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Preface

Longitudinal studies, which commonly refer to studies with variables repeat-
edly observed over time, play an important role in biomedical studies, such
as long-term epidemiological studies and clinical trials, as well as other scien-
tific areas. A well-known example of longitudinal study in biomedicine is the
Framingham Heart Study (www.framinghamheartstudy.org), which began in
1948 and has led to the identification of major cardiovascular disease risk fac-
tors, including blood pressure, triglyceride and cholesterol levels. Given the
success of early longitudinal studies, most important biomedical studies today
contain at least some repeatedly measured variables over time. A partial list
of such high-impact biomedical studies includes the Multicenter AIDS Cohort
Study (MACS), the National Growth and Health Study (NGHS), the En-
hancing Recovery in Coronary Heart Disease Patients (ENRICHD) study, the
Coronary Artery Risk Development in Young Adults (CARDIA) study, and
the Multi-Ethnic Study of Atherosclerosis (MESA) study. These are all large
scale long-term longitudinal studies with thousands of subjects and multiple
observations over years of follow-up. Among them, the ENRICHD is a random-
ized clinical trial, while the rest are all epidemiological studies with at least
ten years of follow-up. Tremendous progress in statistical methodology has
been made in the past three decades for the development of computational
and statistical methods to analyze data from longitudinal studies. Building
on the early developments in longitudinal analysis, a major area of statisti-
cal methodology is based on parametric or semiparametric statistical models
that properly take the intra-subject correlations into account, such as the
popular linear and nonlinear mixed-effects models. These statistical methods
still dominate the applications and methodological research in longitudinal
analysis today.

However, the rapid advancement of computing capability and data storage
tools in recent years makes it possible for researchers to efficiently collect, store
and transfer a large amount of data in a relatively short period of time. As a re-
sult, researchers are able to extensively explore and analyze large longitudinal
studies using flexible nonparametric statistical analysis and data mining tools.
Although well-designed clinical trials are still believed to be the gold standard
for evaluating efficacy in biomedical studies, an extensive exploratory analysis
is often useful for guiding the appropriate study questions and hypotheses,
which may be tested through a clinical trial.

There has been remarkable development of nonparametric methods for the

xxv
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analysis of longitudinal data for the past twenty-five years. In contrast to para-
metric or semiparametric methods, nonparametric methods are more flexible
and often used in situations where there are no established parametric or semi-
parametric models for the available data. In exploratory longitudinal analysis,
parametric or semiparametric forms of the data distributions are usually com-
pletely unknown. When there are a large amount of data available, subjectively
chosen parametric or semiparametric models may give inadequate fits to the
data and lead to potentially biased conclusions. Thus, an important aspect
of nonparametric methods is to provide some flexible tools to describe the
temporal trends of the patterns and correlation structures of the data. Since a
completely unstructured nonparametric approach may be too general to lead
to useful conclusions in practice, most research activities on nonparametric
longitudinal analysis are focused on flexible nonparametric models subject to
certain scientifically meaningful and practical structural restrictions. When
appropriately used, structured nonparametric methods have the advantage of
balancing model flexibility with practicability in real applications.

The aim in this book is to provide a summary of recent results of unstruc-
tured and structured nonparametric methods for the analysis of longitudinal
data. Given our own experience and research interests, our coverage is fo-
cused on the statistical methods and theories which are particularly useful
for biomedical studies, although in principle these methods may have appli-
cations in other scientific areas. We intend to strike a proper balance between
methodology, applications and theory. To do this, we include four longitudi-
nal studies, among them, two large epidemiology studies, one large clinical
trial and one small-sized study, as motivating examples to illustrate the real
applications and scientific interpretations of the statistical methods. Statis-
tical implementation based on R software packages is also presented for the
corresponding statistical results, including tables and figures, in each chapter.

For a more application-oriented reader, the methodology and computa-
tional part is sufficient for the applications of the statistical methods described
in this book. Since longitudinal analysis is still an active area of statistical re-
search, we allocate a sizable portion of the book to cover the theoretical aspects
of the methods. Although our coverage of the theoretical results does not in-
clude all the methods described in this book, nor does every method have its
theoretical property systematically investigated, we intend to cover the impor-
tant theoretical derivations as much as possible, so that a reader interested
in the theoretical aspects of nonparametric longitudinal analysis may gain
sufficient background knowledge to the recent developments in the literature.
To benefit the readers who are interested in doing some methodological re-
search in this area, such as graduate students and new researchers in statistics
and biostatistics, we include in each chapter some discussions of the poten-
tial questions and directions for future research. Since almost all the methods
presented in this book are grown out of real scientific questions in biomedical
studies, we also include in the discussions of each chapter the relevant papers
in the biomedical literature to help motivate the statistical procedures and
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their interpretations. Throughout the book, we hope to send a clear message
that most methodological and theoretical developments of nonparametric lon-
gitudinal analysis, certainly the ones described in this book, are motivated by
some real studies and intended to answer certain important scientific ques-
tions, which may not be properly answered by the mathematically simpler
parametric or semiparametric approaches.

It would be impossible to complete this book without the help and support
from our families, friends and colleagues. We are deeply in debt to many
colleagues who at various stages have provided many insightful comments and
suggestions to initial drafts of this book. In particular, we are grateful to Mr.
John Kimmel, Executive Editor of Statistics, who initiated this book project
to the first author during a snow storm in Washington, D.C., in 2011, and
encouraged us constantly during the preparation of this book. It is certainly
a long journey from its initiation in 2011 to this date – which has certainly
brought many ups and downs. Along the way, we have to constantly keep up
with the new publications in this area and update the materials accordingly.
We greatly appreciate the many excellent comments and suggestions provided
by Ms. Robin Lloyd-Starkes (Project Editor), Ms. Sherry Thomas (Editorial
Assistant), several anonymous reviewers and the proofreader, which led to
significant improvement on the presentation of this book.

We are grateful to many of our colleagues who have collaborated with ei-
ther one or both of us at various stages of research and publications. These
include statistical collaborators, such as John A. Rice, Grace L. Yang, Donald
R. Hoover, Chin-Tsang Chiang, Jianhua Z. Huang, Lan Zhou, Gang Zheng,
Heejung Bang, Wenhua Jiang, Tianqing Liu, Zhaohai Li, Yuanzhang Li, Mo-
hammed Chowdhury, Xiaoying Yang, Wei Zhang, Qizhai Li, Lixing Zhu, Mi-
Xia Wu, Hyunkeun Ryan Cho and Seonjin Kim, and biomedical collaborators,
such as Joao A.C. Lima, David A. Bluemke, Kiang Liu, Bharath Ambale-
Venkatesh, A. John Barrett, Neal S. Young, Richard W. Childs, Cynthia E.
Dunbar, Jan Joseph Melenhorst, Phillip Scheinberg, Danielle Townsley, Mi-
noo Battiwalla, Sawa Ito, Adrian Wiestner, Eva Obarzanek, Michael S. Lauer,
Narasimhan S. Danthi, Jared Reis, among many others. We are also grate-
ful to our statistical colleagues at the National Institutes of Health, including
Nancy L. Geller, Eric Leifer, Paul S. Albert, Dean Follmann, Jin Qin, Aiyi Liu,
and others who shared with us their suggestions and insights into statistical
methodology and applications. We apologize for not being able to mention all
of the wonderful friends and colleagues who have helped us throughout the
preparation of this book. Their comments and suggestions have broadened our
perspectives on the nature of longitudinal data and statistical methodology in
general.

Both of us have greatly benefited from the many teachers, advisors and
mentors throughout our lives and professional careers. Their wisdom and guid-
ance have played an enormously important role in shaping our statistical re-
search careers. Among them, Colin O. Wu particularly thanks his mathemat-
ics teacher at Yao-Hua High School (Tianjin, China), Mr. Zon-Hua Liu; his
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her dissertation advisors at Rutgers, The State University of New Jersey, Pro-
fessors Cun-Hui Zhang and Yehuda Vardi. Again, we apologize for not being
able to list all our great teachers, advisors and mentors, and we take the op-
portunity to thank them all. We thank our parents for their love and sacrifices
in our upbringings and educational opportunities.

Finally, we express our deepest gratitude and appreciation to our fami-
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Chapter 1

Introduction

In biomedical studies, interests are often focused on evaluating the effects of
treatments, medication dosage, risk factors or other biological and environ-
mental covariates on certain outcome variables, such as disease progression
and health status, over time. Because the changes of outcomes and covariates
and their temporal patterns within each subject usually provide important
information of scientific relevance, longitudinal samples that contain repeated
measurements within each subject over time are often more informative than
the classical cross-sectional samples, which contain the measurements of each
subject at one time point only. Since longitudinal samples combine the char-
acteristics of cross-sectional sampling and time series observations, their use-
fulness goes far beyond biomedical studies and is often found in economics,
psychology, sociology and many other scientific areas.

1.1 Scientific Objectives of Longitudinal Studies

In general, there are two main sampling approaches to obtain longitudinal
observations in biomedical studies: (a) a randomized clinical trial with pre-
specified treatment regimens and repeatedly measured observations (Friedman
et al., 2015), and (b) an epidemiological study, which is often referred to as an
observational cohort study (Rosenbaum, 2002). The major difference between
a randomized clinical trial, or simply a clinical trial, and an observational co-
hort study is their designs. In a clinical trial, the selection of the experimental
treatment regimens, length of the trial period, visiting times and methods of
the measurement process are determined by the study investigators, and the
treatment regimens are randomly assigned to the study subjects, although, in
some occasions, nonrandomized concomitant treatments, or concomitant inter-
ventions may also be given to some subjects due to ethical and logistical rea-
sons. An observational cohort study, on the other hand, is more complicated,
because the risk factors, treatments and the measurement process depend on
the participants of the study and are not controlled by the investigators.

In a longitudinal clinical trial, the main scientific objective is to evaluate
the efficacy of the pre-specified experimental treatment versus a placebo or
standard treatment on the primary outcomes, such as certain health status
indicators, over time during the trial period. In many situations, a follow-up
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period is added at the end of the treatment period, so that time-to-event vari-
ables, such as time to hospitalization or death, may be included as a primary
outcome in addition to the repeatedly measured health outcomes. In a partic-
ular analysis, the trial period may be defined based on the objectives of the
analysis. For example, if the objective is to evaluate the treatment effects on
the time-trend of a health indicator within the treatment period, it is appro-
priate to consider the treatment period as the trial period. On the other hand,
if it is also of interest to consider certain time-to-event variables beyond the
treatment period, it is then appropriate to include both the treatment period
and the follow-up period into the trial period. Effects of the study treatments
may be evaluated through the conditional means, conditional distributions or
conditional quantiles of the outcome variables. Although regression models
based on conditional means of the outcome variables are by far the most pop-
ular methods in the analysis of longitudinal clinical trials, regression methods
based on conditional distributions or conditional quantiles are often valuable
statistical tools in situations when the outcome variables have highly skewed or
distributions that are not easily approximated by normal distributions. In ad-
dition to the evaluation of randomized study treatments, important secondary
objectives include evaluating the effects of concomitant interventions or other
covariates on the time-varying trends of the outcome variables. Regression
analyses involving covariates other than the randomized study treatments are
often useful for evaluating treatment-covariate interactions or identifying sub-
groups of patient populations to whom the experimental treatments are ef-
ficacious. Because of the randomization, a properly designed clinical trial is
viewed as a gold standard to make causal inferences about the efficacy of the
study treatments.

In a longitudinal observational cohort study, there are no randomized ex-
perimental treatments to be tested, and the main objective is to evaluate the
potential associations of various covariates, such as demographic and environ-
mental factors, with the outcome variables of interest and their trends over
time. Observational cohort studies are often used for the purpose of data ex-
ploration, so that more specific scientific hypotheses may be generated and
tested in a future properly designed clinical trial. For this purpose, observa-
tional cohort studies often involve large sample sizes as well as large numbers
of scientifically relevant variables. Statistical inferences obtained from an ob-
servational cohort study are useful for understanding the associations between
the covariates and the outcome variables, but may not be sufficient to infer
the causal effects. Because the variables are repeatedly measured over time,
long-term longitudinal observational cohort studies are useful for understand-
ing the natural progression of certain diseases both on a population-wide level
and for certain sub-populations represented by the study subjects. In prac-
tice, an observational cohort study usually involves a large number of subjects
with sufficient numbers of repeated measurements over time, so that novel
findings with adequate statistical accuracy can be obtained from the study.
Similar to longitudinal clinical trials, the choices of statistical approaches for
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the analysis of data from observational cohort studies depend on the scien-
tific objectives, and may involve regression models for the conditional means,
conditional distributions and conditional quantiles.

1.2 Data Structures and Examples

1.2.1 Structures of Longitudinal Data

For a typical framework of longitudinal data, the variables are repeatedly
measured over time. We denote by t a real-valued variable of time, T the
range of time points such that t ∈ T , Y (t) a real-valued outcome variable and

X(t) =
(
X (0)(t), . . . ,X (K)(t)

)T
, K ≥ 1, a RK+1-valued covariate vector at time t.

Depending on the choice of origin, the time variable t is not necessarily non-
negative. As part of the general methodology, interests of statistical analysis
with regression models are often focused on modeling and determining the
effects of

{
t, X(t)

}
on the population mean, subject-specific deviations from

the population mean, conditional distribution or conditional quantiles of Y (t).
For n randomly selected subjects with each subject repeatedly measured over
time, the longitudinal sample of

{
Y (t), t, X(t)

}
is denoted by

{(
Yi j, ti j, Xi j

)
: i = 1, . . . ,n; j = 1, . . . ,ni

}
,

where ti j is the jth measurement time of the ith subject, Yi j and Xi j =(
X
(0)
i j , . . . ,X

(K)
i j

)T
are the observed outcome and covariate vector, respectively,

of the ith subject at time ti j, and ni ≥ 1 is the ith subject’s number of re-
peated measurements. Due to various reasons, such as schedule changes or
some missed visits, the numbers of repeated measurements ni are usually not
the same in practice, even though the study design ideally calls for the same
number of repeated measurements for all the study subjects. The total number
of measurements for the study is N = ∑n

i=1 ni. In contrast to the independent
identically distributed (i.i.d.) samples in classical cross-sectional studies, which
is equivalent to the situation with ni = 1 for all i = 1, . . . ,n, the measurements
within each subject are possibly correlated, although the inter-subject mea-
surements are assumed to be independent.

A longitudinal sample is said to have a balanced design if all the subjects
have their measurements made at a common set of time points, i.e., ni = m

for some m ≥ 1 and all i = 1, . . . ,n and t1 j = · · · = tn j for all j = 1, . . . ,m. An
unbalanced design arises if the design time points

{
ti j; 1 ≤ j ≤ ni

}
are different

for different subjects. In practice, unbalanced designs may be caused by the
presence of missing observations in an otherwise balanced design or by the
random variations of the time design points. In long-term clinical trials or epi-
demiological studies, study subjects are often assigned to a set of pre-specified
“design visiting times,” but their actual visiting times could be different be-
cause of missing visits or changing visiting times due to various reasons. Under
an ideal situation, it is possible to observe balanced longitudinal data from a
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well-controlled longitudinal clinical trial, because the randomized study treat-
ments and clinical visiting times are determined by the study investigators.
However, for various reasons that are out of the investigator’s control, most
longitudinal clinical trials and nearly all the observational cohort studies have
unbalanced longitudinal designs.

1.2.2 Examples of Longitudinal Studies

In order to provide a practical sense of the scope for longitudinal studies, we
use four real-life examples, two epidemiological studies and two longitudinal
clinical trials, throughout this book to illustrate some typical designing fea-
tures, scientific objectives, and statistical models for longitudinal data analy-
sis. These examples have different sample sizes, data structures and objectives,
and require different statistical approaches.

Example 1. Baltimore Multicenter AIDS Cohort Study

This dataset is from the Baltimore site of the Multicenter AIDS Cohort
Study (BMACS), which included 400 homosexual men who were infected by
the human immunodeficiency virus (HIV) between 1984 and 1991. Because
CD4 cells (T-helper lymphocytes) are vital for immune function, an impor-
tant component of the study is to evaluate the effects of risk factors, such as
cigarette smoking, drug use, and health status evaluated by CD4 cell levels
before the infection, on the post-infection depletion of CD4 percent of lympho-
cytes. Although all the individuals were scheduled to have their measurements
made at semi-annual visits, the study has an unbalanced design because the
subjects’ actual visiting times did not exactly follow the schedule and the HIV
infections happened randomly during the study. The covariates of interest in
these data include both time-dependent and time-invariant variables. Details
of the statistical design and scientific importance of the BMACS data can
be found in Kaslow et al. (1987) and Wu, Chiang and Hoover (1998). The
BMACS data used in this book included 283 subjects with a total of 1817 ob-
servations. The number of repeated measurements ranged from 1 to 14 with a
median of 6 and a mean of 6.4. Figure 1.1 presents the longitudinal trajectories
for the BMACS data. �

Example 2. National Growth and Health Study

The National Heart, Lung, and Blood Institute Growth and Health Study
(NGHS, also known as the National Growth and Health Study in ClinicalTri-
als.gov) is a multicenter population-based cohort study aimed at evaluating
the racial differences and longitudinal changes in childhood cardiovascular risk
factors between 1166 Caucasian and 1213 African American girls during child-
hood and adolescence. Details of the study have been previously described in
NGHS Research Group (NGHSRG, 1992). Up to 10 annual measurements



DATA STRUCTURES AND EXAMPLES 7

0 1 2 3 4 5 6

0
.0

0
.2

0
.4

0
.6

0
.8

Time since infection (years)

C
D

4
 p

e
rc

e
n
ta

g
e

Figure 1.1 The longitudinal CD4 trajectories for all subjects in BMACS dataset.

were obtained from the girls followed longitudinally between 9 to 10 years
of age (visit 1) at study entry through 18 to 19 years (visit 10). The demo-
graphic information, physical measures and cardiovascular risk factors such
as blood pressure and lipids levels were obtained during the visits. The body
mass index (BMI) defined as weight in kg divided by height in m2 was derived
from annual measurements of height and weight. The number of follow-up
visits for the Caucasian and African American girls in the study ranged from
1 to 10, with a median of 9 and a mean of 8.2. Figure 1.2(A) shows the BMI
and the systolic blood pressure (SBP) for a randomly chosen sample of 150
study participants. Figure 1.2(B)-(C) displays BMI and SBP measurements
for three girls from NGHS, from which we can see the individual variations in
their longitudinal trajectories. The NGHS data are available for request via
the NIH BioLINCC site (https://biolincc.nhlbi.nih.gov/). �

Example 3. Enhancing Recovery in Coronary Heart Disease Patients Study

The Enhancing Recovery in Coronary Heart Disease Patients (ENRICHD)
study is a randomized clinical trial to evaluate the efficacy of a cognitive
behavior therapy (CBT) versus usual cardiological care on survival and de-
pression severity in 2481 patients who had depression and/or low perceived
social support after acute myocardial infarction. The primary objective of the
study is to determine whether mortality and recurrent myocardial infarction

https://biolincc.nhlbi.nih.gov/
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Figure 1.2 (A) The body mass index and systolic blood pressure of 150 subjects in
the NGHS. (B)-(C) The longitudinal BMI and SBP measurements for three girls
from the NGHS.

are reduced by treatment of depression and low perceived social support with
cognitive behavior therapy, supplemented with the use of selective serotonin
reuptake inhibitor (SSRI) or other antidepressants as needed, in patients en-
rolled within 28 days after myocardial infarction (MI). The intervention of
the trial consists of cognitive behavior therapy initiated at a median of 17
days after the index MI for a median of 11 individual sessions throughout 6
months. Depression severity was measured by the Beck Depression Inventory
(BDI) with higher BDI scores indicating worsened depression severity. Group
therapy was conducted when feasible, with antidepressants, such as SSRIs,
as a pharmacotherapy for patients scoring higher than 24 on the Hamilton
Rating Scale for Depression (HRSD) or having a less than 50% reduction in
BDI scores after 5 weeks. Antidepressants were also prescribed at the request
of the patients or their primary-care physicians, therefore, could be treated
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Figure 1.3 The longitudinal BDI scores for patients in ENRICHD study with hori-
zontal axes as days on study since randomization (A) or days since medication (B).

as a concomitant treatment in addition to the randomized CBT psychosocial
treatment or usual cardiological care specified in the trial design. The main
outcome measures consist of a composite primary endpoint of death or recur-
rent MI, and secondary outcomes including change in BDI for depression or
the ENRICHD Social Support Instrument scores for low perceived social sup-
port at 6 months. Details of the study design, objectives, and major findings of
the trial have been described in ENRICHD (2001, 2003), Taylor et al. (2005)
and Bang and Robins (2005), among others.

In addition to the primary objective of the trial, an important question of
secondary objective is whether the use of antidepressants has added benefits
on the trends of depression (measured by BDI scores) for patients who re-
ceived pharmacotherapy during the six-month psychosocial treatment period.
Because pharmacotherapy was only designed as a concomitant intervention in
this trial, the starting time of pharmacotherapy was decided by the patients
or their physicians. Unfortunately, since patients in the usual care arm did
not have accurate pharmacotherapy starting time and repeated BDI scores
recorded within the first six-month period, patients in this arm are not in-
cluded in the dataset for our analysis. In our data, 92 patients (total 1445
observations) in the psychosocial treatment arm received pharmacotherapy as
a concomitant intervention during this period and had clear records of their
pharmacotherapy starting time. Among them, 45 started pharmacotherapy at
baseline and 47 started pharmacotherapy between 10 and 172 days. In addi-
tion, we also included 11 patients in the CBT arm who had record of starting
antidepressants before baseline and 454 patients who did not use antidepres-
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sants before and during the treatment period. Therefore, this data example
is based on 557 depressed patients (total 7117 observations) in the CBT arm.
The number of visits for these patients ranges from 5 to 36 and has a median
of 12. Figure 1.3 shows the BDI scores of 92 patients with antidepressant start-
ing time recorded in the ENRICHD data. The ENRICHD data are available
for request via the NIH BioLINCC site (https://biolincc.nhlbi.nih.gov/). �

Example 4. The HSCT Data

For patients with hematologic malignancies and life-threatening bone mar-
row diseases, allogeneic hematopoietic stem cell transplantation (HSCT) has
long been recognized as a curative treatment. HSCT is associated with pro-
found changes in levels of various leukocytes and cytokines around the time
before and immediately after the transplantation. The HSCT data consists
of 20 patients who were transplanted between 2006 and 2009 in a phase
II clinical trial at the National Institutes of Health. Patients received a 7-
day conditioning preparative regimen including radiation and chemotherapy
agents (on days -7 and -1). On day 0, the patients received a CD34+ stem
cell-selected HSCT from a Human Leukocyte Antigen (HLA) identical sibling
donor. Plasma samples were collected twice weekly from day -8 until 100 days
post-transplantation. The database and study design have been described in
Melenhorst et al. (2012). Figure 1.4 shows the longitudinal changes in the
white blood cell counts of granulocytes, lymphocytes and monocytes and lev-
els of three cytokines, granulocyte colony-stimulating factor (G-CSF), IL-15
and monocyte chemotactic protein-1 (MCP-1) for patients during the pre- and
early post-transplantation period. The local polynomial smoothing estimate
is superimposed on each scatter plot to show the overall time-trend. �

1.2.3 Objectives of Longitudinal Analysis

Generally speaking, a proper longitudinal analysis should achieve at least three
objectives:

(1) The model under consideration must give an adequate description of the
scientific relevance of the data and be sufficiently simple and flexible to be
practically implemented. In biomedical studies, an appropriate regression
model should give a clear and meaningful biological interpretation and also
has a simple mathematical structure.

(2) The methodology must contain proper model diagnostic tools to evaluate
the validity of a statistical model for a given dataset. Two important diag-
nostic methods are confidence regions and tests of statistical hypotheses.

(3) The methodology must have appropriate theoretical and practical prop-
erties, and can adequately handle the possible intra-subject correlations of
the data. In practice, the intra-subject correlations are often completely
unknown and difficult to be adequately estimated, so that it is generally

https://biolincc.nhlbi.nih.gov/
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Figure 1.4 Dynamics of leukocytes and cytokines around the time of stem cell trans-
plantation. The local polynomial smoothing estimators are superimposed on the scat-
ter plots.

preferred to use estimation and inference procedures that do not depend
on modeling the specific correlation structures. ✷

We briefly summarize here major classes of regression models for longitu-
dinal analysis, which form the main topics of this book. Detailed estimation
and inference procedures based on these models are discussed in the following
chapters.

1.3 Conditional-Mean Based Regression Models

This class of models is aimed at characterizing the covariate effects through
the conditional mean structures of the response variables given the covariates
of interest. These models are appropriate when the outcome variables, i.e.,
the error terms of the regression model, have nearly symmetric distributions
conditioning on the covariates. When the conditional distributions of the out-
come variables are skewed, some transformations, such as the logarithmic or
Box-Cox transformations, may be applied to the original outcome variables,
so that the transformed outcome variables have nearly symmetric conditional
distributions given the covariates.
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1.3.1 Parametric Models

Naturally, the most commonly used approach in longitudinal analysis is
through parametric regression models, such as the generalized linear and non-
linear mixed-effects models. By adopting a parsimonious parametric structure,
this class of models can summarize the relationships between the outcome
variables and covariates through some simple parameters, so that it has the
advantage of having mathematically trackable estimation and inference pro-
cedures. The simplest case of these models is the marginal linear model

Yi j =
K

∑
l=0

βl X
(l)
i j + εi(ti j), (1.1)

where β0, . . . , βK are constant linear coefficients describing the effects of the
corresponding covariates, εi(t) are realizations of a mean zero stochastic pro-
cess ε(t) at t, and Xi j and εi(ti j) are independent. Similar to all regression

models where a constant intercept term is desired, the choice of X (0) = 1 pro-
duces a baseline coefficient β0, which represents the mean value of Y (t) when
all the covariates X (l)(t) are set to zero. A popular special case of the error
process is to take ε(t) to be a mean zero Gaussian stationary process. Al-
though (1.1) appears to be overly simplified for many practical situations, its
generalizations lead to many useful models which form the bulk of longitudinal
analysis.

Estimation and inference methods based on parametric models, including
the weighted least squares, the quasi-likelihoods and the generalized estimat-
ing equations, have been extensively investigated in the literature. Details of
these methods can be found, for example, in Laird and Ware (1982), Pan-
tula and Pollock (1985), Ware (1985), Liang and Zeger (1986), Diggle (1988),
Zeger, Liang and Albert (1988), Jones and Ackerson (1990), Jones and Boadi-
Boteng (1991), Davidian and Giltinan (1995), Vonesh and Chinchilli (1997),
Verbeke and Molenberghs (2000) and Diggle et al. (2002). The main advantage
of parametric models is that they generally have simple and intuitive inter-
pretations. User-friendly computer programs are already available in popular
statistical software packages, such as SAS, STATA and R. However, these mod-
els suffer the potential shortfall of model misspecification, which may lead to
erroneous conclusions. At least in exploratory studies, it is often necessary to
relax some of the parametric restrictions.

1.3.2 Semiparametric Models

A useful semiparametric regression model, investigated by Zeger and Dig-
gle (1994) and Moyeed and Diggle (1994), is the partially linear model

Yi j = β0(ti j)+
K

∑
l=1

βl X
(l)
i j + εi(ti j), (1.2)
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where β0(t) is an unknown smooth function of t, βl are unknown constants
and εi(t) and Xi j are defined in (1.1). The objective in (1.2) is to estimate
the scalar covariate effects {β1, . . . , βK} while leaving the unknown smooth
function β0(t) as a nuisance baseline curve. This model is more general than
the marginal linear model (1.1), because β0(t) is allowed to change with t,
rather than setting to be a constant over time. But the covariate effects of
(1.2) are determined by the linear coefficients βl , l = 1, . . . , K, which form

the parametric components. By including the linear terms of X
(l)
i j , (1.2) is

more general than the unstructured nonparametric regression model given
below, which involves only (ti j, Yi j) and was studied in the literature by Hart
and Wehrly (1986), Altman (1990), Hart (1991), Rice and Silverman (1991),
among others.

However, because (1.2) describes the effects of X
(l)
i j on Yi j through constant

linear coefficients, this model is still based on mathematical convenience rather
than scientific relevance. For example, there is no reason to expect that the
influences of the effects of cigarette smoking and pre-infection CD4 level on
the post-infection CD4 cell percent in the BMACS data of Section 1.2.2 are
linear and constant throughout the study period. Thus, further generalization
of (1.2) is needed in many situations. We review the methods for parametric
and semiparametric longitudinal regression models in Chapter 2.

1.3.3 Unstructured Nonparametric Models

To relax the parametric assumptions on the effects of the covariates Xi j, a
further generalization is to allow the effects of Xi j to be described by nonpara-
metric functions. Although it is possible in principle to model

{
Yi j, ti j, Xi j

}

through a completely unstructured nonparametric function, such an approach
is often impractical due to the well-known problem of “curse of dimensional-
ity” in the sense that the resulting covariate effects are difficult to interpret
and the estimation and inference procedures are numerically unstable if the
dimensionality K of Xi j is high (e.g., Fan and Gijbels, 1996). Thus, without
assuming any modeling structures, a completely unstructured nonparametric
model for

{
Yi j, ti j , Xi j

}
is often impractical even for the low-dimensional case

of K = 2 or 3.
For the unstructured nonparametric models, we only present in this book

the special case of estimating the conditional mean µ(t) = E[Y (t)|t] based on
the model

Yi j = µ(ti j)+ εi(ti j), (1.3)

with longitudinal sample
{
(Yi j, ti j) : i = 1, . . . , n; j = 1, . . . , ni

}
, where, as in

(1.1), εi(t) are realizations of a mean zero stochastic process ε(t) at t. We
present three types of smoothing methods for the estimation of µ(t):

(a) kernel and local polynomial estimators;

(b) basis approximation methods through B-splines;
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(c) penalized smoothing spline methods.

The estimation methods in (a) are based on the so-called local smoothing
methods in the sense that the estimators of µ(t) are constructed using the
weighted averages of the local observations around the time point t. The es-
timation methods in (b) and (c), by contrast, are based on global smoothing
methods since the data points observed away from the time point t, i.e., global
observations, still contribute to the estimators of µ(t).

We present the local and global smoothing estimation methods for (1.3) in
Chapters 3 to 5. The main difference between the smoothing methods of Chap-
ters 3 to 5 and their counterparts with the classical cross-sectional independent
and identically distributed (i.i.d.) data is that the statistical properties of the
methods of Chapters 3 to 5 are affected by the potential intra-subject correla-
tions of the longitudinal sample

{
(Yi j, ti j

)
: i = 1, . . . , n; j = 1, . . . , ni

}
. For the

special case that there is no intra-subject correlation, the smoothing meth-
ods presented in Chapters 3 to 5 are equivalent to their counterparts with
cross-sectional i.i.d. data. But, as shown by the examples of Section 1.2.2, this
uncorrelated assumption is usually unrealistic in real longitudinal applications.

1.3.4 Structured Nonparametric Models

The problems discussed in the above parametric, semiparametric and unstruc-
tured nonparametric modeling approaches motivate the consideration of non-
parametric regression models that have certain scientifically interpretable and
meaningful structures, which we refer to herein as the“structured nonparamet-
ric regression models” or “structural nonparametric regression models.” The
main idea is to impose some mathematically tractable structures to the model,
so that, in order to maintain model flexibility and interpretability, the main
parameters of interest are functions or curves, which we refer to as “functional
parameters” or “curve parameters.”

1. The Time-Varying Coefficient Model

An important class of structured nonparametric regression models is the
time-varying coefficient model, which, under the linear structure for covariate
effects, has the form

Yi j = XT
i j β (ti j)+ εi(ti j), (1.4)

where β (t) =
(
β0(t), . . . , βK(t)

)T
is a (K + 1)-vector of smooth functions (or

smooth curves) of t, and εi(t) and Xi j are defined as in (1.1). Because (1.4)
assumes a linear model between Y (t) and X(t) at each fixed time point t, the
linear coefficient curve βl(t), l = 0, . . . , K, can be interpreted the same way as
in (1.2). In most applications, we assume that Yi j has a baseline population

mean at time point ti j, so that X
(0)
i j is set to X

(0)
i j = 1 and β0(t) represents the

intercept at time t. Because all the linear coefficients of (1.4) are functions of
t, different linear models may be obtained at different time points.
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The model (1.4) is a special case of the general varying-coefficient models
discussed in Hastie and Tibshirani (1993). Methods of estimation and infer-
ences based on this class of models have been subjected to intense investigation
in the literature. A number of different smoothing methods for the estimation
of β (t) have been proposed. These include the ordinary least squares kernel
and local polynomial methods, the roughness penalized splines, the two-step
smoothing methods and the basis approximation smoothing methods. Tar-
geted to specific types of longitudinal designs, each of these methods has its
own advantages and disadvantages in practice. We present these smoothing
estimation methods for the time-varying coefficient model (1.4) in Chapters 6
to 9.

2. The Shared-Parameter Change-Point Models

In addition to the time-varying linear structured modeling formulation as
(1.4), a number of nonparametric extensions and alternatives of (1.4) may be
considered in practice depending on the scientific objectives, biological inter-
pretations and data structures of the study. These alternative modeling ap-
proaches are needed because, in many studies, the regression models as shown
in (1.1) to (1.4) are misspecified, which may lead to biased and erroneous
conclusions.

A particularly interesting scenario in longitudinal studies is the presence of
a concomitant intervention in the sense that a particular intervention is intro-
duced to a subject because of the unsatisfactory health outcomes observed in
the past. In this case, a concomitant intervention cannot be treated as a usual
covariate in the regression models (1.1) to (1.4), because a necessary condi-
tion for these models to be valid in practice is that the values of the covariates
must not depend on the past values of the outcomes. Under the assumption
that there is only one concomitant intervention and a subject can switch from
“without concomitant intervention” to “with concomitant intervention” only
once, a viable way to model the effects of the concomitant intervention and
other covariates on the outcome variable is to incorporate the change-point
time into the model.

Let Si be the concomitant intervention change-point time of the ith subject.
It is then reasonable to assume that the outcome Yi(t) of this subject follows
different trajectories before and after the change-point time Si. To do this, we
denote by µ0

(
t, Xi; ai

)
the outcome trajectory at time t before the concomitant

intervention, which is determined by the subject-specific parameter vector ai,
and by µ1

(
t, Xi; bi

)
the change of the outcome trajectory after the concomitant

intervention, which depends on the subject-specific parameter vector bi. The
relationship between Yi j and

{
ti j , Xi, Si

}
is described by

{
Yi j = µ0

(
t, Xi; ai

)
+ δi j µ1

(
t, Xi; bi

)
+ εi j,

(
aT

i , bT
i , Si

)T ∼ Joint Distribution,
(1.5)

where δi j = 1[ti j≥Si] is the indicator of whether the subject is taking concomitant
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intervention at time ti j and εi j are the mean zero errors with some covariance
structure at time points ti j1 and ti j2 when j1 6= j2. In (1.5), the outcome tra-
jectory before the concomitant intervention time Si, µ0

(
t, Xi; ai

)
, affects the

change-point time Si through the joint distribution of ai and Si. At time points
ti j after taking the concomitant intervention, i.e., δi j = 1, the outcome trajec-
tory becomes µ0

(
ti j, Xi; ai

)
+ µ1

(
ti j, Xi; bi

)
, in which the change-point time Si

affects the value of Yi j through the joint distribution of bi and Si.
Although (1.5) shares the parameters ai and bi in the trajectory of Yi j and

the joint distribution with Si, hence the name“shared-parameter change-point”
model, the terms µ0

(
t, Xi; ai

)
and µ1

(
ti j, Xi; bi

)
can be flexible nonparametric

curves of t. By specifying the functional forms of µ0

(
t, Xi; ai

)
and µ1

(
ti j, Xi; bi

)
,

(1.5) fits into the framework of structured nonparametric models. We discuss
the details of model formulation and interpretations and the estimation meth-
ods of (1.5) in Chapter 10.

3. The Nonparametric Mixed-Effects Models

Another useful class of structured nonparametric regression models for a
longitudinal sample

{(
Yi j, ti j, Xi j

)
: i = 1, . . . , n; j = 1, . . . , ni

}
is a more flexible

version of the classical mixed-effects models to be reviewed in Section 2.1.
To see why this flexible extension is potentially useful in real applications,
we consider the simple case of modeling Yi j as a function of ti j without the
covariates Xi j. If we denote by Yi(t) the ith subject’s outcome value at time t,
we can describe the relationship between Yi(t) and t by

Yi(t) = β0(t)+β0i(t)+ εi(t), (1.6)

where β0(t) = E
[
Yi(t)

]
is the population-mean curve of t and, for the ith sub-

ject, β0i(t) is the subject-specific curve and εi(t) is the measurement error at
time t. Since the parametric forms of β0(t) and β0i(t) are often unknown in
practice, a reasonable flexible model is to assume that β0(t) and β0i(t) are un-
known smooth curves of t, so that the population-mean time-trend of Y (t) can
be evaluated by the curve estimates of β0(t), and the subject-specific outcome
trajectory of Yi(t) can be predicted by the estimates of

[
β0(t)+β0i(t)

]
. Here,

we use the convention which refers an estimate of the population-mean curve
to a curve estimator and an estimate of the subject-specific curve to a curve
predictor.

The advantages of using (1.6) include two main aspects:

(a) By decomposing the trajectory of Yi(t) as the sum of a population-mean
curve, a subject-specific deviation curve from the population and a mea-
surement error, (1.6) establishes a clearly interpretable mechanism that
can be used to construct a reasonable covariance structure for the repeated
measurements.

(b) The predictor of the subject-specific curve over t can be used to track the



CONDITIONAL-DISTRIBUTION BASED MODELS 17

outcomes of interest at different time points and evaluate the distributions
of the outcomes over time.

The above advantages have important applications in real applications
when the scientific questions can be better answered by evaluating the corre-
lation structures and tracking the individual subject’s outcome trajectories.
We describe the details of (1.6), its extensions with time-varying covariates,
and the corresponding estimation and inference procedures in Chapter 11. We
further describe the estimation methods for distribution functions and longi-
tudinal tracking based on (1.6) and its extensions with time-varying covariates
in Chapter 15.

4. Other Modeling Approaches

The structured nonparametric models described above only represent a
number of frequently used flexible structural approaches in longitudinal anal-
ysis. In real applications, these models are clearly not enough to cover all the
potentially important and scientifically interpretable structures. In some cir-
cumstances, the models described in this book can be directly extended to
meet the practical needs of real studies. In general, however, there are var-
ious modeling structures which are beyond the scope of this book and have
been developed for various scientific reasons and data structures. In order to
maintain focus, we limit the scope of this book to the most frequently used
modeling structures.

1.4 Conditional-Distribution Based Models

Beyond the above conditional-mean based models, regressionmodels for condi-
tional distributions are often used in longitudinal analysis. This is particularly
true when the distributions of the response variables or their transformed vari-
ables are unknown, non-normal or asymmetric. In many longitudinal studies,
the scientific objectives cannot be achieved using the conditional-mean based
models, and answers to the relevant study questions require appropriate sta-
tistical inferences for the conditional distributions. Flexible regression models
for conditional distribution functions are then more appropriate tools than
the conditional-mean based regression models.

1.4.1 Conditional Distribution Functions and Functionals

We present a number of useful formulations of conditional distributions and
their functionals. These distribution functions and functionals are useful to
show the general patterns of the population. In many instances, they are
more informative than only evaluating the conditional means. For example,
conditional distributions and their functionals can be used to define a subject’s
health status and track the disease risks over time.
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1. Conditional Distribution Functions

When the outcome variables are discrete, a well-known parametric ap-
proach is to consider the generalized linear mixed-effects models (e.g., Molen-
berghs and Verbeke, 2005), which may also be applied to the discretized ver-
sions of continuous outcome variables defined by some prespecified threshold
values. When there are no appropriate threshold values or there are no existing
transformations for the outcome variables, a natural method for the analysis
of
{

Y (t), t, X(t)
}
is to directly model the conditional distribution functions

PA(x, t) = P
[
Y (t) ∈ A(x, t)

∣∣X(t) = x, t
]
, (1.7)

where A(x, t) is a subset on the real line chosen by the scientific objectives of
the analysis. In particular, if A(x, t) = (−∞, y] for some real valued y, (1.7) is
the conditional cumulative distribution function (CDF)

Ft(y|x) = P
[
Y (t)≤ y

∣∣X(t) = x, t
]
. (1.8)

The statistical objective of the analysis is to construct estimates and infer-
ences for PA(x, t) or Ft(y|x), when these quantities are considered as functions
of x and t. The relationship between x and PA(x, t) or Ft(y|x) shows the co-
variate effects on the outcome distributions at a given time point t. On the
other hand, the covariate effects are possibly time-varying, and the change of
PA(x, t) or Ft(y|x) as a function of t illustrates the time-trends of PA(x, t) or
Ft(y|x), respectively.

The applications of PA(x, t) or Ft(y|x) in biomedical studies are often orig-
inated from evaluating the health status or disease risk levels of an individual
or a group of subjects from a chosen population. The set A(x, t), which defines
health status or disease risk levels, is chosen based on the study objectives. In
some situations, A(x, t) is obtained from other studies and treated as known
for the current study. In general, A(x, t) is possibly unknown and may need to
be estimated from the same longitudinal sample.

2. Conditional Quantiles and Other Functionals

Various functionals of the conditional distribution functions may also be
of interest in longitudinal studies. Choices of these functionals depend on the
scientific objectives of the study. A useful functional of the conditional CDF
Ft(y|x) is the conditional quantile function given by

yα(t, x) = F−1
t (α|x), (1.9)

where F−1
t (α|x) is the unique inverse of Ft(y|x) = α for any 0 < α < 1 and any

given t and X(t) = x, and yα(t, x) is the (100×α)th conditional quantile given
{t, x}. Other useful functionals include the conditional inter-quantile range

δyα1
,yα2

(t1, x1; t2, x2) = yα1
(t1, x1)− yα2

(t2, x2) (1.10)
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for any choices of {α1, t1, x1} and {α2, t2, x2}. Conditional quantiles have been
used to develop the national guidelines for the diagnosis, evaluation and treat-
ment of high blood pressure in children and adolescents (NHBPEP, 2004).

3. Distribution-Based Tracking

Given the time-varying information provided by the longitudinal observa-
tions, an important objective is to evaluate the tracking ability among subjects
with certain health status. The scientific values of evaluating the tracking abil-
ities of cardiovascular risk factors in pediatric studies have been discussed by,
for example, Kavey et al. (2003), Thompson et al. (2007) and Obarzanek et
al. (2010). The concept of tracking ability can be quantified by evaluating
whether a subject’s health outcome at an earlier time point affects the distri-
bution of the health outcome at a later time point. We discuss a few statistical
tracking indices based on the concept of maintaining the relative ranks over
time within the population.

Rank-Tracking Probability:
Suppose that there is a pre-defined set of health outcomes A(t) at any

given time point t, so that a subject’s health outcome at a time point t can be
determined by whether Y (t) ∈ A(t). A simple and direct way to measure the
tracking ability of Y (t) at two time points s1 < s2 is to use the “rank-tracking
probability” (RTP) defined by

RTPs1,s2
(A, B) = P

[
Y (s2) ∈ A(s2)

∣∣Y (s1) ∈ A(s1), X(s1) ∈ B(s1)
]
, (1.11)

where B(t) ⊂ RK+1 is a pre-specified subset for the covariates at time point
t. Since RT Ps1,s2

(A, B) is a conditional probability, its values are within [0, 1],
and a large value of RT Ps1,s2

(A, B) would suggest that, given Y (s1) ∈ A(s1) and
X(s1) ∈ B(s1), the probability of Y (s2) ∈ A(s2) is large. ✷

Interpretations of Rank-Tracking Probability:
The strength of tracking Y (t) is actually measured by the value of

RTPs1,s2
(A, B) relative to the conditional probability of Y (s2) ∈ A(s2) without

knowing Y (s1) ∈ A(s1), that is, P[Y (s2) ∈ A(s2)|X(s1) ∈ B(s1)]. If

RTPs1,s2
(A, B) = P

[
Y (s2) ∈ A(s2)

∣∣X(s1) ∈ B(s1)
]
, (1.12)

then knowing Y (s1) ∈ A(s1) does not increase the conditional probability of
Y (s2) ∈ A(s2) given X(s1) ∈ B(s1). The equation in (1.11) then suggests that
Y (s1) ∈ A(s1) has no tracking ability for Y (s2) ∈ A(s2) conditioning on X(s1) ∈
B(s1). On the other hand, Y (s1) ∈ A(s1) can be defined to have positive or
negative tracking value for Y (s2) ∈ A(s2) conditioning on X(s1) ∈ B(s1), if

RT Ps1,s2
(A, B)> P[Y (s2) ∈ A(s2)|X(s1) ∈ B(s1)] (1.13)
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or
RT Ps1,s2

(A, B)< P[Y (s2) ∈ A(s2)|X(s1) ∈ B(s1)] (1.14)

respectively. It clearly follows that Y (s1) has no tracking ability for Y (s2) if
Y (s1) and Y (s2) are conditionally independent given X(s1) ∈ B(s1). ✷

Tracking is an extremely useful feature in long-term studies of popula-
tion changing patterns and can only be evaluated by longitudinal studies with
sufficient numbers of repeated measurements. This feature illustrates the ma-
jor advantage of long-term longitudinal studies over the simpler studies with
cross-sectional i.i.d. data or longitudinal studies with small numbers of re-
peated measurements.

1.4.2 Parametric Distribution Models

If PA(x, t) or Ft(y|x) can be determined by a finite dimensional parameter θ
within a parameter space Θ, we obtain the parametric models PA,θ (x, t) and
Ft,θ (y|x) for PA(x, t) or Ft(y|x), respectively, with θ ∈ Θ. Here, Θ is often taken
as an open subset in the Euclidean space. The linear mixed-effects model to be
reviewed in Chapter 2.1 is a special case of the parametric models with normal
distribution assumptions. Under the parametric modeling assumptions, the
conditional distribution functions PA,θ (x, t) and Ft,θ (y|x) can be in principle
estimated by first estimating the parameter θ using a maximum likelihood
procedure and then substituting θ in PA,θ (x, t) and Ft,θ (y|x) with its maximum
likelihood estimator. Completely specified parametric models PA,θ (x, t) and
Ft,θ (y|x) lack the much needed flexibility in practice, hence, may lead to biased
conclusions when the models are misspecified. These models are not the focus
of this book.

1.4.3 Semiparametric Distribution Models

Since the fully parametrized distributions for PA(x, t) and Ft(y|x) may not be
always available in practice, a relatively more flexible approach is to consider
modeling PA(x, t) and Ft(y|x) by a semiparametric family through a combi-
nation of nonparametric components and finite dimensional parameters. This
approach is similar to the semiparametric modeling of Section 1.3.2 for the
conditional means. In particular, when

{
Yi(t) : i = 1, . . . , n

}
have normal dis-

tributions for any given t, similar semiparametric models for the conditional
means, such as the partially linear model (1.2), can also be used to evaluate
the conditional distributions of Yi(t).

Semiparametric models specifically developed for evaluating the condi-
tional distribution functions have also been extensively studied in the litera-
ture. A well-known example of semiparametric models in survival analysis is
the transformation models, which have been studied, for example, by Cheng,
Wei and Ying (1995, 1997). Although the longitudinal data considered in this
book (Section 1.2.1) have different structures from the usual time-to-event
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outcome variables considered in survival analysis, the linear transformation
model can be adapted to the current longitudinal data with some modifica-
tions. A key feature under the current context is to model the conditional
distribution of Y (t) given the covariates X(t) at any given time point t.

Assume that Ft(y|x) of (1.8) is continuous in y for any given t and x. Let

St(y|x) = 1−Ft(y|x), (1.15)

which is often referred to as the “survival function” in survival analysis when
the outcome is a time-to-event variable. Under the context of longitudinal
data, a semiparametric linear transformation model for Ft(y|x) is

g
{

St

[
y|X(t)

]}
= h(y, t)+XT (t)β , (1.16)

where g(·) is a known decreasing link function, β =
(
β0, β1, . . . , βK

)T
is the

parameter vector describing the covariate effects, and h(y, t) is an unknown
baseline function strictly increasing in y. By leaving h(y, t) to be a nonparamet-
ric function of (y, t), (1.16) incorporates both the nonparametric component
h(y, t) and the parameter vector β , hence, it leads to a semiparametric model
for Ft(y|x). When t is fixed, (1.16) is just the semiparametric linear transfor-
mation model studied by Cheng, Wei and Ying (1995, 1997). When t changes
across the time range, (1.16) has the added feature of time-trends described by
the baseline function h(y, t), while keeping β as a time-invariant multivariate
parameter.

Despite the popularity of the transformation models in survival analysis,
its extension (1.16) falls short of the model flexibility targeted by this book,
because the covariate effect characterized by β is assumed to stay constant for
all t. In real biomedical applications, the covariate effects are likely to change
with t. This dynamic nature of the covariate effects leads to the consideration
of nonparametric regression models for conditional distributions.

1.4.4 Unstructured Nonparametric Distribution Models

Completely unstructured nonparametric models for PA(x, t) and Ft(y|x) may
also be considered when there are no suitable parametric or semiparameter
models available for these functions. Such situations may arise when the po-
tential bias caused by the possible model misspecification is a major concern.
Unstructured nonparametric estimation of the conditional CDF with cross-
sectional i.i.d. data and certain time series samples has been studied by Hall,
Wolff and Yao (1999) based on two kernel smoothing methods, the local lo-
gistic estimation method and the adjusted Nadaraya-Watson method.

However, a completely unstructured nonparametric formulation of PA(x, t)
or Ft(y|x) is determined by both t and the K + 1 components of x, which can
be difficult to estimate if K is large because of the well-known problem of
“curse of dimensionality” (e.g., Fan and Gijbels, 1996). Even if the completely
unstructured nonparametric estimators of PA(x, t) or Ft(y|x) and their infer-
ences are available, the results for PA(x , t) or Ft(y|x) are usually difficult to
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interpret when K ≥ 2. This drawback severely limits the use of unstructured
nonparametric models for PA(x, t) or Ft(y|x).

Despite the shortcomings of unstructured nonparametric models, we
present in Chapter 12 some useful smoothing methods for estimating the
conditional distribution functions and their functionals. These methods are
further modified in later chapters to estimate the distribution functions and
covariate effects under a number of structured nonparametric models.

1.4.5 Structured Nonparametric Distribution Models

By imposing a functional structure on Ft(y|x), structured nonparametric mod-
els can be applied as a useful dimension reduction strategy to alleviate the
potential instability associated with the high dimensional nonparametric esti-
mation of Ft(y|x). We describe here a few such structured modeling approaches.

1. The Time-Varying Transformation Models

This structured approach is a direct generalization of (1.16) by generalizing
the linear coefficients β to be nonparametric coefficient functions of time

β (t) =
(
β0(t), . . . , βK(t)

)T
, (1.17)

so that, by substituting β of (1.16) with β (t), the time-varying transformation
model for the conditional CDF Ft

[
y
∣∣X(t)

]
= 1− St

[
y
∣∣X(t)

]
is given by

g
{

St

[
y
∣∣X(t)

]}
= h(y, t)+XT (t)β (t). (1.18)

Similar to the more restrictive semiparametric model (1.16), the link function
g(·) in (1.18) is known. The linear coefficients βl(t), l = 0, . . . , K, describe the
time-varying covariate effects on the conditional CDF Ft

[
y
∣∣X(t)

]
. Different

choices of g(·) also lead to different covariate effects on Ft

[
y
∣∣X(t)

]
.

Motivated by the NGHS example of Section 1.2.2, the time-varying trans-
formation model (1.18) was introduced by Wu, Tian and Yu (2010) to evaluate
the covariate effects on the time-varying distributions of various cardiovascular
risk factors for children and adolescents. The conditional-distribution based
regression models are appropriate for pediatric studies because health status
and disease risk levels for children and adolescents are often determined by the
distributions of risk variables conditioning on age, gender and other covari-
ates. The model (1.18) keeps a reasonable balance between model flexibility
and complexity. Details of the estimation methods and application of (1.18)
are presented in Chapters 13 and 14.

2. The Mixed-Effects Varying-Coefficient Models

Another class of structured nonparametric models for Ft(y|x), which can be
treated as a natural generalization of the parametric family Ft(y|x), is to allow
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the parameters to be functions of time, i.e., substituting the θ in Ft,θ (y|x)
with θ (t). The resulting distribution function Ft,θ(t)(y|x) then belongs to a
parametric family at each fixed time point t. When t changes, the values of
the parameters may also change. This modeling approach leads to a class of
time-varying parametric models, which includes the time-varying coefficient
model as a special case. In particular, if the error term of (1.3) has a mean zero
normal distribution with time-varying variance σ2(t), then the time-varying
coefficient model (1.3) is equivalent to the time-varying Gaussian model with
the conditional mean XT (t)β (t) given X(t).

To include a subject-specific effect curve into the model formulation, we
may assume that the outcome distribution of the ith subject deviates from the
population and its subject-specific deviation from the population is charac-
terized by a parameter curve θi(t) at time t. This structured modeling scheme
leads to the class of“mixed-effects varying-coefficient models.”A simple special
case of the mixed-effects varying-coefficient model with a univariate covariate
Xi(t) is

Yi(t) = β0(t)+
[
β1(t)+β1i(t)

]
Xi(t)+ εi(t), (1.19)

where β0(t) and β1(t) are the population-mean intercept and coefficient curves,
respectively, β1i(t) is the subject-specific deviance curve from the population,
and εi(t) is the mean zero error process. Although (1.19) is a conditional-mean
based regression model, it can be used to estimate the conditional distributions
and their functionals of Yi(t) at different time points when the distributions of
the error process εi(t) are specified.

Various generalizations of (1.19) can be established by including different
population-mean and subject-specific coefficient curves. We present in Chap-
ter 15 the estimation methods, and applications and generalizations for eval-
uating the conditional distributions and their functionals.

1.5 Review of Smoothing Methods

Since this book mainly focuses on the estimation, inferences and applications
of nonparametric models (both unstructured and structured nonparametric
models), smoothing methods, which have been widely used in nonparametric
curve estimation with cross-sectional i.i.d. data, are used throughout the book
in conjunction with the modeling structures. In order to gain some useful
insights into the commonly used smoothing methods, we briefly review these
methods under the simple cross-sectional i.i.d. data

Y =
{(

Yi, ti
)T

: i = 1, . . . , n
}

(1.20)

without the presence of X(t). Suppose that, under the i.i.d. sample Y for
(Y (t), t)T , the statistical interest is to estimate the smooth conditional-mean
function µ(t) = E

[
Y (t)

∣∣t
]
under the regression model

Y (t) = µ(t)+ ε(t), (1.21)
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where ε(t) is a mean zero stochastic process with variance σ2. We summarize
below a number of local and global smoothing methods for the estimation of
µ(t), which is assumed to be a smooth function of t. A local smoothing method
for µ(t) refers to the estimation methods using primarily the observations
within some neighborhoods of the time t. A global smoothing method for µ(t)
then relies on all the observations. Both local and global smoothing methods
have their advantages and disadvantages in real applications.

1.5.1 Local Smoothing Methods

Throughout this book, we consider two kernel-based local smoothing methods:
the kernel estimators and the local polynomial estimators. This is because the
majority of the local smoothing methods for structured nonparametric mod-
els with longitudinal data are developed using kernel-based methods. Other
local smoothing methods, such as the locally weighted scatter plot smoothing
(LOESS) method, are useful in nonparametric regression, but their theory and
applications in longitudinal studies have not been substantially investigated.

1. Kernel Smoothing Methods

The Nadaraya-Watson kernel estimator of µ(t) can be obtained by mini-
mizing the “local least squares criterion”

ℓK(t) =
n

∑
i=1

[
Yi − µ(t)

]2( 1

nh

)
K

( t − ti

h

)
, (1.22)

with respect to µ(t), where K(·) is a kernel function, which is usually taken to
be a non-negative probability density function, and h > 0 is a bandwidth. Set-
ting the partial derivative of ℓK(t) with respect to µ(t) to zero, the Nadaraya-
Watson kernel estimator µ̂K(t) of µ(t) is given by

µ̂K(t) =
∑n

i=1

{
YiK
[
(t − ti)/h

]}

∑n
i=1

{
K
[
(t − ti)/h

]} . (1.23)

It follows from (1.22) and (1.23) that µ̂K(t) is a so-called local smoothing
estimator of µ(t), because it is obtained by using the subjects whose ti are
within a neighborhood of t determined by the bandwidth h. This can be seen by
considering the special case that K(·) is the density of a uniform distribution.
Suppose that KU(s) is the uniform density on [−a/2, a/2], such that

KU(s) = a−1 1[|s|≤a/2] (1.24)

for some a> 0, where 1[A] is the indicator function such that 1[A] = 1 if A holds,
and 0 otherwise. Then, it follows from (1.24) that, for any h > 0, KU (s) is a
uniform kernel function, which satisfies

{
KU [(t − ti)/h] = 1/a, if t − (ha/2)≤ ti ≤ t +(ha/2);

KU [(t − ti)/h] = 0, if ti < t − (ha/2) or ti > t +(ha/2).
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Since any value of a > 0 can be used for (1.24), simple choices include a = 1

or 2.
The equations (1.22) and (1.24) imply that the local least squares score

function ℓKU
(t) under KU(·) is

ℓKU
(t) =

( 1

nh

) n

∑
i=1

[
Yi − µ(t)

]2
1[t−(h/2)≤ti≤t+(h/2)]. (1.25)

Consequently, (1.23) gives

µ̂KU
(t) =

∑n
i=1Yi 1[t−(h/2)≤ti≤t+(h/2)]

∑n
i=1 1[t−(h/2)≤ti≤t+(h/2)]

. (1.26)

Thus, for each given t, µ̂KU
(t) is the local average of the Yi’s obtained from the

subjects within the neighborhood of ti’s centered at t with radius h/2, that is,
|ti − t| ≤ h/2. The neighborhood shrinks to t when h tends to zero.

