Managing
and Mining
Uncertain Data

Edited by
Charu C. Aggarwal

@ Springer

Managing and Mining
Uncertain Data

ADVANCES IN DATABASE SYSTEMS

Volume 35

Series Editors

Ahmed K. Elmagarmid Amit P. Sheth
Purdue University Wright State University
West Lafayette, IN 47907 Dayton, Ohio 45435

Other books in the Series:

PRIVACY-PRESERVING DATA MINING: Models and Algorithms by Charu C. Aggarwal and Philip
S. Yu; ISBN: 978-0-387-70991-8

SEQUENCE DATA MINING by Guozhu Dong, Jian Pei; ISBN: 978-0-387-69936-3

DATA STREAMS: Models and Algorithms, edited by Charu C. Aggarwal; ISBN: 978-0-387-28759-1

SIMILARITY SEARCH: The Metric Space Approach, P. Zezula, G. Amato, V. Dohnal, M. Batko; ISBN:
0-387-29146-6

STREAM DATA MANAGEMENT, Nauman Chaudhry, Kevin Shaw, Mahdi Abdelguerfi; ISBN:
0-387-24393-3

FUZZY DATABASE MODELING WITH XML, Zongmin Ma; ISBN: 0-387-24248-1

MINING SEQUENTIAL PATTERNS FROM LARGE DATA SETS, Wei Wang and Jiong Yang; ISBN:
0-387-24246-5

ADVANCED SIGNATURE INDEXING FOR MULTIMEDIA AND WEB APPLICATIONS, Yannis
Manolopoulos, Alexandros Nanopoulos, Eleni Tousidou; ISBN: 1-4020-7425-5

ADVANCES IN DIGITAL GOVERNMENT: Technology, Human Factors, and Policy, edited by William
J. Mclver, Jr. and Ahmed K. Elmagarmid; ISBN: 1-4020-7067-5

INFORMATION AND DATABASE QUALITY, Mario Piattini, Coral Calero and Marcela Genero,
ISBN: 0-7923-7599-8

DATA QUALITY, Richard Y. Wang, Mostapha Ziad, Yang W. Lee: ISBN: 0-7923-7215-8

THE FRACTAL STRUCTURE OF DATA REFERENCE: Applications to the Memory Hierarchy,
Bruce McNutt; ISBN: 0-7923-7945-4

SEMANTIC MODELS FOR MULTIMEDIA DATABASE SEARCHING AND BROWSING, Shu-
Ching Chen, R.L. Kashyap, and Arif Ghafoor; ISBN:0-7923-7888-1

INFORMATION BROKERING ACROSS HETEROGENEOUS DIGITAL DATA: A Metadata-based
Approach, VipulKashyap, AmitSheth; ISBN:0-7923-7883-0

For a complete listing of books in this series, go to http://www.springer.com

Managing and Mining
Uncertain Data

Charu C. Aggarwal
IBM T.J. Watson Research Center
USA

@ Springer

Editor

Charu C. Aggarwal

IBM Thomas J. Watson Research Center
19 Skyline Drive

Hawthorne, NY 10532
charu@us.ibm.com

Series Editors

Ahmed K. Elmagarmid Amit P. Sheth

Purdue University Wright State University
West Lafayette, IN 47907 Dayton, Ohio 45435
ISBN 978-0-387-09689-6 e-ISBN 978-0-387-09690-2

DOI 10.1007/978-0-387-09690-2
Library of Congress Control Number: 2008939360

© Springer Science+Business Media, LLC 2009

All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY
10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection
with any form of information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

Printed on acid-free paper

springer.com

Preface

Uncertain data management has seen a revival in interest in recent years be-
cause of a number of new fields which utilize this kind of data. For example, in
fields such as privacy-preserving data mining, additional errors may be added
to data in order to mask the identity of the records. Often the data may be
imputed using statistical methods such as forecasting. In such cases, the data
is uncertain in nature. Such data sets may often be probabilistic in nature. In
other cases, databases may show existential uncertainty in which one or more
records may be present or absent from the data set. Such data sets lead to a
number of unique challenges in processing and managing the underlying data.

The field of uncertain data management has been studied in the traditional
database literature, but the field has seen a revival in recent years because of
new ways of collecting data. The field of uncertain data management presents
a number of challenges in terms of collecting, modeling, representing, query-
ing, indexing and mining the data. We further note that many of these issues
are inter-related and cannot easily be addressed independently. While many of
these issues have been addressed in recent research, the research in this area is
often quite varied in its scope. For example, even the underlying assumptions
of uncertainty are different across different papers. It is often difficult for re-
searchers and students to find a single place containing a coherent discussion
on the topic.

This book is designed to provide a coherent treatment of the topic of uncer-
tain data management by providing surveys of the key topics in this field. The
book is structured as an edited volume containing surveys by prominent re-
searchers in the field. The choice of chapters is carefully designed, so that the
overall content of the uncertain data management and mining field is covered
reasonably well. Each chapter contains the key research content on a particular
topic, along with possible research directions. This includes a broad overview
of the topic, the different models and systems for uncertain data, discussions
on database issues for managing uncertain data, and mining issues with uncer-
tain data. Two of the most prominent systems for uncertain data have also been
described in the book in order to provide an idea how real uncertain data man-
agement systems might work. The idea is to structurally organize the topic,

vi Preface

and provide insights which are not easily available otherwise. It is hoped that
this structural organization and survey approach will be a great help to stu-
dents, researchers, and practitioners in the field of uncertain data management
and mining.

Contents

Preface v
List of Figures XV
List of Tables XXi
1

An Introduction to Uncertain Data Algorithms and Applications 1

Charu C. Aggarwal

1. Introduction 1
2. Algorithms for Uncertain Data 3
3. Conclusions 6
References 7

2

Models for Incomplete and Probabilistic Information 9

Todd J. Green
1. Introduction 9
2. Incomplete Information and Representation Systems 13
3. RA-Completeness and Finite Completeness 14
4. Closure Under Relational Operations 18
5. Algebraic Completion 19
6. Probabilistic Databases and Representation Systems 21
7. Probabilistic ?-Tables and Probabilistic Or-Set Tables 22
8. Probabilistic c-tables 24
9. Queries on Annotated Relations 25
10. K -Relations 27
11. Polynomials for Provenance 30
12. Query Containment 33
13. Related Work 34
14. Conclusion and Further Work 34

References 37
15. Appendix 41

3

Relational Models and Algebra for Uncertain Data 45

Sumit Sarkar and Debabrata Dey
1. Introduction 45

Contents

viii
2. Different Probabilistic Data Models
2.1 Point-Valued Probability Measures Assigned to Each Tuple
2.2 Point-Valued Probability Measures Assigned to Attributes and At-
tribute Sets
2.3 Ig‘t‘erval-\/alued Probability Measures Assigned to Attribute-Values
2.4 Interval-valued Probability Measures Assigned to Tuples
3. Probabilistic Relational Algebra
3.1 Basic Definitions
3.2 Primary and Foreign Keys
3.3 Relational Operations
3.4 Relational Algebra
3.5 Incomplete Distribution and Null Values
4. Algebraic Implications of the Different Representations and Associated
Assumptions
4.1 Point Valued Probability Measures in Tuples
4.2 Point-Valued Probability Measures in Attributes
4.3 Interval-Valued Probability Measures in Attributes
4.4 Interval-Valued Probability Measures in Tuples
4.5 Observations on Tuple Independence
5. Concluding Remarks
References
4

Graphical Models for Uncertain Data
Amol Deshpande, Lise Getoor and Prithviraj Sen

1. Introduction
2. Graphical Models: Overview
2.1 Directed Graphical Models: Bayesian Networks
2.2 Undirected Graphical Models: Markov Networks
2.3 Inference Queries
3. Representing Uncertainty using Graphical Models
3.1 Possible World Semantics
3.2 Shared Factors
3.3 Representing Probabilistic Relations
4. Query Evaluation over Uncertain Data
4.1 Example
4.2 Generating Factors during Query Evaluation
4.3 Query Evaluation as Inference
4.4 Optimizations
5. Related Work and Discussion
5.1 Safe Plans
5.2 Representing Uncertainty using Lineage
5.3 Probabilistic Relational Models
5.4 Lifted Inference
5.5 Scalable Inference using a Relational Database
6. Conclusions
References

48
48

52

Contents

5

Trio: A System for Data, Uncertainty, and Lineage
Jennifer Widom

1.

ULDBs: Uncertainty-Lineage Databases
1.1 Alternatives

1.2 “? (Maybe) Annotations

1.3 Confidences

1.4 Lineage

1.5 Relational Queries

2. TriQL: The Trio Query Language
2.1 Operational Semantics
2.2 Querying Confidences
2.3 Querying Lineage
2.4 Duplicate Elimination
2.5 Aggregation
2.6 Reorganizing Alternatives
2.7 Horizontal Subqueries
2.8 Query-Defined Result Confidences
2.9 Other TriQL Query Constructs
3. Data Modifications in Trio
3.1 Inserts
3.2 Deletes
3.3 Updates
3.4 Data Modifications and Versioning
4. Confidence Computation
5. Additional Trio Features
6. The Trio System
6.1 Encoding ULDB Data
6.2 Basic Query Translation Scheme
6.3 Duplicate Elimination
6.4 Aggregation
6.5 Reorganizing Alternatives
6.6 Horizontal Subqueries
6.7 Built-In Predicates and Functions
6.8 Query-Defined Result Confidences
6.9 Remaining Constructs
References
6
MayBMS: A System for Managing Large Probabilistic Databases
Christoph Koch
1. Introduction
2. Probabilistic Databases
3. Query Language Desiderata
4. The Algebra
5. Representing Probabilistic Data
6. Conceptual Query Evaluation
7. The MayBMS Query and Update Language
8. The MayBMS System
9. Conclusions and Outlook

133
133
135
136
138
140
141
141
142
142
143
144
144

147

149

149
151
152
153
159
164
170
175
178

X

References

7
Uncertainty in Data Integration
Anish Das Sarma, Xin Dong and Alon Halevy
1. Introduction
2. Overview of the System
2.1 Uncertainty in data integration
2.2 System architecture
2.3 Source of probabilities
2.4 Outline of the chapter
3. Uncertainty in Mappings
3.1 Motivating probabilistic mappings
2 Definition and Semantics
3 Query Answering
4 Creating P-mappings
5 Broader Classes of Mappings
.6 Other Types of Approximate Schema Mappings
4. Uncertainty in Mediated Schema
4.1 P-Med-Schema Motivating Example
4.2 Probabilistic Mediated Schema
4.3 P-med-schema Creation
4.4 Consolidation
4.5 Other approaches
5. Future Directions

LW W LWL

References

8
Sketching Aggregates over Probabilistic Streams
Evik Vee
1. Introduction
1.1 Aggregates over probabilistic streams
1.2 Organization
2. The Probabilistic Stream Model
2.1 Problem definitions
2.2 Frequency Moments and Quantiles
Overview of techniques and summary of results
Universal Sampling

5. Frequency moments: DISTINCT and REPEAT-RATE
5.1 DISTINCT
5.2 REPEAT-RATE

6. Heavy-Hitters, Quantiles, and MEDIAN

7. A Binning Technique for MIN and MAX

8. Estimating AVG using generating functions

8.1 Generating functions

8.2 Estimating AVG

8.3 Approximating AVG by SUM/COUNT
9. Discussion
References

W

Contents

181

185

185
187
187
188
189
190
190
190
192
197
201
204
206
207
207
210
212
214
216
217

219

223

223
225
226
226
228
229
231
235

236
236
238
240
241

244
244

245
248

252
253

Contents

9

Probabilistic Join Queries in Uncertain Databases
Hans-Peter Kriegel, Thomas Bernecker, Matthias Renz and Andreas Zuefle

1. Introduction

2. Traditional Join Approaches
2.1 Simple Nested-Loop Join
2.2 Nested-Block-Loop Join
2.3 Sort-Merge-Loop Join
2.4 Other Join Methods
2.5 Spatial Join Algorithms
2.6 Spatial Join using a spatial index structure for both relations
2.7 Spatial Join using a spatial index structure on one relation
2.8 Spatial Join using no Spatial-Index Structure

3. Uncertainty Models and Join Predicates
3.1 The Continuous Uncertainty Model
3.2 The Discrete Uncertainty Model
3.3 Join Predicates and Score
3.4 Probabilistic Join Query Types
3.5 Example
3.6 Uncertainty Models and Probabilistic Join Queries

4. Approaches for Efficient Join Processing on Uncertain Data
4.1 Confidence-Based Join Methods
4.2 Probabilistic Similarity Joins
4.3 Probabilistic Spatial Join

5. Summary

References
10

Indexing Uncertain Data
Sunil Prabhakar, Rahul Shah and Sarvjeet Singh

1. Introduction

2. Data Models and Query Semantics
2.1 Uncertain Attribute types

3. Uncertainty Index for Continuous Domains
3.1 Probability Threshold Indexing
3.2 Special Case: Uniform PDFS
3.3 2D mapping of intervals
3.4 Join Queries
3.5 Multi-dimensional Indexing

4. Uncertainty Index for discrete domains
4.1 Data Model and Problem Definition
4.2 Probabilistic Inverted Index
4.3 Probabilistic Distribution R-tree

5. Indexing for Nearest Neighbor Queries

References

11

Querying Uncertain Spatiotemporal Data
Yufei Tao

1.

Introduction

X1

327

327

xii
2. Range Search
2.1 Query Definitions
2.2 Filter and Refinement
2.3 Nonfuzzy Range Search
2.4 Fuzzy Range Search
2.5 Indexing
3. Nearest Neighbor Retrieval
3.1 Query Definition
3.2 Query Processing
3.3 Variations of Nearest Neighbor Retrieval
4. Summary
References
12
Probabilistic XML
Edward Hung
1. Introduction
2. Sources of Uncertainty in XML Data
3. Modeling Uncertainty using Tags
4. Modeling Uncertainty using Semi-structured Data
5. XML with Independent or Mutually Exclusive Distribution
6. Formal Model with Arbitrary Distributions
6.1 Motivating Examples
6.2 Probabilistic Semi-structured Data Model
6.3 Semantics
6.4 PXML Algebra and Comparison with Previous Work
6.5 Probabilistic Aggregate Operations
6.6 Modeling Interval Uncertainty in Semi-structured Data
7. Summary
References
13

On Clustering Algorithms for Uncertain Data
Charu C. Aggarwal

1

2.
3.
4.

5.
6.
Refer

14

Introduction

Density Based Clustering Algorithms

The UK-means and CK-means Algorithms

UMicro: Streaming Algorithms for Clustering Uncertain Data
4.1 The UMicro Algorithm: Overview

4.2 Computing Expected Similarity

4.3 Computing the Uncertain Boundary

4.4 Further Enhancements

Approximation Algorithms for Clustering Uncertain Data
Conclusions and Summary

ences

On Applications of Density Transforms for Uncertain Data Mining
Charu C. Aggarwal

Contents

353

353
354
355
358
360
363
365
367
372
375
377
379
382

385

Contents

1. Introduction
Kernel Density Estimation with Errors
2.1 Scalability for Large Data Sets

3. Leveraging Density Estimation for Classification

4. Application of Density Based Approach to Outlier Detection
4.1 Outlier Detection Approach
4.2 Subspace Exploration for Outlier Detection

5. Conclusions

References

15

Frequent Pattern Mining Algorithms with Uncertain Data
Charu C. Aggarwal, Yan Li, Jianyong Wang and Jing Wang

1. Introduction
2. Frequent Pattern Mining of Uncertain Data Sets
3. Apriori-style Algorithms
3.1 Pruning Methods for Apriori-Style Algorithms
4. Set-Enumeration Methods
5. Pattern Growth based Mining Algorithms
5.1 Extending the H-mine algorithm
5.2 Extending the FP-growth Algorithm
5.3 Another Variation of the FP-growth Algorithm
6. A Comparative Study on Challenging Cases
6.1 Performance Comparison
6.2 Scalability Comparison
7. Generalization to the Possible Worlds Model
8. Discussion and Conclusions
References
16

Probabilistic Querying and Mining of Biological Images
Vebjorn Ljosa and Ambuj K. Singh

1.

2.
3.

Introduction

1.1 An Illustrative Example

Related Work

Probabilistic Image Analyses

3.1 Probabilistic Segmentation

3.2 Measuring Neurite Thickness

3.3 Ganglion Cell Features

Querying Probabilistic Image Data

4.1 Range Queries on Uncertain Data

4.2 k-NN Queries on Uncertain Data

4.3 Adaptive, Piecewise-Linear Approximations
4.4 Indexing the APLA

4.5 Experimental Results

Mining Probabilistic Image Data

5.1 Defining Probabilistic Spatial Join (PSJ)
5.2 Threshold PSJ Query

5.3 Top-k PSJ Query

Xiii

407
409
412
416
419

421
423

425

427

428
429
430
431
434
434
435
436
446
446

452
454
455

457

461

461
462
465
466
466
469
470
471
472
472
474
474
475
476
477
478
479

X1V Contents

5.4 Experimental Results 480
6. Conclusion 481
References 483

Index 489

List of Figures

2.1
2.2
23
24
3.1
3.2
33
34
3.5
3.6
3.7
3.8
3.9
4.1

4.2

43

Boolean c-tables example

Bag semantics example

Minimal witness why-provenance example

Lineage, why-provenance, and provenance polynomials
Probabilistic Database with Employee Information

A Probabilistic Relation Employee

Relations DocTerm and DocAu

Example Probabilistic Relation

Example Probabilistic Relation with Missing Probabilities
A Probabilistic Relation Target with Three Attributes

A Probabilistic Complex Value Relation

EMPLOYEE: A Probabilistic Relation with Null Values
EMPLOYEE Relation after First Moment Operation

(a,b) A simple car advertisement database with two re-
lations, one containing uncertain data; (c) A joint prob-
ability function (factor) that represents the correlation
between the validity of two of the ads (prob. for the
corresponding tuples in the Advertisements table can be
computed from this); (d) A shared factor that captures
the correlations between several attributes in Advertise-
ments — this can be used to obtain a probability distribu-
tion over missing attribute values for any tuple.

Example of a directed model for a domain with 5 ran-
dom variables

Example of an undirected model for a domain with 5
random variables

25
26
26
30
49
50
52
52
53
55
56
64
67

79

83

84

XVi

4.4

4.5

4.6

4.7

4.8

4.9
4.10

4.11

4.12

List of Figures

(a) A small database with uncertain attributes. For ease
of exposition, we show the marginal pdfs over the at-
tribute values in the table; this information can be de-
rived from the factors. (b) Factors corresponding to the
database assuming complete independence. (c) Graphi-
cal representation of the factors.

Possible worlds for example in Figure 4.4(a) and three
other different types of correlations.

Factors for the probabilistic databases with “implies”
correlations (we have omitted the normalization constant
Z because the numbers are such that distribution is al-
ready normalized)

Representing the factors from Figure 4.6 using a rela-
tional database; shared factors can be represented by us-
ing an additional level of indirection.

Results running the query [[~(S > 7') on example
probabilistic databases (Figures 4.4 and 4.5). The query
returns a non-empty (and identical) result in possible
worlds D3, D5, and D7, and the final result probabil-
ity is obtained by adding up the probabilities of those
worlds.

Evaluating [[(S > T') on database in Figure 4.4(a).

An example query evaluation over a 3-relation database
with only tuple uncertainty but many correlations (tuples
associated with the same factor are correlated with each
other). The intermediate tuples are shown alongside the
corresponding random variables. Tuples lo,...,ls do
not participate in the query.

PGM constructed for evaluation of ,oun:G(0p=a(L))
over the probabilistic database from Figure 4.10. By ex-
ploiting decomposability of count, we can limit the max-
imum size of the newly introduced factors to 3 (the naive
implementation would have constructed a 5-variable fac-
tor).

A probabilistic relational model defined over an exam-
ple relational schema. Similar to Bayesian networks, the
model parameters consist of conditional probability dis-
tributions for each node given its parents.

88

89

90

91

93
95

99

100

103

List of Figures

4.13

5.1
52
53
6.1
6.2
6.3
6.4

6.5
7.1

7.2

7.3

7.4
7.5

9.1
9.2
9.3

9.4

9.5
9.6

An instance of the example PRM with two papers: P1, P2,
with the same author A1. For P1, we use an explicit ran-
dom variable for representing the mode of R1.M and
R2.M. No such variable is needed for P2 since it only
has one review.

TrioExplorer Screenshot.

Relational Queries on ULDBs.

Trio Basic System Architecture.

Tables of Example 6.2.

Two census forms.

A U-relational database.

Complexity results for (probabilistic) world-set algebra.
RA denotes relational algebra.

Exact confidence computation.

Architecture of a data-integration system that handles
uncertainty.

The running example: (a) a probabilistic schema map-
ping between S and T'; (b) a source instance Dg; (c) the
answers of () over Dg with respect to the probabilistic
mapping.

Example 7.11: (a) a source instance Dg; (b) a target
instance that is by-table consistent with Dg and my; (c)
a target instance that is by-tuple consistent with Dg and
< mg,mz >; (d) Q"*(Ds); (e) Q""'(Ds).
Example 7.13: (a) Q"“"'*(D) and (b) Q5""*“(D).

The motivating example: (a) p-mapping for S; and M3,
(b) p-mapping for S; and My, and (c) query answers
w.rt. M and pM. Here we denote {phone, hP} by
hPP, {phone, oP} by oPP, {address, hA} by hAA,
and {address, oA} by 0AA.

Order of Accessed Tuple Pairs Using the Simple Nested-
Loop Join

Order of Accessed Blocks and Tuples using the Nested-
Block-Loop Join

Order of Joins in Sort-Merge-Join

Example of Two Uncertain Object Relations with Given
Scores for the e-Range Join Predicate and the 1-NN Join
Predicate

Overview of Uncertainty Models.

Nested-loop-based Join Approaches.

Xvil

104
116
121
137
156
160
163

169
176

188

191

193
198

209

259

259

260

275
276
278

XViil

9.7
9.8
9.9
9.10
9.11
9.12
10.1

10.2
10.3
10.4
10.5
10.6
11.1
11.2
11.3

11.4

11.5

11.6
11.7
11.8
11.9
12.1
12.2
12.3
12.4
12.5
12.6

12.7
12.8

12.9
13.1
13.2

List of Figures

Upper Bounding Filter Probability of a Join Predicate
Uncertain Objects in One Page

283
284

Representation and Organization of Discrete Uncertain Objects 285

Example for a Probabilistic Distance Range Join Query.

Refinement Criterions for Uncertain Object Approximations

Example of Score Comparison with Thresholds

Inside an Node IV;, with a 0.2-bound and 0.3-bound. A
PTRQ named @ is shown as an interval.

Structure of PTI

Probabilistic Threshold Queries with Uniform pdf
Probabilistic Inverted Index

Highest-Prob-First Search (Example)
Probabilistic Distribution R-tree

An example of irregular object pdf

Range search on uncertain data

Pruning/validating with a 2D probabilistically constrained
rectangle

Pruning/validating with PCRs for fuzzy queries (under
the L, norm)

Enhanced pruning/validating for fuzzy queries with more
“slices" (under the L., norm)

Ilustration of calculating an NN probability
Illustration of the filter step

Ilustration of calculating an NN probability

NN retrieval by expected distances

A Risk Analysis Application

Three Pattern Trees

Data Trees Matching Example Query Pattern Trees

A Semi-structured Instance for a Bibliographic Domain
A Probabilistic Instance for the Bibliographic Domain

Example of Semi-structured Instances Compatible with
a Probabilistic Instance

A Probabilistic Instance for the Surveillance Domain

(a) Graph-structure of a Probabilistic Instance (b) Set of
Semi-structured Instances Compatible with a Probabilis-
tic Instance

A Probabilistic Instance for the Surveillance Domain
Density Based Profile with Lower Density Threshold
Density Based Profile with Higher Density Threshold

287
288
290

305
307
308
314
315
317
330
332

335

337

338
340
342
342
346
358
363
364
365
371

374
377

377
382
391
392

List of Figures

13.3
14.1
14.2
14.3
14.4
14.5
15.1
15.2
15.3
15.4
15.5
15.6
15.7
15.8
15.9
15.10
16.1
16.2
16.3
16.4
16.5
16.6
16.7

16.8

16.9

16.10
16.11
16.12
16.13
16.14
16.15
16.16

The UMicro Algorithm

Effect of Errors on Classification

Effect of Errors on Clustering

Density Based Classification of Data

Outlier Detection Issues with Uncertain Data

Outlier Detection Algorithm

H-Struct

An example of a trie tree

Runtime Comparison on Connect4

Runtime Comparison on kosarak

Runtime Comparison on T40I10D100K

Memory Comparison on Connect4

Memory Comparison on kosarak

Memory Comparison on T40110D100K

Scalability Comparison in terms of runtime

Scalability Comparison in terms of Memory

Retinal Layers.

Confocal Micrograph of Horizontal Cells

Probability Distribution of Neurite Thickness
Probability distribution of Inner Plexiform Layer Thickness
Cell Segmented by the Random-walk-with-restarts Algorithm
The Seeded Watershed Algorithm’s Segmentation Result
Cross-section through a Dendrite and the Resulting Pro-
jected Signal

Ganglion Cell

An Example pdf and its ED-curve

Maximal Errors for APLA and OptimalSplines

Query Times for Range Queries

Running Time for 10-NN Queries

Running Time for k-NN Queries

Each Point Defines a Triangle

Comparative Performance of Algorithms

Effect of Scheduling on Development of Threshold

X1X

398
409
410
416
419
422
435
445
446
447
447
448
448
449
453
453
463
463
464
464
467
468

469
470
473
475
475
476
476
478
480
480

List of Tables

8.1
9.1

9.2
9.3
94
10.1
10.2
10.3

Summary of Results

An x-relation containing x-tuples with possible positions
of tigers.

Confidence of Different Join Predicates

Query Results of Different Probabilistic Join Queries
List of Publications Elaborated in the Next Section
Example of a relation with x-tuples

Example of a relation with Attribute Uncertainty
Example of Uncertain Relation with an Uncertain Dis-
crete Attribute

235

268
274
275
276
302
302

312

Chapter 1

AN INTRODUCTION TO UNCERTAIN DATA
ALGORITHMS AND APPLICATIONS

Charu C. Aggarwal
IBM T. J. Watson Research Center
Hawthorne, NY 10532

charu@us.ibm.com

Abstract

In recent years, uncertain data has become ubiquitous because of new tech-
nologies for collecting data which can only measure and collect the data in an
imprecise way. Furthermore, many technologies such as privacy-preserving data
mining create data which is inherently uncertain in nature. As a result there is
a need for tools and techniques for mining and managing uncertain data. This
chapter discusses the broad outline of the book and the methods used for various
uncertain data applications.

1. Introduction

In recent years many new techniques for collecting data have resulted in an
increase in the availability of uncertain data. While many applications lead to
data which contains errors, we refer to uncertain data sets as those in which
the level of uncertainty can be quantified in some way. Some examples of
applications which create uncertain data are as follows:

m Many scientific measurement techniques are inherently imprecise. In
such cases, the level of uncertainty may be derived from the errors in the
underlying instrumentation.

m Many new hardware technologies such as sensors generate data which is
imprecise. In such cases, the error in the sensor network readings can be
modeled, and the resulting data can be modeled as imprecise data.

2 MANAGING AND MINING UNCERTAIN DATA

= In many applications such as the tracking of mobile objects, the future
trajectory of the objects is modeled by forecasting techniques. Small
errors in current readings can get magnified over the forecast into the
distant future of the trajectory. This is frequently encountered in cosmo-
logical applications when one models the probability of encounters with
Near-Earth-Objects (NEOs). Errors in forecasting are also encountered
in non-spatial applications such as electronic commerce.

= In many applications such as privacy-preserving data mining, the data is
modified by adding perturbations to it. In such cases, the format of the
output [5] is exactly the same as that of uncertain data.

A detailed survey of uncertain data mining and management algorithms may
be found in [2]. In this book, we discuss techniques for mining and managing
uncertain data. The broad areas covered in the book are as follows:

m Modeling and System Design for Uncertain Data: The nature of com-
plexity captured by the uncertain data representation relies on the model
used in order to capture it. The most general model for uncertain data
is the possible worlds model[1], which tries to capture all the possible
states of a database which are consistent with a given schema. The gen-
erality of the underlying scheme provides the power of the model. On the
other hand, it is often difficult to leverage a very general representation
for application purposes. In practice, a variety of simplifying assump-
tions (independence of tuples or independence of attributes) are used in
order to model the behavior of the uncertain data. On the other hand,
more sophisticated techniques such as probabilistic graphical models
can be used in order to model complex dependencies. This is a natu-
ral tradeoff between representation power and utility. Furthermore, the
design of the system used for representing, querying and manipulating
uncertain data critically depends upon the model used for representation.

= Management of Uncertain Data: The process of managing uncertain
data is much more complicated than that for traditional databases. This
is because the uncertainty information needs to be represented in a form
which is easy to process and query. Different models for uncertain
data provide different tradeoffs between usability and expressiveness.
Clearly, the best model to use depends upon the application at hand.
Furthermore, effective query languages need to be designed for uncertain
data and index structures need to be constructed. Most data management
operations such as indexing, join processing or query processing need to
be fundamentally re-designed.

= Mining Uncertain Data: The uncertainty information in the data is use-
ful information which can be leveraged in order to improve the quality

An Introduction to Uncertain Data Algorithms and Applications 3

of the underlying results. For example, in a classification application, a
feature with greater uncertainty may not be as important as one which
has a lower amount of uncertainty. Many traditional applications such
as classification, clustering, and frequent pattern mining may need to
re-designed in order to take the uncertainty into account.

This chapter is organized as follows. In the next section, we will discuss the
broad areas of work in the topic of uncertain data. Each of these areas is
represented by a chapter in the book. The next section will discuss a summary
of the material discussed in the chapter and its relationship to other chapters in
the book. Section 3 contains the conclusions.

2. Algorithms for Uncertain Data

This section will provide a chapter-by-chapter overview of the different top-
ics which are discussed in this book. The aim is to cover the modeling, man-
agement and mining topics fairly comprehensively. The key algorithms in the
field are described fairly comprehensively in the different chapters and the rele-
vant pointers are provided. The key topics discussed in the book are as follows:

Models for Uncertain Data. A clear challenge for uncertain data man-
agement is underlying data representation and modeling [13, 16, 20]. This is
because the underlying representation in the database defines the power of the
different approaches which can be used. Chapter 2 provides a clear discus-
sion of the several models which are used for uncertain data management. A
related issue is the representation in relational databases, and its relationship
with the query language which is finally used. Chapter 3 also discusses the
issue of relational modeling of uncertain data, though with a greater emphasis
on relational modeling and query languages. While chapter 2 discusses the
formal definitions of different kinds of models, chapter 3 discusses some of
the more common and simplified models which are used in the literature. The
chapter also discusses the implications of using different kinds of models from
the relational algebra perspective.

Probabilistic Graphical Models. Probabilistic Graphical Models are a
popular and versatile class of models which have significantly greater expres-
sive power because of their graphical structure. They allow us to intuitively
capture and reason about complex interactions between the uncertainties of
different data items. Chapter 4 discusses a number of common graphical mod-
els such as Bayesian Networks and Markov Networks. The chapter discusses
the application of these models to the representation of uncertainty. The chap-
ter also discusses how queries can be effectively evaluated on uncertain data
with the use of graphical models.

4 MANAGING AND MINING UNCERTAIN DATA

Systems for Uncertain Data. We present two well known systems for
uncertain data. These are the 7rio and MayBMS systems. These chapters will
provide a better idea of how uncertain data management systems work in terms
of database manipulation and querying. The T#io system is described in chapter
5, whereas the MayBMS system is discussed in chapter 6. Both these chapters
provide a fairly comprehensive study of the different kinds of systems and
techniques used in conjunction with these systems.

Data Integration. Uncertain data is often collected from disparate data
sources. This leads to issues involving database integration. Chapter 7 dis-
cusses issues involved in database integration of uncertain data. The most im-
portant issue with uncertain data is to use schema mappings in order to match
the uncertain data from disparate sources.

Query Estimation and Summarization of Uncertain Data Streams.
The problem of querying is one of the most fundamental database operations.
Query estimation is a closely related problem which is often required for a
number of database operations. A closely related problem is that of resolving
aggregate queries with the use of probabilistic techniques such as sketches.
Important statistical measures of streams such as the quantiles, minimum, max-
imum, sum, count, repeat-rate, average, and the number of distinct items are
useful in a variety of database scenarios. Chapter 8 discusses the issue of
sketching probabilistic data streams, and how the synopsis may be used for
estimating the above measures.

Join Processing of Uncertain Data. The problem of join processing is
challenging in the context of uncertain data, because the join-attribute is prob-
abilistic in nature. Therefore, the join operation needs to be redefined in the
context of probabilistic data. Chapter 9 discusses the problem of join process-
ing of uncertain data. An important aspect of join processing algorithms is that
the uncertainty model significantly affects the nature of join processing. The
chapter discusses different kinds of join methods such as the use of confidence-
based join methods, similarity joins and spatial joins.

Indexing Uncertain Data. The problem of indexing uncertain data is
especially challenging because the diffuse probabilistic nature of the data can
reduce the effectiveness of index structures. Furthermore, the challenges for
indexing can be quite different, depending upon whether the data is discrete,
continuous, spatio-temporal, or how the probabilistic function is defined [8, 9,
12, 22, 23]. Chapter 10 provides a comprehensive overview of the problem
of indexing uncertain data. This chapter discusses the problem of indexing
both continuous and discrete data. Chapter 11 further discusses the problem of

An Introduction to Uncertain Data Algorithms and Applications 5

indexing uncertain data in the context of spatiotemporal data. Chapters 10 and
11 provide a fairly comprehensive survey of the different kinds of techniques
which are often used for indexing and retrieval of uncertain data.

Probabilistic XML Data. XML data poses a number of special challenges
in the context of uncertainty because of the structural nature of the underlying
data. Chapter 12 discusses uncertain models for probabilistic XML data. The
chapter also describes algebraic techniques for manipulating XML data. This
includes probabilistic aggregate operations and the query language for XML
data (known as PXML). The chapter discusses both special cases for probabil-
ity distributions as well as arbitrary probability distributions for representing
probabilistic XML data.

Clustering Uncertain Data. Data mining problems are significantly in-
fluenced by the uncertainty in the underlying data, since we can leverage the
uncertainty in order to improve the quality of the underlying results. Cluster-
ing is one of the most comprehensively studied problems in the uncertain data
mining literature. Recently, techniques have been designed for clustering un-
certain data. These include the UMicro algorithm, the UK-means algorithms,
the FDBSCAN, and FOPTICS algorithms [6, 18, 19, 21]. Recently, some ap-
proximation algorithms [7] have also been developed for clustering uncertain
data. Chapter 13 discusses a comprehensive overview of the different algo-
rithms for clustering uncertain data.

General Transformations for Uncertain Data Mining. A natural ap-
proach to uncertain data management techniques is to use general transforma-
tions [3] which can create intermediate representations which adjust for the
uncertainty. These intermediate representations can then be leveraged in order
to improve the quality of the underlying results. Chapter 14 discusses such
an approach with the use of density based transforms. The idea is to create a
probability density representation of the data which takes the uncertainty into
account during the transformation process. The chapter discusses two appli-
cations of this approach to the problems of classification and outlier detection.
We note that the approach can be used for any data mining problem, as long
as a method can be found to use intermediate density transformations for data
mining purposes.

Frequent Pattern Mining. Chapter 15 surveys a number of different
approaches for frequent pattern mining of uncertain data. In the case of trans-
actional data, items are assumed to have existential probabilities [4, 10, 11],
which characterize the likelihood of presence in a given transaction. This in-
cludes Apriori-style algorithms, candidate generate-and-test algorithms, pat-

6 MANAGING AND MINING UNCERTAIN DATA

tern growth algorithms and hyper-structure based algorithms. The chapter ex-
amines the uniqueness of the tradeoffs involved for pattern mining algorithms
in the uncertain case. The chapter compares many of these algorithms for the
challenging case of high existential probabilities, and shows that the behavior
is quite different from deterministic algorithms. Most of the literature [10, 11]
studies the case of low existential probabilities. The chapter suggests that the
behavior is quite different for the case of high-existential probabilities. This
is because many of the pruning techniques designed for the case of low exis-
tential probabilities do not work well for the case when these probabilities are
high.

Applications to Biomedical Domain. We provide one application chapter
in order to provide a flavor of the application of uncertain DBMS techniques
to a real application. The particular application picked in this case is that of
biomedical images. Chapter 16 is a discussion of the application of uncertain
data management techniques to the biomedical domain. The chapter is particu-
lar interesting in that it discusses the application of many techniques discussed
in this book (such as indexing and join processing) to an application domain.
While the chapter discusses the biological image domain, the primary goal is
to present an example of the application of many of the discussed techniques
to a particular application.

3. Conclusions

In this chapter, we introduced the problem of uncertain data mining, and
discussed an overview of the different facets of this area covered by this book.
Uncertain data management promises to be a new and exciting field for prac-
titioners, students and researchers. It is hoped that this book is able to provide
a broad overview of this topic, and how it relates to a variety of data mining
and management applications. This book discusses both data management and
data mining issues. In addition, the book discusses an application domain for
the field of uncertain data. Aside from the topics discussed in the book, some
of the open areas for research in the topic of uncertain data are as follows:

= Managing and Mining Techniques under General Models: Most of
the uncertain data mining and management algorithms use a variety of
simplifying assumptions in order to allow effective design of the under-
lying algorithms. Examples of such simplifying assumptions could im-
ply tuple or attribute independence. In more general scenarios, one may
want to use more complicated schemas to represent uncertain databases.
Some models such as probabilistic graphical models [15] provide greater
expressivity in capturing such cases. However, database management
and mining techniques become more complicated under such models.

An Introduction to Uncertain Data Algorithms and Applications 7

Most of the current techniques in the literature do not use such general
models. Therefore, the use of such models for developing DBMS tech-
niques may be a fruitful future area of research.

= Synergy between Uncertain Data Acquisition and Usage: The utility
of the field can increase further only if a concerted effort is made to
standardize the uncertainty in the data to the models used for the general
management and mining techniques. For example, the output of both
the privacy-preserving publishing and the sensor data collection fields
are typically uncertain data. In recent years, some advances have been
made [5, 14] in order to design models for data acquisition and creation,
which naturally pipeline onto useful uncertain representations. A lot
more work remains to be done in a variety of scientific fields in order to
facilitate model based acquisition and creation of uncertain data.

Acknowledgements

Research was sponsored in part by the US Army Research laboratory and
the UK ministry of Defense under Agreement Number W911NF-06-3-0001.
The views and conclusions contained in this document are those of the author
and should not be interpreted as representing the official policies of the US
Government, the US Army Research Laboratory, the UK Ministry of Defense,
or the UK Government. The US and UK governments are authorized to repro-
duce and distribute reprints for Government purposes.

References

[1] S. Abiteboul, P. C. Kanellakis, G. Grahne. “On the Representation and
Querying of Sets of Possible Worlds.” in Theoretical Computer Science,
78(1): 158-187 (1991)

[2] C.C. Aggarwal, P. S. Yu. “ A Survey of Uncertain Data Algorithms and
Applications,” in [EEE Transactions on Knowledge and Data Engineering,
to appear, 2009.

[3] C. C. Aggarwal, “On Density Based Transforms for Uncertain Data Min-
ing,” in ICDE Conference Proceedings, 2007.

[4] C. C. Aggarwal, Y. Li, J. Wang, J. Wang. “Frequent Pattern Mining with
Uncertain Data.” IBM Research Report, 2008.

[5] C. C. Aggarwal, “On Unifying Privacy and Uncertain Data Models,”
in/CDE Conference Proceedings, 2008.

[6] C.C. Aggarwal and P. S. Yu, “A Framework for Clustering Uncertain Data
Streams,” in ICDE Conference, 2008.

8 MANAGING AND MINING UNCERTAIN DATA

[7] G. Cormode, and A. McGregor, “Approximation algorithms for clustering
uncertain data,” in PODS Conference, pp. 191-200, 2008.

[8] R. Cheng, Y. Xia, S. Prabhakar, R. Shah, and J. Vitter, “Efficient Index-
ing Methods for Probabilistic Threshold Queries over Uncertain Data,” in
VLDB Conference Proceedings, 2004.

[9] R.Cheng, D. Kalashnikov, S. Prabhaker: “Evaluating Probabilistic Queries
over Imprecise Data” in SIGMOD Conference, 2003.

[10] C.-K. Chui, B. Kao, E. Hung. “Mining Frequent Itemsets from Uncertain
Data.” PAKDD Conference, 2007.

[11] C.-K. Chui, B. Kao. “Decremental Approach for Mining Frequent Item-
sets from Uncertain Data.” PAKDD Conference, 2008.

[12] D. Pfozer, C. Jensen. Capturing the uncertainty of moving object repre-
sentations. in SSDM Conference, 1999.

[13] A. Das Sarma, O. Benjelloun, A. Halevy, and J. Widom, “Working Mod-
els for Uncertain Data,” in ICDE Conference Proceedings, 2006.

[14] A. Deshpande, C. Guestrin, S. Madden, J. M. Hellerstein, W. Hong.
“Model-Driven Data Acquisition in Sensor Networks.” in VLDB Confer-
ence, 2004.

[15] A. Deshpande, S. Sarawagi. “Probabilistic Graphical Models and their
Role in Databases.” in VLDB Conference, 2007.

[16] H. Garcia-Molina, and D. Porter, “The Management of Probabilistic
Data,” in I[EEE Transactions on Knowledge and Data Engineering, vol.
4, pp. 487-501, 1992.

[17] B. Kanagal, A. Deshpande, “Online Filtering, Smoothing and Probabilis-
tic Modeling of Streaming data,” in /ICDE Conference, 2008.

[18] H.-P. Kriegel, and M. Pfeifle, “Density-Based Clustering of Uncertain
Data,” in ACM KDD Conference Proceedings, 2005.

[19] H.-P. Kriegel, and M. Pfeifle, “Hierarchical Density Based Clustering of
Uncertain Data,” in /ICDM Conference, 2005.

[20] L. V. S. Lakshmanan, N. Leone, R. Ross, and V. S. Subrahmanian, “Prob-
View: A Flexible Probabilistic Database System,” in ACM Transactions on
Database Systems, vol. 22, no. 3, pp. 419-469, 1997.

[21] W. Ngai, B. Kao, C. Chui, R. Cheng, M. Chau, and K. Y. Yip, “Efficient
Clustering of Uncertain Data,” in /ICDM Conference Proceedings, 20006.

[22] S. Singh, C. Mayfield, S. Prabhakar, R. Shah, S. Hambrusch. “Indexing
Uncertain Categorical Data”, in ICDE Conference, 2007.

[23] Y. Tao, R. Cheng, X. Xiao, W. Ngai, B. Kao, S. Prabhakar. “Index-
ing Multi-dimensional Uncertain Data with Arbitrary Probabality Density
Functions”, in VLDB Conference, 2005.

Chapter 2

MODELS FOR INCOMPLETE AND
PROBABILISTIC INFORMATION

Todd J. Green

Department of Computer and Information Science
University of Pennsylvania

tigreen@cis.upenn.edu

Abstract

Keywords:

We discuss, compare and relate some old and some new models for incomplete
and probabilistic databases. We characterize the expressive power of c-tables
over infinite domains and we introduce a new kind of result, algebraic comple-
tion, for studying less expressive models. By viewing probabilistic models as
incompleteness models with additional probability information, we define com-
pleteness and closure under query languages of general probabilistic database
models and we introduce a new such model, probabilistic c-tables, that is shown
to be complete and closed under the relational algebra. We also identify funda-
mental connections between query answering with incomplete and probabilistic
databases and data provenance. We show that the calculations for incomplete
databases, probabilistic databases, bag semantics, lineage, and why-provenance
are particular cases of the same general algorithms involving semi-rings. This
further suggests a comprehensive provenance representation that uses semi-rings
of polynomials. Finally, we show that for positive Boolean c-tables, containment
of positive relational queries is the same as for standard set semantics.

Incomplete databases, probabilistic databases, provenance, lineage, semi-rings

1. Introduction

This chapter provides a survey of models for incomplete and probabilistic
information from the perspective of two recent papers that the author has writ-
ten with Val Tannen [28] and Grigoris Karvounarakis and Val Tannen [27]. All
the concepts and technical developments that are not attributed specifically to
another publication originate in these two papers.

10 MANAGING AND MINING UNCERTAIN DATA

The representation of incomplete information in databases has been an im-
portant research topic for a long time, see the references in [25], in Ch.19
of [2], in [43], in [48, 36], as well as the recent [45, 42, 41, 4]. Moreover,
this work is closely related to recently active research topics such as incon-
sistent databases and repairs [5], answering queries using views [1], data ex-
change [20], and data provenance [9, 8]. The classic reference on incomplete
databases remains [30] with the fundamental concept of c-table and its restric-
tions to simpler tables with variables. The most important result of [30] is the
query answering algorithm that defines an algebra on c-tables that corresponds
exactly to the usual relational algebra (RA). A recent paper [41] has defined
a hierarchy of incomplete database models based on finite sets of choices and
optional inclusion. We shall give below comparisons between the models [41]
and the tables with variables from [30].

Two criteria have been provided for comparisons among all these mod-
els: [30, 41] discuss closure under relational algebra operations, while [41]
also emphasizes completeness, specifically the ability to represent all finite in-
complete databases. We point out that the latter is not appropriate for tables
with variables over an infinite domain, and we describe another criterion, R.A-
completeness, that fully characterizes the expressive power of c-tables.

We outline a method for the study of models that are not complete. Namely,
we consider combining existing models with queries in various fragments of
relational algebra. We then ask how big these fragments need to be to obtain
a combined model that is complete. We give a number of such algebraic
completion results.

Early on, probabilistic models of databases were studied less intensively
than incompleteness models, with some notable exceptions [10, 6, 39, 34, 17].
Essential progress was made independently in three papers [22, 33, 47] that
were published at about the same time. [22, 47] assume a model in which
tuples are taken independently in a relation with given probabilities. [33] as-
sumes a model with a separate distribution for each attribute in each tuple. All
three papers attacked the problem of calculating the probability of tuples occur-
ring in query answers. They solved the problem by developing more general
models in which rows are annotated with additional information (“event ex-
pressions,” “paths,” “traces”), and they noted the similarity with the conditions
in c-tables.

We go beyond the problem of individual tuples in query answers by defin-
ing closure under a query language for probabilistic models. Then we describe
probabilistic c-tables which add fo the c-tables themselves probability distri-
butions for the values taken by their variables. Here is an example of such
a representation that captures the set of instances in which Alice is taking a
course that is Math with probability 0.3; Physics (0.3); or Chemistry (0.4),
while Bob takes the same course as Alice, provided that course is Physics or

29 ¢

Models for Incomplete and Probabilistic Information 11

Chemistry and Theo takes Math with probability 0.85:

math : 0.3
Student Course Condition T = phys :0.3
Alice x chem :04
Bob x x = phys V = = chem
Theo math t=1 . { 0: 0.15
1: 0.85

The concept of probabilistic c-table allows us to solve the closure problem by
using the same algebra on c-tables defined in [30].

We also give a completeness result by showing that probabilistic Boolean
c-tables (all variables are two-valued and can appear only in the conditions, not
in the tuples) can represent any probabilistic database.

An important conceptual point is that, at least for the models we consider,
the probabilistic database models can be seen, as probabilistic counterparts
of incomplete database models. In an incompleteness model a tuple or an at-
tribute value in a tuple may or may not be in the database. In its probabilistic
counterpart, these are seen as elementary events with an assigned probability.
For example, the models used in [22, 33, 47] are probabilistic counterparts
of the two simplest incompleteness models discussed in [41]. As another ex-
ample, the model used in [17] can be seen as the probabilistic counterpart of
an incompleteness model one in which tuples sharing the same key have an
exclusive-or relationship.

A consequence of this observation is that, in particular, query answering for
probabilistic c-tables will allow us to solve the problem of calculating proba-
bilities about query answers for any model that can be defined as a probabilistic
counterpart of the incompleteness models considered in [30, 41].

Besides the models for incomplete and probabilistic information, several
other forms of annotated relations have appeared in various contexts in the
literature. Query answering in these settings involves generalizing RA to per-
form corresponding operations on the annotations.

In data warehousing, [14] and [15] compute lineages for tuples in the output
of queries, in effect generalizing RA to computations on relations annotated
with sets of contributing tuples. For curated databases, [9] proposes decorating
output tuples with their why-provenance, essentially the set of sets of contribut-
ing tuples. Finally, RA on bag semantics can be viewed as a generalization to
annotated relations, where a tuple’s annotation is a number representing its
multiplicity.

We observe that in all of these cases, the calculations with annotations are
strikingly similar. This suggests looking for an algebraic structure on anno-
tations that captures the above as particular cases. It turns out that the right
structure to use for this purpose is that of commutative semi-rings. In fact,

12 MANAGING AND MINING UNCERTAIN DATA

one can show that the laws of commutative semi-rings are forced by certain ex-
pected identities in RA. Having identified commutative semi-rings as the right
algebraic structure, we argue that a symbolic representation of semi-ring calcu-
lations is just what is needed to record, document, and track R.A querying from
input to output for applications which require rich provenance information. It
is a standard philosophy in algebra that such symbolic representations form
the most general such structure. In the case of commutative semi-rings, just
as for rings, the symbolic representation is that of polynomials. This strongly
suggests using polynomials to capture provenance.
The rest of this chapter is organized as follows:

= We develop the basic notions of representation systems for incomplete
information databases, and we give several examples (Section 2).

= We define two measures of expressive power for representation systems,
RA-Completeness and finite completeness. R.A-com-pleteness charac-
terizes the expressiveness of c-tables, and finite completeness the expres-
siveness of a restricted system which we call finite c-tables (Section 3).

= We examine the related notion of closure of representation systems un-
der relational operations (Section 4).

= We define the notion of algebraic completion, and we give a number of
results showing, for various representation systems not closed under the
full relational algebra, that “closing” them under (certain fragments of)
the relational algebra yields expressively complete representation sys-
tems (Section 5).

m We develop the basic notions of probabilistic representation systems
(Section 6) and present probabilistic counterparts of various represen-
tation systems for incomplete databases (Sections 7 and 8).

= We observe patterns in the calculations used in incomplete and proba-
bilistic databases, bag semantics, and why-provenance which motivate
the more general study of annotated relations (Section 9).

m We define K-relations, in which tuples are annotated (tagged) with ele-
ments from K. We define a generalized positive algebra on K -relations
and argue that K’ must be a commutative semi-ring (Section 10).

s For provenance semi-rings we use polynomials with integer coeffi-
cients, and we show that positive algebra semantics for any commutative
semi-rings factors through the provenance semantics (Section 11).

Models for Incomplete and Probabilistic Information 13

= We consider query containment w.r.t. K -relation semantics and we
show that for unions of conjunctive queries and when K is a distribu-
tive lattice, query containment is the same as that given by standard set
semantics (Section 12).

2. Incomplete Information and Representation Systems

Our starting point is suggested by the work surveyed in [25], in Ch. 19
of [2], and in [43]. A database that provides incomplete information consists
of a set of possible instances. At one end of this spectrum we have the con-
ventional single instances, which provide “complete information.” At the other
end we have the set of all allowable instances which provides “no information”
at all, or “zero information.”

We adopt the formalism of relational databases over a fixed countably infi-
nite domain D. We use the unnamed form of the relational algebra. To simplify
the notation we will work with relational schemas that consist of a single rela-
tion name of arity n. Everything we say can be easily reformulated for arbitrary
relational schemas. We shall need a notation for the set of all (conventional)
instances of this schema, i.e., all the finite n-ary relations over ID:

N :={I|ICD" Ifinite}

DEFINITION 2.1 An incomplete(-information) database
(i-database for short), I, is a set of conventional instances, i.e., a subset

I CWN.

The usual relational databases correspond to the cases when Z = {I}. The
no-information or zero-information database consists of @/l the relations:
N.

Conventional relational instances are finite. However, because D is infinite
incomplete databases are in general infinite. Hence the interest in finite, syn-
tactical, representations for incomplete information.

DEFINITION 2.2 A representation system consists of a set (usually a syn-
tactically defined “language”) whose elements we call tables, and a function
Mod that associates to each table T' an incomplete database Mod(T).

The notation corresponds to the fact that 7" can be seen as a logical assertion
such that the conventional instances in Mod(T') are in fact the models of T' (see
also [38, 44]).

