the "power. 

[Delhi URI". B.&. (SIal. Boru.), 1987] 
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(b) Let X - N (JJ., 4), ~ unknown. To test Ho : ~ ;: -1 again~t H. : ~ ;: 1, 
based on a sample of size io from this population we use the critical region 
x. + 2x2 + ... + IOx.o ~ O. What is its size 7 ~hat is the power of th~ test 7 

(c) A sample Of size 1() is drawn from a normal population with 'mean ~ 
and standard deviation (J for testing the hypothesis #0: ~;: (J = 1, against the 
alternative hypothesis H. : ~ = (J = 2. It is decided to reject the hypothesis Ho if 
the sample mean exceeds 1·5 and otherwise accept it 

Calculate the probabilities- of errors of the frrst and second kind in this 
procedure. 

[Given J t _b- e-,1/2 dt = 0·8413 and J 2 _b- e-,1/2 -dt = 0.9773] 
- 00 "'I 2n - 00 "'I 2n 

12. (a) The hypothesis ~ = 50, is rejected if the meap of a sample of size 
25 is either greater than 70·54 or less than 31·19. Assuming the'distribution to 
be normal with s.d. 50, find the level of significance. Obtain the power 
function for the test and sketch the power cw:;ve with two values above 50 and 
two values below 50. 

(b) Calculate the size of the type II error if the type I error is chosen to be 
a = 0·16 if you are testing H 0 : ~ = 7 against II. : ~;: 6, for a normal 
distribution with (J = 2, by means of a sample of size 25 and if the proper tail 
of the X2 distribution is used, as the critical region. 

13. (a) Given the frequency function: 
1 

f{x, 9) = 9' 0 S x S 9 

= 0, elsewhere 
and that you are testing the hYPQthesis Ho : 9 = 1·5 against H. : 9 = 2·5, by 
means of a single ob~rved value of x, what would be the sizes of the type I and 
type II errors, if you choose the interval 0·8 S x, as the crjtical region 7 Also 
obtain the power function of the test. 

(b) it is desired to test the hypothesis Ho: 9 = 0 against H. : 9 > 0, by 
observing a random variable X which is uniformly distributed on [9,9+ 1]. 
Given only one observation, sketch the power function of the test whose critical 
region is defmed by (x> c). What value of c would you choose-7 

Given n observations', derive the general formula of the power function of 
the test whose critical region is defined by : (at least one x is greater than c) 
and indicate how you would construct a confidence interval, for '9. 

14. Let X have a p.d.f. of the form : 
1 

f(x,9) =9 exp (-x /9),.0 < x < 00, 9 > 0 

=_ 0; elsewhere. 
To testHo: 9 = 2againstH. : 9 = I, use a random sample X.,X2, of size 2 and 
defme a critical region C = {(Xl> x~ : 9·5 S%) + X2). 
Find (i) Power function of the test 

(u) SignifICance level of the test . 



Statistical Inference • D (Testinc of Hypothesis ) 

(b) Let X have a p.d.f. of the form, : 
f (x ; 9) = 9x8 -1 ,0 < x < 1 

= 0, elsewhere 
To test the simple hypolhesis H 0 : 9 = 1 against the ah~rnative simple 
hypothesis HI: 9 = 2, use a random sample X I, X Z of size n = 2 and define the 
critical region to be 

C = {(Xl>Xz): ~SXI xz} 

where XI, Xz are the values assumed by a sample. Obtain the power function of 
the test. [Madra. Univ. B.Sc., Stat-Main, 19C1] 

Hint. Y = -log X has an exponential distribution with parameter 9 i.e., 
Y - y(9, 1). 

15. (a) Give a working rule of finding the best critical region for testing a 
simple hypothesis against a simple alternative. 

For a normal (m, a Z) population with known a, constJUct a teSl for 'the 
null hypothesis Ho : m = mo against the alternative m > mo. 

[Calcutta Univ. B.Sc., (Math. Hon •• ), 1989] 

(b) Let (Xl> xz, .•• , x,J be a random sample from N (9, a Z), where a Z is 
known. Obtain an U M P lest for testing H 0 : 9 = 90 against HI: 9 > 90, Also 
find the power function of the lest and examine if the lest is unbiased. 

[Delhi Univ. B.Sc. (Stat~ HOM.), 1986, 1982] 

16. (a) Obtain the most powerful test for testing the mean J.1 = J.1o against 
J.1 = J.1 .. {J.11 > J.1o} when aZ = 1 in normal population. 

(p) Obtain the most powerful lest of size a for H 0 : J.1 = J.10 against 
HI: J.1 = J.11 when J.11 >~, if the probability density function of the random 
variable X is 

f(X, ~)= vi;. exp {- ~(x - J.1)z} ,_00 <x < 00 

17. (0) Let Xl> X2' ••• , x" denote a random sample from the distribution 
that has p.d.f. 

f(x, J.1) = _~ . exp [- ~ (x - J.1)Zl, - 00 < x < 00 

-v 2n 
It is desired to lest Ho : J.1 = 0 against HI : J.1 = 1. 

(b) Let Xl> Xz, •• ,;XII denote a random sample from the normal distribution 
N(9, 1),9 is unknown. Show that there is no uniformly most powerful test of 
the simple hypothesis Ho: 9 = 90, where 90 is a fLXed number against the 
alternative composite hypothesis HI: 9 ~ 90-

18. Let Xl> Xz, ••• , XII be a random sample from N{J.1, 9), where J.1 is 
-known. Obtain an UMP test for testing H 0 : 9 = 90 against HI: 9 < 90, Also 
find the power function of the lesL [Delhi Uni.,. ASc. (Sat. 00,...), 1985) 

1'. Define M.P. region and U.M.P. region. Show that an M.P. region is 
necessarily unbiased. 
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Obtain M.P. regions of size ex for testing-
(l) Ho: a = ao against HI : a = ai' (a1 > ao) 

(il) Ho: a = ao against HI : a = a .. (a1 < eo) 
for N(J1, e), where J.l is known. 

Show that the tests in (I) and (il) are U.M.P. against one-sided alternative. 
[Delhi Univ. RSc. (Stat. Bona.), 1989J 

20. (a) Let x .. X2, ••• , x" be a random sample from a normal distribution 
N(O, ( 2). Show that there exists a uniformly most powerful test with 
significance level a for testing 

Ho: a2 = a12 against H~ : a2 < a12. 
If n = 15, ex = 0·Q5 and. a12 = 3, deter.mine the best critical region and the 

~wer function of the above'tesL [Gujarat Univ. B.Sc., Oct. 1993] 
(b) State Neyman and Pearson's fundamental lemma. and apply it to obtain 

the test for testing a2 = 1 against a2 > 1. when the sample is from N(O. ( 2). Is 
this test UMP ? Is, it unbiased? Give reasons. 

[Indian Civil Services (Main), 1990J 

21. A sample of size 25 is drawn from a normal population with unknown 
mean J.l and variance 16. It is required to test the hypothesis Ho : J.l = 1·0 against 
the alternative HI: J.l = 3·0 at 5% level of significance, pbtain the most 
powerful test for testing Ho against HI and state how you' will find its power. Is 
the test uniformly most powerful ? 

22. Explain the statistical procedure of testing the following hypo~esis 
regarding the standard deviation (a) of normal population : 

Ho: a= ao 

HI : a = al > <10 
Will the test criterion remain the same when al is changed to a"" ao ? 

23. State and prove Neyman-Pearson Lemma. If x ~ 1 is the critical 
region for testing Ho: a = 2 against the alternative HI: e = 1, on the baSis of a 
single observation from the population 

f(x. a) = a e -9". 0 Sx < 00. a> o. 
obtain the values of type I and type II errors and the power function of the teSL 

[Delhi Univ. B.Sc. (Stat. Bons.), 1988] 

(b) Given a random sample Xit X2 • •••• X" of size n from the distribution 
with p.d.f. 

f(x, 0) = a e -9Jl; X > 0,0 < 9 < 00, 

show that UMP test for testing Ho: 9 = 90 agaiI:lst HI: 9 < 90 is given by 

{II: Il:x; ~ ~X2a.:z,. } 

rDelhi Univ. B.Sc.lStat, Hona.); 1988] 
(c) Explain the Neyman-Pearson Lemma for finding the best critical region 

for testing a simple hypothesis about the parameter 9 of the density function 
f(x.9). Illustrate your answer by constr11cting the best,critical region for 
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testing. Ho: 0 = 00 against HI: 0 = 0 1 < 00• where 0 is the parameter of the 
distribution with p.dJ .• 

j(x. 0) = Oe -ex; 0 <x < 00. 0 > O. 
[Meerut Univ. B.Sc., 1993; Poona Univ. B.Sc., Oct. 1991] 

24. (0) Two independent observations Xl. Xz are made on a random variable 
X with density function : 

1 
j(x. 0) = 9 exp (-x/O); 0 < x < 00. 0 > O. 

Test the null hypothesis Ho : 0 = 2 against the alternative HI : 0 = 4. If Ho is 
accepted when Xl + Xz <' 9·5. l!fld rejected otherwise. obtain the level of 
significance and power of the test. 

(b) Let X 1 be a random sample of size one from a population with' 

p.d.f. fe(x) = ~ e-xl9; X ;;!: O. 8 > O. Obtain : (,). the B.e.R. of size a for testing 

Ho: 0 = 90 against HI : 0 = 91 and (iij the power of the test. 
[Delhi Univ. B.Sc. (Stat. Bon •• ), 1983] 

25. (0) Obtain the statistic for testing the hypothesis that the mean of a 
Poisson population is 2 against the alternative that it is 3. on the basis of n 
independent observations. 

(b) Suppose you are testing Ho : A = 2 against HI : A = 1. where A is the 
parameter of the Poisson distribution. Obtain the best critical region of the test. 

26. (0) Suppose a random sample of size n is taken from the Poisson 

Ia · (exp (- A). AX) 0 I' 2 G' the rfi 1 .. aI popu bon l X ! • X. = .. ..... lVe most powe u cnUc 

region of size a for testing the hypothesis A = Ao against A = AI. (AI > Ao). 
How can you use the above result to find a confidence interval for A ? 
Write an expression for the power function of the test for the hypothesis 

A = Ao against A > Ao. 
(b) Xl. X Z ..... X 10 is -a random sample of size 10 from a Poisson 

10 

distribution with meE I e. Show that the critical region C defined by L X; ~ 3. 
; - 1 

i~ the best critichl region for testing Ho: 0 = 0·1 against HI : 0 = 0·5. 
[Madrcu Univ. B.sc., Oct. 1991} 

27. (0) Let Xl> X2 • .... X" denote a random sample from- a distribution 
having p.d.f. • 

j(x. p) = r (l - p)l-x; X = 0, 1; 0 -: p < 1 
= O. elsewhere 

It is desired to test Ho : p = ~ against HI: p = f. 
(b) Suppose X has BerJ)oulli distribution with¥oba~iIity of success O. On. 

the basis of a random sample of ~ize n it is proPosed to reject the null 

hypothesis. Ho: 9 = t if 
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3 S 
(XI + X2 + '" + X,J ~ i 9r ~ i 

For n = 5, fmd the level of significance of the test 
28. (0) Let Xt. X2, ••• , X" be a random sample from a Bernoulli distribution 

with density : 
.f(x , a) = OJ: (1 - O)I-J: ; X = 0, 1 

Obtain a uniformly most powerful size-a test for H 0 : a = 0 0 llgainsr 
HI : a > 00, Would you ~odify the test if HI : a < 00 ? 

[Delhi Univ. M.A. (Eco.), 1987] 

(b) The probability that a given machine produces a defective item is p and 
the quality,of the items varies independently from one to another. Giyen, a 
random sample of n = 20 items produced by the machine, what is the form of 
the best accepl1mce region for testing H 0 : p = 0·05 versus HI: .P = 0·10 ? 
What are the possible values of a ~ 0·1 (probability of type I error) in this case 
and the corresponding values of p, the probability of type'll error ? 

29. Derive a most powerful test of the hypothesis a = ~ against the 

alternative a = ~ for the parameter a in a geometric distribution a (1 - O)J:, 

X = 0, 1,2, ... based on a random sample of size 2. 
30. Describe the method for finding the best critical region of size a for 

testing a si~ple hypothesis against simple alternative one. Illustrate it by 
finding BCR for testing H 0 : a = 0 against HI: a = 1, for the Cauc~y 
distri.bution. 

dx 
dF(x) = n[1 + (x _ 0)2] , - 00 < x < 00 

based on a random sample of size 1. 
31. The distribution of x is : 

1 
f(x, e) = 2 ' e - 1 ~ x ~ e + 1 

= 0, otherwise 
If Ho: e = 4 and HI: eo= 5, determine the critical region on the right hand tail 
of the distribution corresponding to a = 0·25. Also calculate the probability of 
type II error. 

CKurllJuhetrG Univ. M.A. (Eeo.), 1992] 

32. (0) Define simple and composite hypotheses. State and prove Neyman­
Pearson Lemma. 

(b) Let X" X2 , ••• , XII be a random sample of size n from p.d.f. 

f(x, e) = e.t!-I, 0 < x < 1, e > O. 
Obtain the U.M.P. region of size a for testing H 0 : e = eo against 

HI : 0 > 00• Also fmd the power function of the test. 

33. (0) Let X .. X2, ... , XII be" independent observations on a random 
variable X with density function 

fix, 9) = axe -I ; 0 < x < 1,9> 0 
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Show that the best critical region for testing Ho: a = 1 against HI : a = 2. can 
be defmed in tenns of the geometric mean of XI' X2' ••• , X". 

(b) LetXh X2, ••• ,X"be a random sample from a distribution with p.d.f. 

J(x. a) = X - , If 0 <. X < 1 {a e I .' 

0, otherWise 

where 0 < a < 00. Show that the M.P. test of level a for testing Ho: 9 = 1 
against the alternative HI: 0 = 2, is given by the critical region : 

x .n X; > exp [ - iX 21 _ .. _] {
" '1 } 

,.1 a, UI 

where X:~I _ a. 2ft is the lower a - point of the x2-distribution with 2n dJ. 

[Delhi Univ. B.8e,. (Stat. HonB.), 1987] 

34. Let XI, X2, ••• , X" be a random sample from a p.d.f. 

j(x. 0) = { axe - I, O~ X S I, 0 > 0 
o , elsewh<rre 

Find an U.M.P. test of size a for testing Ho : 0 = 1 against HI : 0 > 1. Also 
obtain the power function; [Delhi Univ. B.Sc. (Stat. Hon •• ), 1992] 

35: Let X I, X 2 ••••• X" be a random sample frolll discrete distribution with 
probability function '(x) for which x takes non-negative integral values 
0,1,2, .... 

According to Ho : 

According to HI : 

{ 
e - I 

I't ) _ -,; x = 0, 1, 2, 
J\X - x. 

o ,otherwise 

j(x) = { 2:1 ~ 1 ; X = 0, 1, 2, ... 

o , otherwise 
Obtain the critical' region.of the most powerful test o( lev~l a for testing Ho. 

against HI' Also fmd the power of the test for the case n = 1 and k = 1. 
36. Ho denotes the null hypothesis that a given distribution has the p.d.f. 

1 -!.~ 
_~e 2 ,-oo<x<oo 
'V23t 

and HI denotes the alternative hypothesis that the distribution has the p.d.f. 

! exp (-, x I), - 00 < x < 00. 

Obtain the most powerful test for testing H 0 against Ill' 
37. It is required to test 110 against HI from a.single observation x, where 

Ho is the hypothesis that the p.df. is 



and H I is the hypothesis that the p.d.f. is 

2· _.t 
f(x) = r(l/4) exp (-x-) • (- - < x < 00) 

Obtain the most powerful test with level of significance a in this case. 
38. State Neyman-Pearson "fundamental lemma. With the usual notations. 

if P is the power of the most powerful test of size a for testing H 0 : P = Po 
against HI : P = PI. show that a'< P unless Po = PI. 

If 
t !(" u)2 

pix) = _ ~ e - 2 - ... • - 00 < x < 0\,. 

-v2n 
1 I 

Pl(x) = -. I ( )2 • - coo < X < 00 n + x-Il 
and IJ. is known. determine the most powerful test of size a. Calculate its 
power, if a and Il have specified val~s: 

16·6. Likelihood Ratio Test. Neyman-Pearson Lemma based on the 
magniwde of the ratio' of ~w() probability density functions provides the best test 
for testing simple hypothesis against simple alternative hypothesis. The best 
test in any given situation depends on the nature of the popul8.tion distribution 
and ~e foirn of the alternative hypothesis ,being considered .• n this section we 
shall discuss a general method of test construction called the Likelihood Ratio 
(L.R.) Test introduced by Neyman and Pearson for testing a hypothesis, simple 
or composite, against a simple or composite alternative hypothesis. This test is 
related to the maximum likeliltood estimates. 

Before defining the test, we give belOw some notations and tetminology. 
Parameter Space. Let liS consi(fer a random variable X with p.d.f. 

f(x, 9). In most common applications, though not always, the functional form 
of the population distribution is assumed to be known except for the value of 
some unknown parameter(s) 9 which Play take any value on a set 9. This is 
expressed by writing the p.d.f. in the form f(x, ~), 9 E 9. The set 9, which is 
the set of all possible values of 9 is caJ]ed the parameter space. Such a situation 
gives rise not to one probability distribution but a family of probability 
distributions which we write a~ (f!..x, 9), 9 E 9). For example' if X - N{IJ., (2), 
then the parameter space 

9 = ({IJ., (2) : - 00 < IJ. < 00, 0 < a < oo} 
In particular. for a2 = I, the family of probability distributions is given by 

{N{IJ., 1);IlE 9),wher~9= (Il:-oo<~<oo) 
In the following discussion we shall consider a general family of 

distributions 
(f(x: 91t 92, ••• , 9J :-9; E 9" i = 1, 2, ... ~k) 

The null .hypothesjs H 0 will state that the parameters belong to some 
subspace 90 of the parameter space 9. 
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Let Xi, 1%2' ••• , XII be a rand9m sample of Size 11 > 1 froin a population with 
p.d.f. f(x, 91, 92 ..... ( 1). where 9, the parameter space is the totality of all 
points tlu!t (91) 92, ... , 9J can assume. We want to test the nulJ Hypothesis 

Ho: (91) ~2' .... 9J e 9 0 

against all alternative.hypotheseS of th,e type 
H I :(9\,92 .... ,9Je a-90 

The'likelihood function of the sample 9bservations is given by 
II 

... (16·16) 

According to the principle of maXimum likelihood. the likelihood equation 
for estimating any parameter OJ is given by 

~~. = 0, (i = 1,2, ... , k) ... (16·1,7) 
I 

Using (16·17), we can obtain the maximum likelihood estimates for the 
parameters (91) 92, ... , 9J as they are allowed to vary over the parameter space e 
and the subspace 9 0, Substitll-ting these estimates in (16·.16), we obtain the 
maximum values of the likelihood function for variation of the parameters In e 
and 9 0 respectively. Then the criterion for the I~elihood ratio test is defined as 
lite quotient of these two maxima and is given by 

, L(e~ a~o L (x., 9) 
A = A.{XI. X2, ... , x,J = -,,- = 'Sup • ...(16·18) 

L(9) 8eeL(x,9) 

" " whereL(90) andL(9) are the maxima of the .likelihood function (16·16) with 
respect to the parameters in the regions 90 and 9 respectively. 

The' quantity A is a function of the sample observations onJy and does not 
involve parameters. Thus A being a function of the random variables, is also a. 
tandom variable. Obvious A > O. Furtht"J 

90 C 9 => L(90) S L(9) => A S 1 
Hence, we get 

... (16·19) 
The critical region for testing Ho (against Ill) is an interval 

0< A < ~o, .. :(16·20) 
where Ao is some numl)er « 1) determhted by the distribution of A and the 
desired probability of type 1 error, i.e .• A.o is given by the equation: 

P(A < A.o I.Ho) = a ... ~16·21) 
For example, if g(.) is the p.d.f. of A then A.o is detennined from the equation :' 

J1..o g( Aillo) cf).. = a ... (16.21 a! 
o 
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A,test that has s:riJ.jc~ region defined in (16·20) and (16·21) is a likelihood 
ratio test for testing Ho. 

Remark. Equations (16·20), and (16al) define' th~ critical .re$ioo for 
testing the hypothesis H 0 by the likelih09d ·,r:aqQ test. Suppose that the 
distribution of A is not known but the distribution of Some' function of A is 
known, then this knowledge can be utilized ~ given'in ~ following'theorem. 

Theorem 16·3. If A. is the likelihood' ratio lor testing a simple 
hypothesis Ho and if U = ; (A.) is a· monotonic increasing (decreasing) function 
of A. then the test based on U is equivalent to the likelihood ratio test. The 
critical region for the test based on U is 

tP, (0) < U < ; (Aql [; (AO) < U < ; (0)] ... (16·22) 
Proof. The critical region for the likelihoQd ratip test is given by 

o < A < Ao, where Ao is detennined by 

l.o f g(A I Ho) dA = a. ... (*) 
o -Let U == ;(A) be a monotonically increasing function of A. Then (*) gives 

'l.o ~) -
a. = f g(~1 Ho) dA= f h(u I Ho) du 

o ~~ 

where h(u I H 0) is 'the p.d.f. of U when H 0 is true. Here the critical region 
0< A +< AO. transforms to ';(0) < U < ;(1..0), However If U = ;(A) is a 
monotonic decreasing function of A, then the inequalities are reversed and we get 
the critical region as ;(Ao) < U < ;(~). 