When K(s) is not a uniform density but has a bounded support in the sense
that K(s) = 0 if |s| > b for some constant b > 0, then µ̂K(t) given in (1.23) is
a weighted local average of the Yi’s within the neighborhood |ti − t| ≤ h/2

of ti’s. Some well-known kernel functions with bounded supports include the
Epanechnikov kernel

KE(s) =
3

4

(
1− s2

)
1[|s|≤1], (1.27)

the triangular kernel
KT (s) =

(
1−|s|

)
1[|s|≤1], (1.28)

the quartic kernel

KQ(s) =
15

16

(
1− s2

)2
1[|s|≤1], (1.29)

and the tricube kernel

KC(s) =
70

81

(
1−|s|3

)3
1[|s|≤1]. (1.30)

Kernel functions with unbounded supports may also be used in practice. A
well-known example of the kernel functions with unbounded supports is the
Gaussian kernel

KG(s) =
1√
2π

exp
(
− s2

2

)
. (1.31)

The Epanechnikov kernel has been shown to have the optimality property
that it minimizes the asymptotic mean squared errors of the kernel estima-
tors under certain mild asymptotic assumptions (Härdle, 1990). Although dif-
ferent kernel functions lead to different local weights for kernel estimators,
the asymptotic derivations, simulation studies and practical applications have
shown that the theoretical and practical properties of kernel estimators are
mostly influenced by the bandwidth choices but not so much by the shapes of
the kernel functions (Härdle, 1990; Fan and Gijbels, 1996). This fact is again
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Figure 1.5 Graphical depiction of the shapes of kernel functions: Uniform (a = 2 in
(1.24)), Epanechnikov, Triangular, Quartic, Tricube and Gaussian.

observed for the smoothing estimators discussed in this book. Thus, in real
applications, all the kernel functions shown in this section can be used inter-
changeably. The main advantages of the Nadaraya-Watson kernel estimators
are their computational simplicity and straightforward interpretations. The
kernel estimators generally have appropriate theoretical properties, such as
consistency and small mean squared errors, when the sample size is large and
t is within the interior of its support.

2. Local Polynomial Estimators

A main drawback of the above kernel estimators, as demonstrated in Fan
and Gijbels (1996), is that these estimators have excessive biases when t is close
to the boundary of its support. Intuitively, the boundary bias is caused by the
fact that, when t is a boundary point, the observations are only obtained with
ti at one side of t, which causes the local averages computed by the kernel
estimators to be either lower or higher than the true value µ(t). The local
polynomial estimators are a useful local smoothing approach to correct the
potential boundary bias associated with the kernel estimators. Suppose that,
when ti is within a small neighborhood of t, µ(ti) can be approximated by the
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Taylor’s expansion

µ(ti)≈
p

∑
l=0

µ (l)(t)

l!
(ti − t)l =

p

∑
l=0

bl (ti − t)l (1.32)

for an integer p. Using the same approach as (1.22) with the approximation
of (1.32), the pth order local polynomial estimators can be obtained by mini-
mizing

ℓp,K(t) =
n

∑
i=1

[
Yi −

p

∑
l=0

bl (ti − t)l

]2( 1

nh

)
K

( t − ti

h

)
(1.33)

with respect to bl , l = 1, . . . , p, where K(·) is the same kernel function as in
(1.22), which may be chosen as the ones given in (1.24), (1.27) through (1.30).

Comparing (1.32) with (1.33), the minimizer b̂l leads to the pth order local
polynomial estimator

µ̂
(l)
L, p(t) = l! b̂l (1.34)

of the lth derivative µ (l)(t) at time point t. The estimator of the entire curve
µ (l)(·) can be obtained by minimizing (1.33) over all the time points within

its support. In practice, it is sufficient to compute µ̂
(l)
L, p(·) over a finite number

of distinct time points. The pth order local polynomial estimator of µ(t) is

µ̂L, p(t) = µ̂
(0)
L, p(t), (1.35)

and, by selecting p = 1, the local linear estimator of µ(t) is µ̂L,1(t). In all the
applications discussed in this book, the main focus is on the estimation of the
mean curve µ(t), rather than its derivatives µ (l)(t) with l ≥ 1.

Similar to the kernel estimators, the choice of kernel functions does not
have significant influences on the theoretical and practical properties of µ̂L, p(t).
As discussed in Fan and Gijbels (1996), the main factors affecting the statis-
tical properties of the local polynomial estimators are the bandwidth choices
and the degree p of the polynomials. When p increases, the number of pa-
rameters used in the approximation (1.32) increases, which, on one hand, may
reduce the estimation bias, but, on the other hand, will increase the compu-
tational complexity. In practice, the results of minimizing (1.33) with a large
p may be numerically unstable, and the practical benefit of using a large p

is not significant. For this reason, the local linear estimators with p = 1 are
often the more popular choices than higher order local polynomial estimators
in nonparametric smoothing. �

1.5.2 Global Smoothing Methods

Among a large number of global smoothing methods in the literature, we
focus in this book on the methods of basis splines (B-splines) and the pe-
nalized smoothing splines. These are the two most extensively studied global
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smoothing methods in nonparametric regression with longitudinal data. Be-
tween these two smoothing methods, the B-splines are more often used than
the penalized smoothing splines for various structured nonparametric regres-
sion models. By approximating the smooth curves through some basis expan-
sions, the B-splines can be viewed as “extended linear models,” which can be
readily adapted to many different regression structures. On the other hand,
the penalized smoothing spline estimators depend on maximizing some“rough-
ness penalized likelihood functions,”which can be computationally difficult for
many regression structures.

1. Basis Approximations and B-splines

These smoothing methods approximate the unknown function by expan-
sions of some basis functions and are referred to in the nonparametric statistics
literature as the “extended linear models” (Stone et al., 1997; Huang, 1998).
Suppose that {B0(t), B1(t), . . .} is a set of basis functions, such as polynomial
bases, Fourier bases or B-splines, and µ(t) can be approximated by the ex-
pansion

µ(t)≈
L

∑
l=0

γl Bl(t), (1.36)

where γl are the real-valued coefficients. The choices of basis functions depend
on the nature and smoothness assumptions of µ(t). A simple choice is the
global polynomial basis Bl(t) = t l . Because the global polynomials can be nu-
merically unstable when the order L is large, we commonly use B-splines, also
referred to as polynomial splines, in real applications.

The B-splines are piece-wise polynomials with knots at the boundary and
within the interior of the support of t. To give a brief description of the B-
splines, we consider q real-valued knots t j with t0 < t1 < · · ·< tq−1, where t0 and
tq−1 are the boundary knots and the rest are the interior knots. A B-spline
curve of degree r is a curve from [tr, tq−r−1] to the real line composed of a linear
combination of B-spline basis Bl,r(t) of degree r, such that for t ∈ [tr, tq−r−1],

S(t) =
q−r−2

∑
l=0

cl Bl,r(t),

where cl are the control points or de Boor points. The B-spline basis is defined
in such a way that, for l = 0, . . . , q−2, Bl,0(t) = 1 if tl ≤ t < tl+1 and Bl,0(t) = 0

otherwise, for l = 0, . . . , q− r− 2,

Bl,r(t) =
t − tl

tl+r − tl
Bl,r−1(t)+

tl+r+1 − t

tl+r+1 − tl+1

Bl+1,r−1(t), (1.37)

and l + r+ 1 ≤ q− 1. The choices of r = 1, 2 and 3 correspond to the linear,
quadratic and cubic B-splines, respectively. For example, if we use a natural
cubic spline with q−2 interior knots

{
t1, . . . , tq−2

}
, the natural cubic spline is
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represented by q− 2 basis functions
{

B0,1(t), . . . , B0,q−2(t)
}
defined by





B0,1(t) = 1,

B0,2(t) = t,

B0,(l+2)(t) = dl(t)− dq−3(t),

dl(t) =
[(

t − tl
)3

+
−
(
t − tq−2

)3

+

]/(
tq−2 − tl

)
.

Here, for l = 1, . . . , q−4, (t − tl)+ = t− tl if t > tl , and (t− tl)+ = 0 if t ≤ tl . Each
of the above basis functions has zero second and third derivative outside the
boundary knots.

Substituting the approximation (1.36) into (1.21), the observed data{
(Yi, ti)

T : i = 1, . . . , n
}
can be approximated by

Yi ≈
Ln

∑
l=0

γl Bl(ti)+ εi, (1.38)

where εi, i= 1, . . . , n, are independent error terms with mean zero and variance
σ2 and Ln may increase as n increases. By minimizing the square error

ℓB(t; γ) =
1

n

n

∑
i=1

[ Ln

∑
l=0

γl Bl(ti)

]2

, (1.39)

the least squares estimator γ̂ =
(
γ̂1, . . . , γ̂Ln

)T
of γ =

(
γ1, . . . , γLn

)T
, if exists, is

the unique minimizer of (1.39). The smoothing estimator of µ(t) based on the
basis functions

{
B0(t), B1(t), . . . , BL(t)

}
is

µ̂B(t) =
L

∑
l=0

γ̂l Bl(t). (1.40)

For most biomedical applications, the linear, quadratic and cubic B-splines
are commonly used in practice. Depending on the nature of the specific appli-
cations, other basis choices have also been used in the literature.

2. Penalized Smoothing Splines

Another class of global smoothing estimators of µ(t) is obtained by mini-
mizing a penalized squared error criterion. Let Q(µ) be a penalty term defined
by the smoothness requirement of µ(t). A smoothing estimator µ̂λ (t) of µ(t)
can be obtained by minimizing the penalized least squares criterion

LQ(µ ; λ ) =
1

n

n

∑
i=1

[
Yi − µ(ti)

]2
+λ Q(µ), (1.41)

where λ is a smoothing parameter. The degree of smoothing of the estimator
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µλ (t) depends on the value of λ . A large λ in (1.41) would lead to a smoother
µλ (t), while a small λ leads to a less smooth µλ (t).

In addition to λ , the smoothing estimator is also determined by the
smoothness penalty term Q(µ). Let µ ′′(t) be the second derivative of µ(t)

with respect to t. If Q(µ) =
∫ b

a

∣∣µ ′′(s)
∣∣ds is chosen to be the L1-norm on the in-

terval [a, b], a L1-penalized smoothing estimator µ̂Q(t) of µ(t) can be obtained
by minimizing

LQ(µ ; λ ) =
1

n

n

∑
i=1

[
Yi − µ(ti)

]2
+λ

∫ b

a

∣∣µ ′′(s)
∣∣ds. (1.42)

Alternatively, using the L2 penalized criterion Q(µ) =
∫ b

a

[
µ ′′(s)

]2
ds for [a, b], a

L2-penalized smoothing estimator µ̂Q(t) of µ(t) can be obtained by minimizing

LQ2
(µ ; λ ) =

1

n

n

∑
i=1

[
Yi − µ(ti)

]2
+λ

∫ b

a

[
µ ′′(s)

]2
ds. (1.43)

Intuitively, (1.42) has a large penalizing term when the absolute values of the
second derivatives of µ(t) are large, and (1.43) has a large penalizing term
when the squares of the second derivatives of µ(t) are large. The minimizers
of (1.42) and (1.43) are natural cubic splines, as shown, for example, in Green
and Silverman (1994) and Eubank (1999).

Other penalized least squares criteria may be constructed by replacing
µ ′′(t) of (1.42) and (1.43) with µ ′(t) or other roughness penalizing terms.
Although the choice of roughness penalizing terms may be ideally selected by
the scientific nature of the problem, such a choice is not always available in
practice. In real applications, the roughness penalizing terms are often chosen
subjectively or by comparing the resulting smoothing estimators. The choice
of the smoothing parameter λ is more important than the penalty function
Q(µ) in determining the smoothness and appropriateness of the estimators.

1.6 Introduction to R

The main statistical computing tools we use in this book are the R language
and several R packages (R Core Team, 2017). R is a popular language with
various statistical applications, including data import, manipulation, graphics
and model fitting. We provide examples of R code and outputs to implement
the statistical methods discussed in each of the following chapters so that
readers with minimal background knowledge can easily try out the models
and sample code to fit their own data. We note that these statistical methods
are also available or can be implemented in SAS, MATLAB, Python, or other
statistical software and languages.

Both R and R packages are free and open-source software, available on the
Comprehensive R Archive Network, or CRAN, via the website https://www.r-
project.org. It is straightforward to download from CRAN and install a current

https://www.rproject.org
https://www.rproject.org
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version of the pre-compiled binary distribution of the R base system and con-
tributed packages. For a comprehensive introduction to R and its applications,
we refer to the R manuals that come as part of the R installation, and several
comprehensive textbooks, e.g., Venables and Ripley (2002), Dalgaard (2008)
and James et al. (2013).

A major advantage of R is that a large number of add-on packages de-
veloped by the R Core Team and users are also freely available from CRAN.
As of January 2018, CRAN package repository has over 12,000 packages. An
R package can be a collection of datasets, functions and documentation, and
many R packages provide statistical tools that are widely used among R users.
We can benefit and make use of a certain package by installing it from CRAN
and then loading it into R with library() or require():

> install.packages("pkgname")

> library(pkgname)

We have implemented the statistical analyses discussed in this book with
R version 3.4.3 and compiled the datasets and relevant functions into a R

package npmlda, which can be obtained from CRAN and GitHub. To install
our package from the GitHub repository, we can use install_github function
in the devtools package (Wickham, 2015):

> library(devtools)

> install_github("npmldabook/npmlda")

The R code for the examples used in this book is available online from the
supporting website (https://github.com/npmldabook/rcodes). The authors
would appreciate to be informed of any issues, suggestions and improvements
on this book.

1.7 Organization of the Book

This book contains two major topics of nonparametric regression models:
the conditional-mean based regression models and the conditional-distribution
based regression models. To give a clear picture of the model structures, we
organize this book into five main parts:

I: Introduction and Review (Chapters 1 and 2);

II: Unstructured Nonparametric Models (Chapters 3, 4 and 5);

III: Time-Varying Coefficient Models (Chapters 6, 7, 8 and 9);

IV: Shared-Parameter and Mixed-Effects Models (Chapters 10 and 11);

V: Nonparametric Models for Distributions (Chapters 12, 13, 14 and 15).

https://github.com/npmldabook/rcodes
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As an initial building block of the models, Chapter 2 briefly summarizes
the main results of the methodology used for longitudinal analysis with para-
metric and semiparametric regression models, and Chapters 3, 4 and 5 in Part
II present the local and global smoothing methods for unstructured nonpara-
metric models.

The main results of the conditional mean based structured nonparametric
models are presented in Parts III and IV, where Part III summarizes the
smoothing estimation methods for the time-varying coefficient models under
a number of different data structures and Part IV presents some extensions
of the models in Part III.

Part V summarizes some recent developments in the modeling, estima-
tion and applications of the conditional distribution based structured non-
parametric regression models. Two important concepts of these chapters are
(a) modeling the changing patterns of conditional distribution functions and
their functionals over time, and (b) quantifying and estimating the tracking
indices of outcome variables over time based on the conditional distributions.
These two concepts demonstrate the advantages of the conditional distribution
based models over the conditional mean based modeling schemes for certain
objectives of longitudinal analysis.

We attempt to maintain a reasonable balance among methods, theory, ap-
plications and implementations. In addition to the methodology and theoreti-
cal derivations presented in each chapter, the R packages are used throughout
the book to illustrate the applications of the statistical methods. The graphs
and tables of each application are accompanied by the corresponding R code.



Chapter 2

Parametric and Semiparametric

Methods

We briefly review in this chapter a number of popular parametric and semi-
parametric models in longitudinal analysis. Because of their simple mathe-
matical structures and interpretations, these models are often the first set of
analytical tools to be used in a real study. The estimation and inference meth-
ods developed for these models form the foundation of longitudinal analysis.
Since the nonparametric models to be presented in this book are flexible exten-
sions of these parametric and semiparametric models, their local and global
smoothing estimation methods with different modeling structures are moti-
vated and generalized from the estimation methods in this chapter. We note
that, because the topics of parametric and semiparametric longitudinal analy-
sis have been extensively studied in the literature, the models and estimation
methods reviewed here only represent a fraction of the available approaches.
A more complete account of the most commonly used parametric and semi-
parametric methods in longitudinal analysis can be found in Fitzmaurice et
al. (2009).

2.1 Linear Marginal and Mixed-Effects Models

As a popular approach for modeling the covariate effects on the longitudinal
outcome variables, the mixed-effects models generally serve two purposes:

(1) Describe the covariate effects on the mean response profiles.

(2) Describe the subject-specific response profiles.

A regression model serving the first purpose is generally classified as a
marginal model or a population-mean model. A regression model serving the
second purpose is a random-effects model or a subject-specific model (e.g.,
Zeger, Liang and Albert, 1988). A mixed-effects model then incorporates both
the marginal and random effects. In particular, a linear mixed-effects model
is obtained when the marginal and random effects are additive and follow a
linear relationship.

33
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2.1.1 Marginal Linear Models

It is convenient to describe the models through a matrix representation. Let
the ith subject’s responses, time design points, and covariate matrix be





Yi =
(
Yi1, . . . ,Yini

)T
,

ti =
(
ti1, . . . , tini

)T
,

Xi =




1 X
(1)
i1 · · · X

(K)
i1

...
...

...
...

1 X
(1)
ini

· · · X
(K)
ini


 .

(2.1)

Note that, in order to allow for an intercept term in the models described

below, we set X
(0)
i j = 1 in Xi. The marginal linear model (1.1) for (2.1) is

Yi = Xi β + εi(ti), (2.2)

where β =
(
β0, . . . ,βK

)T
is the vector of linear coefficients with β0 being the

unknown intercept and βk, 1 ≤ k ≤ K, describing the effect of the kth covari-

ate X
(k)
i j , and εi(ti) =

(
εi(ti1), . . . ,εi(tini

)
)T

with εi(ti j) being the realization of a

mean zero random error process εi(t) at time point t = ti j. The within-subject
correlation structures of εi(t1) and εi(t2) at any two time points t1 6= t2 are in
general unknown, but may assume to have certain parametric or nonparamet-
ric forms.

The model (2.2) is referred to as a marginal model because the conditional
mean of Yi at Xi is Xi β , so that the β0 represents the population-mean inter-
cept and the linear coefficients β1, . . . , βK represent the covariate effects. Un-
der the special case that the error term εi(ti) of (2.2) is a mean zero Gaussian
process with covariate matrix Vi(ti), the responses Yi are then independent
Gaussian random vectors such that

Yi ∼ N
(

Xi β ,Vi(ti)
)
, (2.3)

where N(a, b) denotes a multivariate normal distribution with mean vector
a and covariance matrix b. A drawback of (2.2) is that the subject-specific
relationship between Yi and Xi for the subjects i = 1, . . . , n is not specified by
the model.

The covariance structures of (2.2) or its Gaussian model (2.3) are usually
influenced by three factors: random effects, serial correlations, and measure-
ment errors. The random effects characterize the stochastic variations between
subjects within the population. In particular, we may view that, when the co-
variates affect the response linearly, some of the linear coefficients may vary
from subject to subject. The serial correlations are the results of time-varying
associations between different measurements of the same subject. Such corre-
lations are typically positive in biomedical studies, and become weaker as the
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time interval between the measurements increases. The measurement errors,
which are normally assumed to be independent both between and within the
subjects, are induced by the measurement process or random variations within
the subjects.

2.1.2 The Linear Mixed-Effects Models

This modeling strategy establishes a practical intra-subject correlation struc-
ture for the repeated measurements. The subsequent models are capable of
predicting the subject-specific outcome trajectories.

Suppose that, for the ith subject, 1 ≤ i ≤ n, there is a [r × 1] vector of
explanatory variables Ui j measured at time ti j, which may or may not over-
lap with the original covariate vector Xi j. Using the additive decomposition
of random-effects, serial correlations and measurement errors, εi(ti j) can be
expressed as

εi(ti j) = UT
i j bi +Wi(ti j)+Zi j, (2.4)

where bi is the [r × 1] random vector with multivariate normal distribution
N(0, D), D is a [r× r] covariate matrix with (p, q)th element dpq = dqp, Wi(ti j)
for i = 1, . . . , n are independent copies of a mean zero Gaussian process whose
covariance at time points ti j1 and ti j2 is ρW (ti j1 , ti j2), and Zi j for i = 1, . . . , n and
j = 1, . . . , ni are i.i.d. random variables with N(0, τ2) distribution. In general,
Zi j does not have to be a normal random variable.

The specification of (2.2) and (2.4) gives the linear mixed-effects model,
which was first studied by Laird and Ware (1982),





Yi = Xi β +Ui bi + δi,

δi(ti j) = Wi(ti j)+Zi j,

δi =
(
δi(ti1), . . . , δi(tini

)
)T

,

Ui = the [ni × r] matrix whose jth row is UT
i j,

(2.5)

where the population-mean parameter β represents the influence of Xi on the
population means of the response profile, the subject-specific parameter bi de-
scribes the variation of the ith subject from the population conditioning on the
given explanatory variable Ui, and δi represents the error term. Conditioning
on Xi and Ui, (2.5) implies that Yi for i = 1, . . . , n are independent Gaussian
vectors such that

Yi ∼ N
(

Xi β , Ui DUT
i +Pi+ τ2 Ii

)
, (2.6)

where Pi is the [ni × ni] covariance matrix whose ( j1, j2)th element is
ρW (ti j1 , ti j2) and Ii is the [ni × ni] identity matrix.

Useful special cases of (2.5) can be derived from the variance-covariance
structure of (2.4). A number of the commonly seen special cases include:

(a) The classical linear models with cross-sectional i.i.d. data is a special
case of (2.4) where εi(ti j) are only affected by the measurement errors Zi j.
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(b) When neither the random effects nor the measurement errors are present,
the error term is of pure serial correlation εi(ti j) =Wi(ti j). Moreover, if Wi(ti j)
are from a mean zero stationary Gaussian process, the covariance of εi(ti j1)
and εi(ti j2) can be specified by

Cov
[
εi(ti j1), εi(ti j2)

]
= σ2 ρ

(∣∣ti j1 − ti j2

∣∣
)
, (2.7)

where σ is a positive constant and ρ(·) is a continuous function. Useful
choices of ρ(·) include the exponential correlation ρ(s) = exp(−as) for some
constant a > 0 and the Gaussian correlation ρ(s) = exp(−as2), among oth-
ers.

(c) When εi(ti j) are affected by a mean zero stationary Gaussian process and
a mean zero Gaussian measurement error, the variance of Yi j is σ2 ρ(0)+τ2,
while the covariance of Yi j1 and Yi j2 , for j1 6= j2, is σ2 ρ(|ti j1 − ti j2 |), for some
σ > 0, τ > 0 and continuous correlation function ρ(·).

(d) When there is no serial correlation, the intra-subject correlations are only
induced by the random effects, so that Pi is not present in (2.6). ✷

2.1.3 Conditional Maximum Likelihood Estimation

In the literature, estimation and inference procedures for linear models with
longitudinal data are primarily developed based on the mixed-effects model
(2.5) with the Gaussian distribution assumption for (2.4). The Gaussian as-
sumption simplifies the computation of likelihood-based estimation and in-
ference procedures. Further details of the estimation and inference methods
summarized here can be found in Verbeke and Molenberghs (2000).

Suppose that the variance-covariance matrix Vi(ti) of (2.4) is determined
by a Rq-valued parameter vector α. Let Vi(ti; α) be the variance-covariance
matrix parametrized by α. The log-likelihood function for (2.3) under the
Gaussian distribution assumption is





L(β , α) = c+∑n
i=1

[
− (1/2) log

∣∣Vi(ti; α)
∣∣

−(1/2)
(
Yi −Xi β

)T
V−1

i (ti; α)
(
Yi −Xi β

)]
,

c = ∑n
i=1

[
−
(
ni

/
2
)

log(2π)
]
.

(2.8)

For a given α, (2.8) can be maximized by

β̂ (α) =

{
n

∑
i=1

[
XT

i V−1
i (ti; α)Xi

]}−1{ n

∑
i=1

[
XT

i V−1
i (ti; α)Yi

]}
, (2.9)

which is referred to as the conditional maximum likelihood estimator (CMLE).

It can be verified by direct calculation that, under (2.5), β̂ (α) is an unbiased
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estimator of β . Direct calculation also shows that the covariance matrix of

β̂ (α) is

Cov
[
β̂ (α)

]

=

{
n

∑
i=1

[
XT

i V−1
i (ti; α)Xi

]}−1{ n

∑
i=1

[
XT

i V−1
i (ti;α)Cov(Yi)V−1

i (ti; α)Xi

]}

×
{

n

∑
i=1

[
XT

i V−1
i (ti; α)Xi

]}−1

=

{
n

∑
i=1

[
XT

i V−1
i (ti; α)Xi

]}−1

. (2.10)

Note that the second equality sign of (2.10) does not hold when the structure
of the variance-covariance matrix is not correctly specified. Further deriva-

tion using (2.5), (2.9) and (2.10) shows that β̂ (α) has a multivariate Normal
distribution,

β̂ (α)∼ N

{
β ,

[
n

∑
i=1

(
XT

i V−1
i (ti; α)Xi

)]−1}
. (2.11)

When α is known, this result can be used to develop inference procedures,
such as confidence regions and test statistics, for β .

2.1.4 Maximum Likelihood Estimation

When α is unknown, as in most practical situations, a consistent estimate of α
has to be used. An intuitive approach is to estimate β and α by maximizing
(2.8) with respect to β and α simultaneously. Maximum likelihood estima-
tors (MLE) of this type can be computed by substituting (2.9) into (2.8) and
then maximizing (2.8) with respect to α. We denote the resulting MLE by

β̂ML and α̂ML. The asymptotic distributions of
{

β̂ML, α̂ML

}
can be developed

using the standard approaches in large sample theory.

Although
{

β̂ML, α̂ML

}
has some justifiable statistical properties, as for most

likelihood-based methods, it may not be desirable in practice. To see why
an alternative estimation method might be warranted in some situations, we
consider the simple linear regression with i.i.d. errors and n1 = · · ·= nn = m,

Yi ∼ N
(

Xi β , σ2 Im

)
, (2.12)

where Im is the (m×m) identity matrix. The parameters involved in the model

are β and σ . Let β̂ML and σ̂ML be the MLEs of β and σ , respectively, and
RSS be the residual sum of squares defined by

RSS =
n

∑
i=1

(
Yi −Xi β̂ML

)T(
Yi −Xi β̂ML

)
.
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The MLE of σ2 is
σ̂2

ML = RSS/(nm). (2.13)

However, it is well-known that, for any finite n and m, (2.13) is a biased
estimator of σ2. On the other hand, a slightly modified estimator

σ̂2
REML = RSS/[nm− (k+ 1)] (2.14)

is unbiased for σ2. Here, σ̂2
REML is the restricted maximum likelihood estima-

tor (REMLE) for the model (2.12).

2.1.5 Restricted Maximum Likelihood Estimation

This class of estimators was introduced by Patterson and Thompson (1971)
for the purpose of estimating variance components in the linear models. The
main idea is to consider a linear transformation of the original response vari-
able, so that the distribution of the transformed variable does not depend on

β . Let Y =
(
YT

1 , . . . , YT
n

)T
, X =

(
XT

1 , . . . , XT
n

)T
and V be the block-diagonal

matrix with Vi(ti) on the ith main diagonal and zeros elsewhere. Then, with
V parameterized by α, the model (2.3) is equivalent to

Y ∼ N
(

Xβ , V(α)
)
. (2.15)

The REMLE of α, the parameter for the variance-covariance matrix in
(2.15), is obtained by maximizing the likelihood function of Y∗ = AT Y, where
A is a [N × (N − k − 1)] full rank matrix with AT X = 0 and N = ∑n

i=1 ni. A
specific construction of A can be found in Diggle et al. (2002, Section 4.5). It
follows from (2.15) that Y∗ has a mean zero multivariate Gaussian distribution
with covariance matrix AT V(α)A. Harville (1974) showed that the likelihood
function of Y∗ is proportional to

L∗(α) =

∣∣∣∣
n

∑
i=1

XT
i Xi

∣∣∣∣
1/2 ∣∣∣∣

n

∑
i=1

XT
i V−1

i

(
ti; α

)
Xi

∣∣∣∣
−1/2 n

∏
i=1

∣∣∣∣Vi

(
ti; α

)∣∣∣∣
−1/2

(2.16)

×exp

{
−1

2

n

∑
i=1

[
Yi −Xi β̂(α)

]T

V−1
i

(
ti; α

)[
Yi −Xi β̂ (α)

]}
.

The REMLE α̂REML of α maximizes (2.16). The REMLE β̂REML of β is ob-
tained by substituting α of (2.9) with α̂REML. Because (2.16) does not depend

on the choice of A, the resulting estimators β̂REML and α̂REML are free of the
specific linear transformations.

The log-likelihood of Y∗, log[L∗(α)], differs from the log-likelihood L
(
β̂ , α

)

only through a constant, which does not depend on α, and

−1

2
log

∣∣∣∣
n

∑
i=1

XT
i V−1

i

(
ti; α

)
Xi

∣∣∣∣,
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which does not depend on β . Because both REMLE and MLE are based on
the likelihood principle, they all have appropriate theoretical properties such
as consistency, asymptotic normality and asymptotic efficiency. In practice,
neither one is uniformly superior to the other for all the situations. Their
numerical values are also computed from different algorithms. For the MLEs,
the fixed effects and the variance components are estimated simultaneously.
For the REMLEs, only the variance components are estimated.

2.1.6 Likelihood-Based Inferences

The results established in the previous sections are useful to construct infer-
ence procedures for β . For the purpose of illustration, only a few special cases
are presented here. A more complete account of inferential and diagnostic tools
can be found in Zeger, Liang and Albert (1988), Vonesh and Chinchilli (1997),
Verbeke and Molenberghs (2000), Diggle et al. (2002), among others.

Suppose that there is a consistent estimator α̂ of α, which may be either
the MLE α̂ML or the REMLE α̂REML. Substituting α of (2.11) with α̂, the

distribution of β̂ (α̂) can be approximated, when n is large, by





β̂ (α̂)∼ N
(

β , V̂
)
,

V̂ =
{

∑n
i=1

[
XT

i V−1
i

(
ti; α̂

)
Xi

]}−1

.
(2.17)

Suppose that C is a known [r× (k+1)] matrix with full rank. It follows imme-

diately from (2.17) that, when n is sufficiently large, the distribution of C β̂ (α̂)
can be approximated by

C β̂
(
α̂
)
∼ N

(
Cβ , CV̂CT

)
. (2.18)

Consequently, an approximate [100× (1− a)]%, 0 < a < 1, confidence interval
for Cβ can be given by

Cβ̂
(
α̂
)
±Z1−a/2

(
CV̂CT

)1/2
. (2.19)

Taking C to be the (k+1) row vector with 1 at its lth place and zero elsewhere,
the approximate [100×(1−a)]% confidence interval for βl obtained from (2.19)
is given by

β̂l

(
α̂
)
±Z1−a/2V̂

1/2

l , (2.20)

where V̂l is the lth diagonal element of V̂.
The normal approximation in (2.17) can also be used to construct test

statistics for linear statistical hypotheses. Suppose that we would like to test
the null hypothesis of Cβ = θ0 for a known vector θ0 against the general
alternative that Cβ 6= θ0. A natural test statistic would be

T̂ =
[
C β̂
(
α̂
)
−θ0

]T (
CV̂CT

)−1
[
C β̂
(
α̂
)
−θ0

]
, (2.21)
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which has approximately a χ2-distribution with r degrees of freedom, denoted
by χ2

r , under the null hypothesis. A level (100×a)% test based on (2.21) then
rejects the null hypothesis when T̂ > χ2

r (a) with χ2
r (a) being the [100× (1−

a)]th percentile of χ2
r . For the special case of testing βl = 0 versus βl 6= 0, a

simple procedure equivalent to (2.21) is to reject the null hypothesis when

∣∣∣β̂l

(
α̂
)∣∣∣> Z1−a/2 V̂

1/2

l , (2.22)

where Z1−a/2 and V̂l are defined in (2.20).

2.2 Nonlinear Marginal and Mixed-Effects Models

We outline in this section a few key features of the nonlinear marginal and
mixed-effects models that have already been described in Fitzmaurice et
al. (2009, Chapter 5). Because the methods of this book are mainly non-
parametric generalizations of the linear regression methods, our aim is to
illustrate the differences between the linear and nonlinear approaches. Details
of the model formulations, estimation and inference procedures and their ap-
plications are referred to Fitzmaurice et al. (2009) and the references therein.

2.2.1 Model Formulation and Interpretation

Nonlinear models generally refer to parametric regression models which cannot
be formulated into the framework of (2.2) or (2.5). Thus, by nature, this
class of models include a large number of possible functional relationships
between Y (t) and {t, X(t)}. But, because these are still parametric models, a
key feature is that the functional relationships between Y (t) and {t, X(t)} are
determined by a set of parameters in a Euclidean space, although the linear
relationship between Y (t) and X(t) are not satisfied. Applications of nonlinear
models in biomedical studies can be found, for example, in pharmacokinetics
and infectious diseases.

When the objective of the analysis is on the overall population effects of the
covariates without considering the effects at the individual level, a nonlinear
marginal regression model for

{
Y (t), t, X(t)

}
can be written as

Y (t) = m
[
t, X(t); β

]
+ εi(t), (2.23)

where β is an unknown vector of parameters, m
[
t, X(t); β

]
is a nonlinear func-

tion of t and X(t) determined by the parameter vector β , and, as in (2.2), εi(t)
is a mean zero random error process. An example of the nonlinear function is
the logistic model

m(t; β ) =
β1

1+ exp[−β3(t −β2)]
, (2.24)

where β =
(
β1, β2, β3

)T
, β1 > 0 and β3 > 0. Using the matrix notation
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{

Yi, ti, Xi

}
in (2.1), the model (2.24) can be written as





Yi = m
(
ti, Xi; β

)
+ εi(ti),

m
(
ti, Xi; β

)
=

(
m
(
ti1, Xi; β

)
, . . . , m

(
tini

, Xi; β
))T

,

εi(ti) =
(
εi(ti1), . . . , εi(tini

)
)T

,

(2.25)

where εi(ti j) is the realization of a mean zero random error process εi(t) at
time point t = ti j. This model is referred to as a marginal model because the
parameter vector β describes the relationship between Y (t) and X(t) for the
entire population of interest.

Nonlinear mixed-effects models are formulated by decomposing the effects
of
{

t,X(t)
}
on Y (t) through two stages, the individual-level (or subject-specific)

modeling and the population-level modeling. The first stage, i.e., individual-
level modeling, is aimed at describing the trajectory of Yi(t) through a non-
linear function of

{
t, Xi(t)

}
specific to each subject i. The second stage,

i.e., population-level modeling, characterizes the differences among individ-
uals across the population. Suppose that, for each subject i, the covariate
Xi is formed by two components: the “within-subject” covariates Ui, and the
“between-subject” covariates Ai. Intuitively, the components of Ui describe the
time-response relationship at the level of the ith individual, and the compo-
nents of Ai, which do not change over the observation period, characterize the
differences between individuals.

The basic nonlinear mixed-effects model can be expressed as





Individual-Level Model: Yi = m
(
ti, Ui; θi

)
+ εi(ti),

Cov
(
Yi

∣∣Xi, bi

)
=Vi

(
Xi, β , bi, α

)
,

Population-Level Model: θi = d
(
Ai; β , bi

)
,

(2.26)

where m
(
ti, Ui; θi

)
is defined as in (2.25), θi is a r-dimensional vector of pa-

rameters for some r ≥ 1 specific to the individual i, m
(
ti, Ui; θi

)
and εi(ti)

are a nonlinear function of time and the vector of errors as in (2.25), re-
spectively, α and β are vectors of fixed-effects parameters, bi is a vector of
random-effects parameters, Vi

(
Xi, β , bi, α

)
is the conditional covariance ma-

trix, and d
(
Ai; β , bi

)
is a r-dimensional function of the “between-subject” co-

variates Ai. At the individual-level model of (2.26), Yi depends on Ui, hence
Xi, through the nonlinear function m

(
ti, Ui; θi

)
, which has a known parametric

structure determined by the individual-level parameter θi. At the population-
level, the subject-specific characteristics described by θi depend on Ai, hence
Xi, through the known function d

(
Ai; β , bi

)
, which is determined by the vector

of population-level parameters β and a random variation vector bi. A com-
mon assumption is that bi has mean zero conditioning on Ai and its variance-
covariance matrix does not depend on Ai, that is,

E
(
bi

∣∣Ai

)
= E

(
bi

)
= 0 and Cov

(
bi

∣∣Ai

)
=Cov

(
bi

)
= Σ (2.27)
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for an unstructured covariance matrix Σ. A common choice is to take bi to be a
mean zero multivariate normal random variable, i.e., bi ∼ N(0, Σ). The fixed-
effects parameters to be estimated from (2.26) are

{
β , α, Σ

}
. The random-

effects parameter to be estimated from (2.26) and (2.27) is θi. These estimated
fixed-effects and random-effects parameters are used to predict the subject-
specific trajectories of Y (t).

The nonlinear marginal and mixed-effects models (2.25) and (2.26) share
three common features with their linear counterparts in (2.2) and (2.5). First,
both modeling schemes assume that there are population-mean parameters,
i.e., β in these models, which characterizes the fixed covariate effects of the
population. Second, both modeling schemes characterize the individual-level
(or subject-specific) covariate effects through a vector of random-effects pa-
rameters, i.e., bi in these models. Third, in most practical situations, the dis-
tributions of the random-effects parameter vectors

{
b1, . . . ,bn

}
are assumed

to be multivariate normal with mean zero. The variance-covariance matri-
ces may be either structured or unstructured. These common features allow
the likelihood-based estimation and inference procedures to be used for both
the linear and nonlinear models. However, because the individual-level and
population-level functions m

(
ti, Ui; θi

)
and d

(
Ai; β , bi

)
in (2.26) do not have

the simple linear structure, computation of the likelihood-based estimation
and inferences for the nonlinear models requires more complex algorithms
compared to the linear models.

2.2.2 Likelihood-Based Estimation and Inferences

We only outline the methods for the nonlinear mixed-effects model (2.26),
since the marginal model (2.25) can be treated as a special case of (2.26).
Under the assumption that the distribution function of Yi conditioning on
Xi is known, for example, εi(ti) and bi of (2.26) have multivariate normal

distributions, we can write γ =
(
β T , αT

)T
and the log-likelihood function for

{γ, Σ} as

ℓ
(
γ, Σ
)

= log
[ n

∏
i=1

fi

(
Yi

∣∣Xi; γ, Σ
)]

= log
[ n

∏
i=1

∫
fi

(
Yi

∣∣Xi, bi; γ
)

f
(
bi; Σ

)
dbi

]
, (2.28)

where fi

(
Yi

∣∣Xi; γ, Σ
)

is the ith subject’s density function of Yi given Xi,
fi

(
Yi

∣∣Xi, bi; γ
)
is the ith subject’s density function of Yi conditioning on Xi

and the subject-specific parameters bi, and f
(
bi; Σ

)
is the marginal density

function of bi.
A major obstacle of obtaining the likelihood-based estimation and infer-

ences for the parameters of interest {β , α} is computation. Maximizing (2.28)
with respect to γ and Σ is generally intractable, because the right side in-
tegral involves complex nonlinear functions and numerical evaluation of the
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integral can be computationally intensive. Thus, a number of analytical ap-
proximation methods have been proposed in the literature to approximate
the log-likelihood function in (2.28), so that the optimization algorithms for
computing the approximate maximum likelihood estimators of γ and Σ can
be simplified. Because these approximation methods are not used in our non-
parametric estimation procedures, we refer to Davidian and Giltinan (1995)
for details.

2.2.3 Estimation of Subject-Specific Parameters

An appropriate estimator θ̂i of the subject-specific parameter θi can be used to
predict the subject’s trajectory of Yi(t) by substituting θi in m(t, ·; θi) with θ̂i.
When sufficient data are available for each individual, a simple method to esti-
mate θi is to fit the available data from the ith individual to its individual-level
model in (2.26). The advantage of estimating θi using only the ith subject’s
individual data is that the estimation does not depend on the model struc-
tures. However, this “fitting individual model” approach is often not practical
because the numbers of repeated measurements ni may not be sufficiently large
for all i = 1, . . . ,n. In situations where not all the subjects have large numbers
of repeated measurements, a more practical approach is to pool the informa-
tion from all n subjects, so that the parameters for the individual-level and
population-level models in (2.26) can be estimated simultaneously.

The estimation of
{

β , α, θi

}
using“pooled information” from all n subjects

depends on the covariance structures Vi

(
Xi, β , bi, α

)
. For simple structures of

Vi(·), such as Vi(·) is diagonal or certain nondiagonal with intra-individual vari-

ance and covariance parameters, γ =
(
β T , αT

)T
and θi can be estimated using

the weighted regression method described in Davidian and Giltinan (1995,
Chapter 2 and Section 5.2). Other approaches for the estimation and infer-
ence of θi include “approximate linear mixed-effects model.” the Expectation-
Maximization (EM) algorithm, and the methods based on analytic and nu-
merical approximations to the likelihood. Details on these methods and their
implementations have been described in Davidian and Giltinan (1995, Chap-
ters 6 and 7) and Davidian and Giltinan (2003), among others.

2.3 Semiparametric Partially Linear Models

Estimation and inference methods for semiparametric models with longitu-
dinal data have been mostly focused on the partially linear models. Existing
results in the literature can be found, for example, in Zeger and Diggle (1994),
Moyeed and Diggle (1994), Lin and Ying (2001), Lin and Carroll (2001, 2006),
Wang, Carroll and Lin (2005), among others. As discussed in Section 1.3.2,
this class of models has been developed to generalize the marginal and mixed-
effects linear models. The main objective for these models is on the estimation
and inferences of the real-valued parameters while allowing some nonparamet-
ric curves as a nuisance component. We summarize here the main approaches
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described in Zeger and Diggle (1994), Lin and Carroll (2001, 2006) and Wang,
Carroll and Lin (2005).

2.3.1 Marginal Partially Linear Models

As discussed in Section 1.3.2, the semiparametric marginal partially linear
model (1.2), which has been first investigated by Zeger and Diggle (1994) and
Moyeed and Diggle (1994), for the stochastic processes

{
Y (t), t, X(t)

}
can be

written as 



Y (t) = β0(t)+∑K
l=1 βl X (l)(t)+ ε(t)

= β0(t)+XT (t)β + ε(t),

β =
(
β1, . . . , βK

)T
,

(2.29)

where β0(t) is an unknown smooth function of t, ε(t) is a mean zero stochastic
process with variance σ2(t) and correlation function

ρ(t1, t2) =
Cov

[
ε(t1), ε(t2)

]

σ(t1)σ(t2)
for any t1 6= t2, (2.30)

and X (l)(t), l = 1, . . . ,K, and ε(t) are independent. The correlation structures
ρ(t1, t2) of ε(t) distinguish (2.29) with repeatedly measured longitudinal data
from its counterpart with cross-sectional i.i.d. data. With a longitudinal sam-
ple

{(
Yi j, ti j, Xi j

)
: i = 1, . . . , n; j = 1, . . . , ni

}
, the errors εi(ti j) in (2.29) are

independent copies of ε(t) across the n subjects but with intra-subject corre-
lations specified by (2.30).

A useful special case of εi(ti j) is the decomposition

εi(ti j) =Wi(ti j)+Zi j, (2.31)

where Wi(t) are independent copies of a mean zero stationary process W (t)
with covariance function at any time points t1 and t2

Cov
[
W (t1),W (t2)

]
= σ2

W ρW (t1, t2)

for some σW and correlation function ρW (·, ·) > 0, and Zi j are independent
and identically distributed measurement errors with mean zero and variance
σ2

Z . The covariance structure of the measurements Yi j for i = 1, . . . , n and j =
1, . . . , ni are

Cov
(
Yi1 j1 , Yi2 j2

)
=





σ2
Z +σ2

W , if i1 = i2 and j1 = j2,

σ2
W ρW

(
ti1 j1 , ti2 j2

)
, if i1 = i2 and j1 6= j2,

0, otherwise.

(2.32)

Although the partially linear model (2.29) can be classified as a special case
of the time-varying coefficient model (1.4), which is a class of the structured
nonparametric models to be discussed in Chapters 6 to 9, the estimation
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methods of these two types of models are quite different. This is a fact owing
to the differences between these two classes of modeling assumptions. In (2.29),
the covariate effects are described through the linear coefficients which do not
change with time. On the other hand, the covariate effects of (1.4) are unknown
curves of t, hence (1.4) is entirely nonparametric, although a linear structure
is used at each time t.

When Y (t) is not necessarily a continuous random variable, a generalized
marginal partially linear model is to model the conditional distribution of Y (t)
through 




g
{

µ
[
t, X(t)

]}
= β0(t)+∑K

l=1 βl X (l)(t)

= β0(t)+XT (t)β ,

µ
[
t, X(t)

]
= E

[
Y (t)

∣∣X(t)
]
,

β =
(
β1, . . . , βK

)T
,

(2.33)

where g(·) is a known link function, and β0(t), β1, . . . , βK are defined in (2.2).
With the observations

{(
Yi j, ti j, Xi j

)
: i = 1, . . . , n; j = 1, . . . , ni

}
, (2.33) can be

written as 



g
[
µ
(
ti j, Xi j

)]
= β0(ti j)+∑K

l=1 βl X
(l)
i j

= β0(ti j)+XT
i j β ,

µ
(
ti j, Xi j

)
= E

(
Yi j

∣∣Xi j

)
,

β =
(
β0, . . . , βK

)T
.

(2.34)

If g(·) is the identity function, then (2.33) reduces to (2.29), and (2.34) is the
expression given in (1.2). Both the models (2.29) and (2.33) describe the con-
ditional expectations of Y (t) through the sum of an unspecified baseline curve
β0(t) of t and the linear effects of

{
X (1)(t), . . . , X (K)(t)

}
characterized by the

coefficients
{

β1, . . . , βK

}
. When the study objective is to evaluate the effects

of the covariates, β0(t) is treated as a nuisance nonparametric component, and
the statistical inference is focused on the linear coefficients

{
β1, . . . , βK

}
.

2.3.2 Mixed-Effects Partially Linear Models

When the subject-specific deviation from the population is also of interest
for the analysis, random-effects at the individual level can be built into the
model. In this case, we consider that, for the observations

{(
Yi j, ti j, Xi j

)
: i =

1, . . . , n; j = 1, . . . , ni

}
, there is a subset Ui j =

(
U

(1)
i j , . . . , U

(K0)
i j

)T
of the original

covariates Xi j, so that Ui j has individual-level effects on Yi j which are spe-
cific to the ith subject. Incorporating the subject-specific deviation to (1.2), a
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semiparametric mixed-effects partially linear model is given by





Yi j = β0(ti j)+∑K
l=1 βl X

(l)
i j +∑

K0
r=1 bir U

(r)
i j + ei j,

= β0(ti j)+XT
i j β +UT

i j bi + ei j,

β =
(
β1, . . . ,βK)

T ,

bi =
(
bi1, . . . , biK0

)T
, bi ∼ N

(
0, D(γ1)

)
,

ei =
(
ei1, . . . , eini

)T
, ei ∼ N

(
0, R(γ2)

)
,

(2.35)

where β0(ti j) and β are the population-level baseline smooth curve and lin-
ear coefficients defined in (2.29), bi is the vector of the mean zero normally
distributed subject-specific deviations from the population-level linear coef-
ficients, ei is the vector of mean zero normally distributed error terms, and
D(γ1) and R(γ2) are the variance-covariance matrices of bi and ei specified by
the parameters γ1 and γ2, respectively.

The generalized mixed-effects partially linear model can be similarly estab-
lished by adding the subject-specific parameters into (2.34). Following (2.34)
and (2.35), this model can be written as





g
[
µ
(
ti j, Xi j

)]
= β0(ti j)+∑K

l=1 βl X
(l)
i j +∑

K0
r=1 bir U

(r)
i j

= β0(ti j)+XT
i j β +UT

i j bi,

µ
(
ti j, Xi j

)
= E

(
Yi j

∣∣Xi j

)
,

β =
(
β0, . . . , βK

)T
,

bi =
(
bi1, . . . , biK0

)T
, bi ∼ N

(
0, D(γ1)

)
,

(2.36)

where β0(t) and β are the same as (2.34) and γ1 is defined in (2.35). By in-
corporating the subject-specific coefficients bi, the mixed-effects models (2.35)
and (2.36) can be used to predict the subject-specific outcome trajectory for
a given individual.

The rest of this section focuses on some of the well-established procedures
for the estimation of

{
β0(t), β1, · · · , βK

}
as well as the random-effect coeffi-

cients bi. An excellent summary of these estimation methods can be found in
Fitzmaurice et al. (2009, Chapter 9).

2.3.3 Iterative Estimation Procedure

We briefly review here an iterative procedure described by Zeger and Dig-
gle (1994) for the estimation of β0(t), β1, . . . , βK with the marginal partially
linear model (2.29). This procedure repeatedly uses a nonparametric smooth-
ing method as described in Section 1.5 and a longitudinal parametric estima-
tion method as described in Section 2.1. This iterative algorithm is a special
case of the backfitting algorithm described in Hastie and Tibshirani (1993).

To start, we consider the partially linear model (2.29) whose error term
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ε(t) is obtained from a mean zero Gaussian process with a known correlation
function Cov

[
ε(t1), ε(t2); α

]
at any two time points t1 and t2, which is defined

in (2.30) and determined by a Euclidean space parameter α. Then, by the def-
inition of (2.1), the ith subject’s covariance matrix of the repeatedly measured

outcome Yi =
(
Yi1, . . . , Yini

)T
at the time points ti = (ti1, . . . , tini

)T is Vi

(
ti; α

)
,

where the ( j1, j2)th element of Vi

(
ti; α

)
is Cov

[
ε(ti j1), ε(ti j2); α

]
.

Iterative Estimation Procedure:

(a) Set β0(t) to be an unknown constant, i.e., β0(t) = β0, so that the partially
linear model (2.29) reduces to the marginal linear model (2.3) with linear
coefficients β0, β1, . . . , βK and covariance matrix Vi

(
ti; α

)
. The initial esti-

mators of β0, β1, . . . , βK can be computed by maximizing the log-likelihood
function (2.8).

(b) Based on the current estimator β̂1, . . . , β̂K, calculate the ith subject’s resid-
ual at time point ti j by

r
(1)
i j = Yi j −

k

∑
l=1

β̂l X
(l)
i j . (2.37)

(c) Treat the residuals {ri j : i = 1, . . . , n; j = 1, . . . , ni} as the pseudo-

observations and compute the kernel estimator β̂ K
0 (t) of β0(t) using (1.23)

with Yi j replaced by its residual ri j in (2.37), i.e.,

β̂ K
0 (t) =

∑n
i=1 ∑

ni
j=1 ri j K

[(
t − ti j

)/
h
]

∑n
i=1 ∑

ni
j=1 K

[(
t − ti j

)/
h
] , (2.38)

where K(·) and h > 0 are the kernel function and bandwidth.

(d) Based on the current kernel estimator β̂ K
0 (t) computed from (2.38), cal-

culate the residuals
r
(2)
i j = Yi j − β̂ K

0 (ti j). (2.39)

(e) Update the estimators of β1, . . . , βK by applying the maximum likelihood
procedure of (a) to the linear model

r
(2)
i j =

K

∑
l=1

βl X
(l)
i j + εi j, (2.40)

where εi j has the mean zero Gaussian distribution with intra-subject covari-
ance Vi(ti; α).

(f) Repeat the steps (b) to (e) until the estimators converge. �

The likelihood and kernel estimators in the steps (a) and (c) of the above
iterative estimation procedure are used for the purpose of illustration. Clearly,
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other parametric and nonparametric estimation methods can also be used
in these steps. A number of the commonly used local and global smoothing
methods for estimating the nonparametric curves are described in Chapters 3
to 5. A crucial step in obtaining an adequate kernel estimator for β0(t) is to
select an appropriate bandwidth h, while the choice of kernel functions is less
important. For smoothing methods other than the kernel estimators, such as
splines, this amounts to selecting an appropriate smoothing parameter. We
present some of the commonly used smoothing parameter choices in Chapters
3 to 5.

The above iterative estimation procedure has the advantage of being con-
ceptually simple and computationally feasible, since each estimation step is
based on well-known estimation methods in the literature. As shown in the
next section, it can also be directly generalized to the case with the general-
ized marginal partially linear model (2.33). However, this iterative estimation
procedure ignores the intra-subject correlations in the estimation of β0(t) in
step (c). As a result, its estimators of β1, . . . , βK are not “semiparametric ef-
ficient” in the sense their asymptotic mean squared errors do not reach the
lower bound established in Lin and Carroll (2001). Thus, we briefly mention in
the next section some alternative approaches which attempt to take the intra-
subject correlations of the data into account. These alternative approaches
have their own advantages and disadvantages compared with the above iter-
ative estimation procedure.

2.3.4 Profile Kernel Estimators

Since the methods described here are based on the approach of solving some
kernel generalized estimating equations, the estimators are referred to in the
literature as the profile kernel generalized estimating equations (profile kernel
GEE) estimators. We briefly review these methods here, which are summa-
rized in Fitzmaurice et al. (2009, Section 9.6). Details of these methods are
described in Lin and Carroll (2001), Wang, Carroll and Lin (2005) and Lin
and Carroll (2006).

1. Profile Kernel GEE Estimation Method

This method is a generalization of the above iterative estimation proce-
dure to the generalized marginal partially linear model (2.33). The iteration
algorithm contains the following steps:

(a) Replace β of (2.33) by some preliminary estimators, and then estimate
the nonparametric component β0(t) of (2.33) by solving the local polyno-
mial kernel GEE as shown in equation (9.22) of Fitzmaurice et al. (2009,
Chapter 9).

(b) Substitute β0(t) by its kernel GEE estimator, the parameters β of (2.33)
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are estimated by the profile estimating equation as shown in equation (9.23)
of Fitzmaurice et al. (2009, Chapter 9).

(c) Both the kernel GEEs and the profile estimating equations are used iter-
atively until the estimators converge, which lead to the final profile kernel
estimators of β0(t) and β . ✷

The asymptotic properties of the profile kernel estimators depend on the
working correlation matrix used in the kernel GEE estimating equation step
(a) and the profile estimating equation step (b). A striking result shown by Lin
and Carroll (2001) is that, if one accounts for the intra-subject correlation, the
profile kernel estimator of β0(t) and β is not “semiparametric efficient” in the
sense that its asymptotic mean squared error does not reach an established
lower bound. A main reason for this lack of efficiency is because the kernel
GEE estimator of β0(t) only uses the local observations obtained within the
small neighborhood of t specified by the bandwidth. Consequently, the use of
an appropriate working correlation matrix choice does not ultimately lead to
semiparametric efficient estimators at the profile estimating equation step.

2. Profile SUR Kernel Estimation Method

In order to improve the asymptotic properties of the profile kernel esti-
mators, this method, as described in Wang, Carroll and Lin (2005), intends
to construct “semiparametric efficient” estimators for the Euclidean space pa-
rameters in (2.29) and (2.33). The crucial part of this estimation method is
to replace the kernel GEE estimator of β0(t) by the “seemingly unrelated ker-
nel estimator” referred to as the SUR kernel estimator in Wang (2003). The
SUR kernel estimator is obtained by solving a kernel estimating equation, i.e.,
equation (9.3) of Fitzmaurice et al. (2009, Chapter 9), through an iterative
algorithm. The SUR kernel estimator, which does not only rely on local obser-
vations around the time point t, places weights on all the observations. Under
the identity link function for (2.33), the SUR kernel estimator of β0(t) has
a closed-form expression as shown in Lin et al. (2004) and equation (9.7) of
Fitzmaurice et al. (2009, Chapter 9). The profile SUR kernel estimators of
β0(t) and β are computed by the following steps:

(a) Substitute β0(t) with its SUR kernel estimator, and estimate β through
the profile estimating equation step.