The classical reference [30] considers three representation systems: Codd
tables, v-tables, and c-tables. v-tables are conventional instances in which

14 MANAGING AND MINING UNCERTAIN DATA

variables can appear in addition to constants from ID. If T is a v-table then!
Mod(T) :={v(T) | v: Var(T) — D is a valuation for the variables of 7'}

Codd tables are v-tables in which all the variables are distinct. They correspond
roughly to the current use of nulls in SQL, while v-tables model “labeled” or
“marked” nulls. c-tables are v-tables in which each tuple is annotated with
a condition — a Boolean combination of equalities involving variables and
constants. The tuple condition is tested for each valuation v and the tuple is
discarded from v(T") if the condition is not satisfied.

EXAMPLE 2.3 A v-table and its possible worlds.

12z 121 122 1T 2 77
R=|3zy Mod(R)y={| 3111,/ 321],...,] 3 7789,
z45 145|145 97 4 5
EXAMPLE 2.4 A c-table and its possible worlds.
12z
S=|3zy | xz=yAz#2
z45 | x#1Va#y
121 122 T 277
M"d(s)_{ 311|145 | 9745 }

Several other representation systems have been proposed in a recent pa-
per [41]. We illustrate here three of them and we discuss several others later.
A ?-table is a conventional instance in which tuples are optionally labeled
with “?.” meaning that the tuple may be missing. An or-set-table looks like a
conventional instance but or-set values [31, 37] are allowed. An or-set value
(1,2, 3) signifies that exactly one of 1, 2, or 3 is the “actual” (but unknown)
value. Clearly, the two ideas can be combined yielding another representation
systems that we might (awkwardly) call or-set-?-tables.’

EXAMPLE 2.5 An or-set-?-table and its possible worlds.

T 2 (1,2) 121
T := 3 (172><374> MOd(T): 313 g é?; B ;;i
(4,5) 4 5 |2 445

3. RA-Completeness and Finite Completeness

“Completeness” of expressive power is the first obvious question to ask
about representation systems. This brings up a fundamental difference be-
tween the representation systems of [30] and those of [41]. The presence of

'We follow [2, 41] and use the closed-world assumption (CWA). [30] uses the open-world assumption
(OWA), but their results hold for CWA as well.
2In [41] these three systems are denoted by R9, R4 and RS‘.

Models for Incomplete and Probabilistic Information 15

variables in a table T and the fact that I is infinite means that Mod(T') may be
infinite. For the tables considered in [41], Mod(T) is always finite.

[41] defines completeness as the ability of a representation system to repre-
sent “all” possible incomplete databases. For the kind of tables considered
in [41] the question makes sense. But in the case of the tables with vari-
ables in [30] this is hopeless for trivial reasons. Indeed, in such systems there
are only countably many tables while there are uncountably many incomplete
databases (the subsets of N, which is infinite). We will discuss separately be-
low finite completeness for systems that only represent finite databases. Mean-
while, we will develop a different yardstick for the expressive power of tables
with variables that range over an infinite domain.

c-tables and their restrictions (v-tables and Codd tables) have an inherent
limitation: the cardinality of the instances in Mod(T') is at most the cardinality
of T.. For example, the zero-information database N cannot be represented
with c-tables. It also follows that among the incomplete databases that are rep-
resentable by c-tables the “minimal”-information ones are those consisting for
some m of all instances of cardinality up to m (which are in fact representable
by Codd tables with m rows). Among these, we make special use of the ones
of cardinality 1:

Zp = {{t} | t € D*}.

Hence, Z; consists of all the one-tuple relations of arity k. Note that Z; =
Mod(Zy,) where Zj, is the Codd table consisting of a single row of k distinct
variables.

DEFINITION 3.1 An incomplete database T is RA-definable if there exists a
relational algebra query q such that T = q(Zy,), where k is the arity of the
input relation name in q.

THEOREM 3.2 If7 is an incomplete database representable by a c-table T,
i.e, T = Mod(T), then T is RA-definable.

Proof: Let T be a c-table, and let {z1, ...,z } denote the variables in 7.
We want to show that there exists a query ¢ in RA such that ¢(Mod(Z)) =
Mod(T). Let n be the arity of T'. For every tuple t = (aq,...,a,) in T with
condition T'(t), let {z,, ..., =, } be the variables in T'(t) which do not appear
int. For 1 < i < n, define C; to be the singleton {c}, if a; = ¢ for some
constant ¢, or 7;(Zy), if a; = x; for some variable ;. For 1 < j < k, define
Chn+; to be the expression ;, (Zy), where x; is the jth variable in 7'(t) which
does not appear in t. Define ¢ to be the query

q:=J m..n(op@)(C1x -+ X Cog),
teT

16 MANAGING AND MINING UNCERTAIN DATA

where ¢ (¢) is obtained from 7T'(¢) by replacing each occurrence of a variable x;
with the index j of the term C; in which x; appears. To see that ¢(Mod(Z,)) =
Mod(T), since Zj, is a c-table, we can use Theorem 4.2 and check that, in fact,
4(Zy) = T where q is the translation of ¢ into the c-tables algebra (see the
proof of Theorem 4.2). Note that we only need the SPJU fragment of RA. W

EXAMPLE 3.3 The c-table from Example 2.4 is definable as Mod(S) = q(Z3)
where q is the following query with input relation name V of arity 3: q(V') :=
m23({1} x {2} x V) Umia3(02=3422 ({3} X V)) Umsi2(0327° 324({4} ¥
{5} x V).

REMARK 3.4 [t turns out that the i-databases representable by c-tables are
also definable via RA starting from the absolute zero-information instance,
N. Indeed, it can be shown (Proposition 15.1) that for each k there exists
an RA query q such that Z;, = q(N). From there we can apply Theo-
rem 3.2. The class of incomplete databases {Z | 3¢ € RAs.t. T = q(N)}
is strictly larger than that representable by c-tables, but it is still countable
hence strictly smaller than that of all incomplete databases. Its connections
with FO-definability in finite model theory might be interesting to investigate.

Hence, c-tables are in some sense “no more powerful” than the relational
algebra. But are they “as powerful”? This justifies the following:

DEFINITION 3.5 A representation system is RA-complete if it can represent
any RA-definable i-database.

Since Zj, is itself a c-table the following is an immediate corollary of the
fundamental result of [30] (see Theorem 4.2 below). It also states that the
converse of Theorem 3.2 holds.

THEOREM 3.6 c-tables are RA-complete.

This result is similar in nature to Corollary 3.1 in [25]. However, the exact
technical connection, if any, is unclear, since Corollary 3.1 in [25] relies on the
certain answers semantics for queries.

We now turn to the kind of completeness considered in [41].

DEFINITION 3.7 A representation system is finitely complete if it can repre-
sent any finite i-database.

The finite incompleteness of ?-tables, or-set-tables, or-set-?-tables and other
systems is discussed in [41] where a finitely complete representation system
Rg‘mp is also given (we repeat the definition in the Appendix). Is finite com-
pleteness a reasonable question for c-tables, v-tables, and Codd tables? In

general, for such tables Mod(T') is infinite (all that is needed is a tuple with

Models for Incomplete and Probabilistic Information 17

at least one variable and with an infinitely satisfiable condition). To facilitate
comparison with the systems in [41] we define finite-domain versions of tables
with variables.

DEFINITION 3.8 A finite-domain c-table (v-table, Codd table) consists of a
c-table (v-table, Codd table) T together with a finite dom(x) C D for each
variable x that occurs in T.

Note that finite-domain Codd tables are equivalent to or-set tables. Indeed,
to obtain an or-set table from a Codd table, one can see dom(z) as an or-set
and substitute it for in the table. Conversely, to obtain a Codd table from
an or-set table, one can substitute a fresh variable x for each or-set and define
dom(z) as the contents of the or-set.

In light of this connection, finite-domain v-tables can be thought of as a
kind of “correlated” or-set tables. Finite-domain v-tables are strictly more
expressive than finite Codd tables. Indeed, every finite Codd table is also a
finite v-table. But, the set of instances represented by e.g. the finite v-table
{(1,z),(x,1)} where dom(x) = {1,2} cannot be represented by any finite
Codd table. Finite-domain v-tables are themselves finitely incomplete. For ex-
ample, the i-database {{(1,2)},{(2,1)}} cannot be represented by any finite
v-table.

It is easy to see that finite-domain c-tables are finitely complete and hence
equivalent to [41]’s ,R'I?rop in terms of expressive power. In fact, this is true even
for the fragment of finite-domain c-tables which we will call Boolean c-tables,
where the variables take only Boolean values and are only allowed to appear
in conditions (never as attribute values).

THEOREM 3.9 Boolean c-tables are finitely complete (hence finite-domain
c-tables are also finitely complete).

Proof: Let Z = {I;,..., I} be a finite i-database. Construct a Boolean c-
table 7" such that Mod(T) = T as follows. Let £ := [lgm]. For 1 < i < m,
put all the tuples from I; into 7" with condition ¢;, defined

;= /\—\xj /\/\.%'k,
j k

where the first conjunction is over all 1 < j < ¢ such that jth digit in the ¢-
digit binary representation of ¢ — 1 is 0, and the second conjunction is over all
1 < k < £ such that the kth digit in the ¢-digit binary representation of ¢ — 1 is
1. Finally, put all the tuples from I,,, into " with condition ¢, V- - - V 5. N
Although Boolean c-tables are complete there are clear advantages to using
variables in tuples also, chief among them being compactness of representa-
tion.

18 MANAGING AND MINING UNCERTAIN DATA

EXAMPLE 3.10 Consider the finite v-table {(xi,z2,...,Tm)} where
dom(z1) = dom(za) = --- = dom(xy,) = {1,2,...,n}. The equivalent
Boolean c-table has n™ tuples.

If we additionally restrict Boolean c-tables to allow conditions to contain
only true or a single variable which appears in no other condition, then we
obtain a representation system which is equivalent to ?-tables.

Since finite c-tables and Rl?rop are each finitely complete there is an ob-
vious naive algorithm to translate back and forth between them: list all the
instances the one represents, then use the construction from the proof of finite
completeness for the other. Finding a more practical “syntactic” algorithm is
an interesting open question.

4. Closure Under Relational Operations

DEFINITION 4.1 A representation system is closed under a query language if
for any query q and any table T there is a table T’ that represents q(Mod(T)).

(For notational simplicity we consider only queries with one input relation
name, but everything generalizes smoothly to multiple relation names.)

This definition is from [41]. In [2], a strong representation system is defined
in the same way, with the significant addition that 7" should be computable
from 7" and q. It is not hard to show, using general recursion-theoretic prin-
ciples, that there exist representation systems (even ones that only represent
finite ¢-databases) which are closed as above but not strong in the sense of [2].
However, the concrete systems studied so far are either not closed or if they are
closed then the proof provides also the algorithm required by the definition of
strong systems. Hence, we see no need to insist upon the distinction.

THEOREM 4.2 ([30]) c-tables, finite-domain c-tables, and Boolean c-tables
are closed under the relational algebra.

Proof: (Sketch.) We repeat here the essentials of the proof, including most
of the definition of the c-table algebra. For each operation w of the relational
algebra [30] defines its operation on the c-table conditions as follows. For
projection, if V' is a list of indexes, the condition for a tuple ¢ in the output is
given by

A=\ 1)
tET st my ()=t
where T'(t") denotes the condition associated with ¢’ in 7. For selection, we

have
ap(T)(t) :=T(t) N\ P(t)

where P(t) denotes the result of evaluating the selection predicate P on the
values in ¢ (for a Boolean c-table, this will always be true or false, while for

Models for Incomplete and Probabilistic Information 19

c-tables and finite-domain c-tables, this will be in general a Boolean formula
on constants and variables). For cross product and union, we have

(Ty x To)(t) = Ti(t) NTa(t)
(T1 U TQ)(t) = T (t) vV Tg(t)

Difference and intersection are handled similarly. By replacing u’s by u we
translate any relational algebra expression q into a c-table algebra expression ¢
and it can be shown that

LEMMA 4.3 For all valuations v, v(q(T')) = q(v(T)).

From this, Mod(q(T")) = q(Mod(T)) follows immediately.]
In Section 10, we shall see a generalization of the (positive) c-table algebra
and Lemma 4.3 in the context of annotated relations.

5. Algebraic Completion

None of the incomplete representation systems we have seen so far is closed
under the full relational algebra. Nor are two more representation systems
considered in [41], Reetsand R g = (We repeat their definitions in the Appendix).

PROPOSITION 5.1 ([30, 41]) Codd tables and v-tables are not closed un-
der e.g. selection. Or-set tables and finite v-tables are also not closed under
e.g. selection. ?-tables, Rers, and Rq= are not closed under e.g. join.

We have seen that “closing” minimal-information one-row Codd tables (see
before Definition 3.5) {Z1, Zs, . ..}, by relational algebra queries yields equiv-
alence with the c-tables. In this spirit, we will investigate “how much” of the
relational algebra would be needed to complete the other representation sys-
tems considered. We call this kind of result algebraic completion.

DEFINITION 5.2 If (T,Mod) is a representation system and L is a query
language, then the representation system obtained by closing 7 under L is the
set of tables {(T,q) | T € T,q € L} with the function Mod : T x L — N
defined by Mod(T, q) := q(Mod(T)).

We are now ready to state the results regarding algebraic completion.
THEOREM 5.3 (RA-COMPLETION)

1 The representation system obtained by closing Codd tables under SPJU
queries is RA-complete.

2 The representation system obtained by closing v-tables under S P queries
is RA-complete.

20 MANAGING AND MINING UNCERTAIN DATA

Proof: (Sketch.) For each case we show that given a arbitrary c-table T" one
can construct a table S and a query ¢ of the required type such that g(S) = 7.
Case 1 is a trivial corollary of Theorem 3.2. The details for Case 2 are in the
Appendix. |

Note that in general there may be a “gap” between the language for which
closure fails for a representation system and the language required for comple-
tion. For example, Codd tables are not closed under selection, but at the same
time closing Codd tables under selection does not yield an R.A-complete repre-
sentation system. (To see this, consider the incomplete database represented by
the v-table {(x, 1), (z,2)}. Intuitively, selection alone is not powerful enough
to yield this incomplete database from a Codd table, as, selection operates on
one tuple at a time and cannot correlate two un-correlated tuples.) On the other
hand, it is possible that some of the results we present here may be able to be
“tightened” to hold for smaller query languages, or else proved to be “tight”
already. This is an issue which may be worth examining in the future.

We give now a set of analogous completion results for the finite case.

THEOREM 5.4 (FINITE-COMPLETION)

1 The representation system obtained by closing or-set-tables under PJ
queries is finitely complete.

2 The representation system obtained by closing finite v-tables under PJ
or ST P queries is finitely complete.

3 The representation system obtained by closing Rers under PJ or PU
queries is finitely complete.

4 The representation system obtained by closing Re= under S* P.J queries
is finitely complete.

Proof:(Sketch.) In each case, given an arbitrary finite incomplete data-base,
we construct a table and query of the required type which yields the incomplete
database. The details are in the Appendix. |

Note that there is a gap between the R.A-completion result for Codd tables,
which requires SPJU queries, and the finite-completion result for finite Codd
tables, which requires only P.J queries. A partial explanation is that proof of
the latter result relies essentially on the finiteness of the ¢-database.

More generally, if a representation system can represent arbitrarily-large -
databases, then closing it under RA yields a finitely complete representation
system, as the following theorem makes precise (see Appendix for proof).

THEOREM 5.5 (GENERAL FINITE-COMPLETION) Let T be a representa-
tion system such that for all n > 1 there exists a table T in T such that

Models for Incomplete and Probabilistic Information 21

|Mod(T')| > n. Then the representation system obtained by closing T under
RA is finitely-complete.

COROLLARY 5.6 The representation system obtained by closing ?-tables un-
der RA queries is finitely complete.

6. Probabilistic Databases and Representation Systems

Finiteness assumption For the entire discussion of probabilistic database
models we will assume that the domain of values D is finite. Infinite domains
of values are certainly interesting in practice; for some examples see [33, 45,
41]. Moreover, in the case of incomplete databases we have seen that they
allow for interesting distinctions.’ However, finite probability spaces are much
simpler than infinite ones and we will take advantage of this simplicity. The
issues related to probabilistic databases over infinite domains are nonetheless
interesting and worth pursuing in the future.

We wish to model probabilistic information using a probability space whose
possible outcomes are all the conventional instances. Recall that for simplicity
we assume a schema consisting of just one relation of arity n. The finiteness
of D implies that there are only finitely many instances, I C D".

By finite probability space we mean a probability space (see e.g. [18])
(Q, F,Pr[]) in which the set of outcomes 2 is finite and the o-field of events
F consists of all subsets of {2. We shall use the equivalent formulation of pairs
(€2, p) where € is the finite set of outcomes and where the outcome probability
assignment p : Q — [0, 1] satisfies), p(w) = 1. Indeed, we take Pr[A] =

> wea P(W).

DEFINITION 6.1 A probabilistic(-information) database (sometimes called
in this paper a p-database) is a finite probability space whose outcomes are
all the conventional instances, i.e., a pair (N, p) where Y ;. p(I) = 1.

Demanding the direct specification of such probabilistic databases is unrealis-
tic because there are 2V possible instances, where N := |D|", and we would
need that many (minus one) probability values. Thus, as in the case of incom-
plete databases we define probabilistic representation systems consisting of
“probabilistic tables” (prob. tables for short) and a function Mod that associates
to each prob. table 7" a probabilistic database Mod(T"). Similarly, we define
completeness (finite completeness is the only kind we have in our setting).

To define closure under a query language we face the following problem.
Given a probabilistic database (N, p) and a query ¢ (with just one input relation
name), how do we define the probability assignment for the instances in g(/N')?

3Note however that the results remain true if I is finite; we just require an infinite supply of variables.

22 MANAGING AND MINING UNCERTAIN DATA

It turns out that this is a common construction in probability theory: image
spaces.

DEFINITION 6.2 Let (Q,p) be a finite probability space and let f : Q@ —
where Q) is some finite set. The image of (), p) under f is the finite probability

space (S, p') where * p/ (') := 2 f(w)mw PW)-

Again we consider as query languages the relational algebra and its sublan-
guages defined by subsets of operations.

DEFINITION 6.3 A probabilistic representation system is closed under a query
language if for any query q and any prob. table T there exists a prob. table T’
that represents q(Mod(T)), the image space of Mod(T) under q.

7. Probabilistic ?-Tables and Probabilistic Or-Set Tables

Probabilistic ?-tables (p-?-tables for short) are commonly used for proba-
bilistic models of databases [47, 22, 23, 16] (they are called the “independent
tuples” representation in [42]). Such tables are the probabilistic counterpart of
?-tables where each “?” is replaced by a probability value. Example 7.4 below
shows such a table. The tuples not explicitly shown are assumed tagged with
probability 0. Therefore, we define a p-?-table as a mapping that associates
to each t € D™ a probability value p,. In order to represent a probabilistic
database, papers using this model typically include a statement like “every tu-
ple ¢ is in the outcome instance with probability p,, independently from the
other tuples” and then a statement like

pel) = (T]») (1 -)).
tel tel

In fact, to give a rigorous semantics, one needs to define the events E; C N,
E; :={I | t € I'} and then to prove the following.

PROPOSITION 7.1 There exists a unique probabilistic database such that the
events Ey are jointly independent and Pr|Fy| = p,.

This defines p-?-tables as a probabilistic representation system. We shall
however provide an equivalent but more perspicuous definition. We shall need
here another common construction from probability theory: product spaces.

DEFINITION 7.2 Let (Q1,p1), ..., (Qn, pn) befinite probability spaces. Their
product is the space (21 X - -+ x Q, p) where® we have:

p(wb s 7wn) = pl(wl) o 'pn(wn)

“It is easy to check that the p’ (w’)’s do actually add up to 1.
5 Again, it is easy to check that the outcome probability assignments add up to 1.

Models for Incomplete and Probabilistic Information 23

This definition corresponds to the intuition that the n systems or phenom-
ena that are modeled by the spaces (£21,p1), ..., (25, pn) behave without “in-
terfering” with each other. The following formal statements summarize this
intuition.

PROPOSITION 7.3 Consider the product of the spaces (21,p1), - - -, (Qn, Pn)-
Let A1 C Ql,...7An C Q.
1 We have Pr[A; x --- x A,] = Pr[A;]---Pr[A,].

2 Theevents Ay xQo X+ XQp, \yXAgx-+ - XQy, ..., Y XDy X+ XA,
are jointly independent in the product space.

Turning back to p-?-tables, for each tuple t € D™ consider the finite prob-
ability space B; := ({true,false}, p) where p(true) := p, and p(false) =
1 — p,. Now consider the product space

P::HBt

tehn

We can think of its set of outcomes (abusing notation, we will call this set P
also) as the set of functions from D" to {true, false}, in other words, predicates
on D", There is an obvious function f : P — A that associates to each
predicate the set of tuples it maps to true.

All this gives us a p-database, namely the image of P under f. It remains
to show that it satisfies the properties in Proposition 7.1. Indeed, since f is a
bijection, this probabilistic database is in fact isomorphic to P. In P the events
that are in bijection with the E}’s are the Cartesian product in which there
is exactly one component {true} and the rest are {true,false}. The desired
properties then follow from Proposition 7.3.

We define now another simple probabilistic representation system called
probabilistic or-set-tables (p-or-set-tables for short). These are the proba-
bilistic counterpart of or-set-tables where the attribute values are, instead of
or-sets, finite probability spaces whose outcomes are the values in the or-set.
p-or-set-tables correspond to a simplified version of the ProbView model pre-
sented in [33], in which plain probability values are used instead of confidence
intervals.

EXAMPLE 7.4 A p-or-set-table S, and a p-?-table T.

1 (2:0.3,3:0.7) 1 2 0.4
S = 4 5 T:=| 3 4 0.3
(6:0.5,7:05) (8:0.1,9:0.9) 5 6 1.0

A p-or-set-table determines an instance by choosing an outcome in each
of the spaces that appear as attribute values, independently. Recall that or-
set tables are equivalent to finite-domain Codd tables. Similarly, a p-or-set-
table corresponds to a Codd table T" plus for each variable z in 7" a finite

24 MANAGING AND MINING UNCERTAIN DATA

probability space dom(x) whose outcomes are in ID. This yields a p-database,
again by image space construction, as shown more generally for c-tables next
in Section 8.

Query answering The papers [22, 47, 33] have considered, independently,
the problem of calculating the probability of tuples appearing in query answers.
This does not mean that in general g(Mod(T')) can be represented by another
tuple table when T is some p-?-table and ¢ € RA (neither does this hold for
p-or-set-tables). This follows from Proposition 5.1. Indeed, if the probabilistic
counterpart of an incompleteness representation system 7 is closed, then so is
7. Hence the lifting of the results in Proposition 5.1 and other similar results.

Each of the papers [22, 47, 33] recognizes the problem of query answering
and solves it by developing a more general model in which rows contain addi-
tional information similar in spirit to the conditions that appear in c-tables (in
fact [22]’s model is essentially what we call probabilistic Boolean c-tables, see
next section). It turns out that one can actually use a probabilistic counterpart
to c-tables themselves together with the algebra on c-tables given in [30] to
achieve the same effect.

8. Probabilistic c-tables

DEFINITION 8.1 4 probabilistic c-table (pc-tables for short) consists of a
c-table T together with a finite probability space dom(x) (whose outcomes are
values in D) for each variable x that occurs inT.

To get a probabilistic representation system consider the product space

V.= H dom(x)

xz€ Var(T)

The outcomes of this space are in fact the valuations for the c-table T'! Hence
we can define the function g : V. — N, g(v) := v(T') and then define Mod(T')
as the image of V' under g.

Similarly, we can talk about Boolean pc-tables, pv-tables and probabilistic
Codd tables (the latter related to [33], see previous section). Moreover, the
p-?-tables correspond to restricted Boolean pc-tables, just like ?-tables.

THEOREM 8.2 Boolean pc-tables are complete (hence pc-tables are also com-
plete).

Proof: Let Iy, ..., I; denote the instances with non-zero probability in an
arbitrary probabilistic database, and let p1, ..., p, denote their probabilities.
Construct a probabilistic Boolean c-table 7" as follows. For 1 < ¢ < k — 1,
put the tuples from I; in 1" with condition —21 A --- A =x;—1 A z;. Put the
tuples from [in T with condition =x1 A -+ A —xp_1. Forl <¢ < k —1,

Models for Incomplete and Probabilistic Information 25

[ac] | [ac] |
ABC ac (bl/\bl)\/(bl/\bl) ac | b
abc | by ae | b Nby ae | by ANby
dbe | by dc | by ANby dec | by Aby
fge|bs de (bg/\bg)\/(bg/\bg)\/(bg/\bg) de | by

fe (bg/\bg)\/(bg/\bg)\/(bg/\bg) felbs
(a) (b) (©

Figure 2.1. Boolean c-tables example

set Pr[z; = true] :=p; /(1 — 23;11 p;). It is straightforward to check that this
yields a table such that Pr[/;] = p;.]
The previous theorem was independently observed in [42] and [28].

THEOREM 8.3 pc-tables (and Boolean pc-tables) are closed under the rela-
tional algebra.

Proof:(Sketch.) For any pc-table T’ and any RA query ¢ we show that the
probability space q(Mod(T')) (the image of Mod(T') under ¢) is in fact the
same as the space Mod(G(T")). The proof of Theorem 4.2 already shows that
the outcomes of the two spaces are the same. The fact that the probabilities
assigned to each outcome are the same follows from Lemma 4.3. [|

The proof of this theorem gives in fact an algorithm for constructing the
answer as a p-database itself, represented by a pc-table. In particular this will
work for the models of [22, 33, 47] or for models we might invent by adding
probabilistic information to v-tables or to the representation systems consid-
ered in [41]. The interesting result of [16] about the applicability of an “ex-
tensional” algorithm to calculating answer tuple probabilities can be seen also
as characterizing the conjunctive queries ¢ which for any p-?-table 7" are such
that the c-table g(7") is in fact equivalent to some p-?-table.

9. Queries on Annotated Relations

In this section we compare the calculations involved in query answering in
incomplete and probabilistic databases with those for two other important ex-
amples. We observe similarities between them which will motivate the general
study of annotated relations.

As a first example, consider the Boolean c-table in Figure 2.1(a), and the
following RA query, which computes the union of two self-joins:

q(R) = TacC (WABR X FgcRU 7TACR X WgcR)

26 MANAGING AND MINING UNCERTAIN DATA

[ac]

ABC ac|2:2+2-2=218

abe |2 ae | 2-5=10

dbe | 5 dc|2-5=10

fge |l de |5-5+5-5+5-1=55
fell-141-145-1=7

(a) (b)

Figure 2.2. Bag semantics example

[ac] |

[ABC| | [ac[{{p}}
abe | {{p}} | |ae | {{p,7r}}
dbe [{{r}y| [de [{{p.r)}
fge | {{shy] [de |[{{rD)
fe s
(a) (b)

Figure 2.3. Minimal witness why-provenance example

The Imielinski-Lipski algorithm (cf. Theorem 4.2) produces the Boolean
c-table shown in Figure 2.1(b), which can be simplified to the one shown in
Figure 2.1(c). The annotations on the tuples of this c-table are such that it
correctly represents the possible worlds of the query answer:

Mod(q(R)) = q(Mod(R))

Another kind of table with annotations is a multiset or bag. In this case, the
annotations are natural numbers which represent the multiplicity of the tuple
in the multiset. (A tuple not listed in the table has multiplicity 0.) Query
answering on such tables involves calculating not just the tuples in the output,
but also their multiplicities.

For example, consider the multiset shown in Figure 2.2(a). Then ¢(R),
where ¢ is the same query from before, is the multiset shown in Figure 2.2(b).
Note that for projection and union we add multiplicities while for join we mul-
tiply them. There is a striking similarity between the arithmetic calculations
we do here for multisets, and the Boolean calculations for the c-table.

A third example involves the minimal witness why-provenance proposed
in [9] for tracking the processing of scientific data. Here source tuples are
annotated with their own tuple ids, and answering queries involves calculating
the set of sets of ids of source tuples which “contribute together” for a given

Models for Incomplete and Probabilistic Information 27

output tuple. The minimal witness why-provenance W for an output tuple ¢ is
required to be minimal in the sense that for any A, B in W neither is a subset
of the other.

Figure 2.3(a) shows an example of a source table, where ¢1, {2, t3 are tuple
ids. Considering again the same query ¢ as above, the algorithm of [9] pro-
duces the table with why-provenance annotations shown in Figure 2.3(b). Note
again the similarity between this table and the example earlier with Boolean c-
tables.

10. K-Relations

In this section we unify the examples above by considering generalized re-
lations in which the tuples are annotated (tagged) with information of various
kinds. Then, we will define a generalization of the positive relational algebra
(RA™) to such tagged-tuple relations. The examples in Section 9 will turn out
to be particular cases.

We use here the named perspective [2] of the relational model in which
tuples are functions ¢ : U — I with U a finite set of attributes and D a domain
of values. We fix the domain ID for the time being and we denote the set of all
such U-tuples by U-Tup. (Usual) relations over U are subsets of U-Tup.

A notationally convenient way of working with tagged-tuple relations is
to model tagging by a function on all possible tuples, with those tuples not
considered to be “in” the relation tagged with a special value. For example,
the usual set-theoretic relations correspond to functions that map U-Tup to
B = {true, false} with the tuples in the relation tagged by true and those not
in the relation tagged by false.

DEFINITION 10.1 Let K be a set containing a distinguished element 0. A
K-relation over a finite set of attributes U is a function R : U-Tup — K such
that its support defined by supp(R) := {t | R(t) # 0} is finite.

In generalizing RA" we will need to assume more structure on the set of
tags. To deal with selection we assume that the set K contains two distinct
values 0 # 1 which denote “out of” and “in” the relation, respectively. To deal
with union and projection and therefore to combine different tags of the same
tuple into one tag we assume that K is equipped with a binary operation “+”.
To deal with natural join (hence intersection and selection) and therefore to
combine the tags of joinable tuples we assume that K is equipped with another

e 9

binary operation “-”.

DEFINITION 10.2 Let (K,+,+,0,1) be an algebraic structure with two bi-
nary operations and two distinguished elements. The operations of the positive
algebra are defined as follows:

28 MANAGING AND MINING UNCERTAIN DATA

empty relation For any set of attributes U, there is () : U-Tup — K such that
O(t) = 0.

union If Ry, Ry : U-Tup — K then Ry U Ry : U-Tup — K is defined by
(R1 U Rz)(t) = Rl(t) + RQ(t)

projection I[f R : U-Tup — K and V C U then myR : V-Tup — K is
defined by
(my R)(t) = > R(t)

t=t' on V and R(t')#0
(here t = t' on V means t' is a U-tuple whose restriction to V is the

same as the V -tuple t; note also that the sum is finite since R has finite
support)

selection [f R : U-Tup — K and the selection predicate P maps each U-tuple
to either 0 or 1 then op R : U-Tup — K is defined by

(GpR)(t) = R(t)-P(t)

Which {0, 1}-valued functions are used as selection predicates is left un-
specified, except that we assume that false—the constantly 0 predicate,
and true—the constantly 1 predicate, are always available.

natural join I/ R; : U;-Tup — K i = 1,2 then Ry ™ Ry is the K-relation
over Uy U Uy defined by

(Rl X Rg)(t) = Rl(tl) . Rg(tg)
where t1 =t on Uy and to = t on Uy (recall that t is a Uy U Us-tuple).

renaming If R : U-Tup — K and 3 : U — U’ is a bijection then psR is a
K-relation over U’ defined by

(PgR)(t) := R(tof)

PROPOSITION 10.3 The operation of RA" preserve the finiteness of sup-
ports therefore they map K-relations to K-relations. Hence, Definition 10.2
gives us an algebra on K-relations.

This definition generalizes the definitions of RA™ for the motivating exam-
ples we saw. Indeed, for (B, Vv, A, false, true) we obtain the usual RA™ with
set semantics. For (N, +,-,0,1) it is RA" with bag semantics.

For the Imielinski-Lipski algebra on c-tables we consider the set of Boolean
expressions over some set B of variables which are positive, i.e., they involve

Models for Incomplete and Probabilistic Information 29

only disjunction, conjunction, and constants for true and false. Then we iden-
tify those expressions that yield the same truth-value for all Boolean assign-
ments of the variables in B.® Denoting by PosBool(B) the result and apply-
ing Definition 10.2 to the structure (PosBool(B), Vv, A, false, true) produces
exactly the Imielinski-Lipski algebra.

These three structures are examples of commutative semi-rings, i.e., alge-
braic structures (K, +,-,0,1) such that (K, +,0) and (K, -, 1) are commuta-
tive monoids, - is distributive over 4+ and Va, 0-a = a-0 = 0. Further evidence
for requiring K to form such a semi-ring is given by

PROPOSITION 10.4 The following RA identities:
® union is associative, commutative and has identity ();
m join is associative, commutative and distributive over union,

m projections and selections commute with each other as well as with
unions and joins (when applicable);

" Oqise(R) = 0 and e (R) = R.

hold for the positive algebra on K-relations if and only if (K, +,-,0,1) is a
commutative semi-ring.

Glaringly absent from the list of relational identities are the idempotence of
union and of (self-)join. Indeed, these fail for the bag semantics, an important
particular case of the general treatment presented here.

Any function h : K — K’ can be used to transform K -relations to K’-
relations simply by applying h to each tag (note that the support may shrink
but never increase). Abusing the notation a bit we denote the resulting trans-
formation from K -relations to K’-relations also by h. The RA operations we
have defined work nicely with semi-ring structures:

PROPOSITION 10.5 Let h : K — K’ and assume that K, K' are commu-
tative semi-rings. The transformation given by h from K-relations to K'-
relations commutes with any RA" query (for queries of one argument)
q(h(R)) = h(q(R)) if and only if h is a semi-ring homomorphism.

Proposition 10.5 has some useful applications. For example, for Boolean c-
tables and semi-ring homomorphisms Eval, : PosBool(B) — B correspond-
ing to valuations of the variables v : B — B, Proposition 10.5 generalizes
Lemma 4.3 and can be used to establish the closure of PosBool(B)-annotated
relations (in the sense of Section 4) under RA™ queries.

%in order to permit simplifications; it turns out that this is the same as transforming using the axioms of
distributive lattices [13]

30 MANAGING AND MINING UNCERTAIN DATA

ac] | [ac] | [ac]
(asc| | [ac[{p ac | {{p}} ac|2p’
abe | p ae | {p,r} ae | {{p,r}} ae | pr
dbe |r de | {p,r} de | {{p,r}} dc | pr
fge|s de |{r,s} de | {{r},{r,s}} de | 2r% +rs

fel{rs} fel{{sh{rs}} fel2s?+rs
(a) (b) (c) (d)

Figure 2.4. Lineage, why-provenance, and provenance polynomials

11. Polynomials for Provenance

Lineage was defined in [14, 15] as a way of relating the tuples in a query
output to the tuples in the query input that “contribute” to them. The lineage
of a tuple ¢ in a query output is in fact the set of all contributing input tuples.

Computing the lineage for queries in RA™ turns out to be exactly Defini-
tion 10.2 for the semi-ring (P(X) U {L},+,-, L, () where X consists of the
ids of the tuples in the input instance, 1 +S =S+1=5,5-1 =1-5 =1,
and S+T=8-T=SUTifS,T# 17

For example, we consider the same tuples as in relation R used in the ex-
amples of Section 9 but now we tag them with their own ids p,r,s, as shown
in Figure 2.4(a). The resulting R can be seen as a P({p, r, s})-relation by re-
placing p with {p}, etc. Applying the query ¢ from Section 9 to R we obtain
according to Definition 10.2 the P({p, r, s})-relation shown in Figure 2.4(b).

A related but finer-grained notion of provenance, called why-provenance,
was defined in [9].% The why-provenance of a tuple ¢ in a query output is the
set of sets of input tuples which contribute together to produce ¢. The lineage
of ¢ can be obtained by flattening the why-provenance of ¢.

As with lineage, computing the why-provenance for queries in RA™ can be
done [8] wusing Definition 10.2, this time for the semi-ring
(P(P(X)),U,u,0,{0}) where X is the set of tuple ids for the input instance
and AU B is the pairwise union of A and B, i.e., AUB := {aUb:a € A,b €
B}. For example, the R in Figure 2.4(a) can be seen as a why-provenance re-
lation by replacing p with {{p}}, etc. Applying the query ¢ from Section 9 to
R we obtain according to Definition 10.2 the why-provenance relation shown
in Figure 2.4(c).

"This definition for lineage, due to [8], corrects the one which appeared in [27].
8The distinction between lineage and why-provenance, which went unnoticed in [9] and [27], was pointed
out in [8].

Models for Incomplete and Probabilistic Information 31

Finally, to return to the third example of Section 9, the minimal witness why-
provenance can be computed [8] using a semi-ring whose domain is irr(P (X)),
the set of irredundant subsets of P(X), i.e., W is in irr(P(X)) if for any
A, B in W neither is a subset of the other. We can associate with any W €
P(X) a unique irredundant subset of W by repeatedly looking for elements
A, B such that A C B and deleting B from W. Then we define a semi-ring
(irr(P(X)),+,-,0,1) as follows:

I+J = irr(IUJ) I-J = ir(IuJ)
0 = 0 1 = {0}

The table in Figure 2.3(b) is obtained by applying the query ¢ from Sec-
tion 9 to R of Figure 2.3(a) according to Definition 10.2 for the minimal why-
provenance semi-ring. Note that this is a well-known semi-ring: the construc-
tion above is the construction for the free distributive lattice generated by the
set X. Moreover, it is isomorphic PosBool(X)! This explains the similarity
between the calculations in Figure 2.1 and Figure 2.3.

These examples illustrate the limitations of lineage and why-provenance
(also recognized in [12]). For example, in the query result in Figure 2.4(b)
(f,e) and (d, e) have the same lineage, the input tuples with id » and s. How-
ever, the query can also calculate (f, e) from s alone and (d, e) from r alone.
In a provenance application in which one of 7 or s is perhaps less trusted or less
usable than the other the effect can be different on (f, e) than on (d,) and this
cannot be detected by lineage. Meanwhile, with why-provenance we do see
that (f, e) can be calculated from s alone and (d,) from r alone, but we have
lost information about multiplicities (the number of times a tuple was used in
a self-join, or the number of derivations of an output tuple in which a given set
of tuples is involved) which may be needed to calculate a more refined notion
of trust. It seems that we need to know not just which input tuples contribute
but also exactly how they contribute.’

On the other hand, by using the different operations of the semi-ring, Def-
inition 10.2 appears to fully “document” how an output tuple is produced. To
record the documentation as tuple tags we need to use a semi-ring of sym-
bolic expressions. In the case of semi-rings, like in ring theory, these are the
polynomials.

DEFINITION 11.1 Let X be the set of tuple ids of a (usual) database instance
1. The positive algebra provenance semi-ring for I is the semi-ring of poly-
nomials with variables (a.k.a. indeterminates) from X and coefficients from N,

°In contrast to why-provenance, the notion of provenance we describe could justifiably be called how-
provenance.

32 MANAGING AND MINING UNCERTAIN DATA

with the operations defined as usual'®:
(N[X]v + 0’ 1)

Example of provenance computation. Start again from the relation R in
Figure 2.4(a) in which tuples are tagged with their own id. R can be seen as
an N[p, r, s]-relation. Applying to R the query ¢ from Section 9 and doing
the calculations in the provenance semi-ring we obtain the N[p, r, s]-relation
shown in Figure 2.4(c). The provenance of (f,e) is 2s? + rs which can be
“read” as follows: (f, e) is computed by ¢ in three different ways; two of them
use the input tuple s twice; the third uses input tuples r and s. We also see that
the provenance of (d, e) is different and we see how it is different! O

The following standard property of polynomials captures the intuition that
N[X] is as “general” as any semi-ring:

PROPOSITION 11.2 Let K be a commutative semi-ring and X a set of vari-
ables. For any valuation v : X — K there exists a unique homomorphism of
semi-rings

Eval, : N[X| - K

such that for the one-variable monomials we have Eval,(x) = v(x).

As the notation suggests, Eval, (P) evaluates the polynomial P in K given
a valuation for its variables. In calculations with the integer coefficients, na
where n € N and a € K is the sum in K of n copies of a. Note that N is
embedded in K by mapping n to the sum of n copies of 1x.

Using the Eval notation, for any P € N[z, ..., z,] and any K the polyno-
mial function fp : K" — K is given by:

fe(ay,...,ay) :=Eval,(P) v(z;) =a;i=1.n

Putting together Propositions 10.5 and 11.2 we obtain the following con-
ceptually important fact that says, informally, that the semantics of RAT on
K -relations for any semi-ring K factors through the semantics of the same in
provenance semi-rings.

THEOREM 11.3 Let K be a commutative semi-ring, let R be a K-relation,
and let X be the set of tuple ids of the tuples in SUPP(R). There is an obvious
valuation v : X — K that associates to a tuple id the tag of that tuple in R.
We associate to R an “abstractly tagged” version, denoted R, which is an
X U {0}-relation. R is such that supp(R) = supp(R) and the tuples in

19These are polynomials in commutative variables so their operations are the same as in middle-school
algebra, except that subtraction is not allowed.

Models for Incomplete and Probabilistic Information 33

supp(R) are tagged by their own tuple id. Note that as an X U {0}-relation,
R is a particular kind of N[X |-relation.
Then, for any RA™ query q we have'!

q(R) = Eval,(q(R))

To illustrate an instance of this theorem, consider the provenance polynomial
2r2 + rs of the tuple (d,) in Figure 2.4(c). Evaluating it in N for p = 2,7 =
5,s = 1 we get 55 which is indeed the multiplicity of (d, e) in Figure 2.2(a).

12. Query Containment

Here we present some results about query containment w.r.t. the general
semantics in K -relations.

DEFINITION 12.1 Let K be a naturally ordered commutative semi-ring and
let q1,qo be two queries defined on K-relations. We define containment with
respect to K-relations semantics by

¢ Cx g2 € VYRV qi(R)(t) < ga(R)(t)

When K is B and N we get the usual notions of query containment with respect
to set and bag semantics.

Some simple facts follow immediately. For example if h : K — K’ is a
semi-ring homomorphism such that h(x) < h(y) = x < yand q1, g2 are RA™
queries it follows from Prop. 10.5 that g1 C g g2 = q1 Ex ¢o. If instead A is
a surjective homomorphism then ¢; Cx g2 = q1 Cgr ¢o.

The following result allows us to use the decidability of containment of
unions of conjunctive queries [11, 40].

THEOREM 12.2 If K is a distributive lattice then for any qi, q2 unions of
conjunctive queries we have

@1 Ex @ iff ¢1 Eg g2

Proof:(sketch) One direction follows because B can be homomorphically
embedded in K. For the other direction we use the existence of query body ho-
momorphisms to establish mappings between monomials of provenance poly-
nomials. Then we apply the factorization theorem (11.3) and the idempotence
and absorption laws of K. [|

Therefore, if K is a distributive lattice for (unions of) conjunctive queries
containment with respect to K -relation semantics is decidable by the same

'To simplify notation we have stated this theorem for queries of one argument but the generalization is
immediate.

34 MANAGING AND MINING UNCERTAIN DATA

procedure as for standard set semantics. PosBool(B) is a distributive lattice,
as is the semi-ring ([0, 1], max, min, 0, 1) which is related to fuzzy sets [46]
and could be referred to as the fuzzy semi-ring. A theorem similar to the one
above is shown in [32] but the class of algebraic structures used there does not
include PosBool(B) (although it does include the fuzzy semi-ring).

13. Related Work

Lineage and why-provenance were introduced in [14, 15, 9], (the last paper
uses a tree data model) but the relationship with [30] was not noticed. The
papers on probabilistic databases [22, 47, 33] note the similarities with [30]
but do not attempt a generalization.

Two recent papers on provenance, although independent of our work, have
a closer relationship to the approach outlined here. Indeed, [12] identifies the
limitations of why-provenance and proposes route-provenance which is also
related to derivation trees. The issue of infinite routes in recursive programs
is avoided by considering only minimal ones. [7] proposes a notion of lineage
of tuples for a type of incomplete databases but does not consider recursive
queries. It turns out that we can also describe the lineage in [7] by means of a
special commutative semi-ring.

The first attempt at a general theory of relations with annotations appears
to be [32] where axiomatized label systems are introduced in order to study
containment.

14. Conclusion and Further Work

The results on algebraic completion may not be as tight as they can be.
Ideally, we would like to be able show that for each representation system
we consider, the fragment of RA we use is minimal in the sense that closing
the representation system under a more restricted fragment does not obtain a
complete representation system.

We did not consider c-tables with global conditions [24] nor did we describe
the exact connection to logical databases [38, 44]. Even more importantly, we
did not consider complexity issues as in [3]. All of the above are important
topics for further work, especially the complexity issues and the related issues
of succinctness/compactness of the table representations.

As we see, in pc-tables the probability distribution is on the values taken by
the variables that occur in the table. The variables are assumed independent
here. This is a lot more flexible (as the example shows) than independent
tuples, but still debatable. Consequently, to try to make pc-tables even more
flexible, it would be worthwhile to investigate models in which the assumption
that the variables take values independently is relaxed by using conditional
probability distributions [21].

Models for Incomplete and Probabilistic Information 35

It would be interesting to connect this work to the extensive literature on
disjunctive databases, see e.g., [35], and to the work on probabilistic object-
oriented databases [19].

Probabilistic modeling is by no means the only way to model uncertainty in
information systems. In particular it would be interesting to investigate possi-
bilistic models [29] for databases, perhaps following again, as we did here, the
parallel with incompleteness.

Query answering on annotated relations can be extended beyond RA™ to
recursive Datalog programs, using semi-rings of formal power series (see [27]
for details). These formal power series, which can be represented finitely using
a system of equations, are the foundation of trust policies and incremental
update propagation algorithms in the ORCHESTRA collaborative data sharing
system [26].

Beyond the technical results, the approach surveyed above can be regarded
also as arguing that various forms of K -relations, even multisets, provide
coarser forms of provenance while the polynomial annotations are, by virtue of
their “universality” (as illustrated by the factorization theorem) the most gen-
eral form of annotation possible with the boundaries of semi-ring structures.
This might be a perspective worth using when, in the future, we search for
provenance structures for data models other than relational.

Acknowledgments

The author is grateful to Grigoris Karvounarakis and Val Tannen, his co-
authors of the papers [28, 27] on which this survey is based.

References

[1] S. Abiteboul and O. M. Duschka. Complexity of answering queries using
materialized views. In PODS, pages 254-263, 1998.

[2] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison—
Wesley, Reading, MA, 1995.

[3] S. Abiteboul, P. Kanellakis, and G. Grahne. On the representation and
querying of sets of possible worlds. Theor. Comput. Sci., 78(1):159-187,
1991.

[4] L. Antova, T. Jansen, C. Koch, and D. Olteanu. Fast and simple relational
processing of uncertain data. In /CDE, 2008.

[5] M. Arenas, L. E. Bertossi, and J. Chomicki. Answer sets for consistent
query answering in inconsistent databases. TPLP, 3(4-5):393—424, 2003.

[6] D. Barbara, H. Garcia-Molina, and D. Porter. A probabilistic relational
data model. In EDBT, pages 60—74, New York, NY, USA, 1990.

[7] O. Benjelloun, A. D. Sarma, A. Y. Halevy, and J. Widom. ULDBs:
Databases with uncertainty and lineage. In VLDB, 2006.

[8] P. Buneman, J. Cheney, W.-C. Tan, and S. Vansummeren. Curated
databases. In PODS, pages 1-12, 2008.

[9] P. Buneman, S. Khanna, and W.-C. Tan. Why and where: A characteri-
zation of data provenance. In /CDT, 2001.

[10] R. Cavallo and M. Pittarelli. The theory of probabilistic databases. In
VLDB, pages 71-81, 1987.

[11] A. K. Chandra and P. M. Merlin. Optimal implementation of conjunctive
queries in relational data bases. In STOC, 1977.

[12] L. Chiticariu and W.-C. Tan. Debugging schema mappings with routes.
In VLDB, 2006.

38 MANAGING AND MINING UNCERTAIN DATA

[13] P. Crawley and R. P. Dilworth. Algebraic Theory of Lattices. Prentice
Hall, 1973.

[14] Y. Cui. Lineage Tracing in Data Warehouses. PhD thesis, Stanford Uni-
versity, 2001.

[15] Y. Cui, J. Widom, and J. L. Wiener. Tracing the lineage of view data in a
warehousing environment. 7ODS, 25(2), 2000.

[16] N. Dalvi and D. Suciu. Efficient query evaluation on probabilistic
databases. In VLDB, pages 864-875, 2004.

[17] D. Dey and S. Sarkar. A probabilistic relational model and algebra. ACM
TODS, 21(3):339-369, 1996.

[18] R. Durrett. Probability: Theory and Examples. Duxbury Press, 3rd edi-
tion, 2004.

[19] T. Eiter, J. J. Lu, T. Lukasiewicz, and V. S. Subrahmanian. Probabilistic
object bases. ACM Trans. Database Syst., 26(3):264-312, 2001.

[20] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data exchange: Seman-
tics and query answering. In /ICDT, pages 207-224, London, UK, 2003.
Springer-Verlag.

[21] N. Friedman, L. Getoor, D. Koller, and A. Pfeffer. Learning probabilistic
relational models with structural uncertainty. In Proc. ICML, 2001.

[22] N. Fuhr and T. Rolleke. A probabilistic relational algebra for the integra-
tion of information retrieval and database systems. TOIS, 14(1), 1997.

[23] E. Grédel, Y. Gurevich, and C. Hirch. The complexity of query reliability.
In PODS, pages 227234, 1998.

[24] G. Grahne. Horn tables - an efficient tool for handling incomplete infor-
mation in databases. In PODS, pages 75-82. ACM Press, 1989.

[25] G. Grahne. The Problem of Incomplete Information in Relational
Databases, volume 554 of Lecture Notes in Computer Science. Springer-
Verlag, Berlin, 1991.

[26] T. J. Green, G. Karvounarakis, Z. G. Ives, and V. Tannen. Update ex-
change with mappings and provenance. In VLDB, 2007.

[27] T.J. Green, G. Karvounarakis, and V. Tannen. Provenance semi-rings. In
PODS, 2007.

[28] T.J. Green and V. Tannen. Models for incomplete and probabilistic in-
formation. In EDBT Workshops, 2006.

REFERENCES 39

[29] J. Y. Halpern. Reasoning About Uncertainty. MIT Press, Cambridge,
MA, 2003.

[30] T. Imielinski and W. Lipski, Jr. Incomplete information in relational
databases. J. ACM, 31(4):761-791, 1984.

[31] T. Imielinski, S. A. Naqvi, and K. V. Vadaparty. Incomplete objects —
a data model for design and planning applications. In SIGMOD, pages
288-297, 1991.

[32] Y. E. loannidis and R. Ramakrishnan. Containment of conjunctive
queries: beyond relations as sets. 7ODS, 20(3), 1995.

[33] L. V. S. Lakshmanan, N. Leone, R. Ross, and V. S. Subrahmanian. Prob-
view: a flexible probabilistic database system. ACM TODS, 22(3):419—
469, 1997.

[34] L. V. S. Lakshmanan and F. Sadri. Probabilistic deductive databases. In
ILPS, pages 254-268, Cambridge, MA, USA, 1994. MIT Press.

[35] N. Leone, F. Scarcello, and V. S. Subrahmanian. Optimal models of dis-
junctive logic programs: Semantics, complexity, and computation. /EEE
Trans. Knowl. Data Eng., 16(4):487-503, 2004.

[36] L. Libkin. Aspects of Partial Information in Databases. PhD thesis,
University of Pennsylvania, 1994.

[37] L. Libkin and L. Wong. Semantic representations and query languages
for or-sets. J. Computer and System Sci., 52(1):125-142, 1996.

[38] R. Reiter. A sound and sometimes complete query evaluation algorithm
for relational databases with null values. J ACM, 33(2):349-370, 1986.

[39] F. Sadri. Modeling uncertainty in databases. In ICDE, pages 122—131.
IEEE Computer Society, 1991.

[40] Y. Sagiv and M. Yannakakis. Equivalences among relational expressions
with the union and difference operators. J. ACM, 27(4), 1980.

[41] A.D. Sarma, O. Benjelloun, A. Halevy, and J. Widom. Working models
for uncertain data. In /CDE, 2006.

[42] D. Suciu and N. Dalvi. Foundations of probabilistic answers to queries
(tutorial). In SIGMOD, pages 963-963, New York, NY, USA, 2005. ACM
Press.

[43] R. van der Meyden. Logical approaches to incomplete information: A
survey. In J. Chomicki and G. Saake, editors, Logics for Databases and
Information Systems. Kluwer Academic Publishers, Boston, 1998.