2. If we are testing a simple null hypothesis H 0 then there is a unique 
distribution determined for A. -nut if Ho is composite, then the distribu.ti9n.of A. 
mayor may not be unique. In such a case the distribution of A may possiJ:lly be 
different for different pa.rameter pointS in 90 and then Ao is to be chosen such 
that 

).(, 
'f g(A I Ho) dA So a. 

o 

for all values of the parameters in 9 0, 

... (16·23) 

However, if we are dealing with large samples, a fairly satisfactory situation 
~w this testing of hypothesis problem exists as stated (wi~ol.lt proof) ~n the 
folJowing theorem. 

,Theorem 16'4. Let Xl. X2 • .... XII be a random sample from a population 
with p.dj. Jrx .. On 8.! ..... OJ' where the parameter space 8 is k-dimensional. 
Suppose we want to test the (. 'mposite hypothesis 

110: Ol = O/.9.! = ~~ .... 0,. = 0,.'; r < k 
wher~ 0/. l!2' . .... 0,.' are . .speci/ied numbers. When -Ho is true. -2 log • .t is 
ai..vrjtpkJtically distributed as chi-square with r degrees offreedom. i.e,. under 
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Ho. -2 log .t - Xrrl '. if" is large. • •• (16·24) 

Since 0 ~ A. ~ 1. -2 log. A. is an increasing function Qf A. and approaches 
infinity when A. -+ O. the critical region for -2 log A. being the right hand tail of 
the chi-square distribution. Thus at the level of significance 'a', the ~st may be 
stated as follows : ' 

Reject Ho if - 2 log. A. > X<r)2(a) 

where X(r)2(a) is the upper a-point of the chi-square distriblltion with r d.f. 
given by 

P[X2> X<r)2(a)] = a, 
otherwise Ho may be accepted. 

16'6·1. Properties or Likelihood Ratio Test. Likelihood· ratio 
(LR.) iest principle is an intuitive one. If we are testing a simple 'hypothesis Ho 
against a simple alternative hypothesis HI then the LR principle leads to the 
samt test as given 'by the Neyman-Pearson lemma. This suggests that LR test 
bas some desirable properties, specially large sample properties. 

In LR test, the probability of type I error is controlled by suitably choosi,ng 
the cut off point Ao. LR test is generally UMP if an UMP test at all exists. We 
state below, the two asymptotic properties of LR tests. 

1. Under certain conditions, -2 log. A. has an asymptotic chi-square 
distribution. 

2. Undu certain as~mptions, Lk test is' consistenL 

16·7. In this section we shall illustrate how the likelihood ratio criterion 
can be used to obtain various standard tests of significance in Statistics. 

16·7·1. Test ror tbe Mean or a Normal Population. Let us take 
the problem of testing if the mean of a normal population has a specified value. 
Let (Xlo X2, ••• , x,j be a random sample of size II from the normal population 
with mean ~ and variance (J2, where ~ and (J2 are unknown. Suppose we want to 
test the (composite) null hypothesis 

flo : ~ = ~ (specified), 0 < (J2 < 00 

against the composite alternative hypothesis 

HI : ~ ~ ~; 0 < (J2 < 00 

In this case the parameter space e is given by 

e = (~, (J2) : - 00 < ~ < 00, 0 < (J2 < 00 ) 

and the subspace e. determuied by the null hypothesis Ho is given by 

90 = (~,(J2):~=~,O<(J2<00) 

The likelihood function of the sample observations XI, Xz, ..• , x" is given 
by 
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( 1 )"n, [1 II ] L = 21t(J2 • exp - 2I:J2 i!-l (Xi - J.l)2 

.. 
The maximum likelihood es~mates of 11 and (J2 are given by : 

A 1 II _ } 11 = - L xi = X n j.1' 

A 1 II 

(J2 = - L (,xi - i )2 = s2 
n i. 1 

... (16·25) 

... (16·26) 

Hence substituting in (16·25), the maximum of L in the parameter space e 
is given by 

A [1 J"'2 ( n) L(9) = r 21tr . ~~p \- 2 •.. (16·27) 

In 90, the only variable parameter is (J2 an4 MLE of (J~ for given J.L = J.1o is 
given by 

AI· 
(J2 = .. L(Xi - J.1o)2 = S021 '(say) 

1~( -'- )2 =;; ~ Xi - X + X - JJo 

=1 L(Xj _X)2 + (i "-110)2, n . 

the product tenn vahishes, s~ce 

L(Xj - x ) ( x - JJo} = (x -110) L(Xi - x ) = 0 

~2 = s2 + ex - J.1o}z = s02, (say). 

Hence substi1';1ting in (16·25), we ~~t. 

A Ll]"n, 
L(e~ = Lilt so~' exp (-nlf,) 

.. (16·28) 

• .• (16·28a) 

... (16·28b) 

The ralio of (16·2~b) and (16·27) gives the likelihood ratio criterion 

'I = L(~~ = [ ~ J"/2 I\, " 2 ... (16·29) 
L(9) So 

= [ s2 ]"n, = { . 1 ,}"/2 ... (16.29a) 
s2 + (x - J.10)2 1 + [(x -110)2/s2] 

We have proved earlier (§ 14·2) that under flo, the statistic 
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i - ~o 1----srf;, 
1 'rW-

where S2 = n _ 1 l:(x; - i)l ='n _ 1 ' 

follows Student's l-distribQPonlwith (n -1) dJ. 

Thus 

i - ~o i - ~o 
1 =--= - -I 1 

S rf;, srr;;-::t .. - •.. (16·30) 

Substituting in (16-29a);we get 

1 
A. = ( t2.) ,,/2 - .¢(IZ), (say). 

1 +--
, n - 1 

. .. (16·31) 

The lik~lihood ratio test for testing H o' flgainSt HI consists in. finding a 
critical region .of the type 0 < A. < Ao, where A.o is given' by (16·21a), which 
requir~s the distribution of A under H o. In this case, it is not necessary to obtain 
the distributioJl of A .since A = q,(t2.) is a monotonic fUQctipn of 12. an~ the-test 
can well be carried on with t'J. as a criterion as with A [c.f. Theorem 16·1]. Now 
t2. = 0 when A = 1 and t2. becomes infinite when A = O. The critical region of the 
LR test viz., 0 < A < Ao,·on using (16·31) i~ equivalent to 

=> 

=> 

=> 

( 12.) -n/2 1+-- sAo 
n - 1 

(1 + _,2._rfl ~ Ao-1 
n - 1) 

~ ~ (Ao)-2ifl - 1 
n - 1 

t2. ~ (n - 1) [Ao-21 .. - 1] = A2., (say). 

Thus the critical region may well'be defmed by 

II I = I..r,; ( ~ - ~o) 1 ~ A 

where the constant A is determin~ stich that 

P[II I ~A IRo] = a 

••• (16·32) 

••• (16·33) 

Since under Ro, the statistic t follows Student's t d;istribution with '(n-l) 
d.f .• 

A = 1 .. -1 (aJ2) 
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where the symbol I .. (a) stands for the righl lail 100 a% point of the 
I-distribution with 11 d.f. given by 

P{/> I .. (a») = J- j(/)dl=a' 
' .. (0) • 

.•• (16·330) 

, 
where f( . ) is the p.d.£ of Student's I with n d.f. The critical region is shown in 
the following diagram. 

Thus lOT testing Ho: Jl = IJo against Jl iflJo (oZ-unlnoWII). we have the 
two-tailed 1-leSI defiMd as 10Uows : 

I{;. (i - IJo) I . 2 " --", if' , an H If , I , = S.' > t .. _; (Cd ), reject Ho """ t < til-I ( ), 0 

may be accepted. . 
Important Remarks. 1. Let us now consider the problem of testing the 

hypothesis 
Ho : J1 = 110, 0 < a2 < 00 

against the alternative hypothesis 
H1 :J1>I1o,O<a2<00 

Here e= {{J.I..(2):-00<J1<oo,O<a2 <00} 
3Xl eo = ({J1. (2) : J1 = J1o, Q < a2 < 00 } 

The maximum likelihood estimateS of J1 and a2 belonging to e are given 
by 

••• (16·34) 

••• (16-340) 

••• (16·34b) 
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Thus 

L(8J (~t e.p (- i)';f.< ~~, 
l r.] ),./2 (11".-l27tS02 .exp ( '2). If x < Ilo 

1641 

... (1&35) 

In 8 0• the only unknown parameter is (12 whose MLE is given by 

" (12 = s02. Thus 

1\ 

= (2~si ) n/2 exp (- i) L(e~ ... (16·36) 

A. 
_ L(8,,) {( ... ,s,')"', ;r i ~ ~, 

... (16·37) .. - I\, = 
L(8) 1 if 'i < Ilo 

Thus the sample observations (Xl> X2 • •••• x .. ) for which x < Ilo 'are to ~ 
included in the acceptance region. Hence for the sample observations for which 

X ~ ~. the likelihood ratio criterion becomes 

... (l6·37a) 

which ~ tIJ.e same as the expression obtained in (16·29). ProCeeding similarly I\S 
in the above problem. the critical region of the form 0 <: A. <: A.o will be equi­
valently given by [c.f. (16·32)] 

<rby 

where I follows Student's t distribution with (n - 1) dJ. The constant A is to be 
detennined so that 

P(I>A) = a ... (16·39) 

A = '._1 (a) 

Hence lor lesiing Ho : II = /J6 qgqlns, Ifl ; II > /J6, lYe hove·lhe righl. 
taileiJ-I-lesl defined aslollows : .. . 

. . {; ( x -110 )" 
Reject Ho if( = S > I._~ (a) and 

0, 

if I <: 1 .. ':1 (a). Ho, may be accepted. 

2. If we want to test 
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against the alternative hypothesis 

HI : ~ <~, 0 < a2 <-, 

then ploceeding exactly similarly as jn'Remark 1 above, we shall get the critical 
regivn given by 

t < - t,,_l (a) ... (1640) 

In this,case we ~ve (he left tailed Hes.t defined asJollows : 

r~ ..J~ ( i" - ~o) (). H h . H b IJ t = S < - tIl _/ a, reject 0 ot erw,se 0 may, e 

·accepted. 

3. We summarise below in a tabular fonn the test criterion, along with the 
conf}dence interval for the parameter for testing the hypothesis Ho : ~ = J.1o 
against various alternatives for the normal population when 02 is not kno~n. 

[Here tIl (a) is upper a-point of the t-distrbution with n d.f. as del,ined in 
(l6·33a).j 

NORMAL POPULA nON N {J.1.. ( 2) ; a2 u:NKNOWN 

RejccIH.41 
Serial HypoI!Jes's Tesl TeSl Level of (l - a) con(uU1ICe 
No, SIaluUc SillniflC4IIt:C. ~ if iNervai 1M Jl 

-

1. 
.H ~ : I' = 1'. Two tailed % - 1'0 

I I I > I._I (all) - S 
HI: I' ~ 1'0 lell I=~ % - ..r,. I._I(aI2) $;" 

SI II 

- S S % + ..r,. I._I(aIl} 

H.: I' ,",I'. Righl tailed 
-do- 1 >I._,(a) 

- S 2. 
HI: I' > 1'. leSl ,,~% -..r,.1,,-I(a) 

H 0: I' = 1'0 Left tailed 
I <-I._I(a) - S 3. 

HI: " < 1'. 
tell -do- l' S %+ ..r,.'.-I(a) 

16·7·2. Test for tbe Equalit) of MeaDs of Two Normal 
POl=ulatioDs. Let us consider .wo independent random variables Xl a,td X2 

following nonnal distributions NO 11> al1) and NOl2, (21) respectively where the 
means J.1 .. ~2 and the variances a12, a22 are unSpecified. Suppose we want to test 
the hypothesis :' 

Ho : ~I '= ~2 = ~, (say), (unspecifl~; 0 < 012 < -,0< a-} < 00, 

against the alternative hypothesis 
HI : III -:F- ~2' a12 > 0, a22 > O. 
Case 1. PopulatioD variap~e. are uDeq~uil. 
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·9 = {(J.1." ~2' 0'12, 0'22): _00 < Ji;, < 00, O'?-:> 0, i = 1,2) 
an 90 = {(~. 0'12, 0'22): - 00 < ~ < 00. 0'( > 0, i = 1, 2J 

Let Xli. (! = 1,4 •... , m) and x:lj (j = 1.2 •...• n>-be two inderendent random 
samples 9f si~es m and n fro~ the popul~tions N(~lt 0'12) arid N012. 0'22) 
respectively. Then the li1c.elihc;>Qd funcqon is given -DY 

L"·J2·1 2»wt/2.6IP [-_ "~2 .i (Xli--~1)2] 
~ 11:0'1 .ul , • 1 

X (2.';". t. ex{ ":,, }. ('" -1',)2] ... (1641) 

The maximum likelihood-estimates for ~h ~2. 0'12 and ei" Me given by the 
etiuations: 

~ .1'--!- log L = 0 ~ ~I = - L .eli = X. 
a~1 m ;-1 

... (l6·4Ia) 

Substituting in (1641); we get 

L(9) = (~12) wt/2. (2~; )"1'2. e- (IIIu)ll ••• (1642) 

In 9o. we have ~I = ~2 = ~ and the likelihood function is given by : 

«~=(~.2t·ex+ ~.2,~. (,U-I')2J 
x (~tap [- ~2 J. (',,-11)2] 

To obtain the maximum value of L(9o) for variations in~. 0'12 and 0';. it 
will be seen that estimate of ~ is obtained as the root of a cubic equation 

m2(xl - ~) n2. (ia - ~) .... ,,+. . .. (1643) 
L (xu - ~)'2 L (X2i - ~)2 

;-1 j-I 

and is thus a complicated function of the sample observations. Consequently the 
likelihood ratio criterion A will be a complex function of the observations and 



its distribution is quite tedious since it involves the ratio of two variances. 
Consequently. it is impossible to obtain the critical region 0 < A < AO. for 
given 0.. since the distribution Qf rlJe population variances is ordinarily 
unknoWn. However. in any given instance'the cubic equation (l6J43) can be 
solved for ~ by numerical analysis technique' and thus A can be computed. 
Fmally. as an approximate test. -210L A can'be regarded as a x.l-variate with 1 
d.f. (c.f. Theorem 16·2). 

Case 2. Population Variances are equal. i.,e .• al" = 0';' = a2• (say). 
In this case 

e = (()l,. J.12. (2) : - 00 < ~i < 00. a2 > O~ (i = I, 2)} 
90 = '(()l, (12): _00 < ~ < 00. a2 > O) 

The likelihood function is then given ~y 

r. 1 )"'+")1].. [I {III "}] L=~2m7'- .exp -1J:I. i~1 (xJj- ~1)2 + j;l(Xl,j"'~l)l 

... (1644) 
For ~1o J.12, a2 E e, &he maximum likelihood equations are given ~y 

a " -} - ~l log L. = 0 ~ ~l = Xl 

a " -' ~llog L = 0 ~ ~1'= Xl 

•.. (1645) 

and ~2 log L = 0 ~,~2 ~ _A_ [I:(xu - ~1)2 + 1:("-- - ~,)2] ou- m + 11 v-.q • 

~ ~2 =m ~ ~ [I(Xli-il)l+l:(X.7i-%~] 
= __ 1 _ [ms12 + 1IS'll1 (I,c ASa) 

m + 11 ... "'"' 

Substituting the values from (1645) and (16450) in (16·44), we get 
" [ ,(m+n} ]<-.")11 "[]' ~' L(9) = 2 (2 2) • exp - -2 (m + II)] ... (1646) 

Jt mSJ + IIS2 

W 9 0. )11 = J1l = ~ (say). and we get 

l.(~ = (2!(1iJ"'uYl• exp [ ... ~2 {~l (xu - J1)1 

+ _ i (x2i - )1)'l}] ... ~1647) 
1- 1 , 

'm+1I I[ ] ~ loSL(9O> = C -~ log (12 - 202 texli - )1)2 + ¥X2j - )1)2 • 

where C is a constant independent of U. and a1• The-likelihood equation for 
estimating )1 gives 



:\"logL="1 I (xu-Il) + t (X2j-ll) =0 d 1 [III · ] 
all (J i-I j_1 

Also 

But 

= I(xi;-ii)2+m(il-~)2. 
the product tenn vanishes since 

I <Xli -il)·O 
i 

Similarly. we shall get 
• _1(- -)2 
~ I.. AU_ 1 n",- X2 - XI 
~ ~'J-llr-1IS2 + ( )2 

j_l" m,+11 

Substituting in (1649). we get 

18045 

.•. (1648) 

•.• (1649) 
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1 } ((11+,,)12 

mil (i 1 - Xl)l \ 

+ (m + 1I)(mSll + 1I.\·l) ) 

.... (16·5-1) 

We know that (c.£. § 14·2.10), under the null hypothesis Ho: ).11 =).1~ the 
statistic 

.•. (16·52) 

... (16·52a) 

follows Student's I-distribution with (m + II - 2) d.f. Thus in tenDs of t, we get 

[ 
iJ. ]-C!II+,,>n. 

A = I + 2 m + II -
... (16·53) 

As in § 16·7·1, the test can as w.ell be carri~ with t rather than with A. The 
critical region 0 < A < Ao, uansfonns 10 the critical region o( the type 

tl > (m + II - ~ [iOl/(~ + II) - 1] = Al, (say) 

i.e., by I t I > A-, 
where A is detennined so that 

P[ltl>AIWol=a ... (16·55) 

Since unde,r Ho, the stati'Stie I- follows :Student's t-distribution with 
(m + II - 2) d.f., we get from (16·55) 

A == t ..... -l (a/2) •.. (16·56) 

where, t,,(a) is the right 100 a% point of the t-distribution with II dJ. 

Thus for testillg the null hypothesis 
HO:).11 = J.l2; all = all = a l > 0 

against the alternati'Je 
Hl :).1l ~ J.l2, all = all = a l > 0, 

we have the two-tailed t-test defined ~follows ; 

If I t I = -,-:.~X~l~~:;:1 =i'1~1:" 
S -+-m II 

reject ROo otherwise II., may be ~ccepted. 
Remarks. 1. Proceeding similarly as in Remarks.to §. 16·7·1, we can 

obtain the critical regions for testing 

RO·:).11 = J.l2; all = all = a l > 0 
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against the altemath,e hypothesis 

1647 

HI : III > Il~ ~ (112 = (122 = a2 :> 0 
or III': Il, < 1l2; a,2= a'l= a2> 0 
We give beloW, in a tabular form the critical region, the test statistic and 

the confidence interval for testing the hypothesis 
Ho : a = III -1l2 = 80, (say), 

against various alternatives, viz., a > ao, ~ < ~() or ~ * ~o. 
2. J;"or testing H 0 : ~ = 'ao against the alternative II, : a < ~o, the roles of 

x, and X2 are interchanged and the case I of the table is applied. 
3. If ~o = 0, the above test reduces to testing H 0 : III = 1l2' i.e., the 

equality of two population means. 
4. If the two population variances are not equal, then for testing 

Ho : a = ao. we use Fisher-Behrens' d-test: 

Reject Ho at 
(1 - a) con/id. 

S. Alternative level 0/ 
No. Hypothesis Test Test statistic significance ence interval 

ai/ 0/8 

1. 0>80 
Right (i. - %2) -'00 t> t ••• _2(a) o ~ (i. - i 2)-t.s 

1 1 
tailed t- = I •• (say) 

-+-
1 1 

m. n 
S -+-

m n 

2. 0~00 
Two 

-do- I I I >1 ..... 2 (aI2) - - ,,-/1 1 
tailed = t2 • (say) 

(x. - xJ-t2 S - + -
m n 

- - {f:1 s: 0 s: (x. - xJ+~S ;;; + ~ 

16·7'3. Test lor the Equality 01 Means 01 Several Normal 
PopUlations. Let Xij' (j = 1, 2., ... , n.: i = 1, 2, ... k) be k independent 
random samples from k normal populations with means Ilh 1l2. , .. , III 
respectively and unknown but common variance a2, In other words, the k 
normal populations are supposed to ~ homoscedastic. We want to test the null 
hypothesis 

Ho : Il, = 112 = ... = III = Il (say), (unspecified) 
a,2 = a22 =' ... = a12 = a.2 (say), (l,Ulspecified) 

against the alternative hypothesis 
H, : Il;'s are not all equal, 

a,2 = a22= ... = a/? == (J~, (unspecified) 
Thus we have 

e ~ ({J.1" 1l2' .... Ilk> ( 2) : - 00 < Ili < 00. (i = I; 2 .... , k) ': a2 :> 01 
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aid 9 0 = (U1), J.I2, ••• , J,!.", (2).: - 00,"< J1, = J1 < "!O, (i = 1. 2 •.•. , k) :01>0) 
The likelihood function of the sample observatiO.ns is given by 

L(8) = (21 2)"p.. exp [- ,.~ . I. . I (Xjj - J1j)2] .•. (16·51) 
~.7t(J ~ • -) J - ) 

l 

where n = 1:. nj. 

For variations of J1i, (i = 1,2, ... , k) and 0 2 in 9, the maximum likelihood 
estimates are given by 

':lCJ log L(8) = 0 ~ ~(Xjr·1.IJ = 0 
aJ1j J 

It. 1 iii _ 
J.li = - I. Xi' = Xj nj j_ 1 ~ 

a . It. 1 It. 
CkJ2 log L(8) = 0 ,~ 0'2 = ;; f r(Xjj - J1,.)2 

~2=!~~(X" _i.)2= Sw (say) nff,J, n' , 

.•• (16,58) 

•. :(16·58a) 

where in ANOVA (Analysis of Variance) terminology, Sw is called within 
sample sum of squares (W.S.S.). 