(b) Substitute β with its profile estimators, and compute the SUR kernel es-
timator of β0(t).

(c) The above two steps are repeated iteratively until convergence. �

Compared with the profile kernel GEE estimators, the asymptotic results
of Wang, Carroll and Lin (2005) demonstrate that, when Yi is normally dis-
tributed, the profile SUR kernel estimator of β is asymptotically consistent for
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any working correlation matrix choice of Vi(ti; α). When the working correla-
tion matrix is the true correlation matrix of the data, the profile SUR kernel
estimator of β is semiparametric efficient and reaches the semiparametric ef-
ficiency lower bound described in Lin and Carroll (2001). Although the true
correlationmatrix is unknown in practice, hence, a practical profile SUR kernel
estimator of β may not be truly semiparametric efficient for a given longitudi-
nal data, the numerical results of Wang, Carroll and Lin (2005) demonstrate
that this estimator, when available, may still be a desirable choice because of
its appropriate finite sample statistical properties.

Despite the potentially attractive theoretical advantage of the profile SUR
kernel estimator, its implementation in practice is somewhat challenging, be-
cause the computation of a profile SUR kernel estimator requires an iterative
procedure, except for the Gaussian case, and the properties of the iterative
procedure in general settings are still not well understood. Further research is
still needed to develop practical algorithms to ensure the implementation of
the profile SUR kernel estimators.

3. Likelihood-Based Profile SUR Kernel Estimation Method

This method, which is described in Lin and Carroll (2006), is an extension
of the profile SUR kernel estimation method to the semiparametric mixed-
effects partially linear models (2.35) and (2.36). Based on the distribution as-
sumptions given in (2.35) and (2.36), we can write the log-likelihood function
ℓ
[
Yi; β , γ, β0(ti1), . . . , β0(tini

)
]
, which is an integral involving the conditional

likelihood function ℓ
(
Yi

∣∣bi

)
, where γ =

(
γT

1 , γT
2

)T
is the parameter vector de-

termining the covariance matrices in (2.35) and (2.36). The estimation pro-
cedure is similar to the profile SUR kernel estimation described above. The
specific iteration steps include:

(a) Given β and γ, estimate β0(t) using the SUR kernel estimator β̂0

(
t; β , γ

)
.

(b) Substitute β0(ti j) in ℓ
[
Yi; β , γ, β0(ti1), . . . , β0(tini

)
]
with the SUR kernel es-

timators, and estimate β by maximizing the profile log-likelihood

n

∑
i=1

ℓ
[
Yi; β , γ, β̂0

(
ti1; β , γ

)
, . . . , β̂0

(
tini

; β , γ
)]

with respect to β and γ.

(c) The final log-likelihood profile SUR kernel estimators β̂LK and γ̂LK are
obtained by repeating the above two steps iteratively until convergence. �

Similar to the profile SUR kernel estimators for marginal partially linear
models, the results of Lin and Carroll (2006) show that the likelihood-based

profile SUR kernel estimators β̂LK and γ̂LK have the desired asymptotic prop-
erties of consistency and semiparametric efficiency.
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2.3.5 Semiparametric Estimation by Splines

The nonparametric baseline curve and the Euclidean space parameters of the
marginal and mixed-effects partially linear models (2.29), and (2.33) through
(2.36) can also be estimated using some modified spline estimation methods as
described in Section 1.5. In the following, we briefly summarize the estimation
for the marginal partially linear model (2.29) using B-splines and the rough-
ness penalized smoothing splines. We omit the estimators for the partially
linear models (2.33) through (2.36), because they can be similarly computed
using these spline approaches. In later chapters, we further generalize these
spline methods to the structured nonparametric models.

1. Estimation by B-Splines

The main idea of the B-spline estimation method is to approximate the
nonparametric baseline curve β0(t) by some linear expansions of the spline ba-
sis functions, so that β0(t) and as well as β can be estimated by the “extended
linear models”approach of Stone et al. (1997) and Huang (1998). Approximat-
ing β0(t) by the B-spline expansion with a pre-specified integer L ≥ 0, which
may increase as the number of subject n increases,

β0(t)≈
L

∑
l=0

γl Bl(t), (2.41)

where
{

B0(t), B1(t), . . .
}
is a set of B-spline basis functions defined in (1.37),

the B-spline approximated model for (2.29) is





Yi j ≈ ∑L
l=0 γl Bl(ti j)+∑K

l=1 βl X
(l)
i j + εi j

= BT (ti j)γ +XT
i j β + εi j,

γ =
(
γ0, . . . , γL

)T
,

B(ti j) =
(
B0(ti j), . . . , BL(ti j)

)T
,

β =
(
β1, . . . , βK

)T
,

(2.42)

where εi j is the error process ε(t) defined in (2.29) at time point ti j.

Assuming that εi =
(
εi1, . . . , εini

)T
has the mean zero Gaussian distribution

with covariance matrix satisfying a parametric model denoted by Vi

(
ti; α

)
,

the B-spline estimators of β , γ and α are obtained by minimizing

L
(
β , γ, α

)
=

n

∑
i=1

{[
Yi −BT (ti)γ −XT

i β
]T

×V−1
i

(
ti; α

)[
Yi −BT (ti)γ −XT

i β
]}

(2.43)

with respect to β , γ and α. If (2.43) can be uniquely minimized, the B-spline
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estimators β̂ , γ̂ and α̂ satisfy

L
(
β̂ , γ̂, α̂

)
= min

β ,γ,α
L
(
β , γ, α

)
. (2.44)

Based on γ̂ =
(
γ̂0, . . . , γ̂L

)T
and the B-spline basis functions

{
B0(t), . . . , BL(t)

}
,

the B-spline estimator of the baseline coefficient curve β0(t) is given by

β̂0(t) =
L

∑
l=0

γ̂l Bl(t). (2.45)

Because (2.42) is the special case of the time-varying coefficient models,
we discuss in Chapter 9 the statistical properties of the B-spline estimators
for these more general models. Asymptotic properties, such as the asymptotic
distributions and semiparametric efficiency, of the B-spline estimators in (2.44)
and (2.45) are still not well-understood and require further development.

2. Estimation by Penalized Smoothing Splines

When smoothing splines are used, the estimators are obtained by maxi-
mizing some “roughness penalized likelihood functions.” For the case of (2.29)

with Gaussian errors, i.e., εi =
(
εi1, . . . , εini

)T
has the mean zero Gaussian dis-

tribution with covariance matrix Vi

(
ti; α

)
, and β0(t) is twice differentiable

with respect to t, the penalized log-likelihood function based on the second
derivatives of β0(t) is given by

ℓλ

[
β0(·), β , α

]
=

n

∑
i=1

{[
Yi −β0(ti)−XT

i β
]T

Vi

(
ti; α

)
(2.46)

×
[
Yi −β0(ti)−XT

i β
]}

−λ

∫ [
β ′′

0 (t)
]2

dt,

where Yi, ti and Xi are defined in (2.1), β0(ti) =
(
β0(ti1), . . . , β0(tini

)
)T

, β ′′
0 (t)

is the second derivative of β0(t) with respect to t, and λ > 0 is a positive
smoothing parameter. The minimizers of (2.46) are the penalized smoothing
splines estimators of β0(·), β and α, such that

ℓλ

[
β̂0(·), β̂ , α̂

]
= min

β0(·),β ,α
ℓλ

[
β0(·), β , α

]
. (2.47)

Details of the statistical properties of the penalized smoothing splines esti-
mators in (2.47) and their generalizations to the mixed-effects partially linear
models can be found in Zhang et al. (1998) and Fitzmaurice et al. (2009, Sec-
tion 9.6). Similar to the B-splines estimators of (2.44) and (2.45), asymptotic
properties, such as the asymptotic distributions and semiparametric efficiency,
of the penalized smoothing splines estimators in (2.47) have not been system-
atically derived and require further development.
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2.4 R Implementation

We present a few R functions for fitting the linear mixed-effects models using
the BMACS and the ENRICHD examples of Section 1.2. These results can be
used to compare with the findings obtained from the more flexible structured
nonparametric models to be discussed in Chapters 6 to 11. Although the
nonlinear mixed-effects models and the semiparametric partially linear models
also have important applications in practice, we omit their implementations
here because our focus is on the comparisons of the linear models with the
structured nonparametric models.

Several R packages are available to fit the linear mixed-effects models.
Among them, the nlme (Pinheiro and Bates, 2000; Pinheiro et al., 2018) and
lme4 (Bates et al., 2015) are two widely used and well-documented packages.
Both nlme and lme4 can model the intra-subject correlations among repeated
measurements using random effects. The nlme package also allows the user
to specify complex serial correlation structures. The lme4 package uses more
flexible and efficient optimizers to allow for the fitting of singular models,
which sometimes happen in the analysis of small to medium sized datasets.
We illustrate how to fit the models using functions from these R packages in
two examples.

2.4.1 The BMACS CD4 Data

The BMACS CD4 data has been described in Section 1.2. For each obser-
vation, the subject’s study visit time, cigarette smoking status, age at study
enrollment, pre-infection CD4 percentage, and CD4 percentage at the time of
visit were recorded. The following R code is used to inspect the data:

> data(BMACS)

> str(BMACS)

’data.frame’: 1817 obs. of 6 variables:

$ ID : int 1022 1022 1022 1022 1022 1022 1022 1049 1049 ...

$ Time : num 0.2 0.8 1.2 1.6 2.5 3 4.1 0.3 0.6 1 ...

$ Smoke : int 0 0 0 0 0 0 0 0 0 0 ...

$ age : num 26.2 26.2 26.2 26.2 26.2 ...

$ preCD4: num 38 38 38 38 38 38 38 44.5 44.5 44.5 ...

$ CD4 : num 17 30 23 15 21 12 5 37 44 37 ...

> head(BMACS)

ID Time Smoke age preCD4 CD4

1 1022 0.2 0 26.25 38 17

2 1022 0.8 0 26.25 38 30

3 1022 1.2 0 26.25 38 23

4 1022 1.6 0 26.25 38 15



54 PARAMETRIC AND SEMIPARAMETRIC METHODS

5 1022 2.5 0 26.25 38 21

6 1022 3.0 0 26.25 38 12

The BMACS data is already in the long format (repeated measurements
per subject are listed in separate records or rows). For some datasets, if the
data available are stored in the wide format (repeated measurements per sub-
ject are listed in multiple columns of the same records), they can be easily
restructured from wide to long format using some simple functions such as
stack() in the utils package and reshape() in the stats package in the base
R distribution or using a flexible data restructuring package tidyr (Wickham
and Grolemund, 2017).

For the BMACS data, we are interested in modeling the attenuation in
CD4 percentage over time following HIV infection because it is known that
the loss of CD4 cells due to HIV leads to AIDS and HIV-related mortality
(Kaslow et al.,1987). We first fit a simple linear mixed model that includes a
linear trend in time and a random intercept term for each subject,

Yi j = β0 + b0i+β1 ti j + εi j, (2.48)

where Yi j are the CD4 percentages and εi j are the i.i.d. measurement errors
at time ti j with εi j ∼ N(0, σ2), β0 and β1 are the fixed intercept and slope
terms, respectively, and b0i ∼ N(0, σ2

0 ) is a normal random intercept term that
describes the individual shifts from the common intercept β0.

The following R commands are used to fit the random intercept
model (2.48) and produce the REML estimates for the model parameters.
The model formula of the lme function includes both fixed and random ef-
fects, where the random argument specifies the random-effect terms followed
by |grouping variable to indicate the correlated observations within the
same group or subject:

> library(nlme)

> CD4fit1 <- lme(CD4~ Time, random=~1|ID, data=BMACS)

> summary(CD4fit1)

Linear mixed-effects model fit by REML

Data: BMACS

AIC BIC logLik

12561.91 12583.92 -6276.954

Random effects:

Formula: ~1 | ID

(Intercept) Residual

StdDev: 8.824904 6.345293

Fixed effects: CD4 ~ Time
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Value Std.Error DF t-value p-value

(Intercept) 35.37234 0.5966519 1533 59.28471 0

Time -2.67484 0.1076277 1533 -24.85274 0

Correlation:

(Intr)

Time -0.357

Standardized Within-Group Residuals:

Min Q1 Med Q3 Max

-3.73917541 -0.57204793 -0.04429796 0.56658314 4.54644250

Number of Observations: 1817

Number of Groups: 283

The “random intercept only” model (2.48) implies a compound symmetry
covariance structure, that is, a constant variance over time and equal positive
correlation between any two measurements from the same subject. In the
model (2.48), Cov

(
Yi j1 , Yi j2

)
= σ2

0 for j1 6= j2, and Var
(
Yi j

)
= σ2

0 +σ2. Thus, the

correlation is ρ =σ2
0

/(
σ2

0 +σ2
)
. For CD4 percentage, ρ = (8.824)2

/[
(8.824)2+

(6.345)2
]
= 0.659.

We can also introduce a random slope term b1i into the model (2.48), so
that

Yi j = β0 + b0i+
(
β1 + b1i

)
ti j + εi j, (2.49)

where
(
b0i, b1i

)T ∼ N
(
0, Σ

)
with

Σ =

(
σ2

0 σ01

σ01 σ2
1

)

represents the individual random deviations from the population-mean inter-
cept and slope. We fit (2.49) using the R commands (the random intercept is
included by default):

> CD4fit2 <- lme(CD4~ Time, random=~Time |ID, data=BMACS)

> summary(CD4fit2)

Linear mixed-effects model fit by REML

Data: BMACS

AIC BIC logLik

12166.3 12199.32 -6077.148

Random effects:

Formula: ~Time | ID

Structure: General positive-definite,

Log-Cholesky parametrization
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StdDev Corr

(Intercept) 8.845541 (Intr)

Time 3.052241 -0.324

Residual 5.003937

Fixed effects: CD4 ~ Time

Value Std.Error DF t-value p-value

(Intercept) 35.74864 0.5885714 1533 60.73799 0

Time -3.08116 0.2353750 1533 -13.09042 0

Correlation:

(Intr)

Time -0.435

Standardized Within-Group Residuals:

Min Q1 Med Q3 Max

-4.20189953 -0.55165113 -0.02258232 0.52023712 4.25186946

Number of Observations: 1817

Number of Groups: 283

Unlike (2.48), which assumes that the subjects have different intercepts at
time 0 but the same slope for CD4 percentages, the model (2.49) assumes that
the subjects have different intercepts and different slopes. The model (2.49)
also implies that the covariance and correlation structures between any two
measurements of the same subject depend on their time points ti j, such that,

{
Cov

(
Yi j1 , Yi j2

)
= σ2

0 +σ01

(
ti j1 + ti j2

)
+σ2

1 ti j1 ti j2 for j1 6= j2,

Var
(
Yi j

)
= σ2

0 + 2σ01 ti j +σ2
1 t2

i j +σ2.

Figure 2.1 shows the longitudinal CD4 measurements of two randomly
selected subjects, the population-mean CD4 percentage trajectories and the
subject-specific CD4 percentage trajectories of these two subjects, which are
computed based on the above models (2.48) and (2.49). Comparing the results
from these two models, the population-mean (fixed-effects) intercept and slope
estimates are similar and both effects are statistically significant.

To examine if the additional random slope term improves the model fitting,
we can use anova function that produces a likelihood ratio test to compare
the models. The following output shows that the likelihood ratio test is highly
significant, which suggests that the model (2.49) is preferable:

> anova(CD4fit1, CD4fit2)

Model df AIC BIC logLik Test L.Ratio p-value

CD4fit1 1 4 12561.91 12583.92 -6276.954

CD4fit2 2 6 12166.30 12199.32 -6077.148 1 vs 2 399.6122 <.0001
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Figure 2.1 The longitudinal CD4 measurements for all subjects and two randomly se-
lected subjects with the population-averaged and subject-specific regression estimates
plotted in solid lines and dashed lines, respectively, based on model (2.48) (random
intercept only) and model (2.49) (random intercept and random slope).

We can also obtain the same fitting results of the model (2.49) using the
lmer function from the lme4 package with the following slightly different model
formulation:

> library(lme4)

> CD4fit2b <- lmer(CD4~ Time + (Time|ID), data= BMACS)

> summary(CD4fit2b )

Linear mixed model fit by REML [’lmerMod’]

Formula: CD4 ~ Time + (Time | ID)

Data: BMACS

REML criterion at convergence: 12154.3

Scaled residuals:

Min 1Q Median 3Q Max

-4.2019 -0.5517 -0.0226 0.5202 4.2519
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Random effects:

Groups Name Variance Std.Dev. Corr

ID (Intercept) 78.243 8.846

Time 9.316 3.052 -0.32

Residual 25.039 5.004

Number of obs: 1817, groups: ID, 283

Fixed effects:

Estimate Std. Error t value

(Intercept) 35.7486 0.5886 60.74

Time -3.0812 0.2354 -13.09

Correlation of Fixed Effects:

(Intr)

Time -0.435

In addition to the linear trend with time, it may be interested in examining
the effects of other covariates on CD4 percentages. The covariates can be
added to the linear mixed-effects model. The preCD4 variable is centered first
by subtracting the sample mean, which is shown to be a significant factor.
Smoking history and age are not significant. These results are obtained using
the following R code:

> BMACS$preCD4c <- BMACS$preCD4 - mean(BMACS$preCD4)

> CD4fit3<- lme(CD4~ Time + preCD4c + Smoke + age,

random=~Time|ID, data=BMACS)

> summary(CD4fit3)

Linear mixed-effects model fit by REML

...

Fixed effects: CD4 ~ Time + preCD4 + Smoke + age

Value Std.Error DF t-value p-value

(Intercept) 34.94593 2.3259116 1532 15.024615 0.0000

Time -3.103432 0.2365191 1532 -13.121275 0.0000

preCD4 0.453743 0.0611912 280 7.415169 0.0000

Smoke 0.687434 1.0333168 280 0.665270 0.5064

age 0.014169 0.0638670 1532 0.221853 0.8245

...

2.4.2 The ENRICHD BDI Data

The ENRICHD dataset has been described in Section 1.2. For each observa-
tion, the subject’s ID number, study visit time (in days), BDI score, antide-
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pressant medication use, and the starting time of medication were recorded,
and can be seen using the following R commands:

> data(BDIdata)

> str(BDIdata)

’data.frame’: 7117 obs. of 5 variables:

$ ID : int 1 1 1 1 1 1 1 1 1 1 ...

$ time : int 0 29 42 47 56 77 83 90 118 125 ...

$ BDI : int 25 34 28 29 18 5 19 12 14 18 ...

$ med : num 0 0 1 1 1 1 1 1 1 1 ...

$ med.time: int 30 30 30 30 30 30 30 30 30 30 ...

> BDIdata[BDIdata$ID==1,]

ID time BDI med med.time

1 1 0 25 0 30

2 1 29 34 0 30

3 1 42 28 1 30

4 1 47 29 1 30

5 1 56 18 1 30

6 1 77 5 1 30

7 1 83 19 1 30

8 1 90 12 1 30

9 1 118 14 1 30

10 1 125 18 1 30

The ENRICHD BDI dataset consists of a subset of patients from the psy-
chosocial treatment arm of the randomized ENRICHD trial. The ENRICHD
study was designed to evaluate the efficacy of the psychosocial treatment in
patients with depression and/or low perceived social support after acute my-
ocardial infarction. Depression severity was measured by Beck Depression In-
ventory (BDI) score, where higher BDI scores indicate worsened depression.
In our analysis, we use the subgroup of 92 patients (1465 observations) with
clear records of the pharmacotherapy starting time. We first fit the follow-
ing linear mixed-effects model involving only time with random intercept and
slope

Yi j = β0i +β1i ti j + εi j, (2.50)

where β0i = β0 + b0i and β1i = β1 + b1i, β0 and β1 are the population-mean
intercept and slope, b0i and b1i are the random intercept and slope, and Yi j

is BDI score for the ith patient at study visit time ti j. The model can be
fit by the following R commands, which show a negative slope and suggest a
significant effect of the psychosocial treatment that lowered the patients’ BDI
scores during the clinical trial:
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# recode time in months

> BDIdata$Tijm <- BDIdata$time*12/365.25

> BDIsub <- subset(BDIdata, med.time >=0 & med.time < 200)

> BDI.Model3 <- lme(BDI ~ Tijm, data=BDIsub, random=~Tijm|ID)

> summary(BDI.Model3)

Linear mixed-effects model fit by REML

Data: BDIsub

AIC BIC logLik

9587.344 9619.073 -4787.672

Random effects:

Formula: ~Tijm | ID

Structure: General positive-definite,

Log-Cholesky parametrization

StdDev Corr

(Intercept) 8.206250 (Intr)

Tijm 1.819110 -0.597

Residual 5.466927

Fixed effects: BDI ~ Tijm

Value Std.Error DF t-value p-value

(Intercept) 21.630395 0.9030760 1372 23.951910 0

Tijm -2.084839 0.2130814 1372 -9.784236 0

Correlation:

(Intr)

Tijm -0.621

Standardized Within-Group Residuals:

Min Q1 Med Q3

-4.52027744 -0.49237793 -0.02382951 0.46209759

Max

5.02331404

Number of Observations: 1465

Number of Groups: 92

However, the model (2.50) does not consider the use of concomitant an-
tidepressant medication. By the trial protocol, in addition to the randomized
psychosocial treatments, patients with high baseline depression scores and/or
nondecreasing BDI trends were eligible for pharmacotherapy with antidepres-
sants. If the scientific question is whether the antidepressants have added
benefits for lowering the BDI scores of the patients undergone this concomi-
tant intervention during the trial, we may incorporate the medication use in
the following model. For the ith patient, let si, ri j = ti j − si and δi j = 1[ti j≥si]
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be the ith patient’s starting time of pharmacotherapy, time from initiation
of pharmacotherapy, and pharmacotherapy indicator, respectively, at the jth
visit. An intuitive model is

Yi j = β0i +β1i ti j + γ0i δi j + γ1i δi j ri j + εi j, (2.51)

where β0i, β1i, γ0i and γ1i are all random coefficients with

E
(
β0i, β1i, γ0i, γ1i

)T
=
(
β0, β1, γ0, γ1

)T
.

When δi j = 1 and ri j = m,
(
γ0 + γ1 m

)
describes the mean pharmacotherapy

effect at m months since the start of pharmacotherapy. The results of fitting
(2.51) can be seen from the following R commands:

> BDIsub$Sim <- BDIsub$med.time*12/365.25

> BDIsub$Rijm <- with(BDIsub, med*(Tijm -Sim))

> BDI.model4 <- lme(BDI ~ Tijm+ med + Rijm , data=BDIsub,

random=~Tijm+ med + Rijm|ID)

> summary(BDI.model4)

Linear mixed-effects model fit by REML

Data: BDIsub

AIC BIC logLik

9482.313 9561.616 -4726.156

Random effects:

Formula: ~Tijm + med + Rijm | ID

Structure: General positive-definite,

Log-Cholesky parametrization

StdDev Corr

(Intercept) 8.440818 (Intr) Tijm med

Tijm 2.641688 -0.469

med 5.811350 -0.361 0.217

Rijm 3.259511 0.118 -0.868 -0.231

Residual 5.118352

Fixed effects: BDI ~ Tijm + med + Rijm

Value Std.Error DF t-value p-value

(Intercept) 23.360014 1.1154194 1370 20.942808 0.0000

Tijm -0.610008 0.4783029 1370 -1.275360 0.2024

med -3.582001 1.0000283 1370 -3.581900 0.0004

Rijm -1.546813 0.5161834 1370 -2.996634 0.0028

Correlation:

(Intr) Tijm med

Tijm -0.356

med -0.573 0.035
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Figure 2.2 The longitudinal BDI measurements for two randomly selected subjects
with the population-averaged and subject-specific regression estimates plotted in solid
lines and dashed lines, respectively, based on the models (2.50) and (2.51). For each
subject, the starting time of the pharmacotherapy is indicated by a vertical dashed
line.

Rijm 0.201 -0.908 -0.132

Standardized Within-Group Residuals:

Min Q1 Med Q3

-4.72295735 -0.49429621 -0.01038197 0.47258323

Max

5.24099392

Number of Observations: 1465

Number of Groups: 92

In contrast to the model (2.50), the results from (2.51) suggest that the
time effect β1 is no longer significant (P=0.20) and the psychosocial treatment
is not effective for these patients. However, both γ0 and γ1 are statistically
significant, indicating a significant decrease in BDI score after the start of the



REMARKS AND LITERATURE NOTES 63

pharmacotherapy. Figure 2.2 shows the fitted population-mean and subject-
specific trajectories from the models (2.50) and (2.51).

It is worth noting that (2.51) ignores the correlation between the starting
time of pharmacotherapy si and the pre-pharmacotherapy depression trends.
We revisit this example in Chapter 10, which shows that, through a varying-
coefficient modeling approach, (2.51) may lead to potential bias because it
ignores the potential effects of the starting time of pharmacotherapy si.

2.5 Remarks and Literature Notes

This chapter briefly summarizes a number of parametric and semiparamet-
ric regression methods for the analysis of longitudinal data. The paramet-
ric models include the linear, generalized linear and nonlinear marginal and
mixed-effects models. The semiparametric models are primarily focused on
the partially linear marginal and mixed-effects models. The estimation and
inference methods for these models include the maximum likelihood and re-
stricted maximum likelihood procedures, and the iteration procedures which
combine parameter estimation and nonparametric smoothing methods. Be-
cause the linear marginal and mixed-effects models are often the first attempts
for longitudinal analysis in a real application, we outline a few details of their
estimation and inference methods, including the implementation of the R pack-
ages nlme and lme4. These estimation and inference methods provide some
useful insights into the more flexible nonparametric estimation methods to be
introduced in detail throughout this book.

The analytical approach with repeated measurements data using paramet-
ric and semiparametric regression models has a long history in the statisti-
cal literature. As noted in Fitzmaurice et al. (2009, Section 1.3), the linear
marginal and mixed-effects models are probably the most widely used meth-
ods for analyzing longitudinal data, and this approach was popularized by
researchers at the U.S. National Institutes of Health (NIH). Given the exten-
sive publications of this subject in the literature, it is difficult to list all or
even most of the important publications. Early work of the linear marginal
and mixed-effects models, their estimation and inference procedures, and their
applications include Patterson and Thompson (1971), Harville (1974), Laird
and Ware (1982), Liang and Zeger (1986), Diggle (1988), Zeger, Liang and
Albert (1988), among many others. Most of these results are summarized in a
number of well-written books, for example, Vonesh and Chinchilli (1997), Ver-
beke and Molenberghs (2000), Diggle et al. (2002), Molenberghs and Verbeke
(2005) and Jiang (2007). The R packages nlme and lme4 for the estimation and
inferences with the linear marginal and mixed-effects models are also well de-
veloped and well documented in Pinheiro and Bates (2000), Wickham (2014),
Bates et al. (2015) and Pinheiro et al. (2017).

Beyong the linear and generalized linear models, theory, methods and ap-
plications for the nonlinear marginal and mixed-effects models are nicely sum-
marized in Davidian and Giltinan (1995, 2003). The flexible semiparametric
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partially linear models summarized in this chapter are described in detail in
Zeger and Diggle (1994), Moyeed and Diggle (1994), Lin and Ying (2001), Lin
and Carroll (2001, 2006) and Wang, Carroll and Lin (2005). A comprehensive
account of the recent developments of longitudinal analysis can be found in
Fitzmaurice et al. (2009). But, most of the structured nonparametric models
and their estimation and inference methods presented in Part III to Part V,
i.e., Chapters 6 to 15, of this book are more recent results that are not included
in Fitzmaurice et al. (2009).
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Chapter 3

Kernel and Local Polynomial Methods

We present in this chapter the class of kernel-based local smoothing methods
for nonparametric curve estimation with unstructured nonparametric regres-
sion models. These smoothing methods form a series of building blocks for
constructing smoothing estimators when the nonparametric models are sub-
ject to structural constraints. In addition, as discussed in Section 2.3, these
smoothing estimators can also be used in conjunction with parametric esti-
mation procedures in semiparametric partially linear regression models.

3.1 Least Squares Kernel Estimators

Our statistical objective is to estimate the conditional mean µ(t) = E
[
Y (t)

∣∣t
]

of Y (t) from the model
Y (t) = µ(t)+ ε(t), (3.1)

based on the sample
{(

Yi j, ti j

)
: i = 1, . . . , n; j = 1, . . . , ni

}
, where µ(t) is a

smooth function of time t and ε(t) is a mean zero error term with variance
and covariance curves,





Var
[
Y (t)

∣∣t
]

= σ2(t) at t ∈ T ,

Cov
[
Y (t1),Y (t2)

∣∣t1, t2
]

= E

{[
Y (t1)− µ(t1)

][
Y (t2)− µ(t2)

]}

= ρ(t1, t2) at any t1 6= t2 ∈ T ,

ρ(t, t) 6= σ2(t) for any t ∈ T .

(3.2)

Although there are no parametric conditions assumed for µ(t), the smooth-
ness assumptions of µ(t) determine the theoretical and practical properties of
its estimators and statistical inferences. We discuss the specific smoothness
assumptions of µ(t) under the asymptotic derivations of Section 3.6.

A natural approach for the nonparametric estimation of µ(t) is to borrow
the smoothing techniques from the cross-sectional i.i.d. data setting, while
evaluating the statistical performance of the resulting estimators by taking
the potential intra-subject correlations into consideration. A simple method
is to use the kernel smoothing method similar to the Nadaraya-Watson type
local least squares criterion (1.22) and (1.23), which amounts to estimate
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µ(t) through a weighted average using the measurements obtained within a
neighborhood of t defined by a bandwidth.

Let K(u) be a kernel function, which is usually a probability density func-
tion as in (1.24) and (1.25) through (1.31), defined on the real line, and let
h > 0 be a positive bandwidth. A kernel estimator of µ(t) similar to (1.23) can
be obtained by minimizing the local score function

ℓK

(
t; h, N−1

)
=

1

N

n

∑
i=1

ni

∑
j=1

[
Yi j − µ(t)

]2
K
( t − ti j

h

)
, (3.3)

where N =∑n
i=1 ni is the total number of observations for all subjects. The score

function (3.3) uses the measurement uniform weight 1/N = 1/
(

∑n
i=1 ni

)
on all

the observations, and the minimizer of (3.3) leads to the kernel estimator

µ̂K

(
t; h, N−1

)
=

∑n
i=1 ∑

ni
j=1 Yi jK

[
(t − ti j)

/
h
]

∑n
i=1 ∑

ni
j=1 K

[
(t − ti j)

/
h
] . (3.4)

Because of the measurement uniform weight on each measurement, (3.4) makes
no distinction between the subjects that have unequal numbers of repeated
measurements. Consequently, subjects with more repeated measurements are
used more often than those with fewer repeated measurements.

More generally, given that the measurements of each subject are poten-
tially correlated and the subjects may have different numbers of repeated
measurements, a modification of (3.2) may use a subject-specific weight wi for
the ith subject. The local score function then becomes

ℓK(t; h, w) =
n

∑
i=1

ni

∑
j=1

wi

[
Yi j − µ(t)

]2
K
( t − ti j

h

)
, (3.5)

where the weights, w = (w1, . . . , wn)
T , satisfy wi ≥ 0 for all i = 1, . . . , n with

strict inequality for all or some subjects 1 ≤ i ≤ n. The minimizer of the
ℓK(t;h,w) of (3.4) leads to the kernel estimator

µ̂K(t; h, w) =
∑n

i=1 ∑
ni
j=1Yi j wi K

[
(t − ti j)

/
h
]

∑n
i=1 ∑

ni

j=1 wi K
[
(t − ti j)

/
h
] . (3.6)

An intuitive weight choice other than 1/N of (3.3) is to assign the subject
uniform weight to each subject, rather than the measurement uniform weight.
The resulting kernel estimator then uses w∗

i = 1/(nni), and minimizes the local
score function

ℓK(t; h, w∗) =
1

n

n

∑
i=1

ni

∑
j=1

{
1

ni

[
Yi j − µ(t)

]2
K
( t − ti j

h

)}
. (3.7)

The kernel estimator based on w∗ =
(
1/(nn1), . . . , 1/(nnn)

)T
is

µ̂K

(
t; h, w∗)=

∑n
i=1

{
n−1

i ∑
ni

j=1Yi j K
[
(t − ti j)

/
h
]}

∑n
i=1

{
n−1

i ∑
ni
j=1 K

[
(t − ti j)

/
h
]} . (3.8)
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In (3.8), the subjects with fewer repeated measurements are assigned more
weight than those with more repeated measurements.

The effects of weight choices depend on the longitudinal designs and the
numbers of repeated measurements. The two most commonly used weight
choices, which will be used throughout this book, are

(a) the subject uniform weight w∗
i = 1/(nni);

(b) the measurement uniform weight w∗∗
i = 1/N.

We present the theoretical and practical properties of the weight choices in
Section 3.6. Other kernel approaches for the estimation of µ(t) in (3.1) have
also been studied by Hart and Wehrly (1986), Müller (1988), Altman (1990)
and Hart (1991). Because these methods are based on fixed time design points,
we omit the discussion of their details. In practice, however, all these kernel
methods are based on the fundamental concept of local least squares with
weights determined by a bandwidth and a kernel function, and they generally
lead to similar numerical results. This is in contrast to the local and global
smoothing methods with structured nonparametric models, i.e., Chapters 6 to
15, where different local and global smoothing methods may produce different
smoothing estimators.

3.2 Least Squares Local Polynomial Estimators

The local polynomial estimators of µ(t) based on the model (3.1) and longitu-
dinal sample

{
(Yi j, ti j) : i = 1, . . . , n; j = 1, . . . , ni

}
can be derived by extending

the approach of (1.32) through (1.35). Similar to the local polynomial methods
with cross-sectional i.i.d. data, the local polynomial estimators are motivated
by the need to reduce the potential boundary bias associated with the kernel
estimators (Fan and Gijbels, 1996), when ti j is close to the boundary of T .
Similar to the approximation of (1.32), when ti j is within a small neighbor-
hood of t and µ(s) is p-times continuously differentiable at t for some p ≥ 1,
the Taylor’s expansion of µ(ti j) at t gives

µ(ti j)≈
p

∑
l=0

µ (l)(t)

l!

(
ti j − t

)l
=

p

∑
l=0

bl

(
ti j − t

)l
. (3.9)

The pth order local polynomial estimator based on (3.9), with the wi weight
for the ith subject, the kernel function K(·) and the bandwidth h, is obtained
by minimizing the local score function

ℓp,L(t; h, w) =
n

∑
i=1

ni

∑
j=1

wi

[
Yi j −

p

∑
l=0

bl

(
ti j − t

)l

]2

K

( t − ti j

h

)
(3.10)

with respect to bl , l = 1, . . . , p, where w =
(
w1, . . . , wn

)T
.
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Choices of the kernel function K(·) include the probability density func-

tions given in (1.24) and (1.27) through (1.31). The minimizer b̂l(t; h, w) of
ℓp,L(t; h, w) in (3.10) gives the pth order local polynomial estimator

µ̂
(l)
L, p(t; h, w) = l! b̂l(t; h, w) (3.11)

of the lth derivative µ (l)(t) at time point t. The entire curve µ (l)(·) is obtained
by varying t over the range of T . The pth order local polynomial estimator
of µ(t) is

µ̂L, p(t; h, w)≡ µ̂
(0)
L, p(t; h, w). (3.12)

In particular, the local linear estimator of µ(t) is µ̂L,1(t; h, w), which is the
most commonly used local polynomial estimators in real applications. Similar
to the kernel estimators, the main factors affecting the statistical properties
of the local polynomial estimators are the bandwidth choices, the degree p

of the polynomials and the weight choices wi, while the shape of the kernel
function K(·) is less important.

3.3 Cross-Validation Bandwidths

A crucial step in obtaining an adequate kernel or local polynomial estimator
of µ(t) is to select an appropriate bandwidth h. For the smoothing estima-
tion methods other than kernel or local polynomial estimators, such as the
B-splines and penalized smoothing splines to be discussed in the next two
chapters, this amounts to selecting an appropriate smoothing parameter. Since
the repeated measurements within a subject are potentially correlated and the
correlation structure is usually completely unknown in practice, a simple pro-
cedure for the selection of a data-driven smoothing parameter is to use the
“leave-one-subject-out”cross-validation (LSCV), which does not depend on the
intra-subject correlation structure of the data and can potentially preserve the
unknown correlation structure.

3.3.1 The Leave-One-Subject-Out Cross-Validation

Let µ̂L(t; h, w) be a local smoothing estimator of µ(t), which can be either the
kernel estimator µ̂K(t; h, w) of (3.6) or the pth order local polynomial estimator
µ̂L, p(t; h, w) of (3.12), i.e.,

µ̂L(t; h, w) = µ̂K(t; h, w) or µ̂L, p(t; h, w). (3.13)

The LSCV bandwidth selection for µ̂L(t; h, w) is carried out with the following
three main steps. These steps can be adapted to other estimation methods
to compute the corresponding LSCV smoothing parameters in other settings
discussed in this book.
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Leave-One-Subject-Out Cross-Validation Procedure:

(a) Compute the “leave-one-subject-out” estimator µ̂
(−i)
L (t; h, w) based on the

remaining data after deleting the entire set of repeated measurements for
the ith subject.

(b) Predict the ith subject’s outcome at time ti j by µ̂
(−i)
L (ti j; h, w).

(c) Define the LSCV score of µ̂L(t; h, w) by

LSCV(h, w) =
n

∑
i=1

ni

∑
j=1

wi

[
Yi j − µ̂

(−i)
L (ti j; h, w)

]2

. (3.14)

If (3.14) can be uniquely minimized by hLSCV over all positive values of
h > 0, i.e.,

LSCV
(
hLSCV , w

)
= min

h>0
CV (h, w). (3.15)

then hLSCV is defined to be the leave-one-subject-out cross-validated band-
width of µ̂L(t; h, w) of (3.13). �

The use of hLSCV can be heuristically justified because, by minimizing the
cross-validation score LSCV (h, w) of (3.14), it approximately minimizes an
average prediction error of µ̂L(t; h, w). In real applications, it is often easy to
find out a suitable range of the bandwidths by examining the plots of the
fitted curves and then approximate the value of hLSCV through a series of
bandwidth choices. This searching method, although somewhat ad hoc, may
actually speed up the computation and give a satisfactory bandwidth.

3.3.2 A Computation Procedure for Kernel Estimators

Direct minimization of the cross-validation score (3.14) can be computation-
ally intensive, as the algorithm repeats itself each time a new subject is deleted.
For the kernel estimator µ̂K(t; h, w), it is possible to use a computationally sim-
pler approach without relying on deleting the subjects one at a time. In this
approach, we first define, for i = 1, . . . , n,

Ki j = K
( t − ti j

h

)
, K∗

i j =
wi K

[
(t − ti j)/h

]

∑n
i=1 ∑

ni
j=1 wi K

[
(t − ti j)/h

] and K∗
i =

ni

∑
j=1

K∗
i j,

and, then compute
[
Yi j − µ̂

(−i)
K (ti j; h, w)

]
using the following decomposition,

Yi j − µ̂
(−i)
K

(
ti j; h, w

)

= Yi j −
[
µ̂K

(
ti j; h, w

)
−

ni

∑
j=1

(
Yi j K∗

i j

)](
1+

K∗
i

1−K∗
i

)

=
[
Yi j − µ̂K

(
ti j; h, w

)]
+

ni

∑
j=1

(
Yi j K∗

i j

)
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−
[
µ̂K

(
ti j; h, w

)
−

ni

∑
j=1

(
Yi j K∗

i j

)]( K∗
i

1−K∗
i

)
(3.16)

=
[
Yi j − µ̂K

(
ti j; h, w

)]
+
( K∗

i

1−K∗
i

)[∑
ni
j=1

(
Yi j K∗

i j

)

K∗
i

− µ̂K

(
ti j; h, w

)
]
.

The above expression, which was suggested by Rice and Silverman (1991),
is specifically targeted to the kernel estimator µ̂K(t;h,w), although different
weight choices may be used. When other smoothing methods, such as the
local polynomial estimators, are used, the explicit expression at the right side
of (3.16) does not generally hold. Thus, for general estimators other than the
kernel estimators µ̂K(t;h,w), direct minimization of the cross-validation score
(3.14) has to be computed with subjects deleted one at a time.

3.3.3 Heuristic Justification of Cross-Validation

The use of LSCV (h, w) in (3.14) as a risk criterion for µ̂
(−i)
L

(
ti j; h, w

)
can be

justified by evaluating the following decomposition of LSCV(h, w),

LSCV (h, w) =
n

∑
i=1

ni

∑
j=1

wi

[
Yi j − µ

(
ti j

)]2

+
n

∑
i=1

ni

∑
j=1

wi

[
µ
(
ti j

)
− µ̂

(−i)
K

(
ti j; h, w

)]2
(3.17)

+2
n

∑
i=1

ni

∑
j=1

wi

[
Yi j − µ

(
ti j

)][
µ(ti j)− µ̂

(−i)
L

(
ti j; h, w

)]
.

The first term of the right side of (3.17) does not depend on the bandwidths.
Since the observations of the ith subject have been deleted for the compu-

tation of µ̂
(−i)
L (t; h, w) and the subjects are assumed to be independent, the

expectation of the third term is zero.
Let ASE

[
µ̂L(·; h, w)

]
be the average squared error of µ̂L(ti j; h, w) defined by

ASE
[
µ̂L(·; h, w)

]
=

n

∑
i=1

ni

∑
j=1

wi

[
µ
(
ti j

)
− µ̂L

(
ti j; h, w

)]2
. (3.18)

Direct calculation using the definition (3.18) shows that the expectation of
the second term of the right side of (3.17) is actually the expectation of

ASE
[
µ̂
(−i)
L (·; h, w)

]
, which approximates the expectation of ASE

[
µ̂L(·; h, w)

]

when n is large. Thus, the LSCV bandwidth hLSCV approximately minimizes
the average squared error ASE

[
µ̂L(·; h, w)

]
. Consistency of a similar LSCV

procedure in a different nonparametric regression setting has been shown by
Hart and Wehrly (1993). But, under the current setting, the asymptotic prop-
erties of hLSCV are still not well understood. Statistical properties of hLSCV are
investigated through simulation studies.
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3.4 Bootstrap Pointwise Confidence Intervals

Statistical inferences, such as confidence intervals, are usually developed based
on either asymptotic distributions of the estimators or bootstrap methods
(e.g., Efron and Tibshirani, 1993). Under the context of cross-sectional i.i.d.
data, asymptotic distributions are derived by letting the number of subjects
n go to infinity. The resulting inferences are reliable at least when the sample
size n is large. However, the longitudinal data structure is more complicated
because of two reasons. First, since the numbers of repeated measurements ni,
i = 1, . . . , n, are possibly different, the corresponding asymptotic distributions
of the estimators may also be different depending on how fast ni, i = 1, . . . , n,
converge to infinity relative to n. It can be seen from the asymptotic properties
of Section 3.6 that, in order to get a meaningful asymptotic result, n must con-
verge to infinity, but ni may be either bounded or converging to infinity along
with n. Second, because of the possible intra-correlation structure of the data,
which is assumed to be completely unknown, the asymptotic distributions of
µ̂L(t; h, w) may be difficult to estimate. Thus, longitudinal inferences that are
purely based on the asymptotic distributions of µ̂L(t; h, w) may be difficult to
implement in practice. On the other hand, a bootstrap inference can always
be constructed based on the available data.

3.4.1 Resampling-Subject Bootstrap Samples

Since the subjects are assumed to be independent, a natural bootstrap sam-
pling scheme is to resample the entire repeated measurements of each subject
with replacement from the original dataset. This approach is referred to in
the literature (e.g., Hoover et al., 1998) as the “resampling-subject bootstrap.”
This bootstrap scheme can be generally applied to construct confidence inter-
vals for estimators of other nonparametric models in this book. The bootstrap
samples are generated using the following steps.

Resampling-Subject Bootstrap:

(a) Randomly select n bootstrap subjects with replacement from the original
dataset, and denote by

{(
Y ∗

i j, t∗i j

)
: i = 1, . . . , n; j = 1, . . . , ni

}
the longitudinal

bootstrap sample. The entire repeated measurements of some subjects in the
original sample may appear multiple times in the new bootstrap sample.

(b) Compute the curve estimators, such as the kernel or local polynomial
estimator µ̂boot

L (t; h, w) of µ(t) in (3.8) or (3.12), based on the bootstrap
sample

{(
Y ∗

i j , t∗i j

)
: i = 1, . . . , n; j = 1, . . . , ni

}
.

(c) Repeat the above two steps B times. Denote the bth, b= 1, . . . , B, bootstrap

estimator by µ̂boot,b
L (t; h, w), so that B bootstrap estimators

B
B
µ(t; h, w) =

{
µ̂boot,1

L (t; h, w), . . . , µ̂boot,B
L (t; h, w)

}
(3.19)

of µ(t) are obtained. �
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3.4.2 Two Bootstrap Confidence Intervals

The bootstrap samples generated in (3.19) can be used to construct two types
of approximate pointwise confidence intervals for µ(t), namely the intervals
based on percentiles of bootstrap samples and the intervals based on normal
approximation.

Approximate Bootstrap Pointwise Confidence Intervals:

(a) Percentile Bootstrap Intervals. Compute the percentiles of the B boot-
strap estimators BB

µ(t; h, w) of (3.19). The approximate [100× (1−α)]th
percentile bootstrap pointwise confidence interval for µ(t) is given by

(
L(α/2)(t),U(α/2)(t)

)
, (3.20)

where L(α/2)(t) and U(α/2)(t) are the (α/2)th and (1−α/2)th, i.e., lower

and upper (α/2)th, percentiles of BB
µ(t; h, w), respectively.

(b) Normal Approximated Bootstrap Intervals. Compute the estimated
standard error ŝeB

(
t; µ̂L

)
of µ̂L(t; h, w) from the B bootstrap estimators

BB
µ(t; h, w). The normal approximated bootstrap pointwise confidence in-

terval for µ(t) is
µ̂L(t; h, w)± z(1−α/2) ŝeB

(
t; µ̂L

)
, (3.21)

where z(1−α/2) is the [100× (1−α/2)]th percentile of the standard normal
distribution and µ̂L(t; h, w) is the smoothing curve estimator computed from
the original sample. �

The percentile bootstrap interval given in (3.20) is a naive procedure, which
has the main advantage of not relying on the asymptotic distributions of the
curve estimator µ̂L(t; h, w). However, a visual drawback of the percentile in-
terval (3.20) is that µ̂L(t; h, w) is not necessary at the center of the inter-
val (3.20). On the other hand, the normal approximated interval (3.21) is
symmetric about µ̂L(t; h, w), which is visually appealing. But, because (3.21)
uses normal approximation of the critical values, its accuracy depends on the
appropriateness of the normal approximation.

Technically, both (3.20) and (3.21) may lead to reasonable approximations
of the actual [100× (1−α)]% pointwise confidence intervals of µ(t) if the
biases of µ̂L(t; h, w) are small. Ideally, the biases of the estimators need to
be adjusted if they are not negligible. Theoretical properties of these boot-
strap procedures have not been systematically investigated. But, the practical
properties, such as the empirical coverage probabilities and computational fea-
sibility, of these bootstrap procedures have been investigated through a series
of simulation studies in the literature, such as Hoover et al. (1998) and Wu
and Chiang (2000), among others.
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3.4.3 Simultaneous Confidence Bands

We note that the above bootstrap pointwise confidence intervals are only for
the inferences of µ(t) at the given time point t. In most practical situations,
such pointwise inferences are sufficient. But, in some studies, the study ob-
jectives require the knowledge that there is a high probability that the true
regression curve µ(t) stays within a given band simultaneously for a range
of the time values. In such situations, we need to construct a simultaneous
confidence band of µ(t) for t within a closed interval [a, b] with some known
positive constants b > a > 0.

1. Construction of Simultaneous Confidence Bands

We introduce here a straightforward procedure that extends the above
pointwise confidence intervals to simultaneous confidence bands for µ(t) over
a given interval [a, b]. This procedure is described in Hall and Tittering-
ton (1988) for nonparametric regression models with cross-sectional i.i.d. data.
Because this is a general approach, it is not limited to the estimators µ̂L(t; h, w)
and is repeatedly used for other smoothing curve estimators in this book. This
simultaneous confidence band procedure requires the following two steps.

Simultaneous Confidence Band Procedure:

(a) Simultaneous Confidence Intervals at Grid Points. In this step,
we partition [a, b] into M+ 1 equally spaced grid points

a = ξ1 < · · ·< ξM+1 = b

for some integer M ≥ 1, and construct a set of approximate
[
100×(1−α)

]
%

simultaneous confidence intervals
(
lα (ξr), uα(ξr)

)
for µ(ξr), such that

lim
n→∞

P
{

lα(ξr)≤ µ(ξr)≤ uα(ξr), for all r = 1, . . . , M+ 1
}
≥ 1−α. (3.22)

If we apply the Bonferroni adjustment to (3.20) or (3.21), (lα (ξr), uα(ξr))
are given by

(
Lα/[2(M+1)]

[
µ̂boot

L (ξr; h, w)
]
,Uα/[2(M+1)]

[
µ̂boot

L (ξr; h, w)
])

(3.23)

or
µ̂L

(
ξr; h, w

)
± z1−α/[2(M+1)] ŝ

boot
L

(
ξr; h, w

)
, (3.24)

respectively. For any ξr ≤ t ≤ ξr+1, we define µ̂
(I)
L (t; h, w) to be the linear

interpolation of µ̂L(ξr; h, w) and µ̂L(ξr+1; h, w), such that

µ̂
(I)
L (t; h, w) = M

(ξr+1 − t

b− a

)
µ̂L

(
ξr; h, w

)
+M

( t − ξr

b− a

)
µ̂L

(
ξr+1; h, w

)
. (3.25)

Similarly, we define µ (I)(t) to be the linear interpolation of µ
(
ξr

)
and
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µ
(
ξr+1

)
for any ξr ≤ t ≤ ξr+1. Then

(
l
(I)
α (t), u

(I)
α (t)

)
is an approximate

[100× (1−α)]% confidence band for µ (I)(t), such that

lim
n→∞

P
{

l
(I)
α (t)≤ µ (I)(t)≤ u

(I)
α (t), for all t ∈ [a, b]

}
≥ 1−α, (3.26)

where

l
(I)
α (t) = M

(ξr+1 − t

b− a

)
lα
(
ξr

)
+M

( t − ξr

b− a

)
lα
(
ξr+1

)
(3.27)

and

u
(I)
α (t) = M

(ξr+1 − t

b− a

)
uα

(
ξr

)
+M

( t − ξr

b− a

)
uα

(
ξr+1

)
(3.28)

are the linear interpolations of
(
lα
(
ξr

)
, lα
(
ξr+1

))
and

(
uα

(
ξr

)
, uα

(
ξr+1

))
,

respectively.

(b) Confidence Bands Linking Grid Points. To construct the simultane-
ous confidence bands for µ(t) for all t ∈ [a, b], some smoothness conditions
have to be assumed. For two commonly used smoothness conditions, we
assume that either

sup
t∈[a,b]

∣∣µ ′(t)
∣∣≤ c1, for a known constant c1 > 0, (3.29)

or
sup

t∈[a,b]

∣∣µ ′′(t)
∣∣≤ c2, for a known constant c2 > 0. (3.30)

Then, it can be verified by direct calculation that, for ξr ≤ t ≤ ξr+1,

∣∣µ(t)− µ (I)(t)
∣∣≤
{

2c1 M
[(

ξr+1 − t
)(

t − ξr

)/
(b− a)

]
, if (3.29) holds;(

c2/2
)(

ξr+1 − t
)(

t − ξr

)
, if (3.30) holds.

To adjust the simultaneous confidence bands for µ (I)(t), the approximate
[100× (1−α)]% simultaneous confidence bands for µ(t) are given by

(
l
(I)
α (t)− 2c1 M

[(ξr+1 − t
)(

t − ξr

)

b− a

]
, u

(I)
α (t)+ 2c1 M

[(ξr+1 − t
)(

t − ξr

)

b− a

])

(3.31)
or
(

l
(I)
α (t)− (c2/2)

(
ξr+1 − t

)(
t −ξr

)
, u

(I)
α (t)+(c2/2)

(
ξr+1 − t

)(
t −ξr

))
, (3.32)

when (3.29) or (3.30) holds, respectively. �

2. Constructing Simultaneous Confidence Bands in Practice

There are two practical issues for the applications of the confidence bands
of (3.31) and (3.32). The first is the Bonferroni adjustment in construct-
ing the simultaneous confidence intervals at the grid points

{
ξ1, . . . , ξM+1

}
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given in (3.23) and (3.24). Since the Bonferroni adjustment usually gives con-
servative intervals with coverage probability higher than the nominal level
of [100× (1−α)]%, the Bonferroni adjusted simultaneous confidence inter-
vals (3.23) and (3.24) are conservative at the equally spaced grid points{

ξ1, . . . , ξM+1

}
. As a result, the simultaneous confidence band given in (3.31)

and (3.32) for t ∈ [a, b] are also conservative with coverage probabilities higher
than the nominal level of [100× (1−α)]%, and their actual coverage prob-
abilities will increase as the number of grid time points M + 1 increases. In
real applications, we prefer to have a large number for M + 1, because the
gaps between two adjacent grid points ξr < ξr+1, 1 ≤ r ≤ M, are bridged with
the inequalities (3.29) and (3.30). Thus, some refinement is often preferred to
construct simultaneous confidence intervals at t ∈

{
ξ1, . . . , ξM+1

}
, which are

less conservative than (3.23) and (3.24). Examples of refined intervals may
include adjustments using the inclusion-exclusion identities with more accu-
rate coverage probabilities or other multiple comparison techniques, such as
Bretz, Hothorn and Westfall (2011). These refinements, which often involve
more intensive computation than the Bonferroni adjustment, can be used in
place of the intervals (3.23) and (3.24) when the computation complexity is
not an issue.

The second issue is the number and location of the grid points. For sim-
plicity, we assume that the grid points a = ξ1 < · · · < ξM+1 = b are equally
spaced. But, in real applications, these grid points are not necessarily equally
spaced, and their location may be chosen based on the study design and the
scientific questions being investigated. The equally spaced grid points can be
treated as a default choice when there is no clear indication from the study
design where these grid points should be located. The number of grid points
M+1 can be selected subjectively by examining the widths of the confidence
bands. Theoretical results on the “optimal” choices of location and number
of grid points are still not available. Although some heuristic suggestions for
choosing M for the simple case of kernel regression with cross-sectional i.i.d.
data have been provided by Hall and Titterington (1988), optimal choices of
M under the current situation with longitudinal data are not available.

3.5 R Implementation

3.5.1 The HSCT Data

The HSCT data has been described in Section 1.2. For each observational
time, the measurements include the patient’s study visit time relative to the
date of hematopoietic stem cell transplant, three white blood cells or leukocyte
counts (granulocytes, lymphocytes and monocytes, in 103 cells/µL or K/µL)
and multiple cytokines (pg/mL). The R code for examining the data is

> library(npmlda)

> str(HSCT)
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’data.frame’: 271 obs. of 8 variables:

$ ID : int 1 1 1 1 1 1 1 1 1 1 ...

$ Days : int -5 -3 0 1 4 7 10 14 17 21 ...

$ Granu: num 6.962 4.407 0.566 0.253 0.007 ...

$ LYM : num 1.705 0.498 0.061 0.097 0.243 ...

$ MON : num 0.151 0.025 0.01 NA 0.002 ...

$ G-CSF: num 30.2 14.3 101 69.5 625.6 ...

$ IL-15: num 27.6 33.9 60.9 40 74.2 ...

$ MCP-1: num 35.2 59.4 317.8 230.8 1235.6 ...