40 MANAGING AND MINING UNCERTAIN DATA

[44] M. Y. Vardi. Querying logical databases. JCSS, 33(2):142—-160, 1986.

[45] J. Widom. Trio: A system for integrated management of data, accuracy,
and lineage. In CIDR, Jan. 2005.

[46] L. A. Zadeh. Fuzzy sets. Inf. Control, 8(3), 1965.

[47] E. Zimanyi. Query evaluation in probabilistic databases. Theoretical
Computer Science, 171(1-2):179-219, 1997.

[48] E.Zimanyi and A. Pirotte. Imperfect information in relational databases.
In Uncertainty Management in Information Systems, pages 35-88.
Kluwer, 1996.

REFERENCES 41

15. Appendix

PROPOSITION 15.1 There exists a relational query q such that q(N') = Z,.

Proof: Define sub-query ¢’ to be the relational query
q'(V) =V - Wg(Ug#T(V X V)),

where £ is short for 1,...,nand £ £ risshortfor 1 Zn+1V---Vn # 2n.
Note that ¢/ yields V if V consists of a single tuple and () otherwise. Now
define q to be the relational query

q(V) = (V)U ({t} — m({t} x ¢'(V))),
where ¢ is a tuple chosen arbitrarily from D™. It is clear that g(N) = Z,,. R

DEFINITION 15.2 A table in the representation system Res is a multiset of
sets of tuples, or blocks, each such block optionally labeled with a *?°. If T is
an Ryess table, then Mod(T)) is the set of instances obtained by choosing one
tuple from each block not labeled with a ‘?’, and at most one tuple from each
block labeled with a ‘7.

DEFINITION 15.3 A table in the representation system Rg= is a multiset of
tuples {t1,...,tym} and a conjunction of logical assertions of the form i &
J (meaning t; or t; must be present in an instance, but not both) or i = j
(meaning t; is present in an instance iff t; is present in the instance). If T is
an Rg= table then Mod(T') consists of all subsets of the tuples satisfying the
conjunction of assertions.

DEFINITION 15.4 A table in the representation system R]ﬁop is a multiset of

or-set tuples {t1, . .., t;, } and a Boolean formula on the variables {t1, . .., t;, }.
IfT is an R[‘;‘,Op table then Mod(T') consists of all subsets of the tuples satisfy-

ing the Boolean assertion, where the variable t; has value true iff the tuple t;
is present in the subset.

Theorem 5.3 (RA-Completion).

1 The representation system obtained by closing Codd tables under SPJU
queries is RA-complete.

2 The representation system obtained by closing v-tables under S P queries
is RA-complete.

Proof: In each case we show that given an arbitrary c-table 7', one can
construct a table .S and a query ¢ such that g(S) = T.

42

MANAGING AND MINING UNCERTAIN DATA

1 Trivial corollary of Theorem 3.2.

2 Let k be the arity of 7. Let {t1, ..., t,, } be an enumeration of the tuples

of T, and let {x1,...,x,} be an enumeration of the variables which
appear in 7'. Construct a v-table S with arity £ + n + 1 as follows. For
every tuple ¢; in T', put exactly one tuple ¢ in .S, where ¢, agrees with ¢
on the first £ columns, the k& + 1st column contains the constant ¢, and
the last m columns contain the variables 1, ..., z,. Now let ¢ be the
S P query defined

q =1, k(O kri=iag (5))

where 1; is obtained from the condition 7'(¢;) of tuple ¢; by replacing
variable names with their corresponding indexes in S.
|

Theorem 5.4 (Finite Completion).

1 The representation system obtained by closing or-set-tables under PJ

queries is finitely complete.

2 The representation system obtained by closing finite v-tables under P.J

or ST P queries is finitely complete.

3 The representation system obtained by closing Res under PJ or PU

queries is finitely complete.

4 The representation system obtained by closing R under S P.J queries

is finitely complete.

Proof: Fix an arbitrary finite incomplete database Z = {I1,...,1,} of

arity k. It suffices to show in each case that one can construct a table T in
the given representation system and a query ¢ in the given language such that
q(Mod(T)) =T.

1 We construct a pair of or-set-tables .S and 7" as follows. (They can be

combined together into a single table, but we keep them separate to sim-
plify the presentation.) For each instance I; in Z, we put all the tuples
of I; in S, appending an extra column containing value ¢. Let 7" be the
or-set-table of arity 1 containing a single tuple whose single value is the
or-set (1,2,...,n). Now let ¢ be the ST P.J query defined:

q =71, kOks1=kt2(S x T).

2 Completion for P.J follows from Case 1 and the fact that finite v-tables

are strictly more expressive than or-set tables. For ST P, take the finite

REFERENCES 43

v-table representing the cross product of S and 7" in the construction
from Case 1, and let ¢ be the obvious ST P query.

3 Completion for PJ follows from Case 1 and the fact (shown in [41])
that or-set-tables are strictly less expressive than Res. Thus we just
need show the construction for PU. We construct an R table 1" as
follows. Let m be the cardinality of the largest instance in Z. Then T’
will have arity km and will consist of a single block of tuples. For every
instance I; in Z, we put one tuple in 7" which has every tuple from I;
arranged in a row. (If the cardinality of I; is less than m, we pad the
remainder with arbitrary tuples from /;.) Now let ¢ be the PU query
defined as follows:

m—1
q:= U Thi,... kitk—1(T)
=0

4 We construct a pair of Rg=-tables S and 7" as follows. (S can be en-
coded as a special tuple in 7', but we keep it separate to simplify the
presentation.) Let m = [lgn]. T is constructed as in Case 2. S is a
binary table containing, for each i, 1 < i < m, a pair of tuples (0,) and
(1,4) with an exclusive-or constraint between them. Let sub-query ¢’ be
defined

q = H 71 (2= (95))
i=1

The STP.J query q is defined as in Case 2, but using this definition of

/

q.

]
Theorem 5.5 (General Finite Completion). Let 7 be a representation system
such that for all n > 1 there exists a table T in T such that |Mod(T)| > n.
Then the representation system obtained by closing T under RA is finitely-
complete. Proof: Let T be a representation system such that for all n > 1
there is a table 7" in 7 such that |Mod(T')| > n. Let Z = {I3, ..., I} be an
arbitrary non-empty finite set of instances of arity m. Let 7" be a table in 7
such that Mod(T') = {J1, ..., Je}, with £ > k. Define RA query ¢ to be

q(V) = U IZ' X ql(V) U U Ik X qi(V),

1<i<k—1 k<i<e

where I; is the query which constructs instance I; and ¢;(V') is the Boolean
query which returns true iff V' is identical to I; (which can be done in RA).
Then g(Mod(T)) = 7.]

Chapter 3

RELATIONAL MODELS AND ALGEBRA
FOR UNCERTAIN DATA

Sumit Sarkar

University of Texas at Dallas
School of Management

sumit@utdallas.edu

Debabrata Dey

University of Washington, Seattle
Michael G. Foster School of Business

ddey@u.washington.edu

Abstract Uncertainty in data values is pervasive in all real-world environments and have
received a lot of attention in the literature. Over the last decade or so, several
extensions to the relational model have been proposed to address the issue of
how data uncertainty can be modeled in a comprehensive manner. This chapter
provides a summary of the major extensions. We discuss the strengths and weak-
nesses of these models and show the underlying similarities and differences.

Keywords: Data uncertainty, incomplete information, probabilistic database, relational al-
gebra, query language

1. Introduction

Database systems are widely used as a part of information systems in a va-
riety of applications. The environment that a database attempts to represent is
often very uncertain; this translates into uncertainty in terms of the data values.
There could be several reasons for uncertainty in data items. The actual value
of a data item may be unknown or not yet realized. For example, one may
need to store the uncertainty associated with future stock prices in a securities
database [1]; this information would be useful in developing a portfolio of in-

46 MANAGING AND MINING UNCERTAIN DATA

vestments with specified characteristics. Uncertainty in data items may also
arise from consolidation or summarization of data [2]. For example, the re-
sults of market surveys are often expressed in a consolidated manner in which
the details of individual consumer preferences are summarized. Such informa-
tion is of considerable importance in designing new products. Another well-
documented source of data uncertainty is data heterogeneity [8, 16]. When two
heterogeneous databases show different values for the same data item, its ac-
tual value is not known with certainty. This has become an important concern
in developing corporate data warehouses which consolidate data from multi-
ple heterogeneous data sources. When the values for common data items are
not consistent it may not be easy to establish which values are correct. How
should such data be stored? One option is to store only values of those data
items that are consistent. Of course, this would lead to ignoring a large number
of data items for which we have some information. The other alternative is to
record the different possible values for such data items, recognizing that there
is some uncertainty associated with those values. By recording such data, and
recognizing explicitly the uncertainty associated with those values, the user
would be able to decide (perhaps using a cost-benefit analysis) when it is ap-
propriate to use such data. The above examples illustrate the need to represent
uncertainty in data models.

The relational data model has become the dominant model for handling data
for a majority of applications. The relational model provides a range of advan-
tages, such as access flexibility, logical and physical data independence, data
integrity, reduced (and controlled) data redundancy, and enhanced program-
mer productivity. Unfortunately, the standard relational model does not have
a comprehensive way to handle incomplete and uncertain data. As discussed
earlier, such data, however, exist everywhere in the real world. Having no
means to model these data, the relational model ignores all uncertain data and
focuses primarily on values that are known for sure; uncertain data items are
represented using “null" values, which are special symbols often employed
to represent the fact that the value is either unknown or undefined [4, 15].
Consequently, relational databases do not yield satisfactory results in many
real-world situations. Since the standard relational model cannot represent the
inherent uncertain nature of the data, it cannot be used directly. This has led to
several efforts to extend the relational model to handle uncertain data.

In order to store uncertain data, one needs to specify the nature of uncer-
tainty that is being considered. It is well-documented that there are two types
of uncertainties in the real world: uncertainty due to vagueness and uncertainty
due to ambiguity [13]. Uncertainty due to vagueness is associated with the dif-
ficulty of making sharp or precise distinctions in the real world. For example,
subjective terms such as tall, far, and heavy are vague. These cases can be
modeled reasonably well with the help of tools such as fuzzy set theory. Un-

Relational Models and Algebra for Uncertain Data 47

certainty due to ambiguity, on the other hand, is associated with situations in
which the choices among several precise alternatives cannot be perfectly re-
solved. Such situations are better modeled using the probability measure [13].
Probability theory has a rich theoretical basis, is easy to interpret, and empir-
ically testable. Therefore, we restrict our discussion here to models that use
probability theory and its associated calculus.

To summarize, we consider extensions of the relational model that gener-
alize the standard relational model to allow the handling of uncertain data.
The use of the relational framework enables the use of the powerful relational
algebra operations to the extent possible. We focus on those extensions that
use probability measures in representing uncertainty. The choice of probabil-
ity theory allows the use of established probability calculus in manipulating
uncertain data in the relations, and helps extend and redefine the relational al-
gebra operations. Such models are referred to as probabilistic relational data
models.

There have been several alternative modeling frameworks presented in the
literature. We discuss the seminal probabilistic relational models in this chap-
ter. These models can be viewed as belonging to one of the following ap-
proaches:

m Point-valued probability measures are assigned to every tuple in a rela-
tion. The probability measure indicates the joint probability of all the
attribute values in that tuple. This includes the work of Cavallo and
Pittarelli [3], Pittarelli [17], Dey and Sarkar [5], and Fuhr and Roélleke [11],
among others.

= Point-valued probability measures are assigned to attribute values or sets
of attribute values, resulting in a nested relational model. The model
proposed by Barbara et al [1] uses this approach.

= Interval-valued probability measures are assigned to sets of attribute val-
ues, which is also a nested relational model. The choice of interval-
valued probabilities helps capture the error in measurement approaches,
and allows for a generalized set of combination strategies. Lakshmanan
et al [14] present a model using this approach.

m Interval-valued probability measures are assigned to complex values,
which are treated as tuples. The model proposed by Eiter et al [9] uses
this approach.

We provide the main theoretical underpinnings of each of the above exten-
sions in the next section. In Section 3, we provide a detailed discussion of the
extended algebra proposed in one of these models (the one developed by Dey
and Sarkar [5]). This forms the basis for comparing the operations suggested

48 MANAGING AND MINING UNCERTAIN DATA

in the different approaches, as discussed in Section 4. Section 5 provides di-
rections for future research.

2. Different Probabilistic Data Models

We discuss extant research on probabilistic data models. Each model is
associated with a representation scheme for uncertain data, and an associated
algebra specifying how the data in the relations should be manipulated for
relational and set theoretic operations. We discuss in this section the important
representation schemes proposed by different sets of researchers, and discuss
the assumptions underlying these representations.

Our discussion is organized in the following manner. We first discuss those
models that assign point-valued probability measures to each tuple in a rela-
tion. Next, we discuss a model that assigns point-valued probability measures
at the attribute level. After that, we describe a model that assigns probability
intervals at the attribute level. Finally, we discuss a model that assigns prob-
ability intervals at the tuple level. Other important aspects of the models are
discussed along with the models.

2.1 Point-Valued Probability Measures Assigned to Each
Tuple

By assigning point-valued probability measures to each tuple in a relation,
the models in this category adhere to the first Normal Form (1NF). This makes
the implementation of such models straightforward, and the probabilistic op-
erations defined on such models more in line with traditional relational opera-
tions.

Cavallo and Pittarelli [3], Pittarelli [17]. Cavallo and Pittarelli are gener-
ally credited with providing the first probabilistic data model. They attempted
to generalize the relational model by replacing the characteristic function of a
relation with a probability distribution function, so that facts about which one
is uncertain can also be handled. The probability assigned to each tuple in-
dicates the joint probability of all the attribute values in the tuple. The tables
shown in Figure 3.1 illustrate their model for a database that stores information
on employees in an organization [17]. The first table stores information about
the department to which an employee belongs. The second table stores infor-
mation about the quality of an employee and the bonus the employee may be
eligible for. The third table captures the expected sales generated by employees
in the coming year.

An important requirement in their model is that the total probability as-
signed to all tuples in a relation should be one. This implies that tuples are
disjoint; in other words, the set of attribute-values in a tuple is mutually ex-

Relational Models and Algebra for Uncertain Data 49
Table 1
Employee | Department | pi(t)
Jon Smith | Toy 0.5
Fred Jones | Houseware 0.5
Table 2
Employee | Quality | Bonus | pa(t)

Jon Smith Great Yes 0.2
Jon Smith Good Yes 0.25
Jon Smith Fair No 0.05
Fred Jones | Good Yes 0.5

Table 3
Employee Sales | p3(t)
Jon Smith | 30-34K | 0.15
Jon Smith | 35-39K | 0.35
Fred Jones | 2024 K | 0.25
Fred Jones | 25-29K | 0.25

Figure 3.1. Probabilistic Database with Employee Information (Reproduced from [17])

clusive of the sets of attribute-values for every other tuple in a relation. This
constraint is reasonable when a relation is used to store data about one uncer-
tain event, where the event is characterized by one or more attributes. How-
ever, it is not very convenient to store data on multiple entity instances, which
is typically the case for traditional relations. As a result, even though it may
be known with certainty that Jon Smith works in the Toy department and Fred
Jones works in the Houseware department, Table 1 shows the respective prob-
abilities to be equal to 0.5 each. The known probability for the department
affiliation of each employee in this example can be recovered by multiplying
each probability by the number of tuples [17]. An alternative approach to us-
ing their representation would be to use a separate relation for every distinct
entity (or relationship) instance that is captured in a relation. Of course, this
may result in an unmanageably large number of tables.

Dey and Sarkar [5]. Dey and Sarkar present a probabilistic relational
model that does away with the restriction that the sum of probabilities of tuples
in a relation must equal one. Instead, they consider keys to identify object in-
stances, and use integrity constraints to ensure that the probabilities associated
with different tuples representing the same object instance should not exceed
one. If an object is known to exist with certainty, the probability stamps asso-

50 MANAGING AND MINING UNCERTAIN DATA

ciated with the corresponding key value sum up to one exactly. Their model
also allows storing data about objects whose very existence may be uncertain.
The probability stamps associated with the key value of such an object sum up
to less than one. Figure 3.2 illustrates an Employee relation in their model.

EMP# ssn IName | fName | rank | salary | dept | pS
3025 | 086-63-0763 | Lyons | James | clerk I5K | toy | 0.2
3025 | 086-63-0763 | Lyons | James | cashier | 20K | shoe | 0.6
3025 | 086-63-0763 | Lyons | James | cashier | 15K | auto | 0.2
6723 | 089-83-0789 | Kivari | Jack clerk 18K | toy | 0.4
6723 | 089-83-0789 | Kivari | Jack | cashier | 20K | auto | 0.4
6879 | 098-84-1234 | Peters | Julia clerk 25K | toy | 0.3
6879 | 098-84-1234 | Peters | Julia clerk 27K | toy | 0.1
6879 | 098-84-1234 | Peters | Julia | cashier | 25K | shoe | 0.6

Figure 3.2. A Probabilistic Relation Employee (Reproduced from [5])

In this table, the primary key is EMP#, and the last column pS denotes
the probability associated with each row of the relation. The pS column for
the first row has the value 0.2; it means that there is a probability of 0.2 that
there exists an employee with the following associated values: 3025 for EMP#,
086-63-0763 for ssn, Lyons for IName, James for fName, clerk for rank, 15K
for salary, and toy for dept. All other rows are interpreted in a similar fash-
ion. The probability stamp of a tuple is, therefore, the joint probability of the
given realizations of all the attributes (in that tuple) taken together. Probabili-
ties of individual attributes can be derived by appropriately marginalizing the
distribution. For example, the first three rows indicate that it is known with
certainty that (i) there exists an employee with EMP# 3025, and (ii) the ssn,
IName and fName for this employee are 086-63-0763, Lyons and James, re-
spectively. Similarly, the probability of an employee having EMP# = 3025 and
rank = “cashier" is 0.8 (from the second and the third rows). Also, in the ex-
ample shown in Figure 3.2, the probability masses associated with EMP# 6723
add up to 0.8; this means that the existence of an employee with EMP# 6723
is not certain and has a probability of 0.8.

This model assumes that the tuples with the same key value are disjoint, and
each such tuple refers to mutually exclusive states of the world. At the same
time, tuples with different key values are assumed to be independent of each
other. Further, attributes in different relations are assumed to be independent,
conditional on the key values. Dependent attributes are stored with their full
joint distributions in the same relation.

Their model is unisorted, with the only valid object being a relation. The
algebra described on their model is shown to be a consistent extension of tradi-

Relational Models and Algebra for Uncertain Data 51

tional relational algebra, and reduces to the latter when there is no uncertainty
associated with attribute values.

Fuhr and Rolleke [11]. Fuhr and Rolleke were motivated to develop a
probabilistic relational model in order to integrate a database with information
retrieval systems. The driving force behind their model is to extend the rela-
tional model in such a way that it can handle probabilistic weights required for
performing information retrieval. In document indexing, terms are assigned
weights with respect to the documents in which they occur, and these weights
are taken into account in retrieving documents, where the probability of rele-
vance of a document with respect to a query is estimated as a function of the
indexing weights of the terms involved (for example, [10, 18]).

Analogous to [5], they too consider a model that is closed with respect to the
operations defined, and assign probabilities to tuples as a whole. An important
aspect of their approach is to associate each tuple of a probabilistic relation
with a probabilistic event. A probabilistic relation corresponds to an ordinary
relation where the membership of a single tuple in this relation is affected by
a probabilistic event. If the event is true, the tuple belongs to the relation;
otherwise it does not belong to the relation. For each event, the probability of
being true must be provided.

Events are considered to be of two types: basic and complex. Complex
events are Boolean combinations of basic events. Tuples in base relations are
associated with basic events, while tuples in derived relations are associated
with complex events. Event keys are used as identifiers for tuples in a relation.
Figure 3.3 illustrates probability relations in their framework [11].

The example shows two relations, DocTerm and DocAu. The relation Doc-
Term stores weighted index terms for some documents, while DocAu provides
the probability that an author is competent in the subjects described in a doc-
ument. In these examples, event keys are represented as a combination of the
relation name and the attribute values; e.g., DT(1,IR) is the event key for the
first tuple in the relation DocTerm. It is suggested that actual implementations
use internal IDSs.

All basic events are assumed to be independent of each other. However,
in order to handle imprecise attributes with disjoint values, they modify the
independence assumption by introducing the notion of a disjointness key. The
disjointness key is used as a kind of integrity constraint in their framework, and
is analogous to that of a primary key in [5]. Since complex events are combina-
tions of basic events, they do not have to be independent of other events (basic
or complex). The authors identify conditions under which operations on com-
plex events are probabilistically meaningful. Attributes in different relations
are implicitly assumed to be independent of each other.

52 MANAGING AND MINING UNCERTAIN DATA

DocTerm | 3 | DocNo | Term
DT(1,IR) | 0.9 1 IR
DT(2,DB) | 0.7 2 DB
DT(3,IR) | 0.8 3 IR
DT(@3,DB) | 0.5 3 DB
DT(4,Al) | 0.8 4 Al
DocAu G | DocNo | AName
DA(1,Bauer) | 0.9 1 Bauer
DA(2,Bauer) | 0.3 2 Bauer
DA(2,Meier) | 0.9 2 Meier
DA(2,Schmidt) | 0.8 2 Schmidt
DA(3,Schmidt) | 0.7 3 Schmidt
DA(4,Koch) 0.9 4 Koch
DA(4,Bauer) | 0.6 4 Bauer

Figure 3.3. Relations DocTerm and DocAu (Reproduced from [11])

2.2 Point-Valued Probability Measures Assigned to
Attributes and Attribute Sets

Barbara et al [1]. This model extends the relational model by assigning
probabilities to values of attributes. Relations have keys which are assumed
to be deterministic. Non-key attributes describe the properties of entities, and
may be deterministic or stochastic in nature. Figure 3.4 illustrates an example
relation in this model.

Key Independent Interdependent Independent
Deterministic Stochastic Stochastic
EMPLOYEE | DEPARTMENT | QUALITY BONUS | SALES
0.4 [Great Yes] 0.3 [30-34K]
Jon Smith Toy 0.5 [Good Yes] 0.7 [35-39K]
0.1 [Fair No]
Fred Jones Houseware 1.0 [Good Yes] 0.5 [20-24K]
0.5 [25-29K]

Figure 3.4. Example Probabilistic Relation (Reproduced from [1])

The example relation stores information on two entities, “Jon Smith” and
“Fred Jones.” Since key values are deterministic, the two entities exist with

Relational Models and Algebra for Uncertain Data 53

certainty. The attribute DEPARTMENT is also deterministic in this example.
Therefore, it is certain that Jon Smith works in the Toy department, and Fred
Jones in the Houseware department. The attributes QUALITY and BONUS
are probabilistic and jointly distributed. The interpretation is that QUALITY
and BONUS are random variables whose outcome (jointly) depends on the
EMPLOYEE under consideration. In this example, the probability that Jon
Smith has a great quality and will receive a bonus is 0.4. The last attribute,
SALES, describes the expected sales in the coming year by the employee and
is assumed to be probabilistic but independent of the other non-key attributes.
In this model, each stochastic attribute is handled as a discrete probability
distribution function. This means that the probabilities for each attribute in a
tuple must add up to 1.0. However, to account for situations where the full dis-
tribution is not known or is difficult to specify exactly, an important feature of
this model is the inclusion of missing probabilities. The example in Figure 3.5
illustrates how missing probabilities can be represented in this model.

Key Independent Interdependent Independent
Deterministic Stochastic Stochastic
EMPLOYEE | DEPARTMENT | QUALITY BONUS | SALES
0.3 [Great Yes] 0.3 [30-34K]
Jon Smith Toy 0.4 [Good Yes] 0.5 [35-39K]
0.2 [Fair *] 0.2 [*]
0.1**]

Figure 3.5. Example Probabilistic Relation with Missing Probabilities (Reproduced from [1])

In the example shown in Figure 3.5, a probability of 0.2 has not been as-
signed to a particular sales range. While the authors assume that this missing
probability is distributed over all ranges in the domain, they do not make any
assumptions as to how it is distributed. Since the missing probability may or
may not be in the range $30-34K, the probability that the sales will be $30—
34K next year is interpreted to lie between 0.3 and 0.3+0.2. In other words,
the probability 0.3 associated with the sales range $30-34K is a lower bound.
Similarly, 0.5 is a lower bound for the probability associated with $35-39K.
The missing probability for the joint distribution over the attributes QUAL-
ITY and BONUS is interpreted similarly. A probability of 0.1 is distributed
in an undetermined way over all possible quality and bonus pairs, while 0.2
is distributed only over pairs that have a “Fair" quality component. Thus, the
probability that Smith is rated as “Great" and gets a bonus is between 0.3 and
0.3+0.1.

The incorporation of missing probabilities in a probabilistic model is one of
the important contributions of this work. It allows the model to capture uncer-

54 MANAGING AND MINING UNCERTAIN DATA

tainty in data values as well as in the probabilities. It facilitates inserting data
into a probabilistic relation, as it is not necessary to have all the information
about a distribution before a tuple can be entered. The authors go on to show
how missing probabilities can arise during relational operations, even when the
base relations have no missing probability. It also makes it possible to elimi-
nate uninteresting information when displaying relations. For example, a user
may only be interested in seeing values with probability greater than 0.5; the
rest can be ignored.

Attributes in a relation are implicitly assumed to be independent of attributes
in other relations, conditioned on the key values.

2.3 Interval-Valued Probability Measures Assigned to
Attribute-Values

This line of research attaches a probabilistic interval to each value from a
subset of possible values of an imprecise attribute. The relational algebra oper-
ations are then generalized to combine such probabilities in a suitable manner.
A variety of strategies are considered regarding combinations of probability
intervals.

Lakshmanan et al [14]. A goal of this model is to provide a unified frame-
work to capture various strategies for conjunction, disjunction, and negation
of stochastic events captured in a database. The different strategies are devel-
oped to handle different assumptions regarding the underlying events, such as
independence, mutual exclusion, ignorance, positive correlation, etc. In order
to accommodate the different strategies, this model works with probability in-
tervals instead of point-valued probabilities. This is because, depending on the
assumptions made regarding the underlying events, probability intervals can
arise when deriving probabilities for complex events. Interval-valued proba-
bilities are also considered useful and appropriate when there is noise in the
process of measuring the desired probability parameters, and it is important to
capture the margin of error in the probability of an event.

The model associates probabilities with individual level elements (i.e., at-
tribute values), although the authors note that the element-level probabilities
can be converted into a representation that associates probabilities with whole
tuples. Figure 3.6 provides an example of a probabilistic relation called Target.

The example relation has three attributes, Location, Object, and Band. The
relation includes three tuples. The first tuple has one value for the attribute
Location (“site1") with the probability interval [1,1] associated with it, imply-
ing there is no uncertainty associated with that value. The tuple also has one
value associated with the attribute Object (“radar_typel"), again with the prob-

Relational Models and Algebra for Uncertain Data 55

LOC OBJ Band
sitel radar_typel 750, 800
hi(sitel)=[1,1] | ho(radar_typel)=[1,1] h3(750)=[0.4,0.7]
h3(800)=[0.5,0.9]
site2 {radar_typel radar_type2} 700

hy(site2)=[1,1] | hs(radar_typel)=[0.8,0.9] hg(700)=[1,1]
hs(radar_type2)=[0.8,0.3]¢
site3 {radar_typel,radar_type2} 700, 750
hr(site3)=[1,1] | hs(radar_typel)=[0.4,0.7] | hg(700)=[0.6,0.9]
hs(radar_type2)=[0.5,0.6] hg(750)=[0,0.4]

“Clearly, there is a typographical error in [14], since the upper bound cannot be less
than the lower bound.

Figure 3.6. A Probabilistic Relation Target with Three Attributes (Reproduced from [14])

ability interval [1,1]. It has two values associated with the attribute Band, the
value 750 with the probability interval [0.4,0.7], and 800 with the probability
interval [0.5,0.9]. The intervals provide the lower and upper bounds for the
probabilities associated with each value.

The model associates each tuple with a possible world, and interprets a prob-
abilistic tuple as an assignment of probabilities to the various worlds associated
with that tuple (in other words, a world represents a possible realization of a
probabilistic tuple). Thus, there are two worlds associated with the first tuple
in the example relation:

wy = (sitel, radar_typel, 750),
wo = (sitel, radar_typel, 800).

A world-id is used to identify each possible world, and is associated with tuples
in base relations. In order to identify complex events that result from Boolean
combinations of probabilistic tuples, the model proposes the use of annotated
tuples. Such Boolean combinations of possible worlds are referred to as paths,
and annotated tuples use such paths to identify probabilistic tuples that appear
in derived relations, i.e., views. The algebra defined on their model manipu-
lates data, probability bounds, as well as paths. The paths keep track of the
navigation history for tuples appearing in views, and are expected to be main-
tained internally. The paths help encode interdependencies between attributes,
and hence between tuples, and enable enforcing integrity constraints in rela-
tions. As mentioned earlier, an important consideration behind the proposed
operations is that they be amenable to a wide range of possible assumptions
about tuples. The authors propose a set of postulates that combination strate-
gies should satisfy, and define the operations accordingly.

56 MANAGING AND MINING UNCERTAIN DATA

2.4 Interval-valued Probability Measures Assigned to
Tuples

Eiter et al [9]. Eiter et al extend the probabilistic model in [14] by incor-
porating complex values (also called derived events) in relations. Probabilistic
intervals are assigned to tuples in their entirety. Tuples in base relations are as-
sociated with basic events. Derived tuples are associated with general events,
than include conjunctions and disjunctions of basic events. Every complex
value v is associated with a probability interval [, u|, and an event e. The in-
terval [/, u] represents the likelihood that v belongs to a relation of the database,
where e records information about how the value is derived. Figure 3.7 pro-
vides an example relation with probabilistic complex values.

v l u e
patient diseases
John | {lung cancer, tuberculosis} | 0.7 | 0.9 | e; V es
patient diseases
Jack {leprosy} 0.5 0.7 es3

Figure 3.7. A Probabilistic Complex Value Relation (Reproduced from [9])

The example relation holds data about patients and their diseases. The first
tuple in the relation shows that the probability that a patient John suffers from
both lung cancer as well as tuberculosis lies between 0.7 and 0.9. Similarly, the
second tuple shows that the probability that a patient Jack suffers from leprosy
is between 0.5 and 0.7. The complex event (e1 Ves) is associated with the first
tuple, and is assumed to be derived by combining tuples corresponding to basic
events.

As in [14], basic events are not assumed to be pairwise independent or mu-
tually exclusive. The probability range of a complex event is computed using
whatever dependence information is available about the basic events. The com-
bination strategies refine the ones presented in [14].

3. Probabilistic Relational Algebra

In this section, we provide the details of the probabilistic relational model
and algebra proposed in [5].
3.1 Basic Definitions

Let NV = {1,2,...,n} be an arbitrary set of integers. A relation scheme
R is a set of attribute names { A1, Aa, . .., Ay}, one of which may be a prob-
ability stamp pS. Corresponding to each attribute name A;, i € N, is a set

Relational Models and Algebra for Uncertain Data 57

D; called the domain of A;. If A; = pS, then D; = (0,1]. The multiset
D = {Dy,D,,...,D,} is called the domain of R. A tuple x over R is a
function from R to D (z : R — D), such that z(4;) € D;, i € N. In other
words, a tuple = over R can be viewed as a set of attribute name-value pairs:
x = {{A;,v))|Vi e N(A; € R N v; € D;)}. Restriction of a tuple x over S,
S C R, written z(S), is the sub-tuple containing values for attribute names in
S only, i.e., z(S) = {(A4,v) €x|A€ S}. The formal interpretation of a tuple is
as follows: a tuple = over R represents one’s belief about attributes (in R) of
a real world object. If pS € R, then a probability of z(pS) > 0 is assigned
to the fact that an object has the values (R — {pS}) for the corresponding
attributes. In other words, the attribute p.S represents the joint distribution of
all the attributes taken together:

z(pS) = Pr[R — {pS} = 2(R — {pS})].
If pS & R, i.e., if the relation scheme R is deterministic, then every tuple on
R is assigned a probability of one, and is not explicitly written; in that case, it
is implicitly assumed that z(pS) = 1.

Two tuples x and y on relation scheme R are value-equivalent (written x =~
y) if and only if, for all A € R, (A # pS) = (y(4) = z(A)). Value-
equivalent tuples are not allowed in a relation; they must be coalesced. Two
types of coalescence operations on value-equivalent tuples are defined:

1 The coalescence-PLUS operation is used in the definition of the pro-
jection operation. Coalescence-PLUS (denoted by &) on two value-
equivalent tuples x and y is defined as:

z=x®y & (r2y)A(z=2)A (z(pS) = min{l,x(pS)—i—y(pS)}).

2 The coalescence-MAX operation is used in the definition of the union
operation. Coalescence-MAX (denoted by ®) on two value-equivalent
tuples x and y is defined as:

z=20y & (x~y)A(z~z)A (z(pS) = max{x(pS),y(pS)}).

The idea of value-equivalent tuples and coalescence operations need not be
confined to just two tuples. Given m tuples x1, o, ..., T, all of which are
on the same relation scheme, they are said to be value-equivalent if z; ~ z;
forall 7,5; 1 < 7,57 < m. Coalescence-PLUS, for example, on all these m
value-equivalent tuples will recursively coalesce all the tuples pair-wise, i.e.,

@xi: (.(x1Dx2)Dx3) D ... DxTy—1) D Ty
i=1

Let R be a relation scheme. A relation r on the scheme R is a finite collec-
tion of tuples x on R such that no two tuples in r are value-equivalent.

58 MANAGING AND MINING UNCERTAIN DATA

3.2 Primary and Foreign Keys

In the relational model, every tuple in a relation represents a unique object
(i.e., an entity or a relationship) from the real world; a superkey is a set of
attributes that uniquely identifies a tuple, and hence an object. A superkey, in
that sense, is an object surrogate, one that uniquely identifies every object. A
candidate key is a minimal superkey, minimal in the sense that no attribute can
be dropped without sacrificing the property of uniqueness. For each relation,
only one candidate key is chosen as the primary key of that relation.

In the probabilistic extension, where every tuple has a probability stamp
that represents the joint probability of occurrence of the attribute values in that
tuple, each tuple cannot stand for a unique object. Associated with every object
there may be several tuples representing the complete joint distribution of its
attributes. This suggests that one must retain the object surrogate interpretation
of the primary key (i.e., unique identifier of real world objects) and discard the
notion of the primary key as a unique identifier of tuples.

The term foreign key retains the usual meaning in this model. In other words,
a foreign key of a relation scheme R is a set of attributes F' C R that refers to
a primary key K of some relation scheme S. Attributes in ' and K may have
different names, but they relate to the same real world property of an object
and come from the same domain. If r and s are relations on schemes R and
S respectively, we call r the referring (or, referencing) relation and s the re-
ferred (or, referenced) relation. This is written symbolically as: 7.F' — s. K.
The possibility that » and s are the same relation is not excluded. Primary and
foreign keys are useful in enforcing important integrity constraints on proba-
bilistic relations.

Intra-Relational Integrity Constraints: Let r be any relation on scheme R
with primary key K. The following intra-relational constraints are im-
posed on r:

1 The total probability associated with a primary key value must be
no more than one. In other words, for all x € r,

> ous) < 1.

yer
y(K)=z(K)
2 Forall x € r, no part of x(K) can be null.
3 Forall z € r, if pS € R, then z(pS) € (0,1] and z(pS) is not
null.

Referential Integrity Constraints: Let » and s be two relations on schemes
R and S respectively. Let Ki and Kg be the primary keys of R and

Relational Models and Algebra for Uncertain Data 59

S, and let r.F' — s.Kg for some F' C R. The following referential
constraints are imposed on r and s:

1 Forall z € r, if there exists an attribute A € F such that z(A) is
null, then for all other attributes B € F, z(B) is also null. This
ensures that the foreign key value of a tuple is not partially null.

2 For all x € r, either x(F) is null (fully), or there exists y € s such
that

> 2@S) < D z(pS),

zZEer zZES
2(KrF)=z(KRrF) 2(Ks)=y(Ks)

where K F'is a shorthand for Kp U F.

3.3 Relational Operations

Based on the above definitions, we now present the algebraic operations for
this model. In addition to the basic relational operations, a special operation
called conditionalization is introduced. This is useful in answering queries
involving non-key attributes in relations.

Union. Let r and s be relations on the same scheme R. Then the union of
these two relations is defined as:

rus = {x(R)‘((xer)/\(VyEs(y;ém)))\/
<(m€3)/\<Vy€r(y7ém)>>\/

<3y€r Elzes(x:yQZ))}.

This operation is a straightforward extension of the deterministic counterpart,
with the added restriction that if there are value-equivalent tuples in the partic-
ipating relations then the higher probability stamp is included in the result. It
can be easily verified that union is commutative, associative, and idempotent.
An alternative definition of the union operation may be obtained by replacing
® with @ in the above definition; in that case, however, the union operation
would not be idempotent.

60 MANAGING AND MINING UNCERTAIN DATA

Difference. Let r and s be as above. Then the difference of these two
relations is given by:

r—s = {a:(R)‘ <(m€r)/\(Vy€s(y;£x))>\/

(EIyET 3265((35 ~y~z)A (y(pS) > z(pS)) A

(2(0) = y(pS)—z(ps>))> }

In this operation, if there are value-equivalent tuples in the participating re-
lations, then the difference in the probability stamps is included in the result
provided the difference is positive.

Projection. Letr be arelation on scheme R, and let S C R. The projection
of r onto .S is defined as:

yer
y(S)~a
This operation provides the marginal distribution for a subset of attributes. The
result is meaningful if a candidate key is included in the projection list, as the
marginalization is then conducted separately for each object captured in the
relation.

Selection. Let r be a relation on scheme R. Let © be a set of comparators
over domains of attribute names in R. Let P be a predicate (called the selection
predicate) formed by attributes in R, comparators in ©, constants in the domain
of A for all A € R, and logical connectives. The selection on r for P, written
op(r), is the set {x € r|P(x)}. This operation is defined at the tuple level,
and is identical to its counterpart in traditional relation algebra.

Natural Join. Let r and s be any two relations on schemes R and S

respectively, and let R = R — {pS} and S’ = S — {pS}. The natural join of
r and s is defined as:

reds = {x(R us) ‘ Jyer EIZES((:J:(R’) = y(R')) A (:U(S’) = z(S'))

A(fﬂ(pS) = y(pS)Z(pS))> }

Relational Models and Algebra for Uncertain Data 61

Note that the attributes in R and S should be independent for the natural join
operation to yield meaningful results. It can be easily verified that the natural
join is commutative and associative, but it is not idempotent.

Rename. The rename operation (p) is used to change the names of some
attributes of a relation. Let r be a relation on scheme R, and let A and B be
attributes satisfying A € R, B ¢ R. Let A and B have the same domain, and
let S = (R — {A}) U{B}. Then r with A renamed to B is given by:

pacn) = {u(8) | 2wer((40 - B) = a(R -) A (s(8) = 2(0))) }.

If pS is renamed, it loses its special meaning and behaves like just another
user-defined attribute.

Conditionalization. Let r be a relation on scheme R, and S C R — {pS}.
The conditionalization of r on .S is given by:

Ts(r) = {m(R) | ayer<<x ~y) A (a(pS) = %"3)) } ,

where 75 -(x) is a function defined on a tuple z € r if pS € R, and is given
by:

nsr(r) =min 1, > y(pS)
yer
y(S)=r(S)

The conditionalization operation on .S revises the probability stamp associ-
ated with each tuple by changing the marginal probability of the values for
attributes in S to unity. In other words, after conditionalization, the rela-
tion can be interpreted as the joint conditional distribution of all attributes in
(R—S—{pS}) given the values of attributes in S. As a result, this operation is
useful, for example, in answering queries about non-key attributes of a relation
for a given key value, or, before performing the join operation to obtain mean-
ingful results. Note that, for the conditional probabilities to be meaningful, it
may be necessary to include a candidate key as part of .S.

Other relational operations such as intersection and Cartesian product can
be expressed in terms of the above basic operations:

62 MANAGING AND MINING UNCERTAIN DATA

m [ntersection. Let r and s be relations on the same scheme R. Then the
intersection of these two relations is given by:

rns = {x(R) ‘ dyer 3268((:5:1/:2)/\

(+(0)= nintyv5).2051))) }.

It can be easily verified that r Ns = r — (r — s).

m Cartesian Product. The Cartesian product of two relations is a special
case of a natural join [Codd 1990], where the relations do not have any
common attribute name (with the possible exception of pS). Let R and
S be two relation schemes satisfying (RN.S)—{pS} = 0. Letr and s be
relations on the schemes R and S, respectively. The Cartesian product
of r and s is a relation on scheme (R U S) given by: © X s = 7 1 s.

m Theta-join. Let R, S, r and s be as above. Let © be a set of comparators
over domains of attributes in (R U S). Let P be any predicate formed
by attributes in (R U S), comparators in ©, constants in the domain of
Aforall A € (RUS), and logical connectives. The theta-join between
rand s is given by: 7 Xip s = op(r < s).

m Alpha-cut. The alpha-cut operation selects only those tuples from a
relation that have a probability of or more. Let r be a relation on
scheme R. Let R = R — {pS}. Then alpha-cut of r, denoted ®,(r),
is {z(R)|(z € r) A (z(pS) > «)}. Tt is easy to verify that ®,(r) =
Mg (0ps>a(r))-

3.4 Relational Algebra

Assume that U is a set of attribute names, called the universe. U may have
the probability stamp pS as only one of its element. Let D be a set of domains,
and let dom be a total function from U to D. Let R={ R, Ry, ..., R,} denote
a set of distinct relation schemes, where R, C U, for1 < i < p. Letd =
{r1,m2...,7p} be aset of relations, such that r; is a relation on R;, 1 < i < p.
O denotes a set of comparators over domains in D. The relational algebra over
U, D, dom, R, d and © is the 7-tuple R = (U,D,dom, R, d, ©,O), where
O is the set of operators union, difference, natural join, projection, selection,
rename and consolidation using attributes in U and comparators in ©, and
logical connectives. An algebraic expression over R is any expression formed
legally (according to the restrictions on the operators) from the relations in d
and constant relations over schemes in U, using the operators in O.

The relational algebraic expressions and their schemes over R are defined
recursively (according to the restrictions on the operators) as follows:

Relational Models and Algebra for Uncertain Data 63

1 Let Q@ ={C1,Cy,...,C;} CU be any relational scheme, and let ¢; €
dom(C;), 1 < i < k. Then {(c; : Cy,c2 : Co,...,c; : Cp)} is a
relational expression over scheme () called a constant.

2 Each r; € d is a relational expression over the scheme R;, 1 < i < p.

3 If E1 and F)» are relational expressions over the same scheme (), then so
are the following: (i) F4 U Es, (ii) E4 — E3, and (iii) o p(F4), where P
is a selection predicate.

4 If F is a relational expression over the scheme (), and S C (@), then
IIs(E) is a relational expression over the scheme S.

5 If Ey and E» are relational expressions over schemes ()1 and ()2, then
so is F'1 b1 E over the scheme Q1 U Q9.

6 If E is a relational expression over (), and A and B are attributes with
the same domain, then ps. p(F) is a relational expression over (Q —

{Apu{B}.
7 If E is a relational expression over @, then so is Tg(E), for all S C

(Q—A{pS}).

Dey and Sarkar [5] show that this algebra is closed, is a consistent extension
of the traditional relational algebra, and reduces to the latter.

3.5 Incomplete Distribution and Null Values

We now turn our attention to the case where the joint probability distribution
of the attributes of an object is partially specified. For example, it is possible
that the existence of an employee is certain (i.e., the marginal probability of the
key EMP# is one), but the marginal distribution of the salary of that employee
is not completely specified. This scenario is illustrated in the relation shown
in Figure 3.8, where the existence of an employee with EMP#=6879 is known
with certainty; the marginal distribution of rank is completely specified for this
employee, but the marginal distribution for salary and department information
is not completely available.

The EMPLOYEE relation in Figure 3.8 models this type of incompleteness
with the help of a null value “+." It means that a portion of the probability mass
is associated with a value that is unknown. For example, out of a total of 1.0,
only 0.3 is associated with a known value of salary for EMP#=6879; remaining
0.7 is given to the null value.

Interpretation of Partial Distribution. An important question is the in-
terpretation of the probability stamp when the joint probability distribution is
not fully specified. How one interprets the probability stamp has to do with the

64 MANAGING AND MINING UNCERTAIN DATA

EMP# | rank salary | dept | pS
3025 | clerk 15K | toy | 0.2
3025 | cashier | 20K | shoe | 0.6
3025 | cashier | 15K | auto | 0.2
6723 | clerk 18K | toy | 0.4
6723 | cashier | 20K | auto | 0.4

6723 * * * 0.1
6879 | clerk 25K | toy | 0.3
6879 | clerk * toy | 0.1
6879 | cashier * * 0.6

Figure 3.8. EMPLOYEE: A Probabilistic Relation with Null Values

interpretation given to the portion of the total probability mass (associated with
a key value) that is not specified, called the missing probability in [1]. There
are two possible interpretations that may be given to the missing probability.
The first is that the missing probability is associated with realizations of those
values of attributes that are not already included in the relation. Thus, in Fig-
ure 3.8, the missing probability of 0.1 for EMP# 6723 could be distributed in
any manner over those joint realizations for rank, salary and department that
are not already included in the table. With this interpretation, the probability
stamps for tuples that do appear in the relation are construed as point estimates
of the conditional probabilities for given values of the attributes. Therefore, the
probability that EMP#=6723, rank="clerk,” salary=18K and dept="toy” is in-
terpreted to be 0.4. Similarly, the probability that EMP#=6879 and dept="toy”
is 0.4.

The second interpretation for the missing probabilities is that they could be
distributed over the entire set of realizations of the attributes, including the
ones that already appear in the relation. In that case, the uncertainty associated
with the attribute values for tuples that appear in the relation are represented
by probability intervals, and not point estimates. The probability stamp as-
sociated with a tuple is then the lower bound of the probability interval for
that tuple (as in [1]). Consider the previous example of EMP# 6723; this key
value has a missing probability of 0.1. Since this probability mass could be
assigned to any value, including those that have already appeared, the proba-
bility that EMP#=6723, rank="clerk," salary=18K and dept="“toy" lies in the
interval [0.4, 0.5]. Similarly, the probability that EMP#=6879 and dept="toy"
lies in the interval [0.4, 1.0]. When the distribution is completely specified, the
interval clearly reduces to a point.

Relational Models and Algebra for Uncertain Data 65

Extended Relational Operations. The basic algebraic operations can be
extended to incorporate the null values as possible attribute values. An impor-
tant feature of this extension is that the semantics associated with each of the
above two interpretations is preserved as a result of all the basic relational oper-
ations, i.e., the extended operations can handle both interpretations of missing
probabilities. Consequently, depending on their preference, users can represent
uncertainties regarding attribute values either as point estimates or as intervals.
The result of the relational operations will be consistent with the user’s inter-
pretation of the original tables. First, a few definitions are necessary.

Let z be any tuple on scheme R. If A € R and z(A) is not null, z is called
definite on A, written z(A) |. For S C R, x(S) | ifz(A) | forall A € S. A
tuple x is said to subsume a tuple y, both on scheme R, written x > y, if for
all A € R, y(A) | implies z(A) = y(A).

Now, the concept of value-equivalent tuples must be redefined for the ones
that might have null values. Let R be a relation scheme and let R = R—{pS}.
For any two tuples and y on R,

(z~y) & (@(R) 2 yR)) A YR) = z(R)).

Again, value-equivalent tuples are not allowed to co-exist in a relation; they
must be coalesced. The coalescence-PLUS and the coalescence-MAX opera-
tions as defined earlier also work for this extension.

As far as the basic relational operations are concerned, the previous defini-
tions of the union, difference, projection, and rename operations can be used
with the extended definition of value-equivalent tuples. Thus, only the selec-
tion, natural join and conditionalization operations have to be redefined.

m Selection. Let R, r, ©, P be as in the earlier definition of the selection
operation. Let S C R be the set of attributes involved in P. Then,
op(r) ={zerjz(S)| AP(z)}. In other words, tuples with null values
for attributes involved in the selection predicate are not considered.

m Natural Join. Let r and s be any two relations on schemes R and S
respectively. Let Q = RNS, R = R— {pS}and ' = S — {pS}.
Then,

TS = {m(RU S) ‘ Jyer E|z€s<y(Q)l Az(Q)] A
(:U(R’) - y(R’)) A (x(s') - Z(S')) A
(fv(pS) = y(pS)Z(pS))> }

In other words, join operation matches tuples on non-null attribute values
only.

66 MANAGING AND MINING UNCERTAIN DATA

» Conditionalization. Let r be a relation on scheme R, and S C R—{pS}.
The conditionalization of r on S is given by:

Ts(r) = {w(R) | 3y€r<y(5)l Aa = y) A (2(pS) = (%)) } :

where 7s ,(y) is as before. Again, tuples with null values for attributes
in S are excluded in performing the conditionalization operation.

Finally, [5] introduces a new operation called the N-th moment. This oper-
ation allows one to obtain interesting aggregate properties of different attribute
names based on the original distribution of those attribute names represented
in the form of a relation. The N-th moment of a probability distribution is
traditionally defined in the following manner: let ¢ be a random variable with
domain ¥ and probability density function fy(z), x € ¥; its N-th moment,
un (), is then defined as:

pn () = EpN] = / 2™ fy(x)dx.

zew

Moments of a distribution are useful in obtaining aggregate properties of a
distribution such as mean, standard deviation, skewness and kurtosis. For ex-
ample, the standard deviation of the random variable 1) can be easily obtained
from its first and second moments:

Stdev()) = \/,u2(¢) — (11 (¢))2.

These aggregate properties are not only useful in understanding the overall
nature of a distribution, but also in comparing two different distributions. This
is why moments are a very important tool in statistical analysis. The N-th
moment operation helps to form an overall opinion about the nature of real
world objects, as well as allows various statistical analysis to be performed on
the stored data.

» N-th Moment. Let r be a relation on scheme R. Let R = R— {pS} and
S C R’. The N-th moment of r given S, written p15 n (7), is defined as:

psn(r) = {x(R’) \ ayer<y<5>¢ A((8) = 5($)) A

<VA6 (R'—S) (x(A) = mSJ,N(y:A)))) } ;

Relational Models and Algebra for Uncertain Data 67

where,
> wWA))Ny(ps)
(1))
y(g)=x(5) if pS'€ R and
ms,r,N (2, A) = Z y(pS) ’ A€ R’ is numeric,
yer
y(A)l
y(8)=x(5)
L Q, otherwise.

A few comments are in order about the /N-th moment operation. First, {}is a
special type of null value generated as a result of this operation on non-numeric
attributes. Second, this operation is really a family of operations, because one
gets a different operation for each positive integer /N. For example, to obtain
the expected value of different attributes, one can use the first moment, i.e.,
N = 1. If the first moment operation is applied on the EMPLOYEE relation
shown in Figure 3.8 with S={EMP#}, one would obtain the expected value of
all other attributes given EMP#; this is illustrated in Figure 3.9. Third, it is

EMP# | rank | salary | dept
3025 Q 18K Q
6723 Q 19K Q
6879 Q 25K Q

Figure 3.9. EMPLOYEE Relation after First Moment Operation

possible to define other operations—such as standard deviation, skewness and
kurtosis—based on the above class of operations. Finally, as can be seen from
the definition, null values () are not considered in calculating moments. In
other words, only the explicitly specified part of the distribution is considered
in calculation of moments.

4. Algebraic Implications of the Different Representations
and Associated Assumptions

In Section 2, we discussed the main differences across the various models in
terms of how the uncertainty in data is represented by the models, and the un-
derlying assumptions for each approach. Having discussed the model from [5]
in considerable detail in Section 3, we now highlight the key differences in the
algebra proposed for each of the different approaches, and discuss where each
approach provides different functionalities to users. To keep this discussion

68 MANAGING AND MINING UNCERTAIN DATA

brief and easy to follow, we consider the model in [5] as the benchmark and
contrast the differences.