In 80, the only variable parameters are J1 and 02 and we have 

].(90) = (:a!02r· exp {- ~ f7 (xij - 'J)2} 
The MLE's of.J1 and 0 2 are given by 

a 
':l" log L(80) =·0 ~ ~~ (xii - J1) = 0 
a,.. • J . 

It. 1 _ 
J1 = - ~I. Xii = oX n' • 

a' It. 1 It. 
(jo2 log L(90) = 0 ~ 0 2 =;; I.I. (Xjj - J1) 1 

~2 =! I.I.(Xjj - i f = ~r. , (say), 
n n 

•.. (16·59) 

•.• (16-60) 

... (16·600) 

where in ANOVA terminology, Sr, is called total sum 0/ squares (T .5.S.) 

Substituting from (16·58) and (16·58a) in (16·57) an~ from (16·60) and 
(16.6Qa) in (16·59), we get respectively 
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L(fJ) = (i:Sw )~. exp (- ~ ) ... (16·61) 

L(~ =(i:STr.exp(-~) •.. (16·62) 

1\ 

A. = L(~ = (Sw )11/1. 
L(e) ST 

... (16-63)· 

We have 

ST =~t(xii-X)l=p: (Xij -Xi+Xi-i)2 
, J • J 

=l:l:(X"-X;)2+l:l:(ii - x)1+2l:[(x·-X)l:(x.·-X;)] 
i i'J i j i' j'J 

iii 

But l: (xii - Xi) = 0, being the algebraic sum of die deviations of Ute 
j. t 

observations of the ith sample from its mean. 

ST =~~(xi}-x;)2.+~ni(xi-i)2 
, J ' 

:: Sw + SB,' ~say) ••. (16-630) 

where SB = t n;( Xi -.~ ) 2. in ANOVA tenninology is called be.tween somple~ 
• 

sum of squares (B.S.S.): 
Substituting in (16-63). we get 

(. Sw )-0. 
A. =~Sw + SB 

1 

SB] .. /2 +-
Sw 

We know that under Ho. the statistic 

F = S,I(k - 1) 
Sw/(n - k) 

follows F -distribution with (k "- 1; n - k) d.f. 

... (16-64) 

... (16-6~ 

Substituting in (16.64), the likelihood ratio criterion A. in terms. of F is 
given by . -

[ k ... 1 ]-=-~ A. = 1 + --F n-k ... (16·66) 
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Since A is a monotonic function of F. the test can well be carried on with 
F as test statistic rather than with A.The critical region for testing Ho against 
H10 viz .• 0 < A. < 10. is equivalently given by 

[ 1 .. ~ F]1I/2 > Ao1 
n-k 

n-le[ ] F > Ie _ 1 0-0)-2/" - 1 = A. (say). 

where A is determined from the equation 
P[F>A IHol = a 

Since F follows E-distribution with (Ie - 1. n -Ie) d.f .• we get 
A=F"_t,,,_~(a) 

. .. (16·67) 

••• (16·67a) 

where F., -1, .. _.,(a) denotes the upper a-point of the F .:~istribution with 
(I< - 1, n -·Ie) d.f. 

Hence the test for testing 
Ho : ~1 = ~2 = ... = ~., = ~, al~ = a24 = ... = a.,2 = a2> 0 

against the alternative hypothesis 
HI : ~'s ar; not all equal. a12 = a22 = .. , = a.,2= a2> 0 

is defined as follows : 
Reject Ho ifF> F.,_l, .. _., (<<), otherwise Ho may be accepted. where F is 

defined in (16·65). 
Remark. In ANOVA terminology. SB/(k -1) is called, Between Samples 

Mean Sum of Squares (M.S.S.) while Sw/(n - k) is called W~thin Samples (or 
Error) Mean Sum of Squares and thus F is detmed as 

F - Between Samples M.S.S. (16£7 ) 
- Within Samples M.S.S, ... 'U c 

16·7·4. Test for the· Variance of a Normal Population. Let us 
now consider the problem of testing if the-variance of a normal population has a 
specified value a02, on the basis of a random sample x10 x2, .. '. x" of size n 
from normal population N~, (2). . 
- We want to test the hypothesis 

Ho : a2 = a02, (specified), 
against the alternative hypothesis .. 

Ht : a2:#a02 

Here we have 
e = (~, ci2): _00 <~ < .... , a2 >O} 

ad eo = {(~, (2) : - 00 < ~ < 00,'a2 =_ao2} 
The likelihood function of the sample( observatioQs is given by 

L = (2':'" t exp {- ~- , ~ I (Xi - ~»} , .. (16,68) 

As in § (J6·7·1), [c.f. (16·27)], we shall gel 
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L(8) = (i:W)-.tl exp (- ~) 
In 90' we have only one variable parameter, viz., J.1 and 

... (l~.6~) 

L(9ol =(~t ~ [- z.!., i~! ('i -,11)'] ... (16·70) 

The MLE for 11 i$ given by 

. 
'.' 

a It. -

L(9.l ~2~ :)-~ .::[~ ~;: i ('/ -% ),] 
~nvo' ,(,uO i-1 

= (2n~1 )~ exp,[- ;':1] ••. (16·7.:.1)~ 

The likelihood ratio ~terion is given by [. . ~ 

~ =~~=[ :2 ]~ exp _~ ~.(~'- n)J 
We know that under Ho. the statistic 

X2 ="r CJo2 ... (16·12) 

fonows.ctii-~quare distribution with (n -1) d.f. In terms ofx2, ~ have 

~ =[ ti ]..tl. exp [_ ~(X2 -II)J ... (1:6·73) 

Since A. is a monotonic function of X2, the test may be done using X2 as a 
criterion. The critical 'region 0 < A. < Ao is now equivalent to 

(x2In)~ exp [- ~ (X2 - n)] < Ao 

exp (- lX2) <xzy.a ~4(ne-1)II/i=B, (say). ...(16·74) 

Since X'J. lias chi-square distribution· with (n - 1) d.f., the crWcal region 
, (16,74) is det~rmined by a pair of 

7(.2 

inteIYals 0 < Xl <.X21 and l11 < Xl < 00,. 

wh.ere X12 and xl, are to be detennined 
such that the ~C$iinates of' (16·73) are 
equal, ·i.e., 

'<Xil)~ exp (- -21 lll) 

= <xzl)-.tl exp (- t b~) 
Critical region is shown as shaded region in the above diagram. 
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..• (16·75) 

In other words. 
XI2=X211_ltoti) andX22'=X211_I{l ..... aJ2), 

where X2(II_I)(a) is the upper a-point of the chi-square distnbution with (n - 1) 
d.f .. Thus the critical r..egionfor testing Ho: CJ2 = CJ02 against HI: <i2 ~ G02, is a 

. two-tailed region given by 
Xl > '1..211- i ~(afl) and X2 < X2 II _'(1 - a/2) ••• (16·76). 

, Thus. in this -caSe we have a two-Cliled tesL 
,Remarks. 1: If we want to test flo: 0'2 = CJo2 against the alternative 

hypothesis HI ': 0 2 < 002 we get a one-tailed (left-tailed) test with critical region 
X2 < X2(II_l){l"': d) while for testing Ho against,HI : CJ2> CJo2. we have a right 
tailed test w~th, critical region X2> X2(II -I) (a). 

, We give below in a tabular fonn .. the test s~tjstic. the test criterion a~c,t the 
confidence interval for the parameter for testing Ho : CJ2 = CJo2, J.1 (unknown). 

\ against various alternative hypotheses. 
NORMAL POPULATION N{JJ.. CJ2): J.1 UNJCNOwN: Ho : a2 = CJo2 . 

-
S,· AltuNJtive Tell Tell Rejecl 110 al (J -a) I 

No, iYPOI/ulU Ilalulic 'a level of ctNifltUllce illUna/ 

I;gllijiCDlICe if ~ 
/orr1 , 

.' ,-
" 

cr>Clo~ 
Riebt-tailed 1IS2 

x~>x2._I(a) rrj!~ I: X2=1 ten x2._I(a) 
: 00. 

2. cr<Oo2 LcfHailcd 
-00- X2<X2._1 (l-~) crS 

,,;z 
tell X2._I(1- u) 

/ Two-tailed 
x">'r._1 (qJ7) 

1112 
Scr 3. cr~ 002 

telt -00-. ~ ·X2._J(aJ2) 

I and X2 < X2._1 (1,-,aJ2) S 
iLJ7. .. 

~ X2._J(I-a/2) 
, 

,2. If we want.tO ~st ~e nul~ ,hy~thesis Ho : 0 2 = CJ02 against the various 
al~cm~tive hYJ?Oth~ses. viz .• CJ2 ~ gJ)2 or CJ2 < 002 or, CJ2 :# CJo.2 for the nonnal 
"opulation N Ui. CJ2).,whete J.1 is known then the test statistic. the critical region 
and tile confidence Interval for CJ" can be obtained from the table given above on 

• II 
tl'placing ('" - I) by fa and nil bY;'the expression l: (Xi''''' Jl)2 . 

. ' i-1;-



16·'·S. Test for Equality or Variances or two Normal 
Populations. Consider two nonnal populations N(/l .. a)2) and N 012, (22) 
where the means JlI and Jl2 and variances a)Z, a22 are unspecified. We want 10 
lest the hypothesis-; -

Ho : a)2 = -a22 = a 2 (unspecified); with Jl) and Jl2 (unspecified) against.the 
alternative hypothesis 

H) ; a)2 ~ a22 ; Jl).and J.l.2 (Unspecified). 

If Xli, (i = 1,2, ... , m) _and xlj' (j = 1,2, .•. , n) be independent random 
samples of sizes m and n from NOll, (12) and NOJ.2, (22) ~pectively ·then 

, (. 1)1If/l ( I III ] . 
L = l2na12 exp - 2<112 i ~1 (Xli - Jll)2 . 

X (.2 r 2)11(1. exp [- ,,~ 2 . i (Xlj - JlZ)2] 
~na2 6U'Z 1_) 

In this case • 
9 = {Jlh Jl2, a12, (22); -00 < Jli < '1"; ai2 > 0, (i = 1,2») 
~ = lOJ.), Jl2, (2) : - 00 <.Jli < 00; (i = 1.,2), (12 > 0) 

As in § 16·7·2 [c.f. (1642»), 

1\ (. I )m12 (. i)1I(1. [1 ] 
L(8) = \27tS)2 'l2ns22 • exp - 2 (m + n) . 

where S)2 and s'i are as dermed in (1641a). 
In 80, the likeliho6d function (16·77) is given by 

... (16·77) 

[ 1 J(III+")12. [1 ] L(8o) = 2na2 • ~xp - 'D:J2 { t(XIi - Jll)2 + 7 (X~j - Jl2)2} 

and the MLE's for Jih Jl2 and a2 are now given by 

" - " -Jl) =X1. Jl2 =xz 

~2 :::: (m ~ n) [t (Xli - ~1)2 + r (XZj - ~zp] 
:::: _1_ [1:(x) '.- Xj)Z + L (X2' - xz)z] 

m+n i'f i I 

ms)2 +nsz~ 
:::: 

m + n 
Substituting from (16·80) and (16·80a) in (16·79), we get 

, .. (16·79) 

... (16·80) 

'- .. 

: .. (16·80a) 

" [ m + n J<'" + ,,)12 [1 ] . L(9Q):::: 2n (ms)z + nsZZ) • exp: ~ '2 (m + n), , ... (16.81) 
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/I. 

A =L(~O> 
L(e) 

_ (' )C"' ... 1I)I'l { (SI2) ...n (S22) II/l } 
- m + n . [ms12 -+ nSz2J(1JI + 11)/2 

_ (m + n )C'" + 11)/2' { (msl2)tn12 (ns22) II/l } 
- m"'/2. {J"/2 ~ms12 + nS22]elJl + 11)/2 ••• (16·82) . 

We knOW' that under Hd, the statisili; 
\ 

I(xu - xl)2!(m - 1) S12 
F = .' =-S 2 ' ••• (16·83) 

I(X2j - xi'P/(n:... 1) ?-
follows F -distribution with (m - 1, n - 1) d.f. (16·83) also implies 

F _ m(n - 1) SI 2 

- n(m - I)S22 

(m - I)F _ms12 

\n-l -ns22 

Supstituting in (16·82) and simplifying, we. get 

_ (m + n)CIJI+II)/2 t (~=: F )...n .} 
A- ""2 J2 ,-

m nil m - 1 Je", + 11)/2 
1 + -;;-:-t F 

••. (16·83a) 

... (16·84) 

Thus A is a monotonic function of F and hence the test can' be carried on 
with F" defined in ,(16:83) ,as test statistic. The critical region,O <! A < Ao can be 
equivalently seen to be given by pair of intervals F ~ Fl and F ~ F2, where Fl 
~d F2 are determined so that under Ho 

P(F ~ Fv = 0./2 and P(F ~ F1) = 1 - 0./2 

Since, under Ho, F follows Snedecor's F-distributiol) with (m - I, n - 1) 'd.f., 
we'have 

F2 =F"'.I .... _1 (all) and FI =F",-I.II-J (1-0./2), 
where F "'.11(0.) is the upper a-point of F-distribution with (m, n) d.f. 
<;:onsequently for testing 110: 0'12 = 0'22 against the a1te~tive hypothesis 
HI: 0'12 '1: O'·i, we have a two-tailed F-test, the critiCal region being given by 

F>F",_I.II_I (all) and F<F"'~I.II_I'(1-afl) ... (16·85) 
where F is dermed in (16·83) or (16·83a). 

Remark. Let us suppose that we want to test the hypOthesis 
0'12 

Ho: 0,.2 = &,2 
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Without loss of generality. we can assume that Sll > Sll. where Sll and 
Sll ate unbiased estimates of all and al respectively. We know that the 
statistic 

Sll/all Sll 1 
F = S l} 1 = S 1 • SL1' (under HcJ • 

. 1 <72 1..., 

follows F -distribution with (m - 1. n - 1) d.f. The test-statistic. the t~st 
criterion and (1 - «) confidence interval for the parameter for various alternative 
hypotheses are given in the following table. 

If So = 1. the above test reduces to testing the equality of population 
variances. 

S. Altcrllatille 
No. Hypothesis 

" 1. S:>lio" 
Gz" 

" 2. ~<lio" 
OJ" 

" 3. ~;elio" 
Gz" 

2 
NORMAL POPULATION; HO: CJ)2.=fJo2 

, <1l 

Critical regioll at 
(1 - a) cOllfidellce 

Tut illlerllal 
Test Statistic 

lellel of 
~ s;gllifocQllce 'd for 
GJ," 

Right- s,,· i ~ S" 1 
F=tz·-=z F>F .. _l•II _ 1(1l) ~~x tailed 

" lio Gz" s" F .... l ... 1(1l) 

" 

Gt" S" 1 
Left-tailed -00- F <F .. _1•1I _ 1(1-1l) -S~x 

OJ" S" ,,,..l .... )(I-a) 

Sl" 1 Gl" 
Two-tailed ' -~- F>F,._1'"_1(aIl)/ :p. S"l 

and 
" Flit-I .... ) (all) CJi 

F < F;"_l. 11-10 -all)' 
Sl" 1 . 
S~. ' 

s" F"..llO-lO-aJ2) 

16·7·6. Test ror the Equality or Variances or Several Normal 
Populations. Let Xij. (j = 1.2 ..... ni) be a random sample of size ni from the 
normal population N(~;. a(-). i = 1. 2 ..... k. We want to test the null 
hypothesis : 

Ho : all = all = ... = a,? = a l (unspecified). with ~ .. ~l ..... ~k 
(unspecified). against the alternative hypod!esis : . 

HI : ail (i • 2 ..... k), are not all equal; Ilt. ~l ..... ~k.(unspecified). 
Here we have 

e = (Ilt. Ill. ''',' ~k; all, all ..... al;Z): - 00 < ~i < 00. ail> O. 
(i = 1.2 ..... k)} 

aIXl eo = (Ilt. Ill ..... Ilk ; all, all, .... ·al;.l): - 00 <'Ili < 00. a(- = a l > O. 
(i = 1. f ..... k)} 

The Iik~lihood function of the sample observations xii' (j = 1. i, .... ni ; 
i = 1. 2 ..... k) is given by : 
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~.= '~, {(2~1<r;)""'.~x+ ~i' J~' (Zq- ~J']} ... (I~86) 

It can ~ easily,~n that in 9 the-MLE's of~'s anda;'s,are given by 
,,_ "I'" _ / 
p.; = X; and a?-=- 1: (X;j-iJ2=S;2 ••• (16·87) 

,n;j_1 • 

where n = III;. , 
Iii 90. al2 = ~22 = ... = a.? = a2 and th~fore 

L(9o) = (~2 )~ exp [- ~ rt (x;j ~ p-;)2 J 
. The MLE's of ~'s and a2 are given by 

"- "2 I ~~ - 2 1 I .. p.. = X· and a = - ~ ( x·· - xi) = - nrr,"" 
': n'J .'J n,' 

Substituting from.(l6·9O) in (16·89), we get 

L(~ -(2..f. .. 1 fexp t-~) 
k • 

L(~~ nllfl i~ [(s,.2)"fl] 

A -= I,.(e) = f.i n;slJII/l 
I.! - I 

k 

IT [(31-)";12 ] 
= ; - I ~Do/l ' where S2 = ! llI;S?-(. , n 

... (16·88) 

.... (16·89) 

. .. (16·90) 

... (1(j·91) 

= .ITk ~(S_ ;2 )."in] ~ / ... (16·92) ,-I r , 

A is thus a complicated fuQction of sample observations and it is hot easy 
to obtain its distribution. However, if n;'s are larg~ (i = 1,2, ... , k), Theorem 
.16·2 provides an 'approximate test defmed as follows: 

For large- n;' s, tfte quantity -2 10g.A is approximately.distributed as a chi· 
~uare variate with 2k - (k + I) = k - I dJ. . 

11te lest can" however,. be made even if n;'.s are not large. It has been 
investigated arid found that the distribution of - 2 log. A is approximately a 
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X2-~istribution with (k - 1) d.f. even for small ni·s. However. a better 
approximation is provided by the Bartlett's,test statistic -: 

X2 = , ' -2[IOg A' ,. ] 

1+ 1 L'.l ....L 
3(k - 1). i (n; J -tni 

, , , 
where A' is obtained from A on replacing nj 'by (ni - I) in (16·92). which 
follows X2-distribution with (k ~ 1) dJ. Thus the test ,statistic. under Ho is given 
by . 

,f (nj-I) loge ( ~ ) 
X2 =-I-+....:.·--...:.·-I----:[=-L-r-_-1 ..... )-s;;... - ..... I-]=- - i2l~1... 

3(k - 1) i l ni - Lni 

... (16·93) 

The critical region for the test is. of course. the right-tail of the i~­
distribution given by 

X2 > X2(l"" .)(a). 
where X2 is defined in (16·93). 

EXERCISE 16 (b) 

...(1~·94) 
" 

1. (~).Derme 'Likelihood Ratio Test'. Under what ~ircumstaI)ces wouJd you 
reeommel'ld this test? 

(b) Let Xl> ~2 ..... X" be a random sample from ,a normal distribution 
N(Ol> Oz). Use likelihood ratio test to obtain peR of size a under Ho: O. = 0 
against H. : O. ~ O. 
, 2. (a) Let P9 (x) be the density of a random variable with the mixed'second 

deri;"tive ()2 ~~g!;(X) ~ 0 for all x and O. Then show that the family 'has 

'monotone likelihood ratio in:"x. 
3. Discuss the general method of construction of likelihood r~iiO" test. 

Consider n Bemoullian mals with probabjlity of sqccess,p for eac~ trial. Deriv~ 
the likelihood-ratio test for testing H'o': P = Po against Hi : P > POI :. 

[Delhi Univ. B.Se. -(Stat. Hon •• ), 1992" i986] 

4. Let X 1> X 2. .. .• X" be a random sample from a Poisson distribution 
, ,with parameter O. Derive the likeiihood ratio test fOf'Ho~ 0,= 90 againstH. : 0 > 

00, Show that this is identical with the corresponding UMP test ' 

S. (a) Let X 1> X 2 •...• X"' be a random sample from a normal population 
with unknown mean ~ and. known varianCe (12; Develop the likelihood ratio test 
for testing Ho: Jl = ~ (specified) agamst (l) if. : Jl> JJO and (m II. : Jl < Jlo. 

'(b) Let Xl> X 2 • ..... X" be a random sample from N{J.1. (j2). where (12 is 
known. Develop the likelihood ratio test for testing 110: Jl = Jlo (specified) 
against HI : ~ <~. [Delhi Univ. B.Se. (Stat. Hon •. ), 19871 



" (c) Find by the method of l.~elihood ratio test~g,. a test for th~ null 
.hypothesis Ho : m = mo for a nonnal (m, (2) population·, alknown. 

[Calcutta Unir1. B.Sc., (Math. Bon •• ), 1989] 

6. Discuss the general method of con~truction of likelihood ratio test 
Let X .. Xl' ... , X,. be a random sample from a NUt, 9) population where 9 

is the unknown variance and J1 is knoWn. Obtain a likelihood ratio test for 
Jesting a simple H 0 : 9 = 90 against HI: 9 > 90" . 

. [Delhi.Unil1. B.Sc. (SIal. Bon •• ),-1993] 

7. '(a) Develop the likelihood ratio test for testing Ho : J1 = J,lo based on a 
,random sample of size II. from NUt, (2) population. . 

[Delhi U"ir1. B:Sc. (SIal. Bon •• ), 1982] 

(b) Let Xl' Xz, •.. , X,. be a random sample from a normal population with 
mean J1 and variance a~, J1 and a l being unknown. We wish tb test H 0 : J1 = J10 
(specified) against HI: ~ ,;. J,lo, 0 < a l < "!G. 