> HSCT[HSCT$ID==1,]

ID Days Granu LYM MON G-CSF IL-15 MCP-1

1 1 -5 6.962 1.705 0.151 30.19 27.60 35.25

2 1 -3 4.407 0.498 0.025 14.33 33.88 59.36

3 1 0 0.566 0.061 0.010 101.04 60.93 317.81

4 1 1 0.253 0.097 NA 69.54 39.96 230.77

5 1 4 0.007 0.243 0.002 625.56 74.17 1235.62

6 1 7 0.004 0.358 0.004 112.60 82.81 1247.30

7 1 10 0.118 0.401 0.076 643.62 73.33 597.63

8 1 14 3.809 0.478 1.636 48.58 77.25 106.91

9 1 17 2.260 0.377 0.323 30.87 36.94 53.54

10 1 21 7.142 1.283 0.354 20.32 36.33 72.35

11 1 24 10.508 0.710 0.852 11.18 44.43 96.04

12 1 28 8.190 0.525 1.155 10.38 29.19 130.88

13 1 31 7.992 1.621 1.088 8.73 26.96 166.97

14 1 35 3.587 1.087 0.349 9.56 29.51 290.87

The summary statistics below show that the three leukocytes have very
skewed distributions with some extremely large values, in which we apply log
transformations to these three nonzero variables to reduce the skewness of
their distributions:

> summary(HSCT$Granu)

Min. 1st Qu. Median Mean 3rd Qu. Max. NA’s

0.0020 0.0515 1.0880 2.2290 3.3680 20.1800 36

> summary(HSCT$LYM)

Min. 1st Qu. Median Mean 3rd Qu. Max. NA’s

0.0020 0.0250 0.0945 0.3315 0.5002 2.3070 43

> summary(HSCT$MON)

Min. 1st Qu. Median Mean 3rd Qu. Max. NA’s

0.0010 0.0260 0.3770 0.5909 1.0880 2.1780 78
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> HSCT$Granu.log <- log10(HSCT$Granu)

> HSCT$LYM.log <- log10(HSCT$LYM)

> HSCT$MON.log <- log10(HSCT$MON)

For a visual representation of the change of leukocytes over time, we gen-
erate the scatterplots of the leukocytes against days after transplant in log-
scale, shown in Figure 3.1. To better visualize the overall time-trends of the
leukocytes during the week before stem cell transplant (this is known as the
“conditioning” period) and within 4 weeks after the transplant (known as the
“recovery”period), we compute the local means of the log-transformed leuko-
cytes using the kernel smoothing methods in Section 3.1. To demonstration
the effects of kernel choices, we use three different kernel functions, namely
the Epanechnikov kernel (1.27), the Gaussian kernel (1.31) and the Biweight
kernel (1.29). The smoothing estimates of Figure 3.1 show the results based
on the Epanechnikov kernel for granulocytes, the Gaussian kernel for lym-
phocytes, and the Biweight kernel for monocytes. Individual subjects have a
median of 15 repeated measurements with a range of 6 to 25.

The solid and dashed lines represent the kernel estimates using the mea-
surement uniform weight (3.4) and the subject uniform weight (3.8). The
following kernel.fit() function can be used to generate the fitted y values
using the Epanechnikov kernel and the subject uniform weight with a given
bandwidth bw:

> Fit.Granu <- with(HSCT[!is.na(HSCT$Granu.log),],

kernel.fit(sort(unique(Days)),Days, Granu.log,

bw=4, Kernel="Ep", Wt=1/ni))

Similarly, we can specify different values for the arguments if other choices of
kernel function, weights and bandwidth are used.

As shown in Figure 3.1, the kernel estimates with two kinds of weights
are very similar, except that there are small differences near the boundary
when the number of observations per subject and the related weight may be
more influential. Both sets of fitted curves suggest a typical pattern for the
changes of leukocytes around the pre- and early post-transplantation period.
The leukocyte counts first drop to their lowest levels following the conditioning
regimen. Then, the donor cell engraftment and hematopoietic reconstitution
occur. The leukocyte counts gradually recover during the first month after the
transplantation.

3.5.2 The BMACS CD4 Data

The BMACS CD4 data has been described in Section 1.2 and Section 2.4. We
use this dataset to illustrate the local polynomial estimate, bandwidth selec-
tion with cross-validation and bootstrap inference. Figure 3.2 depicts the CD4
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Figure 3.1 The dynamics of the main leukocyte counts around the time of transplant:
(A) Granulocytes, (B) Lymphocytes, and (C) Monocytes. The solid and dashed lines
represent the kernel estimates using the measurement uniform weights and the subject
uniform weights, with the Epanechnikov, Gaussian and Biweight kernel functions for
the three leukocytes, respectively.

cell percentages at the study visits since seroconversion for the HIV infected
men. In R, the local polynomial estimators are implemented through the local
(weighted) regression function loess() or lowess() (Fan and Gijbels, 1996,
Section 2.4). It is easy to use loess() by specifying the weights, degree of
polynomials (commonly 1 or 2) and a smoothing span, which is similar to the
bandwidth and is expressed as a proportion of local data points around each
value to control the degree of smoothing. Only the tricube kernel function
(1.30) is implemented in loess. For example, we can use the following com-
mands to produce a local linear fit with span of 0.5 and measurement uniform
weights:

> fit.linear.5 <- loess(CD4 ~ Time, span=0.5, degree=1,

data=BMACS)

> Time.int<- seq(0.1,5.9, by=0.1)

> plot(CD4 ~ Time, data = BMACS, xlab="Yeas since infection",

ylab="CD4 percentage", ylim=c(0,65),cex=0.7,col="gray50",

main="Local linear: span=0.5")

> lines(Time.int,

predict(fit.linear.5,data.frame(Time=Time.int)))

Local smoothing estimates of the CD4 percentage over time are shown in
Figure 3.2 using the local linear and local quadratic estimators with spans of
0.1 an 0.5. We can see that, for the small value of bandwidth or span=0.1,
both local smoothed curves in Figures 3.2(A) and (C) are wiggly because only
a small proportion of the points have contributed to the fit. In contrast, the
local estimators using the larger span=0.5 yield much smoother curves shown
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Figure 3.2 Scatter plots and local smoothing estimates of the CD4 percentage over
time since seroconversion for the HIV infected men in BMACS.

in Figures 3.2(B) and (D). In this case, with relatively larger bandwidth and
lower curvature, the local linear and local quadratic fits are very close to each
other, and both have captured the declining trend of CD4 percentage over
time after HIV infection.

As described in Section 3.3, the bandwidth h may be chosen by the
leave-one-subject-out cross-validation (LSCV). Figure 3.3(A) shows the LSCV
scores defined in (3.14) against a range of h values from 0.3 to 4.5 years for a lo-
cal linear fit with the subject uniform weight 1/(nni), which indicates h0 = 0.9
is the approximate minimizer of the LSCV score. Figure 3.3(B) shows the
local linear estimated curve computed using this selected bandwidth with the
subject uniform weight 1/(nni).

The following R functions are used to compute the estimated curve in
Figure 3.3(B):

# Obtain the number of observations per subject

> Ct <- data.frame(table(BMACS$ID))

> names(Ct)<- c("ID", "ni")

> BMACS<- merge(BMACS, Ct, by= "ID")
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Figure 3.3 (A) Use of cross-validation to select bandwidth for the local linear fit.
(B) The local linear fit using cross-validated bandwidth. The gray band represents
the bootstrap 95% pointwise confidence interval computed using percentiles.

# LocalLm() is a local linear function with Epanechnikov kernel

> LocalFit.Y <- with(BMACS, LocalLm(Time.int, Time, CD4,

bw=0.9, Wt=1/ni))

Next, we use the resampling-subject bootstrap procedure in Sections 3.4.1
and 3.4.2 to compute the pointwise confidence interval of the local linear fit
in Figure 3.3(B). The resulting 95% pointwise confidence interval based on
B = 1000 resampling-subject bootstrap samples is computed and shown in
Figure 3.3(B). These results are computed using the following R code:

# Generate a resampling-subject bootstrap sample

> IDlist <- unique(BMACS$ID)

> nID <- length(IDlist)

> Bootsample <- function(){

resample.ID <- sample(IDlist ,nID ,replace=T)

do.call("rbind", lapply(1:nID,

function(i) subset(BMACS, ID==resample.ID[i])))}

# Obtain fitted value at a time grid

> LocalLm.Fit<- function(Data, Time.int){

with(Data, LocalLm(Time.int, Time,CD4,bw=0.9, Wt=1/ni))}

# Compute the 95% CI based on B=1000 bootstrap replicates

> Boot.Fit <-replicate(1000, LocalLm.Fit(Bootsample(),

Time.int))

> UpperCI <- apply(Boot.Fit, 1, quantile,.975)

> LowerCI <- apply(Boot.Fit, 1, quantile,.025)
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# plot with local linear fit and 95% CI

> plot(CD4 ~ Time, data = BMACS,

xlab = "Time since infection(years)",

ylab = "CD4 percentage", cex=0.3, col="gray70", main="")

> polygon(c(Time.int[1], Time.int, rev(Time.int)),

c(LowerCI[1], UpperCI, rev(LowerCI)), col="gray60", border=NA)

> lines(Time.int, LocalFit.Y, lwd=2.5, col=1)

Although the confidence limits indicate a clear decreasing trend of CD4
percentage over time, their widths become wider near the end of five years
since HIV infection. This result reflects more uncertainty and variability of
the local linear estimate at the boundary compared to the central area of
“time since infection.”

3.6 Asymptotic Properties of Kernel Estimators

To provide some insight into the statistical properties of the smoothing es-
timators in this chapter, we derive in this section the asymptotic properties
of the least squares kernel estimators. We focus on the kernel estimators of
Section 3.1 because their derivations rely on some basic approaches which
can be generalized to the local smoothing estimators in later chapters. The
derivations here are focused on the asymptotic expressions of the biases, vari-
ances and mean squared errors of µ̂K(t; h, w). Large sample inferences based
on µ̂K(t; h, w) can be derived using asymptotic normality with the explicit ex-
pressions of its asymptotic means and variances. Because µ̂K(t; h, w) is a linear
statistic of Yi j, its asymptotic distributions can be established by checking the
triangular array central limit theorem using the expressions of the asymptotic
biases and variances.

For mathematical convenience, we assume that the time design points ti j

are randomly selected from a distribution function F(·) with density f (·), but
ni, i = 1, . . . , n, are assumed to be nonrandom. Although this design assump-
tion corresponds to a special version of the random designs, it is generally an
acceptable assumption for many real settings in longitudinal studies. However,
by modifying the notation and several key steps in the derivations, the main
theoretical results of this section can be extended to fixed designs or the case
that ni are also random. Since the main purpose of asymptotic derivations is to
give some insight into the reliability of the estimation procedures, the asymp-
totic results established here are useful to guide the practical applications of
the kernel estimation procedures in this chapter.

We first derive the asymptotic representations of the mean squared errors
and the mean integrated squared errors of µ̂K(t; h, w) for a general weight
choice w = (w0, . . . , wn)

T . The asymptotic risks for the special cases of w∗∗
i =

N−1 in (3.4) and w∗
i =
(
nni

)−1
in (3.8) are further elaborated at the end of this
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section. These asymptotic results demonstrate that different weight choices
may lead to kernel estimators with different asymptotic properties.

3.6.1 Mean Squared Errors

The closeness of µ̂K(·; h, w) to the true curve µ(·) can be measured in different
ways. Suppose that the interest is the adequacy of µ̂K(t; h, w) as an estimator
of µ(t) at a given time point t. A natural measure of the risk of µ̂K(t; h, w) at
point t is the mean squared error (MSE) defined by

MSE
[
µ̂K(t; h, w)

]
= E

{[
µ̂K(t; h, w)− µ(t)

]2}
. (3.33)

However, a minor technical difficulty for kernel estimators is that their mo-
ments, hence MSE

[
µ̂K(t; h, w)

]
as defined in (3.33), may not exist (e.g., Rosen-

blatt, 1969), so that modifications of the above mean squared error definitions
have to be used.

By a simple reformulation, the kernel estimator µ̂K(·; h, w) of (3.6) can be
written as

µ̂K(t; h, w) =
m̂K(t; h, w)

f̂K(t; h, w)
, (3.34)

where

m̂K(t; h, w) =
n

∑
i=1

{
wi

ni

∑
j=1

[
1

h
Yi j K

( t − ti j

h

)]}
(3.35)

and

f̂K(t; h, w) =
n

∑
i=1

{
wi

ni

∑
j=1

[
1

h
K
( t − ti j

h

)]}
. (3.36)

It can be shown by applying straightforward algebra to (3.34), (3.35) and
(3.36) that

[
1− dK(t; h, w)

][
µ̂K(t; h, w)− µ(t)

]

=
[
m̂K(t; h, w)− µ(t) f̂K(t; h, w)

]/
f (t), (3.37)

where dK(t; h, w) = 1−
[

f̂K(t; h, w)/ f (t)
]
. For any interior point t of the support

of f (·), it can be shown by the same method used in kernel density estimation
with cross-sectional i.i.d. data (e.g., Silverman, 1986), that dK(t; h, w)→ 0 in
probability as n → ∞ and h → 0. Then, by (3.34) and (3.37), we have the
following approximation,

[
1+ op(1)

][
µ̂K(t; h, w)− µ(t)

]
= f−1(t) R̂K(t; h, w), (3.38)

where R̂K(t; h, w) = m̂K(t; h, w)− µ(t) f̂K(t; h, w).
The advantage of using the approximation (3.38) is that, although the

MSE
[
µ̂K(t; h, w)

]
as defined in (3.33) may not exist, we can always evaluate

the appropriateness of µ̂K(t; h, w) by evaluating the mean squared errors of the
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approximated term given at the right side of (3.37). Thus, through (3.38), we
can define the local risk of µ̂K(t;h,w) at time point t by the following modified
MSE

MSE
[
µ̂K(t; h, w)

]
= E

{[
f−1(t) R̂K(t; h, w)

]2
}
, (3.39)

and the global risk of µ̂K(·; h, w) over a time range by the modified mean
integrated squared error (MISE)

MISE
[
µ̂K(·; h, w)

]
=

∫
MSE

[
µ̂K(s; h, w)

]
π(s)ds, (3.40)

where π(s) is a known non-negative weight function whose support is a com-
pact subset in the interior of the support of f (·). It is known in nonparametric
regression that, as a “weighted local average,” the kernel estimators of µ(t)
have large biases when t is near the boundary of its support. An important
reason of using π(t) is to reduce the effect of boundary bias.

3.6.2 Assumptions for Asymptotic Derivations

Asymptotic properties for nonparametric estimators with cross-sectional i.i.d.
data are generally developed under a set of smoothing assumptions for the
unknown curves and the assumption that the sample sizes tend to infinity.
Under the context of longitudinal data, the same smoothing assumptions for
the unknown curves can still be used, but the asymptotic results may depend
on whether the numbers of repeated measurements ni, i = 1, . . . , n, also tend
to infinity in addition to the usual assumption that the number of subjects
n tends to infinity. When the numbers of subjects are much larger than the
numbers of repeated measurements, one may expect that the asymptotic risks
derived under the assumption that n tends to infinity and {n1, . . . , nn} are
bounded can reasonably approximate the actual risks of the estimators. In
such situations, i.e., n tending to infinity while {n1, . . . , nn} being bounded,
the asymptotic results are simple and can be similarly derived as the classical
case with cross-sectional i.i.d. data. In many longitudinal studies, however,
the numbers of repeated measurements may not be ignorable relative to the
number of subjects, so that a more useful asymptotic assumption should relax
the boundedness condition on {n1, . . . , nn} and allow ni to also tend to infinity
for some i = 1, . . . , n as n tends to infinity.

As a result, the asymptotic representations for the mean squared errors,
MSE

[
µ̂K(t; h, w)

]
and MISE

[
µ̂K(·; h, w)

]
, are derived under the following tech-

nical assumptions.

Asymptotic Assumptions:

(a) For all t, f (t) is continuously differentiable and there is a non-negative
constant p, so that µ(t) is (p+ 2) times continuously differentiable with
respect to t.
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(b) The variance and covariance of the error process ε(t) satisfy

σ2(t) = E
[
ε2(t)

]
< ∞ and ρε(t) = lim

t′→t
E
[
ε(t)ε(t ′)

]
< ∞. (3.41)

Furthermore, σ2(t) and ρε(t) are continuous for all t.

(c) The kernel function K(·) has a compact support, and it is a (p+2)th order
kernel in the sense that it satisfies





∫
u j K(u)du = 0 for all 1 ≤ j < p+ 2,

M(p+2)(K) =
∫

up+2 K(u)du < ∞,

R(K) =
∫

K2(u)du < ∞ and
∫

K(u)du = 1.

(3.42)

(d) The weight vector w = (w1, . . . , wn)
T with wi ≥ 0 for all 1 ≤ i ≤ n, satisfies

n

∑
i=1

(
wi ni

)
= 1 and

n

∑
i=1

(
w2

i n2
i

)
→ 0 as n → ∞. (3.43)

(e) The bandwidth h > 0 satisfies

h → 0, nh → ∞, and
n

∑
i=1

(
w2

i ni

)/
h → 0 (3.44)

as n → ∞. �

These assumptions are comparable to the ones used for kernel estimation
with cross-sectional i.i.d. data. For Assumption (b), we note that in general
σ2(t) 6= ρε(t). The strict inequality between σ2(t) and ρε(t) holds, for example,
when εi j = s(ti j)+Wi where s(t) is a mean zero Gaussian stationary process
and Wi is an independent white noise (e.g., Zeger and Diggle, 1994). Some of
the above assumptions, such as the compactness of the support of K(·) and the
smoothness conditions of f (t), µ(t), σ2(t) and ρε(t), are made for the simplicity
of the derivations. We note that, under Assumption (c) with p ≥ 1, the kernels
satisfying (3.42) belong to the so-called “higher order kernels,” which may
allow for some parts of the kernel function to take negative values. Although
the use of higher order kernels may not seem “natural” as a local smoothing
method, they have been shown in the nonparametric regression literature to
have bias correction properties (e.g., Jones, 1995). In practice, some non-
compactly supported kernels, such as the standard Gaussian kernel (1.31),
can provide equally good estimators as well. Asymptotic results analogous to
the ones of this section may also be derived when Assumptions (a) to (e) are
modified or even weakened.

3.6.3 Asymptotic Risk Representations

Using the right side approximation in (3.38) and the modified MSE (3.39),
we define the modified bias and variance (or simply bias and variance) of
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µ̂K(t; h, w) by
B
[
µ̂K(t; h, w)

]
= f−1(t)E

[
R̂K(t; h, w)

]
(3.45)

and
V
[
µ̂K(t; h, w)

]
= f−2(t)Var

[
R̂K(t; h, w)

]
, (3.46)

respectively. Then, by (3.39), MSE
[
µ̂K(t; h, w)

]
has the decomposition

MSE
[
µ̂K(t; h, w)

]
= B2

[
µ̂K(t; h, w)

]
+V

[
µ̂K(t; h, w)

]
. (3.47)

1. Asymptotic Biases, Variances and Mean Squared Errors

The following theorem gives the asymptotic expressions of B
[
µ̂K(t; h, w)

]
,

V
[
µ̂K(t; h, w)

]
, MSE

[
µ̂K(t; h, w)

]
and MISE

[
µ̂K(·; h, w)

]
.

Theorem 3.1 Suppose that t is in the interior of the support of f (·) and
Assumptions (a) to (e) are satisfied. The following asymptotic expressions
hold.

(a) When n is sufficiently large,

B
[
µ̂K(t; h, w)

]
= hp+2 B∗(t; K, p, µ , f )

[
1+ o(1)

]
, (3.48)

where

B∗(t; K, p, µ , f ) = M(p+2)(K)

[
µ (p+2)(t)

(p+ 2)!
+

µ (p+1)(t) f ′(t)
(p+ 1)! f (t)

]
,

and

V
[
µ̂(t; h, w)

]
=

{
h−1

n

∑
i=1

(
w2

i ni

)
f−1(t)σ2(t)R(K) (3.49)

+

[ ni

∑
i=1

(
w2

i n2
i

)
−

n

∑
i=1

(
w2

i ni

)]
ρε(t)

}[
1+ o(1)

]
.

(b) The asymptotic representations of MSE
[
µ̂K(t; h, w)

]
and

MISE
[
µ̂K(·; h, w)

]
=

∫
MSE

[
µ̂K(s; h, w)

]
π(s)ds,

when n → ∞, are giving by substituting the expressions of B
[
µ̂K(t; h, w)

]
and

V
[
µ̂K(t; h, w)

]
in (3.48) and (3.49), respectively, into (3.47).

(c) If, in addition to Assumption (e), the bandwidth h also satisfies,

h ∑n
i=1

(
w2

i n2
i

)

∑n
i=1

(
w2

i ni

) → 0 as n → ∞, (3.50)
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then the asymptotic variance (3.49) reduces to

V
[
µ̂(t; h, w)

]
=

{
h−1

[
n

∑
i=1

(
w2

i ni

)]
f−1(t)σ2(t)R(K)

}[
1+ o(1)

]
, (3.51)

Consequently, the asymptotic representations of MSE
[
µ̂K(t; h, w)

]
and

MISE
[
µ̂K(·; h, w)

]
are not affected by the intra-subject correlations. �

The results of (3.48), (3.49) and (3.51) imply that, in general, the conver-
gence rates of MSE

[
µ̂K(t; h, w)

]
and MISE

[
µ̂K(·; h, w)

]
depend on whether and

how ni, i = 0, . . . , n, converge to infinity relative to n, and the choice of weight

w =
(
w1, . . . , wn

)T
also affects the convergence rates of MSE

[
µ̂K(t; h, w)

]
and

MISE
[
µ̂K(·; h, w)

]
.

Proof of Theorem 3.1:
By the definition of B

[
µ̂K(t; h, w)

]
in (3.45) and the definition of R̂K(t; h, w)

in (3.38), it follows from (3.35), (3.36), (3.38), Assumptions (a) and (c), and
the change of variables that, when n is sufficiently large,

B
[
µ̂K(t; h, w)

]
=

1

h f (t)

n

∑
i=1

ni

∑
j=1

wi E

{
E
[(

Yi j − µ(t)
)

K
( t − ti j

h

)∣∣∣ti j

]}

=
1

h f (t)

n

∑
i=1

ni

∑
j=1

∫
wi

[
E
(
Yi j

∣∣ti j = s
)
− µ(t)

]
K
( t − s

h

)
f (s)ds

= f−1(t)

∫ [
µ(t − hu)− µ(t)

]
f (t − hr u)K(u)du.

Then the expression in (3.48) follows from Assumptions (a), (c) and (d), and
the Taylor expansions of µ(t−hu) and f (t −hu) at µ(t) and f (t), respectively.

For the asymptotic expression of V
[
µ̂K(t; h, w)

]
, let Zi j(t) = Yi j − µ(t) and

[
f−1(t) R̂K(t; h, w)

]2

= A(1)(t)+A(2)(t)+A(3)(t),

where

A(1)(t) =
[

f (t)h
]−2

n

∑
i=1

ni

∑
j=1

[
w2

i Z2
i j(t)K2

( t − ti j

h

)]
,

A(2)(t) =
[

f (t)h
]−2

n

∑
i=1

∑
j1 6= j2

[
w2

i Zi j1(t)Zi j2(t)K
( t − ti j1

h

)
K
( t − ti j2

h

)]
,

A(3)(t) =
[

f (t)h
]−2

∑
i1 6=i2

∑
j1, j2

[
wi1 wi2 Zi1 j1(t)Zi2 j2(t)K

( t − ti1 j1

h

)
K
( t − ti2 j2

h

)]
.

It remains to evaluate the expectations of A(k)(t) for k = 1, 2, 3. Note that,

Z2
i j(t) =

[
µ(ti j)− µ(t)

]2
+ 2
[
µ(ti j)− µ(t)

]
εi j + ε2

i j,
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and, by E
{[

µ(ti j)− µ(t)
]

εi j

∣∣ti j = s
}
= 0, E

(
ε2

i j

∣∣ti j = s
)
= σ2(s) and

E
{[

µ(ti j)− µ(t)
]2∣∣∣ti j = s

}
= µ2(s)− 2 µ(t)µ(s)+ µ2(t),

it follows that

E
[
A(1)(t)

]

=
[
h f (t)

]−2
n

∑
i=1

ni

∑
j=1

{
w2

i

∫
E
[
Z2

i j(t)
∣∣ti j = s

]
K2
( t − s

h

)
f (s)ds

}

=
[
h f (t)

]−2
n

∑
i=1

ni

∑
j=1

{
w2

i

∫ [
µ2(s)− 2µ(t)µ(s)+ µ2(t)+σ2(s)

]

×K2
( t − s

h

)
f (s)ds

}

= f−2(t)
n

∑
i=1

ni

∑
j=1

{
h−1 w2

i σ2(t)R(K) f (t)
[
1+ o(1)

]}

= h−1

[
n

∑
i=1

(
w2

i ni

)]
f−1(t)σ2(t)R(K)

[
1+ o(1)

]
. (3.52)

Using similar derivations as those in (3.52), we can show that, by (3.42) and
(3.44),

E
[
A(2)(t)

]

=
[
h f (t)

]−2
n

∑
i=1

ni

∑
j1 6= j2=1

{
w2

i

∫ ∫
E
[
Zi j1(t)Zi j2(t)

∣∣ti j1 = s1, ti j2 = s2

]

×K
( t − s1

h

)
K
( t − s2

h

)
f (s1) f (s2)ds1 ds2

}

=

[
n

∑
i=1

(
w2

i n2
i

)
−

n

∑
i=1

(
w2

i ni

)]
ρε(t)

[
1+ o(1)

]
(3.53)

and
E
[
A(3)(t)

]
= B2

[
µ̂(t; h, w)

]
. (3.54)

Then, when n is sufficiently large, the asymptotic variance expression (3.49)
follows from (3.46), (3.52) to (3.54), and

V
[
µ̂(t; h, w)

]
=

3

∑
l=1

E
[
A(l)(t)

]
−B2

[
µ̂(t; h, w)

]
= E

[
A(1)(t)

]
+E

[
A(2)(t)

]
.

The above results give the conclusions in Theorem 3.1(a). Theorem 3.1(b)
directly follows from (3.39), (3.40) and (3.47) to (3.49).

To prove Theorem 3.1(c), we first note that ∑n
i=1

(
w2

i n2
i

)
> ∑n

i=1

(
w2

i ni

)
.
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By Assumptions (c) and (d), the asymptotic expressions of E
[
A(1)(t)

]
and

E
[
A(2)(t)

]
in (3.52) and (3.53) suggest that

E
[
A(2)(t)

]
= O

[
n

∑
i=1

(
w2

i n2
i

)]
and E

[
A(1)(t)

]
= O

[
h−1

n

∑
i=1

(
w2

i ni

)]
.

By Assumption (e) and (3.50), we have E
[
A(2)(t)

]
= o
{

E
[
A(1)(t)

]}
as n → ∞,

so that (3.51) holds. This completes the proof of the theorem. �

2. Theoretical Optimal Bandwidths

The theoretically optimal bandwidths can be derived by minimizing the
asymptotic expressions of the MSE or MISE of µ̂K(t;h,w) with respect to the
choices of h. This result is shown in the next theorem.

Theorem 3.2 Suppose that t is in the interior of the support of f (·),
Assumptions (a) to (e) and (3.50) are satisfied, and B∗(t; K, p, µ , f ) is defined
in (3.48). The following conclusions hold:

(a) The optimal pointwise bandwidth hopt(t; w), which minimizes the asymp-
totic expression of MSE

[
µ̂K(t; h,w)

]
for all h > 0, is given by

hopt(t; w) =

{ [
∑n

i=1(w
2
i ni)

]
R(K)σ2(t)

2(p+ 2) f (t)B2∗(t; K, p, µ , f )

}1/(2p+5)

. (3.55)

(b) The optimal global bandwidth hopt(w) for the weight w, which minimizes
the asymptotic expression of MISE

[
µ̂K(·; h, w)

]
for all h > 0, is given by

hopt(w) =

{[
∑n

i=1(w
2
i ni)

] ∫
f−1(s)R(K)σ2(s)π(s)ds

2(p+ 2)
∫

B2∗(s; K, p, µ , f )π(s)ds

}1/(2p+5)

. (3.56)

(c) The optimal MSE and MISE for µ̂K(·; h, w) are given by

MSE
[
µ̂K

(
t; hopt , w

)]

=

[
n

∑
i=1

(
w2

i ni

)](2p+4)/(2p+5)

(3.57)

×
[
B∗(t; K, p, µ , f )

]2/(2p+5)
[

f−1(t)R(K)σ2(t)
](2p+4)/(2p+5)

×
[
(2p+ 4)−(2p+4)/(2p+5)+(2p+ 4)1/(2p+5)

][
1+ o(1)

]

and

MISE
[
µ̂K

(
·; hopt , w

)]

=

[
n

∑
i=1

(
w2

i ni

)](2p+4)/(2p+5)
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×
{∫

B2
∗(s; K, p, µ , f )π(s)ds

}1/(2p+5)

(3.58)

×
[∫

f−1(s)R(K)σ2(s)π(s)ds

](2p+4)/(2p+5)

×
[
(2p+ 4)−(2p+4)/(2p+5)+(2p+ 4)1/(2p+5)

][
1+ o(1)

]
,

which are the MSE and MISE corresponding to theoretically optimal band-
widths hopt(t; w) and hopt(w), respectively. �

Proof of Theorem 3.2:
By (3.48), (3.49) and (3.50), the dominating term of the pointwise mean

squared error MSE
[
µ̂K(t; h, w)

]
is

h2(p+2)B2
∗(t; K, p, µ , f )+ h−1

n

∑
i=1

(
w2

i ni

)
f−1(t)σ2(t)R(K),

so that the optimal pointwise bandwidth hopt(t; w) which minimizes this dom-
inating term satisfies the equation

d

dh

{
h2(p+2)B2

∗(t; K, p, µ , f )+ h−1

[
n

∑
i=1

(
w2

i ni

)]
f−1(t)R(K)σ2(t)

}

= 2(p+ 2)h2p+3 B2
∗(t; K, p, µ , f )

−h−2

[
n

∑
i=1

(
w2

i ni

)]
f−1(t)R(K)σ2(t)

= 0. (3.59)

The solution of (3.59) shows that

h
2p+5
opt (t; w) =

[
∑n

i=1

(
w2

i ni

)]
R(K)σ2(t)

2(p+ 2) f (t)B2∗(t; K, p, µ , f )
, (3.60)

which gives the desired result in (3.55).
Substituting the expression of (3.55) into (3.48) and (3.49), the bias and

variance of µ̂K(t; h, w) based on hopt(t; w) are

B
[
µ̂K(t; h, w)

]
=

[
n

∑
i=1

(
w2

i ni

)](p+2)/(2p+5)

(3.61)

×(2p+ 4)−(p+2)/(2p+5)
[

f−1(t)R(K)σ2(t)
](p+2)/(2p+5)

×
[
B∗(t; K, p, µ , f )

]1/(2p+5)[
1+ o(1)

]

and

V
[
µ̂(t; h, w)

]
=

[
n

∑
i=1

(
w2

i ni

)](2p+4)/(2p+5)
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×(2p+ 4)1/2p+5
[

f−1(t)R(K)σ2(t)
](2p+4)/(2p+5)

×
[
B∗(t; K, p, µ , f )

]2/(2p+5) [
1+ o(1)

]
. (3.62)

The mean squared error in (3.57) then follows from (3.61) and (3.62).
For the derivation of (3.58), we first note that, by Theorem 3.1, and the

expressions of (3.48) and (3.49), the dominating term of the mean integrated
squared error MISE

[
µ̂K(·; h, w)

]
is

h2(p+2)
∫

B2
∗(s; K, p, µ , f )π(s)ds

+h−1
[

∑n
i=1

(
w2

i ni

)] ∫
f−1(s)σ2(s)R(K)π(s)ds.

Setting the derivative of the above term with respect to h to zero, the optimal
global bandwidth satisfies the equation

2(p+ 2)h2p+3

∫
B2
∗(s; K, p, µ , f )π(s)ds

= h−2

[
n

∑
i=1

(
w2

i ni

)] ∫
f−1(s)σ2(s)R(K)π(s)ds. (3.63)

The solution of (3.63) gives the expression (3.56).
Substituting the expression of hopt(w) (3.56) into (3.48), (3.49) and the

mean integrated squared error MISE
[
µ̂K(·; hopt , w)

]
, we have

∫ {
B
[
µ̂K(s; h, w)

]}2

π(s)ds

= h
2p+4
opt (w)

∫
B2
∗(s; K, p, µ , f )π(s)ds

[
1+ o(1)

]

=

[
n

∑
i=1

(
w2

i ni

)](2p+4)/(2p+5)

(3.64)

×(2p+ 4)−(2p+4)/(2p+5)

[∫
f−1(s)R(K)σ2(s)π(s)ds

](2p+4)/(2p+5)

×
[∫

B2
∗(s; K, p, µ , f )π(s)ds

]1/(2p+5) [
1+ o(1)

]

and ∫
V
[
µ̂(s; h, w)

]
π(s)ds

=

[
n

∑
i=1

(
w2

i ni

)](2p+4)/(2p+5)

×
[∫

f−1(s)R(K)σ2(s)π(s)ds

](2p+4)/(2p+5)

×(2p+ 4)1/2p+5

[∫
B2
∗(s; K, p, µ , f )π(s)ds

]1/(2p+5)

×
[
1+ o(1)

]
. (3.65)



ASYMPTOTIC PROPERTIES OF KERNEL ESTIMATORS 93

The mean integrated squared error MISE
[
µ̂K(·; hopt , w)

]
in (3.58) is obtained

by summing up the right sides of (3.64) and (3.65). This completes the proof
for the assertions (a), (b) and (c) of the theorem. �

3.6.4 Useful Special Cases

The asymptotic properties demonstrated in Theorems 3.1 and 3.2 are suitable
for longitudinal data with general repeated measurements

{
ni : i = 1, . . . , n

}

and weights w =
(
w1, . . . , wn

)T
as long as Assumptions (a) to (e) are satisfied.

For useful special cases with further conditions imposed on
{

ni : i = 1, . . . , n
}

and w =
(
w1, . . . , wn

)T
, interesting special cases can be deduced from Theo-

rems 3.1 and 3.2. We discuss here the two most commonly used special cases:

(a) the subject uniform weight w∗ =
(
1/(nn1) , . . . , 1/(nnn)

)T
, and (b) the mea-

surement uniform weight w∗∗ =
(
1/N, . . . , 1/N

)T
.

1. Kernel Estimators with Subject Uniform Weight

When w∗
i = 1/(nni) is used, we have that ∑n

i=1

(
w2

i ni

)
=∑n

i=1

[
1/
(
n2 ni

)]
and

∑n
i=1

(
w2

i n2
i

)
= 1/n, and (3.44) and (3.50) imply the following condition for h

1

n2 h

n

∑
i=1

(
1
/

ni

)
→ 0 and

nh

∑n
i=1

(
1
/

ni

) → 0 as n → ∞. (3.66)

The following two corollaries, which are direct consequences of Theorems
3.1 and 3.2, summarize the asymptotic expressions for the kernel estimators
µ̂K(t; h, w∗) of (3.8).

Corollary 3.1 Suppose that t is in the interior of the support of f (·),
w∗ =

(
w∗

1, . . . , w∗
n

)T
with w∗

i = 1/(nni) is used, and Assumptions (a)-(c) and (d)
are satisfied. When n → ∞, B

[
µ̂K

(
t; h, w∗)], V

[
µ̂
(
t; h, w∗)], MSE

[
µ̂
(
t; h, w∗)]

and MISE
[
µ̂
(
t; h, w∗)] are given as the corresponding terms in Theorem 3.1,

such as (3.48) and (3.49), by substituting ∑n
i=1

(
w2

i n2
i

)
= 1/n and ∑n

i=1

(
w2

i ni

)

with ∑n
i=1

[
1/
(
n2 ni

)]
. �

The next corollary shows the optimal convergence rate for the MSE and
MISE of µ̂K

(
t; h, w∗) to converge to zero under the optimal bandwidth choices.

Corollary 3.2 Under the assumptions of Corollary 3.1 and (3.66), the
optimal pointwise bandwidth hopt(t; w∗) and the optimal global bandwidth
hopt(w

∗) for the weight w∗
i = 1/(nni), which minimize MSE

[
µ̂K

(
t; h, w∗)] and

MISE
[
µ̂K

(
·; h, w∗)], are given by (3.55) and (3.56), respectively, by substi-

tuting ∑n
i=1

(
w2

i ni

)
with ∑n

i=1

[
1/
(
n2 ni

)]
. The optimal mean squared errors

MSE
[
µ̂K

(
t; hopt , w∗)] and MISE

[
µ̂K

(
·; hopt , w∗)] corresponding to the optimal
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bandwidths hopt(t; w∗) and hopt(w
∗), are given by (3.57) and (3.58), respec-

tively, by substituting ∑n
i=1

(
w2

i ni

)
with ∑n

i=1

[
1/
(
n2 ni

)]
. �

The above two corollaries may be simplified under further asymptotic as-
sumptions. A common longitudinal setting is to assume that the number of
repeated measurements are bounded while the number of subjects may tend
to infinity. In such situations, ni ≤ c for some constant c > 0 as n → ∞, (3.66)
reduces to limn→∞ h = 0 and limn→∞ nh = ∞, and the ∑n

i=1

[
1
/(

n2 ni

)]
used in

Corollary 3.2 is then replaced by n−1, so that the optimal convergence rate for
MSE

[
µ̂K

(
t; hopt , w∗)] and MISE

[
µ̂K

(
·; hopt , w∗)] is n(2p+4)/(2p+5).

2. Kernel Estimators with Measurement Uniform Weight

For the weight choice w∗∗
i = 1/N, we have ∑n

i=1

[(
w∗∗

i

)2
ni

]
= 1/N and

∑n
i=1

[(
w∗∗

i

)2
n2

i

]
=
(

∑n
i=1 n2

i

)/
N2, and (3.44) and (3.50) imply the following con-

dition for h

N h → 0 and
h ∑n

i=1 n2
i

N
→ 0 as n → ∞. (3.67)

The following two corollaries follow from Theorem 3.1 and Theorem 3.2.

Corollary 3.3 Suppose that t is in the interior of the support of f (·),
w∗∗ =

(
w∗∗

1 , . . . , w∗∗
n

)T
, w∗∗

i = 1/N, is used, and Assumptions (a)-(c) and (d)
are satisfied. When n → ∞, B

[
µ̂K(t; h, w∗∗)

]
, V
[
µ̂(t; h, w∗∗)

]
, MSE

[
µ̂(t; h, w∗∗)

]

and MISE
[
µ̂(·; h, w∗∗)

]
are given by the corresponding terms in Theorem 3.1,

such as (3.48) and (3.49), by substituting ∑n
i=1

(
w2

i ni

)
with 1/N. �

As a consequence of the above corollary, the optimal convergence rate for
the MSE and MISE of µ̂K(t; h, w∗∗) to converge to zero is N−(2p+4)/(2p+5).

Corollary 3.4 Under the assumptions of Corollary 3.3 and (3.67),
the pointwise optimal bandwidth hopt(t; w∗∗) and the global optimal band-
width hopt(w

∗∗) for w∗∗
i = 1/N, which minimize MSE

[
µ̂K(t; h, w∗∗)

]
and

MISE
[
µ̂K(·; h, w∗∗)

]
, are given by (3.55) and (3.56), respectively, by

substituting ∑n
i=1

(
w2

i ni

)
with 1/N. The optimal mean squared errors

MSE
[
µ̂K

(
t; hopt , w∗∗)] and MISE

[
µ̂K

(
·; hopt , w∗∗)] corresponding to hopt(t; w∗∗)

and hopt(w
∗∗), are given by (3.57) and (3.58), respectively, by substituting

∑n
i=1

(
w2

i ni

)
with 1/N. �

When the numbers of repeated measurements are bounded, ni ≤ c for some
constant c > 0, we have that N/n is bounded, and, by Corollary 3.2, the opti-
mal convergence rate for MSE

[
µ̂K

(
t; hopt , w∗∗)] and MISE

[
µ̂K

(
·; hopt , w∗∗)] is

n(2p+4)/(2p+5).
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3.7 Remarks and Literature Notes

The estimators described in this chapter are some of the most basic local
smoothing methods. These methods are direct extensions of the local smooth-
ing methods from cross-sectional i.i.d. data to longitudinal data. The main
advantage of these methods is that they are conceptually simple. As seen
from the theoretical derivations of Section 3.6, the asymptotic biases, vari-
ances and mean squared errors, including both the MSE and MISE, of these
estimators may depend on the number of subjects n as well as the number of
repeated measurements ni. A direct consequence of the local nature of these es-
timators is that their asymptotic properties are not affected by the correlation
structures of the data in most practical situations.

The estimation methods of Sections 3.1 to 3.5 are adapted from Hoover et
al. (1998) and Wu and Chiang (2000). The asymptotic results of Section 3.6
are special cases of the results of Wu and Chiang (2000). A noteworthy ker-
nel method for longitudinal data is the SUR kernel method of Wang (2003)
described in Section 2.3, which has the advantage of taking the correlation
structures of the data into consideration. However, because the SUR kernel
method is not easily generalized under the structured nonparametric models
to be discussed in the later chapters of this book, we omit its presentation
in this chapter and refer its details to Wang (2003). Other omitted topics in-
clude the asymptotic properties for the local polynomial estimators, several
inference procedures (e.g., Knafl, Sacks and Ylvisaker, 1985; Härdle and Mar-
ron, 1991; Eubank and Speckman, 1993) and fast algorithms for computation
(e.g., Fan and Marron, 1994). Since the asymptotic results of Section 3.6 are
intended to provide some initial insights into local smoothing with repeated
measurements data, we choose to present only the simpler case of least squares
kernel estimators in this chapter.
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Chapter 4

Basis Approximation Smoothing

Methods

The estimation of µ(t) = E[Y (t)|t] in the simple nonparametric regression
model (3.1) can also be carried out by an approximation approach using basis
expansions for µ(t) based on the sample

{
(Yi j, ti j) : i = 1, . . . , n; j = 1, . . . , ni

}
,

where the time points ti j can be either regularly or irregularly spaced. In
contrast to the kernel-based local smoothing methods in Chapter 3, the basis
approximation methods belong to the class of “global smoothing methods”be-
cause the entire curve µ(t) within the time range is approximated by a linear
combination of a set of chosen basis functions. The coefficients of the linear
expansions, which determine the shape of the approximation of µ(t), are then
estimated from the data by finding the “best” fit between the basis approxi-
mation of µ(t) and the data. As an important part of the “global smoothing
methods,” the basis approximation approach described in this chapter is an
extension of the “extended linear models” (Stone et al., 1997; Huang, 1998,
2001 and 2003) to data with intra-subject correlations over time. The meth-
ods and theory in this chapter provide useful insights into the mechanism and
effects of correlation structures in practical situations. Extensions of the basis
approximation methods to more complicated structured nonparametric mod-
els with longitudinal data have been extensively studied in the literature, for
example, Huang, Wu and Zhou (2002, 2004), Yao, Müller and Wang (2005a,
2005b), among others. We discuss these extensions later in Chapter 9.

4.1 Estimation Method

4.1.1 Basis Approximations and Least Squares

Suppose that there is a set of basis functions
{

Bk(t) : k = 1, . . . , K
}
and con-

stants
{

γk : k = 1, . . . , K
}
, such that, for any t ∈ T , µ(t) can be approximated

by the expansion

µ(t)≈
K

∑
k=1

γk Bk(t). (4.1)

In order to ensure that µ(t) can be a constant, we assume that, unless specifi-
cally mentioned otherwise, B1(t) = 1. Substituting µ(t) of (3.1) with the right

97
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side of (4.1), we approximate (3.1) by

Yi j ≈
K

∑
k=1

γk Bk(ti j)+ εi j, (4.2)

where εi j = εi(ti j) is the error term of the ith subject at jth visit time ti j

for the ε(t) defined in (3.1). Using the approximation (4.2), the coefficients
γ = (γ1, . . . , γK)

T can be estimated by minimizing the squared error

ℓw(γ) =
n

∑
i=1

ni

∑
j=1

wi

[
Yi j −

K

∑
k=1

γk Bk(ti j)

]2

, (4.3)

where w =
(
w1, . . . , wn

)T
and wi is a known nonnegative weight for the ith

subject, which satisfies ∑n
i=1

(
ni wi

)
= 1. Similar to the kernel estimation cases

of Chapter 3, useful choices of wi include the “subject uniform weight” w∗ =
(w∗

1, . . . , w∗
n)

T with w∗
i = 1/(nni) and the “measurement uniform weight”w∗∗ =

(w∗∗
1 , . . . , w∗∗

n )T with w∗∗
i = 1/N.

If ℓw(γ) can be uniquely minimized, we denote by γ̂ =
(
γ̂1, . . . , γ̂K

)T
the

least squares estimator of γ =
(
γ1, . . . , γK

)T
based on (4.3) with weight w.

Substituting γ of (4.1) with γ̂, the least squares basis approximation estimator
of µ(t) based on the basis functions

{
Bk(t) : k = 1, . . . , K

}
is

µ̂B(t) =
K

∑
k=1

γ̂k Bk(t). (4.4)

Explicit expressions for γ̂ and µ̂B(t) can be derived from the following matrix

derivations. Let B(t) =
(
B1(t), . . . , BK(t)

)T
be the (K ×1) vector of basis func-

tions. Then, for the ith subject, we denote by Yi =
(
Yi1, . . . , Yini

)T
the

(
ni × 1

)

vector of ni outcome observations, ti =
(
ti1, . . . , tini

)T
the

(
ni×1

)
vector of time

points, B(ti) =
(
B(ti1), . . . , B(tini

)
)T

the
(
K × ni

)
matrix of basis functions, and

Wi = diag
(
wi, . . . , wi

)
the

(
ni × ni

)
diagonal weight matrix with diagonal ele-

ments wi and 0 elsewhere. The matrix representation of (4.3) can be written
as

ℓw(γ) =
n

∑
i=1

[
Yi −B(ti)γ

]T
Wi

[
Yi −B(ti)γ

]
. (4.5)

Suppose that the inverse of ∑n
i=1

[
B
(
ti
)T

Wi B
(
ti
)]

exists and is unique. Then
there is a unique γ which minimizes the right side of (4.5). The least squares
basis approximation estimators γ̂, which minimizes ℓw(γ) of (4.5), and µ̂B(t),
which is obtained from (4.4), are given by





γ̂ =
{

∑n
i=1

[
B(ti)

T Wi B(ti)
]}−1{

∑n
i=1

[
B(ti)

T WiYi

]}
,

µ̂B(t) = B(t)T γ̂.
(4.6)
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The linear function space spanned by the basis functions
{

Bk(t) : k =
1, . . . , K

}
uniquely determines the basis approximation estimator µ̂B(t). Dif-

ferent sets of basis functions can be used to span the same space and thus
give the same estimator µ̂B(t). When different basis functions are used, the
corresponding coefficients γk, k = 1, . . . , K, and their estimators γ̂k are also dif-
ferent. For example, both the B-spline basis (also known as polynomial spline
basis) and the truncated power basis can be used to span a space of spline
functions for µ(t). But, for the same function µ(t), the coefficients γ for the
two different bases are different; hence, their estimates are also different.

The choice of wi in (4.3) may influence the theoretical and practical prop-
erties of γ̂, hence, µ̂B(t). For the “subject uniform weight” w∗

i = 1/(nni), each
subject is inversely weighted by its number of repeated measurements ni, so
that the subjects with fewer repeated measurements receive more weight than
the subjects with more repeated measurements at the corresponding visiting
times. For the “measurement uniform weight” w∗∗

i = 1/N, all the subjects at
all the visiting times receive the same weight, so that the subjects with more
repeated measurements are weighted the same as the subjects with fewer re-
peated measurements. It is conceivable that an ideal choice of wi may also
depend on the intra-subject correlation structures of the data. However, be-
cause the actual correlation structures are usually completely unknown in
practice, w∗∗

i ≡ 1/N appears to be a practical choice if ni for all i = 1, . . . , n are
similar, while w∗

i = 1/(nni) may be appropriate when ni are significantly dif-
ferent between different subjects. Some theoretical implications of the choices
of wi are discussed in Section 4.4.

Although any common basis system can be used for function approxi-
mation, some basis systems may be more appropriate than others depend-
ing on the nature of the data and the scientific questions being investigated.
For example, the Fourier basis may be desirable when the underlying func-
tions exhibit periodicity, and global polynomials are familiar choices which
can provide good approximations to smooth functions. However, these bases
may not be sensitive enough to exhibit certain local features without using
a large number K of basis functions. In this respect, B-splines (i.e., polyno-
mial splines) are often desirable. Ideally, a basis should be chosen to achieve
an excellent approximation using a relatively small value of K. Some general
guidance for choosing basis functions can be found in Chapter 3 of Ramsay
and Silverman (2005). All the numerical examples in the R implementation of
Section 4.3 are computed using B-spline bases, because they can exhibit local
features and provide stable numerical solutions (de Boor, 1978, Ch. II).

4.1.2 Selecting Smoothing Parameters

Once a basis system is chosen, the number of basis functions K in (4.1) is the
smoothing parameter for a basis approximation estimator. Similar to the least
squares kernel and local polynomial estimators discussed in Chapter 3, the
choice of the smoothing parameter K determines the appropriate smoothness
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of the estimators. When a large number of basis functions is used in (4.1) to
approximate µ(t), the bias of the estimator µ̂B(t) in (4.4) is expected to be
small, but the variance of the estimator is expected to be large. On the other
hand, a small K leads to smaller variance but larger bias for µ̂B(t).

1. Leave-One-Subject-Out Cross-Validation

For the local smoothing methods, such as the kernel and local polynomial
estimators, data-driven smoothing parameters, i.e., bandwidths, can be se-
lected through the “leave-one-subject-out”cross-validation (LSCV) procedures
described in Section 3.3. The objective of the LSCV is to find a smoothing
parameter to balance the estimated biases and variances, so that the aver-
age squared errors of the smoothing estimators can be minimized. Extending
the same argument to global smoothing estimation method, Huang, Wu and
Zhou (2002) suggests that the same LSCV procedure can be modified as fol-
lows to select the smoothing parameter K for µ̂B(t).

Leave-One-Subject-Out Cross-Validation:

(a) Let γ̂(−i) be the estimator of γ obtained by minimizing ℓw(γ) of (4.3) using

the data with the measurements of the ith subject deleted, and let µ̂
(−i)
B (t)

be the estimator defined in (4.4) with γ̂ replaced by γ̂(−i).

(b) The LSCV score for K is defined by

LSCVµ(K) =
n

∑
i=1

ni

∑
j=1

{
wi

[
Yi j − µ̂

(−i)
B (ti j)

]2
}
. (4.7)

The cross-validated smoothing parameter KLSCV is the minimizer of
LSCVµ(K), provided that (4.7) can be uniquely minimized. �

2. Heuristic Justification of Cross-Validation

The above LSCV procedure for the selection of K can be justified as in
Section 3.3 for the LSCV bandwidth choices of the kernel and local polyno-
mial estimators. Specifically, there are two main reasons for using this LSCV
procedure. First, deletion of the entire measurements of the subject one at
a time preserves the correlation in the data. Second, this approach does not
require us to model the intra-subject correlation structures of the data.

For an intuitive justification of KLSCV , we consider the following average
squared error

ASEµ(K) =
n

∑
i=1

ni

∑
j=1

{
wi

[
µ
(
ti j

)
− µ̂B

(
ti j

)]2}
(4.8)

and the decomposition

LSCVµ(K) =
n

∑
i=1

ni

∑
j=1

{
wi

[
Yi j − µ

(
ti j

)]2
}
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+2
n

∑
i=1

ni

∑
j=1

{
wi

[
Yi j − µ

(
ti j

)][
µ
(
ti j

)
− µ̂

(−i)
B

(
ti j

)]}

+
n

∑
i=1

ni

∑
j=1

{
wi

[
µ
(
ti j

)
− µ̂

(−i)
B

(
ti j

)]2
}
. (4.9)

The first term at the right side of (4.9) does not depend on the smoothing

parameter K. Because of the definition of µ̂
(−i)
B (t) and the fact that the sub-

jects are independent, the expectation of the second term is zero. Thus, by
minimizing LSCVµ(K), KLSCV approximately minimizes the third term at the
right side of (4.9), which is an approximation of ASEµ(K) in (4.8).

4.2 Bootstrap Inference Procedures

Statistical inferences for µ(t) based on µ̂B(t) of (4.4), including pointwise con-
fidence intervals, simultaneous confidence bands and hypothesis testing, are
usually constructed through a resampling-subject bootstrap procedure similar
to the ones discussed in Section 3.4. Although in principle the asymptotic dis-
tributions of the basis approximation estimator µ̂B(t) can be used to construct
approximate inference procedures for µ(t), such approximate inference proce-
dures depend on the particular asymptotic assumptions and the unknown
correlation structures, and may not be appropriate for a given longitudinal
sample. The resampling-subject bootstrap procedure, on the other hand, rely
on estimating the variability of the estimators based on the intra-subject cor-
relation structures of the subjects, hence, are more appropriate to the specific
longitudinal design of the given sample.

4.2.1 Pointwise Confidence Intervals

The bootstrap pointwise confidence intervals can be constructed by substitut-
ing the kernel or local polynomial estimators of Chapter 3.4 with the basis
approximation estimator µ̂B(t) of (4.4). The specific steps can be briefly de-
scribed in the following.

Approximate Bootstrap Pointwise Confidence Intervals:

(a) Bootstrap Samples and Estimators. Let
{(

Y ∗
i j, t∗i j

)
: 1 ≤ i ≤ n; 1 ≤ j ≤

ni

}
be a bootstrap sample obtained as in Step (a) of Section 3.4.1. Compute

the estimators γ̂boot =
(
γ̂ boot

1 , . . . , γ̂ boot
K

)T
and µ̂ boot

B (t) based on (4.6) with the
basis functions

{
Bk(t) : k = 1, . . . , K

}
and the available bootstrap sample.

With B > 1 independent replications, we obtain B bootstrap samples with
their corresponding estimators γ̂ boot and µ̂ boot

B (t).

(b) Percentile Bootstrap Intervals. A pointwise
[
100× (1−α)

]
% con-

fidence interval for µ(t) based on the percentiles of the bootstrap samples
is (

Lα/2

[
µ̂ boot

B (t)
]
,Uα/2

[
µ̂ boot

B (t)
])

, (4.10)
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where Lα/2

[
µ̂ boot

B (t)
]
and Uα/2

[
µ̂ boot

B (t)
]
are the

[
100× (α/2)

]
th and

[
100×

(1−α/2)
]
th percentiles of the bootstrap estimators of µ(t).

(c) Normal Approximated Bootstrap Intervals. If the distribution of
µ̂ boot

B (t) can be approximated by a normal distribution, a pointwise
[
100×

(1−α)
]
% confidence interval for E

[
µ̂(t)

]
based on normal approximation

is
µ̂B(t)± z1−α/2 ŝboot

µ (t), (4.11)

where z1−α/2 is the
[
100× (1−α/2)

]
th percentile of the standard normal

distribution and ŝboot
µ (t) is the sample standard deviation of µ̂ boot

B (t) com-

puted from the B bootstrap estimators µ̂ boot
B (t) at time point t. �

Strictly speaking, because the bias of µ̂B(t) has not been adjusted, the
above approximate confidence intervals (4.10) and (4.11) are not precisely the
confidence intervals for µ(t), because they may not have the nominal coverage
probability of

[
100× (1−α)

]
% unless it is appropriate to ignore the bias of

µ̂B(t). In theory, one may either estimate the bias or make it negligible by se-
lecting a relatively larger K in the computation of µ̂B(t). However, in practice,
it is difficult to estimate the bias of a basis approximation estimator. Conse-
quently, we treat E

[
µ̂B(t)

]
as the function of interest and the estimable part of

µ(t). This is a reasonable approach since E
[
µ̂B(t)

]
, as a good approximation

of µ(t), is expected to capture the main feature of µ(t). A similar argument
in the context of kernel smoothing can be found in Hart (1997, Section 3.5).
Thus, for practical purposes, the intervals given in (4.10) and (4.11) are viewed
as appropriate approximate confidence intervals for µ(t).

4.2.2 Simultaneous Confidence Bands

The above pointwise confidence intervals can be extended through the same
approach described in Section 3.4 to construct simultaneous confidence bands
for µ(t) over a given interval [a, b]. Using the Bonferroni adjustment to (4.10)
or (4.11), we partition [a, b] into M + 1 equally spaced grid points a = ξ1 <
· · ·< ξM+1 = b for some integer M ≥ 1, and construct the approximate

[
100×

(1−α)
]
% simultaneous confidence intervals

(
Lα/[2(M+1)]

[
µ̂ boot

B

(
ξr

)]
,Uα/[2(M+1)]

[
µ̂ boot

B

(
ξr

)])
(4.12)

or (
µ̂B

(
ξr

)
± z1−α/[2(M+1)] ŝ

boot
B (ξr)

)
, (4.13)

respectively. Using (4.12) or (4.13), the comparable approximate
[
100× (1−

α)
]
% for the linear interpolation µ (I)(t) as defined in (3.25) is

(
l
(I)
α (t), u

(I)
α (t)

)
,

which satisfies (3.26),

l
(I)
α (t) = M

(
ξr+1 − t

b− a

)
lα(ξr)+M

(
t − ξr

b− a

)
lα(ξr+1) (4.14)
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and

u
(I)
α (t) = M

(
ξr+1 − t

b− a

)
uα

(
ξr

)
+M

(
t − ξr

b− a

)
uα

(
ξr+1

)
, (4.15)

where lα
(
ξr

)
and uα

(
ξr

)
are the lower and upper bounds, respectively, given

in (4.12) or (4.13).
Taking the view that E

[
µ̂B(t)

]
is the estimable part of µ(t), we assume that

the smoothness conditions of (3.29) or (3.30) are equivalent to

sup
t∈[a,b]

∣∣∣∣
{

E

[
µ̂B(t)

]}′
∣∣∣∣≤ c1, for a known constant c1 > 0, (4.16)

or

sup
t∈[a,b]

∣∣∣∣
{

E
[
µ̂B(t)

]}′
∣∣∣∣≤ c2, for a known constant c2 > 0, (4.17)

respectively. Then, adjusting the simultaneous confidence bands for the lin-
ear interpolation of E

[
µ̂B(t)

]
, the approximate

[
100× (1−α)

]
% simultaneous

confidence bands for E
[
µ̂B(t)

]
, hence µ(t), can be given by

(
l
(I)
α (t)− 2c1 M

[(
ξr+1 − t

)(
t − ξr

)

b− a

]
, u

(I)
α (t)+ 2c1 M

[(
ξr+1 − t

)(
t − ξr

)

b− a

])

(4.18)
or
(

l
(I)
α (t)−

(
c2/2

)(
ξr+1 − t

)(
t − ξr

)
, u

(I)
α (t)+

(
c2/2

)(
ξr+1 − t

)(
t − ξr

))
, (4.19)

when (4.16) or (4.17) holds, where l
(I)
α (t) and u

(I)
α (t) are given in (4.14) and

(4.15), respectively.
The practical issues of improving the simultaneous confidence intervals

(4.12) and (4.13) and selecting the number and location of the grid points
have been discussed in Section 3.4. We omit this discussion here to avoid
redundancy.