4.1 Models Assigning Point-Valued Probability Measures
at the Tuple Level

We first examine the unique features of the model proposed by Cavallo and
Pittarelli [3], and subsequently refined in [17]. In their work, they focus on
the operations projection, selection, and join. Since, in their model, a relation
can be viewed as storing the distribution of an uncertain event, their projec-
tion operation provides the marginal distribution of the projected attributes.
Thus, the operation in [5] is similar to theirs, except that [5] allows data on
multiple objects (events) to be stored in a relation, leading to marginalization
only within tuples that share the primary key value. The selection operations
in [3] and [5] are also similar, with the difference that [3] requires that the
probabilities associated with selected tuples are normalized to add up to one
(in keeping with their requirement about a relation). Their join operation is
motivated by the idea that, to the extent possible, the full distribution across
the collective set of attributes can be reconstructed from the projections of the
joined relation into the schema for the participating relations. Using this moti-
vation, they propose that the maximum entropy distribution be obtained for the
tuples in the joined relation, while preserving the marginal probability distribu-
tions associated with the participating relations. If the non-common attributes
of a participating relation is conditionally independent of the non-common at-
tributes of the other participating relation given the common attributes, then
their operation calculates the distribution for the tuples in the resulting rela-
tion by using this conditionalization explicitly. The operation provided in [5]
is analogous, where it is implicitly assumed that the conditional independence
property holds (if this property does not hold, then the participating relations
are considered to be ill formed, as they cannot capture the uncertainty associ-
ated with the full set of attributes in the two relations). Neither [3] nor [17]
provide a formal discussion of the union and difference operations, although
they note that updates to the database can be viewed as revising the distribu-
tion associated with the tuples in a manner consistent with incrementing the
relative frequencies of observations that lead to the update process.

Fuhr and Rolleke [11] extend the traditional relational algebra for the five
basic operations. In order to account for the distinction they make in their in-
dependence assumptions regarding relations with basic events and those with
complex events, their algebra is described separately for each of them. We
first discuss their operations defined for basic events, and then contrast them
with operations for complex events. Their approach assumes that tuples cor-
responding to basic events are independent of each other, and their selection

Relational Models and Algebra for Uncertain Data 69

and natural join operations are identical to those presented in [5]. The other
three operations work differently, because value-equivalent tuples are involved.
Thus, for the projection operation, they compute the probability of a tuple that
is part of multiple tuples in the original relation by forming the disjunction
of the events associated with the original tuples. Implicit in their approach is
the assumption that the primary key attribute is not included in the projected
relation (in which case marginalization would be the appropriate approach).
The union operation likewise computes the probability of a value-equivalent
tuple in the result by considering the disjunction of the corresponding tuples in
the participating relation. Their difference operation returns only those tuples
that appear in the first relation and do not have value-equivalent tuples in the
second one.

When considering operations on complex events, Fuhr and Rolleke [11] pro-
pose that the appropriate Boolean expression implied by the operation be taken
into account when calculating the probabilities for tuples in the resulting rela-
tion. As mentioned earlier, to facilitate this, they explicitly record the complex
events corresponding to tuples in derived relations. When further operations
are performed on these derived relations, the event expressions of relevant tu-
ples are examined to determine if the tuples can be considered independent. If
that is the case, the operations remain unchanged. When that is not the case,
the process requires transforming the Boolean expression for each tuple in the
result into its equivalent disjunctive normal form and then computing the de-
sired probability.

4.2 Models Assigning Point-Valued Probability Measures
at the Attribute Level

Barbara et al [1] focus primarily on the operations projection, selection, and
join, and then present a set of new operations that do not have counterparts in
conventional relational algebra. We do not include the non-conventional op-
erations in this discussion. In their model relations must have deterministic
keys. As a result, the projection operation requires that the key attribute(s)
be included in the projection. Further, since probabilities are stored at the
attribute-level, and there exists only one tuple for any key value, the operation
cannot lead to value-equivalent tuples. When a projection includes a subset of
dependent stochastic attributes, the marginal probabilities are returned for the
projected attributes. If wildcards denoting missing probabilities are involved,
then the wild-cards are treated as just another attribute-value. Two types of
conditions are provided for the selection operation: the certainty condition and
the possibility condition. These two types of conditions exploit the semantics
of the missing probabilities. A query with a certainty condition selects tuples
that are guaranteed to meet the selection criteria regardless of how the miss-

70 MANAGING AND MINING UNCERTAIN DATA

ing probabilities may be assigned. A query with a possibility condition selects
tuples for which there exists some feasible assignment of the missing probabili-
ties that would lead that tuple to meet the selection criteria. When the selection
condition involves a subset of stochastically dependent non-key attributes, it
involves an implicit projection operation. Their natural join operation requires
that the common attribute(s) must be the key to one of the relations. Since at-
tributes in a relation are assumed to be conditionally independent of attributes
in other relations given the key value, the probability distribution for stochastic
attribute values in the result of the join are obtained by multiplying the proba-
bilities associated with the participating attributes in the two relations.

4.3 Models Assigning Interval-Valued Probability
Measures at the Attribute Level

In their model, Lakshmanan et al [14] define the operations on the anno-
tated representations of their probabilistic relations. The annotated representa-
tion includes, in addition to the possible attribute values, the upper and lower
bounds for the probability associated with the set of specified attribute values,
and the path (which is a Boolean expression involving world-ids). As men-
tioned earlier, the operations manipulate the attribute values, the probability
intervals, as well as the paths.

The selection operation in their algebra is practically identical to that in tra-
ditional relational algebra, with the bounds and the path associated with each
tuple included in the result (which is also annotated). Their projection opera-
tion does not eliminate value-equivalent tuples. As a result, value-equivalent
tuples may appear in the result; these tuples are distinguished by their associ-
ated paths and the probability bounds.

Their Cartesian product and join operations are not straightforward exten-
sions of the classical relational algebra operations. Their definitions incorpo-
rate several possible strategies for combining probabilistic tuples that involve
conjunctions and disjunctions of events. Thus, in concatenating tuple ¢; from
relation Ry with tuple to from relation R, the probability interval associated
with the result depends on whatever relationship is known among tuples ¢;
and to. For instance, if the tuples are assumed to be independent, the proba-
bility interval for the result is different from the scenario where the tuples are
assumed to be positively correlated. In the former scenario, the bounds for
the result are obtained as the products of the respective bounds on the partic-
ipating tuples. In the latter scenario, the bounds correspond to the minimum
values of the bounds of the participating tuples. With such scenarios in mind,
they define a generic concatenation operation on tuples, with the restriction
that the user should specify a probabilistic strategy that satisfies several pro-
posed postulates on the structure and semantics of computing concatenations

Relational Models and Algebra for Uncertain Data 71

of tuples (i.e., conjunctions of events). The path information also plays a role
if necessary; e.g., if the participating tuples correspond to inconsistent states
of the world (one event is the negation of the other), then the resulting tuple is
not included. When performing a Cartesian product, the user is provided the
flexibility to specify which strategy to use.

To handle value-equivalent tuples, they propose an operation called com-
paction, which is intuitively similar to the coalescence operations defined in [5].
The compaction operation uses a disjunctive combination strategy for evaluat-
ing the probability intervals and paths for the resulting tuple. They propose a
generic disjunction strategy to accommodate different assumptions regarding
the value-equivalent tuples.

Their union operation is analogous to the traditional union operation, again
with the paths and probability bounds used to distinguish value-equivalent tu-
ples. Their difference operation, on the other hand, explicitly takes into account
value-equivalent tuples. The basic intuition behind calculating the probability
bounds involves taking the conjunction of the event associated with the tuple
in the first relation and the negation of the event associated with the value-
equivalent tuple in the second relation. This is complicated by the fact that
multiple value-equivalent tuples may appear in both the participating relations,
each associated with a different path. Since one of these paths may be a sub-
set of another path, special checks are developed that determine which tuples
are subsumed in this manner. The final output includes tuples associated with
paths that are not subsumed.

The actual computation of the probability intervals depend on the assump-
tions being specified by the user. For some assumptions, the values can be
easily obtained. In other situations, linear programs are used to compute the
tightest possible bounds, given the available information.

4.4 Models Assigning Interval-Valued Probability
Measures to Tuples

Eiter et al [9] generalize the annotated representation of the interval-valued
model presented in [14] by allowing complex values. In their model, each tuple
is assigned an event, which is analogous to a path in the model of Lakshmanan
et al [14]. An important distinction is that the combination strategies in their
algebra are based on axioms of probability theory, instead of the postulates for
combination functions suggested in [14]. In their conjunction and disjunction
strategies, they incorporate additional types of dependence information such
as left implication, right implication, exhaustion, and antivalence, which have
not been considered in prior works. They are able to identify combinations of
probabilistic pairs of events and dependence information that are unsatisfiable,
which enables them to refine the combination strategies presented by Laksh-

72 MANAGING AND MINING UNCERTAIN DATA

manan et al. In certain cases, their approach is able to obtain tighter bounds on
the probability intervals.

While the work by Eiter et al [9] is motivated by Lakshmanan et al [14], the
resulting representations they consider are very similar to the ones in [5], with
the difference that interval-valued probabilities are considered. Their opera-
tions are, of course, generalized to allow for the different combination strate-
gies, which lead to several possible ways to compute the probability intervals
for tuples in derived relations.

4.5 Some Observations on the Independence Assumption
Across Tuples

The various probabilistic relational models can also be viewed as belonging
to one of two groups. In the first group, it is assumed (explicitly or implicitly)
that tuples corresponding to different objects are independent. In the other,
no such assumptions are made. The former include the models presented by
Cavallo and Pittarelli [3], Pittarelli [17], Dey and Sarkar [5], and Barbara et
al [1]. The models proposed by Fuhr and Rélleke [11], Lakshmanan et al [14],
and Eiter et al [9] belong to the latter group. An outcome of relaxing this as-
sumption is that, in order to compute the probabilities (point-valued or interval-
valued) associated with tuples in the result of operations, it is necessary to keep
track of additional information regarding how the tuple was derived. Fuhr and
Rolleke use information in the form of complex events, Lakshmanan et al use
paths, and Eiter et al use derived events to store these kinds of information
along with the relations. In addition, they assume that additional knowledge
about these dependencies is available in order to make the right probabilistic
inferences when computing the result. Consequently, the models in the latter
group, while providing a more generalized set of options, also impose addi-
tional requirements for operational consideration. First, they require that users
be able to specify how the dependencies should be considered for tuples within
each relation, as well as for tuples across all the relations. Second, as Fuhr and
Rolleke observe, even when dependence models may be more appropriate, the
additional parameters needed would often not be available to compute the de-
sired probabilities. They go on to note that complete probability assignments
will not be feasible for a database with a reasonable number of events, if every
possible dependency is to be accurately captured.

5. Concluding Remarks

Although relational databases enjoy a very wide-spread popularity in mod-
ern information systems, they lack the power to model uncertainty in data
items. In this chapter, we provide a summary of the major extensions that

Relational Models and Algebra for Uncertain Data 73

attempt to overcome this limitation. We discuss the strengths and weaknesses
of these models and show the underlying similarities and differences.

Before any of these models can be implemented, a more complete frame-
work needs to be developed that deals with the issues of table structure and
normal forms, belief revision, and a non-procedural query language. For the
model proposed by Dey and Sarkar [5], these issues have been addressed in a
series of follow-up articles [6—8]. To the best of our knowledge, such follow-up
work has not been undertaken for the other extensions. Future research could
examine these issues for the other models.

Another issue of practical significance is how to obtain the probability dis-
tributions for representing the uncertainty associated with data items. Clearly,
one comprehensive scheme that works in all situations is unlikely to emerge.
Therefore, context-driven schemes need to be devised. In a recent article, Jiang
et al [12] examine this issue in the context of heterogeneous data sources. Fu-
ture research need to examine other contexts that lead to data uncertainty and
develop appropriate schemes for those contexts as well.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[&]

[9]

D. Barbara, H. Garcia-Molina, and D. Porter. The Management of Prob-
abilistic Data. IEEE Transactions on Knowledge and Data Engineering,
4(5):487-502, October 1992.

J. Bischoff and T. Alexander. Data Warehouse: Practical Advice from the
Experts, Prentice-Hall, 1997.

R. Cavallo and M. Pittarelli. The Theory of Probabilistic Databases. Pro-
ceedings of the 13th VLDB Conference, pp. 71-81, Brighton, September
1-4 1987.

C.J. Date. Relational Database: Selected Writings, Addison-Wesley,
1986.

D. Dey and S. Sarkar. A Probabilistic Relational Model and Alge-
bra. ACM Transactions on Database Systems, 21(3):339-369, September
1996.

D. Dey and S. Sarkar. PSQL: A Query Language for Probabilistic Rela-
tional Data. Data and Knowledge Engineering, 28(1):107-120, October
1998.

D. Dey and S. Sarkar. Modifications of Uncertain Data: A Bayesian
Framework for Belief Revision. Information Systems Research, 11(1):1—
16, March 2000.

D. Dey and S. Sarkar. Generalized Normal Forms for Probabilistic Re-
lational Data. IEEE Transactions on Knowledge and Data Engineering,
14(3):485-497, May/June 2002.

T. Eiter, T. Lukasiewicz, and M. Walter. A Data Model and Algebra
for Probabilistic Complex Values. Annals of Mathematics and Artificial
Intelligence, 33(2—4):205-252, December 2001.

76 MANAGING AND MINING UNCERTAIN DATA

[10] N. Fuhr and C. Buckley. A Probabilistic Learning Approach for Doc-
ument Indexing. ACM Transactions on Information Systems, 9(3):223—
248, July 1991.

[11] N. Fuhr and T. Roélleke. A Probabilistic Relational Algebra for the Inte-
gration of Information Retrieval and Database Systems. ACM Transac-
tions on Information Systems, 15(1):32—66, January 1997.

[12] Z. Jiang, S. Sarkar, P. De, and D. Dey. A Framework for Reconcil-
ing Attribute Values from Multiple Data Sources. Management Science,
53(12):1946—-1963, December 2007.

[13] G.J.Klir T.A. and Folger. Fuzzy Sets, Uncertainty, and Information, Pren-
tice Hall, Englewood Cliffs, NJ, 1988.

[14] L.Lakshmanan, N. Leone, R. Ross, and V.S. Subrahmanian. Probview: A
Flexible Probabilistic Database System. ACM Transactions on Database
Systems, 22(3):419-469, September 1997.

[15] D. Maier. The Theory of Relational Databases, Computer Science Press,
1983.

[16] A.Motro. Accommodating Imprecision in Database Systems: Issues and
Solutions. ACM SIGMOD Record, 19(4):69-74, December 1990.

[17] M. Pittarelli. An Algebra for Probabilistic Databases, /EEE Transactions
on Knowledge and Data Engineering, 6(2):293-303, April 1994.

[18] G. Salton and C. Buckley. Term Weighting Approaches in Automatic
Text Retrieval. Information Processing & Management, 24(5):513-523,
1988.

Chapter 4

GRAPHICAL MODELS FOR UNCERTAIN DATA

Amol Deshpande
University of Maryland, College Park, MD
amol@cs.umd.edu

Lise Getoor

University of Maryland, College Park, MD
getoor@cs.umd.edu

Prithviraj Sen
University of Maryland, College Park, MD
sen@cs.umd.edu

Abstract

Keywords:

Graphical models are a popular and well-studied framework for compact repre-
sentation of a joint probability distribution over a large number of interdependent
variables, and for efficient reasoning about such a distribution. They have been
proven useful in a wide range of domains from natural language processing to
computer vision to bioinformatics. In this chapter, we present an approach to us-
ing graphical models for managing and querying large-scale uncertain databases.
We present a unified framework based on the concepts from graphical models
that can model not only tuple-level and attribute-level uncertainties, but can also
handle arbitrary correlations that may be present among the data; our framework
can also naturally capture shared correlations where the same uncertainties and
correlations occur repeatedly in the data. We develop an efficient strategy for
query evaluation over such probabilistic databases by casting the query process-
ing problem as an inference problem in an appropriately constructed graphical
model, and present optimizations specific to probabilistic databases that enable
efficient query evaluation. We conclude the chapter with a discussion of related
and future work on these topics.

Graphical models; probabilistic databases; inference; first-order probabilistic
models.

78 MANAGING AND MINING UNCERTAIN DATA

1. Introduction

An increasing number of real-world applications are demanding support for
managing, storing, and querying uncertain data in relational database systems.
Examples include data integration [14], sensor network applications [22], in-
formation extraction systems [34], mobile object tracking systems [11] and
others. Traditional relational database management systems are not suited for
storing or querying uncertain data, or for reasoning about the uncertainty itself
— commonly desired in these applications. As a result, numerous approaches
have been proposed to handle uncertainty in databases over the years [32, 10,
24,26, 4,39, 11, 22, 14, 8, 6]. However, most of these approaches make sim-
plistic and restrictive assumptions concerning the types of uncertainties that
can be represented. In particular, many of the proposed models can only cap-
ture and reason about tuple-level existence uncertainties, and cannot be easily
extended to handle uncertain attribute values which occur naturally in many
domains. Second, they make highly restrictive independence assumptions and
cannot easily model correlations among the tuples or attribute values.

Consider a simple car advertisement database (Figure 4.1) containing infor-
mation regarding pre-owned cars for sale, culled from various sources on the
Internet. By its very nature, the data in such a database contains various types
of uncertainties that interact in complex ways. First off, we may have uncer-
tainty about the validity of a tuple — older ads are likely to correspond to cars
that have already been sold. We may represent such uncertainty by associating
an existence probability (denoted prob.) with each tuple. Second, many of the
attribute values may not be known precisely. In some cases, we may have an
explicit probability distribution over an attribute value instead (e.g. the Sell-
erlD attribute for Ad 103 in Figure 4.1(a)). More typically, we may have a joint
probability distribution over the attributes, and the uncertainty in the attribute
values for a specific tuple may be computed using the known attribute values
for that tuple. Figure 4.1(d) shows such a joint probability distribution over the
attributes make, model and mpg; this can then be used to compute a distribu-
tion over the mpg attribute for a specific tuple (given the tuple’s make and/or
model information). Finally, the data may exhibit complex attribute-level or
tuple-level correlations. For instance, since the ads 101 and 102 are both en-
tered by the same seller, their validity is expected to be highly correlated; such
a correlation may be represented using a joint probability distribution as shown
in Figure 4.1(c).

Many other application domains naturally produce correlated data as well [52].
For instance, data integration may result in relations containing duplicate tu-
ples that refer to the same entity; such tuples must be modeled as mutually
exclusive [10, 1]. Real-world datasets such as the Christmas Bird Count [16]
naturally contain complex correlations among tuples. Data generated by sen-

Graphical Models for Uncertain Data 79

Ad SellerID Date Type Model mpg Price probe
101 201 171 Sedan Civic(EX) ? $6000 0.5
102 201 1/10 Sedan Civic(DX) ? $4000 0.45
- prob - prob
103 201 0.6 1/15 Sedan 0.3 Civic ? $12000 0.8
202 | 04 Hybrid | 0.7
104 202 1/1 Hybrid Civic ? $20000 0.2
105 202 171 Hybrid Civic ? $20000 0.2
(a) Advertisements
SellerID | Reputation Type Model mpg | prob
201 Shady 26 0.2
202 Good Civic(EX) 28 0.6
(b) Sellers 30 0.2
32 0.1
Sedan | cyiiepx) [35 [0.7
Ad101 | Ad102 | prob 37 0.2
valid valid 0.4 .. 28 0.4
valid | invalid | 0.1 Civie 35 | 06
invalid valid 0.05 . .. 45 0.4
invalid | invalid | 045 Hybrid | Civic 50 | 06
(©) ()]

Figure 4.1. (a,b) A simple car advertisement database with two relations, one containing un-
certain data; (c) A joint probability function (factor) that represents the correlation between the
validity of two of the ads (prob. for the corresponding tuples in the Advertisements table can
be computed from this); (d) A shared factor that captures the correlations between several at-
tributes in Advertisements — this can be used to obtain a probability distribution over missing
attribute values for any tuple.

sor networks is typically highly correlated, both in time and space [22]. Fi-
nally, data generated through the application of a machine learning technique
(e.g. classification labels) typically exhibits complex correlation patterns. Fur-
thermore, the problem of handling correlations among tuples arises naturally
during query evaluation even when one assumes that the base data tuples are
independent. In other words, the independence assumption is not closed under
the relational operators, specifically join [26, 14].

In this chapter, we present a framework built on the foundations of proba-
bilistic graphical models that allows us to uniformly handle uncertainties and
correlations in the data, while keeping the basic probabilistic framework simple
and intuitive. The salient features of our proposed framework are as follows:

e Our framework enables us to uniformly represent both tuple-level and
attribute-level uncertainties and correlations through the use of conditional
probability distributions and joint probability factors. Our proposed model
is based on the commonly-used possible world semantics [26, 14], and as
a result, every relational algebra query has precise and clear semantics on
uncertain data.

80 MANAGING AND MINING UNCERTAIN DATA

e Our framework can represent and exploit recurring correlation patterns
(called shared factors) that are common in many application domains and
are also manifested during the query evaluation process itself (Figure 4.1(d)
shows one such shared factor).

e We show how to cast query evaluation on probabilistic databases as an in-
ference problem in probabilistic graphical models and develop techniques
for efficiently constructing such models during query processing. This
equivalence not only aids in our understanding of query evaluation on un-
certain databases, but also enables transparent technology transfer by al-
lowing us to draw upon the prior work on inference in the probabilistic
reasoning community. In fact several of the novel inference algorithms we
develop for query evaluation over probabilistic databases are of interest to
the probabilistic reasoning community as well.

Our focus in this chapter is on management of large-scale uncertain data using
probabilistic graphical models. We differentiate this from the dual problem
of casting inference in probabilistic graphical models as query evaluation in
an appropriately designed database (where the conditional probability distri-
butions are stored as database relations) [9]. We revisit this issue in Section
5, along with several other topics such as probabilistic relational models and
the relationship between our approach and other probabilistic query evaluation
approaches.

The rest of the paper is organized as follows. We begin with a brief overview
of graphical models (Section 2); we focus on representation and inference, and
refer the reader to several texts on machine learning [44, 13, 35, 27] for learn-
ing and other advanced issues. We then present our framework for representing
uncertain data using these concepts (Section 3). Next we develop an approach
to cast query processing in probabilistic databases as an inference problem,
and present several techniques for efficient inference (Section 4). We conclude
with a discussion of related topics such as probabilistic relational models, safe
plans, and lineage-based approaches (Section 5).

2. Graphical Models: Overview

Probabilistic graphical models (PGMs) comprise a powerful class of ap-
proaches that enable us to compactly represent and efficiently reason about
very large joint probability distributions [44, 13]. They provide a principled
approach to dealing with the uncertainty in many application domains through
the use of probability theory, while effectively coping with the computational
and representational complexity through the use of graph theory. They have
been proven useful in a wide range of domains including natural language pro-
cessing, computer vision, social networks, bioinformatics, code design, sensor

Graphical Models for Uncertain Data 81

networks, and unstructured data integration to name a few. Techniques from
graphical models literature have also been applied to many topics directly of in-
terest to the database community including information extraction, sensor data
analysis, imprecise data representation and querying, selectivity estimation for
query optimization, and data privacy.

At a high level, our goal is to efficiently represent and operate upon a joint
distribution Pr over a set of random variables X = {X;,...,X,}. Even
if these variables are binary-valued, a naive representation of the joint distri-
bution requires the specification of 2 numbers (the probabilities of the 2"
different assignments to the variables), which would be infeasible except for
very small n. Fortunately, most real-world application domains exhibit a high
degree of structure in this joint distribution that allows us to factor the represen-
tation of the distribution into modular components. More specifically, PGMs
exploit conditional independences among the variables:

DEFINITION 2.1 Let X, Y, and Z be sets of random variables. X is condi-
tionally independent of Y given Z (denoted X LY |Z) in distribution Pr if:

PriX=x,Y=y|Z=2)=Pr(X=x|Z=2)Pr(Y =y|Z = z)
Sor all values x € dom(X), y € dom(Y) and z € dom(Z).

A graphical model consists of two components: (1) A graph whose nodes
are the random variables and whose edges connect variables that interact di-
rectly; variables that are not directly connected are conditionally independent
given some combination of the other variables. (2) A set of small functions
called factors each over a subset of the random variables.

DEFINITION 2.2 A4 factor f(X) is a function over a (small) set of random
variables X = {Xy,..., Xy} such that f(x) > 0Vx € dom(X;) x ... X
dom(Xp,).

The set of factors that can be associated with a graphical model is constrained
by the nature (undirected vs directed) and the structure of the graph as we will
see later. Note that it is not required that f(x) be < 1; in other words, factors
are not required to be (but can be) probability distributions.

DEFINITION 2.3 A probabilistic graphical model (PGM) P = (F, X) defines
a joint distribution over the set of random variables X via a set of factors F,
each defined over a subset of X. Given a complete joint assignment X €
dom(Xy) x -+ x dom(X,,) to the variables in X, the joint distribution is
defined by:

Pr(x) = 2 [] £

feF

82 MANAGING AND MINING UNCERTAIN DATA

where Xy denotes the assignments restricted to the arguments of f and Z =
> [er f(x}) is a normalization constant.

The power of graphical models comes from the graphical representation of
factors that makes it easy to understand, reason about, and operate upon them.
Depending on the nature of the interactions between the variables, there are two
popular classes of graphical models, Bayesian networks (directed models), and
Markov networks (undirected models). These differ in the family of probability
distributions they can represent, the set of factorizations they allow, and the
way in which the interactions are quantified along the edges. We discuss these
briefly in turn.

2.1 Directed Graphical Models: Bayesian Networks

Directed graphical models, popularly known as Bayesian networks, are typ-
ically used to represent causal or asymmetric interactions amongst a set of ran-
dom variables. A directed edge from variable X; to variable X in the graph
(which must be acyclic) is used to indicate that X; directly influences Xj;.
A canonical set of conditional independences encoded by a directed graph-
ical model is obtained as follows: a node X; is independent of all its non-
descendants given the values of its parents. In other words, if X; is not a
descendant or a parent of X;, then X; | X;|parents(X;). The rest of the con-
ditional independences encoded by the model can be derived from these.

The probability distribution that a directed graphical model represents can
be factorized as follows:

n
Pr(X1,..., X,) = [[Pr(Xi|parents(X;))
i=1
In other words, each of the factors associated with a Bayesian network is a
conditional probability distribution (CPD) over a node given its parents in the
graph.

Figure 4.2 shows a simple example Bayesian network that models the /o-
cation, age, degree, experience, and income of a person. In this application
domain, we might model the /ocation to be independent from the rest of the
variables (as captured by not having any edges to or from the corresponding
node in the graph). For simplicity, we also model the age and degree to be in-
dependent from each other if no other information about the person is known.
Although income is influenced by degree, age, and experience, in most cases,
the influence from age will be indirect, and will disappear given the experi-
ence of the person; in other words, once the experience level of a person is
known, the age does not provide any additional information about the income.
This is modeled by not having any direct edge from age to income. The figure
also shows the factors that will be associated with such a Bayesian network

Graphical Models for Uncertain Data 83

f (L) =Pr(L) f5(A).=Pr(A)
L

NY .
cA | o3 - @ 3045 | 0.
London 0.1 >45 0.3

Other
f4(E, A) = Pr(EIA)

E A |prEnA)
Degree 010 2030 | 0.9
010 3045 | 04
010 >45 | 0.1

f5(1, E, D) = Pr(LL E, D)

I E D pr(llE,D)
<$50k 0-10 Other | 0.95

f4(D) = Pr(D)

.. o
'S

Pr(L, A, D, E,) = f,(L) fo(A) t5(D) t4(E, A) f5(l, E, D))
=Pr(L) Pr(A) Pr(D) Pr(EIA) Pr(llE, D))

Examples of conditional independences captured:
Location L {Age, Degree, Experience, Income}
Degree L {Age, Experience}
Income L Age | Experience

Figure 4.2. Example of a directed model for a domain with 5 random variables

(one CPD each corresponding to each node), and the expression for the joint
probability distribution as a product of the factors.

A domain expert typically chooses the edges to be added to the model, al-
though the graph could also be learned from a training dataset. A sparse graph
with few edges leads to more compact representation and (typically) more ef-
ficient inference, but a denser graph might be required to capture all the inter-
actions between the variables faithfully.

The compactness of representing a joint probability distribution using a
Bayesian network is evident from the above example. If each of the variables
has domain of size 10, the size of the joint pdf will be 10°, whereas the number
of probabilities required to store the factors as shown in the figure is only about
1000, an order of magnitude reduction.

Since Bayesian networks are easy to design, interpret and reason about, they
are extensively used in practice. Some popular examples of Bayesian networks
include Hidden Markov Models [47, 56], Kalman Filters [37, 57], and QMR
networks [40, 33].

84 MANAGING AND MINING UNCERTAIN DATA

Pr(L,A D, E, I) & f'y(L)f'5(A, E) f'g(D, E, I)
f'5(A, E) E -)
xamples of Conditional Independences Captured:

Location L {Age, Degree, Experience, Income}
{Degree, Income} L Age | Experience

Degree/{ Experience, Degree/ Age

Figure 4.3. Example of an undirected model for a domain with 5 random variables

2.2 Undirected Graphical Models: Markov Networks

Undirected graphical models, or Markov Networks, are useful for repre-
senting distributions over variables where there is no natural directionality to
the influence of one variable over another and where the interactions are more
symmetric. Examples include the interactions between atoms in a molecular
structure, the dependencies between the labels of pixels of an image, or the
interactions between environmental properties sensed by geographically co-
located sensors [22]. Markov networks are sometimes preferred over Bayesian
networks because they provide a simpler model of independences between
variables.

The probability distribution represented by a Markov network factorizes in
a somewhat less intuitive manner than Bayesian networks; in many cases, the
factors may only indicate the relative compatibility of different assignments to
the variables, but may not have any straightforward probabilistic interpretation.
Let G be the undirected graph over the random variables X = {X;,..., X,,}
corresponding to a Markov network, and let C denote the set of cliques (com-
plete subgraphs) of G. Then the probability distribution represented by the
Markov network factorizes as follows:

PI'(Xl,... 7XTL) = % H fC(XC)
ceC

where fo(X¢) are the factors (also called potential functions) each over a
complete subgraph of G. Z = "y [[rcc fo(Xc) is the normalization con-
stant.

Figure 4.3 shows an example Markov network over the same set of ran-
dom variables as above. The maximal complete subgraphs of the network are
{Location},{Degree, Experience, Income},{ Age, Experience} and fac-
tors may be defined over any of these sets of random variables, or their subsets.

Graphical Models for Uncertain Data 85

The conditional independences captured by a Markov network are deter-
mined as follows: if a set of nodes X separates sets of nodes Y and Z (i.e.,
if by removing the nodes in X, there are no paths between a node in Y and a
node in Z), then Y and Z are conditionally independent given X. Figure 4.3
also shows the conditional independences captured by our example network.

An important subclass of undirected models is the class of decomposable
models [20]. In a decomposable model, the graph is constrained to be chordal
(triangulated) and the factors are the joint probability distributions over the
maximal cliques of the graph. These types of models have many desirable
properties such as closed product form factorizations that are easy to compute
and reason about [21]. Further, these bear many similarities to the notion of
acyclic database schemas [5].

2.3 Inference Queries

Next we consider the main types of tasks (queries) that are commonly per-
formed over the model. The most common query type is the conditional prob-
ability query, Pr(Y | E = e). Such a query consists of two parts: (1) the
evidence, a subset E of random variables in the network, and an instantiation e
to these variables; and (2) the guery, a subset Y of random variables in the net-
work. Our task is to compute Pr(Y | E = e) = P;,(:({;;a) ie., the probability
distribution over the values y of Y, conditioned on the fact that E = e.

A special case of conditional probability queries is simply marginal compu-
tation queries, where we are asked to compute the marginal probability distri-
bution Pr(Y) over a subset of variables Y.

Another type of query that often arises, called maximum a posteriori (MAP),
is finding the most probable assignment to some subset of variables. As with
conditional probability queries, we are usually given evidence E = e, and a
set of query variables, Y. In this case, however, our goal is to compute the
most likely assignment to Y given the evidence E = e, i.e.:

argmaxyPr(y,e)

where, in general, argmazx, f (x) represents the value of x for which f(x) is
maximal. Note that there might be more than one assignment that has the high-
est posterior probability. In this case, we can either decide that the MAP task
is to return the set of possible assignments, or to return an arbitrary member of
that set.

A special variant of this class of queries is the most probable explanation
(MPE) queries. An MPE query tries to find the most likely assignment to all
of the (non-evidence) variables, i.e., Y = X — E. MPE queries are some-
what easier than MAP queries, which are much harder to answer than the other
tasks; this is because MAP queries contain both summations and maximiza-

86 MANAGING AND MINING UNCERTAIN DATA

tions, thus combining the elements of both conditional probabilities queries
and MPE queries.

The simplest way to use the graphical model to answer any of these queries
is: (1) generate the joint probability distribution over all the variables, (2) con-
dition it using the evidence (generating another joint pdf), and then (3) sum
over the unneeded variables (in the case of a conditional probability query) or
search for the most likely entry (in the case of an MPE query). For example,
consider the example shown in Figure 4.2, and lets say we want to compute the
marginal probability distribution corresponding to income (I). This distribu-
tion can be obtained from the full joint distribution by summing out the rest of
the variables:

Pr(I) = Spapp Pr(I,L, A D,E)
= Ypapr fi(L)f2(A)f3(D)fs(E,A)f5(1, E, D)

However, this approach is not very satisfactory and is likely to be infeasi-
ble in most cases, since it results in an exponential space and computational
blowup that the graphical model representation was designed to avoid. In gen-
eral, the exact computation of either of the inference tasks is #P-complete.
However, many graphical models that arise in practice have certain proper-
ties that allow efficient probabilistic computation [59]. More specifically, the
problem can be solved in polynomial time for graphical models with bounded
tree-width [50].

Variable elimination (VE) [59, 19], also known as bucket elimination, is
an exact inference algorithm that has the ability to exploit this structure. In-
tuitively variable elimination specifies the order in which the variables are
summed out (eliminated) from the above expression; eliminating a variable
requires multiplying all factors that contain the variable, and then summing
out the variable. Say we chose the order: L, A, D, E, then the computation is
as follows (the expression evaluated in each step is underlined, and its result is
bold-faced in the next step):

Pr(l) = Xpapefi(L)f2(A)f3(D)fd(E,A)fs(1, E,D)
Yp(Epfs(1, E,D)f3(D) (Zaf2(A)fa(E,A) (Erfi(L))))
Ye(Xpfs(I, E,D)f3(D) (Eafe(A)fs(E,A)))

= Xp(Epfs(L, E,D)f3(D)) g1(E)
g g2(LE)g1(E)
= g3(I)
The order in which the variables are summed out is known as the elimination

order, and the cost of running VE depends on the choice of the elimination
order. Even though finding the optimal ordering is NP-hard [2] (this is closely

Graphical Models for Uncertain Data 87

related to the problem of finding the optimal triangulation of a graph), good
heuristics are available [7, 18].

Another popular algorithm for exact inference is the junction tree algo-
rithm [13, 30]. A junction tree is an efficient data structure for reusing work
for several inference queries on the same graph. Once a junction tree is con-
structed, we can provide exact answers to inference queries over any subset
of variables in the same clique by running the sum-product message passing
or belief propagation algorithms. The message passing algorithm runs in time
that is linear in the number of cliques in the tree and exponential in the size of
the largest clique in the tree (which is same as the tree-width of the model).

However, many real-life graphical models give rise to graphs with large
tree-widths, and the design of good approximation schemes in such cases is
an active topic of research in the statistics and probabilistic reasoning commu-
nities. The most commonly used techniques include methods based on belief
propagation (e.g. loopy belief propagation [42]), sampling-based techniques
(e.g. Gibbs sampling, particle filters [3, 38]) and variational approximation
methods [36] to name a few. We refer the reader to [35] for further details.

3. Representing Uncertainty using Graphical Models

We are now ready to define a probabilistic database in terms of a PGM. The
basic idea is to use random variables to depict the uncertain attribute values
and factors to represent the uncertainty and the correlations. Let R denote
a probabilistic relation or simply, relation, and let attr(R) denote the set of
attributes of R. A relation R consists of a set of probabilistic tuples or simply,
tuples, each of which is a mapping from attr(R) to random variables. Let
t.a denote the random variable corresponding to tuple ¢ € R and attribute
a € attr(R). Besides mapping each attribute to a random variable, every tuple
t is also associated with a boolean-valued random variable which captures the
existence uncertainty of ¢ and we denote this by ¢.e.

DEFINITION 3.1 A probabilistic database or simply, a database, D is a pair
(R, P) where R is a set of relations and P denotes a PGM defined over the
set of random variables associated with the tuples in R.

Figure 4.4(a) shows a small two-relation database that we use as a running
example. In this database, every tuple has an uncertain attribute (the B at-
tributes) and these are indicated in Figure 4.4(a) by specifying the probabili-
ties with which each attribute takes the assignments from its domain. In our
proposed framework, we represent this uncertainty by associating a random
variable with each of the uncertain attributes, and by using factors to capture
the corresponding probability distributions and correlations if present.

For instance, so.B can be assigned the value 1 with probability 0.6 and
the value 2 with probability 0.4 and we would represent this using the factor

88 MANAGING AND MINING UNCERTAIN DATA

ind ind
S[a B siB | filp 5B | [find ind
s1 [ar [{106,204 1 0.6 1 0.6 s1-B foos
sy | ag | {1:0.6,2: 0.4} 2 04 2 04
. ind
t.B ind .ftm.B
T B C 3 65B @ '

t1 {2: 0.5,3: 0.5} c

(a) (b) (c)

Figure 4.4. (a) A small database with uncertain attributes. For ease of exposition, we show
the marginal pdfs over the attribute values in the table; this information can be derived from
the factors. (b) Factors corresponding to the database assuming complete independence. (c)
Graphical representation of the factors.

fs, B shown in Figure 4.4(b). We show all three required factors f,, g(s1.B),
fs,.B(52.B) and f;, B(t1.B) in Figure 4.4(b). Here we assume that the at-
tributes are independent of each other. If, for instance, so.B and ¢;.B were
correlated, we would capture that using a factor f;, B s, B(t1.B, 52.B) (de-
tailed example below).

In addition to the random variables which denote uncertain attribute val-
ues, we can introduce tuple existence random variables s;.e, so.¢, and t;.e, to
capture tuple uncertainty. These are boolean-valued random variables and can
have associated factors. In Figure 4.4, we assume the tuples are certain, so we
don’t show the existence random variables for the base tuples.

3.1 Possible World Semantics

We now define the semantics for our formulation of a probabilistic database.
Let X denote the set of random variables associated with database D = (R, P).
Possible world semantics define a probabilistic database D as a probability dis-
tribution over deterministic databases (possible worlds) [14] each of which is
obtained by assigning X a joint assignment x € X xycxdom(X). The proba-
bility associated with the possible world obtained from the joint assignment x
is given by the distribution defined by the PGM P (Definition 2.3).

For the example shown in Figure 4.4, each possible world is obtained by
assigning all three random variables s1.B, so.B and ¢;.B assignments from
their respective domains. Since each of the attributes can take 2 values, there
are 22 = 8 possible worlds. Figure 4.5 shows all 8 possible worlds with the
corresponding probabilities listed under the column “prob.(ind.)” (indicating
the independence assumption). The probability associated with each possi-
ble world is obtained by multiplying the appropriate numbers returned by the
factors and normalizing if necessary. For instance, for the possible world ob-

Graphical Models for Uncertain Data 89

possible world prob prob. prob. prob.
(ind.) | (implies) | (diff.) | (pos.corr.)

Dy:S={(a1,1),(az2,1)} | 0.18 0.50 0.30 0.06
T={@20)}

Dy : S ={(a1,1),(az,1)} | 0.18 0.02 0.06 0.30
T={B,0)}

Ds: S ={(a1,1),(az,2)} | 0.12 0 0.20 0.04
T ={(209}

Dy :S={(a1,1),(az, 1)} | 0.12 0.08 0.04 0.20
T={B3,0)}

Ds: S ={(a1,2),(az,1)} | 0.12 0 0 0.24
T={(209}

D¢ : S ={(a1,2),(az,1)} | 0.12 0.08 0.24 0
T={3,0)}

Dy : S ={(a1,2),(az,2)} | 0.08 0 0 0.16
T={@20)}

Dg: S ={(a1,2),(az,2)} | 0.08 0.32 0.16 0
T={B3,0)}

Figure 4.5. Possible worlds for example in Figure 4.4(a) and three other different types of
correlations.

90 MANAGING AND MINING UNCERTAIN DATA

primelies (o) B 55 B, t1.B) = fFimplies (g B)fimelies (1) B, s B)fImREe (1B, 52.B)

~—JuB t1.B,s1.B t1.B,s2.B

0B | TR 0B B | GRS 0B wB | G,

2 05 2 I 1 2 T]

3 0.5 2 2 0 5 5 0
3 1 0.2 3 1 0.2
3 2 0.8 3 2 0.8

Figure 4.6. Factors for the probabilistic databases with “implies” correlations (we have omitted
the normalization constant Z because the numbers are such that distribution is already normal-
ized)

tained by the assignment s;.B = 1, so0.B = 2, t;.B = 2 (D3 in Figure 4.5)
the probability is 0.6 x 0.4 x 0.5 = 0.12.

Let us now try to modify our example to illustrate how to represent corre-
lations in a probabilistic database. In particular, we will try to construct three
different databases containing the following dependencies:

m implies: t1.B = 2 implies s1.B # 2 and s2.B # 2, in other words,
(tl.B = 2) — (Sl.B = 1) VAN (SQ.B = 1)

m different. t1B and s;.B cannot have the same assignment, in other
words, (1;.B=2) < (s;.B=1)or(s;.B=2) < (t;.B =3).

m positive correlation: High positive correlation between ¢;.B and s;.B —
if one is assigned 2 then the other is also assigned the same value with
high probability.

Figure 4.5 shows four distributions over the possible worlds that each satisfy
one of the above correlations (the columns are labeled with abbreviations of the
names of the correlations, e.g., the column for positive correlation is labeled
“pos. corr.”).

To represent the possible worlds of our example database with the new cor-
relations, we simply redefine the factors in the database appropriately. For
example, Figure 4.6 represents the factors for the first case (implies). In this
case, we use a factor on ¢1.B and s;.B to encode the correlation that (¢;.B =
2) = (s1.B = 1). Similarly, a factor on ¢;.B and s.B is used to encode
the other correlation.

Note that in Definition 3.1, we make no restrictions as to which random
variables appear as arguments in a factor. Thus, if the user wishes, she may de-
fine a factor containing random variables from the same tuple, different tuples,
tuples from different relations or tuple existence and attribute value random
variables; thus, in our formulation we can express any kind of correlation that
one might think of representing in a probabilistic database.

Graphical Models for Uncertain Data 91

id A B RV fid pos

_ pimplies

51| @ i fid | args probs t.B h {zﬁi“ 1

52 | 92 1 “2,053,0.5" tB | fo=fips.n | 1

fo | 2 | “2011:220.7 s1.B | fa=fEC L |2

id E C f3 | 2 | “21,1220.7 HWB | fs= ftl.fg?:; L1
_ pimplies

ty ¢ s2B | f3=fbarn | 2

(a) Base Tables (b) factors table (¢) factor-rvs table

Figure 4.7. Representing the factors from Figure 4.6 using a relational database; shared factors
can be represented by using an additional level of indirection.

3.2 Shared Factors

In many cases, the uncertainty in the data is defined using general statistics
that do not vary on a per-tuple basis, and this leads to significant duplication of
factors in the probabilistic database. For instance, when combining data from
different sources in a data integration scenario, the sources may be assigned
data quality values, which may be translated into tuple existence probabili-
ties [1]; all tuples from the same source are then expected to have the same
factor associated with them. If the uncertainties are derived from an attribute-
level joint probability distribution (as shown in our earlier example in Figure
4.1), then many of the factors are expected to be identical.

Another source of shared correlations in probabilistic databases is the query
evaluation approach itself. As we will see in the next section, while evaluat-
ing queries we first build an augmented PGM on the fly by introducing small
factors involving the base tuples and the intermediate tuples. For instance, if
tuples ¢ and ¢’ join to produce intermediate tuple 7, we introduce a factor that
encodes the correlation that r exists iff both ¢ and ¢ exist (an A-factor). More
importantly, such a factor is introduced whenever any pair of tuples join, thus
leading to repeated copies of the same A-factor.

We call such factors shared factors and explicitly capture them in our frame-
work; furthermore, our inference algorithms actively identify and exploit such
commonalities to reduce the query processing time [53].

3.3 Representing Probabilistic Relations

Earlier approaches represented probabilistic relations by storing uncertainty
with each tuple in isolation. This is inadequate for our purpose since the same
tuple can be involved in multiple factors, and the same factor can be associated
with different sets of random variables. This necessitates an approach where
the data and the uncertainty parts are stored separately. Figure 4.7 shows how
we store the factors and associate them with the tuples in our current prototype
implementation. We use an internal id attribute for each relation that is auto-
matically generated when tuples are inserted into the relation; this attribute is

92 MANAGING AND MINING UNCERTAIN DATA

used to identify the random variables corresponding to a tuple uniquely. We
use | to indicate uncertain attribute values (Figure 4.7(a)). Two additional ta-
bles are used to store the factors and their associations with the tuple variables:

m factors: This table stores a serialized representation of the factor along
with some auxiliary information such as the number of arguments.

m factor-rvs: This normalized relation stores the association between fac-
tors and random variables; the random variables can be of two types:
(1) attribute value random variables (e.g. t1.B), or (2) existence random
variables (e.g. t;1.e). Each row in this table indicates the participation
of a random variable in a factor. Since the table is normalized, we also
need to store the “position” of the random variable in the factor.

Note that this schema does not exploit shared factors (factors f» and f3 are
identical in the above example); they can be easily handled by adding one
additional table.

4. Query Evaluation over Uncertain Data

Having defined our representation scheme, we now move our discussion to
query evaluation. The main advantage of associating possible world seman-
tics with a probabilistic database is that it lends precise semantics to the query
evaluation problem. Given a user-submitted query ¢ (expressed in some stan-
dard query language such as relational algebra) and a database D, the result
of evaluating ¢ against D is defined to be the set of results obtained by evalu-
ating q against each possible world of D, augmented with the probabilities of
the possible worlds. Relating back to our earlier examples, suppose we want
to run the query ¢ = [[(S > T'). Figure 4.8(a) shows the set of results
obtained from each set of possible worlds, augmented by the corresponding
probabilities depending on which database we ran the query against.

Now, even though query evaluation under possible world semantics is clear
and intuitive, it is typically not feasible to evaluate a query directly using these
semantics. First and foremost among these issues is the size of the result. Since
the number of possible worlds is exponential in the number of random variables
in the database (to be more precise, it is equal to the product of the domain sizes
of all random variables), if every possible world returns a different result, the
result size itself will be very large. To get around this issue, it is traditional to
compress the result before returning it to the user. One way of doing this is to
collect all tuples from the set of results returned by possible world semantics
and return these along with the sum of probabilities of the possible worlds that
return the tuple as a result [14]. In Figure 4.8(a), there is only one tuple that is
returned as a result and this tuple is returned by possible worlds D3, D5 and

Graphical Models for Uncertain Data 93

possible | query | prob. prob. prob. prob.
world | result | (ind.) | (implies) | (diff.) | (pos.corr.)
Dy 0 0.18 0.50 0.30 0.06
Do 0 0.18 0.02 0.06 0.30
Ds {c} 0.12 0 0.20 0.04
Dy 0 0.12 0.08 0.04 0.20
D5 {c} 0.12 0 0 0.24
Dg 0 0.12 0.08 0.24 0
Dy {c} 0.08 0 0 0.16
Dg 0 0.08 0.32 0.16 0
(a)

query | Pr(D3) + Pr(Ds) + Pr(Dy)
result | ind. [implies | diff. | pos.corr.
(i} [032] 0 [020] 040 |

(b)

Figure 4.8. Results running the query [] (S ap T') on example probabilistic databases (Fig-
ures 4.4 and 4.5). The query returns a non-empty (and identical) result in possible worlds D3,
Ds, and D7, and the final result probability is obtained by adding up the probabilities of those
worlds.

94 MANAGING AND MINING UNCERTAIN DATA

D7 In Figure 4.8(b), we show the resulting probabilities obtained by summing
across these three possible worlds for each example database.

The second issue is related to the complexity of computing the results of a
query from these first principles. Since the number of possible worlds is very
large for any non-trivial probabilistic database, evaluating results directly by
enumerating all of its possible worlds is going to be infeasible.

To solve this problem, we first make the connection between computing
query results for a probabilistic database and the marginal probability compu-
tation problem for probabilistic graphical models.

DEFINITION 4.1 Given a PGM P = (F,X) and a random variable X €
X, the marginal probability associated with the assignment X = x, where
x € dom(X), is defined as p(x) = >, ., Pr(x), where Pr(x) denotes the
distribution defined by the PGM and x ~ x denotes a joint assignment to X
where X is assigned .

Since each possible world is obtained by a joint assignment to all random
variables in the probabilistic database, there is an intuitive connection between
computing marginal probabilities and computing result tuple probabilities by
summing over all possible worlds. In the rest of this section, we make this con-
nection more precise. We first show how to augment the PGM underlying the
database such that the augmented PGM contains random variables representing
result tuples. We can then express the probability computation associated with
evaluating the query as a standard marginal probability computation problem;
this allows us to use standard probabilistic inference algorithms to evaluate
queries over probabilistic databases.

We first present an example to illustrate the basic ideas underlying our ap-
proach to augmenting the PGM underlying the database given a query, after
that we discuss how to augment the PGM in the general case given any rela-
tional algebra query.

4.1 Example

Consider running the query [[(S g T') on the database presented in Fig-
ure 4.4(a). Our query evaluation approach is very similar to query evaluation
in traditional database systems and is depicted in Figure 4.9. Just as in tra-
ditional database query processing, in Figure 4.9, we introduce intermediates
tuples produced by the join (41 and i2) and produce a result tuple (1) from the
projection operation. What makes query processing for probabilistic databases
different from traditional database query processing is the fact that we need to
preserve the correlations among the random variables representing the inter-
mediate and result tuples and the random variables representing the tuples they
were produced from. In our example, there are three such correlations that we
need to take care of:

Graphical Models for Uncertain Data 95

S
S1
S2

T

al [{106,204}| t, [
a2 | {1:0.6,2:0.4}

B (o] f ind f ind f ind

A B C

at 2 c

a2 2 c
fite fize

:0.5,3:0.5)| ¢ 51-3 @ .8 523

N

S DT

'

T (ST
—_

fi1 eliy-€ 51.B, t1.B) ,'Qle(iz-e: $5.B, t1.B)
Cc
foq o(rq-€ i1.6, in.€)
ry o r1.el"1:% 11-% 2

fr1.e

Figure 4.9. Evaluating [[~(S m< T') on database in Figure 4.4(a).

m {; (produced by the join between s; and ;) exists or ¢;.e is t rue only in
those possible worlds where both s;1.B and ¢1.B are assigned the value

2.

s Similarly, i2.e is t rue only in those possible worlds where both s2.B
and ¢;.B are assigned the value 2.

s Finally, 71 (the result tuple produced by the projection) exists or r1.e is
true only in those possible worlds that produce at least one of i; or iy
or both.

To enforce these correlations, during query evaluation we introduce inter-
mediate factors defined over appropriate random variables. For our example,
we introduce the following three correlations:

e For the correlation among 7;.e, s1.B and ¢;.B we introduce the factor f;, .
which is defined as:

fire(it.e,51.B,t1.B) = {

1 ifi1es ((81.B == 2) VAN (tl.B == 2))
0 otherwise

e Similarly, for the correlation among 5.¢, s3.B and ¢1.B we introduce the
factor f;, . which is defined as:

fi2.e(i2.€, s2.B, tl.B)

1 ifiges ((SQ.B == 2) VAN (tl.B == 2))
0 otherwise

e For the correlation among rj.e, i;.e and i2.e, we introduce a factor f,, .
capturing the or semantics:

oo o(r1eriv.e, i.e) = {

1 ifri.e < (i1.e Vig.e)
0 otherwise

96 MANAGING AND MINING UNCERTAIN DATA

Figure 4.9 depicts the full run of the query along with the introduced factors.

Now, to compute the probability of existence of r; (which is what we did in
Figure 4.8 by enumerating over all possible worlds), we simply need to com-
pute the marginal probability associated with the assignment 71.e = true from
PGM formed by the set of factors in the base data and the factors introduced
during query evaluation. For instance, for the example where we assumed
complete independence among all uncertain attribute values (Figure 4.4(b))
our augmented PGM is given by the collection fs, B, fs,.B, ft,.B; fir.es fis.e
and f,, ., and to compute the marginal probability we can simply use any of
the exact inference algorithms available in the probabilistic reasoning literature
such as variable elimination [59, 19] or the junction tree algorithm [30].

4.2 Generating Factors during Query Evaluation

Query evaluation for general relational algebra also follows the same basic
ideas. In what follows, we modify the traditional relational algebra operators so
that they not only generate intermediate tuples but also introduce intermediate
factors which, combined with the factors on the base data, provide a PGM that
can then be used to compute marginal probabilities of the random variables
associated with result tuples of interest. We next describe the modified o, X,
1, 6, U, — and v (aggregation) operators where we use () to denote a special
“null” symbol.