Show that the Likelihood Ratio Test is same as the two tailed I-test 
[Delhi U"ir1. M.A. (Reo.), 1986] 

(c) Describe the likelihood ratio test 
The random variable X follows normal distribution with ",ean 9 1 and 

variance~. The parameter space is 
e = {9 .. 91l : -00 c;: 01 <-,0< 91 <-l. 

Let eo = {(9 .. 9u : 91 = 0, 0 < 92 < 00 1 . 
Test the hypothesis Ho : 91 .. 0, 01 > 0 against the alternative cOl)lpo.site 

~ypothesis H ~ : 91 :;t 0, 92 > o. 
(JladraB Unil1. B.Sc., 1988) I 

8. Discuss the general method of construction of likelihood ratio test 
Given N UtI> al,2) and N{J1z, al2), where all the panuqeaen J1h J11, all and all 
are unspec'ifieci: develop the LR test for testing Ho : all .. a·i against 
HI : 0'11 ~ a21. 

[DeW Unil1. BoSc. (SIal. HOMo), 1983] 

,. ~scn"be likelihood ~,JeSt and state its ~pMant properties. 
LetX1 and Xl beN(J.i.l, (2) andN{J.I.z, (,f2) respectively where the means·8I)d 

variance are unspecified. DeveJop LR test for testing 80: J11 = J11 against 
HI : 1:11 :;t J12. 

OR 
Construct LR.te$l for testing Ho·: ~ .. eo against all its .alt.ernalives in N(e, (12), 
where 0'1 is known. -. 

[DeW Unil1. BoSc. (Slot. HOJUJ, 1988] 

10. Show that the likelihood raljo test for testing the equality of variaJ)ccs 
of ~o n~ 4istributions is the usUal F .,.tesL 

it. Show that the likelihood ratio test for testing H 0 : a = 0 against 
!II : a.:;t 0, based on a random ~ple of ~ II. ~ . 

1 . 
Ax'; a; p) = 2Jl ; a - p ·~x ~ a + p 



.is (R/2Z)" whereR =.X("j -X(l) ~d Z = max [-X(l),X(ta)]. 
[Delhi B.Sc. (Stal. Ho" •• ), 1989, 1988) 

12. Show that the lilcelihood ratio principle leads to the same test; when 
testing a simple hypothesis against an altefllative simple hypothp.sis, as that 
given by Neyman-Pearson theorem. [Madra. U"il1. B.Se., 1988] 

Hi·8. No~-par~metric 1tiethods. Most ,of the statistical tests that WI( 

have discussed so far had the following two features in common. 
(I) The form of th;.frequel\CY function, of the parent population from which 

ihe samples have been drawn is assumed to be known, and . ' 

(ii) They were concerned with testing statistical hypothesis about the 
parameters of this frequency function or estimating its parameters. 

For example, almost all the exact (small) sample tests of significance are 
based on the fundamental assumption that the parent population is normal and 
are concerned with testing or estimating the means and. variances' of .tJtese 
populations. Such tests, which deal with the parameters of the popjdation are 
'known as Parametric Tests. Thus, a parametric statistical test" is a test whose 
model specifies certain conditions about the parameters of the population from 
which the samples are draWn. 

On the other hand, a Non-parametric (N.P.) Test is a test that does not 
depend on the particular form of the basic frequency function from which the 
samples are drawn. In other words, non-parametric test does not make any 
assumption regarding the fQrm of the population. 

However, certain assumptions associated with N.P. tests are: 
(I) Sample observations are independent 
(u) The vaiiabJe under study is continuous. 
(iii) p.d.f. is continuous. 
(iv) Lowe .. order moments exist 
Obviously these assumptiQns are fewer ~d much weaker than those 

associated with parametric tests. 
. 16·8·1: Advantages and Disadvantages or N.P. Methods over 
Parametric Methods. Below we shall give briefly the compara~ve study of. 
paI'8IDetric and non-panunelric me&hods and their relative ~ and dements. 
Advantages or N.P. Methods: 

(I) N.P. methods are readily comprehensible, very simple and easy to apply 
and do not require complicated sample theory. 

(il) No assumption is made abOut the form of the frequency function of the 
parent population from which sampling is done. 

(iii) No ~etric technique w~ apply to the data which are mere 
classifl,Calion (i.e., which are measured in nominaJ ~e), \Y,hile N.P. methods 
exist to deal with such data. 

(iy) Since me socio-economic data ~ not, ip general, normally distributed. 
N.P. tests have found applications in Psychometry, Sociology and Edu~onal 
StatiStics. 

(v) N.P. tests are available to deal with the data which are given in ranks or 
whose seemingly numerical scores have the strength of ranks. For instance. no 



parametric test can be applied if the scores are given in grades suc,h as A +, A' , B. 
A. B+, etc. 

,p~s~dvantages or N.P. Tests. 
(,) N.P. tests can be used only if the measurements are nominal or ordinal. 

Even in that case, if a parametric test exists it is more powerful than the N.P. 
test. In oth~ words, if allllle assumptions of a statistical model are satisfied by 
the data and if the measurements are of req~ired ~trength, then the N.P. tests are 
wasteful of time and data: 

(;i) So far, no N.P. methods exist for testing u:neractions in .' ~na1y~is of 
Variance' model unless special assumptions about the additivity of the model are 
made. 

(ii,) N.P. tests are designed to test statistical h~thesis only and not for 
estimating the parameters. 

Remarks 1. Since no assumption is made about the parent distribution, 
the N.P. methods are.sometimes referred to as Distribution Free methods. l'hest' 
t~sts are based on the 'Order Statistic' theory. In these te~ we ,slJaU be 
using median, ~ange,. quartile, inter-quartile range, etc . ., for which an orde~ 
sample is desirable. By saying thatXlox2, ... ,X" is an ordered sample we mean 
Xl SX2 S ... Sx". 

2. The whole structure of the N.P. metbods rests 'on'a simple but 
fU!ldam~~1 PrQperty of order. statistic, viz. 

"The distribution 0/ the area unde~ the density /unciion between any two 
ordered observations is independent 0/ the form 0/ the density juffction" • which 
we shall now prove. 

16·8'2. Basic Distribution. Let·,Z ,be a continuous random variable 
with a p.d.f.A.). Let~.,~, ... , Z" be a random sample of size n iromA.) and 
let x., X2, ••• , x" be the 'corresponding ordere~ sample. Then the joint density of 
x., X2, ••• , x" is given by 

g(X., X2, ••• , x,.) = n ! AXI) Axv ••. f(x,.), !~ 00 < Xl < X., < ... < X" < 00 

... (16·95) 
'the factor !' ! appearing since there are n ! permufations of ,the sample 
observations and each gives rise to the same ord.ered sample. 

Lei us defme ' 

f"i 
V; = __ Az)dz = F(xi), (i'= 1,2, ... , ii) .. :(16:96) 

wher~ F(.) is the distribution function of Z. But since ({xi> is a uniform random 
variable on [0, I], Vi, (i = 1,2, ... , n), defmed in (16·96) are random variables 
following uniform distribution on [0. 1]., Thus the JOint density' k(.) of the 
random variables Vi, (i'= 1,2, "" n) is giv~n by 

k(u., U2, ' ... , uJ = n !,O S Ifl <'u2 < ... < Ult S I ... (16·91) 
and does not depend on.f{.). 
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E(U;) = J~ '" f; f: "in! dul dul .·. dull 

; = -1 (On simplification) ... (16.98)-
n + 

Thus the expected area under f{.) between two successive ordered obser­
vations is given by 

. i ;-1 1 
E(Ui) - E(Cli - i) = ~ - ;;-:;:-T = ;+t . ., .(16·980) 

which is independent off(.) 
16'8'3 .• Wald-Wolrowitz Run Test. Suppose x .. Xl •••• , X"l is an. 

ordered sample from a population with density fl(') and/letYh h • ...• Y"l ~ an 
independent ordere4 sample from another population with density h (.). We wan. 
to test if the samples have been drawn from the same population or. from 
populations with the same density functions. i.e .• jf ft(.) =f1(')' 

Let us combine the two samples and arrange the observations ill order of 
magnitude to give the combi~ ord~red sample as. (say). 

XI X1YI Y1Y3X3Y4X4XsYs··· ••• (16·99) 
Run (Definition). A run is defined as 0 sequence of leiters _of one kind 

surrounded by a sequence of leIters of 1M olMr kind. and 1M number of elements 
in a -run is usually referred 10 as 1M lenglh (I) of 1M run. 

Thus in (16·99). we have in order: a run of X (I = 2). a run of 'Y (I = 3). a 
run ofx (I = 1). a run of Y (I = 1) etc. 

If both the samples come from the sample population then there would be 
thorough mingling of x's and y's and consequently the number of! runs in the 
combined sample would be large. 'On the other hand if the samplesl c;onie from 
tWo different populations so that their ranges do not oveclap. then there would be 
only two runs of the type Xl.XZ • •••• XIII and Y1> yz • •••• Yil2" Generally. any 
difference in mean and variance would tend to reduce the number of runs. Thus 
the alternative hypotMsis will entail 100 feW runs. 

Procedure. In order to test the Null Hypothesis Ho :fl(') = h(.) i.e .• the. 
samples have come from the same population we count the number of runs • U' 
in the combined ordered sample. 

Null hypothesis is rejected if U < uo. where the value ,of Uo for given level 
of signiflcance is detennined from 'cbnsidecing !he·dislribution of U under Ho. 

FirSt of all let us fincJ the probability of obtaining a ~ific arrangement 
(16·99) under Ho :!t(.) = h(.) = f(.). (say). ' 

.If X's and rs are transformed to U's and V's by the relation: 

II, ~ f:~ ft.z) ih. V, ~ t ft.z) ih. 

!hen the joint p.d/. of U's and V's becomes 
g(ut. "z • .•.• UII• VI. Vl ••••• VII) = nl ! nz ! ... (16·100) 
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The probability of an arrangement (16·99) is obtained on integrating 
(16·1 (0) over the region defmed by 

o < "I <"z < VI < Vz < V3 < •.. < 1 
i.e., integrating "I over 0 to"z ; then"z over 0 to VI and so on. The value of 
the integral will, on simplification, conte out to be 

nL I nz I _ 1 

(nl +nz) I - (nl :Inz ) 

Since there are exactly (nl :i nz Jarrangements of. ni,x's ~4 nz,Y's, it 

follows that all the arrangements of x' s and y's are equally likely. 

Since under 11.0 all the ( n 1 :1 nz ) arrangements of nl x's and nz ,'so are 

equally likely, to obtain the distribution of U under HQ,., it is necessary to count 
all the arrangeme~ts with exactly. '!I' runs. Let us fIrSt take the case of ¢ven 
number of runs, i.e .• "= 2k. In this case we should have k runs of x's and k 
~s~y~ .. 

nl x's will give k runs if they are 'separated by (k - 1) vertical bars in 
distinct spaces between thex's. In other w.ords, (k -1) spaces are to come.out.of 
the total number of (n\ - 'I) spaces between the nIx's and th~s can happen in 

(nkl ~ 11 ) ways. Hence k runs of x's can be obtained in (nkl ~ 11- ) ways. 

S~mi1arlY, k runs of is can be obtai"ed in (n: ~ 11 ) ways. . 

The same result holds if the sequence of runs in (16·99) starts with x' or 
with y. Since a sequence of ~ype (16·99) play start with x or y, we get 

p (U ~ 7.t) = 2 (nkl : : ) ( nk' :l~ ) 
. (nl :1 n2 ) 

H the number of runs~in (16·99) is odd, i:e .• "= 2k + I, then we should 
:have eithe.r (i) (k + 1) runs oh.and k runs of y or (ii) k runs of x and (k + 1) 
runs of y. Hence 

p (U = 2k + 1) =P (i) +f (ii) 

=( nl ; 1 ) (:z ~ 11 ) + (i ~ : ) (n2 ; 1 ) 

(nl :ln2 ) 
Hence ~e distribution of U under'Jlo is given by· 
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P(U = 2k) 

-p(U=2k+ 1) 

.•. (16·101) 
IT the probability of type I error is fixed as a. then Uo is determined from 

th~ equatioQ : 
14> 
I 1,(u) = a ... (16·102) 

11-2 

where h(u) is the probability function of U given by' (16·101). 
Calculation of Uo from (16·102) is quite,tedious and cumberso~e unless "l 

and 112 are large in which case under HOt U is asymptotically normal with 

E(U)·= ~I~ + 1 ..• (16·103) 
"l + 112 

Var(U) : 21l11l2 (21ll1l2 - III -1l~ 
(Ill + 1l2)2 (Ill + 112 _ 1) .•. (16·104) 

and we can use the normal test 

Z - ~ -E(U) -- N(O. 1). asymptotically .... (16.105) 
Var(U) 

This approximation is fairly good if each of "l and 112 is greater than ]0. 
Since the alternative hypothesis is "too few runs'. the test is ordinarily one­
tailed with only negative values leading to the rejection of Ho. 

16·8'4. Test ror Randomness. Another application of the 
'run' theory is in testing the randomness of a given· set of observations. Let 
Xl> X2 • .... X .. be the set of observations arranged in the order in which they 
occur. i.e .• Xi is.the ilh observation in Ihe outcome of an experiment Then. fOI 
each of the observations. we see if it is above or below the value of tlte l1\edian 
of the observations and write A if the observation is above and B if it is below 
the median vaJue. Thus we get a sequence of A's and B's of the type. (say). 

A B B A A A B A B B ... (*) 
Under the null hypothesis Ho that the 3et olobs!!rva/ions is ralldom. the 

number of runs U in (*) is a r.v. with 

E(U) = "; 2 and Var(U)=~ (: = ~) ... (16·106j . 
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For large" (say. > 25). U may be regarded as asymptoti~Uy normal and we 
may use the normal test. 

16·8·S. Median Test. Median test !s a statistical procedure for testing 
if ~wo' independent ordered samples differ in their central tendencies. In other 
words. it gives information if two independent samples are likely to have been 
drawn fro~ the populations with the same median. 

As.in 'run' teSt. let x .. Xz • •••• X"1 and Jlo ]z • •••• J"z be two independent 
ordered sanu>les from the populations with-p.d.f.'s/l.) and-/z(.) respectively. 
The measurements must be at least ordinal. Let ZI. Zz • •••• z"l +"z be the 
combined ortkred samp~e. Let ml be th~ number of x's and mz the number of is 
exceeding the median value M. (say). of the combined sample. 

Then under the null hypothesis -that the samples 'Fome from the same 
~pulation or from different populations with the same median. i.e .• under 
H 0 : 11 (.) = 12(.). the joint distribution of m I and mz is the hypergeometric 
distribution with probability function : 

(nl ) ( n2 ) 

P(ml. mv = (m~1 ~ ~~2) ... (16.~07) 
ml + m2 

Ii ml < 11112. then the critical region corresponding to the size of type 1 
error_a. _is given by ml < m{ where ~{ is computed from the equation , 

"'I 
1: p(mhmV=a 

-I - I 

The distribution of ~I under Ho is also hyPer-geometric wjth 

E(ml) =-~ • if N = III + "z is even 

!!J.N-l.· .. 
=2 .~.lfNlSodd 

Var (ml~ = 4(~:' I) • if N is even 

nl"2 (N + 1) 'fN' odd = 4N2 ·.1 IS 

••. (16·108) 

.•• (16·109) 

Ibis distribution is most of the times quite inconvenient to use. However 
for large samples. we may ·regard ml to be asymptotically norm~ and use 
normal test. viz.. ' 

Z = ~1 :- E(ml) ..., N(O. I), asymptotically. ...(16.110) 
Var (ml) 

Remarks 1. The observations ml and m2 can be classified into the 
following 2 x 2 contingency table. 
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No. of'observations 
>M 

Sample' . 

m~ 

Sample ~ 

mz 
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Total 

ml +m2 

'No. of observations 
<M 

III -~'1 n2- m2 "1 +"2 -m{·-m2 
. 

Total III nz III +n2=N 

If frequencies are small we can C9mpute the exact probabilities from 
(16·107). rather than approximate them. However, if frequencies are large we 
may use X2-test with 1 d.f. (for a 2 x 2 contingency table) for testing Ho. 

The approximation is fairly good if both "1 and n2 exceed 10. 

2. Median test is sehsitlve-to 1M differences in location belWeenJi(x) and 
h(Y) but not to differences in their shaPes. Thus iffl(x) andfz(y) have the same 
median. we would expect Ho :/1(') = fz(.) to be accepted Ordinarily even though 
their shapes are ~uite different. 

3. penaaJly. the median test makes the correct decision with a little more 
assurance than does the sign test (c/. §. 16·8'6) but ~ot as decisively as the 
totes£. 

'16'8'6. Sign Test. Consider a situation where it is desired to compare 
two things or materials UDder various !!CIS of conditions. An experiment is thus 
conducted under.1he following circumstances : 

(i) WIlen there are pairs of observations on ~o things being compared. 
• {ii) For any given pair. each of the two observatioflS is made-under similar 
~xtraneOus conditions. 

/'; 

(iii), pifferent'paiJ's are observed WIdez different COOditfoos. 
C6nditio!l (iii) implies -that the differences dj = Xi - 'i ; i = 1.2 •...• Il have 

. 4iffeienl variances and thus renders the paired t-test (Chapter 14) inv:ilid. which 
-kould;have otherwise been used unless there was obvious non-normality. So. in 
such a d1Se we use the 'Sigll Test'. named so si~e it is ~ on the signs (plus 
or minus) of the deviations dj ='~i- 'I' No assumptions are made regarding the 
parent ~ulation. The only assumptions are : 

tI •. 

. 

-, (i) t-1~urements are such that 'the deviations d, ~ Xi - 'i. can be expre. -
in tenns oC-positive or negative signs. ' • e' 

~(ii) Variables h~ve continuous distribution. 
(iii) da' s are independent 

Different pairS (xi. 'j) may. be from diUcrent populations (say I w.r.t. age. 
,weight. stature. education. etc.). The oply requiCement is that within each -pair. 
there is m~hi!1g w.r.t relevant extraneous factors. 
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erocedure. Let (~i' 'i). i = 1.2 •.•.• n be n paired sample obser.vations 
drawn from the two populations with p.d/. 's/l(') andlz(.). We want to test the 
"ull hypothesis H.o :/1(') =./2(')' To test Ho. conlli~r'di = ~i - 'i. (i = 1.2 •...• 
n). When Ho is true. ~i and 'i constitute a random S1UDple of size 2.from the 
Same population. Since the probability that the fIrst of ~e two sample 
obServations exceeds the second is same as the probability that the second 
exceeds the first and since hyPothetically the probability of a tie is zero. Ho may 
be restated as : 

Ho: 

Let us define· 

. 1 1 
P[X - Y > 0] ="2 and P[X - Y < 0] ="2 

TJ.={I. if~i-'Ji>O 
.• 0'. if ~i - 'Ji < 0 

Ui is a Be~oulli variate, with.p = P(~i - 'i > 0) = k. Since Ui·s. i = 1.2. 

" .... n ~ inde~dent, U = I. Ui• the total number of posi~ve deviati9DS. is a 
i.l 

Binomial varia~ with J>~e~s n ~d p (=~. Let the, n\JDlber of positive 
deviations be k. Then 

P(U S k) = i (~ )P,. q"-¥, (p = q = -21 WIder H,v. 
,..0 ' 

=( ~ )",.t (n, )=.P,.(say). ...(16·111) 

If p' S.0·05 •. we rejecVHo at '5% level of significance and if p'> 0·05. we 
C9nclude dlat the data do not provide any evidence against the null hypothesis, 
which may therefore. be accepted. 

For large samples;·(n ~ 3(».·we may reg~~JU~.~.as)'QlptobcallY q.brmal 
~th. (under Ho) \ 1;'. 'f • t' 

_ E(U) :.np = 11/2 and Var (lJJ=;y,q':: nJ4. 

.. Z = U - ~(~ = ~2 • is asymptotically N(O. 1) ..... (16.112) 
...J Var (U) (nI4) 

and we may use normal tesL 
1~·8·7. Mann-Wbitney-Wilcoxon U-test. This non-parametric test 

for two samples was described by Wilcoxon and studied by Mann-and Whitney. 
It is the most widely used test as an alternative to the t-test w~en we do not 
make the t-test assumptions about the parent population. 

Let ~i (i = 1.2 ..... "l) and 'Jj (j = 1. 2 ..... n2) be independent ordered 
S8IJlples of ,si?:e n I and liz from the populations with p.d/. II (.) and Iz(.) 
~pectively. We want to·test the null hypothesis H. :/.(.) == Iz(.). Like the run 
test. Mann-Whitney test is based on the pattern of the x's and ,'s in the 
combined ordered sample. Let T denote tM sum ol,anles 01 the y's in tM 
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combined ordered sample. For example, for the pattern (16·99) on page 16·61 of 
combined ordered sample th~ ranks of y observations are respectively 3.4. 5. 7. 
10 etc. and T = 3 + 4 + 5 + 7 + 10 + ... The test statistic U L'I then defined in 
terms of t as follows: 

U nz(nz + I)· T :: nln2 + 2 - ... (16·113) 

If T is significantly large or small then 1I0 :/1(') = h(.) is rejected. The 
problem is to find the distribution of T under H Q. Unfortunately. it is ver,! 
troublesome to obtain the distribution of T under 110, However. Mann and 
Whitney have obtained the distribution of T for small nl and n'z. have found the 
moments of T in general and shown that T is asymptotically normal. It has been 
established that under Ho. U is asymptotically llo"lrmally distribu~ed as N (J.1.. 0'2), 

where 

z =.!L:-.J! - N(O. I), asymptotically. 
0' 

••• (16·114) 

. .. (16·114a) 

and !'onnaltest can be used. The approximation is fairly good if both nl and "2 

are greater than 8. 
Remark. The asymptotic relative efficiency (ARE) of Mann-Whitney's 

U-test relative to two samples t-test is greater lllan or equal to 0·864. For a 
normal population. this ARE = 31ft = 0·955. Accordingly, Mann-Whitney's U­
test is regarded as the best non-parametric test for loc:ltion. 