4.2.3 Hypothesis Testing

Some practical questions for the evaluation of µ(t) = E[Y (t)|t)] are whether
E[Y (t)|t] is time-varying or belongs to a pre-specified sub-model. These ques-
tions can be evaluated under the current framework of extended linear models
by a class of goodness-of-fit tests.

1. Testing Time-Varying based on Residual Sum of Squares

This test is constructed by comparing the weighted residual sum of squares
from weighted least squares fits under the following null and alternative hy-
potheses,
{

H0 : µ(t) = γ1 for all t ∈ T and some unknown constant γ1;

H1 : µ(t) is time-varying.
(4.20)
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Under the null hypothesis H0, we can estimate µ(t) by γ̂1 which minimizes
ℓw(γ) of (4.3) with B1(t) = 1 and B2(t) = · · · = BK(t) = 0. Then, the weighted
residual sum of squares under H0 is

RSS0(γ̂1) =
n

∑
i=1

ni

∑
j=1

wi

(
Yi j − γ̂1

)2
. (4.21)

Under the alternative H1, µ(t) is estimated by the basis approximation esti-
mator µ̂B(t) given in (4.4), so that the corresponding weighted residual sum
of squares is

RSS1

(
µ̂B

)
=

n

∑
i=1

ni

∑
j=1

wi

[
Yi j −

K

∑
k=1

γ̂k Bk

(
ti j

)]2

. (4.22)

The difference between RSS0

(
γ̂1

)
and RSS1

(
µ̂B

)
can be used to test whether

there is sufficient evidence to accept or reject the null hypothesis H0 in (4.20).
If the null hypothesis H0 holds, we expect that RSS0

(
γ̂1

)
and RSS1

(
µ̂B

)
are

close to each other. On the other hand, if H1 holds, we expect that RSS0

(
γ̂1

)

and RSS1(µ̂B) are apart from each other. A natural goodness-of-fit test statistic
for (4.20) is

Tn

(
γ̂1, µ̂B

)
=

RSS0

(
γ̂1

)
−RSS1

(
µ̂B

)

RSS1

(
µ̂B

) . (4.23)

The null hypothesis H0 is rejected if the value of Tn

(
γ̂1, µ̂B

)
is larger than an

appropriate critical value.
Theoretical justification of using Tn

(
γ̂1, µ̂B

)
is provided in Theorem 4.3 of

Section 4.4. This theorem indicates that, under some mild regularity condi-
tions which are satisfied in most practical situations, if the null hypothesis H0

of (4.20) holds, Tn

(
γ̂1, µ̂B

)
converges to zero in probability as n tends to infin-

ity. On the other hand, if the alternative H1 of (4.20) holds, then Tn

(
γ̂1, µ̂B

)
is

larger than a constant for sufficiently large n.

2. Resampling-Subject Bootstrap Critical Values

The theoretical justification of the test statistic in (4.23) motivates the
use of a resampling-subject bootstrap test procedure that rejects H0 when
Tn

(
γ̂1, µ̂B

)
is larger than an appropriate critical value. This critical value can

be computed based on the following resampling-subject bootstrap procedure
under the null hypothesis H0 of (4.20). Let

ε̂i j = Yi j −
K

∑
k=1

γ̂k Bk(ti j) (4.24)

be the residuals of (4.4). Based on
{

ε̂i j : i = 1, . . . ,n; j = 1, . . . ,ni

}
, we define

{
Y

p
i j = γ̂1 + ε̂i j : i = 1, . . . , n; j = 1, . . . , ni

}
, (4.25)

to be a set of pseudo-responses under the null hypothesis H0 of (4.20).
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The following resampling-subject bootstrap procedure can be used to eval-
uate the distribution of Tn

(
γ1, µ̂B

)
under the null hypothesis H0 and compute

the level-α rejection region and the p-values of the test statistic Tn

(
γ̂1, µ̂B

)

for (4.20).

Resampling-Subject Bootstrap Testing Procedure:

(a) Resample n subjects with replacement from
{(

Y
p

i j , ti j

)
: i = 1, . . . , n; j =

1, . . . , ni

}
to obtain the bootstrap sample

{(
Y

p∗
i j , t∗i j

)
: i = 1, . . . , n; j =

1, . . . , n∗i
}
.

(b) Repeat the above sampling procedure B times, so that B independent
resampling-subject bootstrap samples are obtained.

(c) From each bootstrap sample, calculate the test statistic T ∗
n

(
γ̂ boot

1 , µ̂ boot
B

)

using the method (4.23) and compute the empirical distribution of
T ∗

n

(
γ̂ boot

1 , µ̂ boot
B

)
based on the B independent bootstrap samples.

(d) Reject the null hypothesis H0 at the significance level α when the observed
test statistic Tn

(
γ̂1, µ̂B

)
is greater than or equal to the

[
100× (1−α)

]
th

percentile of the empirical distribution of T ∗
n

(
γ̂ boot

1 , µ̂ boot
B

)
. The p-value of

the test is the empirical probability of “T ∗
n

(
γ̂ boot

1 , µ̂ boot
B

)
≥ Tn

(
γ̂1, µ̂B

)
”. �

3. Testing Sub-models based on Residual Sum of Squares

The above residual sum of squares testing procedure can be modified in a
straightforward way to test other null hypotheses and alternatives. For exam-
ple, a set of hypotheses, which are more general than the ones given in (4.20)
and may include testing a linear model for µ(t), is





H0 : µ(t) = ∑
K0

k=1 γk Bk(t),

for a given 1 < K0 < K and γk 6= 0 for some 1 ≤ k ≤ K0;

H1 : µ(t) = ∑K
k=1 γk Bk(t),

with γk 6= 0 for some K0 ≤ k ≤ K.

(4.26)

A simple special case of (4.26) is K ≥ 3, K0 = 2 and Bk(t) = tk−1 being a
polynomial basis, so that the null hypothesis H0 is that µ(t) is a simple linear
function of t, i.e., µ(t) = γ1 + γ2 t, and the alternative H1 is that µ(t) is a
polynomial of t with degree 2 or higher. By extending the residual sum of
squares in (4.21) and (4.22) to RSS0 and RSS1 under H0 and H1, respectively,
of (4.26), Theorem 4.3 of Section 4.4 can be adapted easily to the general
situation of (4.26). The residual sum of squares test procedure given in (4.23),
(4.24), (4.25) and the resampling-subject bootstrap steps (a) to (d) can be
analogously adapted to compute test statistic Tn(·, ·) and its level-α rejection
regions and p-values under (4.26).

We note that, in principle, similar goodness-of-fit test procedures, includ-
ing the test statistic Tn(·, ·) of (4.23) and the resampling-subject bootstrap
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procedure, can also be developed using other estimation methods, such as the
least squares kernel and local polynomial estimators. But, asymptotic prop-
erties of the test statistics Tn(·, ·) with other smoothing methods have not
been systematically investigated in the literature. Given that the focus of this
book is mainly on the nonparametric estimation methods, our coverage of hy-
pothesis testing for nonparametric models is limited to basis approximation
methods only.

4.3 R Implementation

4.3.1 The HSCT Data

The HSCT data has been described in Sections 1.2 and 3.5. As an alter-
native to the least squares kernel and local polynomial smoothing methods
described in Chapter 3, we illustrate here how to apply the basis approxi-
mation method to estimate the nonparametric time-trend of the granulocyte
recovery in patients undergone hematopoietic stem cell transplantation. To
obtain a smoothing estimate of the time-trend, different basis systems may be
used. We use B-splines (i.e., polynomial splines) here as an example to show
that the smoothness of the fitted curve depends on the choices of the degree
of the polynomial and the number of knots for the splines.

In R, the function bs(x, knots = , degree = ) generates the B-spline
basis matrix for a polynomial spline. The B-splines are computationally more
efficient compared to the truncated polynomial splines. Different degrees for
the polynomial splines may be used, such as the linear (degree = 1), quadratic
(degree = 2) or cubic B-splines (degree = 3). The cubic B-spline basis is the
default choice in bs(). Since the cubic B-splines are continuous and have con-
tinuous first and second derivatives at the knots, we usually do not need to
use a spline with degrees higher than three to obtain a continuous smoothing
estimator. With sufficient numbers of knots, the cubic B-splines can approxi-
mate most functions arbitrarily well. Typical choices of knots within the data
range (or the internal breakpoints) are to use mean/median for one knot, and
quantiles for multiple knots. As discussed in Section 4.1.2, LSCV is used to
select the number of equally spaced knots. Moreover, if linear constraints at
the boundaries are required, the natural cubic splines may be used, for which
ns(x, knots= ) in R generates its B-spline basis matrix.

We use the following commands to fit a cubic spline with two fixed knots
by the least squares method described in Section 4.1. The spline fits with
different degrees or knots may be specified similarly. By default the bs()

function does not include the intercept in the basis matrix because an intercept
term is automatically included in the model formula for most of the regression
functions in R. The R functions are

> library(splines)

> data(HSCT)
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Figure 4.1 The scatter plots and smoothing estimates of the granulocyte counts vs.
time since stem cell transplantation. (A) 1 interior knot, linear; (B) 1 interior knot,
cubic; (C) 2 interior knots, linear; and (D) 2 interior knots, cubic polynomial splines
are used. Knots are chosen at median (day 8) for 1 knot and 33% and 67% percentiles
(days 3 and 15) for 2 knots. The solid and dashed lines represent the spline estimates
using the measurement uniform weight and the subject uniform weight, respectively.

> attach(HSCT)

> Granu.log <- log10(Granu)

> KN2 <- quantile(Days, c(.33, .66))

> bs.Days <- bs(Days, knots=KN2, degree=3)

# Obtain coefficients for the spline basis, subject uniform

weight

> Spline.fit <- lm(Granu.log ~ bs.Days, weights=1/ni)

# Obtain fitted estimates for a given x

> New.Days <- bs(-7:35, knots=KN2, degree=3)

> Spline.Est <- cbind(1, New.Days) %*% coef(Spline.fit)

Figure 4.1 displays the estimated smoothing curves using the linear or cubic
B-splines (polynomial splines) with one knot (at median, day 8) or two knots
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(at 33% and 67% percentiles, days 3 and 15), respectively. In each plot, the
smoothing curves based on the measurement uniform weight and the subject
uniform weight are very similar. It is easy to visualize that the cubic B-spline
fit with 2 knots in Figure 4.1(D) captures the entire nonlinear time-trend more
adequately, compared to the linear spline fit and the smoothing estimates with
only one knot in Figure 4.1(A)-(C). The granulocytes of patients are shown to
decrease to the lowest levels following the conditioning regimen and gradually
recover back to the pre-transplant level because of the engraftment of the
donor stem cells and hematopoietic reconstitution post-transplantation.

4.3.2 The BMACS CD4 Data

The BMACS CD4 data has been described in Sections 1.2, 2.4 and 3.5. Using
this dataset, we illustrate here how to select the number of knots with the
LSCV procedure of Section 4.1.2 and obtain the pointwise and simultaneous
confidence intervals based on the resampling-subject bootstrap procedure of
Section 4.2.

Figure 4.2 shows the CD4 cell percentages at the study visits since HIV-
infection for the 283 HIV infected men in the dataset. We apply spline fit to
the CD4 data using the cubic B-splines with 1 interior knot (at 3 years) and
5 interior knots (at 1, 2, 3, 4 and 5 years), respectively. Both fits are based on
equally spaced knots.
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Figure 4.2 Scatter plots and B-spline fitted curves of CD4 percentage vs. time since
infection. The equally spaced knots for the cubic spline estimates are used with (A)
1 knot (at 3 years) and (B) 5 knots (at 1, 2, 3, 4 and 5 years). The solid and dashed
lines represent the spline estimates using the measurement uniform weight and the
subject uniform weight, respectively.

The following spline.fit() functions are used to generate the fitted val-
ues with a given number of equally spaced knots, degree, and weight:

> library(npmlda)



R IMPLEMENTATION 109

> attach(BMACS)

> newX <- seq(min(Time), max(Time), by=0.1)

> fit5 <- spline.fit(newX, Time, CD4, nKnots=5, Degree=3)

> fit5W <- spline.fit(newX, Time, CD4, nKnots=5, Degree=3,

Wt=1/ni)

Figure 4.3(A) shows the fitted cubic spline curves with different numbers
of knots ranging from 1 to 20 with measurement uniform weight. By the LSCV
method in Section 4.1.2, the spline fit with 5 interior knots has the smallest
LSCV score as shown in Figure 4.3(B). It also suggests that the complexity
and curvature of fits are considerably increased with large numbers of knots,
compared to much smoother estimates with few numbers of knots. We will
discuss how to use “smoothing splines” in the next chapter to avoid knot
selection and to penalize the roughness and curvature of the fitted curves.
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Figure 4.3 B-spline smoothing fits and LSCV score of the CD4 percentage data. (A)
Cubic spline fits of CD4 percentage vs. time since infection in years with various
number of equally spaced knots. (B) LSCV scores vs. number of interior knots for
selecting the number of knots.

Figure 4.4 displays the bootstrap inference described in Section 4.2. Sim-
ilar R code in Section 3.5 can be applied to generate the resampling-subject
bootstrap samples with the smoothing method replaced by the cubic B-spline
fit with five equally spaced knots as suggested by the LSCV procedure in each
of the 1000 bootstrap samples. Both the 95% pointwise confidence intervals
in (4.11) and the 95% simultaneous confidence band in (4.14) and (4.15) for
the linear interpolation µ (I)(t) with the Bonferroni adjustment are shown. The
results based on (4.18) and (4.19) are similar (data not shown). For the linear
interpolation simultaneous confidence band, M = 59 is used to cover all the
distinct design time points from 0.1 to 5.9. Despite the conservativeness of the
Bonferroni adjustment, Figure 4.4(B) still shows a clear indication that the
mean CD4 percentage generally declines over time since HIV infection.
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Figure 4.4 CD4 percentage data and the cubic spline fit with 5 equally spaced knots,
with (A) 95% pointwise confidence interval and (B) 95% simultaneous confidence
band for the linear interpolation at 59 equally spaced time points.

4.4 Asymptotic Properties

We derive in this section the asymptotic properties, including consistency
and convergence rates, for the general basis approximation estimators µ̂B(t)
of (4.4) as well as the special case of B-spline estimators. Unlike the least
squares kernel and local polynomial estimators of Chapter 3, we do not have
the explicit expressions for the asymptotic biases of the basis approximation
estimators µ̂B(t), because the biases depend on the specific assumptions of the
functional spaces containing µ(t). However, for the special case of B-splines,
the upper bounds of the asymptotic biases and the explicit expressions for the
asymptotic variances of µ̂B(t) can be established. These asymptotic properties
are used to establish the consistency of the test statistics in Section 4.4.5.

4.4.1 Conditional Biases and Variances

Let t =
(
tT
1 , tT

2 , . . . , tT
n

)T
be the (N × 1) vector of all the observed time points.

Conditioning on t, it directly follows from the expression of γ̂ in (4.6) that the
expectation of γ̂, denoted by γ̃ is

γ̃ = E
(
γ̂
∣∣t
)
=

{
n

∑
i=1

[
B(ti)

T Wi B(ti)
]}−1{ n

∑
i=1

[
B(ti)

T Wi E(Yi|t)
]}

, (4.27)

where E
(
Yi

∣∣t
)
=
(
µ
(
ti1
)
, . . . , µ

(
tini

))T
. Using the expression of µ̂B(t) in (4.4),

the bias of µ̂B(t) given t is

B
[
µ̂B(t)

∣∣t
]
= E

[
µ̂B(t)− µ(t)

∣∣t
]
= B(t)T E

(
γ̂
∣∣t
)
− µ(t). (4.28)

If µ(t) belongs to the linear space spanned by
{

B1(t), . . . , BK(t)
}
for a given K,

we have that µ(t) belongs to the linear model µ(t) = B(t)T γ for some unknown



ASYMPTOTIC PROPERTIES 111

parameter vector γ, so that E
(
γ̂
∣∣t
)
= γ and the conditional bias is zero, i.e.,

E
[
µ̂B(t)− µ(t)

∣∣t
]
= 0. In general, when µ(t) does not necessarily belong to a

linear model, the conditional bias E
[
µ̂B(t)− µ(t)

∣∣t
]
does not have to be zero.

But, by choosing a sufficiently large K when n is sufficiently large, the right
side of (4.1) can be a good approximation of µ(t), so that asymptotically the
conditional bias B

[
µ̂B(t)

∣∣t
]
tends to zero as n tends to infinity.

Let Cε

(
ti j, ti j′

)
= Cov

[
εi

(
ti j

)
, εi

(
ti j′
)]

be the covariance between εi

(
ti j

)
and

εi

(
ti j′
)
for the ith subject at time points

(
ti j, ti j′

)
. The variance-covariance

matrix of Yi given t is

Vi =Cov
(
Yi

∣∣t
)
=




Cε (ti1, ti1) · · · Cε(ti1, tini
)

...
...

...

Cε (tini
, ti1) · · · Cε(tini

, tini
)


 . (4.29)

Direct calculation from the expression of γ̂ in (4.6) then shows that the
variance-covariance matrix of γ̂ given t is

Cov
(
γ̂
∣∣t
)

=

{
n

∑
i=1

[
B(ti)

T Wi B(ti)
]}−1{ n

∑
i=1

[
B(ti)

T Wi ViWi B(ti)
]}

×
{

n

∑
i=1

[
B(ti)

T Wi B(ti)
]}−1

. (4.30)

Substituting Cov
(
γ̂
∣∣t
)
into (4.4), the variance of µ̂B(t) is

V
[
µ̂B(t)

∣∣t
]
= B(t)T Cov

(
γ̂
∣∣t
)

B(t). (4.31)

When µ(t) belongs to the linear model spanned by
{

B1(t), . . . , BK(t)
}
and

the εi

(
ti j

)
are from mean zero Gaussian process, the conditional bias of the

estimator µ̂B(t) is zero and the conditional variance (4.31) can be used to
construct statistical inferences, such as confidence intervals and hypothesis
tests, based on µ̂B(t). In such cases, the intra-subject covariances Cε

(
ti j, ti j′

)

are unknown and have to be estimated in practice. When µ(t) belongs to a
linear model but the distribution of εi(t) is unknown, statistical inferences for
µ(t) can be constructed based on asymptotically approximate distributions of
µ̂B(t), provided that the intra-subject covariancesCε

(
ti j, ti j′

)
can be estimated.

For the general case that µ(t) does not necessarily belong to a known linear
model, statistical properties and inferences can be investigated through the
asymptotic properties of µ̂B(t) when n is sufficiently large.

4.4.2 Consistency of Basis Approximation Estimators

We establish here the consistency and convergence rates of µ̂B(t) for any basis
systems which may be used to approximate µ(t). More specific asymptotic
representations, such as asymptotic expressions of biases, variances and mean
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squared errors, may be established when specific basis systems are given. In
particular, the asymptotic properties for the B-spline, i.e., polynomial splines,
estimators are discussed in Section 4.4.3. But, asymptotic properties similar
to the ones developed for B-spline have not been systematically investigated
in the literature, which warrants further research.

1. Asymptotic Assumptions

The following technical assumptions are made throughout this section.

(a) The observation time points follow a random design in the sense that{
ti j : j = 1, . . . , ni; i = 1, . . . , n

}
are chosen independently from an unknown

distribution function F(·) with a density function f (·) on the finite interval
T . The density function f (t) is uniformly bounded away from 0 and infinity,
i.e., there are constants M1 > 0 and M2 > 0 such that M1 ≤ f (t) ≤ M2 for
all t ∈ T .

(b) There is a positive constant M3 such that E
[
ε(t)2

]
≤ M3 for all t ∈ T . �

These assumptions correspond to the conditions given in Huang, Wu and
Zhou (2002, Section 3.2, Assumptions 1 and 2), in which the basis approx-
imation method is established for the more general time-varying coefficient
models to be discussed in Chapters 6 to 9. It is reasonable to expect that
Assumptions (a) and (b) are easily satisfied in most real applications.

2. Distance Measure and Definition of Consistency

We first introduce a distance measure to assess the performance of a
smoothing estimator. Let

∥∥a(·)
∥∥

L2
=

{∫

T

a2(t)dt

}1/2

be the L2-norm of any square integrable real-valued function a(t) on T . We
can then define the integrated squared error (ISE) of µ̂B(t) on t ∈ T by

ISE
(
µ̂B

)
=
∥∥µ̂B(·)− µ(·)

∥∥2

L2
=

∫

T

[
µ̂B(t)− µ(t)

]2
dt. (4.32)

A basis approximation estimator µ̂B(·) is defined to be a consistent smoothing
estimator for µ(·) if, as n → ∞,

ISE
(
µ̂B

)
→ 0 in probability.

Since µ(t) is approximated by functions in a linear space spanned by{
B1(t), B2(t), . . .

}
, the asymptotic derivations of ISE

(
µ̂B

)
depend on the L∞-

norm between µ(t) and the chosen linear space. Let G be the linear space
spanned by

{
B1(t), . . . , BK(t)

}
, i.e.,

G = Span
{

B1(t), . . . ,BK(t)
}
.
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We define the L∞-norm between µ(·) and G to be

D(µ ,G ) = inf
g∈G

sup
t∈T

∣∣µ(t)− g(t)
∣∣. (4.33)

The asymptotic properties of ISE
(
µ̂B

)
depend on the quantity

An = sup
g∈G ,‖g(·)‖L2

6=0

[
supt∈T |g(t)|
‖g(·)‖L2

]
. (4.34)

Examples of An for some commonly used basis systems, such as polynomials,
splines and trigonometric bases, can be found in Huang (1998).

3. Consistency and Convergence Rates

Using the above distance measures and the quantity An in (4.34), the next
theorem shows the consistency and the convergence rates of µ̂B(·), which is
approximated by the basis functions

{
B1(t), . . . , BK(t)

}
where K may or may

not tend to infinity as n tends to infinity.

Theorem 4.1. If Assumptions (a) and (b) are satisfied, limn→∞ D(µ ,G ) =
0 and

lim
n→∞

{
A2

n K max
[

max
1≤i≤n

(
ni wi

)
,

n

∑
i=1

n2
i w2

i

]}
= 0, (4.35)

then µ̂B(·) uniquely exists with probability tending to one and is a consistent
estimator of µ(·). In addition, with an = Op(bn) denoting the fact that an/bn

converging to a non-zero constant in probability as bn → ∞, the following con-
vergence conclusions hold:

(a)
∥∥µ̂B(·)−E

[
µ̂B(·)

∣∣t
]∥∥2

L2
= Op

(
K ∑n

i=1 n2
i w2

i

)
;

(b)
∥∥E
[
µ̂B(·)

∣∣t
]
− µ(·)

∥∥
L2

= Op

[
D(µ , G )

]
;

(c) ISE
(
µ̂B

)
= Op

[
K ∑n

i=1

(
n2

i w2
i

)
+D2(µ , G )

]
. �

Since the above theorem gives the consistency of µ̂B(·) for general basis
systems, including polynomials, splines and trigonometric bases, the conver-
gence rates established in Theorem 4.1(a) to (c) may be improved when a
particular type of basis is used.

Proof of Theorem 4.1:
We assume, without loss of generality, that

{
Bk(t) : k = 1, . . . , K

}
is an

orthonormal basis for the linear space G with inner product 〈 f1(·), f2(·)〉 =∫
T f1(t) f2(t)dt. Then, for any g ∈ G , there is an unique representation g(t) =

∑K
k=1 γk Bk(t), so that the L2-norm of g(t) is ‖g(·)‖L2

=
(

∑K
k=1 γ2

k

)1/2
. Following

the notation of Huang (1998, p. 246), we write an ≍ bn if both an and bn are
positive and an/bn and bn/an are bounded for all n.
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Let T be the random variable of time with distribution F(·) and density
f (·). The proof is then derived from the following three technical lemmas.

Lemma 4.1. If the assumption (4.35) is satisfied, then

sup
g∈G

∣∣∣∣
∑n

i=1 ∑
ni
j=1 wi[g(ti j)]

2

E[g(T )]2
− 1

∣∣∣∣= op(1), (4.36)

where op(1) denotes converging to zero in probability. �

Proof of Lemma 4.1:
The lemma can be proved using arguments similar to those in the proof of

Lemma 10 of Huang (1998). Details are omitted. �

Lemma 4.2. Suppose that the assumption (4.35) holds and B(t) =(
BT
(
t1
)
, · · · , BT

(
tn
))T

is the (N×K), N =∑n
i=1 ni, matrix with its

(
ni×K

)
com-

ponent matrix B
(
ti
)
=
(
B
(
ti1
)
, . . . , B

(
tni

))T
defined in (4.5). There is an interval[

M∗
1 , M∗

2

]
with 0 < M∗

1 < M∗
2 such that, as n → ∞,

P
{
all the eigenvalues of

[
BT (t)W B(t)

]
are in

[
M∗

1 , M∗
2

]}
→ 1, (4.37)

where W is the block diagonal matrix with diagonal blocks W1, . . . ,Wn and Wi =
diag

(
wi, . . . , wi

)
. Then, with probability tending to 1,

BT (t)W B(t) =
n

∑
i=1

[
BT
(
ti
)

Wi B
(
ti
)]

is invertible and µ̂B(·) exists uniquely. �

Proof of Lemma 4.2:
By Lemma 4.1, the following equations hold with probability tending to

one as n → ∞:

γT BT (t)W B(t)γ =
n

∑
i=1

ni

∑
j=1

[
wi g(ti j)

]2 ≍ E
[
gt(T )

]
,

where g(t) =∑K
k=1 γk Bk(t) and γ =

(
γ1, . . . , γK

)T
. Using conditional expectations

and Assumptions (a) and (b), we observe that

E
[
g2(T )

]
=

∫

T

g2(t) fT (t)dt ≍
∫

T

g2(t)dt =
∥∥g(·)

∥∥2

L2

holds uniformly for all g(·) ∈ G . Thus, with probability tending to one as
n → ∞, we have

γT BT (t)W B(t)γ ≍ γT γ
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holds uniformly for all γ, so that the conclusion (4.37) follows. Consequently,
BT (t)W B(t) = ∑n

i=1

[
BT
(
ti
)

Wi B(ti)
]
is invertible and µ̂B(·) uniquely exists. �

Lemma 4.3. If the assumption (4.35) holds, then

∥∥∥µ̂B(·)−E
[
µ̂B(·)

∣∣t
]∥∥∥

2

L2

= Op

(
K

n

∑
i=1

[
n2

i w2
i

])
(4.38)

and ∥∥∥E
[
µ̂B(·)

∣∣t
]
− µ(·)

∥∥∥
L2

= Op

[
D(µ , G )

]
, (4.39)

which give the convergence rates of the above two terms. �

Proof of Lemma 4.3:
Since

{
Bk(t) : k = 1, 2, . . . ,

}
are assumed to be orthonormal, it follows from

direct calculations that

∥∥∥µ̂B(·)−E
[
µ̂B(·)

∣∣t
]∥∥∥

2

L2

=
K

∑
k=1

∣∣∣γ̂k −E
[
γ̂k

∣∣t
]∣∣∣

2

, (4.40)

and

γ̂ −E
[
γ̂
∣∣t
]

=

[
n

∑
i=1

BT
(
ti
)

Wi B
(
ti
)]−1 [ n

∑
i=1

BT
(
ti
)

Wi εi

]

=
[
BT (t)W B(t)

]−1
BT (t)W ε. (4.41)

By Lemma 4.2, we have that, with sufficiently large n and probability tending
to 1, ∣∣∣

[
BT (t)W B(t)

]−1
BT (t)W ε

∣∣∣
2

≍ εT W B(t)BT (t)W ε. (4.42)

Using the Cauchy–Schwarz inequality and Assumptions (a) and (b), we have
that

E
[∣∣BT

(
ti
)

Wi εi

∣∣2
]
= E

{
K

∑
k=1

w2
i

[ ni

∑
j=1

Bk

(
ti j

)
εi j

]2}
= O

(
K n2

i w2
i

)
. (4.43)

Consequently, it follows from (4.42) and (4.43) that

E
[
εT W B(t)BT (t)W ε

]
=

n

∑
i=1

E
[
εT

i Wi B
(
ti
)

BT
(
ti
)

Wi εT
i

]

= O
(

K
n

∑
i=1

[
n2

i w2
i

])
. (4.44)

The Markov inequality then implies that

∣∣∣
[
BT (t)W B(t)

]−1
BT (t)W ε

∣∣∣
2

= OP

(
K

n

∑
i=1

[
n2

i w2
i

])
. (4.45)



116 BASIS APPROXIMATION SMOOTHING METHODS

The conclusion of (4.38) then follows (4.40) to (4.45).
To prove (4.39), we consider g∗(·)∈ G with supt∈T

∣∣g∗(t)−µ(t)
∣∣=D

(
µ , G

)
.

Since ∣∣∣E
[
µ̂B(t)

∣∣t
]
− µ(t)

∣∣∣≤
∣∣∣E
[
µ̂B(t)

∣∣t
]
− g∗(t)

∣∣∣+
∣∣∣g∗(t)− µ(t)

∣∣∣,

it suffices to show that
∥∥∥E
[
µ̂B(·)

∣∣t
]
− g∗(·)

∥∥∥
L2

= Op

[
D
(
µ , G

)]
.

Since g∗(·) ∈ G , there is a γ∗ such that g∗(t) = BT (t)γ∗. Note that E
[
µ̂B(t)

∣∣t
]
=

BT (t)E
[
γ̂
∣∣t
]
. It follows from Lemma 4.2 that

∥∥∥E
[
µ̂B(·)

∣∣t
]
− g∗(·)

∥∥∥
2

L2

=
K

∑
k=1

∣∣∣E
[
γ̂k

∣∣t
]
− γ∗k

∣∣∣
2

(4.46)

≍
{

E
[
γ̂
∣∣t
]
− γ∗

}T
[

n

∑
i=1

BT
(
ti
)

Wi B
(
ti
)]{

E
[
γ̂
∣∣t
]
− γ∗

}
.

Since ∑n
i=1 BT

(
ti
)

Wi

{
E
(
Yi

∣∣t
)
−BT

(
ti
)

E
[
γ̂
∣∣t
]}

= 0, we have that

n

∑
i=1

wi

∣∣∣BT
(
ti
)

E
[
γ̂
∣∣t
]
−BT

(
ti
)

γ∗
∣∣∣
2

≤
n

∑
i=1

wi

∣∣∣E
[
Yi

∣∣t
]
−BT

(
ti
)

γ∗
∣∣∣
2

(4.47)

and, by (4.43), ∣∣∣µ(ti j)−BT
(
ti j

)
γ∗
∣∣∣= O

[
D
(
µ ,G

)]
. (4.48)

Thus, it follows from (4.47) and (4.48) that

{
E
[
γ̂
∣∣t
]
− γ∗

}T
[

n

∑
i=1

BT
(
ti
)

Wi B
(
ti
)]{

E
[
γ̂
∣∣t
]
− γ∗

}
≤

n

∑
i=1

ni

∑
j=1

wi D2
(
µ ,G

)

= D2
(
µ , G

)
. (4.49)

The assertion of (4.39) then follows from the computations in (4.46) to (4.49).
This completes the proof of Lemma 4.3. �

The conclusions in Theorem 4.1 are then a direct consequence of
Lemma 4.3 and the triangle inequality. �

4.4.3 Consistency of B-Spline Estimators

As a direct extension of the polynomial approaches in linear models, the B-
spline estimators are a popular choice of basis approximations in biomedical
studies. Theoretical justifications for the B-spline estimators deserve special
attention in practice. Most applications of the global smoothing methods pre-
sented in this book are also based on the B-spline estimators.

The next theorem gives the convergence rates for the B-spline estimators.
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In this theorem, we assume that the G is a space spanned by a set of B-
spline basis functions on T with a fixed degree and the knots have bounded
mesh ratio, that is, the ratios of the differences between consecutive knots are
bounded away from zero and infinity uniformly in n.

Theorem 4.2. Suppose that µ̂B(t) is defined in (4.4) with a B-spline basis.
If the assumptions of Theorem 4.1 are satisfied, then, the following equalities
hold when n tends to infinity:

(a)
∥∥µ̂B(·)−E

[
µ̂B(·)

∣∣t
]∥∥2

L2
= Op

{
∑n

i=1 n2
i w2

i

[(
K/ni

)
+ 1
]}
;

(b)
∥∥E
[
µ̂B(·)

∣∣t
]
− µ(·)

∥∥
L2

= Op

[
D(µ ,G )

]
;

(c) ISE
(
µ̂B

)
= Op

{
∑n

i=1 n2
i w2

i

[(
K/ni

)
+ 1
]
+D2(µ , G )

}
. �

Proof of Theorem 4.2:
This theorem can be proved along the same lines as Theorem 4.1, but we

need to use the special properties of the B-spline functions. Let

Bk(t) = K1/2 Nk(t), k = 1, . . . , K,

where
{

Nk(t) : k = 1, . . . , K
}

are the B-splines as defined in de Boor (1978,
Chapter IX). These B-splines Nk(t), k = 1, . . . , K, are non-negative functions
satisfying




∑K
k=1 Nk(t) = 1, for t ∈ T ,
∫
T

Nk(t)dt ≤ c/K, for some constant c,

(c1/K) ∑K
k=1 γ2

k ≤ ∫
T

[
∑K

k=1 γk Nk(t)
]2

dt ≤ (c2/K) ∑K
k=1 γ2

k ,

for γk ∈ R and k = 1, . . . , K,

(4.50)

where c1 and c2 are positive constants. When the properties of B-splines in
(4.50) are used, we get

E

[∣∣∣B(ti)T Wi εi

∣∣∣
2
]
= E

{
K

∑
k=1

w2
i

[ ni

∑
j=1

Bk

(
ti j

)
εi j

]2}
≤ w2

i

[
ni +

n2
i − ni

K

]
K. (4.51)

Using (4.51), the rest of the proof is similar to that of Theorem 4.1 and thus
is omitted. �

4.4.4 Convergence Rates

We observe a few useful implications from Theorems 4.1 and 4.2.

1. Effects of Weight Choices

Different choices of the weight function wi lead to different convergence
rates of the estimators. For the general situation in Theorem 4.1, we have
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(a) ∑n
i=1

(
K n2

i w2
i

)
= K/n, when wi = 1

/(
nni

)
;

(b) ∑n
i=1

(
K n2

i w2
i

)
= K ∑n

i=1

(
n2

i

/
N2
)
, when wi = 1/N.

As shown in Hoover et al. (1998), limn→∞ ∑n
i=1

(
n2

i

/
N2
)
= 0 if and only if

limn→∞ max1≤i≤n

(
ni

/
N
)
= 0. Thus, as with the kernel and local polynomial

smoothing methods of Chapter 3, the wi = 1/N weight may lead to incon-
sistent estimators µ̂B(·). On the other hand, wi = 1

/(
nni

)
leads to consistent

µ̂B(·) for all choices of ni.

2. Effects of Smoothness Conditions

When the specific smoothness conditions are given, more precise conver-
gence rates can be derived by determining the size of D(µ , G ), which gives
the discrepancy between µ(·) and the linear space G . For example, when µ(t)
has bounded second derivatives and G is a space of cubic splines with K in-
terior knots on T , we have D(µ , G ) = O

(
K−2

)
(Schumaker, 1981, Theorem

6.27) and, by Theorem 4.1, ISE
(
µ̂B

)
= Op

(
K/n+K−4

)
. For the special choice

of K = O
(
n1/5

)
, this reduces to ISE

(
µ̂B

)
= Op

(
n−4/5

)
, which is the optimal

convergence rate for nonparametric regression with the cross-sectional i.i.d.
data under the same smoothness conditions (e.g., Stone, 1982).

4.4.5 Consistency of Goodness-of-Fit Test

We now show the asymptotic properties of the test statistic Tn

(
γ̂1, µ̂B

)
. These

asymptotic properties demonstrate that, when n is sufficiently large, the value
of Tn

(
γ̂1, µ̂B

)
tends to zero when the null hypothesis H0 of (4.20) holds, and

the value of Tn

(
γ̂1, µ̂B

)
tends to some constant larger than zero when a specific

alternative holds. Thus, at least theoretically, Tn

(
γ̂1, µ̂B

)
is an appropriate

statistic for testing the null and alternative hypotheses in (4.20).

Theorem 4.3. Suppose that the conditions of Theorem 4.1 are satisfied,
inft∈T σ2(t)> 0, supt∈T E

[
ε4(t)

]
< ∞, and

Tn

(
γ̂1, µ̂B

)
=

RSS0

(
γ̂1

)
−RSS1

(
µ̂B

)

RSS1

(
µ̂B

) .

The following conclusions hold:

(a) Under H0 of (4.20), Tn

(
γ̂1, µ̂B

)
→ 0 in probability as n → ∞.

(b) If, as stated in H1 of (4.20), infc∈R ‖γk − c‖L2
> 0 for some k = 2, . . . , K,

so that µ(t) is not a constant on t ∈ T , then there exists a constant δ > 0

such that, with probability tending to one, Tn

(
γ̂1, µ̂B

)
> δ . �
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Proof of Theorem 4.3:
Using direct calculation and the conclusions of Lemma 4.1, it can be shown

that, with probability tending to one as n → ∞,

RSS0

(
γ̂1

)
−RSS1

(
µ̂B

)
=

n

∑
i=1

ni

∑
j=1

wi

{[
Yi j − γ̂1

]2 −
[
Yi j − µ̂B

]2}

=
n

∑
i=1

ni

∑
j=1

wi

[
µ̂B(ti j)− β̂ 0(t)

}]2

≍
∥∥µ̂B(·)− γ̂1

∥∥2

L2
, (4.52)

where the second equality holds because the basis functions

{
B1(t) = 1, B2(t), . . . , BK(t)

}

are assumed to be orthonormal. Under H0, µ(t) = γ1 is a constant, so that

∥∥µ̂B(·)− γ̂1

∥∥
L2

≤
∥∥µ̂B(·)− γ1

∥∥
L2
+
∥∥γ̂1 − γ1

∥∥
L2

→ 0, (4.53)

in probability as n → ∞. So that, by (4.52) and (4.53), we have that, under
the null hypothesis H0,

RSS0

(
γ̂1

)
−RSS1

(
µ̂B

)
→ 0, (4.54)

in probability as n → ∞.
On the other hand, because

∥∥µ̂B(·)− γ̂1

∥∥
L2

≥
∥∥γ̂1 − µ(·)

∥∥
L2
−
∥∥µ̂B(·)− µ(·)

∥∥
L2
,

we have that, when infc∈R ‖γk − c‖L2
> 0 for some k = 2, . . . , K, there is a δ ∗ >

so that ∑K
k=1 infc∈R ‖γk − c‖L2

> δ ∗, and consequently, as n → ∞,

∥∥µ̂B(·)− γ̂1

∥∥
L2 ≥

∥∥γ̂1 − γ1

∥∥
L2
+

K

∑
k=2

∥∥γk

∥∥
L2
− op(1)

≥
K

∑
k=2

inf
c∈R

∥∥γk − c
∥∥

L2
− op(1)

≥ δ ∗− op(1). (4.55)

It then follows from (4.52) and (4.55) that, when infc∈R ‖γk −c‖L2
> 0 for some

k = 2, . . . , K, with probability tending to one as n → ∞,

RSS0

(
γ̂1

)
−RSS1

(
µ̂B

)
> δ ∗. (4.56)

It remains to show that, with probability tending to one as n→∞, RSS1

(
µ̂B

)
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is bounded away from zero and infinity. By the definition of RSS1

(
µ̂B

)
, we have

that

RSS1

(
µ̂B

)
=

n

∑
i=1

ni

∑
j=1

wi

{
Yi j − µ(ti j)+

[
µ(ti j)−E

[
µ̂B(ti j)

∣∣t
]]

+
[
E
[
µ̂B(ti j)

∣∣t
]
− µ̂B(ti j)

]}2

, (4.57)

and, it follows from the proof of Theorem 4.1 that





∑n
i=1 ∑

ni
j=1 wi

{
µ(ti j)−E

[
µ̂B(ti j)

∣∣t
]}2

= op(1),

∑n
i=1 ∑

ni
j=1 wi

{
E
[
µ̂B(ti j)

∣∣t
]
− µ̂B(ti j)

}2

= op(1).

(4.58)

Thus, it suffices to show that, with probability tending to one as n → ∞,

n

∑
i=1

ni

∑
j=1

wi

[
Yi j − µ(ti j)

]2
=

n

∑
i=1

ni

∑
j=1

wi ε2
i (ti j)

is bounded away from zero and infinity. By supt∈T E
[
ε4(t)

]
< ∞, there is a

constant c > 0 such that, as n → ∞,

Var

[
n

∑
i=1

ni

∑
j=1

wi ε2
i

(
ti j

)]
≤

n

∑
i=1

{
w2

i ni

ni

∑
j=1

E
[
ε4

i (ti j)
]}

≤
n

∑
i=1

[
n2

i w2
i c
]
→ 0. (4.59)

The Chebyshev inequality then implies that, by (4.59), as n → ∞,

n

∑
i=1

ni

∑
j=1

wi ε2
i

(
ti j

)
−E

[
n

∑
i=1

ni

∑
j=1

wi ε2
i (ti j)

]
→ 0, in probability. (4.60)

Since ∑n
i=1

(
ni wi

)
= 1 and E

[
ε2

i (ti j)
]
is bounded away from zero and infinity,

the result of Theorem 4.3(a) follows from (4.54) and (4.57) to (4.60), and the
result of Theorem 4.3(b), i.e., Tn

(
γ̂1, µ̂B

)
> δ for some δ > 0 with probability

tending to one as n → ∞, follows from (4.56) to (4.60). �

4.5 Remarks and Literature Notes

The methods presented in this chapter are direct extensions of the basis ap-
proximation estimation and inference methods to the longitudinal data. In
principle, the effects of the intra-subject correlations should be captured by
the weight choices of wi of (4.3). In practice, however, the optimal choices of
wi are unknown because the structures of the intra-subject correlations are
unknown, so that wi are often chosen subjectively. Consequently, for the lon-
gitudinal data, the statistical properties of the basis approximation estimator
µ̂B(t) of (4.4) depend on the choices of the basis functions as well as the choices
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of wi. Although both the measurement uniform weight wi = 1/N and the sub-
ject uniform weight wi = 1/(nni) are common subjective weight choices in
practice, the subject uniform weight has the attractive property that it leads
to consistent estimator µ̂B(t) under all choices of ni when n tends to infinity.

Compared with the asymptotic properties of the local smoothing estima-
tors of Chapter 3, we see from Theorems 4.1 and 4.2 that the asymptotic bias
of a basis approximation estimator does not have an explicit expression in
general, because it depends on how well the unknown function µ(t) is approx-
imated using the extended linear model formed by the linear space spanned by
the chosen basis functions. By adopting an intuitive connection with the well-
known linear models, the basis approximation approach has the advantage
of having simple interpretations similar to that of the linear models. Thus,
hypothesis testing of a linear model can be naturally interpreted by testing a
sub-family within the chosen family of extended linear models.

The methods of Sections 4.1 and 4.2 and the asymptotic derivations of
Section 4.4 are adopted from the special case of Huang, Wu and Zhou (2002,
2004) without the inclusion of covariates other than time. These methods are
extensions of the results in Stone et al. (1997), Huang (1998, 2001, 2003) to
the longitudinal data.
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Chapter 5

Penalized Smoothing Spline Methods

We introduce in this chapter the computational aspects and theoretical deriva-
tions of the penalized smoothing spline estimators for the mean function µ(t)=
E[Y (t)|t] of (3.1) based on the sample

{
(Yi j, ti j) : i = 1, . . . , n; j = 1, . . . , ni

}
. Ex-

tensions of the methods of this chapter to the time-varying coefficient models
are presented in Chapter 9. The penalized smoothing spline methods have nat-
ural connections with both the local smoothing methods of Chapter 3 and the
global basis approximation smoothing methods of Chapter 4. On one hand,
through an approximation via the Green’s function, the penalized smoothing
spline estimators can be approximated by some equivalent kernel estimators.
On the other hand, since a penalized smoothing spline estimator is obtained
through a penalized least squares criterion, it is in fact an estimator based on
the natural cubic splines with knots at the observed time points.

5.1 Estimation Procedures

Theory and methods of the penalized smoothing splines with cross-sectional
i.i.d. data have been extensively studied in the literature. Summaries of the
results with cross-sectional i.i.d. data can be found in Wahba (1975, 1990),
Green and Silverman (1994) and Eubank (1999). Extensions of the penalized
smoothing splines to the longitudinal data have been investigated by Rice and
Silverman (1991), Hoover et al. (1998), Lin and Zhang (1999), and Chiang,
Rice and Wu (2001), among others. The theory and methods presented in
this chapter are a special case of the longitudinal data extension developed in
Hoover et al. (1998) and Chiang, Rice and Wu (2001).

5.1.1 Penalized Least Squares Criteria

Suppose that the support of the design time points is contained in a compact
set [a, b] and µ(t) is twice differentiable for all t ∈ [a, b]. We can obtain a
penalized least squares estimator µ̂λ (t; w) of µ(t) by minimizing

Jw(µ ; λ ) =
n

∑
i=1

ni

∑
i=1

{
wi

[
Yi j − µ

(
ti j

)]2}
+λ

∫ b

a

[
µ ′′(s)

]2
ds, (5.1)

123
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where λ is a non-negative smoothing parameter,
{

wi : i = 1, . . . , n
}
are non-

negative weights, and w =
(
w1, . . . , wn

)T
is the (n× 1) vector of the weights.

We refer to (5.1) as the score function of the penalized least squares criterion.

5.1.2 Penalized Smoothing Spline Estimator

The minimizer µ̂λ (t; w) of (5.1) is a cubic spline and a linear statistic of
{

Yi j :

i = 1, . . . , n; j = 1, . . . , ni

}
. To see the linearity of µ̂λ (t; w), we define H[a,b] to

be the set of compactly supported functions such that

H[a,b] =

{
g(·) : g and g′ absolutely continuous on [a, b],

∫ b

a

[
g′′(s)

]2
ds < ∞

}
.

Setting the Gateaux derivative of Jw(µ ; λ ) to zero, µ̂(t; w) uniquely minimizes
(5.1) if and only if it satisfies the normal equation

n

∑
i=1

ni

∑
j=1

{
wi

[
Yi j − µ̂λ

(
ti j; w

)]
g(ti j)

}
= λ

∫ b

a
µ̂ ′′(s; w)g′′(s)ds, (5.2)

for all g in a dense subset of H[a,b]. The same argument as in Wahba (1975)
shows that there exists a symmetric function Sλ (t, s), such that

Sλ (t, s) ∈ H[a,b], when either t or s is fixed,

and µ̂λ (t; w) is a natural cubic spline estimator with knots at the observed
time points given by

µ̂λ (t; w) =
n

∑
i=1

ni

∑
j=1

[
wi Sλ

(
t, ti j

)
Yi j

]
, (5.3)

which is referred to as the penalized smoothing spline estimator. The right
side of (5.3) suggests that µ̂λ (t; w) is a linear statistic of

{
Yi j : i = 1, . . . , n; j =

1, . . . , ni

}
with weight functions wi Sλ

(
t, ti j

)
. The explicit expression of Sλ (t, s)

is unknown. For the theoretical development of µ̂λ (t; w), we approximate
Sλ (t, s) by an equivalent kernel function whose explicit expression can be de-
rived or approximated.

As in the local and global smoothing estimators of Chapters 3 and 4,
usual choices of wi may include the measurement uniform weight w∗∗

i = 1/N

and the subject uniform weight w∗
i = 1/(nni). Different choices of w generally

lead to different finite sample and asymptotic properties for µ̂λ (t; w). Ideally
the optimal choice of w may depend on the correlation structures of the data.
But, because the correlation structures are often unknown and may be difficult
to estimate, we do not have a uniformly optimal choice of w. In practice,
w∗∗

i = 1/N and w∗
i = 1/(nni) generally give satisfactory estimators.
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5.1.3 Cross-Validation Smoothing Parameters

The smoothing parameter λ in (5.1) and (5.2), which determines the amount of
roughness penalty, is the crucial term affecting the appropriateness of µ̂λ (t; w).
Adequate smoothing parameters for µ̂λ (t; w) may depend on the structures of
the possible intra-correlations. However, because the correlation structures
are unknown as is often the case in practice, we naturally return to the use-
ful approach of leave-one-subject-out cross-validation (LSCV) established in
Chapters 3 and 4. This approach is carried out with the following steps.

Leave-One-Subject-Out Cross-Validation:

(a) Compute the leave-one-subject-out smoothing spline estimator µ̂
(−i)
λ

(t; w)
from (5.3) using the remaining data with all the observations of the ith

subject deleted. The ith subject’s predicted outcome at time ti j is µ̂
(−i)
λ

(
ti j; w

)
.

(b) Define the LSCV score of µ̂λ (t; w) by

LSCV (λ ; w) =
n

∑
i=1

ni

∑
j=1

wi

[
Yi j − µ̂

(−i)
λ

(
ti j; w

)]2

. (5.4)

If (5.4) can be uniquely minimized by λLSCV over all the positive values of
λ > 0, the cross-validated smoothing parameter λLSCV is then the minimizer
of LSCV (λ ; w). �

Theoretical properties of λLSCV have not been systematically established.
For a heuristic justification, it can be shown by the same arguments as Sec-
tions 3.3 and 4.1 that λLSCV approximately minimizes an average prediction
error of µ̂λ (t; w).

5.1.4 Bootstrap Pointwise Confidence Intervals

Similar to the local and global smoothing estimators of Chapters 3 and 4, sta-
tistical inferences based on µ̂λ (t; w) are possibly influenced by the correlation
structures of the data. In the absence of a known correlation structure, we
return to the resampling-subject bootstrap procedure used in Chapters 3 and
4. The approximate bootstrap pointwise confidence intervals for µ(t) based on
µ̂λ (t; w) can then be computed using the following procedure.

Approximate Bootstrap Pointwise Confidence Intervals:

(a) Computing Bootstrap Estimators. Generate B independent bootstrap
samples using the resampling-subject bootstrap procedure of Section 3.4, and
compute the penalized smoothing spline estimators

B
B
µ(t; λ , w) =

{
µ̂boot,1

λ (t; w), . . . , µ̂boot,B
λ (t; w)

}
(5.5)

based on (5.3) and the corresponding bootstrap samples.
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(b) Approximate Bootstrap Intervals. Compute the percentiles and the
estimated standard errors as in Section 3.4 based on the B bootstrap es-
timators in (5.5). The approximate

[
100× (1−α)

]
th percentile bootstrap

pointwise confidence interval for µ(t) is given by

(
L(α/2)(t),U(α/2)(t)

)
, (5.6)

where L(α/2)(t) and U(α/2)(t) are the
[
100×(α/2)

]
th and

[
100×(1−α/2)

]
th

percentiles of BB
µ(t; λ , w), respectively. The normal approximated bootstrap

pointwise confidence interval for µ(t) is

µ̂λ (t; w)± z(1−α/2)× ŝeB

(
t; µ̂λ

)
, (5.7)

where µ̂λ (t; w) is the penalized smoothing estimator computed from the orig-
inal data, z(1−α/2) is the

[
100× (1−α/2)

]
th percentile of the standard nor-

mal distribution and ŝeB

(
t; µ̂λ

)
is the estimated standard error of µ̂λ (t; w)

from the B bootstrap estimators BB
µ(t; λ , w). �

As discussed in Sections 3.4 and 4.2, (5.6) and (5.7) are only approximate
confidence intervals because they ignore the biases of the estimator µ̂λ (t; w).
Bias adjustment for (5.6) and (5.7) generally do not work well in practice,
because it is difficult to estimate the bias of µ̂λ (t; w). The simulation results
in the literature, e.g., Chiang, Rice and Wu (2001), suggest that both (5.6)
and (5.7) have acceptable empirical coverage probabilities, and can be used
as good approximate pointwise confidence intervals, although the theoretical
properties of these intervals have not been systematically developed.

The approximate simultaneous confidence bands for µ(t) over an interval
t ∈ [a, b] can be established by applying the same procedure as in Sections 3.4
and 4.2 to the approximate pointwise intervals (5.6) or (5.7). Since this pro-
cedure is self-evident and can be straightforwardly adapted to the current
situation, we omit its details in this chapter.

5.2 R Implementation

5.2.1 The HSCT Data

Following the examples of Sections 3.5 and 4.3, we illustrate here how to use
the penalized smoothing spline estimator to estimate the mean time-trend of
the HSCT data. In comparison to the local smoothing methods in Chapter 3
or the basis approximation smoothing methods in Chapter 4, there is no need
to select the bandwidth or the number and location of the knots to control
the smoothness of the estimated curve. For a smoothing spline estimator, a
roughness penalty term is used to control the excess curvature of the smooth-
ing estimate as described in Section 5.1. The minimizer of (5.1) is a natural
cubic spline with knots located at the distinct design time points. However,
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Figure 5.1 The fluctuations and smoothing spline estimates of the lymphocyte counts
relative to the time of stem cell transplantation. The solid and dashed lines represent
the estimates using the measurement uniform weight and the subject uniform weight,
respectively. (A)-(D) The smoothing parameter spar=0.2, 0.5, 0.7 and 1.5, and the
corresponding λ for measurement uniform weight are shown, respectively.

the selection of the smoothing parameter λ is important to determine the
goodness-of-fit and curvature of penalized smoothing splines.

In R, the function smooth.spline() can be used to fit a cubic smooth-
ing spline, which uses a smoothing parameter argument spar to control the
smoothness, instead of λ . The usual smoothing parameter λ in the penal-
ized criterion is a monotone function of spar, and the value of λ is given
in the output of the smooth.spline fit for a specified or estimated spar.
See help(smooth.spline) for details of the arguments for this function and
the relationship between spar and λ . The following R code is used to fit the
lymphocytes count in the HSCT data:

> attach(HSCT)

> plot(Days, LYM.log, xlab="Days post-transplantation", ylab="")

> smfit<-smooth.spline(Days, LYM.log,spar=0.7,cv=NA)

> smfit.w<-smooth.spline(Days, LYM.log, spar=0.7, cv=NA, w=1/ni)
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Figure 5.2 Lymphocyte counts data. (A) Use of cross-validation to select smoothing
parameters. (B) Smoothing spline fits with cross-validated smoothing parameters.
The solid and dashed lines represent the estimates using the measurement uniform
weight and the subject uniform weight, respectively.

> lines(predict(smfit, -8:35), col ="gray40", lwd=1.5)

> lines(predict(smfit.w, -8:35), lwd=1.5, lty=2)

Figure 5.1 shows the lymphocyte measurements following the conditioning
regimen and the allogeneic hematopoietic stem cell transplantation. We can
see the different amount of smoothing for the estimated curves associated with
the values of smoothing parameter λ . A very small λ as in Figure 5.1(A) gives
little roughness penalty and may result in an undersmoothed fit. On the other
hand, too large a λ as in Figure 5.1(D) gives excess roughness penalty and
results in a linear regression fit, without allowing for any curvature. The plots
in Figure 5.1(B)-(C) give the visually appealing trade-off between fitness and
smoothness of the estimated curves, which adequately capture the nonlinear
time-trend of the lymphocyte counts.

In practice, we can choose the smoothing parameter spar (or λ ) subjec-
tively by visually examining the fitted mean curve to the scatter plots of the
data. Alternatively, the smoothing parameter may be selected automatically
by the LSCV procedure discussed in Section 5.1.3. Figure 5.2(A) shows the
LSCV scores of (5.4) plotted against a range of spar values with the two
choices of weights w∗

i = 1/(nni) and w∗∗
i = 1/N. The smoothing spline esti-

mators shown in Figure 5.2(B) with spar=0.56 and spar=0.57 minimize the
corresponding LSCV score functions, respectively. Note that the smoothing
splines estimators in Figures 5.1 and 5.2 based on the measurement and sub-
ject uniform weights are similar, except in the region with some unusually low
lymphocyte counts. Importantly, they both show that the HSCT is associated
with two phases of change, lymphocytopenia and lymphocyte recovery, in the
transplant recipients. First, lymphocytes reach the lowest concentration af-
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Figure 5.3 The NGHS body mass index (BMI) data. (A) Smoothing spline estimate
of mean curves for African American girls. (B) Smoothing spline estimate of mean
curves for Caucasian girls. The BMI values for a sample of 50 girls are plotted for
both (A) and (B). (C) The smoothing spline estimates with 95% bootstrap pointwise
confidence interval.

ter conditioning, then followed by a gradual recovery during the first month
post-transplant with the achievement of the donor lymphocyte engraftment.