Select: Let o.(R) denote the query we are interested in, where ¢ denotes the
predicate of the select operation. Every tuple ¢ € R can be jointly instanti-
ated with values from X ¢4, (r)ydom(t.a). If none of these instantiations
satisfy ¢ then ¢ does not give rise to any result tuple. If even a single in-
stantiation satisfies ¢, then we generate an intermediate tuple r that maps
attributes from R to random variables, besides being associated with a tu-
ple existence random variable r.e. We then introduce factors encoding the
correlations among the random variables for r and the random variables for
t. The first factor we introduce is f7., which encodes the correlations for
r.e:

L iftenc({t-atocaunr(r)) © 1€
0 otherwise

fﬁe(r’ev t.e, {t'a}aeattr(R)) = {

where c({t.a}qcattrr) is true if a joint assignment to the attribute value
random variables of ¢ satisfies the predicate ¢ and false otherwise.

We also introduce a factor for r.a, Va € attr(R) (where dom(r.A) =
dom(t.A)), denoted by f7,. f7, takes t.a,r.e and r.a as arguments and

Graphical Models for Uncertain Data 97

can be defined as:

1 ifreA (t.a==r.a)
Cu(ra,reta) =< 1 ifTeA (ra==10)
0 otherwise

Cartesian Product: Suppose R; and Rj are the two relations involved in the
Cartesian product operation. Let r denote the join result of two tuples ¢1 €
R; and t € Ry. Thus r maps every attribute from attr(R;) U attr(Rz) to
a random variable, besides being associated with a tuple existence random
variable r.e. The factor for r.e, denoted by f,., takes ¢;.e, ta.e and r.e as
arguments, and is defined as:

1 ift1.eNtresre
X —
Tre(retie,tac) = { 0 otherwise
We also introduce a factor f,*, for each a € attr(R;) U attr(Rz), and this
is defined exactly in the same fashion as fZ,. Basically, for a € attr(R;)
(a € attr(Ry)), it returns 1 if r.e A (t1.a == r.a) (r.e A (ta.a == r.a))
holds or if 7€ A (r.a == () holds, and 0 otherwise.

Project (without duplicate elimination): Let][, (R) denote the operation we
are interested in where a C attr(R) denotes the set of attributes we want
to project onto. Let r denote the result of projecting ¢ € R. Thus r maps
each attribute ¢ € a to a random variable, besides being associated with

r.e. The factor for r.e, denoted by f}l, takes t.e and 7.e as arguments, and
is defined as follows:

fl(re, te) = {

1 iftesre
0 otherwise

Each factor f,l,_!l, introduced for 7.a, Va € a, is defined exactly as f7,, in
other words, fﬂl(r.a,r.e,t.a) = fZ,(r.a,r.e,ta).

Duplicate Elimination: Duplicate elimination is a slightly more complex op-
eration because it can give rise to multiple intermediate tuples even if there
was only one input tuple to begin with. Let R denote the relation from
which we want to eliminate duplicates, then the resulting relation after du-
plicate elimination will contain tuples whose existence is uncertain, more
precisely the resulting tuples’ attribute values are known. Any element
from (J,cp % acattr(r)dom(t.a) may correspond to the values of a possible
result tuple. Let r denote any such result tuple whose attribute values are
known, only r.e is not t rue with certainty. Denote by r, the value of at-
tribute @ in . We only need to introduce the factor f2_ for r.e. To do this

98 MANAGING AND MINING UNCERTAIN DATA

we compute the set of tuples from R that may give rise to . Any tuple ¢
that satisfies A\ ¢ ur(r)(Ta € dom(t.a)) may give rise to r. Let y; be an
intermediate random variable with dom(y;) = {true, false} such that
yi is true iff ¢ gives rise to r and false otherwise. This is easily done by
introducing a factor fgir that takes {t.a}qcqstr(R)> t-€ and y; as arguments
and is defined as:

5 1 iften N\ (ta==1,) Syl
fy;'(ygv {t'a}aEQttr(R)7t‘e) - { 0 otherwisea ’

where {t.a},cqtr(r) denotes all attribute value random variables of t. We
can then define f7_ in terms of y]. f, takes as arguments {y} };c7,, where
T, denotes the set of tuples that may give rise to 7 (contains the assignment
{ra}acattr(r) i its joint domain), and r.e, and is defined as:

3 '
e uhen) ={ § Bplien T

Union and set difference: These operators require set semantics. Let R; and
Ry denote the relations on which we want to apply one of these two opera-
tors, either Ry U Ry or Ry — Ro. We will assume that both Ry and R are
sets of tuples such that every tuple contained in them have their attribute
values fixed and the only uncertainty associated with these tuples are with
their existence (if not then we can apply a d operation to convert them to
this form). Now, consider result tuple r and sets of tuples 7}, containing
all tuples from R; that match r’s attribute values, and Tf, containing all
tuples from R that match r’s attribute values. The required factors for r.e
can now be defined as follows:

1 if (\V,equ 2 te) & e
@] _ TrUT,
e teben (trehuer) = { el

f;e('f’.e, {tl 'e}t1 €T} {t2'e}t26Tr2)

_ 1 if((\/teT} t.e) A _\(\/teTTQ t.e)) < re
0 otherwise

Aggregation operators: Aggregation operators are also easily handled using
factors. Suppose we want to compute the sum aggregate on attribute a of
relation R, then we simply define a random variable r.a for the result and
introduce a factor that takes as arguments {t.a}teattr(r) and r.a, and define
the factor so that it returns 1 if 7.a == (3, t.a) and 0 otherwise. Thus
for any aggregate operator v and result tuple random variable r.a, we can

Graphical Models for Uncertain Data 99

J | A | B | factors

Ju|m | 1L} fi Evaluating 7p((J x K) x L))

Jo|m| 2 bil 3 2 ;

K | B | C | factors m 7 @ Z o

ki | 1|p f2

k2 1 q f2 X X X f

ks |2 1p| f3 f f i 4

kol2]a] fo () (ige) (1)
{m, 1, p} {m, 1, q} {m, 2, p} {m, 2, q} {p, a}

L | C | D | factors /

THRAE @G

r|a I {m 1.p, @} {m 2.p,a

ls|r|pB fe

Iy | | B I

Is | |~ I8

l6 r (6 fg

Figure 4.10. An example query evaluation over a 3-relation database with only tuple uncer-
tainty but many correlations (tuples associated with the same factor are correlated with each
other). The intermediate tuples are shown alongside the corresponding random variables. Tu-
ples lo, ..., ls do not participate in the query.

define the following factor:

1 ifr.a == yeprt.a

Ja(ra,{taher) = 1 if(ra==0)< A\cplta==10)
0 otherwise

4.3 Query Evaluation as Inference

Given a query and a probabilistic database (and the corresponding PGM),
we can use the procedures described in the previous section to construct an
augmented PGM that contains random variables corresponding to the result
tuples. Computing the result probabilities is simply a matter of evaluating
marginal probability queries over this PGM. We can use any standard exact
or approximate inference algorithm developed in the probabilistic reasoning
community for this purpose, depending on our requirements of accuracy and
speed. Note that the resulting PGM, and hence the complexity of inference,
will depend on the query plan used for executing the query. We revisit this
issue in Section 5.

Figure 4.10 shows the PGM generated when evaluating a multi-way join
query over 3 relations; computing the result tuple probability is equivalent to

100 MANAGING AND MINING UNCERTAIN DATA

Ib..e rz.cauntl prob

false 0 1
false 1 0
false 2 0
true 0 0

Figure 4.11. PGM constructed for evaluation of countG(0p=a (L)) over the probabilistic
database from Figure 4.10. By exploiting decomposability of count, we can limit the maximum
size of the newly introduced factors to 3 (the naive implementation would have constructed a
S-variable factor).

computing the marginal probability distribution over the random variable 7.e.
Similarly, Figure 4.11 shows the PGM constructed in response to an aggregate
query (details below).

4.4 Optimizations

For the above operator modifications, we have attempted to be completely
general and hence the factors introduced may look slightly more complicated
than need be. For example, it is not necessary that f7 take as arguments all
random variables {t.a},cqutr(r) (as defined above), it only needs to take those
t.a random variables as arguments which are involved in the predicate ¢ of
the o operation. Also, given a theta-join we do not need to implement this
as a Cartesian product followed by a select operation. It is straightforward to
push the select operation into the Cartesian product factors and implement the
theta-join directly by modifying f,, appropriately using c.

Another type of optimization that is extremely useful for aggregate compu-
tation, duplicate elimination and the set-theoretic operations (U and —) is to
exploit decomposable functions. A decomposable function is one whose re-
sult does not depend on the order in which the inputs are presented to it. For
instance, V is a decomposable function, and so are most of the aggregation op-
erators including sum, count, max and min. The problem with some of the
redefined relational algebra operators is that, if implemented naively, they may
lead to large intermediate factors. For instance, while running a § operation, if
T, contains n tuples for some r, then the factor f,f . will be of size 2" 1. By ex-
ploiting decomposability of V we can implement the same factor using a linear

Graphical Models for Uncertain Data 101

number of constant sized (3-argument) factors which may lead to significant
speedups. We refer the interested reader to [50, 60] for more details. The only
aggregation operator that is not decomposable is avg, but even in this case we
can exploit the same ideas by implementing avg in terms of sum and count
both of which are decomposable. Figure 4.11 shows the PGM constructed for
an example aggregate query over the database from Figure 4.10.

Finally, one of the key ways we can reduce the complexity of query eval-
uation is by exploiting recurring (shared) factors. In recent work [53], we
developed a general-purpose inference algorithm that can exploit such shared
factors. Our algorithm identifies and exploits the symmetry present in the aug-
mented PGM to significantly speed up query evaluation in most cases. We
omit the details due to space constraints and refer the reader to [53] for further
details.

5. Related Work and Discussion

Next we briefly discuss some of the closely related concepts in query eval-
uation over probabilistic databases, namely safe plans and lineage. We then
briefly discuss the relationship of our approach to probabilistic relational mod-
els, lifted inference, and scalable inference using databases. We believe most
of these represent rich opportunities for future research.

5.1 Safe Plans

One of the key results in query evaluation over probabilistic databases is the
dichotomy of conjunctive query evaluation on tuple-independent probabilistic
databases by Dalvi and Suciu [14, 15]. Briefly the result states that the com-
plexity of evaluating a conjunctive query over tuple-independent probabilistic
databases is either PTIME or #P-complete. For the former case, Dalvi and Su-
ciu [14] also present an algorithm to find what are called safe query plans, that
permit correct extensional evaluation of the query. We relate the notion of safe
plans to our approach through the following theorem:

THEOREM 5.1 When executing a query over a tuple-independent probabilis-
tic database using a safe query plan, the resulting probabilistic graphical
model is tree-structured (for which inference can be done in PTIME).

Note that the dichotomy result presented in [15] reflects a worst-case sce-
nario over all possible instances of a probabilistic database. In other words,
even if a query does not have safe plan, for a specific probabilistic database
instance, query evaluation may still be reasonably efficient. Our approach can
easily capture this because in such cases the resulting PGM will either be tree-
structured or have low tree-width, thus allowing us to execute the query effi-
ciently. One of the important open problems in this area is developing algo-

102 MANAGING AND MINING UNCERTAIN DATA

rithms for identifying query plans that result in PGMs with low tree-widths for
a given probabilistic database and a given query.

5.2 Representing Uncertainty using Lineage

Several works [26, 58, 6, 48, 49] have proposed using explicit boolean for-
mulas to capture the relationship between the base tuples and the intermediate
tuples. In the Trio system [58, 6], such formulas are called /ineage, and are
computed during the query evaluation. The result tuple probabilities are then
computed on demand by evaluating the lineage formulas. In recent work, Re
et al. [49] presented techniques for approximate compression of such lineage
formulas for more efficient storage and query evaluation.

The PGM constructed in our approach can be thought of as a generaliza-
tion of such boolean formulas, since the PGM can represent more complex
relationships than can be captured using a boolean formula. Further, the PGM
naturally captures common subexpressions between the lineage formulas cor-
responding to different result tuples, and avoids re-computation during the in-
ference process. Evaluation of boolean formulas can be seen as a special case
of probabilistic inference, and thus techniques from exact or approximate in-
ference literature can be directly applied to evaluating the lineage formulas
as well. However lineage formula evaluation admits efficient approximation
schemes (e.g. based on polynomial approximation [49]) that may not translate
to general probabilistic graphical models.

5.3 Probabilistic Relational Models

Probabilistic relational models (PRMs) [25, 27] extend Bayesian networks
with the concepts of objects, their properties and relations between them. In a
way, they are to Bayesian networks as relational logic is to propositional logic.
PRMs can also be thought of as a generalization of the probabilistic database
framework that we presented in this chapter, and extending our approach to
transparently and efficiently handle a PRM-based model is one of the important
research directions that we plan to pursue in future. We begin with illustrating
PRMs using a simple example, and then discuss the challenges in integrating
them with our approach.

A PRM contains a relational component that describes the relational schema
of the domain, and a probabilistic component that captures the probabilistic
dependencies that hold in the domain. Figure 4.12 shows a simple example
PRM over a relational schema containing three relations, Author, Paper, and
Review. For simplicity the relationship AuthorOf'is modeled as many-to-one
(with a single author per paper), whereas the relationship Reviewed is many-
to-many. Along with the relational schema, a PRM specifies a probabilistic
model over the attributes of the relations. A key difference between Bayesian

Graphical Models for Uncertain Data 103

Author Review Author BReview
Good Writer Mood

Smart Length
Q. M, A)=pr(AlQ.M)
Q M A

@

Paper . pr(A,Q,M),

Paper @A / ' false false true | 01 !
Quality ! false false false 0.9 .
Accepted @ s|z - .. false true true 0.2 '
T~ . false true false 0.8 '

.
.
'

(a) A Relational Schama (b) A Probabilistic Relational Network

Figure 4.12. A probabilistic relational model defined over an example relational schema. Sim-
ilar to Bayesian networks, the model parameters consist of conditional probability distributions
for each node given its parents.

networks and PRMs is that an attribute in one relation may depend on an at-
tribute in another relation. For example, the quality of a paper may depend on
the properties of the author (as shown in the figure).

When defining a dependence across a many-to-one relationship, a mecha-
nism to aggregate the attribute values must be specified as well. For instance,
the accepted attribute for a paper is modeled as dependent on the mood at-
tribute from the review relation. However a single paper may have multiple
reviews, and we must somehow combine the values of mood attribute from
those reviews; the example PRM uses the MODE of the attribute values for
this purpose.

Now, given a relational skeleton that specifies the primary keys and for-
eign keys for the tuples, the PRM defines a probability distribution over the
attributes of the tuples. Figure 4.13 shows an example of this, with two papers
with keys PI and P2, both by the author 4/. The PRM then specifies a joint
probability distribution over the random variables as shown in the figure. If the
skeleton also specifies the values of some of the attributes, those can be treated
as evidence in a straightforward way.

PRMs can also capture uncertainty in the link structure (i.e., the key-foreign
key dependencies). We refer the reader to [27] for more details.

Conceptually it is straightforward to extend our probabilistic model to allow
the dependences to be defined using a PRM (shared factors is one step in that
direction); the real challenge is doing inference over such models (see below).
We are planning to explore closer integration between these two areas in the
future.

104 MANAGING AND MINING UNCERTAIN DATA

Review R3 @ Review R1 l

Figure 4.13. An instance of the example PRM with two papers: P1, P2, with the same author
Al. For P1, we use an explicit random variable for representing the mode of R1.M and R2.M.
No such variable is needed for P2 since it only has one review.

5.4 Lifted Inference

Many first-order machine learning models such as PRMs allow defining
rich, compact probability distributions over large collections of random vari-
ables. Inference over such models can be tricky, and the initial approaches to
inference involved grounding out the graphical model by explicitly creating
random variables (as shown in Figure 4.13) and then using standard inference
algorithms. This can however result in very large graphical models, and can in-
volve much redundant inference (since most of the factors are shared). Lifted
inference techniques aim to address this situation by avoiding propositional-
ization (grounding) as much as possible [45, 46, 17, 55, 41, 53]. Most of
this work assumes that the input is a first-order probabilistic model (such as
a PRM). Poole [46] presents a modified version of the variable elimination
algorithm [59] for this purpose. Braz et al. [17] and Milch et al. [41] present
algorithms that look for specific types of structures in the first-order model, and
exploit these for efficient inference. Singla et al. [55] develop a modified loopy
belief propagation algorithm (for approximate inference) for lifted inference.

As discussed above, in our recent work [53], we developed a general-purpose
lifted inference algorithm for probabilistic query evaluation. Our algorithm
however does not operate on the first-order representation, and we are cur-
rently working on combining our approach with the techniques developed in
the lifted inference literature.

5.5 Scalable Inference using a Relational Database

Finally a very related but at the same time fundamentally different problem
is that of expressing inference tasks as database queries. Consider the Bayesian

Graphical Models for Uncertain Data 105

network shown in Figure 4.2, and consider the (inference) task of finding the
marginal probability distribution over income (I). As seen before, this can be
written as:

Pr(I) =Y apE fi(L)f2(A)fs(D)fs(E, A)fs(I, E, D)

If the factors (CPDs) become very large, we might choose to store them as
relations in a database (called functional relations by Bravo et al. [9]). For
example, the relations corresponding to f; and f5 may have schemas FI(L,
prob), and F5(I, E, D, prob) respectively. Then this inference task can be
written as an SQL query as follows:

select I, sum(F1.prob * F2.prob * F3.prob * F4.prob * F5.prob)
from F1 join F2 join F3 join F4 join F5
group by I

This approach not only enables easy and persistent maintenance of Bayesian
networks, but can also enable significant performance optimizations (we refer
the reader to Bravo et al. [9] for a more detailed discussion).

However note that this approach is only suitable when the number of random
variables is small (i.e. the size of the network is small), since each factor must
be stored as a separate relation. The number of uncertain facts in a probabilistic
database is likely to be very large and continuously changing, and storing each
factor as a different relation would be infeasible in those cases. Second, the
main “query/inference” tasks that need to be supported in the two scenarios
are quite different. In probabilistic databases, the SQL queries operate on the
values of the random variables, concatenating or aggregating them, whereas
inference in Bayesian networks is typically concerned with marginalization
and conditioning. Supporting both types of tasks in a unified manner remains
one of the most important open problems in this area.

6. Conclusions

Graphical models are a versatile tool that have been applied to many database
problems such as selectivity estimation [28, 21, 43, 31], sensor network data
management [23], information extraction [12, 51], data integration [54, 29] to
name a few. In this chapter, we presented a simple and intuitive framework for
managing large-scale uncertain data using graphical models, that allows us to
capture complex uncertainties and correlations in the data in a uniform manner.
We showed how the problem of query evaluation in uncertain databases can be
seen to be equivalent to probabilistic inference in an appropriately constructed
graphical model. This equivalence enables us to employ the formidable ma-
chinery developed in the probabilistic reasoning literature over the years for
answering queries over probabilistic databases. We believe it will also lead to

106 MANAGING AND MINING UNCERTAIN DATA

a deeper understanding of how to devise more efficient inference algorithms
for large-scale, structured probabilistic models.

Acknowledgments

This work was supported in part by the National Science Foundation un-
der Grants No. 0438866 and 0546136. We thank Sunita Sarawagi who co-
presented a tutorial on graphical models at VLDB 2007 with one of the authors,
and Brian Milch for stimulating discussions regarding lifted inference.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

Periklis Andritsos, Ariel Fuxman, and Renee J. Miller. Clean answers
over dirty databases. In International Conference on Data Engineering
(ICDE), 2006.

Stefan Arnborg. Efficient algorithms for combinatorial problems on
graphs with bounded decomposability - a survey. BIT Numerical Mathe-
matics, 1985.

Sanjeev Arulampalam, Simon Maskell, Neil Gordon, and Tim Clapp. A
tutorial on particle filters for on-line non-linear/non-gaussian Bayesian
tracking. IEEE Transactions of Signal Processing, 50(2), 2002.

Daniel Barbara, Hector Garcia-Molina, and Daryl Porter. The manage-
ment of probabilistic data. /IEEE Transactions on Knowledge and Data
Engineering, 1992.

Catriel Beeri, Ronald Fagin, David Maier, and Mihalis Yannakakis. On
the desirability of acyclic database schemes. J. ACM, 30(3):479-513,
1983.

Omar Benjelloun, Anish Das Sarma, Alon Halevy, and Jennifer Widom.
ULDBs: Databases with uncertainty and lineage. In International Con-
ference on Very Large Data Bases (VLDB), 2006.

Umberto Bertele and Francesco Brioschi. Nonserial Dynamic Program-
ming. Academic Press, New York, 1972.

Jihad Boulos, Nilesh Dalvi, Bhushan Mandhani, Chris Re, Shobhit
Mathur, and Dan Suciu. Mystiq: A system for finding more answers
by using probabilities. In ACM SIGMOD International conference on
Management of Data, 2005.

Héctor Corrada Bravo and Raghu Ramakrishnan. Optimizing MPF
queries: decision support and probabilistic inference. In ACM SIGMOD
International conference on Management of Data, pages 701-712, 2007.

108 MANAGING AND MINING UNCERTAIN DATA

[10] Roger Cavallo and Michael Pittarelli. The theory of probabilistic
databases. In International Conference on Very Large Data Bases
(VLDB), 1987.

[11] Reynold Cheng, Dmitri Kalashnikov, and Sunil Prabhakar. Evaluating
probabilistic queries over imprecise data. In ACM SIGMOD International
conference on Management of Data, 2003.

[12] William W. Cohen and Sunita Sarawagi. Exploiting dictionaries in named
entity extraction: Combining semi-markov extraction processes and data
integration methods. In SIGKDD, 2004.

[13] Robert G. Cowell, A. Philip Dawid, Steffen L. Lauritzen, and David J.
Spiegelhater. Probabilistic Networks and Expert Systems. Springer, 1999,

[14] Nilesh Dalvi and Dan Suciu. Efficient query evaluation on probabilis-
tic databases. In International Conference on Very Large Data Bases
(VLDB), 2004.

[15] Nilesh Dalvi and Dan Suciu. Management of probabilistic data: Founda-
tions and challenges. In PODS, 2007.

[16] Anish Das Sarma, Omar Benjelloun, Alon Halevy, and Jennifer Widom.
Working models for uncertain data. In International Conference on Data
Engineering (ICDE), 2006.

[17] Rodrigo de Salvo Braz, Eyal Amir, and Dan Roth. Lifted first-order prob-
abilistic inference. In International Joint Conferences on Artificial Intel-
ligence (IJCAI), 2005.

[18] Rina Dechter. Constraint networks. Encyclopedia of Artificial Intelli-
gence, 1992.

[19] Rina Dechter. Bucket elimination: A unifying framework for probabilis-
tic inference. In Uncertainty in Artificial Intelligence (UAI), 1996.

[20] Amol Deshpande, Minos Garofalakis, and Michael Jordan. Efficient step-
wise selection in decomposable models. In Proceedings of the 17th An-
nual Conference on Uncertainty in Artificial Intelligence (UAI), pages
128-135, 2001.

[21] Amol Deshpande, Minos Garofalakis, and Rajeev Rastogi. Independence
is Good: Dependency-Based Histogram Synopses for High-Dimensional
Data. In ACM SIGMOD International conference on Management of
Data, 2001.

REFERENCES 109

[22] Amol Deshpande, Carlos Guestrin, Sam Madden, Joseph M. Hellerstein,
and Wei Hong. Model-driven data acquisition in sensor networks. In
International Conference on Very Large Data Bases (VLDB), 2004.

[23] Amol Deshpande, Carlos Guestrin, and Samuel Madden. Using proba-
bilistic models for data management in acquisitional environments. In
Conference on Innovative Data Systems Research (CIDR), 2005.

[24] Debabrata Dey and Sumit Sarkar. A probabilistic relational model and
algebra. ACM Transactions on Database Systems (TODS), 1996.

[25] Nir Friedman, Lise Getoor, Daphne Koller, and Avi Pfeffer. Learning
probabilistic relational models. In International Joint Conferences on
Artificial Intelligence (IJCAI), 1999.

[26] Norbert Fuhr and Thomas Rolleke. A probabilistic relational algebra
for the integration of information retrieval and database systems. ACM
Transactions on Information Systems (TODS), 1997.

[27] Lise Getoor and Ben Taskar, editors. Introduction to Statistical Relational
Learning. MIT Press, Cambridge, MA, USA, 2007.

[28] Lise Getoor, Ben Taskar, and Daphne Koller. Selectivity estimation us-
ing probabilistic models. In ACM SIGMOD International conference on
Management of Data, 2001.

[29] Rahul Gupta and Sunita Sarawagi. Creating probabilistic databases from
information extraction models. In International Conference on Very
Large Data Bases (VLDB), 2006.

[30] Cecil Huang and Adnan Darwiche. Inference in belief networks: A pro-
cedural guide. International Journal of Approximate Reasoning, 1994.

[31] Ihab F. Ilyas, Volker Markl, Peter Haas, Paul Brown, and Ashraf Aboul-
naga. Cords: automatic discovery of correlations and soft functional de-
pendencies. In SIGMOD, 2004.

[32] Tomasz Imielinski and Witold Lipski, Jr. Incomplete information in rela-
tional databases. Journal of the ACM, 1984.

[33] Tommi Jaakkola and Michael 1. Jordan. Variational probabilistic infer-
ence and the QMR-DT network. Journal of Artificial Intelligence Re-
search, 10:291-322,1999.

[34] T. S. Jayram, Rajasekar Krishnamurthy, Sriram Raghavan, Shivakumar
Vaithyanathan, and Huaiyu Zhu. Avatar information extraction system.
In IEEE Data Engineering Bulletin, 2006.

110 MANAGING AND MINING UNCERTAIN DATA

[35] Michael 1. Jordan, editor. Learning in graphical models. MIT Press,
Cambridge, MA, USA, 1999.

[36] Michael 1. Jordan, Zoubin Ghahramani, Tommi S. Jaakkola, and
Lawrence K. Saul. An introduction to variational methods for graphi-
cal models. Machine Learning, 1999.

[37] Rudolph E. Kalman. A new approach to linear filtering and prediction
problems. Transactions of the ASME—Journal of Basic Engineering,
82(Series D):35-45, 1960.

[38] Bhargav Kanagal and Amol Deshpande. Online filtering, smoothing and
probabilistic modeling of streaming data. In /CDE, 2008.

[39] Laks V. S. Lakshmanan, Nicola Leone, Robert Ross, and V. S. Subrah-
manian. Probview: a flexible probabilistic database system. ACM Trans-
actions on Database Systems (TODS), 1997.

[40] Blackford Middleton, Michael Shwe, David Heckerman, Max Henrion,
Eric Horvitz, Harold Lehmann, and Gregory Cooper. Probabilistic diag-
nosis using a reformulation of the internist-1/qmr knowledge base. Meth-
ods of Information in Medicine, 30:241-255, 1991.

[41] Brian Milch, Luke Zettlemoyer, Kristian Kersting, Michael Haimes, and
Leslie Kaelbling. Lifted probabilistic inference with counting formu-
las. In Association for the Advancement of Artificial Intelligence (AAAI),
2008.

[42] Kevin P. Murphy, Yair Weiss, and Michael I. Jordan. Loopy belief prop-
agation for approximate inference: An empirical study. In Uncertainty in
Artificial Intelligence (UAI), pages 467—475, 1999.

[43] Dmitry Pavlov, Heikki Mannila, and Padhraic Smyth. Beyond indepen-
dence: Probabilistic models for query approximation on binary transac-
tion data. /EEE TKDE, 2003.

[44] Judaea Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan
Kaufmann, 1988.

[45] Avi Pfeffer, Daphne Koller, Brian Milch, and Ken Takusagawa. SPOOK:
A system for probabilistic object-oriented knowledge representation. In
Uncertainty in Artificial Intelligence (UAI), 1999.

[46] David Poole. First-order probabilistic inference. In International Joint
Conferences on Artificial Intelligence (IJCAI), 2003.

REFERENCES 111

[47] Lawrence R. Rabiner. A tutorial on hidden Markov models and se-
lected applications in speech recognition. In Proceedings of the IEEFE,
77(2):257-286, 1989.

[48] Chris Re, Nilesh Dalvi, and Dan Suciu. Efficient top-k query evaluation
on probabilistic data. In International Conference on Data Engineering
(ICDE), 2007.

[49] Chris Re and Dan Suciu. Approximate lineage for probabilistic
databases. In International Conference on Very Large Data Bases
(VLDB), 2008.

[50] Irina Rish. Efficient Reasoning in Graphical Models. PhD thesis, Uni-
versity of California, Irvine, 1999.

[51] Sunita Sarawagi. Efficient inference on sequence segmentation models.
In ICML, 2006.

[52] Prithviraj Sen and Amol Deshpande. Representing and querying corre-
lated tuples in probabilistic databases. In International Conference on
Data Engineering (ICDE), 2007.

[53] Prithviraj Sen, Amol Deshpande, and Lise Getoor. Exploiting shared
correlations in probabilistic databases. In International Conference on
Very Large Data Bases (VLDB), 2008.

[54] Parag Singla and Pedro Domingos. Multi-relational record linkage. In
Proceedings of 3rd Workshop on Multi-Relational Data Mining at ACM
SIGKDD, Seattle, WA, 2004.

[55] Parag Singla and Pedro Domingos. Lifted first-order belief propaga-
tion. In Association for the Advancement of Artificial Intelligence (AAAI),
2008.

[56] Padhraic Smyth. Belief networks, hidden Markov models, and Markov
random fields: a unifying view. Pattern Recognition Letters, 18(11-13),
1997.

[57] Greg Welch and Gary Bishop. An introduction to Kalman filter. http:
//www.cs.unc.edu/~welch/kalman/kalmanIntro.html,
2002.

[58] Jennifer Widom. Trio: A system for integrated management of data, ac-
curacy, and lineage. In Conference on Innovative Data Systems Research
(CIDR), 2005.

112 MANAGING AND MINING UNCERTAIN DATA

[59] Nevin Lianwen Zhang and David Poole. A simple approach to Bayesian
network computations. In Canadian Conference on Artificial Intelli-
gence, 1994.

[60] Nevin Lianwen Zhang and David Poole. Exploiting causal indepen-
dence in Bayesian network inference. Journal of Artificial Intelligence
Research, 1996.

Chapter 5

TRIO: ASYSTEM FORDATA, UNCERTAINTY, AND
LINEAGE

Jennifer Widom

Dept. of Computer Science
Stanford University

widom@cs.stanford.edu

Abstract

This chapter covers the Trio database management system. Trio is a robust
prototype that supports uncertain data and data lineage, along with the standard
features of a relational DBMS. Trio’s new ULDB data model is an extension
to the relational model capturing various types of uncertainty along with data
lineage, and its 7riQL query language extends SQL with a new semantics for
uncertain data and new constructs for querying uncertainty and lineage. Trio’s
data model and query language are implemented as a translation-based layer on
top of a conventional relational DBMS, with some stored procedures for func-
tionality and increased efficiency. Trio provides both an API and a full-featured
graphical user interface.

Acknowledgments. Contributors to the Trio project over the years include
(alphabetically) Parag Agrawal, Omar Benjelloun, Ashok Chandra, Julien Chau-
mond, Anish Das Sarma, Alon Halevy, Chris Hayworth, Ander de Keijzer,
Raghotham Murthy, Michi Mutsuzaki, Tomoe Sugihara, Martin Theobald, and
Jeffrey Ullman. Funding has been provided by the National Science Foundation
and the Boeing and Hewlett-Packard Corporations.

Keywords: Uncertainty, Trio, ULDB, Lineage

Introduction

Trio is a new kind of database management system (DBMS): one in which
data, uncertainty of the data, and data lineage are all first-class citizens. Com-

114 MANAGING AND MINING UNCERTAIN DATA

bining data, uncertainty, and lineage yields a data management platform that
is useful for data integration, data cleaning, information extraction systems,
scientific and sensor data management, approximate and hypothetical query
processing, and other modern applications.

The databases managed by Trio are called ULDBs, for Uncertainty-Lineage
Databases. ULDBs extend the standard relational model. Queries are ex-
pressed using TriQL (pronounced “treacle”), a strict extension to SQL. We
have built a robust prototype system that supports a substantial fraction of the
TriQL language over arbitrary ULDBs. The remainder of this Introduction
briefly motivates the ULDB data model, the TriQL language, and the proto-
type system. Details are then elaborated in the rest of the chapter.

Examples in this chapter are based on a highly simplified “crime-solver”
application, starting with two base tables:

m Saw(witness,color, car) contains (possibly uncertain) crime ve-
hicle sightings.

m Drives (driver,color, car) contains (possibly uncertain) infor-
mation about cars driven.

We will derive additional tables by posing queries over these tables.

The ULDB Data Model. Uncertainty is captured by tuples that may include
several alternative possible values for some (or all) of their attributes, with
optional confidence values associated with each alternative. For example, if
a witness saw a vehicle that was a blue Honda with confidence 0.5, a red
Toyota with confidence 0.3, or a blue Mazda with confidence 0.2, the sight-
ing yields one tuple in table Saw with three alternative values for attributes
color, car. Furthermore, the presence of tuples may be uncertain, again
with optionally specified confidence. For example, another witness may have
0.6 confidence that she saw a crime vehicle, but if she saw one it was definitely
a red Mazda. Based on alternative values and confidences, each ULDB repre-
sents multiple possible-instances (sometimes called possible-worlds), where a
possible-instance is a regular relational database.

Lineage, sometimes called provenance, associates with a data item infor-
mation about its derivation. Broadly, lineage may be internal, referring to
data within the ULDB, or external, referring to data outside the ULDB, or to
other data-producing entities such as programs or devices. As a simple exam-
ple of internal lineage, we may generate a table Suspects by joining tables
Saw and Drives on attributes color, car. Lineage associated with a value
in Suspects identifies the Saw and Drives values from which it was de-
rived. A useful feature of internal lineage is that the confidence of a value in
Suspects can be computed from the confidence of the data in its lincage
(Section 4). If we generate further tables—HighSuspects, say—by issu-

Trio: A System for Data, Uncertainty, and Lineage 115

ing queries involving Suspects (perhaps together with other data), we get
transitive lineage information: data in HighSuspects is derived from data
in Suspects, which in turn is derived from data in Saw and Drives. Trio
supports arbitrarily complex layers of internal lincage.

As an example of external lineage, table Drives may be populated from
various car registration databases, and lineage can be used to connect the data
to its original source. Although Trio supports some preliminary features for
external lineage, this chapter describes internal lineage only.

The TriQL Query Language. Section 1.5 specifies a precise generic seman-
tics for any relational query over a ULDB, and Section 2 provides an opera-
tional description of Trio’s SQL-based query language that conforms to the
generic semantics. Intuitively, the result of a relational query @@ on a ULDB
U is a result R whose possible-instances correspond to applying @) to each
possible-instance of U. Internal lineage connects the data in result R to the
data from which it was derived, as in the Suspects join query discussed
above. Confidence values in query results are, by default, defined in a standard
probabilistic fashion.

In addition to adapting SQL to Trio’s possible-instances semantics in a
straightforward and natural manner, TriQL includes a number of new features
specific to uncertainty and lineage:

= Constructs for querying lineage, e.g., “find all witnesses contributing to
Jimmy being a high suspect.”

= Constructs for querying uncertainty, e.g., “find all high-confidence sight-
ings,” or “find all sightings with at least three different possible cars.”

m Constructs for querying lineage and uncertainty together. e.g., “find all
suspects whose lineage contains low-confidence sightings or drivers.”

m Special types of aggregation suitable for uncertain databases, e.g., “find
the expected number of distinct suspects.”

= Query-defined result confidences, e.g., combine confidence values of
joining tuples using max instead of multiplication.

= Extensions to SQL’s data modification commands, e.g., to add new al-
ternative values to an existing tuple, or to modify confidence values.

= Constructs for restructuring a ULDB relation, e.g, “flatten” or reorganize
alternative values.

The Trio Prototype. The Trio prototype system is primarily layered on top
of a conventional relational DBMS. From the user and application standpoint,

116 MANAGING AND MINING UNCERTAIN DATA

& 0) [rttpujcrsb.stanford.cduigosojrelstions Howlt
Trio
& System for Data, Uncertainty, and Lineage g Tord
— e T, | b
| Home: jw F it} Samples | Scripts | Help |
|] L 1 1

[] ease table (O) Derived table
Blue | Certain Green | Uncertain Orange | Uncertain with confidences

Click on a table to see its contents.

ACCOMPLICES HIGH_SUSPECT
name1 suspect
name2 crime
SUSPECT_D SUSPECT_S
suspect suspect
crime crime
— PERSON SAWPERSON
DRIVES SAWCAR CRIME WITNESS
name witness
rson witness T name
= = hair hair
car car sector sector
clothes clothes

Figure 5.1. TrioExplorer Screenshot.

the Trio system appears to be a “native” implementation of the ULDB model,
TriQL query language, and other features. However, Trio encodes the uncer-
tainty and lineage in ULDB databases in conventional relational tables, and it
uses a translation-based approach for most data management and query pro-
cessing. A small number of stored procedures are used for specific functional-
ity and increased efficiency.

The Trio system offers three interfaces: a typical DBMS-style API for appli-
cations, a command-line interface called 7TrioPlus, and a a full-featured graph-
ical user interface called TrioExplorer. A small portion of the TrioExplorer in-
terface is depicted in Figure 5.1. (The screenshot shows a schema-level lineage
graph—discussed in Section 5—for a somewhat more elaborate crime-solver
application than the running example in this chapter.) The Trio prototype is
described in more detail in Section 6.

1. ULDBs: Uncertainty-Lineage Databases

The ULDB model is presented primarily through examples. A more formal
treatment appears in [2]. ULDBs extend the standard SQL (multiset) relational
model with:

1. alternative values, representing uncertainty about the contents of a tuple

Trio: A System for Data, Uncertainty, and Lineage 117

2. maybe (‘?’) annotations, representing uncertainty about the presence of
a tuple

3. numerical confidence values optionally attached to alternatives

4. lineage, connecting tuple-alternatives to other tuple-alternatives from
which they were derived.

Each of these four constructs is specified next, followed by a specification of
the semantics of relational queries on ULDBs.

1.1 Alternatives

ULDB relations have a set of certain attributes and a set of uncertain at-
tributes, designated as part of the schema. Each tuple in a ULDB relation has
one value for each certain attribute, and a set of possible values for the uncer-
tain attributes. In table Saw, let witness be a certain attribute while color
and car are uncertain. If witness Amy saw either a blue Honda, a red Toyota,
or a blue Mazda, then in table Saw we have:

[witness | (color, car) |
l Amy [(blue, Honda) || (red, Toyota) || (blue,Mazda)

This tuple logically yields three possible-instances for table Saw, one for each
set of alternative values for the uncertain attributes. In general, the possible-
instances of a ULDB relation R correspond to all combinations of alternative
values for the tuples in R. For example, if a second tuple in Saw had four
alternatives for (color, car), then there would be 12 possible-instances
altogether.

Designating certain versus uncertain attributes in a ULDB relation is impor-
tant for data modeling and efficient implementation. However, for presenta-
tion and formal specifications, sometimes it is useful to assume all attributes
are uncertain (without loss of expressive power). For example, in terms of
possible-instances, the Saw relation above is equivalent to:

[(witness, color, car)]

[(Amy, blue, Honda) || (Amy, red, Toyota) || (Amy,blue,Mazda)]

When treating all attributes as uncertain, we refer to the alternative values for
each tuple as tuple-alternatives, or alternatives for short. In the remainder of
the chapter we often use tuple-alternatives when the distinction between certain
and uncertain attributes is unimportant.

1.2 ‘2> (Maybe) Annotations

Suppose a second witness, Betty, thinks she saw a car but is not sure. How-
ever, if she saw a car, it was definitely a red Mazda. In ULDBs, uncertainty

118 MANAGING AND MINING UNCERTAIN DATA

B

about the existence of a tuple is denoted by a ‘?
Betty’s observation is thus added to table Saw as:

annotation on the tuple.

[witness | (color, car) |
Amy (blue, Honda) || (red, Toyota) || (blue,Mazda)
Betty (red, Mazda) ?

The ?° on the second tuple indicates that this entire tuple may or may not be
present (so we call it a maybe-tuple). Now the possible-instances of a ULDB
relation include not only all combinations of alternative values, but also all
combinations of inclusion/exclusion for the maybe-tuples. This Saw table has
six possible-instances: three choices for Amy’s (color, car) times two
choices for whether or not Betty saw anything. For example, one possible-
instance of Saw is the tuples (Amy, blue, Honda), (Betty, red,Mazda),
while another instance is just (Amy, blue,Mazda).

1.3 Confidences

Numerical confidence values may be attached to the alternative values in a
tuple. Suppose Amy’s confidence in seeing the Honda, Toyota, or Mazda is
0.5, 0.3, and 0.2 respectively, and Betty’s confidence in seeing a vehicle is 0.6.
Then we have:

[witness | (color, car)]
Amy (blue, Honda) : 0.5 || (red, Toyota) :0.3 || (blue,Mazda) :0.2
Betty (red,Mazda) :0.6 ?

Reference [2] formalizes an interpretation of these confidence values in terms
of probabilities. (Other interpretations may be imposed, but the probabilistic
one is the default for Trio.) Thus, if 3 is the sum of confidences for the alter-
native values in a tuple, then we must have 3 < 1, and if ¥ < 1 then the tuple
must have a “?”. Implicitly, *?” is given confidence (1 — X) and denotes the
probability that the tuple is not present.

Now each possible-instance of a ULDB relation itself has a probability, de-
fined as the product of the confidences of the tuple-alternatives and ‘?”’s com-
prising the instance. It can be shown (see [2]) that for any ULDB relation:

1. The probabilities of all possible-instances sum to 1.

2. The confidence of a tuple-alternative (respectively a ‘?’) equals the sum
of probabilities of the possible-instances containing this alternative (re-
spectively not containing any alternative from this tuple).

An important special case of ULDBs is when every tuple has only one alter-
native with a confidence value that may be < 1. This case corresponds to the
traditional notion of probabilistic databases.

Trio: A System for Data, Uncertainty, and Lineage 119

In Trio each ULDB relation R is specified at the schema level as either with
confidences, in which case R must include confidence values on all of its data,
or without confidences, in which case R has no confidence values. However,
it is permitted to mix relations with and without confidence values, both in a
database and in queries.

1.4 Lineage

Lineage in ULDBs is recorded at the granularity of alternatives: lineage
connects a tuple-alternative to those tuple-alternatives from which it was de-
rived. (Recall we are discussing only internal lineage in this chapter. External
lineage also can be recorded at the tuple-alternative granularity, although for
some lineage types coarser granularity is more appropriate; see [12] for a dis-
cussion.) Specifically, lineage is defined as a function A over tuple-alternatives:
A(t) is a boolean formula over the tuple-alternatives from which the alternative
t was derived.

Consider again the join of Saw and Drives on attributes color, car, fol-
lowed by a projection on driver to produce a table Suspects (person).
Assume all attributes in Drives are uncertain. (Although not shown in the
tiny sample data below, we might be uncertain what car someone drives, or
for a given car we might be uncertain who drives it.) Let column ID contain
a unique identifier for each tuple, and let (¢, j) denote the jth tuple-alternative
of the tuple with identifier 7. (That is, (7, j) denotes the tuple-alternative com-
prised of ¢’s certain attributes together with the jth set of alternative values
for its uncertain attributes.) Here is some sample data for all three tables, in-
cluding lineage formulas for the derived data in Suspects. For example, the
lineage of the Jimmy tuple-alternative in table Suspects is a conjunction of
the second alternative of Saw tuple 11 with the second alternative of Drives
tuple 21.

Saw
[ID | witness | (color, car) |
[11 [Cathy [(blue, Honda) || (red,Mazda)]
Drives
[ID] Drives (driver, color, car) |
21 (Jimmy, red, Honda) || (Jimmy,red,Mazda) |?
22 (Billy, blue, Honda)
23 (Hank, red, Mazda)
Suspects

31 | Jgimmy |? A@GL1D=(11,2)A(2L2)
32 | Billy |? A(32,1)=(1L1)A(221)
33 | Hank |2 A(33,1)=(11,2) A (23,1)

120 MANAGING AND MINING UNCERTAIN DATA

An interesting and important effect of lineage is that it imposes restrictions
on the possible-instances of a ULDB: A tuple-alternative with lineage can be
present in a possible-instance only if its lineage formula is satisfied by the
presence (or, in the case of negation, absence) of other alternatives in the same
possible-instance. Consider the derived table Suspects. Even though there
is a “?” on each of its three tuples, not all combinations are possible. If Jimmy
is present in Suspects then alternative 2 must be chosen for tuple 11, and
therefore Hank must be present as well. Billy is present in Suspects only if
alternative 1 is chosen for tuple 11, in which case neither Jimmy nor Hank can
be present.

Thus, once a ULDB relation R has lineage to other relations, it is possible
that not all combinations of alternatives and ‘?* choices in R correspond to
valid possible-instances. The above ULDB has six possible-instances, deter-
mined by the two choices for tuple 11 times the three choices (including ‘?’)
for tuple 21.

Now suppose we have an additional base table, Criminals, containing a
list of known criminals, shown below. Joining Suspects with Criminals
yields the HighSuspects table on the right:

Criminals HighSuspects

(1D [person | |

41 Jimmy - ” _

42 Frank oL Jimmy |2 AGLD=(@LIA 4L

9 =
e 52 | Hank |? A(52,1)=(33,1) A (43,1)

Now we have multilevel (transitive) lineage relationships, e.g., A(51,1) =
(31,1)A(41,1) and A\(31,1) = (11,2) A (21, 2). Lineage formulas specify di-
rect derivations, but when the alternatives in a lineage formula are themselves
derived from other alternatives, it is possible to recursively expand a lineage
formula until it specifies base alternatives only. (Since we are not consider-
ing external lineage, base data has no lineage of its own.) As a very simple
example, A(51,1)’s expansion is ((11,2) A (21,2)) A (41,1).

Note that arbitrary lineage formulas may not “work” under our model—
consider for example a tuple with one alternative and no ‘?° whose lineage
(directly or transitively) includes the conjunction of two different alternatives
of the same tuple. The tuple must exist because it doesn’t have a “?°, but it can’t
exist because its lineage formula can’t be satisfied. Reference [2] formally de-
fines well-behaved lineage (which does not permit, for example, the situation
just described), and shows that internal lineage generated by relational queries
is always well-behaved. Under well-behaved lineage, the possible-instances
of an entire ULDB correspond to the possible-instances of the base data (data
with no lineage of its own), as seen in the example above. With well-behaved
lineage our interpretation of confidences carries over directly: combining con-
fidences on the base data determines the probabilities of the possible-instances,

Trio: A System for Data, Uncertainty, and Lineage 121

ULDBs =———> (QD)=D+R
{actual} algorithm

Possible Instances

(logical , , ,
tlogical Dy, Ds, ..., D,) —— (Q(D1}, QD3 ..., QD)

Figure 5.2. Relational Queries on ULDBs.

just as before. The confidence values associated with derived data items are
discussed later in Section 4.

Finally, note that lineage formulas need not be conjunctive. As one ex-
ample, suppose Drives tuple 23 contained Bil1ly instead of Hank, and the
Suspects query performed duplicate-eliminating projection. Then the query
result is:

61 Jimmy 2 A(6L)=(112)A(21,2)
62 | Billy A(62,1)=((11,1) A (22,1)) V ((11,2) A (23,1))

Note that the lineage formula for tuple 62 is always satisfied since one alter-
native of base tuple 11 must always be picked. Thus, there is no ‘?” on the
tuple.

1.5 Relational Queries

In this section we formally define the semantics of any relational query over
a ULDB. Trio’s SQL-based query language will be presented in Section 2. The
semantics for relational queries over ULDBs is quite straightforward but has
two parts: (1) the possible-instances interpretation; and (2) lineage in query
results.

Refer to Figure 5.2. Consider a ULDB D whose possible-instances are

D1, Ds,...,D,, as shown on the left side of the figure. If we evaluate a
query @@ on D, the possible-instances in the result of @ should be Q(D;),
Q(Da),..., Q(D,), as shown in the lower-right corner. For example, if a

query) joins tables Saw and Drives, then logically it should join all of the
possible-instances of these two ULDB relations. Of course we would never
actually generate all possible-instances and operate on them, so a query pro-
cessing algorithm follows the top arrow in Figure 5.2, producing a query result
Q(D) that represents the possible-instances.

A ULDB query result (D) contains the original relations of D, together
with a new result relation R. Lineage from R into the relations of D reflects

122 MANAGING AND MINING UNCERTAIN DATA

the derivation of the data in R. This approach is necessary for Q(D) to repre-
sent the correct possible-instances in the query result, and to enable consistent
further querying of the original and new ULDB relations. (Technically, the
possible-instances in the lower half of Figure 5.2 also contain lineage, but this
aspect is not critical here; formal details can be found in [2].) The example in
the previous subsection, with Suspects as the result of a query joining Saw
and Drives, demonstrates the possible-instances interpretation, and lineage
from query result to original data.

The ULDB model and the semantics of relational queries over it has been
shown (see [2]) to exhibit two desirable and important properties:

= Completeness: Any finite set of possible-instances conforming to a sin-
gle schema can be represented as a ULDB database.

m Closure: The result of any relational query over any ULDB database
can be represented as a ULDB relation.

2. TriQL: The Trio Query Language

This section describes TriQL, Trio’s SQL-based query language. Except for
some additional features described later, TriQL uses the same syntax as SQL.
However, the interpretation of SQL queries must be modified to reflect the
semantics over ULDBs discussed in the previous section.

As an example, the join query producing Suspects is written in TriQL
exactly as expected:

SELECT Drives.driver as person INTO Suspects
FROM Saw, Drives
WHERE Saw.color = Drives.color AND Saw.car = Drives.car

If this query were executed as regular SQL over each of the possible-instances
of Saw and Drives, as in the lower portion of Figure 5.2, it would produce
the expected set of possible-instances in its result. More importantly, follow-
ing the operational semantics given next, this query produces a result table
Suspects, including lineage to tables Saw and Drives, that correctly rep-
resents those possible-instances.

This section first specifies an operational semantics for basic SQL query
blocks over arbitrary ULDB databases. It then introduces a number of addi-
tional TriQL constructs, with examples and explanation for each one.

2.1 Operational Semantics

We provide an operational description of TriQL by specifying direct evalua-
tion of a generic TriQL query over a ULDB, corresponding to the upper arrow
in Figure 5.2. We specify evaluation of single-block queries:

Trio: A System for Data, Uncertainty, and Lineage 123

SELECT attr-list [INTO new-table]
FROM T1, T2, ..., Tn
WHERE predicate

The operational semantics of additional constructs are discussed later, when
the constructs are introduced. Note that in TriQL, the result of a query has
confidence values only if all of the tables in the query’s FROM clause have
confidence values. (Sections 2.8 and 2.9 introduce constructs that can be used
in the FROM clause to logically add confidence values to tables that otherwise
don’t have them.)

Consider the generic TriQL query block above; call it Q). Let schema(Q)
denote the composition schema(T1) & schema(T2) W - - - W schema(Tn) of the
FROM relation schemas, just as in SQL query processing. The predicate
is evaluated over tuples in schema((Q), and the attr—-1ist is a subset of
schema(Q) or the symbol “x”, again just as in SQL.

The steps below are an operational description of evaluating the above query
block. As in SQL database systems, a query processor would rarely execute
the simplest operational description since it could be woefully inefficient, but
any query plan or execution technique (such as our translation-based approach
described in Section 6) must produce the same result as this description.

1 Consider every combination ¢y, t2,...,t, of tuples in T1, T2,..., Tn,
one combination at a time, just as in SQL.

2 Form a “super-tuple” T whose tuple-alternatives have schema schema((Q)).
T has one alternative for each combination of tuple-alternatives in ¢,
toy . tn.

3 Ifany of t1,%9,...,t, hasa ‘?’,;adda “?’ to 7.

4 Set the lineage of each alternative in 7" to be the conjunction of the al-
ternatives t1, to, . . ., t,, from which it was constructed.

5 Retain from 7" only those alternatives satisfying the predicate. If
no alternatives satisfy the predicate, we’re finished with 7'. If any al-
ternative does not satisfy the predicate, add a ‘?” to 7' if it is not there
already.

6 If T1, T2,..., Tn are all tables with confidence values, then either com-
pute the confidence values for 7”s remaining alternatives and store them
(immediate confidence computation), or set the confidence values to NULL
(lazy confidence computation). See Sections 2.8 and 4 for further discus-
sion.