EXERCISE 16 (c~ 

1. Explain what is meant by non-P£U'lllIletric mCl.hUUb. How d,; they differ 
ffom parametric methods '! Illustrate your answer by considering a suitable 
nonpacametric test for the hypothesis that two independent samples have come 
from the same population. 

2. (a) Derive the sign tes~, stating clearly the assumptions made. 
(b) Describe the median test for the two·~ple location problem. Fiqd the 

distribution of the test statistic and compute its mean and variance under th~ null 
hypothesis. How is the test carried out in case of large samples? 

3. Explain the main' difference between parametric and non-parametric 
approaches to the theory of statistical inf<.rence. Derive the sign test for two 
sample problem. [Delhi Unio, B.Sc. (Stat. Hon8.), 19881 

4. Describe the sign test. 
X'lt Xz •..• , XIO is a random sample of size 10 from a population having 

distribution function F(x). Test the hypothesis' 110 : F(72) = ~ against the 

alternative hypothesis, HI: F(72) >!.: [MadrC'U URi". B.Sc., 1988] 
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s. EJplain Median Test and how it is applied. 
The observations of a random sample of size 10 from a distribution which 

is symmetric . about K.s. are 20·2, 24·1, 21·3, 17·2, 19·8, 16·5,21·8, 18·7, 
17·1, 19·9. Use Wilcoxon's Test to test the hypothesis Ho: K.s'= 18 against 
H r: K.s > 18 if a = 0·05. You may use the nonnal approximation. 

[Agra Univ. B.Se., 1989] 
6. Describe the procedur« in median test when there are two independent 

samples. What non·parametric test would you use when the two s~ples are 
related. 

7. Discus~ the Mann-WhitneY-WiJcoxon test for the equality of two 
population distribution functions. [Qelhi Univ. B.S~. (Slat. Hons.), 1986] 

8. What are the advantages and disadvantages of non-parametrtc methods 
over parametric methodS ? 

Develop the following non-parametric tests, stating the underlying 
assumptions and the null hypotheses: 

(a) Median test 
(b) Mann-Whitney-Wilcoxon test 

Welhi Univ. ~.Se. (Stat. Hon •• ), 1993] 
9. Explain the main difference between the parametric and non-parametric 

approaches to the theory of statistical inference. What are the advantages of non­
p;:aametric tests ? Develop Median test and Mann-Whitney-Wilcoxon test. 

Welhi Univ. B.Sc. (Stat. Hons.), 1992, 1985] 
10. Distinguish bctwcen 'sign test' and 'Wilc~xon signed rank test'. 

Describe the sign test for testiqg that the population J:Ilediap is Mo against the 
alternative that the median is Ml (> Mo). 

U. Develop the Mann;WhitneY-Wilcoxon ·test and o1>tajn the mean and 
v.ariance of the test statistic T. \low is the test carried out for large samples ? 

12. Exp~ining the distinction between the parametric and non-parametric 
tests, write down the advantages of 'non-parametric tests. Also write their 
disadvantages. 

Thirty observations as given below are obtained : 
24,35,12,50,60,70,68,49,80,25,69,28,28,11,83, 
31,37,34,54,75,45,95,75,26,43,57,94,48,63,45 

Test their randomness by considering the sequence of positive and negative 
signs. [Ag~a Univ. B.Sc., 1989] 

'13. What are the advantages and disadvantages of Non-Parainetric Methods 
over Parametric Methods ? 

Derive the Wald-Wolfowitz run test for festing the equality of two 
distribution functions. Welhi Univ. B.Se. (Stat. Hons.), 1981] 

14: What are the advantages of Non ParametQc tests? DeCi'ne a run and the 
length of a run. Describe the Run Test in detail for testing the equality of the 
two populations and extend the test when the ties occur. . 

[Delhi Univ. a,Se; (Stat. Hon.;), ;I983] 
IS. What. are runs? Comment on their utility in no~-parametric inference. 
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If Rl and Rz denote the n~tnber of runs of nl objects of one type and nz 
objects of lPlother type in a sample·of size nl + nz, then find the probability that. 
R 1 + R z = r, for r even and r Qdd, and also ~the mean and variance of R 1 + Rz 
when all these nl + nz observations arise fJ'Qm the same distibution. 

[Delhi Univ. M.Sc. (Slat.), 1991] 
16. (i) Explain how the run test can be used to test randomness. 
(ii) In the median test with samples of size 9 and 7 respectively, from two 

populations find the probability density function of the random variable 
representing the number of values of the samples from the first population in 
the lower half of the combined sample. [Madra. Univ. B.Sc., 1988] 

17. (a) The win-lose record of a certain baske~ball.team for its last 50 
consecutive games was as follows :­

WWWWWWLWWWWWWLWLWWWLL.WWWW 
LWWWLLWWWWWWLLWWLLLWWLWWW 

Apply run test to test that sequence of wins and losses-is random. 
(b) Use an appropriate non-parametric test procedure to test for randomness 

the following set of 30 two-digit numbers: 
15, 17, 01, 65, 69, 69, 58 41, 81, 16, 
16, 20, 00, 84, 22, 28, 26, 46, 66, 36, 
86, 66, 17, 34, 49, 85, 45, 51, '40, 10. 

18. At the beginning of the year a first grade class was randomly divided 
into two groups. One group was taught to read using a .uniform method. where 
all students progressed from one stage to the next at the same time. following 
the teacher's direction. The second group was taught to read using an individual 
method. where. each student progressed at his own rate according to a 
programmed work book. under supervision of the teacher. At the end of the year 
each student was given a reading ability test with the following results : 

First Group Second Group 
227 55 184 202 271 63 
176 234 l47 14 151 284 
252 194 88 165 235 53 
149 247 161 171 147 228 

16 92 171 292 99 271 
Use the Wald-Wolfowitz run-test to test for the equality. of the distribution, 

functions of the two groups: 
19. Using the num~er of runs above and below the median. test for 

randomness the following set of a table of 2-digit numbers: 
15. 77, 01, 65, ·69, 69. 58. 40, 81, 16, 16 20, 00, 84, 22, . 
28. 26, 46, 66. 36. 86. 66. 17. 43. 49. 85, 40. 51. 40. 10. 

16'9. Sequential Analysis - Introduction We have seen that in 
Neyman-Pearson theory of testing hypothesis. n. the sample size is regarded as a 
fixed constant and keeping a fixed, we minimise~. But in the. sequ~ntial 
analysis theory propounded by A. Wald n. the sample( size is not fixed but is 
regarded as a random variable whereas both a and 13 are fixed constants. 

16·9·1. Sequential Probability Ratio Test (SPRT). The best 
known procedure in sequential testing is the Seque14tial Probability Ratio Test 
(SPRT) developed by A. Wald discussed below. 
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SUpp08C we 'want to test the hypothesis, H 0 : 0 = 00 against the 
alternative hypothesis, Hi :.a = 91, for a distribution with p.d.f. j(x, 9) For any 
positive integer m, the likelihood function of a sample XI' Xz, ••• , X", from the 
population with p.d.f:j(x, 9) is given by 

III 

LIlli = nj(Xj, 9.1) when Ifl is true, 
j-l 

III 

and by to... = ,nj(Xj, 00> w"en i/o-is true, 
; -1· 

and the likelihOod ratio )..111 is given by 
III 

j!l/~~j, ( 1) III j(Xj, ( 1) 
III = ,n j(x. 9" (m = 1, 2, ... ) 
II f(xj, ( 0) • - I If OJ 
i-I 

1he SPRT for testing Ho against HI is dermed as follows: . 

... (16·115) 

At each stage of the experiment (at the mth trial for any integral value m), 
the likelihood ratio Alii' (m = 1,2, •.. ) is computed. 

(I). If Alii .~ A, we terminate the process with the 
rejection of Ho 

(it) If Alii ~ B, we terminate the process with the 
acceptance of 110. anCi 

(iiI) If B.< Alii < A, we continue sampling by 
taking an additional observation. 

•.. (16·116) 

f,{ere A and B, (B < A) are the constants which are determined by the relation 

A =~ B=~ (16117) a' I-a .... 

where a and p are the probabilities of type I error and type II error respectively. 
From computational po~nt of view, it is much convenient to deal with 

log A.III rather than Alii' since 

'1 ~ f(xj, ( 1) ~ 
16g "'III = ~ log j( 9) = ~ %, 

j-l Xi, 0 ~ 1 

I f(xj, ( 1) 

%j = og j(x" 00> 
In terms of %;'S, :::;PRT is dermed as follows: 

{I) If I %, ~ log A, r~jeCt Ho } 
(u) -H I %j ~ log B, reject HI 

(iii) If log II < l: %j < log A, continue sampling by 
taking an additional observatior:t. 

... (16·118) 

... (16·1180) 

... (16·119) 
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Remarks 1. In SPRT, we continue taking addition~ observations unless 
the inequality 

B < Alii < A ~ log B < L %i < log A, 
is violated at eitJter end. It has been proved that SPRT eventually terminates 
with probability one. 

2. Sequential schemes provide for a minimum amount of sampling and 
thus result is considerable saving in terms of jnspection, tim~ and money. As 
compared with single sampling, sequential scheme requires on the average 33% 
to 50% less inspection for'the same degree of protection i.e.. for the same 
values of a and ~. 

16·9·2. Operating Characteristic (O.C.) Function or SPRT. 
The O.C. function L(O) is defined as 

L(O) = Flrobability of accepting H 0 : 0 = 00 when 0 is the true va~ue of 
the parameter, 

and since the power function 
P(~) = Probability of rejecting flo where 0 is the true value, we get 

L(O) '= 1 - P(O) ••• (16·120) 
The O.C. function of a SPRT for testing Ho : 0 = 00 against the alternative 

HI: 0 = 01, in sampling from a population with density function f(x. 0) is 
given by 

" .. (16·121) 

where for each value of 0, the value of h(O) :# 0, is to be detennined so that 

E~~: ::~Jh(8) = 1 ... (16·122) 

where the constants . .A and B have already been defmed in (16·117). It has been 
proved that under very simple conditions 'on the nature of the function f(x, 0), 
there exists a unique value of h(fJ) :# 0 such that (16.122,) is satisfied. 

16·9·3. Average Sample Number (A.S.N.). The sampie size n in 
sequential testing is a random variable which can be detenoined in tenos of the 
true density function Ax, 0). The A.S.N. function for the S.PRT. for testing 
Ho: 0 = 00 against HI : 0 = 0i. is given by 

E(n) = L(O) log B + l(b- L(O)] log A ... ~16.123) 

..... - Z = 10 rftx , ( 1)] A =.!.=.l B = ----L (16 1"''' a) 
Wlage g !!tx, (0) , a' 1 _ a .... .=a. 

Example 16·11. Give the SP .R.T. for testing 11.0: 0 = 00 czgainst 
HI : 0 = Oi (> ( 0), in sampling from a normal density. 

~ = ~exp[- ~ l ~ 0)2] ,-00 <x·< 00 

where a is known. Also obtain its O.C.function and ASN.function. 
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Solution. ~~:: ::~ = exp [- ~ ( (x; - 01)2 - (x; - 00)2 } ] 

=exp[- ~ {(OO - 01) (2t; - 00 - 01)} ] •.. (*) 

. _ f(xi;~ _ 01 - 00 [. 0 0 + 0 1] 
'." -log f{x;. 00> - az ~. - 2 .•• (**) 

...... • 1 '\ _ ~ . 91 - 00 [~ . _ m(Oo + 91)J 
-- og",,,, -.~ z.= !2 +-X. 2 

• -1 (J • 

Hence the S.P.R.T. Cor H 0 : 0 = 00 against HI; 0 = .0 .. is given by 
[c.C. (16·119)] : . 

(i) RejectHo if 

0, ;200 [I.X; _ m(oo; 01)J ~Iog (1 ~ B) 
'" az (!..=..l) m(Oo + 01) I. Xl ~ 0 0 log + 2 ; (01 > 00) 

i-I 1- 0 ex 

(ii) AcceptHo if 

01 - 00 [~ m(Oo + 
(12 ~X; - 2 

i. XI:S . az log (--1L )+ m (00 + 01) ; (01 > 00> 
i-.1· 01 - 00 1 - ex 2 . 

and (iii) Continue taking additional observations as long as 

I (--'L) 9, - 00 [I. ,"(90 + 01)J 10 (L::Jt) og 1 _ a . < (12. Xl - 2 < g a 

~ 0 1 a: 00 log ( 1 ~ 6 ) + m(OQ2+ 01) < Ixi < 01 ~ 00 log ( ~ ) 
m(Oo'" 01) 

+ 2 

O.C. Function. First of all we shall determine h = h(O) "" O. from 
(16·122) i.e., from 

1- r~r . _ ~ L.Itt. 00) J .Itt. 0) tbc = 1 
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If we take 

then L.R.S. becomes 

A = (9 1 - 9 0) h + 9 } 

A.2 = (9 12 - 902)h + 92 

1 Joo [, 1 'J _ c- exp - '2cJ2 (x - A)2 dx. 
(1~27t -aD ~ 

16073 

... (***) 

w~ich being the total area under normal probability curve with mean A and 
variance (12 is always unity. as desired. Thus h = h(9) is the solution of{***) 
and is given by , 

get 

(912-- 902 ) h + az = [91 - 90)h-+ 9F 
=> (012 - a;)h = (91 - 90) 2h 2 + 29(91 - 90)h 
Since h:;: h(9) ¥-O and 91 "# 90• on dividing throughout by (91 - 90)h. we 

(91 + 90) = (91 - 9 0) h + 29 

h(0) = 9 1 + 90 - 29 
91 - 90 

Substituting for h(9) in (16·121) we get the required, expression for the 
O.C. function. 

A.S.N. runction. We have 

Z -I j(x. 9,) _ 01 - 90 [- 00 + 91 J-
- og j(x. 00) - (12 x - 2 

91 - 00 [ ] . • E(Z) = 2cJ2 2E(x) - 90 - 91 

9) - 90 [ ] = 2G2 ,29 - 90 ,,-: 91 

Substituting in (16·123). we get the required A.S.N. function. 

Example 16·12. Let X have the distribution: 
j(x. a) = a" (1 - O)I-lI; X = 0.1; 0 < a < 1 

[From (**)] 

For testing Ho : 9 == 90 against HI: A' = Olt construct S.P .R.T. and obtain 
its A.SN. and O.C./unctions. 

[Delhi Ulli". B.Sc. (Stat. BOil •• ), 1993, 1985] . 
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Solution. We have 
A L(XI. X2 • ..... X'" I HI) 

'" = L(x .. X2 • •••• X'" I Ho) 

{ .. I. Xj '" - L %i} 
1-1 i-I = 0 1 (1 - ( 1) 

_ ('!L ); ~ 1 %,i (1 - 0 1 )'" -; ~'1 %; 
- 00 1 - 00 

log A", = !.xi log (0 .t(0).+ (m. - !.x;) log (11 ~ : ~ ) 

= i~IXi log [ O~o~~ = :lr] + m klg Cl ~ :0 ) 
Hence SPRT for testing Ho: 0 = 00 against HI : 0 = 0 .. is ~iven by 

[c:!. (16·119)]: 

(0 Accept ii 0 if log A." Slog ( 1 ~ a )= b. (say) 

. . '" b - m log [(1 - ( 1)/(1 - 00)] 

•. e .• if i~lXi.S log [01(1- ( 0)/00(1- 01>1 =.a",.(say); 

(iO Reject P'J (Accept HI) ~ log A.. ~ log 1 ~ B = a •. (~y) 
. .• a - m log [(1 ... ( 1)/(1 - 00)] 

•. e .• ifi~lxi~ log [01(1-00)/00(1-.01)] = r •• (say). 

(iii) Continue sampling if 
b < log A. < a ~ a", < I Xi < r. 

O.C. Fundion. O;C. function is .given by : 

L(O)' = [AA(8) - 11/ [AA(8) - BA(8)] [e/. (1& 121n ... (.) 
where for each value of O. h(O) * 0 is to be detennined SQch that 

E r.f{x. (1)] A(8) = 1 [c/. (16.122)] 
l/{x.Oo) 

~ l: rftx; 01) ] A(8) j(x. 0) = 1 
.11- 0 lRx• 00) 

~ .11 ~ 0 [ (~ ).11 (11 ~ :~ r -.11 t ~1 - 0)1-.11 = 1 

~ (11 -=- :~ )11(8). (1 _ oj + (~ )A(t). 0 = 1 ... (u) 
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The solution of Qlis equation {or h = h(O) i~ very tedious. From- practical 
point of view, instead of solving (il),for h we'regard h as:a parameter-and solve 
it for 0, thus giving 

o[ (~ )A(8) - Cl ~ :~ )A<8)] = 1-Cl ~ :~ )~ 
1 - [(1 - 01)/(1 - OO)]A~) 

~ 0 = (01/00)A(8) _ [(1 _ 01)/(1 _ Oo)]A(8) = O(h). (say). . . . (iii) 

Using (I), we have 
[(1 - B)/a]A ,.. 1 _ 

L(O) = [(1- ~)/a]A _ [P/(1 _ anA =L(O, h), (say). . .. (iv) 

Various points on the O.C. curve ~e obtained ~y assigning arbitrary 
values 10 'h' and computing the corresponding values of 0 and L(O) from (iiI) 
and (iv) respectively. -

A.S.N. Function. 

Z -log r/(x, 01)] • A _l.=..! B _--L - !!lx, 00)' - a ' - 1 - a 

.. i(Z) = i log rftf(.t, 001»] .J(x, 0) 
% _ 0 ~ x, 0 

= i log [ ('!l )% (1- 0 1)1 - %]. 0" (1_0)1-% 
% _ 0 90 \1 - 00 

= (1-0) log (! = :!)+ 0 .1.og (~ ) 
[ 01 (1 - 00) ] (~ ) = 0 log 00 ~l _ 0 1) + log 1 _ 00 ••• (v) 

A.S.N. is given by 

E(II) = L(O) 10$ S- + [l - L(~l] . log A ( r\ 
E(Z) ••• VI, 

Substituting the values of E(Z) and L(O) from (v) and-(M in (vi), we get 
the A.SN. function. 

Remark. If" assumes negative values i.e., if instead of h we take - h 
where h > 0, then 

L(O, - h) = AA-A-A_-B~A = ~A -:. ~AA)BA = ~AA _-il} Bl 

=> LeO, - h) =Bl. L(O, h) ••• (vil) 

[{1 - 01)/(1 - OO)]l - 1 ( .!J.... )A 
m 9(- h) = [(1- 01)/(1- Oo)]~ - (01/00)A .0 0 

= O(h) • ( oro ) l ... (viil) 



Fonnulae (vii) and (viii) are verY convenient ..0 use for obtaining the points 
on O.C. curve ~or arbitrary negative values of h. 

EXERCISE 16(d) 

1. (a) Describe Wald1s Sequential Probability Ra:io Test. 
(b) Explain how the sequential test procedure .1iffers from the Neyman­

Pearson test procedure. 
2. Define the OC function and ASN function in ~equei\tial analysis. 

Derive their approximate expressions for the seq\1ential probability ratio test of a 
simple hypo,lt\esis ~gainst a simple alternative. 

3. Describe Wald's S.P.R.t. Let X be a Bernoulli variate with p.d.f. 
f(x ... a) = 0"'(1-0)1-,,;X = 0,1; 0 S a s 1. 

Employ S.P.R.T. for testing Ho: 0= 90 against HI : 9 = 91t and obtain its 
A:S.N. and O.C. functions. 

[Delhi Unir1. B.Sc. (Stat. Bqn •• ), 1993, '85] 

4. (a) Explain how the ~uential test p~edUre differs trom the Neyman­
Pearson test procedure. 

Develop the S.P.R.T. for testing Ho : 1t = 1to, against HI: 1t = 1t1t based on 
a random sample from a binomial population with parameters (n, 1t), n being 
krlown. Obtain its O.C. and A.S.N. functions. 

(b) Obtain the sequential prob3.bility ratio test of the hypothesis Ho: a = t 
against HI: a = ~ for the distribution: 

{a" (1 - 0)1 -", for x = 0, 1 
f(x;O),: o otherwise 

~Madr08 Univ. B.Se., 1988] 

5. Develop S.P.R. test for testing H 0: a = 00 against HI: 9 = A .. 
(01 > 00>, where a is the para.'tleter of a Poisson distribution. Find approximate 
expressions for OC function and ASN function of the test. 

[Delhi Unir1. BoSe. (Stal. Bon •• ), 1988] 

~. Describe Sl> .R.T., its OC and ASN functions. 
Construct S.P,R.T. for testing Ho: 0= 00 against HI: a = Olt (0<00 < 01), 

on the basis of a random sample drawn from the Pareto distribution with densi~y 
function: 

Oa· 
f(x,O)=~e+l' x~a" x 

Also obtain its O.C. function and A.S.N. function. 
[Delhi Unir1. B.~e. (Stat. Bon •• ), 1989] 

7. Explain how Pte sequential test procedure diff~s from the Neyman· 
Pearson test procedure. 

Develop the S.P.R.T. for teSting Ho: 9 = 90 against !II : 9 = 91 (> 90). 

based on a random sainple of size n from a population with p.df. 
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1 /tx, 0) = 9 e-.rI8, x> 0, 0 > O. 