5.2.2 The NGHS BMI Data

The NGHS data has been described in Section 1.2. One aim of this multi-center
longitudinal study is to examine the differences in childhood cardiovascular
risk factors, such as overweight and obesity, between African American and
Caucasian girls during adolescence. The study enrolled 1213 African American
girls and 1166 Caucasian girls, who were followed up from ages 9 or 10 years to
18 or 19 years. The body mass index (BMI, weight in kg divided by height in
m2) is calculated from the ten annual measurements of height and weight. With
very high retention rate throughout the study, the median number of follow-
up visits for the individual girls is 9 with an interquartile range of 8 to 10. As
adults who were overweight during childhood are more likely to have greater
risk of cardiovascular disease, it is important to track the longitudinal change
of BMI from childhood into adulthood. We illustrate here that smoothing
splines can be used to provide flexible nonparametric estimates of the mean
growth curves of BMI and to examine the racial difference in the NGHS girls.

Figures 5.3(A)-(B) show the estimated mean curves of BMI over time, i.e.,
age, for the study participants stratified by the two racial groups. To illus-
trate that the estimated curves adequately capture the overall time-trend of
the mean BMI values, the BMI values for a randomly selected subset of 50
girls from each race group are plotted along with the estimated mean curves.
The penalized smoothing splines are fitted to the BMI data separately for
the African American girls and the Caucasian girls using the measurement
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uniform weight and the cross-validated λLSCV = 2.32 and λLSCV = 1.76, re-
spectively. The curve estimates based on the subject uniform weight yield
almost identical results since most of subjects have similar numbers of mea-
surements. The approximate 95% percentile bootstrap pointwise confidence
intervals (CIs) for the estimated curves are displayed in Figure 5.3(C), which
are obtained from 1000 resampling-subject bootstrap samples as described in
Section 5.1.4. These smoothing estimates and 95% CIs suggest that the mean
BMI levels increase over time from 9 to 19 years of age for both racial groups
and the rate of increase in BMI is greater in African American girls than that
in Caucasian girls. Notably, there is already a significant racial difference in
the mean BMI since early adolescence (age 9 to 10 years) and this difference
increases significantly at late adolescence and young adulthood. These find-
ings have important implications in the design of long-term pediatric studies
and in developing guidelines for the primary prevention of atherosclerosis car-
diovascular disease beginning in childhood.

5.3 Asymptotic Properties

We present in this section the asymptotic properties of the penalized smooth-
ing spline estimator µ̂λ (t; w) of (5.3) with the measurement uniform weight
w∗∗ = (1/N, . . . , 1/N)T . Without loss of generality, we assume that a = 0 and
b = 1. Extension to general [a, b] can be obtained using the affine transforma-
tion u = (t − a)/(b− a) for t ∈ [a, b]. Asymptotic properties for the estimators
with other weight functions, e.g., the subject uniform weight w∗

i = 1/(nni), can
be established analogously, so they are omitted from the presentation.

5.3.1 Assumptions and Equivalent Kernel Function

1. Asymptotic Assumptions

We assume the following technical conditions, which are mainly imposed
for mathematical simplicity and may be modified if necessary, for µ̂λ (t; w∗∗)
throughout this chapter:

(a) The design time points
{

ti j : i = 1, . . . , n; j = 1, . . . , ni

}
are nonrandom and

satisfy
DN = sup

t∈[0,1]

∣∣FN(t)−F(t)
∣∣→ 0, as n → ∞,

for some distribution function F(·) with strictly positive density f (·) on
[0, 1], where FN(t) =N−1 ∑n

i=1 ∑
ni
j=1 1[ti j≤t] and 1[ti j≤t] is the indicator function

such that 1[ti j≤t] = 1 if ti j ≤ t, and 1[ti j≤t] = 0 if ti j > t. The density f (·) is three
times differentiable and uniformly continuous on [0, 1]. The rth derivative
f (r)(t) of f (t) satisfies f (r)(0) = f (r)(1) = 0 for r = 1, 2.

(b) The mean curve µ(t) is four times differentiable and satisfies the boundary
conditions µ (r)(0) = µ (r)(1) = 0 for r = 2, 3. The fourth derivatives µ (4)(t)



ASYMPTOTIC PROPERTIES 131

is Lipschitz continuous in the sense that
∣∣µ (4)(s1)− µ (4)(s2)

∣∣≤ c1

∣∣s1 − s2

∣∣c2

for all s1, s2 ∈ [0,1] and some positive constants c1 and c2.

(c) There exists a positive constant δ > 0 such that E
(
|ε(t)|2+δ

)
< ∞.

(d) The smoothing parameter λ is nonrandom and satisfy λ → 0, N λ 1/4 → ∞
and λ−5/4 DN → 0 as n → ∞.

(e) Define σ2(t) = E
[
ε2(t)

]
and ρε(t) = limt′→t E

[
ε(t)ε(t ′)

]
. Both σ2(t) and

ρε(t) are continuous at t. �

These assumptions are sufficiently general and should be satisfied in most
applications. A major distinction between the current longitudinal data and
the classical cross-sectional i.i.d. data is the additional term ρε(t). As in Chap-
ters 3 and 4, σ2(t) may not equal ρε(t) in general, and strict inequality be-
tween σ2(t) and ρε(t) appears, when ε(t) is the sum of a stationary process
of t and an independent measurement error. Because in most applications
σ2(t) and ρε(t) are unknown, we do not require further specific structures
for σ2(t) and ρε(t), except for their continuity in Assumption (e). When{

ti j : i = 1, . . . , n; j = 1, . . . , ni

}
are from random designs, we would need to

require almost sure convergence of DN to 0, as suggested in Nychka (1995,
Section 2).

2. Equivalent Kernel Function

Because the Sλ (t, s) of (5.3) does not have an explicit expression, we would
like to approximate it by an explicit equivalent kernel function. Substituting
Sλ (t, s) with the equivalent kernel, the asymptotic properties of µ̂(t;w∗∗) can
be established through the equivalent kernel function (e.g., Brauer and No-
hel, 1973). For smoothing spline estimators with cross-sectional i.i.d. data, an
equivalent kernel is usually obtained by approximating the Green’s function
of a differential equation. Motivations and heuristic justifications of consider-
ing an equivalent kernel through a differential equation have been discussed
extensively in the literature, for example, Silverman (1986), Messer (1991),
Messer and Goldstein (1993) and Nychka (1995).

Under the current context, we apply the same rationale established for the
smoothing spline estimators with cross-sectional i.i.d. data to the estimator
(5.3) and consider the following fourth-order differential equation

λ g(4)(t)+ f (t)g(t) = f (t)µ(t), t ∈ [0, 1], (5.8)

with g(ν)(0) = g(ν)(1) = 0 for ν = 2, 3. Let Gλ (t, s) be the Green’s function
associated with (5.8). Then, any solution g(t) of (5.8) satisfies

g(t) =

∫ 1

0
Gλ (t, s)µ(s) f (s)ds.
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Let γ =
∫ 1

0 f 1/4(s)ds and τ(t) = γ−1
∫ t

0 f 1/4(s)ds. We define

Hλ (t, s) = HU
λ/γ4

[
τ(t), τ(s)

]
τ(1)(s) f−1(s) (5.9)

to be the equivalent kernel of Sλ (t, s), where

HU
λ (t, s) =

λ−1/4

2
√

2

[
sin

(
λ−1/4

√
2

∣∣t − s
∣∣
)
+ cos

(
λ−1/4

√
2

∣∣t − s
∣∣
)]

×exp

(
−λ−1/4

√
2

∣∣t − s
∣∣
)
. (5.10)

It is straightforward to verify from (5.9) that Hλ (t, s) reduces to HU
λ (t, s)

when f (·) is the uniform density. Substituting Sλ

(
t, ti j

)
in (5.3) with Hλ

(
t, ti j

)
,

the equivalent kernel estimator of µ(t) with the measurement uniform weight
w∗∗ = (1/N, . . . , 1/N)T is

µ̃λ

(
t; w∗∗)= 1

N

n

∑
i=1

ni

∑
j=1

[
Hλ

(
t, ti j

)
Yi j

]
. (5.11)

The next lemma shows that Hλ (t, s) is the dominating term of the Green’s
function Gλ (t, s), which in turn approximates Sλ (t, s).

Lemma 5.1. Assume that Assumptions (a) and (d) are satisfied. When n

is sufficiently large, there are positive constants α1, α2, κ1 and κ2 so that
∣∣Gλ (t, s)−Hλ (t, s)

∣∣ ≤ κ1 exp
(
−α1 λ−1/4

∣∣t − s
∣∣), (5.12)∣∣∣∣

∂ νGλ (t, s)

∂ tν

∣∣∣∣ ≤ κ1 λ−(ν+1)/4 exp
(
−α2 λ−1/4

∣∣t − s
∣∣), (5.13)

∣∣Sλ (t, s)−Gλ (t, s)
∣∣ ≤ κ2 λ−1/2 DN exp

(
−α1 λ−1/4

∣∣t − s
∣∣), (5.14)∣∣∣∣

∂ ν Sλ (t, s)

∂ tν

∣∣∣∣ ≤ κ2 λ−(ν+1)/4 DN exp
(
−α2 λ−1/4

∣∣t − s
∣∣) (5.15)

hold uniformly for t ∈ [0, 1], s ∈ [0, 1] and 0 ≤ ν ≤ 3. �

Proof of Lemma 5.1 is given in Section 5.3.4.

It is worthwhile to note that Hλ (t, s) of (5.9) is not the only equivalent
kernel that could be considered, and there are other possible choices, such as
the equivalent kernels suggested by Messer (1991) and Messer and Goldstein
(1993). However, the theoretical derivation of this chapter is based on Chiang,
Rice and Wu (2001), which relies on Hλ (t, s) to approximate Sλ (t, s).

5.3.2 Asymptotic Distributions, Risk and Inferences

We now summarize the main theoretical results of this chapter. Derivations
of these results are deferred to Section 5.3.4.
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1. Asymptotic Distributions

Recall by Assumption (e) that the variance of Y (t) is σ2(t) and the covari-
ance of Y (t1) and Y (t2) at two time points t1 6= t2 is ρε(t1, t2). When tk → t for
k = 1, 2, we note that

ρε

(
t1, t2

)
→ ρε(t) 6= σ2(t).

The next theorem shows that asymptotically µ̂λ

(
t; w∗∗) of (5.3) has a normal

distribution when N is sufficiently large.

Theorem 5.1. Suppose that Assumptions (a) through (e) are satisfied, t is
an interior point of [0, 1], and there are constants λ0 ≥ 0 and a0 ≥ 0 such that
limn→∞ N1/2 λ 9/8 = λ0, limn→∞ N−1

(
∑n

i=1 n2
i

)
λ 1/4 = a0 and limn→∞ N n−9/8 = 0.

Then, as n → ∞, µ̂(t; w∗∗) is asymptotically normal in the sense that

(
N λ 1/4

)1/2 [
µ̂(t; w∗∗)− µ(t)

]
→ N

(
λ0 b(t), σ2

µ(t)
)

in distribution, (5.16)

where
b(t) =− f−1(t)µ (4)(t) (5.17)

and

σµ(t) =

[
1

4
√

2
f−3/4(t)σ2(t)+ a0 ρε(t)

]1/2

. (5.18)

The conclusions in (5.16) to (5.18) imply that, in general, the asymptotic

distributions of β̂ (t; w∗∗) are affected by n, ni and the intra-subject correlations
of the data. �

Proof of Theorem 5.1 is given in Section 5.3.4.

A direct implication of Theorem 5.1 is that, by (5.18), the correlations of
the data may only affect the asymptotic variance term σ2

µ(t) if a0 > 0, which

holds if ∑n
i=1 n2

i tends to infinity sufficiently fast. Since, by Assumption (d), we
have limn→∞ λ = 0, it follows from the condition limn→∞ N−1

(
∑n

i=1 n2
i

)
λ 1/4 = a0

that, for the special case that ni are bounded, i.e., ni ≤ m for all i = 1, . . . , n

and some constant m > 0, the intra-subject correlation ρε(t) does not play a

role in the asymptotic distribution of
(
N λ 1/4

)1/2 [
µ̂(t; w∗∗)− µ(t)

]
, because

lim
n→∞

N−1

(
n

∑
i=1

n2
i

)
λ 1/4 ≤ m2 lim

n→∞
λ = 0.

When ni, i = 1, . . . , n, are bounded, the probability that there are at least two
data points from the same subject in a shrinking neighborhood is zero.
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2. Asymptotic Mean Squared Errors

Risks of spline estimators are usually measured by their asymptotic mean
squared errors. We consider the mean squared error (MSE) given by

MSE
[
µ̂(t; w∗∗)

]
= E

{[
µ̂(t; w∗∗)− µ(t)

]2}
. (5.19)

The next theorem gives the asymptotic expression of MSE
[
µ̂(t; w∗∗)

]
.

Theorem 5.2. Suppose that Assumptions (a) to (e) are satisfied and t is
an interior point of [0, 1]. When n is sufficiently large, the MSE of (5.19) has
the following asymptotic expression

MSE
[
µ̂(t; w∗∗)

]
= λ 2 b2(t)+V(t)+ op

[
N−1 λ−1/4 +

n

∑
i=1

(
ni

/
N
)2
]

+Op

(
n−1/2 λ

)
+Op

(
n−1
)
+ op

(
λ 2
)
, (5.20)

where b(t) is defined in (5.17) and

V (t) =
1

4
√

2
N−1 λ−1/4 f−3/4(t)σ2(t)+

[
n

∑
i=1

(
ni

/
N
)2

]
ρ(t). (5.21)

Furthermore, it follows from (5.21) that the asymptotic variance V (t) is not
affected by the covariance function ρ(t) if limn→∞

[
∑n

i=1(ni/N)2
]
= 0, which

holds if and only if limn→∞ max1≤i≤n

(
ni/N

)
= 0. �

Proof of Theorem 5.2 is given in Section 5.3.4.

Since the assumptions in Theorems 5.1 and 5.2 are quite general, the
above asymptotic properties provide theoretical justifications for the penal-
ized smoothing spline estimators to be used in most practical situations.

3. Remarks on Asymptotic Properties

A number of interesting special cases of Theorems 5.1 and 5.2 can be
derived under some specific but practical settings. These special cases lead to
different asymptotic properties of µ̂(t; w∗∗). The following remarks illustrate
some of these useful special cases.

(a) Consistency and Convergence Rates:
Theorem 5.2 does not require any further rate condition on λ other than

Assumption (d) and allows for any choice of nonrandom ni. Thus, under the
conditions of Theorem 5.2, µ̂(t; w∗∗) is a consistent estimator of µ(t) in the
sense that MSE

[
µ̂(t; w∗∗)

]
→ 0 in probability as n → ∞.

By (5.21), the rate of V (t) tending to zero depends on n, ni, i = 1, . . . , n,
λ and the intra-subject covariance ρ(t). If λ−1/4N−1 converges to zero in a
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rate slower than ∑n
i=1(ni/N)2, then the second term of the right side of (5.21)

becomes negligible, so that the effect of the intra-subject covariance ρ(t) dis-
appears from the asymptotic representation of MSE

[
µ̂(t; w∗∗)

]
. This occurs,

when the ni are bounded, which is a case of practical interest. However, in
general, the contribution of the intra-subject covariance ρ(t) is not negligible.
If ni → ∞ sufficiently fast as n → ∞, which leads to the so-called dense longitu-
dinal data, then the second term of the right side of (5.21) may not be ignored
from V (t). This occurs, for example, when ni = nα for some α > 0.

(b) Random Design Time Points and Other Weight Choices:
The derivations of Theorem 5.2, which relies on nonrandom design time

points and measurement uniform weight, w∗∗, can be extended to random
design time points and other weight choices. Suppose that the design time
points ti j are independent identically distributed with distribution function
F(·) and density f (·). For the measurement uniform weight w∗∗, we would
require, as a modification of Assumption (d), the almost sure convergence of
λ−5/4 DN to 0 as n → ∞ and consider the same equivalent kernel estimator

as defined in (5.9). For the subject uniform weight w∗ =
(
w∗

1, . . . , w∗
n

)T
with

w∗
i = 1/(nni), we would replace FN and DN in Assumption (a) by

F∗
N(t) =

n

∑
i=1

ni

∑
j=1

(nni)
−1 1[ti j≤t] and D∗

N = sup
t∈[0,1]

∣∣F∗
N(t)−F(t)

∣∣,

respectively, and, under the almost sure convergence of λ−5/4 D∗
N to 0 as n→∞,

consider the equivalent kernel estimator

µ̃(t; w∗) =
n

∑
i=1

ni

∑
j=1

[(
nni

)−1
Hλ (t, ti j)Yi j

]
.

The asymptotic distributions and the asymptotic conditional mean squared
errors of these equivalent kernel estimators can be derived explicitly. However,
as noted by Nychka (1995, Section 7), because the exponential bound of (5.9)
may not be sharp enough to establish the asymptotic equivalence between
the smoothing spline and the equivalent kernel estimators, further research is
needed to develop the improved error bounds under these situations.

Suppose that the time design points ti j are nonrandom, w∗ =
(
w∗

1, . . . , w∗
n

)

with w∗
i = 1/(nni) is used and Assumption (a) holds for F∗

N(t) and D∗
N . By

Lemma 5.1, we can show that the variance of µ̂(t; w∗) can be approximated
by

n

∑
i=1

ni

∑
j=1

[(
1

nni

)2

G2
λ

(
t; ti j

)
Var
(
Yi j

)]

+ ∑
(i1, j1) 6=(i2, j2)

[(
1

n2 ni1 ni2

)
Gλ

(
t, ti1 j1

)
Gλ

(
t, ti2 j2

)
Cov

(
Yi1 j1 , Yi2 j2

)]
.
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Unfortunately, the above two summations cannot be easily approximated by
some straightforward integrals without further assumptions on ni. Similarly,
we do not have an explicit asymptotic risk representation for µ̂(t; w) with a
general weight w.

4. Asymptotically Approximate Confidence Intervals

The asymptotic distribution of Theorem 5.1 is potentially useful for mak-
ing approximate inferences for µ(t) based on µ̂(t; w∗∗). In particular, if n, ni,
i = 1, . . . , n, and λ satisfy the conditions stated in Theorem 5.1 and there
are consistent estimators

{
b̂(t), σ̂µ(t)

}
of
{

b(t), σµ(t)
}
, then an approximate[

100× (1−α)
]
% confidence interval for µ(t) can be given by
[
µ̂(t; w∗∗)−λ b̂(t)

]
± z1−α/2 N−1/2 λ−1/8 σ̂µ(t), (5.22)

where 0 < α < 1, Zp is the pth quantile of the standard normal distribution

N(0, 1). In theory, it is possible to construct the consistent estimators b̂(t) and
σ̂µ(t) by substituting the unknown quantities of (5.17) and (5.18) with their
consistent estimators. But, in practice, br(t) is difficult to estimate because,
by (5.17), it depends on the fourth derivative of µ(t). One possible approach
to circumvent the difficulty of estimating b(t) is to select a small smoothing
parameter λ so that the asymptotic bias b(t) is negligible. For the estimation
of σµ(t), one approach is to construct adequate smoothing estimators for the
variance and covariance processes σ2(t) and ρε(t), respectively. But a practical
smoothing spline estimator for σµ(t) is not yet available and requires further

research. When the bias adjustment term λ b̂(t) is ignored and σµ(t) is esti-
mated by the resampling-subject bootstrap procedure, the confidence interval
of (5.22) is the same as the one given in (5.7).

5.3.3 Green’s Function for Uniform Density

We now give a brief discussion of the Green’s function for the differential equa-
tion (5.8) with the uniform density on [0, 1]. The uniform density is an im-
portant and useful special case, because the Green’s function associated with
the uniform density gives an important linkage between the Green’s function
Gλ (t,s) associated with the differential equation (5.8) and the equivalent ker-
nel function Hλ (t, s) in (5.9). The dominating term of Gλ (t, s) can be used to
establish Lemma 5.1.

Using direct calculation, it can be shown that, for the uniform density
f (t) = 1[0,1](t), the Green’s function GU

λ (t, s) of (5.8) for t 6= s is the solution of

λ
∂ 4

∂ t4
GU

λ (t, s)+GU
λ (t, s) = 0, (5.23)

subject to the following conditions:

(a) GU
λ (t, s) = GU

λ (s, t) = GU
λ (1− t, 1− s);
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(b)
(
∂ ν/∂ tν

)
GU

λ (0, t) =
(
∂ ν/∂ tν

)
GU

λ (1, t) = 0 for ν = 2, 3;

(c)
(
∂ ν/∂ tν

)
GU

λ (t, s)
∣∣
s=t− −

(
∂ ν/∂ tν

)
GU

λ (t, s)
∣∣
s=t+

= 0 for ν = 0, 1, 2;

(d)
(
∂ 3/∂ t3

)
GU

λ (t, s)
∣∣
s=t− −

(
∂ 3/∂ t3

)
GU

λ (t, s)
∣∣
s=t+

= λ−1.

The following lemma gives a crucial technical result, which shows that the
equivalent kernel function HU

λ (t, s) of (5.10) is the dominating term of the

Green’s function GU
λ (t, s).

Lemma 5.2. Suppose that GU
λ (t, s) is the Green’s function of the differen-

tial equation (5.23) with the uniform density f (t) = 1[0,1](t). When λ → 0, the

solution GU
λ (t, s) is given by

GU
λ (t, s) = HU

λ (t, s)
{

1+O
[

exp
(
−λ−1/4

/√
2
)]}

, (5.24)

where HU
λ (t, s) is defined in (5.10). �

Proof of Lemma 5.2:
Because the proof involves tedious algebraic calculations, only the main

steps are sketched here, while some straightforward and tedious details are left
out. By the well-known result in differential equations, for example, Brauer
and Nohel (1973), a general solution GU

λ (t, s) of (5.23) can be expressed as

GU
λ (t, s) = ∑

l=1,3,5,7

{[
C j l sin

(
λ−1/4 ξl(t, s)

/√
2
)

+C j, l+1 cos
(

λ−1/4 ξl+1(t, s)
/√

2
)]

× exp
(

λ−1/4 ζl(t, s)
/√

2
)}

,

where j = 1 or 2, when t ≤ s or t > s,

ξ1(t, s) = ζ1(t, s) = t − s, ξ3(t, s) = ζ3(t, s) = t + s,

ξ5(t, s) =−ζ5(t, s) = t − s and ξ7(t, s) =−ζ7(t, s) = t + s.

Now, the objective is to evaluate the relationships among the C j l ’s. By
GU

λ (t, s) = GU
λ (s, t) in the condition (a) of (5.23), we can obtain that

C11 =−C25, C12 =C26, C13 =C23, C14 =C24,

C15 =−C21, C16 =C22, C17 =C27 and C18 =C28.

Furthermore, by GU
λ (t, s) = GU

λ (1− t, 1− s), i.e., the condition (a) of (5.23), it
can be shown that

C13 =
[
− cos

(√
2λ−1/4

)
C17 + sin

(√
2λ−1/4

)
C18

]
exp
(
−
√

2λ−1/4
)

(5.25)

and

C14 =
[

sin
(√

2λ−1/4
)

C17 + cos
(√

2λ−1/4
)

C18

]
exp
(
−
√

2λ−1/4
)
. (5.26)



138 PENALIZED SMOOTHING SPLINE METHODS

Now we denote

λ ∗
1 = 2−1/2 λ−1/4, λ ∗

2 = 2−1/2 λ−1/4 − (π/4) and λ ∗
3 = 2−1/2 λ−1/4 +(π/4).

Taking derivatives of GU
λ (t, s) with respect to t, we can derive from the condi-

tion (b) of (5.23) that

C11 +C13 −C15 −C17 =
4

∑
j=1

(−1) j+1C1 j +
8

∑
j=5

C1 j = 0, (5.27)

[
cos
(
λ ∗

1

)(
C11 −C17

)
+ sin

(
λ ∗

1

)(
C12 +C18

)]
exp
(
− 2λ ∗

1

)

+cos
(
λ ∗

1

)(
C13 −C15

)
− sin

(
λ ∗

1

)(
C14 +C16

)
= 0 (5.28)

and
[

sin
(
λ ∗

3

)(
C11 −C17

)
+ sin

(
λ ∗

2

)(
C12 +C18

)]
exp
(
− 2λ ∗

1

)

+sin
(
λ ∗

2

)(
C13 −C15

)
− sin

(
λ ∗

3

)(
C14 +C16

)
= 0. (5.29)

From the conditions (c) and (d) of (5.23), we get

C11 +C12 +C15 −C16 = 0 and C11 −C12 +C15 +C16 =−λ ∗
1 . (5.30)

Using (5.27) and (5.28), we can express C15 through C18 as linear combi-
nations of C1 j, j = 1, . . . , 4, and get

C15 =−C11 − 2−3/2 λ−1/4, C16 =C12 − 2−3/2 λ−1/4,

C17 = 2C11 +C13 + 2−3/2 λ−1/4 and C18 =−2(C11 +C13)+C14 + 2−3/2 λ−1/4.

Substituting C15 through C18 with their corresponding linear combinations of
C1 j, j = 1, . . . , 4, it can be derived from (5.25), (5.26), (5.27) and (5.28) that

2 exp
(
− 2λ ∗

1

)
C11 +

[
exp
(
− 2λ ∗

1

)
+ cos

(
2λ ∗

1

)]
C13

−sin
(
2λ ∗

1

)
C14 + 2−1 λ ∗

1 exp
(
− 2λ ∗

1

)
= 0, (5.31)

2 exp
(
− 2λ ∗

1

)
C11 +

[
2 exp

(
− 2λ ∗

1

)
+ sin

(
2λ ∗

1

)]
C13

−
[

exp
(
− 2λ ∗

1

)
− cos

(
2λ ∗

1

)]
C14 − 2−1 λ ∗

1 exp
(
− 2λ ∗

1

)
= 0, (5.32)

{
cos
(
λ ∗

1

)
−
[

cos
(
λ ∗

1

)
+ 2 sin

(
λ ∗

1

)]
exp
(
− 2λ ∗

1

)}(
C11 +C13

)

−sin
(
λ ∗

1

)[
1− exp

(
− 2λ ∗

1

)]
(C12 +C14)+ 2−1 λ ∗

1 cos
(
λ ∗

1

)[
1− exp

(
− 2λ ∗

1

)]

−2−1 λ ∗
1 sin

(
λ ∗

1

)[
1+ exp

(
− 2λ ∗

1

)]
= 0 (5.33)

and
{
− sin

(
λ ∗

2

)
+
[

sin
(
λ ∗

3 )+ 2 sin
(
λ ∗

2

)]
exp
(
− 2λ ∗

1

)}
(C11 +C13)

−
[

sin
(
λ ∗

3

)
+ sin

(
λ ∗

2

)
exp
(
− 2λ ∗

1

)]
(C12 +C14)

−2−1 λ ∗
1

[
sin
(
λ ∗

2 )− sin
(
λ ∗

3

)][
1+ exp

(
− 2λ ∗

1

)]
= 0. (5.34)
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Suppose first that λ 6= 2−2 [(k+ 2−1)π ]−4 and λ 6= 2−2 (k π)−4 for any positive
integer k. When λ → 0, it can be derived from equations (5.31) to (5.34) that

C1l = (−1)l
[
λ−1/4

/(
2
√

2
)]{

1+O
[

exp
(
−λ−1/4

/√
2
)]}

, l = 1, 2, (5.35)

and
C1l = O

[
λ−1/4 exp

(
−λ−1/4

/√
2
)]

, l = 3, 4. (5.36)

Finally, C15 through C18 can be directly calculated by using (5.35) and (5.36),
so that

C1l = O

[
λ−1/4 exp

(
−λ−1/4

/√
2
)]

, l = 5, 6, (5.37)

C17 = −
[
λ−1/4

/(
2
√

2
)]{

1+O
[

exp
(
−λ−1/4

/√
2
)]}

(5.38)

and
C18 =

[
3λ−1/4

/(
2
√

2
)]{

1+O
[

exp
(
−λ−1/4

/√
2
)]}

. (5.39)

Then (5.24) is obtained by substituting (5.35) through (5.39) into the general
expression of GU

λ (t, s).

When λ = 2−2
[(

k+ 2−1
)

π
]−4

or 2−2 (k π)−4, the same argument as above
shows that the coefficients in (5.35) through (5.39) also hold. This completes
the proof. �

5.3.4 Theoretical Derivations

We now give the technical derivations for the proofs of Lemma 5.1, Theo-
rems 5.1 and 5.2.

1. Derivations for Lemma 5.1

Proof of Lemma 5.1:
A key step for the proof is to establish the relationship between the Green’s

function for uniform density GU
λ (t, s) in (5.23) and the general Green’s function

Gλ (t, s) for (5.8). For this purpose, we first consider a transformation Q(t, s)
such that

Q
[
τ(t), τ(s)

]
τ(1)(s) = Gλ (t, s) f (s), (5.40)

where τ(t) = γ−1
∫ t

0 f 1/4(s)ds and γ =
∫ 1

0 f 1/4(s)ds are defined in (5.9). Now,
define

q(u) =
∫ 1

0
Q(u, v)β

[
τ−1(v)

]
dv,

φ1(t) =
{

6
[
τ(1)(t)

]2
τ(2)(t)

}
f−1(t),

φ2(t) =
{

3
[
τ(2)(t)

]2
+ 4τ(1)(t)τ(3)(t)

}
f−1(t),

φ3(t) = τ(4)(t) f−1(t).
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By the definition of γ and τ(t), it can be verified by straightforward calcula-
tion that g(t) = q[τ(t)] and q(u) is the solution of the following fourth-order
differential equation

[(
λ
/

γ4
)

q(4)(u)+ q(u)
]
+λ

3

∑
l=1

φl(u)q(4−l)(u) = µ
[
τ−1(u)

]
, (5.41)

subject to the boundary conditions that q(ν)(0) = q(ν)(1) = 0 for ν = 2, 3.
To simplify the notation of (5.41), let D and I be the operators for differ-

entiation and identity, and let Mφ be the multiplication operator Mφ g = φ ·g,
so that, (5.41) can be expressed as

(I +A )L q(u) = µ
[
τ−1(u)

]
, (5.42)

where L and A are the composite operators defined by

L =
[(

λ/γ4
)
D

4 +I
]

and A = λ

(
3

∑
l=1

MφD
4−l

)
L

−1.

Let Aν(u, v) be the kernel associated with the integral operator A ν . We can
verify by the induction argument in the proof of (A.1) of Nychka (1995) that,
when n is large, there are constants α0 > 0 and κ0 > 0 such that

∣∣∣Aν(u, v)
∣∣∣≤ κ0W ν exp

(
−α0 λ−1/4 |u− v|

)
, ν ≥ 1,

where W is some positive constant such that W < 1. Because
∣∣Aν(u, v)

∣∣< 1 for

sufficiently small λ , the integral operator L −1(I +A )−1 has the expansion

L
−1
(
I +A

)−1
= L

−1

[
I +

∞

∑
ν=1

(
−A

)ν
]
. (5.43)

Thus, by interchanging the integration and summation signs, (5.43) implies
that

Q(u, v) = GU
λ/γ4(u, v)+

∞

∑
ν=1

(−1)ν
∫ 1

0
GU

λ/γ4(u, s)Aν (s, v)ds. (5.44)

Applying Lemma 4.2 of Nychka (1995) and Lemma A with u = τ(t) and
v = τ(s) to (5.44), there are positive constants α∗

0 , α∗∗
0 , κ∗

0 and κ∗∗
0 , such that,

uniformly for t,s ∈ [0,1],

∣∣∣∣Q(u, v)−GU
λ/γ4(u, v)

∣∣∣∣

≤
∣∣∣∣

∞

∑
ν=1

(−1)ν
∫ 1

0
GU

λ/γ4(u, s)Aν
r (s, v)ds

∣∣∣∣
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≤ κ∗
0 λ−1/4

( ∞

∑
ν=1

W ν

) ∫ 1

0
exp

(
−λ 1/4

√
2
|u− s|−α0 λ−1/4 |s− v|

)
ds

≤ κ∗∗
0 exp

(
−α∗

0 λ−1/4 |u− v|
)

≤ κ∗∗
0 exp

[
−α∗

0 λ−1/4 |t − s| inf
s≤u≤t

∣∣τ(1)(u)
∣∣
]

≤ κ∗∗
0 exp

(
−α∗∗

0 λ−1/4 |t − s|
)
. (5.45)

From (5.40), we also have that

Q(u, v)−GU
λ/γ4(u, v) =

f (s)

τ(1)(s)

{
Gλ (t, s)−GU

λ/γ4

[
τ(t), τ(s)

] τ(1)(s)

f (s)

}
. (5.46)

Then, equation (5.12) is a direct consequence of Lemma 5.2, equations (5.45),
(5.46) and (5.9). The exponential bounds of (5.13) can be obtained using the
same method.

For the proofs of equations (5.14) and (5.15), we can show from equations
(5.2) and (5.3) that

∫ 1

0
Sλ

(
ti j, s

)
g(s)dFN(s)+λ

∫ 1

0

∂ 2

∂ s2
Sλ

(
ti j, s

)
g(2)(s)ds = g

(
ti j

)
. (5.47)

Now, let R be the integral operator such that

R
[
g(·)
]
(t) =

∫ 1

0
Gλ (t, s)g(s)d

(
F −FN

)
(s).

By equations (5.12) and (5.13) and the induction argument in the proof of Ny-
chka (1995), there are positive constants κ∗

1 , κ∗∗
1 and α1, such that, uniformly

for t, s ∈ [0,1] and 0 ≤ µ ≤ 3,

∣∣∣∣
∂ µ

∂ tµ
R

ν
[
Gλ (·, s)

]
(t)

∣∣∣∣

≤ κ∗
1

(
κ∗∗

1 DN λ−1/4
)ν

λ−(µ+1)/4 exp
[
−α1 λ−1/4 |t − s|

]
. (5.48)

In addition, by Lemma 3.1 of Nychka (1995), a solution of (5.47) satisfies

Sλ

(
t, ti j

)
= Gλ

(
t, ti j

)
+R

[
Sλ

(
·, ti j

)]
(t)

and, when n is sufficiently large,

Sλ

(
t, ti j

)
= Gλ

(
t, ti j

)
+

∞

∑
ν=1

R
ν
[
Gλ

(
·, ti j

)]
(t). (5.49)

Taking κ2 ≥
[
κ∗

1 κ∗∗
1 /
(
1−κ∗∗

1 DN λ−1/4
)]
, we can derive from equations (5.48)
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and (5.49) and condition (d) of Section 5.3.1 that, uniformly for t, s ∈ [0, 1],

∣∣Sλ (t, s)−Gλ (t, s)
∣∣ ≤

∞

∑
ν=1

∣∣∣Rν
[
Gλ (·, s)

]
(t)
∣∣∣

≤ κ∗
1 λ−1/4

(
κ∗∗

1 DN λ−1/4

1−κ∗∗
1 DN λ−1/4

)
exp

(
−α1 λ−1/4 |t − s|

)

≤ κ2 λ−1/2 DN exp

(
−α1 λ−1/4 |t − s|

)
.

This completes the proof of equation (5.14). Again, equation (5.15) can be
shown by similar derivations, so the details are not repeated. �

2. Three Technical Lemmas

We now present three technical lemmas. The results of these lemmas are
used in the proofs of Theorems 5.1 and 5.2. Recall that the outcome process
Y (t) has variance σ2(t) at time point t and covariance ρε(t, s) at time points
t 6= s, and the limit of ρε(t, s) is denoted by ρε(t) = lims→t ρε(t, s).

Under the Green’s function Gλ (t, s) of Lemma 5.1, the next lemma gives
the dominating terms of the integrals

∫ 1

0
G2

λ (t, s)σ2(s) f (s)ds and
∫ 1

0
Gλ (t, s)ρε(t, s) f (s)ds

as λ tends to zero.

Lemma 5.3. If Assumptions (a) and (d) are satisfied, then, when λ is
sufficiently small,

∫ 1

0
G2

λ (t, s)σ2(s) f (s)ds =
1

4
√

2
f−3/4(t)λ−1/4 σ2(t)

[
1+ o(1)

]
(5.50)

and ∫ 1

0
Gλ (t, s)ρε(t, s) f (s)ds = ρε(t)

[
1+ o(1)

]
(5.51)

hold for all t ∈ [τ, 1− τ] with some τ > 0. �

Proof of Lemma 5.3:
By Lemma 5.1, we can show, using the properties of double exponential

distributions and straightforward algebra, that, for some positive constants κ ,
α and c, as λ → 0,

∣∣∣∣
∫ 1

0

[
G2

λ (t, s)−H2
λ (t, s)

]
σ2(s) f (s)ds

∣∣∣∣

≤
∫ 1

0

∣∣Gλ (t, s)−Hλ (t, s)
∣∣
{∣∣Gλ (t, s)

∣∣+
∣∣Hλ (t, s)

∣∣
}

σ2(s) f (s)ds
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≤
∫ 1

0
κ2 λ

−1/4
r exp

(
−α λ−1/4 |t − s|

)
σ2(s) f (s)ds

→ cσ2(t) f (t). (5.52)

Similarly, denoting u = τ(t) and v = τ(s), we can show from (5.10) and the
properties of double exponential distributions that, for λ sufficiently small,

∫ 1

0
H2

λ (t, s)σ2(s) f (s)ds =

∫ 1

0

[
HU

λ/γ4(u, v)
]2

σ2
[
τ−1(v)

]{ f 1/4[τ−1(v)]

γ f [τ−1(v)]

}
dv

=
1

4
√

2
f−3/4(t)λ−1/4 σ2(t)

[
1+ o(1)

]
. (5.53)

Thus, (5.50) follows from (5.52) and (5.53). Then (5.51) can be shown by
similar calculations. �

The following lemma establishes a useful connection between the solution
g(t) of the differential equation (5.8) and the mean curve of interest µ(t).

Lemma 5.4. If the mean curve µ(t) satisfies Assumption (b) and g(t) is
a solution of (5.8), then g(4)(t)→ µ (4)(t) uniformly for t ∈ [0, 1] as λ → 0. �

Proof of Lemma 5.4:
This lemma is a special case of Lemma 6.1 of Nychka (1995). We skip the

tedious details here to avoid repetition. �

Finally, the following lemma establishes the asymptotic normality of the
equivalent kernel estimator µ̃(t; w∗∗) defined in (5.11).

Lemma 5.5. Suppose that Assumptions (a) to (e) are satisfied, t is an
interior point of [0, 1], and there are positive constants λ0 and a0 such that,
as n → ∞,

N1/2 λ 9/8 → λ0, N−1

(
n

∑
i=1

n2
i

)
λ 1/4 → a0 and N n−9/8 → 0.

Then µ̃(t; w∗∗) is asymptotically normal in the sense that, as n → ∞,

(
N λ 1/4

)1/2 [
µ̃(t; w0)− µ(t)

]
→ N

(
λ0 b(t), σ2

µ(t)
)

in distribution, (5.54)

where b(t) is defined in (5.17) and σµ(t) is defined in (5.18). �

Proof of Lemma 5.5:
By Assumptions (a) and (d), equations (5.9) and (5.10) and Lemma 5.4,
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we have that

E
[
µ̃(t, w∗∗)

]
− µ(t)

=

∫ 1

0
Gλ (t, s)µ(s) f (s)ds− µ(t)+

∫ 1

0

[
Hλ (t, s)−Gλ (t, s)

]
µ(s) f (s)ds

+
∫ 1

0
Hλ (t, s)µ(s)d

[
FN(s)−F(s)

]

= −λ f−1(t)g(4)(t)
[
1+ o(λ )

]

= −λ b(t)
[
1+ o(λ )

]
. (5.55)

To compute the variance of µ̃(t; w∗∗), we consider

Var
[
µ̃(t; w∗∗)

]
=V1 +V2 +V3,

where

V1 = N−2
n

∑
i=1

ni

∑
j=1

[
H2

λ

(
t, ti j

)
Var
(
Yi j

)]
,

V2 =
1

N2

n

∑
i=1

ni

∑
j1 6= j2=1

[
Hλ

(
t, ti j1

)
Hλ

(
t, ti j2

)
Cov

(
Yi j1 , Yi j2

)]

and, because the subjects are independent,

V3 =
1

N2

n

∑
i1 6=i2=1

∑
j1, j2

[
Hλ

(
t, ti1 j1

)
Hλ

(
t, ti2 j2

)
Cov

(
Yi1 j1 , Yi2 j2

)]
= 0.

Because Var
(
Yi j

)
= σ2

(
ti j

)
, we have that, by Assumption (a) and equa-

tion (5.53),

V1 =
1

4
√

2
f−3/4(t)N−1 λ−1/4 σ2(t)

[
1+ o(1)

]
.

Similar to the derivation in (5.52), because Cov
(
Yi j1 , Yi j2

)
= ρε

(
ti j1 , ti j2

)
, it is

straightforward to compute that

V2 =

[
n

∑
i=1

(ni

N

)2

− 1

N

]

×
∫ ∫

Hλ (t, s1)Hλ (t, s2)ρε(s1, s2) f (s1) f (s2)ds1 ds2 [1+ o(1)]

=

[
n

∑
i=1

(ni

N

)2

− 1

N

]
ρε(t)

[
1+ o(1)

]
.

The above equations and (5.18) imply that

Var
[
µ̃(t; w∗∗)

]
= N−1 λ−1/4 σ2

µ(t)
[
1+ o(1)

]
.

Finally, it can verified from Assumption (c) and equations (5.9) and (5.10)
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that µ̃(t; w∗∗) satisfies Lindeberg’s condition for double arrays of random vari-
ables. The results of the lemma follow from equation (5.55) and the central
limit theorem for double arrays (e.g., Serfling, 1980, Section 1.9.3). �

3. Proofs of Theorems 5.1 and 5.2

Given the technical results of Lemma 5.1 through Lemma 5.5, the asymp-
totic properties of the penalized spline estimator µ̂(t; w∗∗) described in Theo-
rems 5.1 and 5.2 can be derived through straightforward calculations. We now
sketch the main steps for these proofs.

Proof of Theorem 5.1:
By Assumptions (a), (c) and (d) and Lemma 5.1, we have that, when n is

sufficiently large,

µ̂(t; w∗∗)− µ(t) =
1

N

n

∑
i=1

ni

∑
j=1

{[
Sλ

(
t, ti j

)
−Gλ

(
t, ti j

)]
Yi j

}
+ op

[
N−1/2 λ−1/8

]
.

Then the asymptotic normality result of (5.16) is a direct consequence of
Lemma 5.5 and the above equation. �

Proof of Theorem 5.2:
Using the variance-bias squared decomposition for (5.19), we have that

MSE
[
µ̂(t; w∗∗)

]
=
{

E
[
µ̂(t; w∗∗)

]
− µ(t)

}2

+Var
[
µ̂(t; w∗∗)

]
. (5.56)

Because Yi1 j1 and Yi2 j2 are independent when i1 6= i2,

Var
[
µ̂(t; w∗∗)

]
=V ∗

1 +V ∗
2 ,

where

V ∗
1 =

1

N2

n

∑
i=1

ni

∑
j=1

[
S2

λ

(
t, ti j

)
Var
(
Yi j

)]

and

V ∗
2 =

1

N2

n

∑
i=1

ni

∑
j1 6= j2=1

[
Sλ

(
t, ti j1

)
Sλ

(
t, ti j2

)
Cov

(
Yi j1 , Yi j2

)]
.

Using Lemma 5.1 and the derivation of (5.51), we can show that, for suf-
ficiently large n,

Var
[
µ̂(t; w∗∗)

]
=

1

4
√

2
N−1 λ−1/4 f−3/4(t)σ2

ε (t)
[
1+ op(1)

]

+

[
n

∑
i=1

(ni

N

)2

− 1

N

]
ρε(t)

[
1+ op(1)

]
. (5.57)
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For the bias term of (5.56), we consider that, for sufficiently large n,

E
[
µ̂(t; w∗∗)

]
− µ(t) =

1

N

n

∑
i=1

ni

∑
j=1

[
Sλ (t, ti j)µ

(
ti j

)]
− µ(t). (5.58)

Then, by Lemma 5.5,

{
1

N

n

∑
i=1

ni

∑
j=1

[
Sλ

(
t, ti j

)
µ
(
ti j

)
− µ(t)

]}2

= λ 2 b2(t)
[
1+ op(1)

]
. (5.59)

The conclusion in equation (5.20) of Theorem 5.2 is then a direct consequence
of equations (5.56) to (5.59). �

5.4 Remarks and Literature Notes

This chapter presents a number of results for the estimation of the condi-
tional mean curve µ(t) = E[Y (t)|t] based on the penalized smoothing splines
with longitudinal sample

{(
Yi j, ti j

)
: i = 1, . . . , n; j = 1, . . . , ni

}
. The theoretical

results demonstrate that, although a penalized smoothing spline estimator
is obtained through a “global smoothing method,” it has natural connections
with a “local smoothing method” because it is asymptotically equivalent to
an equivalent kernel estimator. These theoretical implications have been cor-
roborated by the applications to the HSCT and NGHS studies in Section 5.2,
since the numerical results obtained by the penalized smoothing spline esti-
mators are similar to the results obtained by the local smoothing method in
Chapter 3 or the global smoothing method in Chapter 4.

The theoretical derivations of this chapter depend on different techniques
from the estimators in Chapters 4 and 5. As seen from the proofs of Theo-
rems 5.1 and 5.2, the crucial step for establishing the asymptotic equivalence
between the penalized smoothing spline estimator (5.3) and the equivalent
kernel estimator (5.11) relies on obtaining the approximate Green’s function
for the differential equation (5.8). Consequently, the asymptotic properties for
the penalized smoothing spline estimators are only established on a case-by-
case basis using the equivalent kernel approach. For general settings, explicit
forms of the Green’s functions of such differential equations may not be read-
ily available. Further research is needed to develop alternative approaches for
establishing the asymptotic properties of the penalized smoothing spline esti-
mators with longitudinal samples.

The results of this chapter are mainly adopted from Hoover et al. (1998)
and Chiang, Rice and Wu (2001). Theoretical derivations rely heavily on
the techniques described in Nychka (1995). Earlier results for the penal-
ized smoothing spline estimators in nonparametric regression with cross-
sectional i.i.d. data have been described in Silverman (1986), Eubank (1999),
Wahba (1975, 1990), Rice and Silverman (1991), Messer (1991), Messer and
Goldstein (1993) and Green and Silverman (1994). These are only a small
fraction of the publications in this area.
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Chapter 6

Smoothing with Time-Invariant

Covariates

The estimation and inference methods of Chapters 3 to 5 are mainly concerned
with evaluating the mean time curve E[Y (t)] = µ(t) without incorporating
the effects of potential covariates. In most practical situations, the scientific
interests of a longitudinal study are often focused on evaluating the effects of
time t and a set of covariates X (l)(t), l = 1, . . . , k, which may or may not depend
on t, on the chosen time dependent outcome variable Y (t). The objective of this
chapter is to present a series of methods for modeling and estimating the effects
of a set of time-invariant covariates on a real-valued longitudinal outcome
variable. Methods for the general case involving time-dependent covariates
are presented in Chapters 7 to 9.

6.1 Data Structure and Model Formulation

6.1.1 Data Structure

We assume throughout this chapter that, for each given t, Y (t) is a real-valued,
continuous and time-dependent variable, and there is a set of k ≥ 1 covariates{

X (1), . . . , X (k)
}
which do not change with time t, so that the covariates are

given by a time-invariant (k+ 1)× 1 column vector X =
(
1, X (1), . . . , X (k)

)T
.

The observations for
(
Y (t), t, XT

)
are given by

{(
Yi j, ti j, XT

i

)
: i = 1, . . . , n; j =

1, . . . , ni

}
. At the jth measurement time ti j of the ith subject, the ith sub-

ject’s observed covariates and outcome are Xi =
(
1, X

(1)
i , . . . , X

(k)
i

)T
and Yi j,

respectively, where Xi have the same values at all the time points
{

ti j : j =
1, . . . , ni

}
. Since the subjects are assumed to be independent, the measure-

ments
{(

Yi j, ti j, XT
i

)
: i = 1, . . . , n; j = 1, . . . , ni

}
are independent between dif-

ferent subjects, but are possibly correlated within the same subject. That
is,
(
Yi1 j1 , ti1 j1 , XT

i1

)
and

(
Yi2 j2 , ti2 j2 , XT

i2

)
are independent for any i1 6= i2 and

all
(

j1, j2
)
. On the other hand,

(
Yi j1 , ti j1 , XT

i

)
and

(
Yi j2 , ti j2 , XT

i

)
are possibly

correlated for any j1 6= j2 and all 1 ≤ i ≤ n.

149
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6.1.2 The Time-Varying Coefficient Model

Although the parametric and semiparametric models summarized in Chap-
ter 2 can be used to evaluate the relationship between Y (t) and {t, X}, they
are only useful when this relationship belongs to a known parametric or semi-
parametric family. When there are no justifiable parametric or semiparametric
models available for the data, the resulting statistical inferences and conclu-
sions based on a misspecified model could be misleading. On the other hand,
the estimation and inference methods presented in Chapters 3 to 5 are only
appropriate for the sample

{(
Yi j, ti j

)
: i = 1, . . . , n; j = 1, . . . , ni

}
without co-

variates other than time. When covariates other than time are also involved,
unstructured nonparametric estimation of E

[
Y (t)| t, X

]
may require multivari-

ate smoothing estimators, which could be numerically unstable and difficult
to interpret in practice.

A promising alternative to the methods of Chapters 2 to 5 is to con-
sider regression models that are more flexible than the classical parametric
or semiparametric models and also have specific structures which can be eas-
ily interpreted in real applications. Hence, this leads to the term “structured
nonparametric model.” As a special case of nonparametric models with linear
structures, the varying-coefficient models have been studied by Hastie and
Tibshirani (1993) as an extension of the classical linear marginal models by
allowing the linear coefficients to be nonparametric curves of another variable.
For the analysis of

(
Y (t), t, XT

)
, Hoover et al. (1998) proposed to model the

conditional means of Y (t) given
{

t, X
}
by the time-varying coefficient model

Y (t) = XT β (t)+ ε(t), (6.1)

where X =
(
1, X (1), . . . , X (k)

)T
,
{

X (l) : l = 1, . . . , k
}
are time-invariant covari-

ates,
{

βl(t) : l = 0, . . . , k
}
are smooth coefficient curves which are functions of

time t, β (t) =
(
β0(t), . . . , βk(t)

)T
, ε(t) is a mean zero stochastic process for the

error term, and X and ε(t) are independent.
The model (6.1) has simple and natural interpretations in real applications,

because, when a time point t is fixed, the expression of (6.1) is a multivariate
linear marginal model with the continuous outcome variable Y (t) and covariate
vector X. Thus, interpretations for the classical multivariate linear models
can be simply extended to the time-varying coefficient model (6.1) when t is
fixed. When the time t changes, the coefficients in β (t) also change with t, so
that

(
Y (t), t, XT

)
follows a multivariate linear model with different coefficients{

βl(t) : l = 0, . . . , k
}
at different time points. Depending on the scientific nature

of the variables, it is usually reasonable in most biological applications to
assume that

{
βl(t) : l = 0, . . . , k

}
satisfy some smoothness conditions. These

smoothness assumptions ensure that the effects of the covariates X on the
outcome variable Y (t) do not change dramatically at any two adjacent time
points t1 6= t2.
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6.1.3 A Useful Component-wise Representation

Since in most longitudinal studies, the subjects are randomly selected, it is
reasonable to assume that the observed covariates Xi are random and the
(k+1)×(k+1) matrix E

(
XXT

)
is nonsingular, so that E

(
XXT

)
has the unique

inverse
E
(
XXT

)−1
= E−1

XXT .

Multiplying both sides of (6.1) with X and taking expectation, β (t) can be
expressed as

β (t) =
(

E−1

XXT

)
E
[
XY (t)

]
. (6.2)

Let er+1, l+1 be the
(
r+1, l+1

)
th element of E−1

XXT . Then (6.2) shows that, for
r = 0, . . . , k,

βr(t) = E

{[
k

∑
l=0

er+1, l+1 X (l)

]
Y (t)

}
. (6.3)

The equation (6.3) gives the expression of each component of β (t) based on
the model (6.2) as the expectation of a function of the outcome variable Y (t)
and the covariate matrix X.

Since E
(
XXT

)
is time-invariant, a simple estimator of E

(
XXT

)
is the sam-

ple mean

ÊXXT = n−1
n

∑
i=1

(
Xi XT

i

)
. (6.4)

If ÊXXT is invertible, then a natural estimator of E−1
XXT is

(
ÊXXT

)−1
, so that

er+1, l+1 of (6.3) can be estimated by êr+1, l+1, where

êr+1, l+1 = the
(
r+ 1, l + 1

)
th element of

(
ÊXXT

)−1

. (6.5)

Substituting er+1, l+1 of
(

∑k
l=0 er+1, l+1 X (l)

)
Y (t) with êrl , nonparametric

smoothing estimators of βr(t) can be constructed by applying the univari-
ate smoothing methods of Chapters 3 to 5 to the component-wise conditional

expectation of
(

∑k
l=0 êr+1, l+1 X (l)

)
Y (t) given t. Specifically, if β̂r(t), r = 0, . . . , k,

are smoothing estimators of βr(t) in (6.3), then the corresponding component-
wise smoothing estimator of β (t) is

β̂ (t) =
(

β̂0(t), β̂1(t), . . . , β̂k(t)
)T

. (6.6)

Note that, because the component-wise smoothing estimator β̂ (t) relies on
calculating the inverse of ÊXXT , it may be numerically unstable when ÊXXT is
nearly singular.

Another intuitive method for the estimation of β (t) is to first obtain the
estimators Ê−1

XXT and Ẽ
[
XY (t)

]
for E−1

XXT and E
[
XY (t)

]
, respectively, and then
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substitute E−1

XXT and E
[
XY (t)

]
in (6.2) with Ê−1

XXT and Ẽ
[
XY (t)

]
, so that β (t)

is estimated by

β̃ (t) = Ê−1

XXT Ẽ
[
XY (t)

]
. (6.7)

Although E
[
XY (t)

]
can be estimated by Ẽ

[
XY (t)

]
with different smoothness

within each of its components, (6.7) suggests that the components of β̃(t)
are estimated by the linear combinations of the components of Ê−1

XXT and

Ẽ
[
XY (t)

]
. Thus, the difference between β̂(t) and β̃ (t) is the result of estimating

the different components of the right-side terms of (6.2).

The subtle difference between β̂ (t) and β̃ (t) can be seen by considering

the following special case of (6.2). Suppose that X =
(
1, X

)T
, E(X) = 1 and

Var(X) = 1. Then, equations (6.1) and (6.2) give that β (t) =
(
β0(t), β1(t)

)T
,

XXT =

(
1 X

X X2

)
and E

[
XY (t)

]
=

(
β0(t)+β1(t)

β0(t)+ 2β1(t)

)
.

The first component of Ẽ
[
XY (t)

]
is a consistent estimator of

[
β0(t)+β1(t)

]
.

The second component of Ẽ
[
XY (t)

]
is a consistent estimator of

[
β0(t) +

2β1(t)
]
. Thus, β̃(t) is constructed by a linear combination of the consis-

tent smoothing estimators of
[
β0(t) + β1(t)

]
and

[
β0(t) + 2β1(t)

]
with ran-

dom weights that depend on Xi. When β0(t) and β1(t) satisfy different
smoothness conditions, larger mean squared errors may arise from estimat-
ing

[
β0(t)+β1(t)

]
and

[
β0(t)+ 2β1(t)

]
than estimating β0(t) and β1(t) sepa-

rately. Thus, β̃ (t) of (6.7) is in general less desirable than β̂(t) of (6.6). Similar
phenomena evidently hold for the general covariate vector X with k ≥ 1.

6.2 Component-wise Kernel Estimators

Using (6.3) and the sample mean estimators ÊXXT and êr+1, l+1 given in (6.4)

and (6.5), we can estimate the coefficient curves β (t) =
(
β0(t), . . . , βk(t)

)T
by

the kernel smoothing method. This method, which estimates each of the com-
ponents in β (t) by a kernel estimator of E

[(
∑k

l=0 êr+1, l+1X (l)
)

Y (t)
]
, is moti-

vated by the intuition that, by estimating each component of β (t) separately,
different smoothing needs of the coefficient curves βr(t), r = 0, . . . , k, can be
adapted by using different bandwidths.