7 Project each alternative of 7" onto the attributes in attr—11ist, gener-
ating a tuple in the query result. If there is an INTO clause, insert 1" into
table new-table.

124 MANAGING AND MINING UNCERTAIN DATA

It can be verified easily that this operational semantics produces the Suspects
result table shown with example data in Section 1.4. More generally it con-
forms to the “square diagram” (Figure 5.2) formal semantics given in Section
1.5. Later we will introduce constructs that do not conform to the square dia-
gram because they go beyond relational operations.

Note that this operational semantics generates result tables in which, by
default, all attributes are uncertain—it constructs result tuples from full tuple-
alternatives. In reality, it is fairly straightforward to deduce statically, based
on a query and the schemas of its input tables (specifically which attributes are
certain and which are uncertain), those result attributes that are guaranteed to
be certain. For example, if we joined Saw and Drives without projection,
attribute witness in the result would be certain.

2.2 Querying Confidences

TriQL provides a built-in function Conf () for accessing confidence val-
ues. Suppose we want our Suspects query to only use sightings having
confidence > 0.5 and drivers having confidence > 0.8. We write:

SELECT Drives.driver as person INTO Suspects
FROM Saw, Drives
WHERE Saw.color

= Drives.color AND Saw.car = Drives.car
AND Conf (Saw) > 0.

5 AND Conf (Drives) > 0.8

In the operational semantics, when we evaluate the predicate over the al-
ternatives in 7" in step 6, Conf (T1i) refers to the confidence associated with
the ¢; component of the alternative being evaluated. Note that this function
may trigger confidence computations if confidence values are being computed
lazily (recall Section 2.1).

Function Conf () is more general than as shown by the previous example—
it can take any number of the tables appearing in the FROM clause as arguments.
For example, Conf (T1, T3, T5) would return the “joint” confidence of the
t1, t3, and t5 components of the alternative being evaluated. If ¢1, t3, and
t5 are independent, their joint confidence is the product of their individual
confidences. If they are nonindependent—typically due to shared lincage—
then the computation is more complicated, paralleling confidence computation
for query results discussed in Section 4 below. As a special case, Conf () is
shorthand for Conf (T1, T2, ..., Tn), which normally corresponds to the
confidence of the result tuple-alternative being constructed.

2.3 Querying Lineage

For querying lineage, TriQL introduces a built-in predicate designed to be
used as a join condition. If we include predicate Lineage(71,7?) in the
WHERE clause of a TriQL query with ULDB tables 77 and 75 in its FROM

Trio: A System for Data, Uncertainty, and Lineage 125

clause, then we are constraining the joined 77 and 75 tuple-alternatives to be
connected, directly or transitively, by lineage. For example, suppose we want
to find all witnesses contributing to Hank being a high suspect. We can write:

SELECT S.witness
FROM HighSuspects H, Saw S
WHERE Lineage (H,S) AND H.person = ’'Hank’

In the WHERE clause, Lineage (H, S) evaluates to true for any pair of tuple-
alternatives ¢; and fo from HighSuspects and Saw such that ¢;’s lineage
directly or transitively includes to. Of course we could write this query directly
on the base tables if we remembered how HighSuspect s was computed, but
the Lineage () predicate provides a more general construct that is insensitive
to query history.

Note that the the Lineage () predicate does not take into account the
structure of lineage formulas: 1ineage(77,75) is true for tuple-alternatives
to and t9 if and only if, when we expand ¢;’s lineage formula using the lineage
formulas of its components, t2 appears at some point in the expanded formula.
Effectively, the predicate is testing whether ¢ had any effect on ¢;.

Here is a query that incorporates both lineage and confidence; it also demon-
strates the “==>" shorthand for the L.ineage () predicate. The query finds
persons who are suspected based on high-confidence driving of a Honda:

SELECT Drives.driver
FROM Suspects, Drives
WHERE Suspects ==> Drives
AND Drives.car = ’'Honda’ AND Conf (Drives) > 0.8

2.4 Duplicate Elimination

In ULDBs, duplicates may appear “horizontally”—when multiple alterna-
tives in a tuple have the same value—and “vertically”—when multiple tuples
have the same value for one or more alternatives. As in SQL, DISTINCT is
used to merge vertical duplicates. A new keyword MERGED is used to merge
horizontal duplicates. In both cases, merging can be thought of as an additional
final step in the operational evaluation of Section 2.1. (DISTINCT subsumes
MERGED, so the two options never co-occur.)

As a very simple example of horizontal merging, consider the query:

SELECT MERGED Saw.witness, Saw.color FROM Saw

The query result on our sample data with confidences (recall Section 1.3) is:

[witness | color]

Amy blue:0.7 || red:0.3
Betty red: 0.6 ?

126 MANAGING AND MINING UNCERTAIN DATA

Without merging, the first result tuple would have two b1ue alternatives with
confidence values 0.5 and 0.2. Note that confidences are summed when hori-
zontal duplicates are merged. In terms of the formal semantics in Section 1.5,
specifically the square diagram of Figure 5.2, merging horizontal duplicates in
the query answer on the top-right of the square corresponds cleanly to merging
duplicate possible-instances on the bottom-right.

A query with vertical duplicate-elimination was discussed at the end of Sec-
tion 1.4, where DISTINCT was used to motivate lineage with disjunction.

2.5

For starters, TriQL supports standard SQL grouping and aggregation fol-
lowing the relational possible-instances semantics of Section 1.5. Consider the
following query over the Drives data in Section 1.4:

Aggregation

SELECT car, COUNT (x) FROM Drives GROUP BY car

The query result is:

[ID | car [count | A(71,1)=(22,1) A= (21,1)
71 [Honda | 12 | A71.2)=(21,1) A (22,1)
72 Mazda 1|2)\(72,1):(23,1)/\—| (21,2)

A(7222) = (21,2) A (23, 1)

Note that attribute car is a certain attribute, since we’re grouping by it. Also
observe that lineage formulas in this example include negation.

In general, aggregation can be an exponential operation in ULDBs (and in
other data models for uncertainty): the aggregate result may be different in ev-
ery possible-instance, and there may be exponentially many possible-instances.
(Consider for example SUM over a table comprised of 10 maybe-tuples. The
result has 2'0 possible values.) Thus, TriQL includes three additional options
for aggregate functions: a low bound, a high bound, and an expected value;
the last takes confidences into account when present. Consider for example
the following two queries over the Saw data with confidences from Section
1.3. Aggregate function ECOUNT asks for the expected value of the COUNT
aggregate.

SELECT color,
SELECT color,

COUNT ()
ECOUNT (*)

FROM Saw GROUP BY car
FROM Saw GROUP BY car

The answer to the first query (omitting lineage) considers all possible-instances:

[color]

count

l

blue

1:0.7

2

red

1:0.54[]2:0.18

-~ .

Trio: A System for Data, Uncertainty, and Lineage 127

The “?” on each tuple intuitively corresponds to a possible count of 0. (Note
that zero counts never appear in the result of a SQL GROUP BY query.) The
second query returns just one expected value for each group:

blue 0.7
red 0.9

It has been shown (see [9]) that expected aggregates are equivalent to taking
the weighted average of the alternatives in the full aggregate result (also taking
zero values into account), as seen in this example. Similarly, low and high
bounds for aggregates are equivalent to the lowest and highest values in the
full aggregate result.

In total, Trio supports 20 different aggregate functions: four versions (full,
low, high, and expected) for each of the five standard functions (count, min,
max, sum, avg).

2.6 Reorganizing Alternatives

TriQL has two constructs for reorganizing the tuple-alternatives in a query
result:

m Flatten turns each tuple-alternative into its own tuple.

m GroupAlts regroups tuple-alternatives into new tuples based on a set of
attributes.

As simple examples, and omitting lineage (which in both cases is a straight-
forward one-to-one mapping from result alternatives to source alternatives),
“SELECT FLATTEN x FROM Saw” over the simple one-tuple Saw table from
Section 1.4 gives:

[witness [color [car |

Cathy | blue | Honda |?
Cathy red Mazda |?

and “SELECT GROUPALTS(color,car) x FROM Drives” gives:

[color [car | person |
red Honda Jimmy ?
red | Mazda | Jimmy || Hank
blue Honda Billy

With GROUPALTS, the specified grouping attributes are certain attributes in
the answer relation. For each set of values for these attributes, the correspond-
ing tuple in the result contains the possible values for the remaining (uncertain)
attributes as alternatives. ‘?° is present whenever all of the tuple-alternatives
contributing to the result tuple are uncertain.

128 MANAGING AND MINING UNCERTAIN DATA

FLATTEN is primarily a syntactic operation—if lineage is retained (i.e., if
the query does not also specify NoLineage, discussed below), then there
is no change to possible-instances as a result of including FLATTEN in a
query. GROUPALTS, on the other hand, may drastically change the possible-
instances; it does not fit cleanly into the formal semantics of Section 1.5.

2.7 Horizontal Subqueries

“Horizontal” subqueries in TriQL enable querying across the alternatives
that comprise individual tuples. As a contrived example, we can select from
table Saw all Honda sightings where it’s also possible the sighting was a car
other than a Honda (i.e., all Honda alternatives with a non-Honda alternative
in the same tuple).

SELECT x FROM Saw
WHERE car = "Honda’ AND EXISTS [car <> ’'Honda’]

Over the simple one-tuple Saw table from Section 1.4, the query returns just
the first tuple-alternative, (Cathy, blue, Honda), of tuple 11.

In general, enclosing a subquery in [] instead of () causes the subquery
to be evaluated over the “current” tuple, treating its alternatives as if they are
a relation. Syntactic shortcuts are provided for common cases, such as simple
filtering predicates as in the example above. More complex uses of horizontal
subqueries introduce a number of subtleties; full details and numerous exam-
ples can be found in [11]. By their nature, horizontal subqueries query “across”
possible-instances, so they do not follow the square diagram of Figure 5.2; they
are defined operationally only.

2.8 Query-Defined Result Confidences

A query result includes confidence values only if all of the tables in its FROM
clause have confidence values. To assign confidences to a table T for the pur-
pose of query processing, “UNIFORM T” can be specified in the FROM clause,
in which case confidence values are logically assigned across the alternatives
and ’?’ in each of T"’s tuples using a uniform distribution.

Result confidence values respect a probabilistic interpretation, and they are
computed by the system on-demand. (A “COMPUTE CONFIDENCES” clause
can be added to a query to force confidence computation as part of query exe-
cution.) Algorithms for confidence computation are discussed later in Section
4. A query can override the default result confidence values, or add confidence
values to a result that otherwise would not have them, by assigning values in
its SELECT clause to the reserved attribute name conf. Furthermore, a spe-
cial “value” UNIFORM may be assigned, in which case confidence values are
assigned uniformly across the alternatives and “?° (if present) of each result
tuple.

Trio: A System for Data, Uncertainty, and Lineage 129

As an example demonstrating query-defined result confidences as well as
UNIFORM in the FROM clause, suppose we generate suspects by joining the
Saw table with confidences from Section 1.3 with the Drives table from
Section 1.4. We decide to add uniform confidences to table Drives, and we
prefer result confidences to be the lesser of the two input confidences, instead
of their (probabilistic) product. Assuming a built-in function lesser, we
write:

SELECT person, lesser (Conf (Saw),Conf (Drives)) AS conf
FROM Saw, UNIFORM Drives
WHERE Saw.color = Drives.color AND Saw.car = Drives.car

Let the two tuples in table Saw from Section 1.3 have IDs 81 and 82. The
query result, including lineage, is:

[ID] person]

ST | Billy:0.5 |2 A(L1)=@LI1)AQ21)
92 | Jimmy:0.333 |2 A(92,1)=(82,1) A (21,2)
93 | Hank:0.6 |27 A(93,1)=(82,1) A (23,1)

With probabilistic confidences, Jimmy would instead have confidence 0.2.
Had we used greater () instead of lesser (), the three confidence val-
ues would have been 1.0, 0.6, and 1.0 respectively.

With the “AS Conf” feature, it is possible to create confidence values in
a tuple whose sum exceeds 1. (“1.1 AS Conf,” assigning confidence value
1.1 to each result tuple-alternative, is a trivial example.) Although the Trio
prototype does not forbid this occurrence, a warning is issued, and anomalous
behavior with respect to confidence values—either the newly created values,
or later ones that depend on them—may subsequently occur.

2.9 Other TriQL Query Constructs

TriQL contains a number of additional constructs not elaborated in detail in
this chapter, as follows. For comprehensive coverage of the TriQL language,
see [11].

m TriQL is a strict superset of SQL, meaning that (in theory at least) every
SQL construct is available in TriQL: subqueries, set operators, 1ike
predicates, and so on. Since SQL queries are relational, the semantics
of any SQL construct over ULDBs follows the semantics for relational
queries given in Section 1.5.

® One SQL construct not strictly relational is Order By. TriQL includes
Order By, but only permits ordering by certain attributes and/or the
special “attribute” Confidences, which for ordering purposes corre-
sponds to the total confidence value (excluding ‘?’) in each result tuple.

130 MANAGING AND MINING UNCERTAIN DATA

m In addition to built-in function Conf () and predicate Lineage (),
TriQL offers a built-in predicate Maybe (). In a query, Maybe (T) re-
turns true if and only if the tuple-alternative from table T being evaluated
is part of a maybe-tuple, i.e., its tuple has a “?’.

» Horizontal subqueries (Section 2.7) are most useful in the FROM clause,
but they are permitted in the SELECT clause as well. For example, the
query “SELECT [COUNT (*)] FROM Saw” returns the number of al-
ternatives in each tuple of the Saw table.

m Asdiscussed in Section 2.8, preceding a table T in the FROM clause with
keyword UNIFORM logically assigns confidence values to the tuple-
alternatives in T for the duration of the query, using a uniform distri-
bution. Similarly, “UNIFORM AS conf” in the SELECT clause assigns
confidence values to query results using a uniform distribution. Another
option for both uses is keyword SCALED. In this case, table T (respec-
tively result tuples) must already have confidence values, but they are
scaled logically for the duration of the query (respectively in the query
result) so each tuple’s total confidence is 1 (i.e., ?’s are removed). For
example, if a tuple has two alternatives with confidence values 0.3 and
0.2, the SCALED confidences would be 0.6 and 0.4.

m Finally, three query qualifiers, NoLineage, NoConf, and NoMaybe
may be used to signal that the query result should not include lineage,
confidence values, or ?’s, respectively.

3. Data Modifications in Trio

Data modifications in Trio are initiated using TriQL’s INSERT, DELETE,
and UPDATE commands, which are in large part analogous to those in SQL.
Additional modifications specific to the ULDB model are supported by ex-
tensions to these commands. The three statement types are presented in the
following three subsections, followed by a discussion of how Trio incorporates
versioning to support data modifications in the presence of derived relations
with lineage.

3.1 Inserts

Inserting entirely new tuples into a ULDB poses no unusual semantic issues.
(Inserting new alternatives into existing tuples is achieved through the UPDATE
command, discussed below.) Trio supports both types of SQL INSERT com-
mands:

INSERT INTO table—-name VALUES tuple-spec
INSERT INTO table—name subquery

Trio: A System for Data, Uncertainty, and Lineage 131

The tuple-spec uses a designated syntax to specify a complete Trio tu-
ple to be inserted, including certain attributes, alternative values for uncertain
attributes, confidence values, and/or ‘?,” but no lineage. The subquery is
any TriQL query whose result tuples are inserted, together with their lineage
(unless NoLineage is specified in the subquery; Section 2.9).

3.2 Deletes
Deletion also follows standard SQL syntax:

DELETE FROM table-name WHERE predicate

This command deletes each tuple-alternative satisfying the predicate.
(Deleting a tuple-alternative is equivalent to deleting one alternative for the
uncertain attributes; Section 1.1.) If all alternatives of a tuple are deleted, the
tuple itself is deleted. A special qualifier “AdjConf” can be used to redis-
tribute confidence values on tuples after one or more alternatives are deleted;
without AdjConf, deleted confidence values implicitly move to “?.’

3.3 Updates

In addition to conventional updates, the TriQL UPDATE command supports
updating confidence values, adding and removing ‘?’s, and inserting new al-
ternatives into existing tuples. Consider first the standard SQL UPDATE com-
mand:

UPDATE table-name SET attr-list = expr-list WHERE predicate

This command updates every tuple-alternative satistfying the predicate, set-
ting each attribute in the attr—1ist to the result of the corresponding ex-
pression in the expr—-1ist.

There is one important restriction regarding the combination of certain and
uncertain attributes. Consider as an example the following command, intended
to rename as “Doris” every witness who saw a blue Honda:

UPDATE Saw SET witness = ’Doris’
WHERE color = ’"blue’ AND car = ’'Honda’

In the Saw table of Section 1.1, the WHERE predicate is satisfied by some
but not all of the (color, car) alternatives for witness Amy. Thus, it isn’t
obvious whether Amy should be be modified. Perhaps the best solution would
be to convert witness to an uncertain attribute:

[(witness,color, car)]

[(Doris,blue,Honda) || (Amy, red, Toyota) || (Amy,blue,Mazda)]

However, Trio treats attribute types (certain versus uncertain) as part of the
fixed schema, declared at CREATE TABLE time. A similar ambiguity can

132 MANAGING AND MINING UNCERTAIN DATA

arise if the expression on the right-hand-side of the SET clause for a certain at-
tribute produces different values for different alternatives. Hence, UPDATE
commands are permitted to modify certain attributes only if all references
to uncertain attributes, function Conf (), and predicate Lineage () in the
WHERE predicate, and in every SET expression corresponding to a certain at-
tribute, occur within horizontal subqueries. This restriction ensures that the
predicate and the expression always evaluate to the same result for all alter-
natives of a tuple. For our example, the following similar-looking command
updates every witness who may have seen a blue Honda to be named “Doris™:

UPDATE Saw SET witness = ’Doris’
WHERE [color = ’'blue’ AND car = ’'Honda’]

To update confidence values, the special attribute conf may be specified
in the attr-11ist of the UPDATE command. As with query-defined result
confidences (Section 2.8), there is no guarantee after modifying conf that
confidence values in a tuple sum to < 1; a warning is issued when they don’t,
and anomalous behavior may subsequently occur. Finally, the special key-
words UNIFORM or SCALED may be used as the expression corresponding
to attribute conf in the SET clause, to modify confidence values across each
tuple using uniform or rescaled distributions—analogous to the use of these
keywords with “AS Conf” (Sections 2.8 and 2.9).

A variation on the UPDATE command is used to add alternatives to existing
tuples:

UPDATE table—-name ALTINSERT expression WHERE predicate

To ensure the predicate either holds or doesn’t on entire tuples, once again
all references to uncertain attributes, Conf (), and Lineage () must occur
within horizontal subqueries. For each tuple satisfying the predicate, alterna-
tives are added to the tuple, based on the result of evaluating the expression.
Like the INSERT command (Section 3.1), the expression can be “VALUES
tuple-spec” to specify a single alternative, or a subquery producing zero or
more alternatives. Either way, the schema of the alternatives to add must match
the schema of the table’s uncertain attributes only. If adding alternatives to an
existing tuple creates duplicates, by default horizontal duplicate-elimination
does not occur, but it can be triggered by specifying UPDATE MERGED. As
with other constructs that affect confidence values, creating tuples whose con-
fidences sum to > 1 results in a warning.

Finally, the following self-explanatory UPDATE commands can be used to
add and remove ?’s. These commands may only be applied to tables without
confidences, and once again, in the predicate all references to uncertain
attributes, Conf (), and Lineage () must be within horizontal subqueries.

UPDATE table-name ADDMAYBE WHERE predicate
UPDATE table-name DELMAYBE WHERE predicate

Trio: A System for Data, Uncertainty, and Lineage 133

3.4 Data Modifications and Versioning

Trio query results include lineage identifying the input data from which the
results were derived. Lineage is not only a user-level feature—it is needed for
on-demand confidence computation, and it is critical for capturing the correct
possible-instances in a query result (Section 1.4).

Suppose we run our Suspects query, store the result, then modifications
occur to some alternatives in table Saw that are referenced by lineage in table
Suspects. There are two basic options for handling such modifications:

(1) Propagate modifications to all derived tables, effectively turning query
results into materialized views.

(2) Don’t propagate modifications, allowing query results to become “stale”
with respect to the data from which they were derived originally.

Option (1) introduces a variation on the well-known materialized view main-
tenance problem. It turns out Trio’s lineage feature can be used here for broad
applicability and easy implementation of the most efficient known techniques;
see [6].

With option (2), after modifications occur, lineage formulas may contain
incorrect or “dangling” pointers. Trio’s solution to this problem is to introduce
a lightweight versioning system: Modified data is never removed, instead it
remains in the database as part of a previous version. The lineage formula
for a derived tuple-alternative ¢ may refer to alternatives in the current version
and/or previous versions, thus accurately reflecting the data from which ¢ was
derived. Details of Trio’s versioning system and how it interacts with data
modifications and lineage can be found in [6].

4. Confidence Computation

Computing confidence values for query results is one of the most interesting
and challenging aspects of Trio. In general, efficient computation of correct
result confidence values in uncertain and probabilistic databases is known to
be a difficult problem. Trio uses two interrelated techniques to address the
problem:

1. By default, confidence values are not computed during query evaluation.
Instead, they are computed on demand: when requested through one of
Trio’s interfaces, or as needed for further queries. This approach has two
benefits: (a) Computing confidence values as part of query evaluation
constrains how queries may be evaluated, while lazy computation frees
the system to select any valid relational query execution plan. (See [7]
for detailed discussion.) (b) If a confidence value is never needed, its
potentially expensive computation is never performed.

134 MANAGING AND MINING UNCERTAIN DATA

2. On-demand confidence computation is enabled by Trio’s lineage feature.
Specifically, the confidence of an alternative in a query result can be
computed through lineage, as described below. Furthermore, a number
of optimizations are possible to speed up the computation, also discussed
below.

Suppose a query () is executed producing a result table 7', and consider
tuple-alternative ¢ in T'. Assume all tables in query () have confidence values
(perhaps not yet computed), so ¢ should have a confidence value as well. For-
mally, the confidence value assigned to ¢ should represent the total probability
of the possible-instances of result table 7' that contain alternative ¢ (recall Sec-
tion 1.3). It has been shown (see [7]) that this probability can be computed as
follows:

1. Expand ¢’s lineage formula recursively until it refers to base alternatives
only: If \(¢) refers to base alternatives only, stop. Otherwise, pick one ¢;
in A(¢) that is not a base alternative, replace ¢; with (\(¢;)), and continue
expanding.

2. Let f be the expanded formula from step 1. If f contains any sets
ti,...,t, of two or more alternatives from the same tuple (a possible
but unlikely case), then t1, ..., t,’s confidence values are modified for
the duration of the computation, and clauses are added to f to encode
their mutual exclusion; details are given in [7].

3. The confidence value for alternative ¢ is the probability of formula f
computed using the confidence values for the base alternatives compris-

ing f.

It is tempting to expand formula A(t) in step 1 only as far as needed to
obtain confidence values for all of the alternatives mentioned in the formula.
However, expanding to the base alternatives is required for correctness in the
general case. Consider for example the following scenario, where t3, ¢4, and
ts are base alternatives.

M) =ti Ata At1) =tsNta At2) =tsAts
Conf(ts) = Conf(ts) = Conf(ts)=0.5

Based on the specified confidences, we have Conf(t1) = Conf(te) = 0.25.
If we computed Conf(¢) using ¢; A t2 we would get 0.0625, whereas the cor-
rect value expanding to the base alternatives is 0.125. As this example demon-
strates, lineage formulas must be expanded all the way to base alternatives
because derived alternatives may not be probabilistically independent.

Trio incorporates some optimizations to the basic confidence-computation
algorithm just described:

Trio: A System for Data, Uncertainty, and Lineage 135

m Whenever confidence values are computed, they are memoized for future
use.

m There are cases when it is not necessary to expand a lineage formula all
the way to its base alternatives. At any point in the expansion, if all of the
alternatives in the formula are known to be independent, and their confi-
dences have already been computed (and therefore memoized), there is
no need to go further. Even when confidences have not been computed,
independence allows the confidence values to be computed separately
and then combined, typically reducing the overall complexity. Although
one has to assume nonindependence in the general case, independence
is common and often can be easy to deduce and check, frequently at the
level of entire tables.

= We have developed algorithms for batch confidence computation that
are implemented through SQL queries. These algorithms are appropriate
and efficient when confidence values are desired for a significant portion
of a result table.

Reference [7] provides detailed coverage of the confidence-computation prob-
lem, along with our algorithms, optimizations, implementation in the Trio pro-

totype.

5. Additional Trio Features

TriQL queries and data modifications are the typical way of interacting with
Trio data, just as SQL is used in a standard relational DBMS. However, uncer-
tainty and lineage in ULDBs introduce some interesting features beyond just
queries and modifications.

Lineage. As TriQL queries are executed and their results are stored, and ad-
ditional queries are posed over previous results, complex lineage relationships
can arise. Data-level lineage is used for confidence computation (Section 4)
and Lineage () predicates; it is also used for coexistence checks and extra-
neous data removal, discussed later in this section. The TrioExplorer graphical
user interface supports data-level lineage tracing through special buttons next
to each displayed alternative; the textual and API interfaces provide corre-
sponding functionality.

Trio also maintains a schema-level lineage graph (specifically a DAG), with
tables as nodes and edges representing lineage relationships. This graph is
used when translating queries with Lineage () predicates (Section 6.7), and
for determining independence to optimize confidence computation (Section 4).
This graph also is helpful for for users to understand the tables in a database

136 MANAGING AND MINING UNCERTAIN DATA

and their interrelationships. A schema-level lineage graph was depicted in the
Figure 5.1 screenshot showing the TrioExplorer interface.

Coexistence Checks. A user may wish to select a set of alternatives from
one or more tables and ask whether those alternatives can all coexist. Two
alternatives from the same tuple clearly cannot coexist, but the general case
must take into account arbitrarily complex lineage relationships as well as tuple
alternatives. For example, if we asked about alternatives (11,2) and (32,1) in
our sample database of Section 1.4, the system would tell us these alternatives
cannot coexist.

Checking coexistence is closely related to confidence computation. To check
if alternatives ¢; and t5 can coexist, we first expand their lineage formulas to
reference base alternatives only, as in step 1 of confidence computation (Sec-
tion 4). Call the expanded formulas f1 and f>. Let f3 be an additional formula
that encodes mutual exclusion of any alternatives from the same tuple appear-
ing in f; and/or fs, as in step 2 of confidence computation. Then ¢; and ¢3 can
coexist if and only if formula f; A fo A f3 is satisfiable. Note that an equiv-
alent formulation of this algorithm creates a “dummy” tuple ¢ whose lineage
is t1 A to. Then t; and t9 can coexist if and only if Conf(¢) > 0. This for-
mulation shows clearly the relationship between coexistence and confidence
computation, highlighting in particular that our optimizations for confidence
computation in Section 4 can be used for coexistence checks as well.

Extraneous Data Removal. The natural execution of TriQL queries can gen-
erate extraneous data: an alternative is extraneous if it can never be chosen
(i.e., its lineage requires presence of multiple alternatives that cannot coexist);
a ‘7’ annotation is extraneous if its tuple is always present. It is possible to
check for extraneous alternatives and ?’s immediately after query execution
(and, sometimes, as part of query execution), but checking can be expensive.
Because we expect extraneous data and ?’s to be relatively uncommon, and
users may not be concerned about them, by default Trio supports extraneous
data removal as a separate operation, similar to garbage collection.

Like coexistence checking, extraneous data detection is closely related to
confidence computation: An alternative ¢ is extraneous if and only if Conf(t) =
0. A “?” on a tuple u is extraneous if and only if the confidence values for all
of u’s alternatives sum to 1.

6. The Trio System

Figure 5.3 shows the basic three-layer architecture of the Trio system. The
core system is implemented in Python and mediates between the underlying re-
lational DBMS and Trio interfaces and applications. The Python layer presents
a simple Trio API that extends the standard Python DB 2.0 API for database

Trio: A System for Data, Uncertainty, and Lineage 137

e

; TrioExplorer
Command-line)
_ client i (GUI client)

-
Trio API and translator]

(Python)

Standard SQL

Standard relational DBMS

Encoded Trio
Data Tables Metadata

Lineage Trio Stored
Tables Procedures

Figure 5.3. Trio Basic System Architecture.

access (Python’s analog of JDBC). The Trio API accepts TriQL queries and
modification commands in addition to regular SQL, and query results may be
ULDB tuples as well as regular tuples. The API also exposes the other Trio-
specific features described in Section 5. Using the Trio API, we built a generic
command-line interactive client (TrioPlus) similar to that provided by most
DBMS’s, and the TrioExplorer graphical user interface shown earlier in Fig-
ure 5.1.

Trio DDL commands are translated via Python to SQL DDL commands
based on the encoding to be described in Section 6.1. The translation is fairly
straightforward, as is the corresponding translation of INSERT statements and
bulk load.

Processing of TriQL queries proceeds in two phases. In the translation
phase, a TriQL parse tree is created and progressively transformed into a tree
representing one or more standard SQL statements, based on the data encod-
ing scheme. In the execution phase, the SQL statements are executed against
the relational database encoding. Depending on the original TriQL query,
Trio stored procedures may be invoked and some post-processing may occur.
For efficiency, most additional runtime processing executes within the DBMS
server. Processing of TriQL data modification commands is similar, although
a single TriQL command often results in a larger number of SQL statements,
since several relational tables in the encoding (Section 6.1) may all need to be
modified.

TriQL query results can either be stored or transient. Stored query results
(indicated by an INTO clause in the query) are placed in a new persistent table,
and lineage relationships from the query’s result data to data in the query’s in-
put tables also is stored persistently. Transient query results (no INTO clause)

138 MANAGING AND MINING UNCERTAIN DATA

are accessed through the Trio API in a typical cursor-oriented fashion, with an
additional method that can be invoked to explore the lineage of each returned
tuple. For transient queries, query result processing and lineage creation oc-
curs in response to cursor fetch calls, and neither the result data nor its lineage
are persistent.

TrioExplorer offers a rich interface for interacting with the Trio system. It
implements a Python-generated, multi-threaded web server using CherryPy,
and it supports multiple users logged into private and/or shared databases. It
accepts Trio DDL and DML commands and provides numerous features for
browsing and exploring schema, data, uncertainty, and lineage. It also enables
on-demand confidence computation, coexistence checks, and extraneous data
removal. Finally, it supports loading of scripts, command recall, and other user
conveniences.

It is not possible to cover all aspects of Trio’s system implementation in
this chapter. Section 6.1 describes how ULDB data is encoded in regular
relations. Section 6.2 demonstrates the basic query translation scheme for
SELECT-FROM-WHERE statements, while Sections 6.3—6.9 describe transla-
tions and algorithms for most of TriQL’s additional constructs.

6.1 Encoding ULDB Data

We now describe how ULDB databases are encoded in regular relational
tables. For this discussion we use u-tuple to refer to a tuple in the ULDB
model, i.e., a tuple that may include alternatives, ‘?’, and confidence values,
and tuple to denote a regular relational tuple.

Let T'(Ayq,...,Ay) be a ULDB table. We store the data portion of 7" in two
relational tables, T(- and Ty;. Table T contains one tuple for each u-tuple in 7.
T¢’s schema consists of the certain attributes of 7', along with two additional
attributes:

®m xid contains a unique identifier assigned to each u-tuple in 7.

®= num contains a number used to track efficiently whether or not a u-tuple
has a ‘?’, when 7" has no confidence values. (See Section 6.2 for further
discussion.)

Table Ty; contains one tuple for each tuple-alternative in 7'. Its schema consists
of the uncertain attributes of T', along with three additional attributes:

® aid contains a unique identifier assigned to each alternative in 7.
m xid identifies the u-tuple that this alternative belongs to.

m conf stores the confidence of the alternative, or NULL if this confidence
value has not (yet) been computed, or if 7" has no confidences.

Trio: A System for Data, Uncertainty, and Lineage 139

Clearly several optimizations are possible: Tables with confidence values can
omit the num field, while tables without confidences can omit conf. If a
table T" with confidences has no certain attributes, then table T~ is not needed
since it would contain only xid’s, which also appear in Ty;. Conversely, if T’
contains no uncertain attributes, then table T, is not needed: attribute aid is
unnecessary, and attribute conf is added to table 7T=. Even when both tables
are present, the system automatically creates a virtual view that joins the two
tables, as a convenience for query translation (Section 6.2).

The system always creates indexes on T¢.xid, Ty.aid, and Tyy.xid. In
addition, Trio users may create indexes on any of the original data attributes
Aq, ..., A, using standard CREATE INDEX commands, which are translated
by Trio to CREATE INDEX commands on the appropriate underlying tables.

The lineage information for each ULDB table T is stored in a separate
relational table. Recall the lineage A(t) of a tuple-alternative ¢ is a boolean
formula. The system represents lineage formulas in disjunctive normal form
(DNF), i.e., as a disjunction of conjunctive clauses, with all negations pushed
to the “leaves.” Doing so allows for a uniform representation: Lineage is stored
inasingle table 77 (aid, src_aid, src_table,flag), indexed on aid and
src_aid. Atuple (t1,t2, 15, f) in T, denotes that T7’s alternative ¢1 has alter-
native {9 from table 75 in its lineage. Multiple lineage relationships for a given
alternative are conjunctive by default; special values for £1ag and (occasion-
ally) “dummy” entries are used to encode negation and disjunction. By far the
most common type of lineage is purely conjunctive, which is represented and
manipulated very efficiently with this scheme.

Example. As one example that demonstrates many aspects of the encoding,
consider the aggregation query result from Section 2.5. Call the result table
R. Recall that attribute car is certain while attribute count is uncertain. The
encoding as relational tables follows, omitting the lineage for result tuple 72
since it parallels that for 71.

[aid [xid [count |

[xid [num | car] 711 | 71 1
RC:[7 2 | Honda RU: 712 [71 2
72 | 2 | Mazda 721 | 72 1

722 | 72 2

[aid [src.aid | src_table [flag |
711 221 Drives NULL
R_L:[711 211 Drives neg
712 211 Drives NULL
712 221 Drives neg

For readability, unique aid’s are created by concatenating xid and alterna-
tive number. The values of 2 in attribute R_C . num indicate no ‘?’s (see Sec-

140 MANAGING AND MINING UNCERTAIN DATA

tion 6.2), and R_U. conf is omitted since there are no confidence values. The
remaining attributes should be self-explanatory given the discussion of the en-
coding above. In addition, the system automatically creates a virtual view
joining tables R_C and R_U on xid.

6.2 Basic Query Translation Scheme

Consider the Suspects query from the beginning of Section 2, first in its
transient form (i.e., without CREATE TABLE). The Trio Python layer trans-
lates the TriQL query into the following SQL query, sends it to the underlying
DBMS, and opens a cursor on the result. The translated query refers to the vir-
tual views joining Saw_C and Saw_U, and joining Drives_C,and Drives_U;
call these views Saw_E and Drives_E (“E” for encoding) respectively.

SELECT Drives_E.driver,
Saw_E.aid, Drives_E.aid, Saw_E.xid, Drives_E.xid,
(Saw_FE .num * Drives_FE.num) AS num
FROM Saw_E, Drives_E
WHERE Saw_E.color = Drives_E.color AND Saw_E.car = Drives_E.car
ORDER BY Saw_E.xid, Drives_E.xid

Let Tfetch denote a cursor call to the Trio API for the original TriQL query,
and let Dfetch denote a cursor call to the underlying DBMS for the translated
SQL query. Each call to Tfetch must return a complete u-tuple, which may
entail several calls to Dfetch: Each tuple returned from Dfetch on the SQL
query corresponds to one alternative in the TriQL query result, and the set
of alternatives with the same returned Saw_E.xid and Drives_E.xid pair
comprise a single result u-tuple (as specified in the operational semantics of
Section 2.1). Thus, on Tfetch, Trio collects all SQL result tuples for a single
Saw_E.xid/Drives_E.xid pair (enabled by the ORDER BY clause in the
SQL query), generates a new xid and new aid’s, and constructs and returns
the result u-tuple.

Note that the underlying SQL query also returns the aid’s from Saw_E
and Drives_E. These values (together with the table names) are used to con-
struct the lineage for the alternatives in the result u-tuple. Recall that the num
field is used to encode the presence or absence of ‘?’: Our scheme maintains
the invariant that an alternative’s u-tuple has a ‘?’ if and only if its num field
exceeds the u-tuple’s number of alternatives, which turns out to be efficient
to maintain for most queries. This example does not have result confidence
values, however even if it did, result confidence values by default are not com-
puted until they are explicitly requested (recall Section 4). When a “COMPUTE
CONF IDENCES” clause is present, Tfetch invokes confidence computation be-
fore returning its result tuple. Otherwise, Tfetch returns placeholder NULLs for
all confidence values.

Trio: A System for Data, Uncertainty, and Lineage 141

For the stored (CREATE TABLE) version of the query, Trio first issues DDL
commands to create the new tables, indexes, and virtual view that will encode
the query result. Trio then executes the same SQL query shown above, except
instead of constructing and returning u-tuples one at a time, the system directly
inserts the new alternatives and their lineage into the result and lineage tables,
already in their encoded form. All processing occurs within a stored proce-
dure on the database server, thus avoiding unnecessary round-trips between
the Python module and the underlying DBMS.

The remaining subsections discuss how TriQL constructs beyond simple
SELECT-FROM-WHERE statements are translated and executed. All transla-
tions are based on the data encoding scheme of Section 6.1; many are purely
“add-ons” to the basic translation just presented.

6.3 Duplicate Elimination

Recall from Section 2.4 that TriQL supports “horizontal” duplicate-elimi-
nation with the MERGED option, as well as conventional DISTINCT. In gen-
eral, either type of duplicate-elimination occurs as the final step in a query that
may also include filtering, joins, and other operations. Thus, after duplicate-
elimination, the lineage of each result alternative is a formula in DNF (recall
Section 6.1): disjuncts are the result of merged duplicates, while conjunction
within each disjunct represents a tuple-alternative’s derivation prior to merg-
ing; a good example can be seen at the end of Section 1.4. How Trio encodes
DNF formulas in lineage tables was discussed briefly in Section 6.1.

Merging horizontal duplicates and creating the corresponding disjunctive
lineage can occur entirely within the Tfefch method: All alternatives for each
result u-tuple, together with their lineage, already need to be collected within
Tfetch before the u-tuple is returned. Thus, when MERGED is specified, Tfetch
merges all duplicate alternatives and creates the disjunctive lineage for them,
then returns the modified u-tuple.

DISTINCT is more complicated, requiring two phases. First, a translated
SQL query is produced as if DISTINCT were not present, except the result is
ordered by the data attributes instead of xid’s; this query produces a tempo-
rary result 7. One scan through 7" is required to merge duplicates and create
disjunctive lineage, then 7" is reordered by xid’s to construct the correct u-
tuples in the final result.

6.4 Aggregation

Recall from Section 2.5 that TriQL supports 20 different aggregation func-
tions: four versions (full, low, high, and expected) for each of the five standard
functions (count, min, max, sum, avg). All of the full functions and some of the
other options cannot be translated to SQL queries over the encoded data, and

142 MANAGING AND MINING UNCERTAIN DATA

thus are implemented as stored procedures. (One of them, expected average,
is implemented as an approximation, since finding the exact answer based on
possible-instances can be extremely expensive [9].) Many of the options, how-
ever, can be translated very easily. Consider table Saw with confidence values.
Then the TriQL query:

SELECT color, ECOUNT (*) FROM Saw GROUP BY car

is translated based on the encoding to:

SELECT color, SUM(conf) FROM Saw_E GROUP BY car

A full description of the implementation of Trio’s 20 aggregate functions can
be found in [9].

6.5 Reorganizing Alternatives

Recall Flatten and GroupAlts from Section 2.6. The translation scheme for
queries with Flatten is a simple modification to the basic scheme in which each
result alternative is assigned its own xid. GroupAlts is also a straightforward
modification: Instead of the translated SQL query grouping by xid’s from the
input tables to create result u-tuples, it groups by the attributes specified in
GROUPALTS and generates new x1d’s.

6.6 Horizontal Subqueries

Horizontal subqueries are very powerful yet surprisingly easy to implement
based on our data encoding. Consider the example from Section 2.7:

SELECT % FROM Saw
WHERE car = "Honda’ AND EXISTS [car <> ’'Honda’]

First, syntactic shortcuts are expanded. In the example, [car <> ’Honda’]
1s a shortcut for [SELECT » FROM Saw WHERE car<>’Honda’]. Here,
Saw within the horizontal subquery refers to the Saw alternatives in the cur-
rent u-tuple being evaluated [11]. In the translation, the horizontal subquery is
replaced with a standard SQL subquery that adds aliases for inner tables and a
condition correlating xid’s with the outer query:

. AND EXISTS (SELECT %= FROM Saw_E S
WHERE car <> ’'Honda’ AND S.xid = Saw_E.xid)

S.xid=Saw_E.xid restricts the horizontal subquery to operate on the data
in the current u-tuple. Translation for the general case involves a fair amount of
context and bookkeeping to ensure proper aliasing and ambiguity checks, but
all horizontal subqueries, regardless of their complexity, have a direct transla-
tion to regular SQL subqueries with additional xid equality conditions.

Trio: A System for Data, Uncertainty, and Lineage 143

6.7 Built-In Predicates and Functions

Trio has three built-in predicates and functions: Conf () introduced in Sec-
tion 2.2, Maybe () introduced in Section 2.9, and Lineage () introduced in
Section 2.3.

Function Conf () is implemented as a stored procedure. If it has just one
argument 7', the procedure first examines the current 7'_F.conf field to see if
a value is present. (Recall from Section 6.1 that T'_FE is the encoded data table,
typically a virtual view over tables T and 7y;.) If so, that value is returned.
If T_E.conf is NULL, on-demand confidence computation is invoked (see
Section 4); the resulting confidence value is stored permanently in 7_F and
returned.

The situation is more complicated when Conf () has multiple arguments,
or the special argument “+” as an abbreviation for all tables in the query’s
FROM list (recall Section 2.2). The algorithm for arguments 71, . .., T} logi-
cally constructs a “dummy” tuple-alternative ¢ whose lineage is the conjunc-
tion of the current tuple-alternatives from 71, . . ., T}, being considered. It then
computes t’s confidence, which provides the correct result for the current invo-
cation of Conf (711,...,Ty). In the case of Conf (x), the computed values
usually also provide confidence values for the query result, without a need for
on-demand computation.

The Maybe () and Lineage () predicates are incorporated into the query
translation phase. Predicate Maybe () is straightforward: It translates to a
simple comparison between the num attribute and the number of alternatives
in the current u-tuple. (One subtlety is that Maybe () returns t rue even when
a tuple’s question mark is “extraneous”—that is, the tuple in fact always has
an alternative present, due to its lineage. See Section 5 for a brief discussion.)

Predicate L.ineage(11,13) is translated into one or more SQL EXISTS
subqueries that check if the lineage relationship holds: Schema-level lineage
information is used to determine the possible table-level “paths” from 77 to T5.
Each path produces a subquery that joins lineage tables along that path, with
T and T5 at the endpoints; these subqueries are then OR’d to replace predicate
Lineage(11,15) in the translated query.

As an example, recall table HighSuspects in Section 1.4, derived from
table Suspects, which in turn is derived from table Saw. Then predicate
Lineage (HighSuspects, Saw) would be translated into one subquery
as follows, recalling the lineage encoding described in Section 6.1.

EXISTS (SELECT =*
FROM HighSuspects_L L1, Suspects_L L2
WHERE HighSuspects.aid = Ll.aid
AND Ll.src_table = ’"Suspects’ AND Ll.src_aid = L2.aid
AND L2.src_table = 'Saw’ AND L2.src_aid = Saw.aid)

144 MANAGING AND MINING UNCERTAIN DATA

6.8 Query-Defined Result Confidences

The default probabilistic interpretation of confidence values in query results
can be overridden by including “expression AS conf” in the SELECT clause
of a TriQL query (Section 2.8). Since Trio’s data encoding scheme uses a
column called conf to store confidence values, “AS conf” clauses simply
pass through the query translation phase unmodified.

6.9 Remaining Constructs

We briefly describe implementation of the remaining TriQL constructs and
features.

= Rest of SQL. As mentioned in Section 2.9, since TriQL is a superset
of SQL, any complete TriQL implementation must handle all of SQL.
In our translation-based scheme, some constructs (e.g., LIKE predi-
cates) can be passed through directly to the underlying relational DBMS,
while others (e.g., set operators, some subqueries) can involve substan-
tial rewriting during query translation to preserve TriQL semantics. At
the time of writing this chapter, the Trio prototype supports all of the
constructs discussed or used by examples in this chapter, as well as set
operators UNION, INTERSECT, and EXCEPT.

= Order By. Because ordering by xid’s is an important part of the ba-
sic query translation (Section 6.2), ORDER BY clauses in TriQL require
materializing the result first, then ordering by the specified attributes.
When special “attribute” Confidences (Section 2.9) is part of the
ORDER BY list, “COMPUTE CONFIDENCES” (Section 2.8) is logically
added to the query, to ensure the conf field contains actual values, not
placeholder NULLs, before sorting occurs.

s UNIFORM and SCALED. The keywords UNIFORM (Section 2.8) and
SCALED (Section 2.9) can be used in a TriQL FROM clause to add or
modify confidences on an input table, or with “AS con £ to specify con-
fidences on the result. The “AS conf” usage is easy to implement within
the Tfetch procedure (Section 6.2): Tfetch processes entire u-tuples one
at a time and can easily add or modify confidence values before returning
them.

UNIFORM and SCALED in the FROM clause are somewhat more com-
plex: Confidence computation for the query result must occur during
query processing (as opposed to on-demand), to ensure result confidence
values take into account the modifier(s) in the FROM clause. (Alterna-
tively, special flags could be set, then checked during later confidence
computation, but Trio does not use this approach.) Special process-

Trio: A System for Data, Uncertainty, and Lineage 145

ing again occurs in Tfetch, which logically adds or modifies confidence
values on input alternatives when computing confidence values for the
query result.

= NoLineage, NoConf, and NoMaybe. These TriQL options are all quite
easy to implement: NoLineage computes confidence values for the
query result as appropriate (since no lineage is maintained by which to
compute confidences later), then essentially turns the query result into
a Trio base table. NoConf can only be specified in queries that oth-
erwise would include confidence values in the result; now the result is
marked as a Trio table without confidences (and, of course, does not
compute confidence values except as needed for query processing). Fi-
nally, NoMaybe can only be specified in queries that produce results
without confidences; all ?’s that otherwise would be included in the re-
sult are removed by modifying the num field in the encoding (Section
6.1).

= Data modifications and versioning. Recall from Section 3.4 that Trio
supports a lightweight versioning system, in order to allow data modifi-
cations to base tables that are not propagated to derived tables, while still
maintaining “meaningful” lineage on the derived data. Implementation
of the versioning system is quite straightforward: If a ULDB table T is
versioned, start-version and end-version attributes are added to encoded
table Ty (Section 6.1). A query over versioned tables can produce a
versioned result with little overhead, thanks to the presence of lineage.
Alternatively, queries can request snapshot results, as of the current or a
past version. Data modifications often simply manipulate versions rather
than modify the data, again with little overhead. For example, deleting
an alternative ¢ from a versioned table 7" translates to modifying ¢’s end-
version in Ty;. Reference [6] provides details of how the Trio system
implements versions, data modifications, and the propagation of modifi-
cations to derived query results when desired.

References

[1]

2]

[3]

[4]

[5]

[6]

[7]

[&]

P. Agrawal, O. Benjelloun, A. Das Sarma, C. Hayworth, S. Nabar, T. Sug-
ihara, and J. Widom. Trio: A system for data, uncertainty, and lineage. In
Proc. of Intl. Conference on Very Large Databases (VLDB), pages 1151—
1154, Seoul, Korea, September 2006. Demonstration description.

O. Benjelloun, A. Das Sarma, A. Halevy, and J. Widom. ULDBs:
Databases with uncertainty and lineage. In Proc. of Intl. Conference on
Very Large Databases (VLDB), pages 953-964, Seoul, Korea, September
2006.

0. Benjelloun, A. Das Sarma, C. Hayworth, and J. Widom. An introduc-
tion to ULDBs and the Trio system. /EEE Data Engineering Bulletin,
Special Issue on Probabilistic Databases, 29(1):5—16, March 2006.

A. Das Sarma, P. Agrawal, S. Nabar, and J. Widom. Towards special-
purpose indexes and statistics for uncertain data. In Proc. of the Work-
shop on Management of Uncertain Data, Auckland, New Zealand, Au-
gust 2008.

A. Das Sarma, O. Benjelloun, A. Halevy, and J. Widom. Working models
for uncertain data. In Proc. of Intl. Conference on Data Engineering
(ICDE), Atlanta, Georgia, April 2006.

A. Das Sarma, M. Theobald, and J. Widom. Data modifications and ver-
sioning in Trio. Technical report, Stanford University InfoLab, March
2008. Available at: http://dbpubs.stanford.edu/pub/2008-5.

A. Das Sarma, M. Theobald, and J. Widom. Exploiting lineage for con-
fidence computation in uncertain and probabilistic databases. In Proc.
of Intl. Conference on Data Engineering (ICDE), Cancun, Mexico, April
2008.

A. Das Sarma, J.D. Ullman, and J. Widom. Schema design for uncer-
tain databases. Technical report, Stanford University InfoLLab, November
2007. Available at: nttp://dbpubs.stanford.edu/pub/2007-36.

148 MANAGING AND MINING UNCERTAIN DATA

[9] R. Murthy and J. Widom. Making aggregation work in uncertain and
probabilistic databases. In Proc. of the Workshop on Management of Un-
certain Data, pages 76-90, Vienna, Austria, September 2007.

[10] M. Mutsuzaki, M. Theobald, A. de Keijzer, J. Widom, P. Agrawal,
O. Benjelloun, A. Das Sarma, R. Murthy, , and T. Sugihara. Trio-One:
Layering uncertainty and lineage on a conventional DBMS. In Proc. of

Conference on Innovative Data Systems Research (CIDR), Pacific Grove,
California, 2007.

[11] TriQL: The Trio Query Language. Available from:
http://i.stanford.edu/trio.

[12] J. Widom. Trio: A system for integrated management of data, accuracy,
and lineage. In Proc. of Conference on Innovative Data Systems Research
(CIDR), Pacific Grove, California, 2005.

Chapter 6

MAYBMS: A SYSTEM FOR MANAGING
LARGE UNCERTAIN AND
PROBABILISTIC DATABASES

Christoph Koch
Cornell University, Ithaca, NY
koch@cs.cornell.edu

Abstract

Keywords:

MayBMS is a state-of-the-art probabilistic database management system that
has been built as an extension of Postgres, an open-source relational database
management system. MayBMS follows a principled approach to leveraging the
strengths of previous database research for achieving scalability. This chapter
describes the main goals of this project, the design of query and update language,
efficient exact and approximate query processing, and algorithmic and systems
aspects.

Acknowledgments. My collaborators on the MayBMS project are Dan
Olteanu (Oxford University), Lyublena Antova (Cornell), Jiewen Huang (Ox-
ford), and Michaela Goetz (Cornell). Thomas Jansen and Ali Baran Sari are
alumni of the MayBMS team. I thank Dan Suciu for the inspirational talk he
gave at a Dagstuhl seminar in February of 2005, which triggered my interest in
probabilistic databases and the start of the project. I am also indebted to Joseph
Halpern for insightful discussions. The project was previously supported by Ger-
man Science Foundation (DFG) grant KO 3491/1-1 and by funding provided by
the Center for Bioinformatics (ZBI) at Saarland University. It is currently sup-
ported by NSF grant [1S-0812272, a KDD grant, and a gift from Intel.

Probabilistic database, system, query language, updates

1. Introduction

Database systems for uncertain and probabilistic data promise to have many
applications. Query processing on uncertain data occurs in the contexts of data
warehousing, data integration, and of processing data extracted from the Web.
Data cleaning can be fruitfully approached as a problem of reducing uncer-
tainty in data and requires the management and processing of large amounts of

150 MANAGING AND MINING UNCERTAIN DATA

uncertain data. Decision support and diagnosis systems employ hypothetical
(what-if) queries. Scientific databases, which store outcomes of scientific ex-
periments, frequently contain uncertain data such as incomplete observations
or imprecise measurements. Sensor and RFID data is inherently uncertain.
Applications in the contexts of fighting crime or terrorism, tracking moving
objects, surveillance, and plagiarism detection essentially rely on techniques
for processing and managing large uncertain datasets. Beyond that, many fur-
ther potential applications of probabilistic databases exist and will manifest
themselves once such systems become available.