Also obtain its A.S.N. and O.C. functions. 
£Delhi Univ. RSc. (Stat. Bon •• )., 1981] 

8. Let X have the p.d.f~ 

/(x. 0) = ~ , - • {o ... -e:c . x ~ 0 0 > 0 

o _. elsewhere 

For testing Ho: 0 = 00 against HI: 0 = 0 1• construct the S.P:R.T. and 
obtain its ASN and OC fupctions. 

[IndilUl Civil Seruice. (Main), 1989; 
Delhi Uni.,. RBc. (Bla!. HOM.), 1982, 1986] 

9. (a) What is a sequential lest ? How wi]) you develop an optimum lest of 
a specified strength for a simple null hypothesis vecsus a simple alternative ? 

(b) Find expressions for the sample size expected for termination of SPRT 
both under Ho and H ... Clearly state all the,assum~ons made. 

(c) A random variable follows the normal distributi,on N [a, 0'2]. where a2 
is known. Derive the SPRT for testing Ho: 0 = 00 againSt HI: 0 = 01, Obtain 
the approximale expression for the. OC function. 

[Indian Ci.,il Service. (Main), 1990J 

10. To test sequentially the hypothesis Ho that the distribution is given by 

P(X = -1) = P(X = 1) = P-(X = 2) = ~ against the alternative HI that it is given 

by f(X = -1) = P(X = 1) = ~; P(X = 2) = & ' it is decided to continue sampling 
(n + 1) n + 2 , 

as long as - 2 < S" <-2-' where S" =X1 + X2 + ... + XII' the X.t s 

being the successive observations. Compute tJ7.e probability under 110 and under 
HI that the 'procedure will teiminaie with the fourtfi observation or earlier. 

11. Xit X2, ••• , XII be a sequence of i.i.d. observations from N{J.1.0'2), 
where J.I. is known. 0'2 being unknown. Obtain the SPRT for testing 
Ho: 0'2 = 0'02• against HI : 0'2 = 0'12 (> 0'02). Also obtain its OC function and 
A.S.N. function. 

ADDITIONAL EXERCISE ON CHAPTER XVI 

1. (a)"An examiner may pass a dull student or may fail a good student". 
Explain the above statement with reference 10 type-I and type-n errors. 

2. A single value x is drawn from a normal population with mean m 8Jld 
variance 25. The null hypom,esis Ho: m = 50 is accepted if x S 75. otherwise 
HI : m = 60 is considered bUe. Evaluate -the type I aild type U errors. 

3. Let p be the proportion of smokers in a certain City. You desire to leSt 

the hypothesis Ho : p = k against HI: p = ~ . If lOU reject Ho when 60 persons 
or more are found smokers in a sample of 100 persons. compute the significance 
level and pow~ of the tesL 
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4. Let Xl' Xl' ... , XlO be a random sample of size 20 from a Poisson 
lO 

distribution with mean O. Show that the critical region defined by 1: Xi ~ 5, 
- 1 

is-aunifonnly most powe,ful critical region for testing Ho: 0 = 1/10 against 
HI: 0> 1/10. 

5. LetX1,Xl , ...• X. denote a random sample from a normal distribution 
N(O, 16). Find the sample size 11 and a uniformly most powerful test of 
Yo: 0 = 25 against HI : e < 25. with power function K (0) so that approxi­
nately K(25) = 0·10 and K(23) = 0·90. 

6. In testing Ho : CI = Clo against HI : CI = Cl1 (~Clo) •. for the distribution: 

1 .[ (~- O)~ . AX)=a exp - \~IJ·(OSX<OO.CI>O) 

&now that the UMP test is of ,the fonn 
Ix. ~ constant and Ix. S constant. 

7. X 1. X l is a random sample from a distrib~tion with- p.d.f. 

j(x. 0) = ~ e-#e. X > O. 0 > O. The bypothesis H 0 : 0 = 2 is tested against 

1-11 : 0 > 2 and is rejected if and only if Xl + Xl ~ 9·5. Obtain the power 
function and the significance level of the test. Also fmd the probability of type 
II-f!1Tor when 0 = 4. 

8. On the basis of a ~ingle observation X from the following p.d.f. 
1 

Ax. 0) = e C ..... (x> 0; e > 0) 

the null hypothesis. H 0 : e ... 1 against the alternative hypothesis HI: 0 = 4. is 
tested bJ using a set 

C = (x:x> 3) 
&'1 the critical region. Prove tb.at the critical region C provides a most. powerful 
test of its size. What is the power of the test ? 

9. Let X be a single observation from the density f (x ; 0) = 20x + 1 - O. 
0< x < 1.\ 0 \ S I; zero otherwise. Find the best critical region of size cx. for 
testing llo: e = b against HI: 0·< O. Express the power'function of this test in 
tenns of cx. Is the test uniformly most powerful ? Explain. 

10. Xl. X 2 ••••• X. iii a random sample of size 11 from N (0.' 100). For 
testing H 0 : e = 75 against HI: 0 > 75. the following test procedure is 
pro~: 

Reject Ho if i ~ c; Accept Ho if i < c. 
~ " and c so that the power function P(O) of the test satisflCS 

P(7S) == 'A5,9f and P(77) ... 0·841. 
11. LetXhX" ... ,X. be a random sample from a distribution baving 

p;cU. 
[x(l- x)]' - 1 

Ax,O) == lJ (0-, 0) ,0 < x < I, 0 > 0 

= 0, elsewhere 
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Show that the best critical ,egion for testing H 0 ,: 9 = 1 against Hi: 9 = 2 :is 

C ={ (XIo XZ • •••• X.): c'~ .n Xi (1 - Xi)} . 
• -1 

12. Let X be a single observation from the distribution with p.d.f. 

l(x:O) =9.e-&..; 0<x<00.(9)0) 
= 0 • elsewhere. 

Obtain the best critical region of size a for testing H 0 : 0 = 1 against 
III : 0 = 2. Also obtain the power of this test. 

[Delhi Univ. M.Sc. (Moth.), 1990] 

13. Let (Xlo X2 • .... X9) be a random sample from N (J..l. 9). To test the 
hypothesis Ho: J1 = 40 against HI: J1 'It 40. consider the following two critical 
regions: 

C1 =, fi: i ~ al} 
C2 = {i: Ii -40 I ~a2} 

(I) Obtain the values of 01 and a2 so that the size of each critical region is 
0·05. 

(U) Calculate the power of the two critical regions when ~ = 39 and 
~ = 41 and comment on the results. 

[Delhi URi.". M.A. (Eoo.),1992] 

14. (0) For a sample of size 25 from a normal population N(~. 25). 

X = 11·5. Test the hypothesi~Ho: ~ = 10 against the alternative HI : J.1 > 10. 
Calculate the power of the test for J.1 = 11. 

[Delhi URiv. M.A. (Eoo.),1988] 

(b) Let X - N (J1. 25). The null and alterantive hypotheses are : 

Ho : Jl = 10 and HI : Jl < 10 

(i) Give the best test of size a = 0·05 for a sample of size 25. (No 
derivation is expected). 

(iJ) Calculate the power of. the \eSt10r Jl = 8. 
[Delhi URiv. M.A. (Eoo.), 1990) 

15. X is normally distributed with (1 = 5 ,nd it is desired to test 
H 0 : ).1 = 105 against HI: J.1 = 110. How large a sample showd be taken if the 
probability of accepting H 0 when HI is true is ()'02 and if a critical region of 
size 0·05 is used ? 

(Agra URi.,. B.Sc. 1989) 

16. Let p be the probability that a given die shows an even number. To 

test Ho : P =,~ against HI : P = ~ ; the following procedure is adopted. Toss the 

die twice and accept H 0 if both times it shlSWs even number. Find the 
probabilities of type I and type n errors. 

Welihi Uni". M.C.A., 1990) 



17'. The p.d.f. of x is given ~y f(x) = ~ , 0 <'x < 9. Let the null 

hypothesis be H 0 : 9 = ~ against the alternative' hypothesis H A : 9 >~. We 

have a random sample of one observation. The critical region is defined by 
C = (x: x > 1). 

(I) Find the significance level of the test 
(iI, Find the power of the test for 0 = 7/3 and 0 = 10/3. 

[Delhi Univ. M.A. (Eco.), 1991] 

I 



NUMER.ICAL TAB1J!S 

0 1 2 3 4 

10 ·0000 0043 0086 0120 0170 
11 0414 0453 0492 OS31 0569 
12 ·0792 0828 0864 0&99 0934 
13 ·1139 1\73 1206 1239 1271 , 
14 .1461' 1492 1523 1553 1584 
15 ·1761 1790 1818 1847 1875 
16 ·2041 2068 2095 2122 2148 
17 ·2304 2330 2355 2380 2405 

18 ·2553 2577 2001 2625 2648 
U ·2788 2810 2833 2856 2$78 
20 ·3010 3032 3OS4 3075· 3096 
11 ·3222 3243 3263 3284 l304 

122 ·3424 3444 3464 3483 3502 
23 ·3617 3636 3655 3674 3692 
24 ·3802 3820 3838 3856 3874 
2S ·3979 3997 4014 4031 4048 

i 26 4150 4166 4183 4200 4:t16 
27 4314 4330 4346 4362 4378 
28 ·4472 4487 4502 4518 4533 
29 ·4624 4639 4654 4669 4683 

30 .4771 4786 4800 4814 4829 
31 .4914 4928 4942 4955 4969 
32 ·5OS1 5065 5079 5092 5105 
33 ·5185 5198 5211 5224 5237 

34 ·535 5315 5340 5353 5366 
35 ·5441 5453 5465 5478 5490 
36 '5563 5575 5587 5599 5611 
37 ·5682 5694 5705 5717 5729 

38 ·5798 5809 5821 5832 5S43 
39 ·5911 5922 5933 5944 5955 
40 ·6021 0031 6042' 0053 606S 
41 ·6128 6138 6149 6100 6170 

42 ·6232 6243 6253 626~ 6274 
'43 ·6335 6345 6355 6365 6375 
44 ·6435 6444 6454 6465 6474 
45 ·6532 654i 6551 6561 6571 

46 ·6628 6637 6646 6656 6665 
47 ·6721 6730 6739 6749 6758 
48 ·6812 6821 6830 6839 6848 
49 ·6902 6911 6920 6928 6937 

50 ·6990 6993 7007 7016 7024 
51 ·7076 7084 7093 7101 7110 
52 ·7160 7168 7177 718S 7193 
53 -7243 7251 7259 7267 7275 

S4 ·7324 7332 7340 7348 7356 

TABLE I 
LOOARITHMS 

5 6 7 8 

0212 0253 0294 0334 
06CTl 0645 0682 0719 
0969 1004 1038 1072 
1303 1335 1367 1399 

1614 1644 1673 1703 
1903 1931 1959 1987 
2175 2201 2227 2253 
2430 2455 2480 2504 

2672 269S 2618 2742 
2900 2923 2945 2967 
3118 3139 3160 3181 
3324 3345 3365 3385 

3522 3541 3562 3579 
3711 3729 37,47 3766 
38~ 3909 3927 3945 
4065 4082 4099 4116 

4232 4249 4265 4281 
4393 4409 4425 4440 
4548 4564 4579 4594 
4698 4713 4728 4742 

4843 4857 4871 4886 
4983 4997 5011 5024 
5119 5132 5145 5159 
5250 5263 5276 5289 

5378 5391 5403 5416 
5502 5514 5527 5~39 
5623 5635 5647 5658 
5740 5752 5763 5775 

5855 5866 5877 5888 
5966 5977 59S8 5999 
0075 6085 6096 6107 
6180 6191 6201 6212 

6284 6294 6304 6314 
6385 6395 6405 6415 
6484 6493 6503 6513 
6380 6590 6599 6609 

6675 6684 6693 6702 
6767 6776 6785 6794 
6857 6866 6875 6884 
6946 6955 6964 6972 

7033 7042 7050 7059 
7118 7126 7135 7143 
7202 7210 7218 7225 
7284 7292 7300 7308 

7364 7372 7380 7388 

9 I 

0374 4 
0755 4 
1106 3 
1430 3 

1732 3 
2014 3 
2279 3 
2529 2 

2765 2 
2989 '2 
3201 2 
3404 2 

3598 2 
3784 2 
3962 2 
4133 2 

4298 2 
'4456 2 
4609 2 
4757 i 

4900 I 
5038 1 
5172 1 
5302 1 

5428 I 
5551 I 
5670 1 
5786 1 

5899 I 
0010 I 
61'17 1 
6222 1 

6325 1 
6425 I 
6522 1 
6618 1 

6712 I 
'6803 1 
6893 I 
6981 1 

7067 I 
7152 1 
7235 1 
7316 1 

7396 1 .. 

2 3 4 5 6 7 8 9 

8 12 17 21 25 29 33 37 
8 11 15 19 23 26 30 34 
7 10 '14 17 21 24 28 31 
6- 10 t:1 16 19 23' ~~ 

6 9 12 15 18 21 24 27 
6 8 11 14 17 20 ~ 25 
5 8 11 IJ 16 '18 21 24 
5 7 10 12 15 17 20 22 

5 7 9 12 14 16 19 21 
4 7 9 11 13 16 18 20 
4 6 8 11 13 15 17 19 
4 6 8 10 12 14 16 18 

4 6 8 10 12 14 IS 17 
4 6 7 9 II 13 15 17 
4 5 7 9 II 12 14 16 
3 S 7 9 10 12 14 15 

3 5 7 8' 10 11 13 15 
3 5 6 8 '9 11 13 14 
3 5 6 8 9 11 12 14 
3 4 6 '7 9 10 12 13 

3 4 
, 

6 7 9. \0 11 13 
3 4 6 '1 8 10 11 12 
3 4 5 7 8 9 11. 12 
3 4 5 6 8 9 10 12 

3 4 5 6 8 9 10 11 
2 4 5 6 7 9 10 11 
2 4 5 6 7 8 10 11 
2 3 5' 6 7 '8 9 io 

2 3 5 6 7 8 9 10 
2 3 4 5 7 8 9 10 
2 3 4 5 Ii 11 9 10 
2 3 4 5 6 7 8 9 

2 3 4 ~ 6 7 8 9' 
2 3 4 5 6 7 8 9 
2 3 4 5 6 7 8 9 
2 3 4 5 6 7 8 9 

2 3 4 5 6 7 7 8 
2 3 4 5 5 6 7 8. 
2 3 4 4 5 6 7 8 ' 

:z 3 4 4 5 6 7 8 

2 3 3 4 5' b 7 8 
2 3 . 3 4, ~ 6 7 8 
2 2 ,3 4 5 6 7 7 
2 2 3 4 5 6 6 

:1 2 2 i 3 4 5 6 6 



2 

o ! 1 2 3 4 

55 ·74(\4 7412 7419 74'1:1 7435 
56 ·741 7490 7497 750S 7513 
57 ·7559 7566 7574 7S82 7589 

sa ·704 7642 7649 .7657 7664 
~9 ·7709 7716 77~ 7731 773& 
60 ·778i 7789 7796 7&03 7&10 
61, ·7&53 7860 7868: 7875 7882 

in ·7n4 7931 7938 7945 7952 
6'3 ·7993 8000 8007 S014 8021 
64 ·8062 8069 8IP5 S082 8089 
U ·81~9 8136 8142 8149 8156 

66 ·8195 8202 8209 8215 8222 
67 ·8261 8267 8274. 8280 8287 
6S ·8325 8331 8338, 8344 8351 
69 ·8388 8395 8401 8407 8414 

70 ·8451 8457 8463 8410 8476 
71 8513 8519 8525' 8531 8S37 
72 ·8573 8579 8585 8591 8597 
73 ·8633 8639 8645 8651 865,7 

.74 ·8692 8698, 8704 8710 87i6 
75 ·8751 8156 8762 8768 8774 
76 ,8808 8814 8820 8825 8831 
77 ·8865 8871 88"/6 8882 8887 

71 8921 8927 8932 8938 8943 
.79 ·8976 8982 8987j 8993 8998 
10 ·9331 9036 9042 9047 9053 
11 ,9085 9090 9096 9101 9106 

12 ·9138 9143, 9149 9154 9159 
13 ·9191 9196 9201 9Z06. 9212 
14 ·9243 9248 9253 9258 9263 
15 ,9294 9299 9304 9309 9315 

16 ·9345 9350 9355 9360 9365 
17 ·m~ \l4OO 940S 9110 9415 
81 ·9445 9450 9455 9460 946S 
19 ·9494 9499 9504 9509 9513 

90 ·9542 9547 9552 9557 9S62 
91 ·9590 9596 9600 960S 9609 
92 ·9638 9643 9647 9652 9657 
1I3 ·9685 9619 9694 9699 9703 

P4 ·9731 9736 9741 9345 9750 
9!1 ·9777 9782 9786 9791 9795 

" ·9823 91Z'I sin 9836 9841 
97 ·9868 9172 9877 9881 9886 

98 ·9912 9917 9921 9926 9930 
99 ·9956 9961 9965 9969 9974 - . 

FUNpAMENTAIS OFMATImMA TICALstATISnCS 

TABLE-I 
LOGARITHMS 

5 6 , 7 8 9 1. 2 3 4 5 6 7 8' 9 

7443 7451 7459 7466 7474 1 ~ ~ 3 4 5 5 6 7 
7520 7528 7536 7543 7551 1 2 2 3 4 5 5 6 7 
75'!7 7604 7612 7619 76'1:1 1 2 2' 3 4 5 5 6 7 

7672 7679 7686 7694 7701 l' 1 2 3 4 4 5 6 7 
7745 7752 7760 7767 77~4 1 1 2 3 4 4 5 6 7 
7818 7&25. 7832 7839 7846 I 1 2 3 4 4 5 6 6 
7889 78.96 7903 7910 7917 1 1 2 3 4 4 5 6 6 

7959 7966 7973 79SO 7987 1 1 2 3 3 4 5 6 6 
8028 8035 8041 8048 S055 1 1 2 3 '3 4 5 5 6 
8096 8102 8109 8116 8122 1 1 2' 3 3 4 5 5 6 
8162 8169 8176 8182 &1&9 1 1 2 3 3 4 5 5 6 

8Z2l1 8235 8241 8243 8254 1 1 2 3 '3 4 5 5 6-
8293 8299 8306 83i2 8319 1 1 2 3 3 4 5 5 6 
8357 8363 8370 8376 8382 I 1 2 3 3 4 4 5 6 
8420 8426 8437 8439 3445 I 1 2 2 3· 4 4 5 6 

8482 8488 8494 &500 8506 1 1 2 2 3 4 4 5 6 
8543 8549 8555 8561 8567 1 1 2 2. 3 4 4 5.6 
8603 8609 8615 8621 8627 1 1 2 2 3 4 4 5 6 
8663 8669 8675 8611 86.6 1 1 2 2 3 4 5 6 

8722 8727 8733 8739 8745 1 1 2 2 3 4 4 5 6 
8779 8785 8'i!'1 8797 8802 1 1 2 2 3 3 4 5 6 
8837 8842 8848 8854 8859 1 1 2 2 3 3 4 5 6 
8893 8899 8904 8910 8915 1 1 2 2 3 3 4 4 5 

8949 8954 8960 8965 &971 1 1 2. 2 i) 3 1 4 4 5 . 
9004 9009 9015 9020 902S 1 1 2 2 3. 3 4.4 5 
9058 9063 9069 9074 9079 1 1 2 2 3 3 4 4\ 5 
9112 91p 9122 9128 9133 1 1 2 2 3 3 4 4 5 

9165 9170 9175 91SO 9186 1 1 2 2 3 3 4 4 5 
9217 ~222 9227 9232 9238 1 1 2 ? 3 3 4 4 c 

9269 9274 ,279 9Z84 9289 1 1 2 2 3 3 4 :' 5 
9320 9325 9330 9335 9340 1 1 2 2 3 3 4 5 

9370 9375 9380 9385 9390 1 1 2 '2 3 3 4 4 5 
9220 9425 9430 9435 ~o 0 1 1 2 2 3 3 4 4 
~ 9474 9479 9484 9489 0 '1 .1 2 2 3 3 4 4' 
9518 9523 95~8 9533 9538 0 1 1 2 :1 3 3 4 4 

9566 9571 9576 9581 9586 O. 1 1 '2 2 '3 3, '4 ·4 
9614 9619 96~ 9628 9633 0 1 1, 2 2 3 3 4 4 
9661 9666 9671 9675 9680 o· 1 l' 2' 2 3 3 4 4 
9708 9713 9117 9722 em? 0 J J 2 2 3 3 4 4 

9754 9759 9763 9768 m3 0 1 1 2 2 3 3 4 4 
9aoo 980S 9809 9114 9118 0 1 1 :l 2 3 3 4 4 
9145 9850 9854 9359 9863 0 1 1 2 2 3 3 4 4 
9890 9894 9899 9903 9908 0 1 1 2 Z 3 3 4 '4 

9934 9939 9943 994S 9952 0 r 1 I 2 t 3 3 4 4 
\1978' 9983 9887 9991 9996 0 i I 2 2 3 3 3 4 



NUMERICAL TABU'S 

0 1 2 3 

·00 1000 1002 1005 1007 
, -'01 1023 1026 1028 1030 
'02 1047 1050 1052 1054 
·03 1072 1074 1076 1079 

·14 1096 1099 1102 1104 
:05 1122 1125 1127 1130 
·06 11 .... 8 1151 1153 1156 
·07 1175 1178 1180 lIB3 