6.2.1 Construction of Estimators through Least Squares

A component-wise kernel smoothing estimator of βr(t) can be constructed by
extending the univariate kernel approach of Section 3.1 to the mean curve of
(6.3) with a local least squares criterion based on (6.4), (6.5) and the longitu-
dinal observations. By (6.5), we can substitute er+1, l+1 of (6.3) with êr+1, l+1
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and approximate
(

∑k
l=0 er+1, l+1 X

(l)
i

)
Yi j by a pseudo-observation

Y ∗
i jr =

(
k

∑
l=0

êr+1, l+1 X
(l)
i

)
Yi j.

Here Y ∗
i jr can be viewed as an “observed value” for βr

(
ti j

)
. Then, the kernel

smoothing method of Section 3.1, such as equations (3.5) and (3.6), can be
applied to the pseudo-sample

Yr =
{

Y ∗
i jr : i = 1, . . . , n; j = 1, . . . , ni

}
with 0 ≤ r ≤ k, (6.8)

so that E
[(

∑k
l=0 êr+1, l+1 X (l)

)
Y (t)

]
can be estimated by minimizing the

component-specific local score function

Lr,Kr

(
t; hr, w

)
=

n

∑
i=1

ni

∑
j=1

{
wi

[
Y ∗

i jr − br(t)
]2

Kr

( t − ti j

hr

)}
(6.9)

with respect to br(t), where Kr(·) is a kernel function, hr > 0 is a bandwidth,

w =
(
w1, . . . , wn

)T
and wi, i = 1, . . . , n, are the weights for the subjects. The

minimizer of (6.9) leads to the kernel estimator β̂r,Kr

(
t; hr, w

)
of βr(t), which

is a linear statistic of Y ∗
i jr, such that

β̂r,Kr

(
t; hr, w

)
=

∑n
i=1 ∑

ni
j=1 wiY

∗
i jr Kr

[(
t − ti j

)
/hr

]

∑n
i=1 ∑

ni
j=1 wi Kr

[(
t − ti j

)
/hr

] for all 0 ≤ r ≤ k. (6.10)

The component-wise kernel estimator of β (t) =
(
β0(t), . . . , βk(t)

)T
is

β̂K

(
t; h, w

)
=
(

β̂0,K0

(
t; h0, w

)
, . . . , β̂k,Kk

(
t; hk, w

))T

, (6.11)

where K(·) =
{

K0(·), . . . , Kk(·)
}
is the collection of kernel functions and h =(

h0, . . . , hk

)T
is the vector of bandwidths.

Similar to the kernel estimators in Section 3.1, the“subject uniform weight”
w∗

i = 1/(nni) and the “measurement uniform weight” w∗∗
i = 1/N are the two

commonly used weight choices in practice. When the subject uniform weight

w∗
i = 1/(nni), w∗ =

(
w∗

1, . . . , w∗
n

)T
, is used, the component-specific local score

function is

Lr,Kr

(
t; hr, w∗)=

n

∑
i=1

ni

∑
j=1

{( 1

nni

)[
Y ∗

i jr − br(t)
]2

Kr

( t − ti j

hr

)}
. (6.12)

Minimizing Lr,Kr

(
t; hr, w∗) with respect to br(t), the kernel estimator of βr(t)

is

β̂r,Kr

(
t; hr, w∗)=

∑n
i=1 n−1

i ∑
ni

j=1

{
Y ∗

i jr Kr

[(
t − ti j

)
/hr

]}

∑n
i=1 n−1

i ∑
ni
j=1 Kr

[(
t − ti j

)
/hr

] , (6.13)
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and the kernel estimator β̂K

(
t; h, w∗) is obtained by (6.11).

When the measurement uniform weight w∗∗
i = 1/N, w∗∗ =

(
w∗∗

1 , . . . , w∗∗
n

)T
,

is used, the component specific local score function is

Lr,Kr

(
t; hr, w∗∗)=

n

∑
i=1

ni

∑
j=1

{
1

N

[
Y ∗

i jr − br(t)
]2

Kr

( t − ti j

hr

)}
. (6.14)

Minimizing Lr,Kr

(
t; hr, w∗∗) with respect to br(t), the kernel estimator of βr(t)

is

β̂r,Kr

(
t; hr, w∗∗)=

∑n
i=1 ∑

ni
j=1

[
Y ∗

i jr Kr

((
t − ti j

)
/hr

)]

∑n
i=1 ∑

ni
j=1 Kr

[(
t − ti j

)
/hr

] , (6.15)

and the kernel estimator β̂K

(
t; h, w∗∗) is again obtained by (6.11).

Similar to the univariate kernel smoothing estimators of Chapter 3, under-

smoothing or over-smoothing of the resulting estimator β̂K

(
t; h, w

)
is mainly

caused by unsuitable bandwidth choices, while the effect of the kernel func-
tions is rarely influential. Usual choices of kernel functions, such as the stan-
dard Gaussian kernel, the Epanechnikov kernel and other probability density
functions, normally give satisfactory results. Since the component-wise kernel
estimators in (6.11), (6.13) and (6.15) rely heavily on the time-invariant nature
of X and the sample mean estimator of E

(
XXT

)
, different smoothing needs of

βr(t), r = 0, . . . , k, can be adjusted by selecting appropriate bandwidths hr.
The choices of weighting schemes may also have profound influences on

the adequacy of the estimators. Ideally, it may be theoretically beneficial if
w∗

i = 1/(nni) in (6.13) or w∗∗
i =N−1 in (6.15) could be replaced by non-negative

weights wi, i = 1, . . . , n, which depend on the intra-subject correlations of the
data. However, without knowing the structures of the intra-correlations, the
natural choices w∗

i = 1/(nni) and w∗∗
i = N−1 appear to be reasonable in prac-

tice. It can be seen from the asymptotic results of Section 6.6 that neither

β̂r,Kr

(
t; hr, w∗) nor β̂r,Kr

(
t; hr, w∗∗) asymptotically dominates the other uni-

formly for all possible situations. The simulation study of Section 6.5 suggests
that the “subject uniform weight”w∗

i = 1/(nni) is practically preferable to the

“measurement uniform weight”w∗∗
i = 1/N, since β̂r,Kr

(
t; hr, w∗) provides better

fits than β̂r,Kr

(
t; hr, w∗∗) in many realistic situations. Because β̂r,Kr

(
t; hr, w∗∗)

assigns the uniform weight N−1 to all the measurement points, it is more
influenced by those subjects with large numbers of repeated measurements.

6.2.2 Cross-Validation Bandwidth Choices

Since the smoothing method is applied one at a time to the univariate compo-

nents of β (t)=
(
β0(t), . . . , βk(t)

)T
, the bandwidths may be selected subjectively

by examining the plots of the fitted curves and the pseudo-observations Yr of
(6.8). But finding automatic bandwidths suggested by the data is still of both
theoretical and practical interest. The bandwidth vector h of (6.10) can be
selected by the two cross-validation approaches described below.
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1. Component-wise Cross-Validation Bandwidths

Given that β̂r,Kr

(
t; hr, w

)
is simply a univariate kernel estimator for the

pseudo-observations Yr for any 0 ≤ r ≤ k, the leave-one-subject-out cross-
validation (LSCV) method of Section 3.3 can be extended to Yr to select

the component-wise bandwidth hr. Let Y
(−i)

r be the pseudo-observations as
defined in (6.8) but with the ith subject’s pseudo-observations

{
Y ∗

i jr : j =

1, . . . , ni

}
deleted, so that,

Y
(−i)

r =

{
Y ∗

i∗ j r =

(
k

∑
l=0

êr+1, l+1 X
(l)
i∗

)
Yi∗ j r : 1 ≤ i∗ ≤ n; i∗ 6= i

}
. (6.16)

Note that, by equations (6.4) and (6.5), the ith subject’s covariate vector Xi is
still used in the computation of êr+1, l+1. Ideally, in order to totally remove the

influence of the ith subject in Y
(−i)

r , it may be tempting to replace the êr+1, l+1

in Y ∗
i∗ j r with ê

(−i)
r+1, l+1, which is computed with the ith subject’s covariate vector

Xi removed. However, when the sample size n is sufficiently large, the values

of êr+1, l+1 and ê
(−i)
r+1, l+1 are approximately the same. Thus, for computational

simplicity, êr+1, l+1 is still used in the definition of Y
(−i)

r .

Let β̂
(−i)
r,Kr

(
t; hr, w

)
be the kernel estimator of (6.13) computed based on the

pseudo sample Y
(−i)

r . Following the approach of Section 3.3, the LSCV score

of β̂r,Kr

(
t; hr, w

)
based on Y ∗

i jr and β̂
(−i)
r,Kr

(
t; hr, w

)
can be defined by

LSCVKr

(
hr, w

)
=

n

∑
i=1

ni

∑
j=1

wi

[
Y ∗

i jr − β̂
(−i)
r,Kr

(
ti j; hr, w

)]2

. (6.17)

The component-wise LSCV bandwidth hr, lscv is the minimizer of LSCVKr

(
hr, w

)

provided that it can be uniquely minimized over hr. The use of hr, lscv can be
heuristically justified using the similar decomposition as in equation (3.17),
such that, by (6.17),

LSCVKr

(
hr, w

)

=
n

∑
i=1

ni

∑
j=1

wi

[
Y ∗

i jr −βr

(
ti j

)]2
+

n

∑
i=1

ni

∑
j=1

wi

[
βr

(
ti j

)
− β̂

(−i)
Kr

(
ti j; hr, w

)]2

+2
n

∑
i=1

ni

∑
j=1

wi

[
Y ∗

i jr −βr

(
ti j

)][
βr

(
ti j

)
− β̂

(−i)
Kr

(
ti j; hr, w

)]
. (6.18)

The same heuristic arguments for the cross-validation score of (3.17) suggest
that, when n is large, the third term of the right side of (6.18) is approximately
zero, and the second term is approximately the average squared error (ASE)

ASE
[
β̂r,Kr

(
·; hr, w

)]
=

n

∑
i=1

ni

∑
j=1

wi

[
βr

(
ti j

)
− β̂r,Kr

(
ti j ; hr, w

)]2

,
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so that, the component-wise cross-validated bandwidth hr,cv approximately

minimizes the average squared error ASE
[
β̂r,Kr

(
·; hr, w

)]
.

2. Cross-Validation Bandwidth Vector

Another procedure for selecting the data-driven bandwidths, which is sug-
gested by Wu and Chiang (2000), is to compute a bandwidth vector h for

β̂K

(
t; h, w

)
=
(

β̂0,K0

(
t; h0, w

)
, . . . , β̂k,Kk

(
t; hk, w

))T

,

which minimizes the squared distance between the predicted and observed

values of Y (t) based on the model (6.1). Let β̂
(−i)
K

(
t; h, w

)
be a kernel estimator

of β (t) =
(
β0(t), . . . , βk(t)

)T
computed using the pseudo-sample

{(
Yi∗ j, ti∗ j, Xi∗

)
: i∗ 6= i; j = 1, . . . , ni∗

}
, (6.19)

which is the longitudinal sample with all the observations of the ith subject
deleted. Define

LSCVK

(
h; w

)
=

n

∑
i=1

ni

∑
j=1

wi

[
Yi j −XT

i β̂
(−i)
K

(
ti j; h, w

)]2

(6.20)

to be the LSCV score for h =
(
h0, . . . , hk

)T
. The cross-validated bandwidth

vector hLSCV =
(
h0,LSCV , . . . , hk,LSCV

)T
is then defined to be the minimizer of

LSCVK

(
h; w

)
, provided that LSCVK

(
h; w

)
can be uniquely minimized.

Similar justifications as in Section 3.3 can also be used to evaluate the
adequacy of the LSCV criterion in (6.20). In this case,

LSCVK

(
h; w

)

=
n

∑
i=1

ni

∑
j=1

wi

[
Yi j −XT

i β
(
ti j

)]2
+

n

∑
i=1

ni

∑
j=1

wi

{
XT

i

[
β
(
ti j

)
− β̂

(−i)
K

(
ti j; h, w

)]}2

+2
n

∑
i=1

ni

∑
j=1

wi

[
Yi j −XT

i β
(
ti j

)]{
XT

i

[
β
(
ti j

)
− β̂

(−i)
K

(
ti j; h, w

)]}
. (6.21)

The first term of the right side of (6.21) does not depend on the bandwidths,

while, because of the definition of β̂ (−i)
(
t; h, w

)
, the third term of (6.21) is

approximately zero. Denote by ASE
[
β̂K

(
·; h, w

)]
the average squared error of

XT
i β̂K

(
ti j; h, w

)
, i.e.,

ASE
[
β̂K

(
·; h, w

)]
=

n

∑
i=1

ni

∑
j=1

wi

{
XT

i

[
β
(
ti j

)
− β̂K

(
ti j; h, w

)]}2

.

The expectation of the second term of the right side of (6.21) is actually
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the expectation of ASE
[
β̂
(−i)
K

(
·; h, w

)]
, which approximates the expectation of

ASE
[
β̂K

(
·; h, w

)]
when n is large. Thus, hLSCV is justifiable because it approx-

imately minimizes the average squared error ASE
[
β̂K

(
·; h, w

)]
.

3. A Combined Cross-Validation Approach

When the dimensionality of Xi is high, i.e., (k + 1) is large, the search
for hLSCV could be computationally intensive and numerically infeasible. The
amount of computation can escalate dramatically when the dimensionality
(k+ 1) is 3 or larger. In practice, it is usually easy to find a suitable range of
the bandwidths by examining the plots of the fitted curves. Within a given
range of h =

(
h0, . . . , hk

)
, the value of hLSCV can be approximated by com-

puting LSCVK(h; w) through a series of h =
(
h0, . . . , hk

)
choices. Given that

the component-wise cross-validated bandwidth hr, lscv is computed based on
a univariate minimization of the LSCV score (6.17), a computationally fea-
sible approach is to combine the above two cross-validation procedures. In

this combined approach, the component-wise bandwidths
(
h0, lscv, . . . , hk, lscv

)T

from (6.17) are used as the initial values for h, and hLSCV can be computed by

(6.20) through a grid search around the nearby values of
(
h0, lscv, . . . , hk, lscv

)T
.

This combined cross-validation method for searching hLSCV could be compu-
tationally faster than a global search of hLSCV based on the minimization of
LSCVK(h; w) in (6.20) alone.

6.3 Component-wise Penalized Smoothing Splines

Another smoothing method for the estimation of β (t) =
(
β0(t), . . . , βk(t)

)T
is

the roughness penalty approach based on the quantities of (6.3), (6.4) and
(6.5), which extends the method of Chapter 5 to the model (6.1). This ap-
proach leads to a class of penalized smoothing spline estimators for β (t). We
describe here the estimators developed in Chiang, Rice and Wu (2001).

6.3.1 Estimators by Component-wise Roughness Penalty

Suppose that the design time points are contained in a compact set [a, b] and
βr(t) are twice differentiable for all t ∈ [a, b]. Extending the score function
(5.1) to the pseudo-sample Yr of (6.8), a roughness penalized least squares

estimator, also known as penalized smoothing spline estimator, β̂r,RP

(
t; λr, w

)

of βr(t) for any 0≤ r ≤ k is obtained by minimizing the following score function,
which is referred to as the penalized least squares criterion,

Jw

(
βr; λr, RP

)
=

n

∑
i=1

ni

∑
i=1

{
wi

[
Y ∗

i jr −βr

(
ti j

)]2}
+λr RP

[
βr(·)

]
, (6.22)

where λr is a non-negative smoothing parameter, w = (w1, . . . , wn)
T with wi

being non-negative weights, and RP
[
βr(·)

]
is a roughness penalizing function
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of βr(t) measuring the roughness or smoothness of the curve βr(t). In prac-
tice, RP

[
βr(·)

]
is unknown in advance, so that the choice of RP

[
βr(·)

]
is often

subjective.
By penalizing the integrated squares of the second derivatives of βr(t), a

penalized smoothing spline estimator β̂r,J

(
t; λr, w

)
of βr(t), 0 ≤ r ≤ k, can be

obtained by minimizing

Jw

(
βr; λr, β ′′

r

)
=

n

∑
i=1

ni

∑
i=1

{
wi

[
Y ∗

i jr −βr

(
ti j

)]2}
+λr

∫ b

a

[
β ′′

r (s)
]2

ds, (6.23)

where λr, w and wi are defined in equation (6.22). Let λ =
(
λ0, . . . , λk

)T
be

the vector of smoothing parameters. The penalized least squares estimator of

β (t) =
(
β0(t), . . . , βk(t)

)T
based on (6.23) is

β̂J

(
t; λ , w

)
=
(

β̂0,J

(
t; λ0, w

)
, . . . , β̂k,J

(
t; λk, w

))T

. (6.24)

Similar to the component-wise kernel estimators of Section 6.2 or the pe-
nalized least squares estimators of Chapter 5, usual choices for wi include
w∗

i = 1/(nni) and w∗∗
i = 1/N. It follows from (6.23) that, when β ′′

r (s) is given, a

larger λr is associated with a larger penalty term λr

∫ b
a

[
β ′′

r (s)
]2

ds, which leads

to an over-smoothed penalized least squares estimator β̂r,S

(
t; λr, w

)
. On the

other hand, a smaller λr gives a smaller penalty term λr

∫ b
a

[
β ′′

r (s)
]2

ds, which

leads to a under-smoothed penalized least squares estimator β̂r,S

(
t; λr, w

)
.

The minimizer β̂r,J

(
t; λr, w

)
of (6.23) is a cubic spline and a linear statis-

tic of Y ∗
i jr. This can be seen by considering the set of compactly supported

functions

H[a,b] =
{

g(·) : g and g′ are absolutely

continuous on [a, b], and
∫ b

a

[
g′′(s)

]2
ds < ∞

}
.

Setting the Gateaux derivative of Jw

(
βr; λr, β ′′) to zero, β̂r,J

(
t; λr, w

)
uniquely

minimizes (6.23) if and only if it satisfies the normal equation

n

∑
i=1

ni

∑
j=1

{
wi

[
Y ∗

i jr − β̂r,J

(
t; λr, w

)]
g(ti j)

}
= λr

∫ b

a
β̂ ′′

r,J

(
t; λr, w

)
g′′(s)ds, (6.25)

for all g in a dense subset of H[a,b]. The same argument as in Wahba (1975)
then shows that there is a symmetric function Sλr

(t, s), which belongs to H[a,b]

when either t or s is fixed, so that β̂r,J

(
t; λr, w

)
is a natural cubic spline esti-

mator given by

β̂r,J

(
t; λr, w

)
=

n

∑
i=1

ni

∑
j=1

[
wi Sλr

(
t, ti j

)
Y ∗

i jr

]
. (6.26)
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As discussed in Section 5.1, the explicit expression of Sλr
(t, s) is unknown, and

the theoretical properties of β̂r,J

(
t; λr, w

)
can be derived by approximating

Sλr
(t, s) with an equivalent kernel function, which has an explicit expression.

6.3.2 Estimators by Combined Roughness Penalty

In addition to the component-wise roughness penalized approach based on the
expression (6.3), an alternative method, which is described in Hoover et al.
(1998), is to use the expression (6.1) directly and minimize

J∗w
(
β ; λ , β ′′)=

n

∑
i=1

ni

∑
j=1

wi

{
Yi j−

[
k

∑
l=0

X
(l)
i βl

(
ti j

)]}2

+
k

∑
l=0

λl

∫ b

a

[
β ′′

l (s)
]2

ds (6.27)

with respect to β (t) =
(
β0(t), . . . , βk(t)

)T
, where λl , l = 0, . . . , k, are non-

negative smoothing parameters and λ =
(
λ0, . . . , λk

)T
. The minimizer of

(6.27),

β̂J∗
(
t; λ , w

)
=
(

β̂0,J∗
(
t; λ , w

)
, . . . , β̂k,J∗

(
t; λ , w

))T

, (6.28)

is then a smoothing spline estimator of β (t) with β̂l,J∗
(
t; λ , w

)
as the compo-

nent estimator of βl(t).
The penalized score functions, Jw

(
βr;λr,β

′′
r

)
of (6.23) and J∗w

(
β ;λ ,β ′′) of

(6.27), use different squared errors and penalty terms. Thus, the estimators

β̂J

(
t; λ , w

)
and β̂J∗

(
t; λ , w

)
given in (6.24) and (6.28), respectively, may not

have the same numerical values. Computationally, Jw

(
βr; λr, β ′′

r

)
is minimized

with respect to βr(t) only, but minimizing J∗w
(
β ; λ , β ′′) requires solving a lin-

ear system which involves all the components of β (t) simultaneously. Conse-
quently, the computation involved in minimizing Jw

(
βr; λr, β ′′

r

)
is much sim-

pler than that involved in minimizing J∗w
(
β ; λ , β ′′). Because β̂r

(
t; λr, w

)
has a

simple linear expression, its asymptotic properties can be developed by meth-
ods similar to that with cross-sectional i.i.d. data. Theoretical properties of
the spline estimators obtained by minimizing J∗w

(
β ; λ , β ′′) have not been de-

veloped. Thus, the smoothing spline estimator β̂J

(
t; λ , w

)
of (6.24) has the

advantage of being computationally simple with known asymptotic properties

over the smoothing spline estimator β̂J∗
(
t; λ , w

)
of (6.28). On the other hand,

because β̂J

(
t; λ , w

)
relies on the component-wise expression (6.3), it cannot

be applied to situations involving time-dependent covariates, while β̂J∗
(
t; λ , w

)

may be generally applied to situations with any covariates.

6.3.3 Cross-Validation Smoothing Parameters

The choice of smoothing parameter λr controls the size of the penalizing term
of Jw

(
βr; λr, β ′′

r

)
and plays the key role for determining the appropriateness of

β̂J

(
t; λr, w

)
. Unlike the kernel-based local smoothing method of Section 6.2,
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which only uses the local observations with time points ti j in a neighbor-

hood around t, the smoothing spline estimator β̂r,J

(
t; λr, w

)
is in principle a

global smoothing estimator, so that, an ideal choice of λr may depend on the
structures of the intra-subject correlations. But, since the correlation struc-

tures of the data are often completely unknown and β̂r,J

(
t; λr, w

)
is asymp-

totically equivalent to an equivalent kernel estimator (see Section 6.7), the
cross-validation procedure of Section 6.2.2 can be similarly used for selecting

the smoothing parameters λ =
(
λ0, . . . , λk

)T
.

1. Component-wise Cross-Validated Parameters

When the pseudo-observations Y
(−i)

r in (6.16) are used, the component-
wise cross-validation smoothing parameter λr for any 0≤ r ≤ k can be selected
by minimizing the cross-validation score

LSCVr,J

(
λr, w

)
=

n

∑
i=1

ni

∑
j=1

wi

[
Y ∗

i jr − β̂
(−i)
r,J

(
ti j; λr, w

)]2

(6.29)

with respect to λr, where β̂
(−i)
r,J

(
ti j; λr, w

)
is the penalized smoothing spline

estimator computed using the pseudo-sample Y
(−i)

r in (6.16) and the penalized
least squares function (6.23). If LSCVr,J

(
λr, w

)
can be uniquely minimized, the

minimizer λr, lscv of LSCVr,J

(
λr, w

)
is the component-wise leave-one-subject-

out cross-validated (LSCV) smoothing parameter. The use of λr, lscv can be
heuristically justified by the same derivations as in (6.18) and (6.19) that it
approximately minimizes the average squared error of the penalized spline

estimator β̂r,J

(
t; λr, w

)
.

2. Cross-Validated Parameter Vectors

When the squared error of β̂J

(
t; λ , w

)
based on the original model (6.1)

is considered, Chiang, Rice and Wu (2001) suggests to select the smoothing
parameters by the LSCV procedure which minimizes the cross-validation score
function

LSCVJ(λ , w) =
n

∑
i=1

ni

∑
j=1

{
wi

[
Yi j −

k

∑
l=0

X
(l)
i β̂

(−i)
l,J

(
ti j; λl , w

)]2}
, (6.30)

where β̂
(−i)
r,J

(
t; λr, w

)
is the smoothing spline estimator computed from (6.24)

using the sample (6.19), which is the remaining data with all the ob-
servations of the ith subject deleted. The cross-validation smoothing pa-
rameters λLSCV =

(
λ0,LSCV , . . . , λk,LSCV )

T are defined to be the minimizer of
LSCVJ(λ , w), provided that LSCVJ(λ , w) can be uniquely minimized with re-

spect to λ =
(
λ0, . . . , λk

)T
. Using the similar decomposition as in (6.21), the

cross-validated smoothing parameters λLSCV =
(
λ0,LSCV , . . . , λk,LSCV )

T approxi-
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mately minimizes the average squared error of XT
i β̂

(−i)
J

(
t; λ , w

)
as a predictor

of Yi j.

3. Combined Cross-Validated Parameters

Since the computation of λLSCV could be intensive for a large k when
LSCVJ(λ , w) is minimized directly with respect to λ , the search for λLSCV

can be simplified by combining the univariate optimization algorithm of sep-
arately minimizing LSCVr,J

(
λr, w

)
of (6.29) for each 0 ≤ r ≤ k with the algo-

rithm of minimizing LSCVJ(λ , w) of (6.30). In this combined approach, the first
step is to compute the component-wise cross-validated smoothing parameters{

λ0, lscv, . . . ,λk, lscv

}
based on (6.29) as the initial values, and the second step is

to compute the combined cross-validated smoothing parameter vector which
minimizes LSCVJ(λ , w) in (6.30) over a grid value around

{
λ0, lscv, . . . ,λk, lscv

}
.

This combined cross-validation procedure, which uses
{

λ0, lscv, . . . ,λk, lscv

}
as

the initial values, may speed up the computation for the approximate values
of λLSCV =

(
λ0,LSCV , . . . ,λk,LSCV )

T .

6.4 Bootstrap Confidence Intervals

Since the numbers of repeated measurements ni, i = 1, . . . , n, are allowed to
be different and the possible intra-subject correlations of the data are often
completely unknown, the corresponding asymptotic distributions of the esti-
mators may involve bias and correlation terms which are difficult to estimate.
Statistical inferences based on the asymptotic distributions of the smoothing
estimators may be difficult to implement in practice. The confidence intervals
described in this section follow the same framework of resampling-subject
bootstrap described in Chapters 3 to 5. When the context is clear, we denote

by β̂r(t) any estimator of βr(t) given in Sections 6.2 and 6.3.

Approximate Bootstrap Pointwise Confidence Intervals:

(a) Computing Bootstrap Estimators. Generate B independent bootstrap
samples using the resampling-subject bootstrap procedure of Section 3.4.1

and compute the B bootstrap estimators
{

β̂ b
r,1(t), . . . , β̂ b

r,B(t)
}
of βr(t).

(b) Approximate Bootstrap Confidence Interval. Let Lb
r,α/2

(t) and

Ub
r,α/2

(t) be the
[
100× (α/2)

]
th and

[
100× (1−α/2)

]
th, i.e., lower and up-

per
[
100× (α/2)

]
th, percentiles, respectively, calculated based on the above

B bootstrap estimators. The approximate
[
100× (1−α)

]
% bootstrap confi-

dence interval for βr(t) is given by
(

Lb
r,α/2(t), Ub

r,α/2(t)
)
. (6.31)

The normal approximated bootstrap confidence interval for βr(t) is

β̂r(t)± z1−α/2× ŝe
(

t; β̂ b
r

)
, (6.32)
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where ŝe
(
t; β̂ b

r

)
is the estimated standard deviation of β̂r(t) from the B boot-

strap estimators
{

β̂ b
r,1(t), . . . , β̂ b

r,B(t)
}
, such that,

ŝe
(

t; β̂ b
r

)
=

{
1

B− 1

B

∑
s=1

[
β̂ b

r,s(t)−
1

B

B

∑
l=1

β̂ b
r, l(t)

]2}1/2

, (6.33)

and z1−α/2 is the
[
100× (1−α/2)

]
th percentile of the standard normal dis-

tribution. ✷

Similar to the procedures of Sections 4.2 and 5.1, the bootstrap confidence
intervals described above ignore the biases of the smoothing estimators. For
datasets with large n, the biases of the smoothing estimators are small, so
that ignoring the biases does not have a significant impact on the coverage
probabilities of the confidence intervals given in (6.31), (6.32) and (6.33).

6.5 R Implementation

6.5.1 The BMACS CD4 Data

The BMACS CD4 data has been described in Section 1.2. In Section 2.4.1,
we evaluated certain covariate effects on the post-infection CD4 percentage
using a linear mixed-effects model where the covariate effects are assumed to
be constant with time t. In Sections 3.5.2 and 4.3.2, we used the unstructured
local smoothing method and spline-based smoothing method to estimate the
mean time curve of CD4 percentage after HIV infection without considering
other baseline covariates. Here, we use this dataset to illustrate how to fit a
flexible structured nonparametric model (6.1), in which the model coefficients
β (t) are allowed to vary with time t.

We consider evaluating the effects of three time-invariant covariates, pre-
HIV infection CD4 percentage, cigarette smoking, and age at HIV infection
on the mean CD4 percentage after HIV infection using the model (6.1). Let
ti j be the time (in years) of the jth measurement for the ith individual after
HIV infection, and Yi j be the ith individual’s CD4 percentage at time ti j post-

infection. For the covariates, let X (1) be the pre-infection CD4 percentage, X (2)

be the individual’s cigarettes smoking status (1 indicates a smoker, 0 indicates
a nonsmoker), and X (3) be the ith individual’s age at HIV infection. To obtain
a better interpretation of our results, the covariates X (1) and X (3) are centered
by subtracting their corresponding sample averages from the individual values.
The observed centered covariates for the ith subject are





X
(1)
i = ith subject’s pre-infection CD4 percentage

− sample mean of pre-infection CD4 percentage,

X
(3)
i = ith subject’s age at HIV infection

− sample mean of age at HIV infection.

(6.34)
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Figure 6.1 Covariate effects on post-infection CD4 percentage using kernel esti-

mators. The solid curves in (A)-(D) show the kernel estimators β̂r,Kr

(
t; hr , w

)
,

r = 0, 1, 2, 3, respectively, based on (6.13) using a standard Gaussian kernel and
hr = 1.5, r = 0, 1, 2, 3. The dashed curves indicate the corresponding 95% pointwise
bootstrap confidence intervals.

Consequently, the time-varying coefficient model is

Yi j = β0

(
ti j

)
+β1

(
ti j

)
X
(1)
i +β2

(
ti j

)
X
(2)
i +β3

(
ti j

)
X
(3)
i + εi j, (6.35)

where εi j is the mean zero error term at time ti j. Based on (6.34), (6.35) and the
computed sample means of pre-infection CD4 percentage and age at HIV infec-
tion, the baseline CD4 percentage curve β0(t) represents the mean time curve
of CD4 percentage for a nonsmoker with the sample average pre-infection CD4
of 42.9% and the average HIV infection age of 34.2 years, and βi(t), i = 1, 2, 3,
represent the effects of pre-infection CD4 percentage, cigarette smoking, and
age at infection, respectively, on the post-infection CD4 percentage.

Once we have the pseudo-samples for the baseline values and the three
covariates of interest, we can estimate the baseline mean curve and each of the
three covariate effects by the component-wise kernel smoothing method and
penalized smoothing splines in Sections 6.2 and 6.3. The following R commands
are used to compute the quantities in equations (6.4) and (6.5) and generate
the pseudo-samples as in (6.8):
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Figure 6.2 Covariate effects on post-infection CD4 percentage using smoothing spline
estimators. The solid curves in (A)-(D) show the smoothing spline estimators

β̂r,J
(
t; λr, w

)
, r = 0, 1, 2, 3, respectively, based on (6.23) using the smoothing param-

eters λLSCV = (0.84, 4.4, 1.2, 5.2)T for r = 0, 1, 2, 3. The dashed curves indicate the
corresponding 95% pointwise bootstrap confidence intervals.

# Obtain the sample size, N=283 for BMACS

> N <- length(unique(BMACS$ID))

# Obtain the baseline covariate:

# first observation per subject ID

> Xi <- do.call("rbind", as.list(by(BMACS[,c("preCD4C", "Smoke",

"ageC")], BMACS$ID, head, n=1)))

# Formula (6.4-6.5)

> Xi <- as.matrix(cbind(1,Xi))

> EXX <- Reduce("+",

lapply(1:N, function(i) Xi[i,] %*% t(Xi[i,])))

> EstInv <- solve(EXX/N)

# Obtain the four pseudo longitudinal samples

> eX <- data.frame(IDD=1:N,

eX1 = apply(t(t(Xi)*EstInv[1,]), 1, sum),

eX2 = apply(t(t(Xi)*EstInv[2,]), 1, sum),

eX3 = apply(t(t(Xi)*EstInv[3,]), 1, sum),

eX4 = apply(t(t(Xi)*EstInv[4,]), 1, sum))
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> BMACS <- merge(BMACS, eX, by="IDD")

> BMACS$PseudoY <- with(BMACS, cbind(eX1, eX2, eX3, eX4)*CD4)

Figure 6.1 shows the estimated βr(t), r = 0, 1, 2, 3, based on (6.13) using
the standard Gaussian kernel and a subjective bandwidth choice of hr = 1.5,
r = 0, 1, 2, 3, by examining the estimated coefficient curves. The dashed lines
present the corresponding bootstrap percentile 95% pointwise confidence inter-
vals as in (6.31) for 59 equally spaced time points between 0.1 and 5.9 years.We
can also choose the bandwidth vectors based on cross-validation as described
in Section 6.2.2. With a quick grid search in the range of 0.5 to 3 for each
component of the bandwidth vector, the bandwidth h= (0.5, 2.5, 3.0, 2.0)T has
the minimum LSCV score in (6.17). The kernel estimates with cross-validated
bandwidths are similar compared to the coefficient curves with subjective
bandwidths in Figure 6.1.

Figure 6.2 shows the estimated βr(t), r = 0, 1, 2, 3, based on (6.24) us-
ing the penalized smoothing splines (6.23) with the subject uniform mea-
surement weight and the cross-validated smoothing parameters λLSCV =
(0.84, 4.4, 1.2, 5.2)T . For the ease of computation, a series of grid values for
each λr in a small window around the cross-validated λr,LSCV (selected only for
the rth coefficient curve) are used for r = 0, 1, 2, 3, instead of searching over
a 4-dimensional vector space in a wide range. The dashed lines represent the
corresponding bootstrap 95% pointwise confidence intervals as in (6.32) for
time points between 0.1 and 5.9 years.

Both Figures 6.1 and 6.2 show that the mean baseline CD4 percentage
decreases quickly after HIV infection but the rate of declining is slowing down
about 4 years post-infection. Consistent with the results from fitting a lin-
ear mixed-effects model in Section 2.4.1, neither smoking nor age at infection
show a significant effect on the post-infection CD4 percentage with wide 95%
confidence intervals covering the null effect. However, the pre-infection CD4
percentage seems to be positively associated with the post-infection CD4 per-
centage and its coefficient may be time-varying with a larger effect at the
beginning of HIV infection.

6.5.2 A Simulation Study

We demonstrate here the performance of the estimation methods in Sec-
tions 6.2 and 6.3 through a simulation study. The simulation design has the
data structure similar to the BMACS CD4 example. The simulated data
are generated based on the time-varying coefficient model (6.1) with time-

invariant covariates, X =
(
X (1), X (2)

)T
, where X (1) is a binary random variable

having the Bernoulli distribution with p = 0.5, X (2) is a continuous random
variable having the normal distribution with mean 0 and standard deviation 4,
and X (1) and X (2) are independent. The three nonlinear time-varying coeffi-
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Figure 6.3 The solid curves show the true values of β0(t), β1(t) and β2(t), respec-
tively. The corresponding dotted and dashed curves are the averages of the estimated
curves over 1000 simulated samples based on the kernel smoothing estimates with
the standard Gaussian kernel and the penalized smoothing spline estimates using the
cross-validated bandwidths and smoothing parameters, respectively.

cients βr(t), r = 0, 1, 2, are given by





β0(t) = 3.5+ 6.5 sin
(
t π/60

)
,

β1(t) = −0.2− 1.6 cos
[
(t − 30)π

/
60
]
,

β2(t) = 0.25− 0.0074
[
(30− t)

/
10
]3
.

(6.36)

Taking into account the common scenario in epidemiological studies that
the subjects may randomly miss some scheduled visits, the time points ti j

can be generated from a set of pre-specified values. As shown in the real
data examples in Section 1.2.2, the number of repeated measurements for
each subject often range from 1 to 20, we consider here the “unbalanced”
design in the sense that the time points ti j may not be the same for all the
subjects. Thus, in each simulated sample with n= 400 subjects, we assume that
the subjects are scheduled to be observed at 31 equally spaced time design
points {0, 1, . . . , 30}. However, at each given time point, a subject has 60%
probability to be randomly missing. This leads to unequal numbers of repeated
measurements ni for individual subjects. In addition, the random errors εi j are
generated from the Gaussian process with zero mean and covariance function

Cov
(
εi1 j1 , εi2 j2

)
=

{
0.0625 exp

(
−
∣∣ti1 j1 − ti2 j2

∣∣), if i1 = i2;

0, if i1 6= i2.
(6.37)

The time-dependent responses Yi j are obtained by substituting ti j, Xi, εi j with
the correlations (6.37), and the coefficient curves βr(t) of (6.36) into (6.1).

For each simulated sample
{(

Yi j, ti j, XT
i

)
: i = 1, . . . , 400; j = 1, . . . , ni

}
, we

estimate the coefficient curves, βr(t), r = 0, 1, 2, by applying the estimation
procedures to obtain the kernel smoothing estimators in (6.13) with the stan-
dard Gaussian kernel and the penalized smoothing spline estimators in (6.23)
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using the cross-validated bandwidths and smoothing parameters, respectively.
We repeat the simulation 1000 times. Figure 6.3 shows the true curves of
β0(t), β1(t), β2(t), and the averages of the estimated curves over all the sim-
ulated samples. These simulation results demonstrate that both estimation
approaches provide reasonably good estimators at least for the interior time
points of the time-varying coefficients. But, compared to the penalized smooth-
ing spline estimators, the kernel estimators have slightly larger bias near the
boundary.

6.6 Asymptotic Properties for Kernel Estimators

We derive in this section the asymptotic representations of the mean squared

errors and the mean integrated squared errors of β̂r,Kr

(
t; hr, w

)
given in (6.10).

Special cases for the w∗
i = 1/(nni) and w∗∗

i = 1/N weights are direct conse-

quences of the general asymptotic results for β̂r,Kr

(
t; hr, w

)
.

6.6.1 Mean Squared Errors

Similar to the asymptotic setup of Section 3.6, we specify for mathematical
simplicity that the time points

{
ti j : i = 1, . . . , n; j = 1, . . . , ni

}
, are randomly

selected from a cumulative distribution function F(·) with density f (·). But
ni, i = 1, . . . , n, are assumed to be nonrandom. This corresponds to random
designs in regression analysis. Designs with nonrandom ti j can be viewed as a
special case with F(·) having point mass at the given values of ti j.

Because, by the expression of (6.11), β̂K

(
t; h, w

)
is a Rk+1-valued vector, its

distance from β (t) =
(
β0(t), . . . , βk(t)

)T
can be measured by different indices.

Suppose that the statistical objective is to evaluate the adequacy of one com-

ponent β̂r,Kr

(
t; hr, w

)
at a time point t. A natural risk index for β̂r,Kr

(
t; hr, w

)

at time point t is the mean squared error defined by

MSE∗
[
β̂r,Kr

(
t; hr, w

)]
= E

{[
β̂r,Kr

(
t; hr, w

)
−βr(t)

]2
}
. (6.38)

For the risk of the vector estimator β̂K

(
t; h, w

)
at time point t, an obvious

choice is the linear combination of the component-wise mean squared errors,

MSE∗
[
β̂K

(
t; h, w

)]
= E

{[
β̂K

(
t; h, w

)
−β (t)

]T

W

[
β̂K

(
t; h, w

)
−β (t)

]}

=
k

∑
r=0

Wr E

{[
β̂r,Kr

(
t; hr, w

)
−βr(t)

]2
}
, (6.39)

where W is a (k + 1)× (k + 1) diagonal matrix of weights with nonnegative
elements

{
W0, . . . ,Wk

}
.

Similar to the situations in kernel regression estimators discussed in Sec-

tion 3.6.1, the conditional moments of the kernel estimators β̂r,Kr

(
t; hr, w

)
,



168 SMOOTHING WITH TIME-INVARIANT COVARIATES

hence, the right-side terms of (6.38) and (6.39), may not exist, so that modi-
fications of the mean squared errors defined in (6.38) and (6.39) are used. It

follows from (6.10) that β̂r,Kr

(
t; hr, w

)
can be written as

β̂r,Kr

(
t; hr, w

)
=
[

f̂r,Kr

(
t; hr, w

)]−1

m̂r,Kr

(
t; hr, w

)
, (6.40)

where the right side terms are given by

m̂r,Kr

(
t; hr, w

)
=

n

∑
i=1

ni

∑
j=1

[(wi

hr

)
Y ∗

i jr Kr

( t − ti j

hr

)]
(6.41)

and

f̂r,Kr

(
t; hr, w

)
=

n

∑
i=1

ni

∑
j=1

[(wi

hr

)
Kr

( t − ti j

hr

)]
. (6.42)

Similar to the derivation of (3.21), straightforward algebra using (6.40), (6.41)
and (6.42) shows that

[
1− dr,Kr

(
t; hr, w

)][
β̂r,Kr

(
t; hr, w

)
−βr(t)

]

=
[

f (t)
]−1
[
m̂r,Kr

(
t; hr, w

)
−βr(t) f̂r,Kr

(
t; hr, w

)]
, (6.43)

where dr,Kr

(
t; hr, w

)
= 1−

[
f̂r,Kr

(
t; hr, w

)
/ f (t)

]
. For any interior point t of the

support of f (·), it can be shown by the same method used in (3.37) and
(3.38) of Section 3.6 that dr,Kr

(
t; hr, w

)
→ 0 in probability as n → ∞ and hr →

0. Then, applying direct algebra to (6.41), (6.42) and (6.43), the following
approximation holds in probability when the sample size n is sufficiently large,

[
1+ op(1)

][
β̂r,Kr

(
t; hr, w

)
−βr(t)

]
= f−1(t) R̂r,Kr

(
t; hr, w

)
, (6.44)

where R̂r,Kr

(
t; hr, w

)
= m̂r,Kr

(
t; hr, w

)
−βr(t) f̂r,Kr

(
t; hr, w

)
.

Using the approximation give in (6.44), the local and global risks of

β̂r,Kr

(
·; hr, w

)
can be defined by the modified mean squared error,

MSE

[
β̂r,Kr

(
t; hr, w

)]
= E

{[
R̂r,Kr

(
t; hr, w

)/
f (t)
]2
}

(6.45)

and the modified mean integrated squared error,

MISE

[
β̂r,Kr

(
·; hr, w

)]
=

∫
MSE

[
β̂r,Kr

(
s; hr, w

)]
π(s)ds, (6.46)

respectively, where π(s) is a known non-negative weight function supported
by a compact subset in the interior of the support of f (·). As in (3.40), the
assumption that π(·) has compact support within the support of f (·) is to
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remove the boundary effects of the kernel estimators. Based on the definitions

of (6.45) and (6.46), the local and global risks of β̂K

(
· ; h, w

)
are measured by

MSE

[
β̂K

(
t; h, w

)]
=

k

∑
r=0

Wr MSE

[
β̂r,Kr

(
t; hr, w

)]
(6.47)

and

MISE
[
β̂K

(
·; h, w

)]
=

k

∑
r=0

Wr MISE
[
β̂r,Kr

(
·; hr, w

)]
, (6.48)

respectively, where
{

W0, . . . ,Wk

}
are the known non-negative constants defined

in (6.39).

6.6.2 Asymptotic Assumptions

Wemake the following assumptions throughout this chapter for the asymptotic

properties of MSE
[
β̂K

(
t ; h, w

)]
and MISE

[
β̂K

(
· ; h, w

)]
defined in (6.47) and

(6.48):

(a) For all t on the real line, f (t) is continuously differentiable and there
are non-negative constants pr, r = 0, . . . , k, so that βr(t) are

(
pr + 2

)
times

continuously differentiable with respect to t.

(b) For all r, l = 0, . . . , k, E
[
|X (r)

∣∣4] and the (2+ δ )th moments of
∣∣êr+1, l+1

∣∣
are finite for some δ > 0.

(c) The variance and covariance of the error process ε(t) satisfy

σ2(t) = E
[
ε2(t)

]
< ∞ and ρε(t) = lim

t′→t
E
[
ε(t)ε(t ′)

]
< ∞.

Furthermore, σ2(t) and ρε(t) are continuous for all t on the real line.

(d) The kernel function Kr(·) is a compactly supported
(

pr +2
)
th order kernel

which satisfies
∫

u j Kr(u)du = 0 for all 1 ≤ j < pr + 2,
∫

Kr(u)du = 1,

M(pr+2)

(
Kr

)
=

∫
upr+2 Kr(u)du < ∞ and R(Kr) =

∫
K2

r (u)du < ∞.

(e) The weight vector w =
(
w1, . . . , wn

)T
satisfies wi ≥ 0 for all 1 ≤ i ≤ n,

∑n
i=1

(
wi ni

)
= 1, ∑n

i=1

(
w2

i n2
i

)
= O

(
n−1
)
and ∑n

i=1

(
w2

i ni

)
→ 0 as n → ∞.

(f) The bandwidth hr > 0 satisfies hr → 0, nhr → ∞ and ∑n
i=1

(
w2

i ni

)/
hr → 0 as

n → ∞. ✷

Similar to the assumptions for the unstructured kernel estimation in Sec-
tion 3.6, we have that σ2(t) ≥ ρε(t) in general, and the strict inequality be-
tween σ2(t) and ρε(t) happens when εi j includes an independent measurement
error, e.g., εi j satisfies the white noise model εi j = s

(
ti j

)
+Wi, where s(t) is a
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mean zero Gaussian stationary process and Wi is an independent measurement
error. Conditions such as the compact support of Kr(·) and the smoothness
conditions of f (t), βr(t), σ2(t) and ρε(t), are assumed for the simplicity of the
derivations and may be relaxed in practice. Analogous asymptotic results may
be derived when these conditions are modified or even weakened. For exam-
ple, noncompact support kernels, such as the standard Gaussian kernels, are
commonly used in practice and usually lead to satisfactory results.

6.6.3 Asymptotic Risk Representations

By (6.45), the mean squared error of β̂r,Kr

(
t; hr, w

)
is defined through

the second moment of f−1(t) R̂r,Kr

(
t; hr, w

)
. The bias and variance of

f−1(t) R̂r,Kr

(
t; hr, w

)
are

B
[
β̂r,Kr

(
t; hr, w

)]
= E

[
f−1(t) R̂r,Kr

(
t; hr, w

)]
(6.49)

and
V
[
β̂r,Kr

(
t; hr, w

)]
= f−2(t)Var

[
R̂r,Kr

(
t; hr, w

)]
, (6.50)

respectively, and the mean squared error of (6.45) has the decomposition

MSE
[
β̂r,Kr

(
t; hr, w)

]
= B2

[
β̂r,Kr

(
t; hr, w

)]
+V

[
β̂r,Kr

(
t; hr, w

)]
. (6.51)

An important fact for deriving the asymptotic expression of B
[
β̂r,Kr

(
t; hr, w

)]

and V
[
β̂r,Kr

(
t; hr, w

)]
is that

êr+1, l+1 = er+1, l+1 +Op

(
n−1/2

)
.

For simplicity, the derivations of B
[
β̂r,Kr

(
t; hr, w

)]
and V

[
β̂r,Kr

(
t; hr, w

)]
here

only involve the n1/2 convergence rate of êr+1, l+1, but not the exact asymptotic
expression of

(
êr+1, l+1 − er+1, l+1

)
.

The next theorem summarizes the asymptotic expressions of the bias,
variance, mean squared errors and mean integrated squared errors of the

component-wise kernel estimators of β (t) =
(
β0(t), . . . ,βk(t)

)T
. Let

M
(0)
r (t) =

k

∑
r1=0

k

∑
r2=0

{
βr1

(t)βr2
(t)E

[
Xr1

Xr2

(
k

∑
l=0

er+1, l+1 Xl

)2]}
−β 2

r (t),

M
(1)
r (t) = M

(0)
r (t)+σ2(t)E

[(
k

∑
l=0

er+1, l+1 Xl

)2]
,

M
(2)
r (t) = M

(0)
r (t)+ρε(t)E

[(
k

∑
l=0

er+1, l+1 Xl

)2]
,

Q1r(t) = M(pr+2)

(
Kr

)[β
(pr+2)
r (t)

(pr + 2)!
+

β
(pr+1)
r (t) f ′(t)
(pr + 1)! f (t)

]
,

Q2r(t) = f−1(t)R
(
Kr

)
M

(1)
r (t).
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Theorem 6.1. Suppose that t is in the interior of the support of f (·) and
Assumptions (a) to (f) are satisfied. The following conclusions hold.

(a) When n is sufficiently large, the asymptotic bias and variance of

β̂r,Kr

(
t; hr, w

)
have the following expressions

B

[
β̂r,Kr

(
t; hr, w

)]
= hpr+2

r Q1r(t)+ o
(
hpr+2

r

)
+O

(
n−1/2

)
(6.52)

and

V
[
β̂r,Kr

(
t; hr, w

)]

=

{
h−1

r

[
n

∑
i=1

(
w2

i ni

)]
Q2r(t)+

[
n

∑
i=1

(
w2

i n2
i

)
−

n

∑
i=1

(
w2

i ni

)]
M

(2)
r (t)

}[
1+ o(1)

]

+B
[
β̂r,Kr

(
t; hr, w

)]
O
(
n−1/2

)
+O

(
n−1
)
. (6.53)

(b) If, in additional to Assumptions (a) to (f), hr also satisfies

n1/2 hpr+2
r → ∞ and n

n

∑
i=1

(
w2

i ni

)/
hr → ∞ as n → ∞,

the right side terms in (6.52) and (6.53) reduce to, respectively,

B
[
β̂r,Kr

(
t; hr, w

)]
= hpr+2

r Q1r(t)
[
1+ o(1)

]
,

and

V
[
β̂r,Kr

(
t; hr, w

)]
= h−1

r

[
n

∑
i=1

(
w2

i ni

)]
Q2r(t)

[
1+ o(1)

]
+O

(
n−1/2 hpr+2

r

)
.

(c) For sufficiently large n, the asymptotic expressions of MSE
[
β̂r,Kr

(
t; hr, w

)]
,

MISE
[
β̂r,Kr

(
·; hr, w

)]
, MSE

[
β̂K

(
t; h, w

)]
and MISE

[
β̂K

(
·; h, w

)]
are obtained

by substituting B
[
β̂r,Kr

(
t; hr, w

)]
and V

[
β̂r,Kr

(
t; hr, w

)]
in (6.51), (6.46),

(6.47) and (6.48) with the right-side terms of (6.52) and (6.53), respec-
tively. �

Proof of Theorem 6.1 is given in Section 6.6.6.

The next theorem, which is a consequence of Theorem 6.1, shows the the-
oretically optimal bandwidth choices and the corresponding optimal mean

squared errors of β̂r,Kr

(
t; hr, w

)
when the numbers of repeated measurements{

ni : i = 1, . . . , n
}
are bounded. In practice, the asymptotic mean squared er-

rors under the case of
{

ni : i = 1, . . . , n
}

bounded and n tending to infinity
may be used to approximate the finite sample mean squared errors when{

ni : i = 1, . . . , n
}
are small relative to n.
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Theorem 6.2. Suppose that the assumptions of Theorem 6.1 are satisfied,
ni are bounded, i.e., ni ≤ c for some c ≥ 1 and all i = 1, . . . , n, and

n−1 c1 ≤
n

∑
i=1

(
w2

i ni

)
≤ n−1 c2 for some constants c1 > 0 and c2 > 0.

The following asymptotic results hold:

(a) The optimal bandwidths hr,opt(t) and hr,opt minimizing MSE
[
β̂r,Kr

(
t; hr, w

)]

and MISE
[
β̂r,Kr

(
·; hr, w

)]
, respectively, for all hr > 0, are given by

hr,opt(t) =

[
n

∑
i=1

(
w2

i ni

)]1/(2pr+5) [
Q2r(t)

2(pr + 2)Q2
1r(t)

]1/(2pr+5)

(6.54)

and

hr,opt =

[
n

∑
i=1

(
w2

i ni

)]1/(2pr+5){ ∫
Q2r(s)π(s)ds

2(pr + 2)
[∫

Q2
1r(s)π(s)ds

]
}1/(2pr+5)

. (6.55)

(b) The asymptotically optimal MSE and MISE corresponding to hr,opt(t)
and hr,opt, respectively, are given by

MSE
[
β̂r,Kr

(
t; hr,opt(t), w

)]

=

[
n

∑
i=1

(
w2

i ni

)](2pr+4)/(2pr+5) [
Q2r(t)

](2pr+4)/(2pr+5) [
Q1r(t)

]2/(2pr+5)

×
[(

2 pr + 4
)−(2pr+4)/(2pr+5)

+
(
2 pr + 4

)1/(2pr+5)
][

1+ o(1)
]

(6.56)

and

MISE
[
β̂r,Kr

(
· ; hr,opt , w

)]

=

[
n

∑
i=1

(
w2

i ni

)](2pr+4)/(2pr+5)[∫
Q2r(s)π(s)ds

](2pr+4)/(2pr+5)

×
[∫

Q2
1r(s)π(s)ds

]1/(2pr+5)

(6.57)

×
[(

2 pr + 4
)−(2pr+4)/(2pr+5)

+
(
2 pr + 4

)1/(2pr+5)
][

1+ o(1)
]
.

(c) The MSE
[
β̂K

(
t; hopt(t), w

)]
and MISE

[
β̂K

(
· ; hopt , w

)]
corresponding to

the theoretically optimal bandwidths

hopt(t) =
(

h0,opt(t), . . . , hk,opt(t)
)T

and hopt =
(

h0,opt , . . . , hr,opt

)T

are obtained by substituting MSE
[
β̂r,Kr

(
t; hr, w

)]
and MISE

[
β̂r,Kr

(
· ; hr, w

)]

in (6.47) and (6.48) with the right side of (6.56) and (6.57). �

Proof of Theorem 6.2 is given in Section 6.6.6.
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6.6.4 Remarks and Implications

The results of Theorems 6.1 and 6.2 lead to a few immediate consequences.

1. Consistency

The estimator β̂r,Kr

(
t; hr, w

)
is asymptotically consistent (or simply con-

sistent) for βr(t) if MSE
[
β̂r,Kr

(
t; hr, w

)]
→ 0 as n → ∞. It immediately fol-

lows from Theorem 6.1 that β̂r,Kr

(
t; hr, w

)
is consistent if and only if hr → 0

and h−1
r ∑n

i=1

(
w2

i ni

)
→ 0 as n → ∞. The intra-subject correlations of the data

have no effect on the asymptotic expressions of the bias B
[
β̂r,Kr

(
t; hr, w

)]
.

But, depending on the values of ∑n
i=1

(
w2

i ni

)
when n is sufficiently large, the

intra-subject correlations may influence the values of the asymptotic variance

V
[
β̂r,Kr

(
t; hr, w

)]
.

2. Theoretically Optimal Bandwidths

It is important to note that, since MSE
[
β̂r,Kr

(
t; hr,opt(t), w

)]
measures the

risk of the estimator β̂r,Kr

(
t; hr,opt(t), w

)
at a given time point t, the opti-

mal bandwidth hr,opt(t) depends on t. In other words, the theoretically opti-
mal bandwidths, which minimize the dominating term of (6.56), are possibly
different at different time points. On the other hand, the theoretically opti-
mal bandwidth hr,opt , which minimizes the dominating term of (6.57) does
not depend on any specific time point. Thus, depending on the objectives of
the longitudinal analysis, the theoretically local optimal bandwidth hr,opt(t)
and the theoretically global optimal bandwidth hr,opt are possibly different.
In real applications, the statistical objective is usually to estimate the coeffi-
cient curve βr(t) for t over a range of interest, so that the global risk measure

MISE
[
β̂r,Kr

(
·; hr, w

)]
and its corresponding optimal bandwidth hr,opt are usu-

ally more relevant.

3. Practical Bandwidths

The explicit expressions of the optimal bandwidths hr,opt(t) and hr,opt given
in (6.54) and (6.55) are still not ready for practical use, because they depend
on the derivatives of the unknown coefficient curves. Although, in principle,
it is possible to estimate these unknown quantities and compute these band-
widths by plugging in the estimated quantities into the expressions of (6.54)
and (6.55), these approaches do not generally work well in practice, because
the derivatives of the coefficient curves are difficult to estimate. Thus, the ex-
pressions of (6.54) and (6.55) can only be used as a theoretical guideline for the
convergence rates of hr,opt(t) and hr,opt as functions of n and

{
ni : i = 1, . . . , n

}
,

while the exact values of hr,opt(t) and hr,opt are generally not available and
difficult to estimate. The resampling subject cross-validation procedures of
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Section 6.2.2 remain to be the most useful approach for selecting the band-
widths in practice.