Inference in uncertain data is a field in which the Artificial Intelligence re-
search community has made much progress in the past years. Some of the
most exciting Al applications, such as using graphical models in biology, be-
long to this area. While a number of papers on uncertain data and probabilistic
databases have been written within the data management research community
over the past decades, this area has moved into the focus of research interest
only very recently, and work on scalable systems has only just started.

The MayBMS project* aims at creating a probabilistic database management
system by leveraging techniques developed by the data management research
community. The MayBMS project is founded on the thesis that a principled ef-
fort to use previous insights from databases will allow for substantial progress
towards more robust and scalable systems for managing and querying large un-
certain datasets. This will have a positive impact on current applications such
as in computational science and will allow for entirely new data management
applications.

Central themes in our research include the creation of foundations of query
languages for probabilistic databases by developing analogs of relational alge-
bra [22, 21] and SQL [6, 8] and the development of efficient query processing
techniques [5, 25, 3, 23, 24, 17]. In practice, the efficient evaluation of queries
on probabilistic data requires approximation techniques, and another impor-
tant goal was to understand which approximation guarantees can be made for
complex, realistic query languages [22, 15].

We have worked on developing a complete database management system
for uncertain and probabilistic data. Apart from data representation and stor-
age mechanisms, a query language, and query processing techniques, our work
covers query optimization, an update language, concurrency control and recov-
ery, and APIs for uncertain data.

MayBMS stands alone as a complete probabilistic database management
system that supports a very powerful, compositional query language for which
nevertheless worst-case efficiency and result quality guarantees can be made.
Central to this is our choice of essentially using probabilistic versions of con-

*MayBMS is read as “maybe-MS”, like DBMS.

MayBMS: A System for Managing Large Probabilistic Databases 151

ditional tables [18] as the representation system, but in a form engineered for
admitting the efficient evaluation and automatic optimization of most opera-
tions of our language using robust and mature relational database technology
[3].

The structure of this chapter is as follows. Section 2 sketches our model
of probabilistic databases. Section 3 outlines desiderata that have guided the
design of our query languages. Section 4 introduces our query algebra and
illustrates it by examples. The section also gives an overview over theoretical
results, in particular on expressiveness, that have been achieved for this alge-
bra. Section 5 introduces U-relations, the representation system of MayBMS.
Section 6 shows how most of the operations of our algebra can be evaluated
efficiently using mature relational database techniques. Moreover, the problem
of efficiently processing the remaining operations is discussed and an overview
of the known results on the (worst-case) complexity of the query algebra is
given. Section 7 presents the query and update language of MayBMS, which
is based on our algebra but uses an extension of SQL as syntax. Section 8
discusses further systems issues. Section 9 concludes.

This chapter is meant to provide an overview over the MayBMS project and
some topics are covered in a sketchy fashion. For details on the various tech-
niques, experiments, and the theoretical contributions, the reader is referred to
the original technical papers on MayBMS that can be found in the references.

2. Probabilistic Databases

Informally, our model of probabilistic databases is the following. The schema
of a probabilistic database is simply a relational database schema. Given such
a schema, a probabilistic database is a finite set of database instances of that
schema (called possible worlds), where each world has a weight (called prob-
ability) between 0 and 1 and the weights of all worlds sum up to 1. In a sub-
jectivist Bayesian interpretation, one of the possible worlds is “true”, but we
do not know which one, and the probabilities represent degrees of belief in
the various possible worlds. Note that this is only the conceptual model. The
physical representation of the set of possible worlds in the MayBMS system is
quite different (see Section 5).

Given a schema with relation names Ry, . .., R;. We use sch(R;) to denote
the attributes of relation schema R;. Formally, a probabilistic database is a
finite set of structures

W = {(R},....R}pM, ... (R}, ... R}, pI")}

of relations R}, ..., R: and numbers 0 < pl’/ < 1 such that

S =1

1<i<n

152 MANAGING AND MINING UNCERTAIN DATA

We call an element (Ri, ..., Ri, plll) € W a possible world, and pl! its prob-
ability. We use superscripts for indexing possible worlds. To avoid confusion
with exponentiation, we sometimes use bracketed superscripts -1, We call a
relation R complete or certain if its instantiations are the same in all possible
worlds of W, i.e.,if Rt = ... = R".

Tuple confidence refers to the probability of the event ¢ € R, where R is
one of the relation names of the schema, with

Pr[t € R] = Z pll,

1<i<n: tER}

3. Query Language Desiderata

At the time of writing this, there is no accepted standard query language for
probabilistic databases. In fact, we do not even agree today what use cases
and functionality such systems should support. It seems to be proper to start
the query language discussion with the definition of design desiderata. The
following are those used in the design of MayBMS.

1 Efficient query evaluation.

2 The right degree of expressive power. The language should be powerful
enough to support important queries. On the other hand, it should not be
too strong, because expressiveness generally comes at a price: high eval-
uation complexity and infeasibility of query optimization. Can a case be
made that some language is in a natural way a probabilistic databases
analog of the relationally complete languages (such as relational alge-
bra) — an expressiveness yardstick?

3 Genericity. The semantics of a query language should be independent
from details of how the data is represented. Queries should behave in
the same way no matter how the probabilistic data is stored. This is a
basic requirement that is even part of the traditional definition of what
constitutes a query (cf. e.g. [1]), but it is nontrivial to achieve for proba-
bilistic databases [6, 4].

4 The ability to transform data. Queries on probabilistic databases are of-
ten interpreted quite narrowly in the literature. It is the author’s view that
queries in general should be compositional mappings between databases,
in this case probabilistic databases. This is a property taken for granted
in relational databases. It allows for the definition of clean database up-
date languages.

5 The ability to introduce additional uncertainty. This may appear to be
a controversial goal, since uncertainty is commonly considered undesir-
able, and probabilistic databases are there to deal with it by providing

MayBMS: A System for Managing Large Probabilistic Databases 153

useful functionality despite uncertainty. However, it can be argued that
an uncertainty-introduction operation is important for at least three rea-
sons: (1) for compositionality, and to allow construction of an uncertain
database from scratch (as part of the update language); (2) to support
what-if queries; and (3) to extend the hypothesis space modeled by the
probabilistic database. The latter is needed to accommodate the results
of experiments or new evidence, and to define queries that map from
prior to posterior probabilistic databases. This is a nontrivial issue, and
will be discussed in more detail later.

The next section introduces a query algebra and argues that it satisfies each
of these desiderata.

4. The Algebra

This section covers the core query algebra of MayBMS: probabilistic world-
set algebra (probabilistic WSA) [6, 22, 21]. Informally, probabilistic world-
set algebra consists of the operations of relational algebra, an operation for
computing tuple confidence conf, and the repair-key operation for introducing
uncertainty. The operations of relational algebra are evaluated individually, in
“parallel”, in each possible world. The operation conf(R) computes, for each
tuple that occurs in relation R in at least one world, the sum of the probabili-
ties of the worlds in which the tuple occurs. The result is a certain relation, or
viewed differently, a relation that is the same in all possible worlds. Finally,
repair-key ;4 p (1), where A , P are attributes of R, conceptually nondetermin-

istically chooses a maximal repair of key A. This operation turns a possible
world R into the set of worlds consisting of all possible maximal repairs of
key A A repair of key A in relation R’ is a subset of R for which A is a
key. It uses the numerically-valued column P for weighting the newly created
alternative repairs.

Formally, probabilistic world-set algebra consists of the following opera-
tions:

m The operations of relational algebra (selection o, projection 7, product
x, union U, difference —, and attribute renaming p), which are applied
in each possible world independently.

The semantics of operations © on probabilistic database W is
[OR)](W) :={(R1,...,Rr,O(Ry),p) | (R1,...,Ri,p) € W}
for unary operations (1 < [< k). For binary operations, the semantics

is
[O(R:, Rin)|(W) ==
{<R1, ..., Ry, @(Rl, Rm),p> ‘ <R1, c. ,Rk,p> S W}

154

MANAGING AND MINING UNCERTAIN DATA

Selection conditions are Boolean combinations of atomic conditions (i.e.,
negation is permitted even in the positive fragment of the algebra). Arith-
metic expressions may occur in atomic conditions and in the arguments
of 7 and p. For example, p4+p—.c(R) in each world adds up the A and
B values of each tuple of R and keeps them in a new C attribute.

An operation for computing tuple confidence,
[conf(R))](W) := {(Ry,...,Rg,S,p) | (R1,...,Rk,p) € W}
where, w.l.o.g., P & sch(R;), and

S={({f,P:PricR])|Te| R,

with schema sch(S) = sch(R;) U {P}. The result of conf(R;), the
relation S, is the same in all possible worlds, i.e., it is a certain relation.

By our definition of probabilistic databases, each possible world has
nonzero probability. As a consequence, conf does not return tuples with
probability 0.

For example, on probabilistic database

R'[A B R’[A B R’[AB
a bplll=23 a bp=.2 a ¢ pfl=.5
b ¢ cd cd

conf(R) computes, for each possible tuple, the sum of the weights of the
possible worlds in which it occurs, here

conf(R) | A

oo o oty
G Wk T

o o o

An uncertainty-introducing operation, repair-key, which can be thought
of as sampling a maximum repair of a key for a relation. Repairing a
key of a complete relation R means to compute, as possible worlds, all
subset-maximal relations obtainable from R by removing tuples such
that a key constraint is satisfied. We will use this as a method for con-
structing probabilistic databases, with probabilities derived from relative
weights attached to the tuples of R.

We say that relation R’ is a maximal repair of a functional dependency
(fd, cf. [1]) for relation R if R’ is a maximal subset of R which satisfies

MayBMS: A System for Managing Large Probabilistic Databases 155

that functional dependency, i.e., a subset R’ C R that satisfies the fd
such that there is no relation R” with R’ C R"” C R that satisfies the fd.

Let A, B € sch(Ry). For each possible world (Ry, ..., Ri,p) € W, let
column B of R contain only numerical values greater than 0 and let R;
satisfy the fd (sch(R;) — B) — sch(R;). Then,

[repair-key ;¢ 5(R1)[(W) =
{(Rla ey R/ﬂ WSCh(Rl)*B(‘él)7ﬁ> | <R17 cee 7Rk7p> S W7

R is a maximal repair of fd A — sch(R;)
.B
75

5 A=t.A

H

p=re e

te R,

Such a repair operation, apart from its usefulness for the purpose implicit
in its name, is a powerful way of constructing probabilistic databases
from complete relations.

EXAMPLE 6.1 Consider the example of tossing a biased coin twice.
We start with a certain database

R | Toss Face FProb
1 H 4
1 T 6 p=1
2 H 4
2 T 6

that represents the possible outcomes of tossing the coin twice. We turn
this into a probabilistic database that represents this information using
alternative possible worlds for the four outcomes using the query S :=
repair-key . .arprob (£2)- The resulting possible worlds are

ST T Toss Face SZ | Toss Face
1 H 1 H
2 H 2 T
S3 T Toss Face S* | Toss Face
1 T 1 T
2 H 2 T
with probabilities pl!) = p - i5 - 5=z = .16, pll = pl¥l = .24, and

p4 = 36. O

156 MANAGING AND MINING UNCERTAIN DATA

Coins Type Count Faces Type Face FProb Tosses | Toss
fair 2 fair H 5 1
2headed 1 fair T 5 2
2headed H 1
RT T Type RN Type
fair 2headed
ST-HHType Toss Face ST-HT Type Toss Face ST Type Toss Face
fair 1 H fair 1 H 2headed 1 H
fair 2 H fair 2 T 2headed 2 H
ST THTType Toss Face STTT [Type Toss Face
fair 1 T fair 1 T
fair 2 H fair 2 T
Ev |Toss Face Q| Type P
1 H fair (1/6)/(1/2) =1/3
2 H 2headed (1/3)/(1/2) =2/3

Figure 6.1. Tables of Example 6.2.

The fragment of probabilistic WSA which excludes the difference operation
is called positive probabilistic WSA.
Computing possible and certain tuples is redundant with conf:

poss(R) = Ty (conf(R)
cert(R) = myup(m)(op-1(conf(R))

EXAMPLE 6.2 A bag of coins contains two fair coins and one double-headed
coin. We take one coin out of the bag but do not look at its two faces to
determine its type (fair or double-headed) for certain. Instead we toss the coin
twice to collect evidence about its type.

We start out with a complete database (i.e., a relational database, or a prob-
abilistic database with one possible world of probability 1) consisting of three
relations, Coins, Faces, and Tosses (see Figure 6.1 for all tables used in this
example). We first pick a coin from the bag and model that the coin be either
fair or double-headed. In probabilistic WSA this is expressed as

R := repair-keyyacouns (Coins).
This results in a probabilistic database of two possible worlds,
{(Coins, Faces, RT pf = 2/3), (Coins, Faces, R™ p?" = 1/3)}.
The possible outcomes of tossing the coin twice can be modeled as

S := repair-keyyapprop (12 > Faces x Tosses).

MayBMS: A System for Managing Large Probabilistic Databases 157

This turns the two possible worlds into five, since there are four possible out-

comes of tossing the fair coin twice, and only one for the double-headed coin.
Let T' := TTogs, Face (S). The posterior probability that a coin of type « was

picked, given the evidence Ev (see Figure 6.1) that both tosses result in H, is

Prlz € RAT = Ev|

Prlz € R|T = Ev] = Pr{T =)

Let A be a relational algebra expression for the Boolean query 7' = Ev. Then
we can compute a table of pairs (z,Pr[z € R | T = Ev|) as

Q= 7"-Type,P1/P2—>P(IOPHP1 (conf(R x A)) x PP—P; (conf(A))).

The prior probability that the chosen coin was fair was 2/3; after taking the
evidence from two coin tosses into account, the posterior probability Pr[the
coin is fair | both tosses result in H] is only 1/3. Given the evidence from the
coin tosses, the coin is now more likely to be double-headed. O

ExaMPLE 6.3 We redefine the query of Example 6.2 such that repair-key
is only applied to certain relations. Starting from the database obtained by
computing R, with its two possible worlds, we perform the query Sy :=
repair-key . Tossarprob (Faces x Tosses) to model the possible outcomes
of tossing the chosen coin twice. The probabilistic database representing these
repairs consists of eight possible worlds, with the two possible R relations of
Example 6.2 and, independently, four possible Sy relations. Let S := R 1 .5p.
While we now have eight possible worlds rather than five, the four worlds in
which the double-headed coin was picked all agree on S with the one world
in which the double-headed coin was picked in Example 6.2, and the sum of
their probabilities is the same as the probability of that world. It follows that
the new definition of S is equivalent to the one of Example 6.2 and the rest of
the query is the same. ([l

Discussion. The repair-key operation admits an interesting class of queries:
Like in Example 6.2, we can start with a probabilistic database of prior proba-
bilities, add further evidence (in Example 6.2, the result of the coin tosses) and
then compute interesting posterior probabilities. The adding of further evi-
dence may require extending the hypothesis space first. For this, the repair-key
operation is essential. Even though our goal is not to update the database, we
have to be able to introduce uncertainty just to be able to model new evidence
— say, experimental data. Many natural and important probabilistic database
queries cannot be expressed without the repair-key operation. The coin tossing
example was admittedly a toy example (though hopefully easy to understand).
Real applications such as diagnosis or processing scientific data involve tech-
nically similar questions.

158 MANAGING AND MINING UNCERTAIN DATA

Regarding our desiderata, it is quite straightforward to see that probabilistic
WSA is generic (3): see also the proof for the non-probabilistic language in
[6]. It is clearly a data transformation query language (4) that supports pow-
erful queries for defining databases. The repair-key operation is our construct
for uncertainty introduction (5). The evaluation efficiency (1) of probabilistic
WSA is studied in Section 6. The expressiveness desideratum (2) is discussed
next.

An expressiveness yardstick. In [6] a non-probabilistic version of world-
set algebra is introduced. It replaces the confidence operation with an operation
poss for computing possible tuples. Using poss, repair-key, and the operations
of relational algebra, powerful queries are expressible. For instance, the certain
answers of a query on an uncertain database can be computed using poss and
difference. Compared to the poss operation described above, the operation of
[6] is more powerful. The syntax is poss ;(Q), where A is a set of column
names of (). The operation partitions the set of possible worlds into the groups
of those worlds that agree on 7 3(Q). The result in each world is the set of
tuples possible in () within the world’s group. Thus, this operation supports the
grouping of possible worlds just like the group-by construct in SQL supports
the grouping of tuples.

The main focus of [6] is to study the fragment of (non-probabilistic) WSA
in which repair-key is replaced by the choice-of operation, defined as:

choice-of ;o p(R) := R repair-keypq p(7 i p(R)).

The choice-of operation introduces uncertainty like the repair-key operation,
but can only cause a polynomial, rather than exponential, increase of the num-
ber of possible worlds. This language has the property that query evaluation
on enumerative representations of possible worlds is in PTIME (see Section 6
for more on this). Moreover, it is conservative over relational algebra in the
sense that any query that starts with a certain database (a classical relational
database) and produces a certain database is equivalent to a relational algebra
query and can be efficiently rewritten into relational algebra. This is a non-
trivial result, because in this language we can produce uncertain intermediate
results consisting of many possible worlds using the choice-of operator. This
allows us to express and efficiently answer hypothetical (what-if) queries.
(Full non-probabilistic) WSA consists of the relational algebra operations,
repair-key, and poss ;. In[21], it is shown that WSA precisely captures second-
order logic. Leaving aside inessential details about interpreting second-order
logic over uncertain databases — it can be done in a clean way — this result
shows that a query is expressible in WSA if and only if it is expressible in
second-order logic. WSA seems to be the first algebraic (i.e., variable and

MayBMS: A System for Managing Large Probabilistic Databases 159

quantifier-free) language known to have exactly the same expressive power as
second-order logic.

More importantly for us, it can be argued that this establishes WSA as the
natural analog of relational algebra for uncertain databases. Indeed, while it is
well known that useful queries (such as transitive closure or counting queries,
cf. [1]) cannot be expressed in it, relational algebra is a very popular expres-
siveness yardstick for relational query languages (and query languages that
are as expressive as relational algebra are called relationally complete). Re-
lational algebra is also exactly as expressive as the domain-independent first-
order queries [1], also known as the relational calculus. Second-order logic
is just first-order logic extended by (existential) quantification over relations
(“Does there exist a relation R such that ¢ holds?”, where ¢ is a formula).
This is the essence of (what-if) reasoning over uncertain data. For example,
the query of Example 6.2 employed what-if reasoning over relations twice via
the repair-key operation, first considering alternative choices of coin and then
alternative outcomes to coin tossing experiments.

It is unknown whether probabilistic WSA as defined in this chapter can ex-
press all the queries of WSA (with poss 7). Given the known data complexity
bounds for the two languages (see Section 6) alone, there is no reason to as-
sume that this is not the case. On the other hand, it seems unlikely, and a
mapping from WSA to probabilistic WSA, if it exists, must be nontrivial.

It would be easy to define a sufficiently strong extension of probabilistic
WSA by just generalizing conf to a world-grouping conf ; operation. In this
chapter, this is not done because we do not know how to obtain any even just
moderately efficient implementation of this operation (or of poss ;) on succinct
data representations.

5. Representing Probabilistic Data

This section discusses the method used for representing and storing proba-
bilistic data and correlations in MayBMS. We start by motivating the problem
of finding a practical representation system.

EXAMPLE 6.4 Consider a census scenario, in which a large number of indi-
viduals manually fill in forms. The data in these forms subsequently has to
be put into a database, but no matter whether this is done automatically using
OCR or by hand, some uncertainty may remain about the correct values for
some of the answers. Figure 6.2 shows two simple filled in forms. Each one
contains the social security number, name, and marital status of one person.
The first person, Smith, seems to have checked marital status “single” after
first mistakenly checking “married”, but it could also be the opposite. The
second person, Brown, did not answer the marital status question. The social
security numbers also have several possible readings. Smith’s could be 185 or

160 MANAGING AND MINING UNCERTAIN DATA

Social Security Number: /) a 5
Name: (S \N\L}‘t‘,\

Marital Status:((1) singlel] J=_ (2) married |\
(3) divorced 'O (4) widowed 'O

Social Security Number: \ %

Name:) QH‘

Marital Status:7J (1) singlel] O (2) married’ O
(3) divorced 'O (4) widowed /O]

Figure 6.2. Two census forms.

785 (depending on whether Smith originally is from the US or from Europe)
and Brown’s may either be 185 or 186.

In an SQL database, uncertainty can be managed using null values, using a
table

(TID) | SSN N M
t1 null Smith null
to null Brown null

Using nulls, information is lost about the values considered possible for the
various fields. Moreover, it is not possible to express correlations such as that,
while social security numbers may be uncertain, no two distinct individuals can
have the same. In this example, we can exclude the case that both Smith and
Brown have social security number 185. Finally, we cannot store probabilities
for the various alternative possible worlds. O

This leads to three natural desiderata for a representation system: (*) Ex-
pressiveness, that is, the power to represent all (relevant) probabilistic databases,
(*) succinctness, that is, space-efficient storage of the uncertain data, and (*)
efficient real-world query processing.

Often there are many rather (but not quite) independent local alternatives
in probabilistic data, which multiply up to a very large number of possible
worlds. For example, the US census consists of many dozens of questions for
about 300 million individuals. Suppose forms are digitized using OCR and
the resulting data contains just two possible readings for 0.1% of the answers
before cleaning. Then, there are on the order of 219:000.000 possible worlds,
and each one will take close to one Terabyte of data to store. Clearly, we need
a way of representing this data that is much better than a naive enumeration of
possible worlds.

MayBMS: A System for Managing Large Probabilistic Databases 161

Also, the repair-key operator of probabilistic world-set algebra in general
causes an exponential increase in the number of possible worlds.

There is a trade-off between succinctness on one hand and efficient pro-
cessing on the other. Computing confidence conf(Q)) of conjunctive queries
@ on tuple-independent databases is #P-hard — one such hard query [13] (in
datalog notation [1]) is Q@ < R(x),S(z,y),T(y). At the same time, much
more expressive queries can be evaluated efficiently on nonsuccinct represen-
tations (enumerations of possible worlds) [6]. Query evaluation in probabilistic
databases is not hard because of the presence of probabilities, but because of
the succinct storage of alternative possible worlds! We can still have the goal
of doing well in practice.

Conditional tables. MayBMS uses a purely relational representation sys-
tem for probabilistic databases called U-relational databases, which is based
on probabilistic versions of the classical conditional tables (c-tables) of the
database literature [18]. Conditional tables are a relational representation sys-
tem based on the notion of labeled null values or variables, that is, null values
that have a name. The name makes it possible to use the same variable x in
several fields of a database, indicating that the value of z is unknown but must
be the same in all those fields in which x occurs. Tables with variables are also
known as v-tables.

Formally, c-tables are v-tables extended by a column for holding a local
condition. That is, each tuple of a c-table has a Boolean condition constructed
using “and”, “or”, and “not” from atomic conditions of the form x = ¢ or
x = y, where ¢ are constants and x and y are variables. Possible worlds
are determined by functions # that map each variable that occurs in at least
one of the local conditions in the c-tables of the database to a constant. The
database in that possible world is obtained by (1) selecting those tuples whose
local condition ¢ satisfies the variable assignment 6, i.c., that becomes true if
each variable = in ¢ is replaced by 6(z), (2) replacing all variables y in the
value fields of these tuples by (y), and (3) projecting away the local condition
column.

Conditional tables are sometimes defined to include a notion of global con-
dition, which we do not use: We want each probabilistic database to have at
least one possible world.

Conditional tables are a so-called strong representation system: They are
closed under the application of relational algebra queries. The set of worlds
obtained by evaluating a relational algebra query in each possible world repre-
sented by a conditional table can again be straightforwardly represented by a
conditional table. Moreover, the local conditions are in a sense the most natural
and simple formalism possible to represent the result of queries on data with
labeled nulls. The local conditions just represent the information necessary

162 MANAGING AND MINING UNCERTAIN DATA

to preserve correctness and can also be understood to be just data provenance
information [10].

U-Relational Databases. In our model, probabilistic databases are finite
sets of possible worlds with probability weights. It follows that each variable
naturally has a finite domain, the set of values it can take across all possible
worlds. This has several consequences. First, variables can be considered fi-
nite random variables. Second, only allowing for variables to occur in local
conditions, but not in attribute fields of the tuples, means no restriction of ex-
pressiveness. Moreover, we may assume without loss of generality that each
atomic condition is of the form z = c (i.e., we never have to compare vari-
ables).

If we start with a c-table in which each local condition is a conjunction of
no more than k atomic conditions, then a positive relational algebra query on
this uncertain database will result in a c-table in which each local condition is
a conjunction of no more than &’ atoms, where £k’ only depends on k and the
query, but not on the data. If £ is small, it is reasonable to actually hard-wire
it in the schema, and represent local conditions by & pairs of columns to store
atoms of the form =z = c.

These are the main ideas of our representation system, U-relations. Ran-
dom variables are assumed independent in the current MayBMS system, but
as we will see, this means no restriction of generality. Nevertheless, it is one
goal of future work to support graphical models for representing more corre-
lated joint probability distributions below our U-relations. This would allow
us to represent learned distributions in the form of e.g. Bayesian networks di-
rectly in the system (without the need to map them to local conditions) and run
queries on top, representing the inferred correlations using local conditions.
The latter seem to be better suited for representing the incremental correla-
tions constructed by queries.

One further idea employed in U-relational databases is to use vertical par-
titioning [9, 26] for representing attribute-level uncertainty, i.e., to allow to
decompose tuples in case several fields of a tuple are independently uncertain.

EXAMPLE 6.5 The set of tables shown in Figure 6.3 is a U-relational database
representation for the census data scenario of Example 6.4, extended by suit-
able probabilities for the various alternative values the fields can take (repre-
sented by table). O

Formally, a U-relational database consists of a set of independent random
variables with finite domains (here, =, y,v,w), a set of U-relations, and a
ternary table W (the world-table) for representing distributions. The W table
stores, for each variable, which values it can take and with what probability.
The schema of each U-relation consists of a set of pairs (V;, D;) of condition

MayBMS: A System for Managing Large Probabilistic Databases 163

Upnv] [TID|[N
Urissn) |V D | TID | SSN t1 | Smith
z 1 t1 185 to | Brown

xr 2| t | 785 W[V D[P

y 1| to | 185 T 1 4

y 2 to 186 r 216

Upm |V D |TID | M y 1.7
v 1 t1 1 Yy 2 3

vo2| t |2 v 1.8

w 1] &t |1 v 2|2
w2ty |2 w 1|25
w3ty)3 w 2|25
w4t |4 w 3| .25

w 4 | .25

Figure 6.3. A U-relational database.

columns representing variable assignments and a set of value columns for rep-
resenting the data values of tuples.

The semantics of U-relational databases is as follows. Each possible world
is identified by a valuation 6 that assigns one of the possible values to each
variable. The probability of the possible world is the product of weights of
the values of the variables. A tuple of a U-relation, stripped of its condition
columns, is in a given possible world if its variable assignments are consistent
with 6. Attribute-level uncertainty is achieved through vertical decomposition-
ing, so one of the value columns is used for storing tuple ids and undoing the
vertical decomposition on demand.

ExaMPLE 6.6 Consider the U-relational database of Example 6.5 and the
possible world
0={z—1l,y—2,v— 1w 1}

The probability weight of this world is .4 - .3 - .8 - .25 = .024. By removing
all the tuples whose condition columns are inconsistent with 6 and projecting
away the condition columns, we obtain the relations

R[SSN] | TID | SSN R[M] | TID | M R[N] | TID | N
t1 185 t1 1 t1 Smith
to 186 to 1 to Brown

which are just a vertically decomposed version of R in the chosen possible
world. Thatis, R is R[SSN|x R[M] < R[N] in that possible world. O

164 MANAGING AND MINING UNCERTAIN DATA

Properties of U-relations. U-relational databases are a complete repre-
sentation system for (finite) probabilistic databases [3]. This means that any
probabilistic database can be represented in this formalism. In particular, it
follows that U-relations are closed under query evaluation using any generic
query language, i.e., starting from a represented database, the query result can
again be represented as a U-relational database. Completeness also implies that
any (finite) correlation structure among tuples can be represented, despite the
fact that we currently assume that the random variables that our correlations are
constructed from (using tuple conditions) are independent: The intuition that
some form of graphical model for finite distributions may be more powerful
(i.e., able to represent distributions that cannot be represented by U-relations)
is false.

Historical Note. The first prototype of MayBMS [5, 7, 25] did not use
U-relations for representations, but a different representation system called
world-set decompositions [5]. These representations are based on factoriza-
tions of the space of possible worlds. They can also be thought of as shallow
Bayesian networks. The problem with this approach is that some selection op-
erations can cause an exponential blowup of the representations. This problem
is not shared by U-relations, even though they are strictly more succinct than
world-set decompositions. This was the reason for introducing U-relations in
[3] and developing a new prototype of MayBMS based on U-relations.

6. Conceptual Query Evaluation, Rewritings, and
Asymptotic Efficiency

This section gives a complete solution for efficiently evaluating a large frag-
ment of probabilistic world-set algebra using relational database technology.
Then we discuss the evaluation of the remaining operations of probabilistic
WSA, namely difference and tuple confidence. Finally, an overview of known
worst-case computational complexity results is given.

Translating queries down to the representation relations. Let rep be
the representation function, which maps a U-relational database to the set of
possible worlds it represents. Our goal is to give a reduction that maps any
positive relational algebra query () over probabilistic databases represented as
U-relational databases T to an equivalent positive relational algebra query @Q
of polynomial size such that

rep(Q(T)) = {Q(A") | A" € rep(T)}

where the A are relational database instances (possible worlds).
The following is such a reduction, which maps the operations of positive
relational algebra, poss, and repair-key to relational algebra over U-relational

MayBMS: A System for Managing Large Probabilistic Databases 165

representations:
[R xSl = T, vDuus VD)—=VD,sch(R),sch(s)
UR Py, VD consistent with Us VD US)
[ogR] = 04(Ur)
[7gR] = myp 5(R)
[RUS] = UrUUsg
[poss(R)] = moen(r)(Ur)-

The consistency test for conditions can be expressed simply using Boolean
conditions (see Example 6.8, and [3]). Note that the product operation, applied
to two U-relations of k and [(V;, D;) column pairs, respectively, returns a
U-relation with k& + [(V;, D;) column pairs.

For simplicity, let us assume that the elements of ™ g>(U Rr) are not yet
used as variable names. Moreover, let us assume that the B value column
of Ug, which is to provide weights for the alternative values of the columns
sch(R) — (A U B) for each tuple @ in 7T<A»>(UR), are probabilities, i.e., sum
up to one for each @ and do not first have to be normalized as described
in the definition of the semantics of repair-key in Section 4. The operation
S := repair-key ;. 5 (R) for complete relation R is translated as

Us := T (&) v ((seh(R)~)~ (B)) =D seh(R) VR
with

Wi=WUT 5 v (seh(r)—A)—{B})—D,B—PUR"

Here, (-) turns tuples of values into atomic values that can be stored in single
fields.

That is, repair-key starting from a complete relation is just a projection/copying
of columns, even though we may create an exponential number of possible
worlds.

ExaMPLE 6.7 Consider again the relation R of Example 6.1, which rep-
resents information about tossing a biased coin twice, and the query S :=
repair-key o sarprop (12)- The result is

Us |V D | Toss Face FProb WiV D P
1 H 1 H 4 1 H 4
1 T 1 T .6 1 T .6
2 H 2 H 4 2 H 4
2 T 2 T .6 2 T 6

as a U-relational database. O

166 MANAGING AND MINING UNCERTAIN DATA

The projection technique only works if the relation that repair-key is ap-
plied to is certain. However, for practical purposes, this is not a restriction of
expressive power (cf. [21], and see also Example 6.3).

The next example demonstrates the application of the rewrite rules to com-
pile a query down to relational algebra on the U-relations.

EXAMPLE 6.8 We revisit our census example with U-relations Ugr(55) and
Ugin)- We ask for possible names of persons who have SSN 185,
poss(mn(0ssn=1s85(R))). To undo the vertical partitioning, the query is evalu-
ated as poss(my(0ssn=185(R[SSN] < R[N]))). We rewrite the query using
our rewrite rules into 7 (0ssn=185(Ur[ssn] >Mynrg Ur[n))), Where) ensures
that we only generate tuples that occur in some worlds,

Y := (Ugissn)-V = Ugn)-V = Ugssn)-D = Ugn-D),
and ¢ ensures that the vertical partitioning is correctly undone,

Properties of the relational-algebra reduction. The relational algebra
rewriting down to positive relational algebra on U-relations has a number of
nice properties. First, since relational algebra has PTIME (even ACy) data
complexity, the query language of positive relational algebra, repair-key, and
poss on probabilistic databases represented by U-relations has the same. The
rewriting is in fact a parsimonious translation: The number of algebra opera-
tions does not increase and each of the operations selection, projection, join,
and union remains of the same kind. Query plans are hardly more compli-
cated than the input queries. As a consequence, we were able to observe that
off-the-shelf relational database query optimizers do well in practice [3].

Thus, for all but two operations of probabilistic world-set algebra, it seems
that there is a very efficient solution that builds on relational database tech-
nology. These remaining operations are confidence computation and relational
algebra difference.

Approximate confidence computation. To compute the confidence in a
tuple of data values occurring possibly in several tuples of a U-relation, we
have to compute the probability of the disjunction of the local conditions of all
these tuples. We have to eliminate duplicate tuples because we are interested
in the probability of the data tuples rather than some abstract notion of tuple
identity that is really an artifact of our representation. That is, we have to
compute the probability of a DNF, i.e., the sum of the weights of the worlds
identified with valuations 6 of the random variables such that the DNF becomes
true under . This problem is #P-complete [16, 13]. The result is not the sum

MayBMS: A System for Managing Large Probabilistic Databases 167

of the probabilities of the individual conjunctive local conditions, because they
may, intuitively, “overlap”.

EXAMPLE 6.9 Consider a U-relation with schema {V, D} (representing a
nullary relation) and two tuples (x, 1), and (y, 1), with the TV relation from
Example 6.5. Then the confidence in the nullary tuple () is Pr[fz — 1V y —
1] =Pr[z — 1]+ Prly — 1] = Prjz — 1 Ay — 1] = .82. O

Confidence computation can be efficiently approximated by Monte Carlo
simulation [16, 13, 22]. The technique is based on the Karp-Luby fully
polynomial-time randomized approximation scheme (FPRAS) for counting the
number of solutions to a DNF formula [19, 20, 12]. There is an efficiently
computable unbiased estimator that in expectation returns the probability p of
a DNF of n clauses (i.e., the local condition tuples of a Boolean U-relation)
such that computing the average of a polynomial number of such Monte Carlo
steps (= calls to the Karp-Luby unbiased estimator) is an (e, d)-approximation
for the probability: If the average p is taken over at least [3 - n - log(2/6)/€?]
Monte Carlo steps, then Pr[| p—p| >e- p] < 4. The paper [12] improves upon
this by determining smaller numbers (within a constant factor from optimal)
of necessary iterations to achieve an (e, §)-approximation.

Avoiding the difference operation. Difference R — S is conceptually
simple on c-tables. Without loss of generality, assume that .S does not con-
tain tuples (@, 1), ..., (@, 1) that are duplicates if the local conditions are
disregarded. (Otherwise, we replace them by (a@, v V --- V 1,).) For each
tuple (@, ¢) of R, if (@,) is in S then output (a@, ¢ A —)); otherwise, output
(@, ¢). Testing whether a tuple is possible in the result of a query involving
difference is already NP-hard [2]. For U-relations, we in addition have to turn
¢ A —p into a DNF to represent the result as a U-relation. This may lead to
an exponentially large output and a very large number of VD columns may
be required to represent the conditions. For these reasons, MayBMS currently
does not implement the difference operation.

In many practical applications, the difference operation can be avoided. Dif-
ference is only hard on uncertain relations. On such relations, it can only lead
to displayable query results in queries that close the possible worlds semantics
using conf, computing a single certain relation. Probably the most important
application of the difference operation is for encoding universal constraints,
for example in data cleaning. But if the confidence operation is applied on top
of a universal query, there is a trick that will often allow to rewrite the query
into an existential one (which can be expressed in positive relational algebra
plus conf, without difference) [22].

ExaMPLE 6.10 The example uses the census scenario and the uncertain re-
lation R discussed earlier. Consider the query of finding, for each TID ¢; and

168 MANAGING AND MINING UNCERTAIN DATA

SSN s, the confidence in the statement that s is the correct SSN for the indi-
vidual associated with the tuple identified by ¢;, assuming that social security
numbers uniquely identify individuals, that is, assuming that the functional de-
pendency SSN — TID (subsequently called) holds. In other words, the
query asks, for each TID ¢; and SSN s, to find the probability Pr[¢ | ¢], where
¢(ti,s) =3I € Rt.TID = t; Nt.SSN = s. Constraint ¢ can be thought
of as a data cleaning constraint that ensures that the SSN fields in no two dis-
tinct census forms (belonging to two different individuals) are interpreted as
the same number.

We compute the desired conditional probabilities, for each possible pair of a
TID and an SSN, as Pr[¢ | ©)] = Pr[¢Atp]/Pr[t)]. Here ¢ is existential (express-
ible in positive relational algebra) and ¢ is an equality-generating dependency
(i.e., a special universal query) [1]. The trick is to turn relational difference
into the subtraction of probabilities, Pr[¢ A ¢)] = Pr[¢] — Pr[¢p A —¢)] and
Pr[¢)] = 1 — Pr[—¢)], where =¢p = 3t, ¢’ € Rt.SSN = t/.SSN Nt.TID #
t'.TID is existential (with inequalities). Thus —) and ¢ A —) are express-
ible in positive relational algebra. This works for a considerable superset of
the equality-generating dependencies [22], which in turn subsume useful data
cleaning constraints, such as conditional functional dependencies [11].

Let R, be the relational algebra expression for —),

7g(R D71 D=TTID' ASSN£SSN' PTID—TID';SSN—SSN'(R)),

and let S be

ppﬂpd) (COl’lf(R)) > ,Opﬁqu/\ﬁw (COIlf(R X R_\w)) X ppﬂpﬁw (COIlf(Rﬂﬂ)).

The overall example query can be expressed as

T:= WTID,SSN,(P¢—P¢/\ﬁw)/(1—Pﬁw)—’P(S)'

For the example table R given above, S and T are

S| TID SSN Py Pyr—py Py T |TID SSN P
t1 185 4 .28 28 t 185 1/6
ty 785 6 0 28 t 785 5/6
ta 185 .7 .28 28 ta 185 712
to 186 3 0 28 ta 186 5/12
Complexity Overview. Figure 6.4 gives an overview over the known

complexity results for the various fragments of probabilistic WSA. Two differ-
ent representations are considered, non-succinct representations that basically
consist of enumerations of the possible worlds [6] and succinct representations:
U-relational databases. In the non-succinct case, only the repair-key operation,
which may cause an exponential explosion in the number of possible worlds,

MayBMS: A System for Managing Large Probabilistic Databases 169

[Language Fragment [Complexity [Reference]
On non-succinct representations:
RA + conf + possible + choice-of | in PTIME (SQL) [22]
RA + possible + repair-key NP-&coNP-hard, | [6]
inPNP [21]
RA + possibleqy + repair-key PHIER-compl. [21]
On U-relations:
Pos.RA + repair-key + possible in ACO [3]
RA + possible co-NP-hard Abiteboul et al. [2]
Conjunctive queries + conf #P-hard Dalvi, Suciu [13]
Probabilistic WSA in P#P [22]
Pos.RA + repair-key + possible
+ approx.conf + egds in PTIME [22]

Figure 6.4. Complexity results for (probabilistic) world-set algebra. RA denotes relational
algebra.

makes queries hard. All other operations, including confidence computation,
are easy. In fact, we may add much of SQL — for instance, aggregations — to
the language and it still can be processed efficiently, even by a reduction of the
query to an SQL query on a suitable non-succinct relational representation.

When U-relations are used as representation system, the succinctness causes
both difference [2] and confidence computation [13] independently to make
queries NP-hard. Full probabilistic world-set algebra is essentially not harder
than the language of [13], even though it is substantially more expressive.

It is worth noting that repair-key by itself, despite the blowup of possible
worlds, does not make queries hard. For the language consisting of positive
relational algebra, repair-key, and poss, we have shown by construction that it
has PTIME complexity: We have given a positive relational algebra rewriting
to queries on the representations earlier in this section. Thus queries are even
in the highly parallelizable complexity class AC.

The final result in Figure 6.4 concerns the language consisting of the pos-
itive relational algebra operations, repair-key, (¢, d)-approximation of confi-
dence computation, and the generalized equality generating dependencies of
[22] for which we can rewrite difference of uncertain relations to difference of
confidence values (see Example 6.10). The result is that queries of that lan-
guage that close the possible worlds semantics — i.e., that use conf to compute
a certain relation — are in PTIME overall. In [22], a stronger result than just
the claim that each of the operations of such a query is individually in PTIME
is proven. It is shown that, leaving aside a few pitfalls, global approximation
guarantees can be achieved in polynomial time, i.e., results of entire queries in
this language can be approximated arbitrarily closely in polynomial time.

This is a non-obvious result because the query language is compositional
and selections can be made based on approximated confidence values. Clearly,

170 MANAGING AND MINING UNCERTAIN DATA

in a query op—g 5(approx.conf(R)), an approximated P value will almost al-
ways be slightly off, even if the exact P value is indeed 0.5, and the selection
of tuples made based on whether P is 0.5 is nearly completely arbitrary. In
[22, 15], it is shown that this is essentially an unsurmountable problem. All
we can tell is that if P is very different from 0.5, then the probability that
the tuple should be in the answer is very small. If atomic selection condi-
tions on (approximated) probabilities usually admit ranges such as P < 0.5 or
0.4 < P < 0.6, then query approximation will nevertheless be meaningful: we
are able to approximate query results unless probability values are very close
or equal to the constants used as interval bounds. (These special points are
called singularities in [22].)

The results of [22] have been obtained for powerful conditions that may use
arithmetics over several approximated attributes, which is important if con-
ditional probabilities have to be checked in selection conditions or if several
probabilities have to be compared. The algorithm that gives overall (¢, d)-
approximation guarantees in polynomial time is not strikingly practical. Fur-
ther progress on this has been made in [15], but more work is needed.

7. The MayBMS Query and Update Language

This section describes the query and update language of MayBMS, which
is based on SQL. In fact, our language is a generalization of SQL on classi-
cal relational databases. To simplify the presentation, a fragment of the full
language supported in MayBMS is presented here.

The representation system used in MayBMS, U-relations, has classical re-
lational tables as a special case, which we will call typed-certain (t-certain)
tables in this section. Tables that are not t-certain are called uncertain. This
notion of certainty is purely syntactic, and cert(R) = Tycp(g) (0 p=1(conf(R)))
may well be equal to the projection of a U-relation Uy, to its attribute (non-
condition) columns despite R not being t-certain according to this definition.

Aggregates. In MayBMS, full SQL is supported on t-certain tables. Be-
yond t-certain tables, some restrictions are in place to assure that query evalu-
ation is feasible. In particular, we do not support the standard SQL aggregates
such as sum or count on uncertain relations. This can be easily justified: In
general, these aggregates will produce exponentially many different numerical
results in the various possible worlds, and there is no way of representing these
results efficiently. However, MayBMS supports a different set of aggregate
operations on uncertain relations. These include the computations of expected
sums and counts (using aggregates esum and ecount).

Moreover, the confidence computation operation is an aggregate in the
MayBMS query language. This is a deviation from the language flavor of

MayBMS: A System for Managing Large Probabilistic Databases 171

our algebra, but there is a justification for this. The algebra presented earlier
assumed a set-based semantics for relations, where operations such as projec-
tions automatically remove duplicates. In the MayBMS query language, just
like in SQL, duplicates have to be eliminated explicitly, and confidence is nat-
urally an aggregate that computes a single confidence value for each group of
tuples that agree on (a subset of) the non-condition columns. By using aggre-
gation syntax for conf and not supporting select distinct onuncertain
relations, we avoid a need for conditions beyond the special conjunctions that
can be stored with each tuple in U-relations.
All the aggregates on uncertain tables produce t-certain tables.

Duplicate tuples. SQL databases in general support multiset tables, i.e.,
tables in which there may be duplicate tuples. There is no conceptual difficulty
at all in supporting multiset U-relations. In fact, since U-relations are just
relations in which some columns are interpreted to have a special meaning
(conditions), just storing them in a standard relational database management
system (which supports duplicates in tables) yields support for multiset U-
relations.

Syntax. The MayBMS query language is compositional and built from
uncertain and t-certain queries. The uncertain queries are those that produce
a possibly uncertain relation (represented by a U-relation with more than zero
V and D columns). Uncertain queries can be constructed, inductively, from
t-certain queries, select—from-where queries over uncertain tables, the
multiset union of uncertain queries (using the SQL union construct), and
statements of the form:

repair key <attributes> in <t-certain-query>
weight by <attribute>

Note that repair-key is a query, rather than an update statement. The
select—from—where queries may use any t-certain subqueries in the con-
ditions, plus uncertain subqueries in atomic conditions of the form <tuple>
in <uncertain—-query> that occur positively in the condition. (That is,
if the condition is turned into DNF, these literals are not negated.)

The t-certain queries (i.e., queries that produce a t-certain table) are given
by

= all constructs of SQL on t-certain tables and t-certain subqueries, ex-
tended by a new aggregate

argmax (<argument-attribute>, <value-attribute>)

which outputs all the argument—-attribute values in the current
group (determined by the group-by clause) whose tuples have a max-

172 MANAGING AND MINING UNCERTAIN DATA

imum value—-attribute value within the group. Thus, this is the
typical argmax construct from mathematics added as an SQL extension.

m select—from—where—group—by on uncertain queries using aggre-
gates conf, esum, and ecount, but none of the standard SQL aggre-
gates. There is an exact and an approximate version of the conf aggre-
gate. The latter takes two parameters € and ¢ (see the earlier discussion
of the Karp-Luby FPRAS).

The aggregates esum and ecount compute expected sums and counts
across groups of tuples. While it may seem that these aggregates are at least as
hard as confidence computation (which is #P-hard), this is in fact not so. These
aggregates can be efficiently computed exploiting linearity of expectation. A

query

select A, esum(B) from R group by A;

is equivalent to a query

select A, sum(B % P) from R’ group by A;

where R’ is obtained from the U-relation of R by replacing each local con-
dition V1, Dy, ..., Vi, Dy, by the probability Pr[V; = Dy A --- AV = Dy,
not eliminating duplicates. That is, expected sums can be computed efficiently
tuple by tuple, and only require to determine the probability of a conjunction,
which is easy, rather than a DNF of variable assignments as in the case of the
conft aggregate. The ecount aggregate is a special case of e sum applied to
a column of ones.

ExaMPLE 6.11 The query of Example 6.2 can be expressed in the query lan-
guage of MayBMS as follows. Let Rbe repair key in Coins weight
by Count and let S be

select R.Type, Toss, Face from
(repair key Type, Toss
in (select x from Faces, Tosses)
weight by FProb) S0, R

where R.Type = S0.Type;

It is not hard to see that mross Face(S) # FEv exactly if there exist tuples
§e€ S,i e Fuvsuch that 5. Toss = ¢.Toss and §.Face # t.Face. Let C be

select S.Type from S, Ev where
S.Toss = Ev.Toss and S.Face <> Ev.Face;

Then we can compute Q using the trick of Example 6.10 as

select Type, (P1-P2)/(1-P3) as P
from (select Type, conf() as Pl from S group by Type) Q1,

MayBMS: A System for Managing Large Probabilistic Databases 173

(select Type, conf() as P2 from C group by Type) Q2,
(select conf() as P3 from C) Q3
where Ql.Type = Q2.Type;

The argmax aggregate can be used to compute maximum-a-posteriori (MAP)
and maximum-likelihood estimates. For example, the MAP coin type
argmaxpy e Pr[evidence is twice heads A coin type is Type] can be computed
as select argmax (Type, P) from Q because the normalizing factor
(1-P3) has no impact on argmax. Thus, the answer in this example is the
double-headed coin. (See table @) of Figure 6.1: The fair coin has P = 1/3,
while the double-headed coin has P = 2/3.)

The maximum likelihood estimate

argmaxr,,., Prlevidence is twice heads | coin type is Type]

can be computed as

select argmax (Q.Type, Q.P/R’.P) from Q,
(select Type, conf() as P from R) R’
where Q.Type = R’ .Type;

Here, again, the result is 2headed, but this time with likelihood 1. (The fair
coin has likelihood 1/4). U

Updates. MayBMS supports the usual schema modification and update
statements of SQL. In fact, our use of U-relations makes this quite easy. An
insertion of the form

insert into <uncertain-table> (<uncertain—-query>);

is just the standard SQL insertion for tables we interpret as U-relations.
Thus, the table inserted into must have the right number (that is, a sufficient
number) of condition columns. Schema-modifying operations such as

create table <uncertain-table> as (<uncertain-query>) ;

are similarly straightforward. A deletion

delete from <uncertain-table> where <condition>;

admits conditions that refer to the attributes of the current tuple and may use
t-certain subqueries. Updates can be thought of as combinations of deletions
and insertions, but in practice there are of course ways of implementing updates
much more efficiently.

174 MANAGING AND MINING UNCERTAIN DATA

Conditioning. Apart from the basic update operations of SQL, MayBMS
also supports an update operation assert for conditioning, or knowledge
compilation. The assert operation takes a Boolean positive relational algebra
query ¢ in SQL syntax as an argument, i.e., a select-from-where-union query
without aggregation. It conditions the database using this constraint ¢, i.e.,
conceptually it removes all the possible worlds in which ¢ evaluates to false
and renormalizes the probabilities so that they sum up to one again.
Formally, the semantics is thus

Jassert(p)] (W) := {(Ru, ..., Rk,p/po) | (R1,...,Rk,p) € W,
(Ri,...,Rp) F ¢, po = > P}

(R{l’...,R;‘:,p)GW7(R&,...,R;;)':d)

If the condition is inconsistent with the database, i.e., would delete all possible
worlds when executed, the assert operation fails with an error (and does not
modify the database).

EXAMPLE 6.12 Consider the four possible worlds for the R[SSN] relation
of the census example.

R[SSN]' [TID SSN R[SSNJ? | TID SSN
t; 185 tp 185
ty 185 ta 186

R[SSN]? | TID SSN R[SSN]* | TID SSN
tp 785 t1 785
ty 185 ty 186

To assert the functional dependency R : SSN — T1D, which states that
no two individuals can have the same SSN, we can express the functional de-
pendency as a Boolean query Q and execute assert(QQ). This deletes the first of
the four worlds and renormalizes the probabilities to sum up to one. O

Knowledge compilation using assert has obvious applications in areas such
as data cleaning, where we may start with an uncertain database and then chase
[1] a set of integrity constraints to reduce uncertainty. The assert operation
can apply a set of constraints to a probabilistic database and materialize the
cleaned, less uncertain database.

The assert operation is at least as hard as exact confidence operation (it is
also practically no harder [23], and essentially the same algorithms can be used
for both problems), but differently from confidence computation, the result
has to be computed exactly and currently there is no clear notion of useful
approximation to a cleaned database.

MayBMS: A System for Managing Large Probabilistic Databases 175

8. The MayBMS System

The MayBMS system has been under development since 2005 and has un-
dergone several transformations. From the beginning, our choice was to de-
velop MayBMS as an extension of the Postgres server backend. Two proto-
types have been demonstrated at ICDE 2007 [7] and VLDB 2007 [8]. Cur-
rently, MayBMS is approaching its first release. MayBMS is open source and
the source code is available through

http://maybms.sourceforge.net
The academic homepage of the MayBMS project is at
http://www.cs.cornell.edu/database/maybms/

Test data generators and further resources such as main-memory implemen-
tations of some of our algorithms have been made available on these Web pages
as well.

We are aware of several research prototype probabilistic database manage-
ment systems that are built as front-end applications of Postgres, but of no
other system that aims to develop a fully integrated system. Our backend is ac-
cessible through several APIs, with efficient internal operators for computing
and managing probabilistic data.

Representations, relational encoding, and query optimization. Our rep-
resentation system, U-relations, is basically implemented as described earlier,
with one small exception. With each pair of columns V;, D; in the condi-
tion, we also store a column P; for the probability weight of alternative D; for
variable V;, straight from the W relation. While the operations of relational
algebra, as observed earlier, do not use probability values, confidence com-
putation does. This denormalization (the extension by P; columns) removes
the need to look up any probabilities in the W table in our exact confidence
computation algorithms.