·01 1202 1205 1208 1211 
·09 1230 1233 1236 1239 
·10 1159 1262 1265 1268 
·11 1288 1291 1294 1297 

·21 1318 1321 13214 1327 
·13 1349 i352 1355 1358 
·14 1380 1384 1387 1390 
·15 14i3 1416 1419 1422 

·16 1445 1449 1452 1455 
·17 1479 1483 1486 1489 
·18 1514 1717 1521 15214 
-·19 1549 1552 1556 1560 

·20 1585 1589, 1592 1596 
·21 1622 1626 1629 1633 
·22 1660 1663 1667 1671 
·23 1698 1702 1706 1710 

·24 1738 1742 1746 1750 
·25 1778 1782 1786 1791 
·26 1820 1824 1828 1832 
·17 1862 1866 1871 1875 

·28 1905 i910 1914 1919 
·29 19SO 1954 1959 1963 
-30 1995 2000 2004 2OO!l 
·31 2042 ' 2046 2051 2056 

-n 20&9 2094 2099 2104 
·33 2138 2143 2148 2153 
-34 2188 12193 2198 2203 
·35 2239 2244 2249 22S4 

·36 2291 2296 2301 2307 
·37 2344 2350 2355 2360 
·38 2399 '21404 21410 2415 
·39 24SS 2460 2466 21472 

·40 2512 2518 25~ 2529 
,41 2570 2576 2582 2588 
,42 2630 '2636 2642 2649 
43 2692 2698 2704 2710 

'.44 2754 2761 2767 2773 
·45 2818 ,2825 2831 2838 
·46 2884 . 2891 2897 2904 

, ·47. 2951 2958 296S ' 2972 

'·48 3020 3021 3034 3041 
,49 3090 ·3097 3105 3112 

4 

lOO!l 
1033 
1057 
1081 

1107, 
1132 
1159 
1186 

1213 
12142 
1271 
1300 

1330 
1361 
1393 
14~ 

1459 
1493 
1528 
1563 

1600 
1637 
1675 
1714 

1754 
1795 
1837' 
·1879 

1923 
1968 
2014 
2061 

2109 
2158 
2208 
2259 

2312 
2366 
2421 
2477 

2535 
1594 
2655 
2716 

2780 
2844 
2911 
2979 

3048 
3119 

TABLE II 
ANTILOGARITHMS 

5 6 7 8 9 
- -

1012 1014 1016 1019 1021 
1035 1038 1040 1042 1045 
1059 1062 1064 1067 1069 
1084 1086 1089 1091 1094 

1109 1112 1114 1117 1119 
1135 1138 1140 1I4~ 11"6 
1161 1164 1167 1169 1172 
1189 1191 1194 1197 1199 

1216 1219 1222 1225 1227 
12145 12147 1250 1253 1256 
1274 1276 1279 1282 1285 
1303 1306 1309 1312 1315 , 
1334 1337 1340 1343 1346 
1365 1368 1371 1374 1377 
1396 1400 1403 1406 1409 
1429 1432 1435 1439 1442 

1462 1466 1469 1472 1476 
1496 1500 IS03 i507 1510 
1531 1535 153& 1542 1545 
1567 1570 1574 157& 1581 

1603 1607 1611 1614 1618 
1641 1644 1648 1652 1656 
1679 1683 1687 1690 1694 
1718 1722 17:1.6 1730 1734 

1758 1762 1766 1770 1774 
1799 1803 ,807 1811 1816 
1841 1845 1849 1854 1858 
1884 las8 1892 1897 1901 

1928 1932 1~36 1941 1945 
1972 1977 1982 1986 1991 
2018 2023 2028 2032 2037 
206S 2070 2075 2080 2084 

2113 2118 2123 2128 2133 
2163 2168 2173 2178 2183 
2213 2218 2223 2228 2234 
226S 2270 2275 2280 2286 

2317 2323 2328 2333 2339 
2371 2377 2382 2388 2393 
2427 2432 21438 2443 2449 
2483 2489 2495 2500 2506 

2541 2547 2553 25S9 2564 
2600 2606 2612 2618 2624 
2661 2667 2673 2679 2685 
2723 2729 2735 2742 2748 

2786 2793 2799 2805 2812 
2851 2858 2864 2871 2877 
2917 2924 2931 2938 2944 
2985 2992 2999 3006 3013 

3OS5 3062 3069 3076 3083 
3126 3133 ' 3141 5148 31SS 

3 

-
I 2 3 4 S 6 7 8 9 

0 0 I I I I 2 2 2 
0 0 1 1 'I I 2 2 2 
0 0 I 1 1 1 2 2 2 
0 0 1 1 1 1 ' 2 2 2 

0 I 1 I 1 2 2 2 2 
0 1 1 I 1 2 2 2 2 
0 I 1 I 1 2, 2 2 2 
0 1 1 1 1 2 2 2 2 

0 I 1 I 1 2 2 2 3 
0 1 1 I 1 2, 2 2 3 
0 1 1 1 1 2 2 2 3 
0 I 

I 
1 1 2 2 2 2 3 

I 

0 1 1 1 2 2 2 2 3 
0 l' i 1 2 2 2 3 3 
0 I 1 I 2 2 2 3 3 
1 1 1 2 2 2 3 3 

0 I 1 I 2 2 2 3 3 
0 1 I I 2 '2 2 3 3 
0 1 1 1 2 2 2 3 3 
0 1 1 1 2 2 3 3 3 

0 1 I I 2 2 3 3 3 
0 1 1 2 2 2 3 3 3 
0 1 1 2 2 2 3 3 3 
0 1 1 2 2 2 3 3 4 

0 1 1 2 2 2 3 3 4 
0 1 1 2 2 2 3 3 4 
0 1 t 2 2 3 3 3 4 
0 1 2 2 3 3 3 4 

0 1 1 2 2 3 3 t4 4 
0 1 1 2 2 3 '3 4 4 
0 1 1 2 2 3 3 4 4 
0 ! 1 2 2 3 3 4 4 , 
0 1 I 2 2 3 3 4 4 
0 1 J 2 2 3 3 4 4 
l' 1 2 .2 3 3 4 4 S 
1 I ,2 2 3 3 .. 4 S 

1 1 2 2 3 3 4 4 S 
I 1 2 2 3 3 4 4 S 
1 1 -2 2 3 :\ 4 4 5 
1 1 '2 2 3 3 4 5. 5 

1 1 2 2 3 4 4 5 5 
1 1 2 2 3 4 4 5 5' 
1 1 2 2 3 4 4 ~ 61 
1 1 2 3 3 4 4 S (i 

I 1 '2 3 3 4, 4 5 6 
1 1 2 3 3 4 5 5 6 
1 1 2 3 3 4 5 5 (, 

I I 2 3 3 4 5 5 (> 

1 I 2 3 4 5 5 6 6 
I 1 2 3 4 4 5 (; (, 



4 

-
0 1 2 3 4 , 

.. 50 3162 3170 3177 31~, '3l92 
',51 3236 3243 3251 3258 3266 

,52 3311 3319 3327 3334, 334~ 
,53 3388 3396 3404 3412 3420 
~4 3467 3475 3483 ~91 3499 
·$·S ~ 3556 3S65 JS73, 3581 

'·5' 3631 3639 3648, 3656 3664 
·57 J715 3124 3733 3741 3750 
·51 38QZ 3811 3819 3828 3831 
,59 3890 3899 3908 3.,917, 3926 

,60 3981 3990 '3999 4009 4018 
·61 4074 4083 4093 4102 4111 
·62 4169 4178 4188 4198 42(11 
,63 4266 ~276 4285 4295 4305 

,6( 4365 4375 A385 4395 44O(i 
·65 4467 4471 4487 4498 4508 
,66 4571 4581 4592 ~ 4613 

, ,61 4677 468~ 41199 4710 4721 
r 

,6; 4786 :4791 48Q8 4819 4831 ., 4898 49.09' 4920 4932 4943 
i,70 5012 5023 5035 5047 5OS8 

1 .71 5129 5140 515~ 5165 5176 

·72 1~248 5260 5272 5284' 5297 
·73 5370 5383 5395 S408 5420 
,74 5495 5508 '5521 55~ '5.~6 
'.75 5623 5636 5649 S662 5675 

, :;' 5808 5754 5768 51s1 5794 
• 7 5888 5902 591Ci 5929 5943 
·7' 6Q26 6039 6053 Q)67 6081 
·19 6166 6188 6194 6209 6223 

·80 6310 6324 '6339: 5353 6~8 
·81 6457' 6471 6486 6501 6516 
·82 6607 6Ci22 6(>37 6653 6Ci68 
·83 6761 6776 6792 6808 6823 

·84 6918 6934 ,6950 696Ci 6982 
·IS 7079 7096 .1112 7129 7445 
:U 7344 7261 7278 7295 7311 . ., 7413 7430 ,7447 7464 7~82 

I . ., 7586 7(103 7.621 7638 7656 
·19 7161 7780 1798' 7816 7834 

I 
·'0 7943 7962 7980 7998' 8017 
,91 8128 8147 8166 8185 8204 

1 
·9.2 8318 8337 8356 8375 8395 
,,\1 8511 ' 8531 8551 8570 8590 

"~ 8710 8730 8750 8770 8790 
" 8913 8933 ~954 8974 8995 

." .9120 9141 9162 9183 9204 
·97 ~333 9354 9376 9397 9419 
·98 .s50 9572 9594 9616 9638 
9.9 9712 9795 9817 3840 9863 • 

1<u1..'DAMENTAls oF,MATIIEMA lICALSTA1ISTICS 

tABLE II 
ANllLOGARITHMS 
" , -

5 6 7 8 9 1 '} 3 4 5 6 - 7 8 9 

-
3199 3206 3214 3221 3228 1 1 2 3 4 4 5 6 7 
3273 , ' 

3281 3289 3296 3~04 1 2 2 3 4 5 5 6 7 

~50 3357 3365 3373 3381 I 2 2,3 4 '5 S 6 7 
3428 3436 3443 ~~1 3459 1 2 2 3 ,4 ~ 6 6 i 
3508 35i6 ~t!! ,3540 1 2 3 3 4 5 6 6 7 
35S~ 3597 36:i '3622 1 2 2 3 4 5 6 7 7 
36'1\. 3681. 3690 3698 3100 1 2 3 '3 4 5 6 '1. 8 
3758 3767 3776 3184 31?3 1 2 3 3 .4 5 6 7 8 
3846 38S5 3864 3873 3882 1 • 2 '3 4 4 ,S, 6 7 8 
3936 3945 ~954 3963 ·3972 1 2 3 3 4 5 6 7' 8 

4027 4036 ,4046 4055 4064 I 2 3 4 5 6 6 7 8, 
4121 4130 4140 4150 ,4159 1 2 3 r 4 5' 6 7 8 ~ 4211 4227 4236 4246 4256 1 2 .j 4 5 6 7 8 
4315 4325 4335 4345 4355 1 2 3 4 5 6 7 JI " 
4416 4426 4436 4446 44~ f 2 3 4 S 6 7 8 9 
4519 4529' '4539 4550 4560 r 2 3 ( 5 6 7 8 9 
4624 4634 4645 ~6 "lI667 I 2 3 5 6 7 ~ ,0 
4732 ,4742 4753 4764 47~5 1 i 3 4 5 7 8 9 10' 

:' 
484:2 4&,53 'taM 4875 4887 1 2 3 4 6 7 8 9 10 ' 
4955 4~ 4977 4989 5000 1 2 3 5 6 7 8 9' HI 
5070 508 5093 iS10S 5117 1 i .. 5 6 1 8 9 11 
5188' 5200 5212 5224 ,5236 i 2 4 5 6 7 8, 10 .11 

~ 

5309 5321 5333 5346 5358 ,1 2 " 5 6 7 9' 10 11 
5433 5445' 54Si' 5470 5;483 1 3 4 5 6 8 9 10 11 
5559 5572 5585 5598 5610 1 3 4 5 6 8 9 10 12 
5889 5702 5715 5728 57:41 . 1 3 4 5 7 8 9 10 12 

" 

5821 5834 5848 5861 5875 1 3 4 5 7 8 9 11 12 
5957 5910 5984 5998 6012 1 3 4 5 7 8 10 11 12 
6095 6102 6124 6138 6152 1 3 4 6 7 8 10 11 13 
6231 6252 6266 ~281 ~95 1 3 4 6 7 9 10 11 13 

6383 6397 6412 64Z7 6442 1 , 3 4 6 7 9 10 12 13 
6531 6546 6561 6517 6592 2 3 5 6 8 9 11 12 14 
6683 6699 6714 6730 6745 2 3 5 6 8 9 11 12 14 
6839 68S5 6871 688,7 6902 2 3 ,5 6 8 9, 11 13 14 

6998 7015 7031 7047 1063 2 3 S 6 8 10 11 i3 15 
7161 7178 7194 ~1I 7228 2 3' 5 7 8 10 12 13' 15 
7328 7345 7362 7339 ';196 ,2 3 5 7 8 10 12 13 15 
7,499 7516 7534 7551 7568 2 3 5 7 9 10 '12 14 1~ 

7674 7691 7709 777:1 7745 2 4 5 7 9 11 12 14 16 
7852 7870 1889 7900 7925 2 4 5 7 9 11 13 14 16 
8035 8054 8002 8091 ,8110 2 4 6 7 9 11 13 15 17 
8~ 8?41 !l260 8279 8299 2 4 6 8 9 11 13 15 17 

8414 8433 8453 8472 '8192 2 4 6 . 8 10 12 14' IS 17 
8610 8630 8650 8670 8690 2 4 6 8 10 12 14 16 18 
J810 8831 8851 8872 '8892 2' 4 6 8 10 12 14 16 18 
9016 9036 9057 9078 9099 2 <\ 6 8 10 I~ 15 '17 19 

9226 9247; 9268 9290 9311 '2 4 6 8' 11 13 '15 17 19 
9441 9462 9484 9506 9528 2 4 7 9 11 13 15 17 zb 
96Cil 9683 9105 97Z7 9750 2 4 7 9 11 13 16 18 20 
?S86 9908 9931 9954 9977 2 .J ,7 9 11- 14, 

• I 
16 18 20 

- '. 



NUMERICAL TABLIlS 5 

TABLE II 
POWERS. ROOTS ANP RECIPROCALS 

, . 

;. J {;. t,; {jQ; to;; ~100. 1 
" \';;" 
1 1 1 1 ..... 1 -3·162 2·154 4·642 1 
2 4 . 8 1·414 1·260 4·772 2·714 5·848 ·5000 
3 j 9 27. 1·732 1·442 5·477 3·107· 6·694 ·3333 
4 16 >64 2 1·587 6·325 3·420 7·368 ·25,00. 
5 2S 125 2·~36 1·710 7·67, 3-·684 7·937 ·2000 
6 36 216 2·449 1-817 7·745 3·915 8·434 ·1667 
7 49 ; 343 2·646 1·913 ... 8·361 4-121 8·879 ·1429 
8 64 512 2-828 2·000 8·944 4·309 9·283 . 12S.0 
9 81 729 3·000 ' 2·080 9·487 4·481 9·655 ·1111 

10 100 1000 3·162 2·154 10·0 4·642 10·000 ·1000 
11 121 133!. 3·317 2·224 10·488 4·791 10·323 ·0909,t 
12 144 1728 3·464 2·289 10·954 4·932 10·627 ·08333 
13 169 2197 3·606 2·351 11·402 5·066 10·914 ·07692 
14 196 2744 3·742 2'410 11·832 5'J~~ 11·187 ·07143 
15 225 3375 3·873 2·466 12·247, 5'~13 11·447 ·06(1(17 
16 ~50 4096 4·000 2·520 12·649 : 5·429 11·696 ·06250 
'17 ~89 4913 4·123 2·571 13·038 5·540 1.1·935 ·05882 

. 18 324 5832 4~243 I 2.621 1).416 5·646 12·164 ·05556, 
19 361 6859 4·359 2·568 13·784 5·749 12·386 , ·05263 
'20 400 8000 4·4,72 2·714 14·142 5·848 12·599 ·0500 
11 441 9261' 4·583 2·759 14·491 5·944 12·806 ·04762 
'22 484 t0648 4·690 2·802 14-832 6·037 • 13·606 ·045~5 
13' 529 12167 4·796 2:844 1s.t66 6·127 13·200 ·04\67 

'24 ~76 ' 13824 4·899 2·8~4- 15·492 6·214 '.13·389 ·04167 
25 625 15625 5·000 2·924 15·811 6·300 13·572 ·0400 , 
26 676 17576 5·099 2·962 16·125 6·383 13·751 ·03846 
27 729 19683 : 5·196 3·000 16·432 '6·463 13·925 ·03704 
28 784' 21952 5·292 3·037 16-733 6·54'2 14·095 ·03571 
29 841 ' 24389 5·385 3·072 17·029 6·619 14·260 ·03448 
30 900 27QOO 5·'477 3·107 17·321 6·694 14.422 ·03333 
31 961' 29791 5·568 3·141 17·607 6·768 14·581 -·03226 
32. 1024 32768 5·657 3·175 17·889 6·9840 107·736 ·03125 
33 " 1089 35937 5'?45 3'208' 18-166 6·910 14·888 ·030~0 
34 H56 39304 5·831 3'240 18·439 - 6·980 15~037 ·02941 
35 1225 42875 5·916 3·271 18·708 7·047 15·183 ·02857 
36 1296 46656 6·000 3-302 18·974 7·114 15·326 ·02778 
37 1369 50653 6·083 3·332 19·235 7·179 15·467 ·02703 
38 1444 54872 6·164, 3'362 19·494 7·243 15·605 ·02632 
39 1521 59319 6·245 3·391 19-748, 7·306 15·741 .01S<r4 
40 ' 1600 .64000 6·325 3·420 20·00 7·368 15·874 ·0250 
41 1681 68921 6·403 :"H48 20·248 7·429 16·005 ·02439 
4l 1764 74088 6·481 3·476 20·494 7·489 16·134 ·02381 
43 1849 79507 6·557 3·503 . 20·736 7·548 16·261 ,02326-
44 1936 85184 6·633 3·530 20·976 7·606 16·386 ·02273 
45 2025 91125 6·708 J.S57 21-213 7·663 16·510 ·02222' , 
46 j 2116 97336 6·782 3·583 21-448 7·119 16·631 ·02174 
47 2209 103823 6·856 3·609 21·679 7·775 ,;16·751 ·02128 
48 2304 . 110592 6·928 3·634 21·909 7·830 16·869 -02083 
49 240'1 117649 7·000 3·659 22-136· 7·884 16·985' -02041 
50 2500' 125000 '7·071 3·684 22·361 7·937 17-100 ·020 
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TABLE III 
POWERS ROOTS AND RECIPROCALS , 

;. J ..r,.. ~ ..[to;; ~Io.. ~;ro. 1 .. . - - .. 
51 2601 132651 7-141 3·708 22·583 7-990 17;213 ·01961 
52 2704 I 140608 7·211 3·733 22·804 8·041' 17;325 ·01923 
53 2809 , 148877 7·280 3·756 23·022 8-093 17·435 ·01887 
54 2916 157464 7·348 3·780 23·238 8·143 17·544 ·01852 
S5 3025 ,166375 7·416 3·803- 23·452 8·193 17~652 ·01818 

175'616 
.. 

56 3136 7·483 3·832 23·664 8·243 17·758 ·01786 
57 3249 185193 7·550 3·849 23·875 8·291 17'863 ·01754 
58 3364 195112 7·616 3·871 24·083 8·340 . 17·967' ·01724 

I 59 3481 205379 7·681 3·893 24·290 8·387 18·070 ·01695 
60 3600 216000 7.746 3·915 24·495 8·334 18~171 ·01667 
,61 3721 226981 7·810 , 3·936 24·698 8·481 18'·2~2 ·01639 
62 3844 238328 7·874 3·958 24·900 8·527 18·371 ·01613 
63 3969 250047 7·937 3·979 25-100 8·573 18·469- ·015871 
64 4096 '262144 8·000 4·000 25·298 8·618 18·566 ·01562 
65 4225 274625 8·062 4·021 25·495 8·662 18·663 ·01538 

68 4356 287496 8·124 4·041 25·690 ' 8·707 lIi·758- ·01515 
67 4489 300763 8·185 4·062 25·884 8·750 18·852 ·01493 
68 4624 314432 8·246 4·082 26·077 8·794 18-945 ·01471 
69 4761 328509 8·307 -4·102 26·268 8·837 ' 19·038 ·01449 
70 4900 343000 8·367 4·121 26·458 8·879 19·129 ·Q1429 

71 5041 357911 '8.426 4-141 26·646 8·921 19·220 ·01408 
72 5184 373248 8·485 4-160 26'833 • 8·963 19·310 ·01389 
73 5329 389017 8·544- 4·179 27·019 9,004 19·399 ·01370 ; 
74 5476 40522't 8·602 4·198 27·203 9·045 19·487 - -·01351 
75 5625 421875 8·660 4·217 27·38 t - 9·086 19·574 ·01333 

76 5776 438976 8.'/18 4·236 27·568 9·126 19·661. ·01316 
77 5929 -456533 8-775 4·254 27·740 9·166 ! 19·747 ·01299 
78 6084 474552 8·832 4·273 27·928 9·205 19·832 ·01282 
79 6241 493039 8·888 4·291 28-107 9·244 19·916 ·01266 
80 6400 512000 8·944 4·309 28.~84 9·283 20·000 ·01250 

81 6561 531441 9·000 4·327 28·460 9·322 20·083 ·01235 
82 6724 551368 9·055 4·344 28·636 9·360' 20·165 ·01220 
83 6889 571787 9·110 4·362 28·810 9·398 20·247 ·01205 
84 7056 592704 9·165 4·380 28·983 9·435 20·328 ·01190 
85 7225 614125 9·220 4·397 29·155 9~4,73 20·408 ·01176 

86 7396 636056 9·274 4·414 29·32~ 9·510 20·488 ·01163 
87 7569 - 658503 9·327 4-431 29·496 9·546 20·507 ·01149 
88 7744 68\472 9·381 4·448 29·665 9·583 20·646 ·01136 
89, 7921 704969 7·43.- 4·465, 29·833 9·619 20·224 ·01124 
90 8100 729000 9·487 4·4.87 30·000 9·655 20·801 ·01111 
91, 8281 753571 9·539 4·498 30·166 9·691 20·878 ·01099 
92 8464 7.75688 9·592 4·514 30·332 9·726 20·954 ·01087 
9J 8649 804357 9·644 4·531 30·496 9·761 21·029 ·01075 
94 8830 830584 9·695 4·547 30·659 9·796 2i·l05 ·01064' 
9~ 9023 857375 9·747 4·563 30·822 9·830 21·179 ·91053 
9_6 9216 884736, 9·798· 4·579 30·984 9·865 21·253 ·01042 
97 9409 912673 9·849 4·595 31·145 9·899 21·327 ·01031 
98 9604 941192 9·899 4·610 31·305 9·933 21·400 ·01020 

, 99 9801 970299 9·900 4·626 :'1·464 9·967 2f·472 ·01010' 
100 10000 1000000 10·000 4·642 31·623 10·000 2i·544 ·01000 -
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TABLE IV 
AREAS UNDER NORMAL CURVE 

Normal probability curve is given by 

f\x)=--L exp {_ !.(~)2} -00 <x <00 Areas unocr Nomal Curve 
G~ 2 G , 

and standard normal probability curve is given by 

,(z) = kexp ( 
21t 

_ rz2 ). -00 < z < 00 

where Z 
X - E(X) 

-N(O.l) = 
Gx X:fA X:X 

Z .. O Z.Z 
The following table gives the shaded' area in the diagram viz .. P(O<Z<:,,) 

for different values of z. 

TABLE OF AREAS , , 

,J,z-+ 0 2 3 4 5 6 7 8 9 

.() .()()()() .()()4() ·0080 ·0120 '()160 '()199 -0239· .(1}.79 ·0319 .()3S9 
·1 ·0398 ·0438 .()478 ·0517 ·0557 ·0596 -0636 -0675 ·0714 ·0759 
·2 ·0793 ·0832 ·0871 ·091(; ·0\148 .()987 ·1026 ·1064 ·1103 ·1141 
·3 ·1179 "·1217 ·1155 ·1293 .1331 ·1368 ·1406 .1443 ·1480 ·1517 
·4 ·15S4 ·1591 ·1628 ·1664 ·1700 ·1736 ·lm ·1808 ·1844 ·1879 

·5 ·1915 ·1950 ·1985 ·2019 ·2054 ·2088 ·2123 ·2157 ·2190 ·2224 
·6 ·2.2S7 ·2291 ·2324 -2357 ·2389 ·2422 ·2454' ·2486 ·1517 ·1549 
·7 ·2580 ·2611 ·2642 ·2673 ·2703 ·~734 ·2764; ·2794 ·2823 ·l8S2 
·8 ·2881 ·2910 ·2939 ·2967 ·2995 ·3023 ·3051 t3078 ·3106 ·3133 
·9 ·3159 ·3186 ·3212 ·3238 ·3264 ·3289 .3315 ·3340 ·3365 ·3389 

1" ·3413 ·3438 ·346i ·3485 ·3S08 ·3531 ·3554 ·3577 ·3599 '3Q1 
1·1 ·3643 ·3655 ·3686 ·3708 .3729 ·3749 ·3770 .3790 ·3.10 ·3830 
1·2 ·3849 ·3869 ·3881t ·3907 ·3915 ·3944 ·3962 ·3980 ·3997 -4015 
1·3 -4032 -4049 -4066 -4082' ·4099 4115 4131 4147 4162 4177 
1'4 41?2 4207 4222 4236 4251 .. us 4279 4292 -4306 4319 

I" -43~2 4345 '4357 ·4370 4382 • 4394 4406 4418 -4429 4441 
1·6 4452 4463 .>1474 4484 4495 450S 4515 4S15 4535 4S4S 
1·7 45S4 -4S64 457~ ·4582 4591 4599 4608 4616 ·4625 4633 
I·' . 4641 464? 4656 4664 ·4671 4678 4686' 4693 4699 470E: 
1·9 ·4713 ·4719 '4726 4732 473. 4744 4750 4756 4761 4767 
z·. 4772 4778 47.3 478. 4793 4798 4803 4808 ·4.12 4.17 
2·1 4821 4826 4.30 ·4834 -4838 4842 4846 4850 4854 4857 
2·2 ·4861 ·4864 4868 -4871 ·4875 4678 4881 4884 ·4887 :4890. 
2·3 4893 -4896 -4898 ·4901 4904 -4906 4909 4911 4913 49i6 
2·4 ·4918 4920 4922 4925 4927 4929 493i -4932 -4934 4936 
2·5 4938 4940 -4941 4943 ·4945 4946 4948 4959 4951 4952 
2·6 4953 4955 -4956 4957 .4959 ·1960 4961 -4962 ·4963 4964 
2·7 4965 4966 4967 ·4968 ·4969 4970' -4971 4972 ·4973 4974' 
2,8 4974 4975 4976 4977 4977 4978 4979' 4979 4980 4981 
2-9 -4981 4982 ·4982 -4983. ·4984 4984 4985 4985 4986 4986 

3·' 4987 ·4987 -4987 .4988 .4988 -4989 -4989' 4989 4990 4990 
3·1 -4990 4991 ·4991 4991 ·4992 4992 4992 4992 -4993 4993 
'3·2 4993 4993 -4994 .4994 4994 4994 4994 4995 4995 4995 
3·3 : 4995 -4995 ·4995 ·4996 ·4996 4996 4996 4996 4996 4997 
3·4 ·4997 ·4997 4997 -4997 .4997 4997 4997 -4997 4997 499' 
3·5 4998 499' 4998 -4998 ·4998 ·499. 4998 4998 4998 4998 
:J.6 4998 -4998 4999 4999 4999 4999 4999 4999' 4999 4999 
3·7 4999 4999 ·4999 -4999 -4999 4999' 4999 4999 4999 4999 
3-9 ·5000 ·5000 ·5000 ·sooo ·5000 ·5000 ·5000 ·5000 ·5000 ·5000 
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TABLE V 
ORDINA1ES OF THE NORMAL PROBABR.lTY CURVE 

The following table gives the ordinates of tJt~ standard nonnal probability 
curve, i.e .. ,it gives the value of 

112 
I tP(z) = _r=- exp (-rz ), -- -;: z < 00 

'12ft 

for different values of i. where 

Z _ X - E(X) =.!...=..l!. _ N (0, 1) 
ax. a 

Obviously, (-z) = tP(z). 
z ·00 ·01 ·02 ·03 ·04 ·os ·06 ·07 ·01 ·09 

0·0 ·3989 ·3989 ·3989 ·3988 ·3986 ·3984 ·3982 ·3980. ·3~n ·3913 
0·1 ·3970 ·396:1 ·3~1 ·3956 ·3951 ·3945 ·3939 ·3932' ·3925 ·3918 
0·2 ·3910 ·3902 ·3894 ·388S ·3876 ·3867 ·38S7 ·3847 ·3836 ·3815 
0·3 ·3814 ·3802 ·3790 '8178 ·376:1 ·37S2 ·3739 ·3715 '·3712 .3fH1 
C).4 ·3683 ·3668 ,36S3 ·3637 ·3621 ·360S ·3S89 ·3S72 ·3SSS ·3S38 

# 

0·5 ·3S21 ·3S03 ·34IS ·3467 ·3448 ·3429 ·3410 ·3391 ·3372 ·3352 
0.6 ·3332 ·3312 ·3292 ·3271 ·3251 ·3230 :3209 ·3117 ·3166 ·3144 
0.7 ·3123 ·3101 ·3079 ·3056 ·3034 ·3011 ·2989 ·2966 ·2943 ·2920 
0.8 ·2897 ·2874 ·2850 ·2827 ,2803 ·2780 ·2756 ·2732 ·2709 ·2685 
0·9 ·2661 ·2637 ·2613 ·?-S19 ·2S65 ·2541 ·2516 ·1;492 ·1;468 ·2444 

-1,0 ·2420 ·2396 ·2371 ·2347 ·2323 ·2299 ·227S ·2251 ·2227 ·2203 
1·1 ·2179 ·21SS ·2131 ·2107 ·2083 ·2059 ·2036 ·2012 ·1989 ·1965 
1·2 ·1942 ·1919 ·189S : ·1872 ·1849 ·1826 ·1804 ·1711 ·17S8 ·1736 

'1·3 ·1714 ·1691 ·1669 ·1647 ·1626 ·1604 ·IS12 ·IS61 ·IS39 ·1Sla- . 
14 ·1497 ·1476 .14S~ • 143S ·141S ·1394 ' , ·1374 ·1354 ·1334 ·131S 

1·5 ·1295 ·1276 ·1157 ·1238 ·1219 ·1200 ·1182 ·1163 ·114S ·1127 
1·6 ·1109 ·1092 .1074' ·IOS7 ·1040 ·1023 ·1006 ·0989 .()973 ·0957 
t·7 ·0940 -0925 ·0909 ·0893 ·0878 .0863 -0848 ,·0833 .0818 ·0804 
1·8 -0790 ·ms ·0761 -0748 ·0734 -0721 -0707 ·0694 -0681 ·0669 
1·9 ·006 ·0644 '9632 ·0620 ·0608 .0596 -0584 ·OS73 OOS62 ·OSSI 

2'0 ·0540 -0529 ·OSI9 ·OS08 ·0498 -0488 '-0478 ·0468 .()4S9 ·0449 
2-l ·0440 ·0431 ·0422 ·0413 ·0404 -0396 -0387 ' ·0379 '0371 ·0363 
2·2 ·0355 .0347 ·0339 -0332 ·0325 .0317' .0310 ·0303 ,-0297 ·0290 
2·3 ·0283 ·0277 ·0270 ·0264 ·0251 -0252 .()246 ·O'2A1 .()23S ·0229 
2-4 ·0224 ·0219 ·0213 .()201 ·0203 .0198 .0194 ·0189 .0184 ·OlSO 

2·5 ·017S .0171 ·0167 ·0163 .oIS8 001S4 00ISI ·0147 .0143 ·0139 
2·6 ·0136 ·0132 ·0129 ·0126' ·0122 .0119 .0116 ·0113 .oliO ·0107 
2-7 ·0104 .oIOI .()()99 -0096 ·0093 -0091 .(lOU ·0086 .()()84' ·0081 
2-8 ·0079 ·wn : ·OO7S ,·0073 ·0071 -0069 -0067 .006S -0063 ·0061 
2·9 ·0060 .(lOS8 ·0056 ·OO5S ·0053 .(lOSI .()OSO ·0048 .()047 ·0046" 

3·. ·0044 .()043 ·0042 ·0040 ·0039 .(lO38 -0037 ·0036 .(lO3!! ·0034 
3·1 .o(m ·0032 ·0031 ·0030 ·0029 .()()28 .()()27 ·0026 '()()25 -OO2S 
3.2' .()()24 .()()23 ·0022 .0022 ·0021 .()()20 .()()20 ·0019 .(lOla ·0018 
3-3 . ·0017 ·0017 ·0016 ·0016 ·OOIS .(lOIS .(lO14 ·0014 .(lO13 ·0013 
3·4 :0012 .(lOI2 ·0012 ·0011 ·0011 .(lOIO .(lOIO ·0010 .()()09 ·0009 

3'5 ·0009 .()008 ·0008 ·0008 ·0008 .()007 .()007 ·0007 .()007 ·0006 
3·6 ·0006 ·0006 ·0006 ·OOOS ·ooos '()OOS '()OOS ·ooos '()OOS ·0004 
3·7 ·0004 .()()04 ·0004 ·0004 ·0004 .()()04 .()003 ·0003 .()003 ·0003 
3-8 ·0003 ·0003 ·0003 :0003 ·0003 -.()()02 .()()02 ·0002 .:: ·0002 
3·9 ·0002 .()()02 ·0002 .()()02 \ ·0002 .()()02 .()(!!l2 ·0002 .:0001 
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TABLE VI 
SIGNIFICANJ V AL~ x2(a) OF em-sQuARE 

DISTRI~UTION, ~JGlq TAIL AAEAS FOR GIVEN PROBABlLITY a, 
where 

p = p r (x2 > X2«x) = a 
AND-\) IS DEGREES OF FREEDOM (dJ.) 
Derree·of -

./ 
Probability (/.evel 0/ sirniftcGnce) 

freedom 0=·99 0·91 0·50 0·10 0·05 0·02 0·01 

d'W 

·000157 ,00393 ·455 2·706 3·841 5·214 
, 

6·635 
2 ·0201 ·103 1·386 4·605 5·991 7·824 9·210 
3 ·115 ·352 2·366 6·251 7·815 9·837 11·341 
4 ·297 ·711 3·357 7-779 9·488 11·668 13-277 
5 ·554 1·145 4·351 9·236 11·070 13·388 15·086 
6 ·872 1·635 5·348 10·645 12,592 15·033 16·812 
7 1·239 2-167 ~.346 12·017 14·067 16·622 18·475 
8 1'·646 2·733 7·344 13·362 15·507 18·168 20·090 
9 2·088 3·325 8·343 14·684 16·919 19·679 21·666 

10 2·558 3·940 9,·340 15-987 18·307 21·161 23·209 

11 3·0~3 4·575 10·341 17·275 19·675 22·618 24·725 
12 3·571 5·226 11·340 18·549 21·026 24·054 26·217 
13 4·107 5·892 12·340 19·812 22·362 25·~72 27·688 
14 4·660 6·571 13·339 21·064 23·685 26·873 29·141 
15 4·229 7·261 14·339 22·307 24·996 2~·259 30·578 
16 5·812 7·962 15·338 23·542 76·296 29·633 32·000 
17 6·408 8·672 16·338 24·769 27·587. 30·995 33·409 
)8 7·015 9·390 17·338 25·989 28·869 32·346 '3.4-805-
19 7·633 10'·117" 18·338 27·~04 30·144 33·687 36·19) 
20 8·260 10·851 ).9·337 28·412 3).4)0 35·Q20· 37·566 

21 8·897 11·591 20·337 29·615 32·671 36·349 38·932 
22 9·542 12·338 2J':337 30·813 33·924 37-65~ 40·289 
23 10·196 13·091 22·337 32·007 35·172 38·968 41;"'6j8 
24 10·856 13-848 23-337 32·196 36.·41~ 40·270 42·980 
2S 11·524 14·611 24·331 34·382 37-65: 41·566 44·314 
26 12.191 15·379 25·336 35·363 38·885 41-856 45·642 
27 12·879 16·151 26·336 36·741 40·113 44·140 46·963 
28 13'565 16·928 27:336 37.?16 41·337 45·419 48·278 
29 l-4·'2S6 1'1·708 28·336 39.0 087 42·557 46·693 49·588 
30 14·953 18·493 29·336 40·256 43·773 47-962 5Q·892 

Note. 'l~or degrees of freedo~ (u) greater than 30, the quantity 

J 2X2 _.J 2u - 1 may be used as a no~al. variate with unit variance. 
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FUNDAMENTAlS OF MATIlEMATICALSTATISnCS 

T,ABLE VII 
SIGNIFICANT VALVES tu(a) OF hDIsmmunoN 

(1WO TAIL AREAS) 

P [I t I> tu(a)]:=a 
Probability (LAvel of Sigllificance) 

0·50 0·10 0·05 0·02 0·01 

1·00 6·31 12·71 31-82 63·66 
0·82 0·92 4·30 6·97 6·93 
0·77 2·35 3·18 4·54 5·84 
0·74 2·13 2'78 3·75 4·60 
0·73 2·02 2.57 3·37 4·03 

0·72 1·94 2·45 3·14 3·71 
0·71 1·90 2·37 3·00 3·50 
0·71 1·80 2·31 2·90 3·36 
0·70 1·83 2·26 2·82 3·~5 
0·70 1·81 2·23 2·76 3·17 

0·70 1·80 2·20 2·72 3·11 
0·70 1·78 2·18 2·68 3·06 
0·69 1·77 2·16 2·M 3·01 
0·69 1·76 2·15 2·62 2·98 

,0·69 1·75 2·13 2·60 2·95 

0·69 1·75 2·12 2·58 2·~)2 

0·69 1·74 2·11 2·57 2·90 
0·69 1·73 2·10 2·55 2·88 
0·69 1·73 2·09 2·54 2·86 
0·69 1·73 2,09 2·53 2·85 

0·69 1·72 2·08 2·5~ 2·83 
0·69 1·72 2.07 2·51 2·82 
0·69 1·71 2·07 2·50 2·81 
0·69 1·71 2·06 2·49 2·80 
0·68 1·71 2·06 2·49 2·79 

0·68 1·71 2·06 2·48 2·78 
0·68 1·70 2·05 2·47 2·77 
0·68 1·70 2·05 2·47 2·76 
0·68 1·70 2·05 2·46 2·76 
0·68 1·70 ~·04 2·46 2·75 

0·67 1·65 1·96 2·~3 2·5S 

0·001 

636·62 
31·60 
12·94 
8·61 
6·86 

5·96 
-5·41 
5·04 
4·78 
4·59 

4·44 
4·31 
4·22 
4·14 
4·07 

4·02 
3·97 
3·92 
3·88 
3·85 

3·83 
3·79 
.3·77 
3:75 
3·73 

3·71 
3·69 
3·67 
3·66 
3·65 

3·29 
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TABI.E VIII 
SIGNfrlCANT VALUES OF THE VARIANCE-RATIO 

F-DlSTRmUTION (RIGHI: TAll. AREAS) 
5 PER CENT POINTS 

2 3 4 5 6 8 

161-4 199·5-.215·7 224·6 230·2 234·0 238·9 
18·51 19·00 19·16 19·25 19·30 19·35 19·37 
10·13 9·55 9·28 9·12 9·01 8·94 8·84 
7·71 6·94 6·59 6·39 6·26 6·16 6·04 
6·61 5·79 5·41 5·19 ~·05 4·95 4·82 

5·99 
5·59 
5·32 
5·12 
4·96 

5·14 4·76 
4·74 4·35 
4·46 4·07 
4·26 3·865 
4·10 3·71 

4·53 4·39 
4·12 3·97 
3·84 3·69 
3·63 3·48 
3·48 3·33 

4·28 4·15 
3·87 3·78 
3·58 3·44 
3·37 3·23 
3·22 3·07 

4·84 - 3·98 3·59 3·365 3·20 3·09 2·95 
4·75 3·88 4·49 3·26 3·11 3·00 2·85 
4·67 3·80 5·41 ~·18 3·02 2·92 2·77 
4·60 3·74 3·54 3·11 2·96 2·85 2·70 
4·54 3·68 3·29 3·06 2·90 2·79 2·64 

4·49 3·63 3·' 4 3·01 2·85 2·74 2·59 
4·45 3·59 3·20 2·96 2·81 2·70 2·5S 
4·41 3·55 3·96 2·93 2·77 2·66 2·51 
4·38 3·52 3·13 2·90 2·74 2·63 2·48 
4·35 3·49 3·10 2·87 2·71 2·60 2·45 

4·32 3·47 3·07 2·84 2·61. 2·57 2·42 
4·30 3·44 3·05 2·82 2·66 2·55 2·40 
4·28 3·42 3·03 2·80 2·64 ~·53 2·38 
4·26 4·40 3·01 2·78 2·62 2·51 2·36 
4·24 3·38 2·99 2·76 2·60 2·49 2·34 

4·22 3·37 2·98 2·74 2·59 2·47 2·32 
4·21 3·35 2·96 2·73 2·57 2·46 2·30 
4·20 3·34 2·95 2·71 2·56 2·44 2·29 
4-18 3·33 2·93 2·70 2·54 2·43 2·28 
4·11 3·32 2·92 2·69 2·53 2·42 2·27 

12 24 00 

243·9 249·0 254·3 
19·41 19·45 19·50 
8·74 8·64 8·55 
5·91 5·77 5·65 
4·68 4·53 4·96 

4·00 
3·57 
3·28 
3·07 
2·91 

3·84 3·67 
3·41 3·23 
3·12 2·93 
2·90 2·71 
2·74 2·54 

2·79 2·61 2·40 
2·69 2·50 2·30 
2·60 2·42 2·21 
2·53 2·35 2·13 
2·48 2·29 2·07 

2·42 2·24 2·01 
2·38 2·19 1·96 
2·34 2·15 1-92 
2·31 2·11 1·88 
2·28 2·08 1·84 

2·25 2·05 1·81 
2·23 2·03 1·76 
2·20 2·00 1·76 
2·18 1·98 1·73 
2·16 1·96 1· 71 

2·15 1·95 1-60 
2·13 1·93 1-67 
2·12 1·91 1·65 
2·10 1·90 1·64 
2·09 1-89 1-6~ 

40 4·08 3·23 2·84 2·61 2·45 2·34 2·18 2·00 1·79 1·51 
60 4·00 3·15 2·76 2·52 2·37 2·25 2·10 1-92 1·70 1·30 

120 3·92 3·87 2·68 2·45 2·29 2·17 2·02 1·83 1·62 1·25 
I 

240 3·84 2·99 2·60 2·37 2·21 2·09 1·94 1·75 1·52 1·00 
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