Our experiments show that the relational encoding of positive relational al-
gebra which is possible for U-relations is so simple — it is a parsimonious trans-
formation, i.e., the number of relational algebra operations is not increased —
that the standard Postgres query optimizer actually does well at finding good

query plans (see [3]).

Approximate confidence computation. MayBMS implements both an
approximation algorithm and several exact algorithms for confidence com-
putation. The approximation algorithm is a combination of the Karp-Luby
unbiased estimator for DNF counting [19, 20] in a modified version adapted
for confidence computation in probabilistic databases (cf. e.g. [22]) and the

176 MANAGING AND MINING UNCERTAIN DATA

U|Vi Dy Vo Dy
z 1 =z 1
v 2 oy 1 O.ég78
z 2 z 1
w 1 v 1 {z, y,Z/ {u, v}
v 2 u 2 0.308 0.65
S3) S3)
wiv.Dbp P $|—>1/ \:c»—>2 ugl/ \u»—3>2
z 1 .1
z 2 4 022 H
z 3 .5
y 1 .2 {y} / \ {z} vi31
z 1 4
z 2 .6
u 1.7 ye 241
u 2 .3
v 1 5
v 2 5

Figure 6.5. Exact confidence computation.

Dagum-Karp-Luby-Ross optimal algorithm for Monte Carlo estimation [12].
The latter is based on sequential analysis and determines the number of invo-
cations of the Karp-Luby estimator needed to achieve the required bound by
running the estimator a small number of times to estimate its mean and vari-
ance. We actually use the probabilistic variant of a version of the Karp-Luby
estimator described in the book [27] which computes fractional estimates that
have smaller variance than the zero-one estimates of the classical Karp-Luby
estimator.

Exact confidence computation. Our exact algorithm for confidence com-
putation is described in [23]. It is based on an extended version of the Davis-
Putnam procedure [14] that is the basis of the best exact Satisfiability solvers
in Al. Given a DNF (of which each clause is a conjunctive local condition), the
algorithm employs a combination of variable elimination (as in Davis-Putnam)
and decomposition of the DNF into independent subsets of clauses (i.e., sub-
sets that do not share variables), with cost-estimation heuristics for choosing
whether to use the former (and for which variable) or the latter.

ExXAMPLE 6.13 Consider the U-relation U representing a nullary table and
the W table of Figure 6.5. The local conditions of U are ® = {{z +— 1}, {z —
2y—1h{x—2,z— 1}, {u— 1,v— 1}, {ur 2}}.

MayBMS: A System for Managing Large Probabilistic Databases 177

The algorithm proceeds recursively. We first choose to exploit the fact that
the @ can be split into two independent sets, the first using only the variables
{z,y, 2z} and the second only using {u,v}. We recurse into the first set and
eliminate the variable x. This requires us to consider two cases, the alternative
values 1 and 2 for = (alternative 3 does not have to be considered because in
each of the clauses to be considered, « is mapped to either 1 or 2. In the case
that = maps to 2, we eliminate x from the set of clauses that are compatible
with the variable assignment x — 2, i.e., the set {{y — 1},{z — 1}}, and
can decompose exploiting the independence of the two clauses. Once y and z
are eliminated, respectively, the conditions have been reduced to “true”. The
alternative paths of the computation tree, shown in Figure 6.5, are processed
analogously.

On returning from the recursion, we compute the probabilities of the sub-
trees in the obvious way. For two independent sets Sq,.S2 of clauses with
probabilities p; and po, the probability of S; U Sy is 1— (1 —py)- (1 —p2). For
variable elimination branches, the probability is the sum of the products of the
probabilities of the subtrees and the probabilities of the variable assignments
used for elimination.

It is not hard to verify that the probability of ®, i.e., the confidence in tuple
(), is 0.7578. O

Our exact algorithm solves a #P-hard problem and exhibits exponential run-
ning time in the worst case. However, like some other algorithms for combina-
torial problems, this algorithm shows a clear easy-hard-easy pattern. Outside
a narrow range of variable-to-clause count ratios, it very pronouncedly out-
performs the (polynomial-time) approximation techniques [23]. It is straight-
forward to extend this algorithm to condition a probabilistic database (i.e., to
compute “assert”) [23].

Hierarchical queries. The tuple-independent databases are those proba-
bilistic databases in which, for each tuple, a probability can be given such that
the tuple occurs in the database with that probability and the tuples are uncorre-
lated. It is known since the work of Dalvi and Suciu [13] that there is a class of
conjunctive queries, the hierarchical queries (), for which computing conf(Q))
exactly on tuple-independent probabilistic databases is feasible in polynomial
time.

In fact, these queries can essentially be computed using SQL queries that
involve several nested aggregate-group-by queries. On the other hand, it was
also shown in [13] that for any conjunctive query () that is not hierarchical,
computing conf(()) is #P-hard with respect to data complexity. Dalvi and Suciu
introduce the notion of safe plans that are at once certificates that a query is
hierarchical and query plans with aggregation operators that can be used for
evaluating the queries.

178 MANAGING AND MINING UNCERTAIN DATA

Dan Olteanu’s group at Oxford has recently extended this work in three
ways, and implemented it in MayBMS [17]. First, the observation is used
that in the case that a query has a safe plan, it is not necessary to use that
safe plan for query evaluation. Instead we can choose our plan from a large
set of possible plans, some of which will be much better and use fewer levels
of aggregation than the canonical safe plans of [13]. Second, a special low-
level operator for processing these aggregations has been implemented, which
reduces the number of data scans needed [17]. Finally, the fact is exploited
that the #P-hardness result for any single nonhierarchical query of [13] only
applies as long as the problem is that of evaluating the query on an arbitrary
probabilistic database of suitable schema. If further information about per-
missible databases is available in the form of functional dependencies that the
databases must satisfy, then a larger class of queries can be processed by our
approach.

Olteanu and Huang [24] have also obtained results on polynomial-time con-
fidence computation on fragments of conjunctive queries with inequalities, us-
ing a powerful framework based on Ordered Binary Decision Diagrams.

Updates, concurrency control and recovery. As a consequence of our
choice of a purely relational representation system, these issues cause surpris-
ingly little difficulty. U-relations are just relational tables and updates are just
modifications of these tables that can be expressed using the standard SQL
update operations. However, finding a suitable programming model and API
for efficiently supporting programming access without exposing the user ap-
plications to internals of the representation system (which will differ among
the various probabilistic DBMS) is a difficult problem. A full statement of this
problem and some first results can be found in [4].

9. Conclusions and Outlook

The aim of the MayBMS system is to be the first robust and scalable prob-
abilistic database system that can be used in real applications. By our choice
of running the entire project as an open-source project with the goal of cre-
ating mature code and serious documentation for developers, we hope to be
able to accelerate progress in the field by making a testbed for new algorithms
available to the research community.

Our possibly most important goal is to extend MayBMS to support continu-
ous distributions. The path towards this goal is clearly sketched by our use of,
essentially, a class of conditional tables for data representation. Our represen-
tations will not be hard to generalize, but some of the advantages of U-relations
will be lost. There will be a need for a special column type “condition” for stor-
ing the more general local conditions needed, which has implications on oper-
ator implementations and will require us to study query optimization closely:

MayBMS: A System for Managing Large Probabilistic Databases 179

We will not be able to rely as much on standard query optimizers to produce
good plans as we currently do.

Another major goal is an extensive and careful experimental comparison
of ours versus the graphical models approach, and to understand where the
sweet spots of the two directions lie. More generally, it will be important to
start working on a fair benchmark for probabilistic databases and, ideally, Al
systems, even though it may still be too early to see the full set of dimensions
that the space of systems will have, which is necessary to be able to define a
benchmark that will remain fair and useful for some time.

A final grand goal is a query and update language specification that is a
widely acceptable candidate for a future standard. This will be essential for
wide acceptance of probabilistic databases. We expect our past work on the
foundations of query algebras [6, 22, 21] to be useful in such an effort.

References

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-
Wesley, 1995.

[2] S. Abiteboul, P. Kanellakis, and G. Grahne. “On the Representation and
Querying of Sets of Possible Worlds”. Theor. Comput. Sci., 78(1):158—
187, 1991.

[3] L. Antova, T. Jansen, C. Koch, and D. Olteanu. “Fast and Simple Rela-
tional Processing of Uncertain Data”. In Proc. ICDE, 2008.

[4] L. Antova and C. Koch. “On APIs for Probabilistic Databases”. In Proc.
2nd International Workshop on Management of Uncertain Data, Auck-
land, New Zealand, 2008.

[5] L. Antova, C. Koch, and D. Olteanu. “101%° Worlds and Beyond: Ef-
ficient Representation and Processing of Incomplete Information”. In
Proc. ICDE, 2007.

[6] L. Antova, C. Koch, and D. Olteanu. “From Complete to Incomplete
Information and Back”™. In Proc. SIGMOD, 2007.

[7]1 L. Antova, C. Koch, and D. Olteanu. “MayBMS: Managing Incomplete
Information with Probabilistic World-Set Decompositions”. In Proc.
ICDE, 2007.

[8] L. Antova, C. Koch, and D. Olteanu. “Query Language Support for In-
complete Information in the MayBMS System”. In Proc. VLDB, 2007.

[9] D. S. Batory. “On Searching Transposed Files”. ACM Trans. Database
Syst., 4(4):531-544, 1979.

[10] O. Benjelloun, A. D. Sarma, C. Hayworth, and J. Widom. “An Introduc-
tion to ULDBs and the Trio System”. IEEE Data Engineering Bulletin,
2006.

182 MANAGING AND MINING UNCERTAIN DATA

[11] P. Bohannon, W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis. “Con-
ditional Functional Dependencies for Data Cleaning”. In Proc. ICDE,
2007.

[12] P. Dagum, R. M. Karp, M. Luby, and S. M. Ross. “An Optimal Algorithm
for Monte Carlo Estimation”. SIAM J. Comput., 29(5):1484—1496, 2000.

[13] N. Dalvi and D. Suciu. “Efficient query evaluation on probabilistic
databases”. VLDB Journal, 16(4):523-544, 2007.

[14] M. Davis and H. Putnam. “A Computing Procedure for Quantification
Theory”. Journal of ACM, 7(3):201-215, 1960.

[15] M. Goetz and C. Koch. “A Compositional Framework for Complex
Queries over Uncertain Data”, 2008. Under submission.

[16] E. Gridel, Y. Gurevich, and C. Hirsch. “The Complexity of Query Reli-
ability”. In Proc. PODS, pages 227-234, 1998.

[17] J. Huang, D. Olteanu, and C. Koch. “Lazy versus Eager Query Plans for
Tuple-Independent Probabilistic Databases”. In Proc. ICDE, 2009. To
appear.

[18] T. Imielinski and W. Lipski. “Incomplete information in relational
databases”. Journal of ACM, 31(4):761-791, 1984.

[19] R. M. Karp and M. Luby. “Monte-Carlo Algorithms for Enumeration and
Reliability Problems”. In Proc. FOCS, pages 56—64, 1983.

[20] R. M. Karp, M. Luby, and N. Madras. “Monte-Carlo Approximation
Algorithms for Enumeration Problems”. J. Algorithms, 10(3):429—-448,
1989.

[21] C. Koch. “A Compositional Query Algebra for Second-Order Logic and
Uncertain Databases”. Technical Report arXiv:0807.4620, 2008.

[22] C. Koch. “Approximating Predicates and Expressive Queries on Proba-
bilistic Databases”. In Proc. PODS, 2008.

[23] C. Koch and D. Olteanu. “Conditioning Probabilistic Databases”. In
Proc. VLDB, 2008.

[24] D. Olteanu and J. Huang. Conjunctive queries with inequalities on prob-
abilistic databases. In Proc. SUM, 2008.

[25] D. Olteanu, C. Koch, and L. Antova. “World-set Decompositions: Ex-
pressiveness and Efficient Algorithms”. Theoretical Computer Science,
403(23):265-284, 2008.

REFERENCES 183

[26] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cherniack, M. Fer-
reira, E. Lau, A. Lin, S. Madden, E. J. O’Neil, P. E. O’Neil, A. Rasin,
N. Tran, and S. B. Zdonik. “C-Store: A Column-oriented DBMS”. In
Proc. VLDB, pages 553-564, 2005.

[27] V. V. Vazirani. Approximation Algorithms. Springer, 2001.

Chapter 7

UNCERTAINTY IN DATA INTEGRATION

Anish Das Sarma
Stanford University, CA, USA
anish@cs.stanford.edu

Xin Dong
AT&T Labs-Research, NJ, USA
lunadong@research.att.com

Alon Halevy
Google Inc., CA, USA
halevy@google.com

Abstract Data integration has been an important area of research for several years. In this
chapter, we argue that supporting modern data integration applications requires
systems to handle uncertainty at every step of integration. We provide a formal
framework for data integration systems with uncertainty. We define probabilistic
schema mappings and probabilistic mediated schemas, show how they can be
constructed automatically for a set of data sources, and provide techniques for
query answering. The foundations laid out in this chapter enable bootstrapping
a pay-as-you-go integration system completely automatically.

Keywords: data integration, uncertainty, pay-as-you-go, mediated schema, schema mapping

1. Introduction

Data integration and exchange systems offer a uniform interface to a mul-
titude of data sources and the ability to share data across multiple systems.
These systems have recently enjoyed significant research and commercial suc-
cess [18, 19]. Current data integration systems are essentially a natural exten-
sion of traditional database systems in that queries are specified in a structured

186 MANAGING AND MINING UNCERTAIN DATA

form and data are modeled in one of the traditional data models (relational,
XML). In addition, the data integration system has exact knowledge of how
the data in the sources map to the schema used by the data integration system.

In this chapter we argue that as the scope of data integration applications
broadens, such systems need to be able to model uncertainty at their core. Un-
certainty can arise for multiple reasons in data integration. First, the semantic
mappings between the data sources and the mediated schema may be approxi-
mate. For example, in an application like Google Base [17] that enables anyone
to upload structured data, or when mapping millions of sources on the deep
web [28], we cannot imagine specifying exact mappings. In some domains
(e.g., bioinformatics), we do not necessarily know what the exact mapping is.
Second, data are often extracted from unstructured sources using information
extraction techniques. Since these techniques are approximate, the data ob-
tained from the sources may be uncertain. Third, if the intended users of the
application are not necessarily familiar with schemata, or if the domain of the
system is too broad to offer form-based query interfaces (such as web forms),
we need to support keyword queries. Hence, another source of uncertainty is
the transformation between keyword queries and a set of candidate structured
queries. Finally, if the scope of the domain is very broad, there can even be
uncertainty about the concepts in the mediated schema.

Another reason for data integration systems to model uncertainty is to sup-
port pay-as-you-go integration. Dataspace Support Platforms [20] envision
data integration systems where sources are added with no effort and the system
is constantly evolving in a pay-as-you-go fashion to improve the quality of se-
mantic mappings and query answering. This means that as the system evolves,
there will be uncertainty about the semanantic mappings to its sources, its me-
diated schema and even the semantics of the queries posed to it.

This chapter describes some of the formal foundations for data integration
with uncertainty. We define probabilistic schema mappings and probabilis-
tic mediated schemas, and show how to answer queries in their presence. With
these foundations, we show that it is possible to completely automatically boot-
strap a pay-as-you-go integration system.

This chapter is largely based on previous papers [10, 6]. The proofs of the
theorems we state and the experimental results validating some of our claims
can be found in there. We also place several other works on uncertainty in data
integration in the context of the system we envision. In the next section, we be-
gin by describing an architecture for data integration system that incorporates
uncertainty.

Uncertainty in Data Integration 187

2. Overview of the System

This section describes the requirements from a data integration system that
supports uncertainty and the overall architecture of the system.

2.1 Uncertainty in data integration
A data integration system needs to handle uncertainty at three levels.

Uncertain mediated schema: The mediated schema is the set of schema terms
in which queries are posed. They do not necessarily cover all the attributes ap-
pearing in any of the sources, but rather the aspects of the domain that the
application builder wishes to expose to the users. Uncertainty in schema map-
pings can arise for several reasons. First, as we describe in Section 4, if the
mediated schema is automatically inferred from the data sources in a pay-as-
you-go integration system, there will be some uncertainty about the results.
Second, when domains get broad, there will be some uncertainty about how
to model the domain. For example, if we model all the topics in Computer
Science there will be some uncertainty about the degree of overlap between
different topics.

Uncertain schema mappings: Data integration systems rely on schema map-
pings for specifying the semantic relationships between the data in the sources
and the terms used in the mediated schema. However, schema mappings can be
inaccurate. In many applications it is impossible to create and maintain precise
mappings between data sources. This can be because the users are not skilled
enough to provide precise mappings, such as in personal information manage-
ment [11], because people do not understand the domain well and thus do not
even know what correct mappings are, such as in bioinformatics, or because
the scale of the data prevents generating and maintaining precise mappings,
such as in integrating data of the web scale [27]. Hence, in practice, schema
mappings are often generated by semi-automatic tools and not necessarily ver-
ified by domain experts.

Uncertain data: By nature, data integration systems need to handle uncertain
data. One reason for uncertainty is that data are often extracted from unstruc-
tured or semi-structured sources by automatic methods (e.g., HTML pages,
emails, blogs). A second reason is that data may come from sources that are
unreliable or not up to date. For example, in enterprise settings, it is common
for informational data such as gender, racial, and income level to be dirty or
missing, even when the transactional data is precise.

Uncertain queries: In some data integration applications, especially on the
web, queries will be posed as keywords rather than as structured queries against
a well defined schema. The system needs to translate these queries into some
structured form so they can be reformulated with respect to the data sources.

188 MANAGING AND MINING UNCERTAIN DATA

Keyword
Reformulation

Mediated Schema

I
[]
L I

Figure 7.1. Architecture of a data-integration system that handles uncertainty.

At this step, the system may generate multiple candidate structured queries and
have some uncertainty about which is the real intent of the user.

2.2 System architecture

Given the previously discussed requirements, we describe the architecture of
a data integration system we envision that manages uncertainty at its core. We
describe the system by contrasting it to a traditional data integration system.

The first and most fundamental characteristic of this system is that it is based
on a probabilistic data model. This means that we attach probabilities to:

m tuples that we process in the system,

m schema mappings,

mediated schemas, and
= possible interpretations of keyword queries posed to the system.

In contrast, a traditional data integration system includes a single mediated
schema and we assume we have as single (and correct) schema mapping be-
tween the mediated schema and each source. The data in the sources is also
assumed to be correct.

Traditional data integration systems assume that the query is posed in a
structured fashion (i.e., can be translated to some subset of SQL). Here, we as-
sume that queries can be posed as keywords (to accommodate a much broader
class of users and applications). Hence, whereas traditional data integration
systems begin by reformulating a query onto the schemas of the data sources,
a data integration system with uncertainty needs to first reformulate a keyword
query into a set of candidate structured queries. We refer to this step as keyword
reformulation. Note that keyword reformulation is different from techniques

Uncertainty in Data Integration 189

for keyword search on structured data (e.g., [22, 1]) in that (a) it does not as-
sume access to all the data in the sources or that the sources support keyword
search, and (b) it tries to distinguish different structural elements in the query in
order to pose more precise queries to the sources (e.g., realizing that in the key-
word query “Chicago weather”, “weather” is an attribute label and “Chicago”
is an instance name). That being said, keyword reformulation should benefit
from techniques that support answering keyword search on structured data.

The query answering model is different. Instead of necessarily finding al/
answers to a given query, our goal is typically to find the top-k answers, and
rank these answers most effectively.

The final difference from traditional data integration systems is that our
query processing will need to be more adaptive than usual. Instead of gen-
erating a query answering plan and executing it, the steps we take in query
processing will depend on results of previous steps. We note that adaptive
query processing has been discussed quite a bit in data integration [12], where
the need for adaptivity arises from the fact that data sources did not answer
as quickly as expected or that we did not have accurate statistics about their
contents to properly order our operations. In our work, however, the goal for
adaptivity is to get the answers with high probabilities faster.

The architecture of the system is shown in Figure 7.1. The system contains a
number of data sources and a mediated schema (we omit probabilistic mediated
schemas from this figure). When the user poses a query (), which can be either
a structured query on the mediated schema or a keyword query, the system
returns a set of answer tuples, each with a probability. If @) is a keyword
query, the system first performs keyword reformulation to translate it into a
set of candidate structured queries on the mediated schema. Otherwise, the
candidate query is () itself.

2.3 Source of probabilities

A critical issue in any system that manages uncertainty is whether we have
a reliable source of probabilities. Whereas obtaining reliable probabilities for
such a system is one of the most interesting areas for future research, there is
quite a bit to build on. For keyword reformulation, it is possible to train and
test reformulators on large numbers of queries such that each reformulation re-
sult is given a probability based on its performance statistics. For information
extraction, current techniques are often based on statistical machine learning
methods and can be extended to compute probabilities of each extraction re-
sult. Finally, in the case of schema matching, it is standard practice for schema
matchers to also associate numbers with the candidates they propose (e.g., [3,
7-9, 21, 26, 34, 35]). The issue here is that the numbers are meant only as a
ranking mechanism rather than true probabilities. However, as schema match-

190 MANAGING AND MINING UNCERTAIN DATA

ing techniques start looking at a larger number of schemas, one can imagine
ascribing probabilities (or estimations thereof) to their measures.

2.4 Outline of the chapter

We begin by discussing probabilistic schema mappings in Section 3. We
also discuss how to answer queries in their presence and how to answer top-k
queries. In Section 4 we discuss probabilistic mediated schemas. We begin by
motivating them and showing that in some cases they add expressive power to
the resulting system. Then we describe an algorithm for generating probabilis-
tic mediated schemas from a collection of data sources.

3. Uncertainty in Mappings

The key to resolving heterogeneity at the schema level is to specify schema
mappings between data sources. These mappings describe the relationship be-
tween the contents of the different sources and are used to reformulate a query
posed over one source (or a mediated schema) into queries over the sources
that are deemed relevant. However, in many applications we are not able to
provide all the schema mappings upfront. In this section we introduce prob-
abilistic schema mappings (p-mappings) to capture uncertainty on mappings
between schemas.

We start by presenting a running example for this section that also motivates
p-mappings (Section 3.1). Then we present a formal definition of probabilistic
schema mapping and its semantics (Section 3.2). Then, Section 3.3 describes
algorithms for query answering with respect to probabilistic mappings and dis-
cusses the complexity. Next, Section 3.4 shows how to leverage previous work
on schema matching to automatically create probabilistic mappings. In the
end, Section 3.5 briefly describes various extensions to the basic definition and
Section 3.6 describes other types of approximate schema mappings that have
been proposed in the literature.

3.1 Motivating probabilistic mappings

ExamMpLE 7.1 Consider a data source S, which describes a person by her
email address, current address, and permanent address, and the mediated
schema T, which describes a person by her name, email, mailing address,
home address and office address:

S=(pname, email-addr, current-addr, permanent-addr)
T=(name, email, mailing-addr, home-addr, office-addr)

A semi-automatic schema-mapping tool may generate three possible map-
pings between S and T, assigning each a probability. Whereas the three map-
pings all map pname to name, they map other attributes in the source and
the target differently. Figure 7.2(a) describes the three mappings using sets of

Uncertainty in Data Integration 191

Possible Mapping Prob
my = {(pname, name), (email-addr, email), 05
(current-addr, mailing-addr), (permanent-addr, home-addr)}
my = {(pname, name), (email-addr, email), 0.4
(permanent-addr, mailing-addr), (current-addr, home-addr)}
s = {(pname, name), (email-addr, mailing-addr), 0.1
(current-addr, home-addr)}
@
pname | email-addr | current-addr | permanent-addr
Alice alice@ Mountain View Sunnyvale
Bob bob@ Sunnyvale Sunnyvale
(®
Tuple (mailing-addr) | Prob
(’Sunnyvale’) 0.9
(’Mountain View’) 0.5
(Calice@’) 0.1
("bob@’) 0.1
(c)

Figure 7.2. The running example: (a) a probabilistic schema mapping between .S and T'; (b) a
source instance Dg; (c) the answers of) over D g with respect to the probabilistic mapping.

attribute correspondences. For example, mapping m, maps pname fo name,
email-addr ro email, current-addr ro mailing-addr, and permanent-addr to
home-addr. Because of the uncertainty about which mapping is correct, we
consider all of these mappings in query answering.

Suppose the system receives a query () composed on the mediated schema
and asking for people’s mailing addresses:

Q: SELECT mailing-addr FROM T
Using the possible mappings, we can reformulate () into different queries:

Ql: SELECT current—addr FROM S
Q2: SELECT permanent-addr FROM S
Q3: SELECT email-addr FROM S

If the user requires all possible answers, the system generates a single ag-
gregation query based on QQ1,Qs and Q)3 to compute the probability of each
returned tuple, and sends the query to the data source. Suppose the data source
contains a table Dg as shown in Figure 7.2(b), the system will retrieve four an-
swer tuples, each with a probability, as shown in Figure 7.2(c).

If the user requires only the top-1 answer (i.e., the answer tuple with the
highest probability), the system decides at runtime which reformulated queries
to execute. For example, after executing Q1 and Q2 at the source, the system

192 MANAGING AND MINING UNCERTAIN DATA

can already conclude that (‘Sunnyvale’) is the top-1 answer and can skip query

Q3. O

3.2 Definition and Semantics

Schema mappings. We begin by reviewing non-probabilistic schema map-
pings. The goal of a schema mapping is to specify the semantic relationships
between a source schema and a target schema. We refer to the source schema
as 9, and a relation in S as S = (S1,...,8m). Similarly, we refer to the target
schema as T, and a relation in T'as T' = (t1,...,t,).

We consider a limited form of schema mappings that are also referred to as
schema matching in the literature. Specifically, a schema matching contains a
set of attribute correspondences. An attribute correspondence is of the form
¢ij = (si,t;), where s; is a source attribute in the schema S and ¢; is a target
attribute in the schema T'. Intuitively, ¢;; specifies that there is a relationship
between s; and ¢;. In practice, a correspondence also involves a function that
transforms the value of s; to the value of ¢;. For example, the correspondence
(c-degree, temperature) can be specified as temperature=c-degree 1.8+
32, describing a transformation from Celsius to Fahrenheit. These functions
are irrelevant to our discussion, and therefore we omit them. This class of
mappings are quite common in practice and already expose many of the novel
issues involved in probabilistic mappings and In Section 3.5 we will briefly
discuss extensions to a broader class of mappings.

Formally, relation mappings and schema mappings are defined as follows.

DEFINITION 7.2 (SCHEMA MAPPING) Let S and T be relational schemas.
A relation mapping M is a triple (S, T, m), where S is a relation in S, T is a
relation in T, and m is a set of attribute correspondences between S and T.

When each source and target attribute occurs in at most one correspondence
in m, we call M a one-to-one relation mapping.

A schema mapping M is a set of one-to-one relation mappings between
relations in S and in T, where every relation in either S or T appears at most
once. U

A pair of instances Dg and Dy satisfies a relation mapping m if for every
source tuple t; € Dg, there exists a target tuple ¢t; € Dy, such that for every
attribute correspondence (s,t) € m, the value of attribute s in ¢ is the same
as the value of attribute ¢ in ¢;.

ExaMpLE 7.3 Consider the mappings in Example 7.1. The source database
in Figure 7.2(b) (repeated in Figure 7.3(a)) and the target database in Fig-
ure 7.3(b) satisfy m;. O

Uncertainty in Data Integration

193

pname | email-addr | current-addr | permanent-addr
Alice alice@ Mountain View Sunnyvale
Bob bob@ Sunnyvale Sunnyvale
(a)
name | email mailing-addr | home-addr | office-addr
Alice | alice@ | Mountain View | Sunnyvale office
Bob | bob@ Sunnyvale Sunnyvale office
(b)
name | email | mailing-addr home-addr office-addr
Alice | alice@ | Sunnyvale | Mountain View office
Bob | email bob@ Sunnyvale office
(c
Tuple (mailing-addr) | Prob : Tuple (mailing-addr) | Prob
(’Sunnyvale”) 0.9 (’Sunnyvale’) 0.94
(’Mountain View’) 0.5 (’Mountain View”) 0.5
(alice@’) 0.1 (Calice@’) 0.1
(’bob@’) 0.1 (’bob@’) 0.1
(d) (e)

Figure 7.3. Example 7.11: (a) a source instance Dg; (b) a target instance that is by-table
consistent with Dg and m; (c) a target instance that is by-tuple consistent with Dg and <
ma, ms >; (d) Q**'"*(Ds); (e) Q™7'*(Dys).

Probabilistic schema mappings. Intuitively, a probabilistic schema map-
ping describes a probability distribution of a set of possible schema mappings
between a source schema and a target schema.

DEFINITION 7.4 (PROBABILISTIC MAPPING) Let S and T be relational
schemas. A probabilistic mapping (p-mapping), pM, is a triple (S, T, m),

where S € S, T € T, and m is a set {(m1, Pr(m1)),...,(my, Pr(my))},
such that

m fori € [1,1], m; is a one-to-one mapping between S and T, and for
everyi,j € [1,1], i # j = m; # m,;.

= Pr(m;) € [0,1] and 22:1 Pr(m;) =1.

A schema p-mapping, pM, isa set of p-mappings between relations in S and

in T, where every relation in either S or T appears in at most one p-mapping.
0

We refer to a non-probabilistic mapping as an ordinary mapping. A schema
p-mapping may contain both p-mappings and ordinary mappings. Example 7.1
shows a p-mapping (see Figure 7.2(a)) that contains three possible mappings.

194 MANAGING AND MINING UNCERTAIN DATA

Semantics of probabilistic mappings. Intuitively, a probabilistic schema
mapping models the uncertainty about which of the mappings in pM is the
correct one. When a schema matching system produces a set of candidate
matches, there are two ways to interpret the uncertainty: (1) a single mapping
in pM is the correct one and it applies to all the data in S, or (2) several
mappings are partially correct and each is suitable for a subset of tuples in S,
though it is not known which mapping is the right one for a specific tuple.
Figure 7.3(b) illustrates the first interpretation and applies mapping m;. For
the same example, the second interpretation is equally valid: some people may
choose to use their current address as mailing address while others use their
permanent address as mailing address; thus, for different tuples we may apply
different mappings, so the correct mapping depends on the particular tuple.

We define query answering under both interpretations. The first interpreta-
tion is referred to as the by-table semantics and the second one is referred to as
the by-tuple semantics of probabilistic mappings. Note that one cannot argue
for one interpretation over the other; the needs of the application should dic-
tate the appropriate semantics. Furthermore, the complexity results for query
answering, which will show advantages to by-table semantics, should not be
taken as an argument in the favor of by-table semantics.

We next define query answering with respect to p-mappings in detail and
the definitions for schema p-mappings are the obvious extensions. Recall that
given a query and an ordinary mapping, we can compute certain answers to
the query with respect to the mapping. Query answering with respect to p-
mappings is defined as a natural extension of certain answers, which we next
review.

A mapping defines a relationship between instances of S and instances of 7'
that are consistent with the mapping.

DEFINITION 7.5 (CONSISTENT TARGET INSTANCE) Let M = (S,T,m)
be a relation mapping and Dg be an instance of S.

An instance Dt of T is said to be consistent with Dg and M, if for each
tuple ts € Dg, there exists a tuple ty € Dy, such that for every attribute
correspondence (as,a;) € m, the value of as in ts is the same as the value of
ag in tt. O

For a relation mapping M and a source instance Dg, there can be an infinite
number of target instances that are consistent with Dg and M. We denote by
Tarp(Dg) the set of all such target instances. The set of answers to a query
Q@ is the intersection of the answers on all instances in Tary;(Dg).

DEFINITION 7.6 (CERTAIN ANSWER) Let M = (S,T,m) be a relation
mapping. Let Q) be a query over T and let Dg be an instance of S.

A tuple t is said to be a certain answer of) with respect to Dg and M, if’
Sor every instance Dt € Tarp(Dg), t € Q(Dr). O

Uncertainty in Data Integration 195

By-table semantics: We now generalize these notions to the probabilistic set-
ting, beginning with the by-table semantics. Intuitively, a p-mapping pM de-
scribes a set of possible worlds, each with a possible mapping m € pM. In
by-table semantics, a source table can fall in one of the possible worlds; that is,
the possible mapping associated with that possible world applies to the whole
source table. Following this intuition, we define target instances that are con-
sistent with the source instance.

DEFINITION 7.7 (BY-TABLE CONSISTENT INST.) Let pM = (5,7, m)
be a p-mapping and Dg be an instance of'S.

An instance Dt of T is said to be by-table consistent with Dg and pM, if
there exists a mapping m € m such that Dg and D satisfy m. O

Given a source instance Dg and a possible mapping m € m, there can be
an infinite number of target instances that are consistent with Dg and m. We
denote by Tar,,(Dg) the set of all such instances.

In the probabilistic context, we assign a probability to every answer. Intu-
itively, we consider the certain answers with respect to each possible mapping
in isolation. The probability of an answer ¢ is the sum of the probabilities of
the mappings for which ¢ is deemed to be a certain answer. We define by-table
answers as follows:

DEFINITION 7.8 (BY-TABLE ANS.) Let pM = (S, T, m) be a p-mapping.
Let Q) be a query over T and let Dg be an instance of S.

Let t be a tuple. Let m(t) be the subset of m, such that for each m € m(t)
and for each Dy € Tary,(Dg), t € Q(Dr).

Letp =3, cm Pr(m). If p > 0, then we say (t, p) is a by-table answer
of @) with respect to Dg and pM. O

By-tuple semantics: If we follow the possible-world notions, in by-tuple se-
mantics, different tuples in a source table can fall in different possible worlds;
that is, different possible mappings associated with those possible worlds can
apply to the different source tuples.

Formally, the key difference in the definition of by-tuple semantics from
that of by-table semantics is that a consistent target instance is defined by a
mapping sequence that assigns a (possibly different) mapping in m to each
source tuple in Dg. (Without losing generality, in order to compare between
such sequences, we assign some order to the tuples in the instance).

DEFINITION 7.9 (BY-TUPLE CONSISTENT INST.) Let pM = (S,T,m)
be a p-mapping and let Dg be an instance of S with d tuples.

An instance Dt of T is said to be by-tuple consistent with Dg and pM, if
there is a sequence (m", ..., m%) such that d is the number of tuples in Dg

and for every 1 <1 < d,

196 MANAGING AND MINING UNCERTAIN DATA
s miem, and

= for the it" tuple of Dg, t;, there exists a target tuple t: € D such that
for each attribute correspondence (as,a;) € m?, the value of a in t; is
the same as the value of a; in t; . O

Given a mapping sequence seq = (m!, ..., m%), we denote by Tarsc,(Ds)
the set of all target instances that are consistent with Dg and seq. Note that if
D is by-table consistent with Dg and m, then D7 is also by-tuple consistent
with Dg and a mapping sequence in which each mapping is m.

We can think of every sequence of mappings seq = (m!',...,m?) as a
separate event whose probability is Pr(seq) = IIL, Pr(m’). (Section 3.5
relaxes this independence assumption and introduces conditional mappings.)
If there are | mappings in pM, then there are I¢ sequences of length d, and
their probabilities add up to 1. We denote by seq,(pM) the set of mapping
sequences of length d generated from p/M.

DEFINITION 7.10 (BY-TUPLE ANSWER) Let pM = (S,7,m) be a
p-mapping. Let QQ be a query over T and Dg be an instance of S with d
tuples.

Let t be a tuple. Let seq(t) be the subset of seq,(pM), such that for each
seq € seq(t) and for each Dy € Tarse,(Dg), t € Q(Dr).

Letp =3 eseqry Pr(seq). If p > 0, we call (t,p) a by-tuple answer of
Q with respect to Dg and pM. O

The set of by-table answers for (Q with respect to D is denoted by Q***'¢(Dy)
and the set of by-tuple answers for () with respect to Dg is denoted by

Q" (Ds).

EXAMPLE 7.11 Consider the p-mapping pM, the source instance Dg, and
the query Q) in the motivating example.

In by-table semantics, Figure 7.3(b) shows a target instance that is con-
sistent with Dg (repeated in Figure 7.3(a)) and possible mapping m,. Fig-
ure 7.3(d) shows the by-table answers of) with respect to Dg and pM. As
an example, for tuple t =(‘Sunnyvale’), we have m(t) = {mi,ma}, so the
possible tuple (‘Sunnyvale’, 0.9) is an answer.

In by-tuple semantics, Figure 7.3(c) shows a target instance that is by-tuple
consistent with Dg and the mapping sequence < mo,ms >. Figure 7.3(e)
shows the by-tuple answers of Q) with respect to Dg and pM. Note that the
probability of tuple t=("Sunnyvale’) in the by-table answers is different from
that in the by-tuple answers. We describe how to compute the probabilities in
detail in the next section. U

Uncertainty in Data Integration 197

3.3 Query Answering

This section studies query answering in the presence of probabilistic map-
pings. We start with describing algorithms for returning all answer tuples with
probabilities, and discussing the complexity of query answering in terms of
the size of the data (data complexity) and the size of the p-mapping (mapping
complexity). We then consider returning the top-k query answers, which are
the k answer tuples with the top probabilities.

By-table query answering. In the case of by-table semantics, answering
queries is conceptually simple. Given a p-mapping pM = (S, 7, m) and an
SPJ query @), we can compute the certain answers of) under each of the
mappings m € m. We attach the probability Pr(m) to every certain answer
under m. If a tuple is an answer to () under multiple mappings in m, then we
add up the probabilities of the different mappings.

Algorithm BYTABLE takes as input an SPJ query () that mentions the rela-
tions 77, ..., 7; in the FROM clause. Assume that we have the p-mapping pM;
associated with the table 7;. The algorithm proceeds as follows.

Step 1: We generate the possible reformulations of @) (a reformulation query
computes all certain answers when executed on the source data) by consid-
ering every combination of the form (m', ..., m!), where m' is one of the
possible mappings in pM;. Denote the set of reformulations by @, ..., Q).
The probability of a reformulation Q" = (m?, ..., m!) is i_, Pr(m?).
Step 2: For each reformulation Q’, retrieve each of the unique answers from
the sources. For each answer obtained by @} U ... U @, its probability is
computed by summing the probabilities of the Q"’s in which it is returned.

Importantly, note that it is possible to express both steps as an SQL query
with grouping and aggregation. Therefore, if the underlying sources support
SQL, we can leverage their optimizations to compute the answers.

With our restricted form of schema mapping, the algorithm takes time poly-
nomial in the size of the data and the mappings. We thus have the following
complexity result.

THEOREM 7.12 Let pM be a schema p-mapping and let () be an SPJ query.
Answering Q) with respect to pM in by-table semantics is in PTIME in the
size of the data and the mapping. O

By-tuple query answering. To extend the by-table query-answering strat-
egy to by-tuple semantics, we would need to compute the certain answers for
every mapping sequence generated by pM. However, the number of such
mapping sequences is exponential in the size of the input data. The follow-
ing example shows that for certain queries this exponential time complexity is
inevitable.

198 MANAGING AND MINING UNCERTAIN DATA

Tuple (mailing-addr) | Pr
(’Sunnyvale’) 0.94 Tuple (mailing-addr) | Pr
(’Mountain View’) 0.5 (’Sunnyvale”) 0.8
(alice@’) 0.1 (’Mountain View’) | 0.8
("bob@’) 0.1 (b)
(a)

Figure 7.4. Example 7.13: (a) Q1"?'¢(D) and (b) Q57" (D).

EXAMPLE 7.13 Suppose that in addition to the tables in Example 7.1, we
also have U(city) in the source and V(hightech) in the target. The p-mapping
for V contains two possible mappings: ({(city, hightech)}, .8) and (1), .2).

Consider the following query @, which decides if there are any people living
in a high-tech city.

Q: SELECT ‘true’
FROM T, V
WHERE T.mailing-addr = V.hightech

An incorrect way of answering the query is to first execute the following two
sub-queries Q1 and o, then join the answers of Q1 and Q)2 and summing up
the probabilities.

Ql: SELECT mailing-addr FROM T
Q2: SELECT hightech FROM V

Now consider the source instance D, where Dg is shown in Figure 7.2(a),
and Dy has two tuples (‘Mountain View’) and (‘Sunnyvale’). Figure 7.4(a)
and (b) show QtluPle(D) and Q;“ple(D). If we join the results of Q1 and Qo,
we obtain for the true tuple the following probability: 0.94 % 0.8 +0.5% 0.8 =
1.152. However, this is incorrect. By enumerating all consistent target tables,
we in fact compute 0.864 as the probability. The reason for this error is that
on some target instance that is by-tuple consistent with the source instance, the
answers to both Q1 and Q5 contain tuple (‘Sunnyvale’) and tuple (‘Mountain
View’). Thus, generating the tuple (‘Sunnyvale’) as an answer for both Q1 and
Q2 and generating the tuple (‘Mountain View’) for both queries are not inde-
pendent events, and so simply adding up their probabilities leads to incorrect
results.

Indeed, it is not clear if there exists a better algorithm to answer Q) than by
enumerating all by-tuple consistent target instances and then answering Q) on
each of them. O

In fact, it is proved that in general, answering SPJ queries in by-tuple se-
mantics with respect to schema p-mappings is hard.

Uncertainty in Data Integration 199

THEOREM 7.14 Let QQ be an SPJ query and let pM be a schema p-mapping.
The problem of finding the probability for a by-tuple answer to () with respect
to pM is #P-complete with respect to data complexity and is in PTIME with
respect to mapping complexity. (]

Recall that #P is the complexity class of some hard counting problems (e.g.
, counting the number of variable assignments that satisfy a Boolean formula).
It is believed that a #P-complete problem cannot be solved in polynomial time,
unless P = NP.

Although by-tuple query answering in general is hard, there are two re-
stricted but common classes of queries for which by-tuple query answering
takes polynomial time. The first class of queries are those that include only a
single subgoal being the target of a p-mapping; here, we refer to an occurrence
of a table in the FROM clause of a query as a subgoal of the query. Relations in
the other subgoals are either involved in ordinary mappings or do not require
a mapping. Hence, if we only have uncertainty with respect to one part of the
domain, our queries will typically fall in this class. The second class of queries
can include multiple subgoals involved in p-mappings, but return the join at-
tributes for such subgoals. We next illustrate these two classes of queries and
query answering for them using two examples.

ExaMPLE 7.15 Consider rewriting Q) in the motivating example, repeated as
follows:

Q: SELECT mailing-addr FROM T

To answer the query, we first rewrite Q) into query Q' by adding the id col-
umn:

Q’: SELECT id, mailing—addr FROM T

We then invoke BYTABLE and generate the following SQL query to com-
pute by-table answers for Q':

Qa: SELECT id, mailing-addr, SUM(pr)
FROM (

SELECT DISTINCT id, current—addr
AS mailing-addr, 0.5 AS pr

FROM S

UNION ALL

SELECT DISTINCT id, permanent-addr
AS mailing-addr, 0.4 AS pr

FROM S

UNION ALL

SELECT DISTINCT id, email-addr

200 MANAGING AND MINING UNCERTAIN DATA

AS mailing-addr, 0.1 AS pr
FROM S)
GROUP BY id, mailing-addr

Finally, we generate the results using the following query.

Qu: SELECT mailing-addr, NOR(pr) AS pr
FROM Qa
GROUP BY mailing-addr

where for a set of probabilities pr1, . . ., pry, NOR computes 1—1I17"_, (1—pr;).
O

EXAMPLE 7.16 Consider the schema p-mapping in Example 7.13. If we re-
vise Q) slightly be returning the join attribute, shown as follows, we can answer
the query in polynomial time.

Q’: SELECT V.hightech
FROM T, V
WHERE T.mailing—-addr = V.hightech

We answer the query by dividing it into two sub-queries, Q1 and Qo, as
shown in Example 7.13. We can compute Q1 with query @, (shown in Exam-
ple 7.15) and compute Qo similarly with a query Q... We compute by-tuple
answers of Q' as follows:

SELECT Qu’ .hightech, Qu.pr*Qu’ .pr
FROM Qu, Qu’
WHERE Qu.mailing—addr = Qu’ .hightect

g

Top-K Query Answering. The main challenge in designing the algorithm
for returning top-k query answers is to only perform the necessary reformula-
tions at every step and halt when the top-k answers are found. We focus on
top-k query answering for by-table semantics and the algorithm can be modi-
fied for by-tuple semantics.

Recall that in by-table query answering, the probability of an answer is the
sum of the probabilities of the reformulated queries that generate the answer.
Our goal is to reduce the number of reformulated queries we execute. The
algorithm we describe next proceeds in a greedy fashion: it executes queries
in descending order of probabilities. For each tuple ¢, it maintains the upper
bound pqz(t) and lower bound pyy,in (t) of its probability. This process halts
when it finds & tuples whose p.,i, values are higher than p,,., of the rest of
the tuples.

Uncertainty in Data Integration 201

ToPKBYTABLE takes as input an SPJ query @, a schema p-mapping pM,
an instance Dg of the source schema, and an integer k, and outputs the top-k
answers in Q'®¢(Dg). The algorithm proceeds in three steps.

Step 1: Rewrite () according to pM into a set of queries Q1, ..., Q,, each
with a probability assigned in a similar way as stated in Algorithm BYTABLE.

Step 2: Execute 1, ..., @, in descending order of their probabilities. Main-
tain the following measures:

m The highest probability, P M ax, for the tuples that have not been gener-
ated yet. We initialize PM ax to 1; after executing query @); and updat-
ing the list of answers (see third bullet), we decrease PMax by Pr(Q;);

m The threshold ¢h determining which answers are potentially in the top-k.
We initialize th to 0; after executing (); and updating the answer list, we
set th to the k-th largest py,q, for tuples in the answer list;

m A list L of answers whose p,,,q. is no less than th, and bounds p;,;,, and
Pmaz fOr each answer in L. After executing query (Q;, we update the list
as follows: (1) foreacht € L andt € Q;(Dg), we increase pmn(t) by
Pr(Q;); (2) foreacht € Lbutt ¢ Q;(Dg), we decrease ppqz(t) by
Pr(Q;); 3)if PMax > th, foreacht ¢ Lbutt € Q;(Dg), insert ¢ to
L, set ppin to Pr(Q;) and paq(t) to PMaz.

m A list T of k tuples with top p.min values.

Step 3: When th > PMax and for each t & T', th > ppq.(t), halt and return
T.

EXAMPLE 7.17 Consider Example 7.1 where we seek for top-1 answer. We
answer the reformulated queries in order of QQ1,Q2, Q3. After answering @1,
for tuple (“Sunnyvale”) we have ppin = .5 and pmar = 1, and for tuple
(“Mountain View”) we have the same bounds. In addition, PMax = .5 and
th = .5.

In the second round, we answer Q2. Then, for tuple (“Sunnyvale”) we have
DPmin = -9 and pmae = 1, and for tuple (“Mountain View) we have ppin = .5
and Ppax = .6. Now PMax = .1 and th = .9.

Because th > PMax and th is above the py,qz for the (“Mountain View”)
tuple, we can halt and return (“Sunnyvale”) as the top-1 answer. O

3.4 Creating P-mappings

We now address the problem of generating a p-mapping between a source
schema and a target schema. We begin by assuming we have a set of weighted
correspondences between the source attributes and the target attributes. These

202 MANAGING AND MINING UNCERTAIN DATA

weighted correspondences are created by a set of schema matching modules.
However, as we explain shortly, there can be multiple p-mappings that are
consistent with a given set of weighted correspondences, and the question is
which of them to choose. We describe an approach to creating p-mappings that
is based on choosing the mapping that maximizes the entropy of the probability
assignment.

Computing weighted correspondences. A weighted correspondence be-
tween a pair of attributes specifies the degree of semantic similarity between
them. Let S(s1,...,sm) be a source schema and T'(¢y,...,%,) be a target
schema. We denote by C; ;,7 € [1,m],j € [1,n], the weighted correspon-
dence between s; and t; and by w; ; the weight of C; ;. The first step is to
compute a weighted correspondence between every pair of attributes, which
can be done by applying existing schema matching techniques.

Although weighted correspondences tell us the degree of similarity between
pairs of attributes, they do not tell us which target attribute a source attribute
should map to. For example, a target attribute mailing-address can be both
similar to the source attribute current-addr and to permanent-addr, so it
makes sense to map either of them to mailing-address in a schema mapping.
In fact, given a set of weighted correspondences, there could be a ser of p-
mappings that are consistent with it. We can define the one-to-many relation-
ship between sets of weighted correspondences and p-mappings by specifying
when a p-mapping is consistent with a set of weighted correspondences.

DEFINITION 7.18 (CONSISTENT P-MAPPING) A p-mapping pM is consis-
tent with a weighted correspondence C; j between a pair of source and target
attributes if the sum of the probabilities of all mappings m € pM containing
correspondence (i, j) equals w; j; that is,

w;j = Z Pr(m).

mepM,(i,j)em

A p-mapping is consistent with a set of weighted correspondences C if it is
consistent with each weighted correspondence C' € C. g

However, not every set of weighted correspondences admits a consistent p-
mapping. The following theorem shows under which conditions a consistent
p-mapping exists, and establishes a normalization factor for weighted corre-
spondences that will guarantee the existence of a consistent p-mapping.

THEOREM 7.19 Let C be a set of weighted correspondences between a source
schema S(s1, ..., Sm) and a target schema T'(t1, ..., t,).

Uncertainty in Data Integration 203

m There exists a consistent p-mapping with respect to C if and only if
(1) for every i € [1,m], 2?21 w;j < 1 and (2) for every j € [1,n],
it wig < 1.

m Let

n m
M = ma:r{maxi{z w;j}, mawj{z w; j}}
j=1 i=1
Then, for each i € [1,m], 3%, el < 1 and for each j € [1,n],
S S <L O

Based on Theorem 7.19, we normalize the weighted correspondences we
generated as described previously by dividing them by M’; that is,

1 Wig
wi»j - M/ '
Generating p-mappings. To motivate our approach to generating p-

mappings, consider the following example. Consider a source schema (A, B)
and a target schema (A’, B’). Assume we have computed the following weighted
correspondences between source and target attributes: w4 4» = 0.6 and wp pr =
0.5 (the rest are 0).

As we explained above, there are an infinite number of p-mappings that are
consistent with this set of weighted correspondences and below we list two:
pM 1-

ml: (A,A’), (B,B’): 0.3 m2: (A,A"): 0.3 m3:
(B,B"): 0.2 md: empty: 0.2

ngZ
ml: (A,A"), (B,B’): 0.5
m2: (A,A’"): 0.1

m3: empty: 0.4

In a sense, pM; seems better than p M5 because it assumes that the similarity
between A and A’ is independent of the similarity between B and B'.

In the general case, among the many p-mappings that are consistent with a
set of weighted correspondences C, we choose the one with the maximum en-
tropy; that is, the p-mappings whose probability distribution obtains the max-
imum value of 25:1 —p; * logp;. In the above example, pM; obtains the
maximum entropy.

The intuition behind maximum entropy is that when we need to select among
multiple possible distributions on a set of exclusive events, we choose the one
that does not favor any of the events over the others. Hence, we choose the

204 MANAGING AND MINING UNCERTAIN DATA

distribution that does not introduce new information that we didn’t have apri-
ori. The principle of maximum entropy is widely used in other areas such as
natural language processing.

To create the p-mapping, we proceed in two steps. First, we enumerate
all possible one-to-one schema mappings between S and M that contain a
subset of correspondences in C. Second, we assign probabilities on each of
the mappings in a way that maximizes the entropy of our result p-mapping.

Enumerating all possible schema mappings given C is trivial: for each sub-
set of correspondences, if it corresponds to a one-to-one mapping, we consider
the mapping as a possible mapping.

Given the possible mappings my, . . . , m;, we assign probabilities p1, ..., p;
tomz, ..., my by solving the following constraint optimization problem (OPT):

maximize 22:1 —pg * logpr. subject to:

1 Vk € [1,1],0 < pp <1,
2 Zﬁc:lpk =1, and

3 Vi, j: Zke[l,l},(i,j)emk Pr = Wi,;.

We can apply existing technology in solving the OPT optimization prob-
lem. Although finding maximume-entropy solutions in general is costly, the
experiments described in [6] show that the execution time is reasonable for a
one-time process.

3.5 Broader Classes of Mappings

In this section we describe several practical extensions to the basic mapping
language. The query answering techniques and complexity results we have
described carry over to these techniques.

GLAYV mappings: The common formalism for schema mappings, GLAV (a.k.a.
tuple-generating dependencies), is based on expressions of the form

m : Vx(p(x) — Iy (x,y)).

In the expression, ¢ is the body of a conjunctive query over S and %) is the
body of a conjunctive query over T'. A pair of instances Dg and Dy satisfies
a GLAV mapping m if for every assignment of x in Dg that satisfies ¢ there
exists an assignment of y in Dy that satisfies).

We define general p