6.6.5 Useful Special Cases

The results of Theorems 6.1 and 6.2 are derived for the general weight choices

w =
(
w1, . . . , wn

)T
. Different expressions of MSE and MISE may be derived

based on Theorems 6.1 and 6.2 when the specific form of w is provided. Since

the subject uniform weight w∗ =
(
1/(nn1), . . . , 1/(nnn)

)T
and the measurement

uniform weight w∗∗ =
(
1/N, . . . , 1/N

)T
are the two most commonly used weight

choices in practice, this section presents some direct consequences of Theorems
6.1 and 6.2 for these two weight choices.

1. Subject Uniform Weight

For the weight choice w∗
i = 1/(nni), it follows that

n

∑
i=1

[(
w∗

i

)2
ni

]
=

n

∑
i=1

(
n2 ni

)−1
,

so that the following two corollaries are direct consequences of Theorems 6.1
and 6.2. First, the following corollary shows the convergence rates for the bias

and variance terms of β̂r,Kr

(
t; hr, w∗).

Corollary 6.1. Suppose that t is an interior point of the support of f (·),
the weight vector w∗ =

(
w∗

1, . . . , w∗
n

)T
, w∗

i = 1/
(
nni

)
, is used, and Assumptions

(a)-(d) and (f) are satisfied. When n is sufficiently large, B
[
β̂r,Kr

(
t; hr, w∗)],

V
[
β̂r,Kr

(
t; hr, w∗)], MSE

[
β̂r,Kr

(
t; hr, w∗)] and MISE

[
β̂r,Kr

(
t; hr, w∗)] are given

by the corresponding terms in Theorem 6.1 by substituting ∑n
i=1

(
w2

i ni

)
with

∑n
i=1

[
1/
(
n2 ni

)]
. �

The next corollary shows that, under the theoretically optimal bandwidth

choices, the optimal convergence rate for the MSE and MISE of β̂r,Kr

(
t; hr, w∗)

is
[

∑n
i=1

(
n2 ni

)−1]−(2pr+4)/(2pr+5)
.

Corollary 6.2. Under the assumptions of Theorem 6.2, the pointwise op-
timal bandwidth hr,opt(t) and the global optimal bandwidth hr,opt for the weight
w∗

i = 1/
(
nni

)
are given by (6.54) and (6.55), respectively, with ∑n

i=1

(
w2

i ni

)

substituted by ∑n
i=1

(
n2 ni

)−1
. The optimal MSE

[
β̂r,Kr

(
t; hr,opt(t), w∗)] and

MISE
[
β̂r,Kr

(
·; hr,opt , w∗)] are given by (6.56) and (6.57), respectively, with

∑n
i=1

(
w2

i ni

)
substituted by ∑n

i=1

(
n2 ni

)−1
. �

In Corollary 6.2, ni, i = 1, . . . , n, are assumed to be bounded, i.e., ni ≤
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c for some constant c > 0. Consequently, n−1 c1 ≤ ∑n
i=1

(
n2 ni

)−1 ≤ n−1 c2 for
some constants c1 > 0 and c2 > 0. This implies that the best rate for both

MSE
[
β̂r,Kr

(
t; hr,opt(t), w∗)] and MISE

[
β̂r,Kr

(
·; hr,opt , w∗)] converging to zero is

n(2pr+4)/(2pr+5).

2. Measurement Uniform Weight

For the weight choice w∗∗
i = 1/N, we have ∑n

i=1

(
w∗∗

i

)2
ni = 1/N. The fol-

lowing two corollaries are direct consequences of Theorems 6.1 and 6.2 by
substituting ∑n

i=1

(
w2

i ni

)
with 1/N.

Corollary 6.3. Suppose that t is an interior point of the sup-

port of f (·), the weight vector w∗∗ =
(
w∗∗

1 , . . . , w∗∗
n

)T
with w∗∗

i = 1/N is
used, and Assumptions (a)-(d) and (f) are satisfied. When n is suffi-

ciently large, B
[
β̂r,Kr

(
t; hr, w∗∗)], V

[
β̂r,Kr

(
t; hr, w∗∗)], MSE

[
β̂r,Kr

(
t; hr, w∗∗)]

and MISE
[
β̂r,Kr

(
t; hr, w∗∗)] are given by the corresponding terms in Theorem

6.1 by substituting ∑n
i=1

(
w2

i ni

)
with 1/N. �

As a consequence of Theorem 6.2, the next corollary shows that the optimal

convergence rate for the MSE and MISE of β̂r,Kr

(
t; hr, w∗∗) is N−(2pr+4)/(2pr+5).

Corollary 6.4. Under the assumptions of Theorem 6.2, the pointwise op-
timal bandwidth hr,opt(t) and the global optimal hr,opt for the weight w∗∗

i = 1/N

are given by (6.54) and (6.55), respectively, with ∑n
i=1

(
w2

i ni

)
substituted by

1/N. The optimal MSE
[
β̂r,Kr

(
t; hr,opt(t), w∗∗)] and MISE

[
β̂r,Kr

(
·; hr,opt, w∗∗)]

corresponding to hr,opt(t) and hr,opt are given by (6.46) and (6.47), respec-
tively, with ∑n

i=1

(
w2

i ni

)
substituted by 1/N. �

If the numbers of repeated measurements ni, i = 1, . . . , n, are bounded,
then N/n is bounded, so that, by Corollary 6.4, the optimal rate for both

MSE
[
β̂r,Kr

(
t; hr,opt(t), w∗∗)] and MISE

[
β̂r,Kr

(
·; hr,opt, w∗∗)] converging to zero is

n(2pr+4)/(2pr+5). More generally, the convergence rates of MSE
[
β̂r,Kr

(
t; hr, w

)]

and MISE
[
β̂r,Kr

(
·; hr, w

)]
depend on whether and how ni, i = 0, . . . , n, con-

verge to infinity relative to n → ∞. In practice, it is usually unknown that
whether or how ni converge to infinity as n→∞, so that any bandwidth choices

purely minimizing the asymptotic expressions of MSE
[
β̂r,Kr

(
t; hr, w

)]
and

MISE
[
β̂r,Kr

(
·; hr, w

)]
may not be preferable. In contrast, the cross-validation

bandwidths of Section 6.2.2 and the bootstrap inference procedures of Sec-
tion 6.4 only rely on the available data, which do not depend on the potentially
unrealistic assumptions.
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6.6.6 Theoretical Derivations

We provide here the proofs of Theorems 6.1 and 6.2.

1. Proof of Theorem 6.1:
Following equations (6.1), (6.3), (6.4), (6.5) and (6.8), we have that

Y ∗
i jr =

k

∑
l1=0

{
X
(l1)
i

[
k

∑
l2=0

êr+1, l2+1 X
(l2)
i

]
βl1

(
ti j

)}
+

[
k

∑
l=0

êr+r, l+1 X
(l)
i

]
εi j ,

and the obvious identity

βr(t) = E

{
k

∑
l1=0

[
X (l1)

(
k

∑
l2=0

er+1, l2+1 X (l2)

)
βl1(t)

]}
(6.58)

holds for all r = 0, . . . , k. By Assumption (b), the definition of êr+r, l+1, equation
(6.3) and the fact that

êr+r, l+1 = er+r, l+1 +Op

(
n−1/2

)

imply that

E
(
Y ∗

i jr

∣∣ti j = s
)

=
k

∑
l1=0

E

{
X
(l1)
i

[
k

∑
l2=0

êr+1, l2+1 X
(l2)
i

]}
βl1(s)

= βr(s)+O
(
n−1/2

)
.

It then follows from (6.36), (6.40), (6.45) and the change of variables that,
when n is sufficiently large,

B
[
β̂r,Kr

(
t; hr, w

)]

=

[
1

hr f (t)

]
n

∑
i=1

ni

∑
j=1

∫
wi

[
E
(
Y ∗

i jr

∣∣ti j = s
)
−βr(t)

]
Kr

( t − s

hr

)
f (s)ds

= f−1(t)
∫ [

βr

(
t − hr u

)
−βr(t)

]
f
(
t − hr u

)
Kr(u)du+O

(
n−1/2

)
.

The asymptotic expression of (6.52) follows from Assumption (d) and the
Taylor expansions of βr

(
t −hr u

)
and f

(
t −hr u

)
at βr(t) and f (t), respectively.

To derive the asymptotic expression of V
[
β̂r,Kr

(
t; hr, w

)]
, it is useful to first

consider the decomposition
[

f−1(t) R̂r,Kr

(
t; hr, w

)]2

= A
(1)
r (t)+A

(2)
r (t)+A

(3)
r (t),

where, with Zi jr(t) = wi

[
Y ∗

i jr −βr(t)
]
, the A

(l)
r (t), l = 1, 2, 3, are defined by

A
(1)
r (t) = f−2(t)h−2

r

n

∑
i=1

ni

∑
j=1

[
Z2

i jr(t)K2
r

( t − ti j

hr

)]
,

A
(2)
r (t) = f−2(t)h−2

r

n

∑
i=1

ni

∑
j1 6= j2=1

[
Zi j1r(t)Zi j2r(t)Kr

( t − ti j1

hr

)
Kr

( t − ti j2

hr

)]
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and

A
(3)
r (t) = f−2(t)h−2

r ∑
i1 6=i2

ni

∑
j1, j2=1

[
Zi1 j1r(t)Zi2 j2r(t)Kr

( t − ti1 j1

hr

)
Kr

( t − ti2 j2

hr

)]
.

Using (6.1), (6.2) and straightforward computation, it follows that

Z2
i jr(t) = w2

i

[
ξi jr(t)

]2
+ 2w2

i ξi jr(t)

[
k

∑
l=0

êr+1, l+1 X
(l)
i

]
εi j

+w2
i

[
k

∑
l=0

êr+1, l+1 X
(l)
i

]2

ε2
i j ,

where

ξi jr(t) =
k

∑
l1=0

{
X
(l1)
i

[
k

∑
l2=0

êr+1, l2+1 X
(l2)
i

]
βl1

(
ti j

)}
−βr(t).

Since Xi and εi j are independent, it follows from (6.58) and the definition of

M
(0)
r (t) that

E

{
ξi jr(t)

[
k

∑
l=0

êr+1, l+1 X
(l)
i

]
εi

(
ti j

)∣∣∣ti j = s

}
= 0,

E
{[

ξi jr(t)
]2∣∣∣ti j = s

}

= E

{[
k

∑
l1=0

[
X
(l1)
i

(
k

∑
l2=0

êr+1,l2+1 X
(l2)
i

)
βl1

(
ti j

)]
−βr(t)

]2∣∣∣∣ti j = s

}

= E

{[
k

∑
l1=0

[
X
(l1)
i

(
k

∑
l2=0

erl2 X
(l2)
i

)
βl1

(
ti j

)]]2∣∣∣∣ti j = s

}

−2βr(t)E

{
k

∑
l1=0

[
X
(l1)
i

(
k

∑
l2=0

er+1,l2+1 X
(l2)
i

)
βl1

(
ti j

)]∣∣∣∣ti j = s

}

+β 2
r (t)+ o(1)

= M
(0)
r (s)+β 2

r (s)− 2βr(t)βr(s)+β 2
r (t)+ o(1)

and

E

{[
k

∑
l=0

êr+1, l+1 X
(l)
i

]2

ε2
i j

∣∣∣∣ti j = s

}
= σ2(s)E

{[
k

∑
l=0

er+1, l+1 X (l)

]2}[
1+ o(1)

]
.

The above equations lead to the expectations of the right-side terms of Z2
i jr(t)

given ti j = s.

To compute the expectations of A
(l)
r (t), l = 1, 2, 3, it then follows that

E
[
A
(1)
r (t)

]
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=
[
hr f (t)

]−2
n

∑
i=1

ni

∑
j=1

w2
i

∫
E
[
Z2

i jr(t)
∣∣ti j = s

]
K2

r

( t − s

hr

)
f (s)ds (6.59)

=
[
hr f (t)

]−2
n

∑
i=1

ni

∑
j=1

w2
i

{∫ {
M

(0)
r (s)+β 2

r (s)− 2βr(t)βr(s)+β 2
r (t)

+σ2(s)E

[(
k

∑
l=0

er+1, l+1 X (l)

)2]}
K2

r

( t − s

hr

)
f (s)ds

[
1+ o(1)

]}

= f−2(t)
n

∑
i=1

{(
w2

i ni

)
h−1

r

ni

∑
j=1

[
M

(1)
r (t)R(Kr) f (t)

] [
1+ o(1)

]}

= h−1
r

[
n

∑
i=1

(
w2

i ni

)]
f−1(t)R(Kr)M

(1)
r (t)

[
1+ o(1)

]
.

Using similar computations as those for A
(1)
r (t), it can be shown that

E
[
A
(2)
r (t)

]
=

[
n

∑
i=1

(
w2

i n2
i

)
−

n

∑
i=1

(
w2

i ni

)]
M

(2)
r (t)

[
1+ o(1)

]
(6.60)

and

E
[
A
(3)
r (t)

]
=
{

B
[
β̂r,Kr

(
t; hr, w

)]
+O

(
n−1/2

)}2

. (6.61)

When n is sufficiently large, the asymptotic expression of (6.49) follows
from equations (6.59), (6.60), (6.61) and

V

[
β̂r,Kr

(
t; hr, w

)]

=
3

∑
l=1

E
[
A
(l)
r (t)

]
−B2

[
β̂r,Kr

(
t; hr, w

)]

= E
[
A
(1)
r (t)

]
+E

[
A
(2)
r (t)

]
+B
[
β̂r,Kr

(
t; hr, w

)]
O
(
n−1/2

)
+O

(
n−1
)
.

The rest of the results in Theorem 6.1 then follow as direct consequences of
the above expectation and variance expressions. �

2. Proof of Theorem 6.2

Because n1, . . . , nn are assumed to be bounded below by a constant c ≥ 1

and the assumption that n−1 c1 ≤∑n
i=1

(
w2

i ni

)
≤ n−1 c2 holds, there is a constant

c3 > 0 such that ∣∣∣∣n−1 −
n

∑
i=1

(
w2

i ni

)∣∣∣∣≤ n−1 c3. (6.62)

If n1/(2pr+5) hr → 0 as n → ∞, it follows from (6.62) that, as n → ∞,

n(2pr+4)/(2pr+5)h2pr+4
r Q2

1r(t)→ 0,
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n(2pr+4)/(2pr+5)h−1
r

[
n

∑
i=1

(
w2

i ni

)]
Q2r(t)≥ h−1

r n−1/(2pr+5) c−1
3 Q2r(t)→ ∞

and

n(2pr+4)/(2pr+5)

∣∣∣∣
[

1

n
−

n

∑
i=1

(
w2

i ni

)]
M

(2)
r (t)

∣∣∣∣≤ n(2pr+4)/(2pr+5) n−1 c−1
3

∣∣∣M(2)
r (t)

∣∣∣→ 0,

so that, Theorem 6.1 implies that, as n → ∞,

n(2pr+4)/(2pr+5) MSE
[
β̂r,Kr

(
t; hr, w

)]
→ ∞. (6.63)

If n1/(2pr+5)hr → ∞ as n → ∞, similar calculations as above then show that, as
n → ∞,

n(2pr+4)/(2pr+5)h2pr+4
r Q2

1r(t)→ ∞, n(2pr+4)/(2pr+5)h−1
r

[
n

∑
i=1

(
w2

i ni

)]
Q2r(t)→ 0

and

n(2pr+4)/(2pr+5)

∣∣∣∣
[

n−1 −
n

∑
i=1

(
w2

i ni

)]
M

(2)
r (t)

∣∣∣∣→ 0,

so that, (6.63) still holds.
It then suffices to consider the case that hr = n−1/(2pr+5) cn for some cn

which does not converge to either 0 or ∞ when n → ∞. Since, by (6.62) and
the inequality

n(2pr+4)/(2pr+5)

[
n−1 −

n

∑
i=1

(
w2

i ni

)]
≤ n−1/(2pr+5) c−1

3 = o(1),

equations (6.47), (6.48) and (6.49) imply that

n(2pr+4)/(2pr+5) MSE
[
β̂r,Kr

(
t; hr, w

)]

= c2pr+4
n Q2

1r(t)+ c−1
n n

[
n

∑
i=1

(
w2

i ni

)]
Q2r(t)+ o(1). (6.64)

Setting the derivative of the right side of (6.64) to zero, MSE
[
β̂r,Kr

(
t; hr, w

)]

is uniquely minimized by

cn = n1/(2pr+5)

[
n

∑
i=1

(
w2

i ni

)]1/(2pr+5) [
Q2r(t)

(2 pr + 4)Q2
1r(t)

]1/(2pr+5)

,

which shows that the theoretically optimal bandwidth hr,opt(t) is given by

(6.54). The asymptotically optimal MSE
[
β̂r,Kr

(
t; hr,opt(t), w

)]
of (6.56) is ob-

tained by substituting the bandwidth hr of (6.48) and (6.49) with hr,opt(t) in
(6.50).

Repeating similar derivations as above for MISE
[
β̂r,Kr

(
·; hr, w

)]
, the expres-

sion of the asymptotically optimal bandwidth hr,opt can be obtained as (6.51)

and the asymptotically optimal MISE
[
β̂r,Kr

(
· ; hr,opt, w

)]
is given as (6.53). The

asymptotically optimal MSE
[
β̂K

(
t; hopt(t), w

)]
and MISE

[
β̂K

(
· ; hopt , w

)]
are

direct consequences of equations (6.43), (6.44), (6.52) and (6.53). �
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6.7 Asymptotic Properties for Smoothing Splines

We present in this section the asymptotic properties of the component-wise

penalized smoothing spline estimator β̂r,J

(
t; λr, w

)
of (6.26) in Section 6.3.1

with the measurement uniform weight w∗∗ =
(
1/N, . . . , 1/N

)T
and t ∈ [a, b].

Without loss of generality, we assume that a = 0 and b = 1. Extension to
general [a, b] can be obtained using the affine transformation u= (t−a)/(b−a)
for t ∈ [a, b].

6.7.1 Assumptions and Equivalent Kernel Functions

1. Asymptotic Assumptions

We assume the following technical assumptions for β̂r,J

(
t; λr, w

)
throughout

the section, which extend the assumptions of Section 5.3.1 to the time-varying
coefficient model (6.1):

(a) The time design points
{

ti j : i = 1, . . . , n; j = 1, . . . , ni

}
satisfy Assumption

(a) of Section 5.3.1 with the same F(t), f (t), FN(t), DN and f (ν)(t) for
ν = 1, 2.

(b) The coefficient curves βr(t), r = 0, . . . , k, are four times differentiable and

satisfy the boundary conditions β
(ν)
r (0)= β

(ν)
r (1) = 0 for ν = 2, 3. The fourth

derivatives β
(4)
r (t), r = 0, . . . , k, are Lipschitz continuous in the sense that

∣∣∣β (4)
r (s1)−β

(4)
r (s2)

∣∣∣≤ c1r

∣∣s1 − s2

∣∣c2r

for all s1, s2 ∈ [0, 1] and some positive constants c1r and c2r.

(c) There exists a positive constant δ > 0 such that E
[
|ε(t)|2+δ

]
< ∞ and

E
(
X4+δ

r

)
< ∞ for all r = 0, . . . , k.

(d) The smoothing parameters λr, r = 0, . . . , k, satisfy Assumption (d) of Sec-

tion 5.3.1. Specifically, λr → 0, N λ
1/4
r → ∞ and λ

−5/4
r DN → 0 as n → ∞.

(e) Same as Assumption (e) of Section 5.3.1, we define σ2(t) = E
[
ε2(t)

]

and ρε(t) = limt′→t E
[
ε(t)ε(t ′)

]
. Both σ2(t) and ρε(t) are continuous, and

σ2(t) ≥ ρε(t), where the strict inequality holds if ε(t) includes an indepen-
dent measurement error. ✷

2. Equivalent Kernel Estimator

We now extend the equivalent kernel framework of Section 5.3 to approxi-
mate the unknown weight function Sλr

(t, s) of (6.26). The goal is to derive an
explicit equivalent kernel function which can be used in place of Sλr

(t, s), so

that the asymptotic properties of β̂r,J

(
t; λr, w∗∗) can be established through

the equivalent kernel estimator. From the expressions of (6.3), (6.8) and (6.26),
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the analogous differential equation of (5.8) under the current context is

λr g
(4)
r (t)+ f (t)gr(t) = f (t)βr(t), t ∈ [0,1], (6.65)

with g
(ν)
r (0) = g

(ν)
r (1) = 0 for ν = 2, 3. Then, any solution gr(t) of (6.65) is

associated with a Green’s function Gλr
(t, s) which satisfies

gr(t) =

∫ 1

0
Gλr

(t, s)βr(s) f (s)ds.

We can then define

Hλr
(t, s) = HU

λr/γ4

[
Γ(t), Γ(s)

]
Γ(1)(s) f−1(s) (6.66)

to be the equivalent kernel of Sλr
(t, s), where

γ =

∫ 1

0
f 1/4(s)ds, Γ(t) = γ−1

∫ t

0
f 1/4(s)ds

and HU
λr
(t, s) is the equivalent kernel for the uniform density which has the

expression

HU
λr
(t, s) =

(
λ
−1/4
r

2
√

2

)[
sin

(
λ
−1/4
r√

2

∣∣t − s
∣∣
)
+ cos

(
λ
−1/4
r√

2

∣∣t − s
∣∣
)]

×exp

(
−λ

−1/4
r√

2

∣∣t − s
∣∣
)
. (6.67)

Substituting Sλr

(
t, ti j

)
in (6.26) by the equivalent kernel Hλr

(
t, ti j

)
, our equiv-

alent kernel estimator of βr(t) with the uniform weight w∗∗
i = 1/N is

β̃r

(
t; w∗∗)= 1

N

n

∑
i=1

ni

∑
j=1

[
Hλr

(
t, ti j

)
Y ∗

i jr

]
. (6.68)

The next lemma shows that Hλr
(t, s) is the dominating term of Gλr

(t, s) and
can be used to approximate Sλr

(t, s).

Lemma 6.1. Assume that Assumptions (a) and (d) are satisfied. When n

is sufficiently large, there are positive constants α1, α2, κ1 and κ2 so that

∣∣Gλr
(t, s)−Hλr

(t, s)
∣∣ ≤ κ1 exp

(
−α1 λ

−1/4
r

∣∣t − s
∣∣), (6.69)∣∣∣∣

∂ ν

∂ tν
Gλr

(t, s)

∣∣∣∣ ≤ κ1 λ
−(ν+1)/4
r exp

(
−α2 λ

−1/4
r

∣∣t − s
∣∣), (6.70)

∣∣Sλr
(t, s)−Gλr

(t, s)
∣∣ ≤ κ2 λ

−1/2
r DN exp

(
−α1 λ

−1/4
r

∣∣t − s
∣∣) (6.71)∣∣∣∣

∂ ν

∂ tν
Sλr

(t, s)

∣∣∣∣ ≤ κ2 λ
−(ν+1)/4
r DN exp

(
−α2 λ

−1/4
r

∣∣t − s
∣∣) (6.72)
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hold uniformly for t, s ∈ [0, 1] and 0 ≤ ν ≤ 3. �

Proof of Lemma 6.1 is given in Section 6.7.3.

As discussed in Section 5.3.1, Hλr
(t, s) is not the only equivalent kernel that

could be considered. Our presentation of approximating Sλr
(t, s) with Hλr

(t, s)
is based on the theoretical derivation of Chiang, Rice and Wu (2001).

6.7.2 Asymptotic Distributions and Mean Squared Errors

We now summarize the main results of this section. Derivations of the theo-
retical results are deferred to Section 6.7.3.

1. Asymptotic Distributions

We first introduce a number of quantities to be used in the asymptotic
expressions. Define, for each r = 0, . . . ,k, t ∈ [0, 1] and t1 6= t2 ∈ [0, 1]





Ur = ∑k
l=0(er+1, l+1X (l)),

M
(0)
r

(
t1, t2

)
= ∑k

r1,r2=0

[
βr1

(
t1
)

βr2

(
t2
)

E

(
X (r1) X (r2)U2

r

)]
−βr

(
t1
)

βr

(
t2
)
,

M
(1)
r (t) = M

(0)
r (t)+σ2(t)err,

M
(2)
r

(
t1, t2

)
= M

(0)
r

(
t1, t2

)
+ρε

(
t1, t2

)
err,

M
(0)
r (t) = M

(0)
r (t, t) and M

(2)
r (t) = M

(2)
r (t, t). The following theorem shows that

asymptotically β̂r,J

(
t; λr, w∗∗) has a normal distribution when N is sufficiently

large.

Theorem 6.1. Suppose that Assumptions (a) through (e) are satisfied, t is
an interior point of [0, 1], and there are constants λr,0 ≥ 0 and a0 ≥ 0, such that

limn→∞ N1/2 λ
9/8
r = λr,0, limn→∞

[
N−1

(
∑n

i=1 n2
i

)
λ

1/4
r

]
= a0 and limn→∞ N n−9/8 =

0. Then, as n → ∞, β̂r,J

(
t; λr, w∗∗) is asymptotically normal in the sense that

(
N λ

1/4
r

)1/2 [
β̂r,J

(
t; λr, w∗∗)−βr(t)

]
→ N

(
λr,0 br(t), τ2

r (t)
)
, (6.73)

in distribution, where

br(t) =− f−1(t)β
(4)
r (t) (6.74)

and

τr(t) =

[( 1

4
√

2

)
f−3/4(t)M

(1)
r (t)+ a0 M

(2)
r (t)

]1/2

. (6.75)

In general, the asymptotic distributions of β̂r,J

(
t; λr, w∗∗) are affected by n, ni

and the intra-subject correlations. �
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The correlations affect the asymptotic variance term τ2
r (t) if a0 is strictly

positive, that is, ∑n
i=1 n2

i tends to infinity sufficiently fast. In the interesting
case that ni are bounded, the probability that there are at least two data
points from the same subject in a shrinking neighborhood tends to be zero,
hence, the intra-subject correlation does not play a role for the asymptotic
distributions.

2. Asymptotic Mean Squared Errors

Unlike the simple regression model without covariates in Chapter 5, the

risks of the penalized smoothing spline estimator β̂r,J

(
t; λr, w∗∗) cannot be

directly measured by their asymptotic mean squared errors (MSE). This is
because Y ∗

i jr involves the inverse of the estimator of E
(
XXT

)
, so that the first

and second moments, hence the MSE, of β̂r,J

(
t; λr, w∗∗) may not exist. An

alternative measure of the risks that has been used in the literature is the
MSE conditioning on the observed covariates (e.g., Fan, 1992; Ruppert and
Wand, 1994; and Fan and Gijbels, 1996). Denoting by

Xn =
{

X1, . . . , Xn

}

the set of observed covariates, we measure the risk of β̂r,J

(
t; λr, w∗∗) by the

following MSE conditioning on Xn

MSE
[
β̂r,J

(
t; λr, w∗∗)∣∣∣Xn

]
= E

{[
β̂r,J

(
t; λr, w∗∗)−βr(t)

]2∣∣∣Xn

}
. (6.76)

More generally, we measure the risk of β̂J

(
t; λ ,w∗∗) by

MSEp

[
β̂J

(
t; λr, w∗∗)∣∣∣Xn

]
=

k

∑
r=0

{
pr MSE

[
β̂r,J

(
t; λr, w∗∗)∣∣∣Xn

]}
, (6.77)

where p =
(

p0, . . . , pk

)T
, pr ≥ 0, are known weights. The next theorem gives

the asymptotic representation of the MSE in (6.76).

Theorem 6.2. Suppose that Assumptions (a) through (e) are satisfied and
t is an interior point of [0,1]. When n is sufficiently large,

MSE
[
β̂r,J

(
t; λr, w∗∗)∣∣∣Xn

]
= λ 2

r b2
r (t)+Vr(t) (6.78)

+op

[
N−1 λ

−1/4
r +

n

∑
i=1

(ni

N

)2
]

+Op

(
n−1/2 λr

)
+Op

(
n−1
)
+ op

(
λ 2

r

)
,

where br(t) is defined in (6.70) and

Vr(t) =
( 1

4
√

2

)
N−1 λ

−1/4
r f−3/4(t)M

(1)
r (t)+

[
n

∑
i=1

(ni

N

)2
]

M
(2)
r (t). (6.79)
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Furthermore, limn→∞ Vr(t) = 0 if and only if limn→∞ max1≤i≤n

(
ni/N

)
= 0. �

Proof of Theorem 6.2 is given in Section 6.7.3.

3. Remarks on Asymptotic Properties

The above asymptotic results can lead to a number of interesting special
cases and practical implications.

Consistency and Convergence Rates:

Similar to the situations described in Section 5.3.2, we note that, unlike
Theorem 6.1, Theorem 6.2 does not require any further convergence rate condi-
tion on λr other than Assumption (d) and allows for any choice of non-random

ni. Thus, under the conditions of Theorem 6.2, β̂r,J

(
t; λr, w∗∗) is a consistent

estimator of βr(t) in the sense that

MSE
[
β̂r,J

(
t; λr, w∗∗)∣∣∣Xn

]
→ 0 in probability, as n → ∞.

The rate of Vr(t) → 0 depends on n, ni, i = 1, . . . , n, λr and the intra-subject

correlations. If λ
−1/4
r N−1 converges to zero in a rate slower than ∑n

i=1

(
ni/N

)2
,

then the second term of the right side of (6.79) becomes negligible, so that the
effect of the intra-subject correlations disappears from the asymptotic repre-

sentation of MSE
[
β̂r,J

(
t; λr, w∗∗)∣∣Xn

]
. As a special case of practical interest,

this occurs when the ni are bounded. In general, the contributions of the
intra-subject correlations are not negligible. If, under the situation of dense
longitudinal data, ni → ∞ sufficiently fast as n → ∞, the second term of the
right side of (6.79) may not be ignored from Vr(t). This occurs, for example,
when ni = nα for some α > 0.

Random Design Time Points and Other Weight Choices:

Similar to the situations in Section 5.3.2, for the purpose of extending
the derivations of Theorem 6.2 to random designs and other weight choices,
we assume that ti j are independent identically distributed with distribution
function F(·) and density f (·). For the measurement uniform weight w∗∗

i = 1/N,

we require the almost sure convergence λ
−5/4
r DN → 0 as n → ∞ and consider

the equivalent kernel estimator (6.68). For the subject uniform weight w∗
i =

1/(nni), we replace FN(t) and DN in Assumption (a) by

F∗
N(t) =

n

∑
i=1

ni

∑
j=1

(
nni

)−1
1[ti j≤t] and D∗

N = sup
t∈[0,1]

∣∣F∗
N(t)−F(t)

∣∣,

respectively, and, under the almost sure convergence λ
−5/4
r D∗

N → 0 as n → ∞,
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consider the equivalent kernel estimator

β̃r,J

(
t; λr, w∗)=

n

∑
i=1

ni

∑
j=1

[(
nni

)−1
Hλr

(
t, ti j

)
Y ∗

i jr

]
.

Further investigation is still needed to develop the explicit asymptotic dis-
tributions and the asymptotic conditional MSEs of these equivalent kernel
estimators.

When the time design points ti j are nonrandom, the subject measurement
weight w∗

i = 1/(nni) is used and Assumption (a) holds for F∗
N(t) and D∗

N . Using

the approach of Lemma 6.1, we can show that the variance of β̂r,J

(
t; λr, w∗)

conditioning on Xn can be approximated by

n

∑
i=1

ni

∑
j=1

[( 1

nni

)2

G2
λr

(
t, ti j

)
Var
(

Y ∗
i jr

∣∣∣Xi

)]

+ ∑
(i1, j1) 6=(i2, j2)

[(
1

n2 ni1 ni2

)
Gλr

(
t, ti1 j1

)
Gλr

(
t, ti2 j2

)

×Cov
(

Y ∗
i1 j1r, Y ∗

i2 j2r

∣∣∣Xi1 , Xi2

)]
,

but it is difficult to approximate the two summations above by some straight-
forward integrals without further assumptions on ni. For the same reason, we

do not have an explicit asymptotic risk representation for β̂r,J

(
t; λr, w

)
with a

general weight vector w.

6.7.3 Theoretical Derivations

We outline here the main derivations used in the theoretical results of this
section. Since many of the derivations are straightforward extensions of the
methods presented in Section 5.3, we skip some tedious details to avoid repe-
tition and only refer to the relevant steps in Section 5.3.

1. Green’s Function for Uniform Density

The derivations here are analogous to their counterparts in Section 5.3.3.
These results establish an important linkage between the Green’s function
Gλr

(
t, s
)
and the equivalent kernel Hλr

(
t, s
)
. For the special case of the uniform

density f (t) = 1[0,1](t), the following equations and lemma are the same as
equation (5.23) and Lemma 5.2 by substituting their λ with λr. The Green’s
function GU

λr

(
t, s
)
of (6.65) is the solution of

λr
∂ 4

∂ t4
GU

λr

(
t, s
)
+GU

λr

(
t, s
)
= 0, for t 6= s, (6.80)

subject to the following conditions:

(a) GU
λr

(
t, s
)
= GU

λr

(
s, t
)
= GU

λr

(
1− t, 1− s

)
;
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(b)
(
∂ ν
/

∂ tν
)

GU
λr

(
0, t
)
=
(
∂ ν
/

∂ tν
)

GU
λr

(
1, t
)
= 0 for ν = 2, 3;

(c)
(
∂ ν
/

∂ tν
)

GU
λr

(
t, s
)∣∣

s=t− −
(
∂ ν
/

∂ tν
)

GU
λr

(
t, s
)∣∣

s=t+
= 0 for ν = 0, 1, 2;

(d)
(
∂ 3
/

∂ t3
)

GU
λr

(
t, s
)∣∣

s=t− −
(
∂ 3
/

∂ t3
)

GU
λr

(
t, s
)∣∣

s=t+
= λ−1

r .

Lemma 6.2. Suppose that GU
λr

(
t, s
)
is the Green’s function of the differ-

ential equation (6.65) with f (t) = 1[0,1](t). When λr → 0, the solution GU
λr

(
t, s
)

of (6.80) is given by

GU
λr

(
t, s
)
= HU

λr

(
t, s
){

1+O
[

exp
(
−λ

−1/4
r

/√
2
)]}

, (6.81)

where HU
λr

(
t, s
)
is defined in (6.67). �

Proof of Lemma 6.2 follows exactly the same steps in the proof of Lemma
5.2 by substituting λ with λr; hence, it is omitted.

2. Green’s Function for General Cases

Based on the explicit expression of the Green’s function GU
λr

(
t, s
)
for the

uniform density f (t) = 1[0,1], we can derive the explicit expression of the equiva-

lent kernel function Hλr

(
t, s
)
by establishing the relationship between GU

λr

(
t, s
)

and the Green’s function Gλr

(
t, s
)
for a general continuous density function

f (t). This relationship is established through the inequalities (6.69) to (6.72)
of Lemma 6.1.

Proof of Lemma 6.1:
The inequalities (6.69) to (6.72) can be established using the same steps

as the proof of Lemma 5.1 in Section 5.3.4. All the derivations in the proof of
Lemma 5.1 remain valid by substituting

{
λ , µ(t)

}
with

{
λr, βr(t)

}
. We omit

the derivations here to avoid repetition. �

3. Three Technical Lemmas

The following three technical lemmas are analogous to Lemmas 5.3, 5.4
and 5.5. The proofs of these lemmas are not exactly the same as the ones in
Chapter 5, although they share similarities.

Lemma 6.3. Assume that Assumptions (a) and (d) are satisfied, then,
when λr is sufficiently small,
∫ 1

0
G2

λr

(
t, s
)

M
(1)
r (s) f (s)ds =

( 1

4
√

2

)
f−3/4(t)λ

−1/4
r M

(1)
r (t)

[
1+ o(1)

]
(6.82)

and ∫ 1

0
Gλr

(
t, s
)

M
(2)
r

(
t, s
)

f (s)ds = M
(2)
r (t)

[
1+ o(1)

]
(6.83)
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hold for all t ∈ [τ, 1− τ] with some τ > 0. �

Proof of Lemma 6.3:
By Lemma 6.1, the properties of double exponential distributions and

straightforward algebra, we can show that, for some positive constants κ ,
α and c,
∣∣∣∣
∫ 1

0

[
G2

λr

(
t, s
)
−H2

λr

(
t, s
)]

M
(1)
r (s) f (s)ds

∣∣∣∣

≤
∫ 1

0

∣∣Gλr

(
t, s
)
−Hλr

(
t, s
)∣∣
[∣∣Gλr

(
t, s
)∣∣+

∣∣Hλr

(
t, s
)∣∣
]∣∣∣M(1)

r (s)
∣∣∣ f (s)ds

≤
∫ 1

0
κ2 λ

−1/4
r exp

(
−α λ

−1/4
r

∣∣t − s
∣∣
)∣∣∣M(1)

r (s)
∣∣∣ f (s)ds

→ c

∣∣∣M(1)
r (t)

∣∣∣ f (t), as λr → 0. (6.84)

Similarly, denoting u = Γ(t) and v = Γ(s), we can show from (6.67) and the
properties of double exponential distributions that, for λr sufficiently small,

∫ 1

0
H2

λr

(
t, s
)

M
(1)
r (s) f (s)ds

=
∫ 1

0

[
HU

λr/γ4

(
u, v
)]2

M
(1)
r

[
Γ−1(v)

]{ f 1/4[Γ−1(v)]

γ f [Γ−1(v)]

}
dv

=
1

4
√

2
f−3/4(t)λ

−1/4
r M

(1)
r (t)

[
1+ o(1)

]
. (6.85)

Thus, (6.82) follows from (6.84) and (6.85), and (6.83) can be shown by similar
calculations. �

Lemma 6.4. Assume that βr(t) satisfies Assumption (a) and gr(t) is a

solution of (6.61), then g
(4)
r (t)→ β

(4)
r (t) uniformly for t ∈ [0, 1] as λr → 0. �

Proof of Lemma 6.4:
This lemma is a special case of Lemma 6.1 of Nychka (1995) and is the

same as Lemma 5.4 by substituting µ(t) with βr(t). �

Lemma 6.5. Consider the pseudo-equivalent kernel estimator

β̃ ∗
r

(
t; w∗∗)= N−1

n

∑
i=1

ni

∑
j=1

{
Hλr

(
t; ti j

)[ k

∑
l=0

(
er+1, l+1 X

(l)
i

)
Yi j

]}
.

If the assumptions in Theorem 6.1 are satisfied, then β̃ ∗
r

(
t; w∗∗) is asymptot-

ically normal in the sense that (6.73) holds with β̂r,J

(
t; λr, w∗∗) replaced by

β̃ ∗
r

(
t; w∗∗). �
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Proof of Lemma 6.5:
Define Ui r = ∑k

l=0

(
er+1, l+1 X

(l)
i

)
and Zi j r =Ui r Yi j. It then follows from (6.1)

that
E
(
Zi j r

)
= E

[
Ui r XT

i β
(
ti j

)]
= βr

(
ti j

)
.

By Assumptions (a) and (d), (6.65), (6.66), (6.69), (6.74) and Lemma 6.4, we
have

E

[
β̃ ∗

r

(
t; w∗∗)]−βr(t)

=

∫ 1

0
Gλr

(
t, s
)

βr(s) f (s)ds−βr(t)+

∫ 1

0

[
Hλr

(
t, s
)
−Gλr

(
t, s
)]

βr(s) f (s)ds

+
∫ 1

0
Hλr

(
t, s
)

βr(s)d
[
FN(s)−F(s)

]

= −λr f−1(t)g
(4)
r (t)

[
1+ o

(
λr

)]

= −λr br(t)
[
1+ o

(
λr

)]
. (6.86)

For the variance of β̃ ∗
r

(
t; w∗∗), we consider

Var
[
β̃ ∗

r

(
t; w∗∗)]=VI +VII +VIII,

where

VI =
1

N2

n

∑
i=1

ni

∑
j=1

[
H2

λr

(
t, ti j

)
Var
(
Zi j r

)]
,

VII =
1

N2

n

∑
i=1

∑
j1 6= j2

[
Hλr

(
t, ti j1

)
Hλr

(
t, ti j2

)
Cov

(
Zi j1 r, Zi j2 r

)]

and, because the subjects are independent,

VIII =
1

N2 ∑
i1 6=i2

∑
j1, j2

[
Hλr

(
t, ti1 j1

)
Hλr

(
t, ti2 j2

)
Cov

(
Zi1 j1 r, Zi2 j2 r

)]
= 0.

Because Uir and εi j are independent, we have

Var
(
Zi j r

)
=Var

{
Uir

[
XT

i β
(
ti j

)]}
+Var

(
Uir εi j

)
= M

(1)
r

(
ti j

)
,

hence, by Assumption (a) and (6.85),

VI =
1

4
√

2
f−3/4(t)N−1 λ

−1/4
r M

(1)
r (t)

[
1+ o(1)

]
.

Similar to the derivation in (6.84), because

Cov
(
Zi j1 r, Zi j2 r

)

= Cov
{

Uir

[
XT

i β
(
ti j1

)]
,Uir

[
XT

i β
(
ti j2

)]}
+Cov

(
Uir εi j1 ,Uir εi j2

)

= M
(2)
r

(
ti j1 , ti j2

)
,
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it is straightforward to compute that

VII =

[
n

∑
i=1

(ni

N

)2

− 1

N

]

×
∫ ∫

Hλr

(
t, s1

)
Hλr

(
t, s2

)
M

(2)
r

(
s1, s2

)
f
(
s1

)
f
(
s2

)
ds1 ds2

×
[
1+ o(1)

]

=

[
n

∑
i=1

(ni

N

)2

− 1

N

]
M

(2)
r (t)

[
1+ o(1)

]
.

The above equations and (6.75) imply that

Var
[
β̃ ∗

r

(
t; w∗∗)]= N−1 λ

−1/4
r τ2

r (t)
[
1+ o(1)

]
.

Finally, we can check from Assumption (d), (6.66) and (6.67) that β̃ ∗
r

(
t; w∗∗)

satisfies the Lindeberg’s condition for double arrays of random variables. The
lemma follows from (6.86) and the central limit theorem for double arrays
(e.g., Serfling, 1980, Section 1.9.3). �

4. Proofs of Main Theorems

Equipped with the above technical results, we can now derive the results
of Theorems 6.1 and 6.2.

Proof of Theorem 6.1:
By Uir =∑k

l=0

(
er+1, l+1 X

(l)
i

)
and Ûir = ∑k

l=0

(
êr+1, l+1 X

(l)
i

)
, Assumptions (a),

(c) and (d) and Lemma 6.1, we have that, when n is sufficiently large,

β̃r

(
t; w∗∗)− β̃ ∗

r

(
t; w∗∗)= 1

N

n

∑
i=1

ni

∑
j=1

[
Hλr

(
t, ti j

)(
Ûir −Uir

)
Yi j

]
= Op

(
n−1/2

)

and

β̂r

(
t; w∗∗)− β̃r

(
t; w∗∗) =

1

N

n

∑
i=1

ni

∑
j=1

{[
Sλr

(
t, ti j

)
−Gλr

(
t, ti j

)]
Ûir Yi j

}

= op

(
N−1/2 λ

−1/8
r

)
.

Then (6.73) follows from Lemma 6.5 and the above equalities. �

Proof of Theorem 6.2:
Using the variance-bias squared decomposition, we have

MSE
[
β̂r,J

(
t; λr, w∗∗)∣∣∣Xn

]
=

{
E
[
β̂r,J

(
t; λr, w∗∗)∣∣Xn

]
−βr(t)

}2

+Var
[
β̂r,J

(
t; λr, w∗∗)∣∣∣Xn

]
, (6.87)
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where, because Yi1 j1 and Yi2 j2 are independent when i1 6= i2, we have

Var
[
β̂r,J

(
t; λr, w∗∗)∣∣∣Xn

]
=V ∗

I +V ∗
II

with





V ∗
I = N−2 ∑n

i=1 ∑
ni
j=1

[
S2

λr

(
t, ti j

)
Û2

ir Var
(
Yi j

)]
,

V ∗
II = N−2 ∑n

i=1 ∑ j1 6= j2

[
Sλr

(
t, ti j1

)
Sλr

(
t, ti j2

)
Û2

ir Cov
(
Yi j1 , Yi j2

)]
.

Using Lemma 6.1 and the derivation of (6.83), we can show that, for sufficiently
large n,

Var
[
β̂r,J

(
t; λr, w∗∗)∣∣∣Xn

]
=

1

4
√

2
N−1 λ

−1/4
r f−3/4(t)σ2(t)err

[
1+ op(1)

]

+

[
n

∑
i=1

(ni

N

)2

− 1

N

]
ρε(t)err

[
1+ op(1)

]
. (6.88)

For the conditional bias term of (6.87), we consider that, when n is suffi-
ciently large,

E
[
β̂r,J

(
t; λr, w∗∗)∣∣∣Xn

]
−βr(t)

=
1

N

n

∑
i=1

ni

∑
j=1

{
Sλr

(
t, ti j

)[
Uir XT

i β
(
ti j

)
−E

[
Uir XT

i β
(
ti j

)]]}
(6.89)

+E

{
1

N

n

∑
i=1

ni

∑
j=1

[
Sλr

(
t, ti j

)
Uir XT

i β
(
ti j

)]}
−βr(t)+Op

(
n−1/2

)
.

By similar quadratic expansions as V ∗
I and V ∗

II , Lemma 6.1 and the weak law
of large numbers, we can show that, when n is sufficiently large,

{
1

N

n

∑
i=1

ni

∑
j=1

{
Sλr

(
t, ti j

)[
Uir XT

i β
(
ti j

)
−E

[
Uir XT

i β
(
ti j

)]]}}2

(6.90)

=

{
1

4
√

2
N−1 λ

−1/4
r f−3/4(t)+

[
n

∑
i=1

(ni

N

)2

− 1

N

]}
M

(0)
r (t)

[
1+ op(1)

]

and, furthermore, by Lemma 6.3,

{
1

N

n

∑
i=1

ni

∑
j=1

[
Sλr

(
t, ti j

)
E
[
Uir XT

i β
(
ti j

)]]
−βr(t)

}2

= λ 2
r b2

r (t)
[
1+ op(1)

]
. (6.91)

The conclusion of the theorem (6.78) is then a direct consequence of (6.87)
through (6.91). �
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6.8 Remarks and Literature Notes

The data structure and model presented in this chapter are the simplest case
of the structured nonparametric models to be investigated in this book. Under
this data structure, we assume that the covariates do not change with time,
and only the outcome variable is time-dependent and repeatedly measured.
Although the assumption of time-invariant covariates may be overly simpli-
fied in practice, it sets the stage for developing modeling strategies to meet
the challenges with other more complex longitudinal data. The model that
we have considered in this chapter is a special case of the “time-varying co-
efficient models.” The appealing feature of this model is that the relationship
between the time-invariant covariates and the outcome at a given time is de-
scribed through a linear model, while the linear coefficients are nonparametric
smooth functions of time. This modeling approach simultaneously retains the
interpretable covariate effects and provides the flexibility by allowing the co-
variate effects to change with time. Useful variations of the varying coefficient
models, such as the single-index varying coefficient model (Luo, Zhu and Zhu,
2016), are also widely used in various applications.

We summarize in this chapter a component-wise smoothing method for
estimating the time-varying coefficients. Such a component-wise smoothing is
possible because, based on the special feature of time-invariant covariates, the
coefficient curves can be written as the conditional means of the products of
the time-dependent outcome with a time-invariant matrix of the transformed
covariates. The major advantage of this component-wise smoothing method
is that different smoothing parameters can be used for different coefficient
curves. This is particularly appealing when the coefficient curves satisfy dif-
ferent smoothing conditions, because the potentially different smoothing needs
can be accommodated.

Through some straightforward modifications of the smoothing methods
described in Chapters 3 to 5, both the local and global smoothing meth-
ods can be used for component-wise estimation of the coefficient curves. The
results of this chapter are adopted from Wu and Chiang (2000), which de-
scribes the component-wise kernel estimation method, and Chiang, Rice and
Wu (2001), which describes the component-wise smoothing spline estimation
method. The asymptotic properties established in this chapter provide some
useful theoretical justifications for the component-wise kernel and smoothing
spline estimators. In order to focus on the estimation methods, we omit from
the presentation a number of useful and interesting inference methods for the
time-varying coefficient models, such as the confidence bands of Wu, Yu and
Yuan (2000), the goodness-of-fit tests and empirical likelihood methods of Xue
and Zhu (2007) and Xu and Zhu (2008, 2013).
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Chapter 7

The One-Step Local Smoothing

Methods

This chapter is concerned with the time-varying coefficient models with time-
varying covariates. Unlike the special case in Chapter 6, where the covariates
are time-invariant, the covariate effects described in this chapter are instanta-
neous in the sense that the model only describes the relationship between the
covariates and the outcome at the same time. Despite this simplification, the
time-varying coefficient models discussed in this chapter can be widely applied
in practical longitudinal studies, because these models have the simple inter-
pretation as being linear models at a specific given time point. The changing
coefficient values at different time points allow the models to vary over time,
which adds flexibility to the models. The coefficient curves of the models can
be estimated by a number of different approaches, each with its own advan-
tages and disadvantages. The estimation methods presented in this chapter
are based on a one-step local least squares approach, which has the advantage
of being conceptually simple. Additional local and global estimation methods
for the same models and data structure are presented in Chapters 8 and 9.

7.1 Data Structure and Model Interpretations

7.1.1 Data Structure

In most longitudinal studies, both the outcome variables and the covariates
are likely to be time-varying and repeatedly measured. Under this general
setting, the random variables at each time point t are

(
Y (t), t, XT (t)

)
, where

Y (t) is a real-valued outcome variable and X(t) =
(
1, X (1)(t), . . . , X (k)(t)

)T
is

the (k+ 1) column covariate vector. The corresponding longitudinal observa-
tions for

(
Y (t), t, XT (t)

)
are given by

{(
Yi j, ti j, XT

i j

)
: i = 1, . . . , n; j = 1, . . . , ni

}
,

where the subjects are assumed to be independent, ti j is the jth visit time of
the ith subject, and Yi j and Xi j are the ith subject’s outcome and covariates
observed at time ti j, respectively. The statistical objective is to evaluate the

effects of time t and the covariates X (l)(t), l = 1, . . . , k, on the outcome Y (t).
Using the framework of conditional means, the effects of time t and covariates
X(t) on Y (t) can be described through E

[
Y (t)| t, X(t)

]
. However, as discussed
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in Chapters 3 to 5, complete nonparametric estimation of E
[
Y (t)| t, X(t)

]
with-

out assuming any modeling structures could be computationally infeasible and
scientifically uninterpretable. In this chapter, we describe the formulation and
interpretations of a class of popular structural nonparametric models for lon-
gitudinal data, the time-varying coefficient models, and present a number of
smoothing estimation procedures of the coefficient curves based on local least
squares.

7.1.2 Model Formulation

Using the linear model structure at each time point t, a simple and practical
choice of the “structured nonparametric models” for the instantaneous rela-
tionship between X(t) and Y (t) suggested by Hoover et al. (1998) is to use the
time-varying coefficient model

Y (t) = XT (t)β (t)+ ε(t), (7.1)

where the coefficient curves β (t) =
(
β0(t), . . . , βk(t)

)T
describe the baseline

time-trend β0(t) and the covariate effects
{

β1(t), . . . , βk(t)
}
as functions of t,

ε(t) is a mean zero stochastic process with variance and covariance functions
{

σ2(t) = Var[ε(t)],

ρ(s, t) = Cov[ε(s), ε(t)], when s 6= t,

and ε(t) and X(t) are independent. Note that the covariance function ρ(s, t)
may not equal the variance function σ2(t) when s = t, which may happen, for
example, when the error term ε(t) is the sum of a mean zero stochastic process
and an independent mean zero measurement error. In general, we can assume
that

ρ(t, t) = lim
s→t

ρ(s, t)≤ σ2(t),

where the equality sign holds if there is no independent measurement error
for Y (t). To ensure the identifiability of β (t), we assume that, when X(t) is
random,

E
[
X(t)XT (t)

]
= EXXT (t) (7.2)

exists and invertible, so that its inverse E−1

XXT (t) exists. The nonrandom co-

variates can be incorporated as a special case of (7.2).
Since the mean of ε(t) is assumed to be zero, it is easily seen from (7.1)

that the conditional mean of Y (t) given X(t) is

E
[
Y (t)

∣∣t, X(t)
]
= XT (t)β (t).

Furthermore, it follows from (7.1) and (7.2) that β (t) uniquely minimizes the
second moment of ε(t), that is,

E
{[

Y (t)−XT (t)β (t)
]2}

= inf
all b(·)

E
{[

Y (t)−XT (t)b(t)
]2}

, (7.3)
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and has the expression

β (t) = E−1

XXT (t)E
[
X(t)Y (t)

]
. (7.4)

When all the covariates are time-invariant, i.e., X(t) = X, (7.4) reduces to the
expression of β (t) given in (6.2), and the estimation and inferences for β (t)
can be proceeded using the componentwise smoothing methods of Chapter 6.
But, when some of the components in X(t) are time-dependent, the coefficient
curves β (t) given in (7.4) cannot be estimated by the methods of Chapter 6.

The objective of this chapter is to present a class of local least squares
smoothing methods for the estimation of β (t), which are described in Hoover
et al. (1998), Wu, Chiang and Hoover (1998) and Wu, Yu and Chiang (2000).
These estimation methods are motivated by the expressions of (7.3) and (7.4).
Algorithms and R code for the estimation and inference procedures are pre-
sented in the applications to the NGHS and BMACS data.

7.1.3 Model Interpretations

The structural assumptions of (7.1) suggest that the time-varying coefficient
model is, on one hand, a flexible nonparametric model and, on the other, a
restricted linear model at each time point t. Interpretations of the model on
time-trends and instantaneous covariate effects can be seen from the following
four aspects.

1. Changing Covariate Effects

When t is fixed, (7.1) is a linear model with β (t) being the coefficients
describing the linear effects of X(t) on the mean of Y (t). Because of the linear
structure, the coefficients in β (t) have the same interpretations as a usual
linear model in the sense that they describe the instantaneous linear effects of
the covariates X(t) on the outcome Y (t) at any time point t. Due to the time-
varying nature of β (t), these linear effects may change with the time points.
Thus, the model (7.1) is “local” in terms of the time point t with “structural
restrictions” in terms of the covariates X(t). Since X (0)(t) = 1 and the ε(t) has
zero mean, β0(t) is the mean value of Y (t) when the values of X (1)(t), . . . , X (k)(t)
are zero, which represents the baseline time-trend, while, for 1 ≤ l ≤ k, βl(t)
represents the average change of Y (t) at time t caused by one unit change of
X (l)(t), which describe the covariate effect of X (l)(t).

2. Local Linear Structure

Although the coefficients β (t) change with t, the linear model structure
is preserved by (7.1). It is certainly possible in some applications that the
model structure also changes with t, such as, changing from a linear model
to a nonlinear model as t changes. But, such generalizations are outside the
framework of this book, which require additional research beyond the current
literature.
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3. Flexible Temporal Patterns

The model (7.1) is flexible in terms of its temporal patterns, because the co-
efficient curves βl(t), l = 0, . . . , k, are usually only subject to minimal smooth-
ness assumptions as functions of t. The nonparametric assumptions for βl(t),
l = 0, . . . , k, reflect the desire to preserve the flexibility of the temporal pat-
terns because, in real applications, it is usually unknown how the models, i.e.,
the coefficients, change with time. When more information is available, it is
possible to consider parametric families for βl(t), l = 0, . . . , k, so that, paramet-
ric sub-families of (7.1) may be investigated. Some sub-families of (7.1) lead
to the parametric marginal models, such as the linear or nonlinear marginal
models, which are already extensively studied in the literature.

4. Instantaneous Associations

The covariate effects on the outcome are “instantaneous” in the sense that
(7.1) only includes the associations between X(t) and Y (t) at the same time
point t. The purpose of making the instantaneous association assumption on
(7.1) is to reduce the computational complexity, so that the model can be
parsimonious and practical at the same time. In many practical situations,
the instantaneous association assumption can be reasonably justified because
the current or most recent values of the covariates are most important on the
outcome values. However, the model (7.1) does not allow “time lagging” or
“cumulative” effects, which could be a potential concern in some longitudinal
studies. Here the “time lagging” effects refer to the effects of the covariates
or outcomes at earlier time points on the outcome at a later time point, and
the “cumulative” effects refer to the influence of the cumulative or integrated
values of the covariates over a time interval on the outcome at a later time
point. Substantial further research is needed to better understand the potential
approaches to adequately model and analyze “time lagging” and “cumulative”
effects. The methods covered in this book do not sufficiently address these
issues.

7.1.4 Remarks on Estimation Methods

Similar to other regression models, the model (7.1) and its nonparametric
estimation methods presented in this chapter have their own advantages and
disadvantages, which can be seen from the real applications and theoretical
developments of this chapter. Details of these advantages and disadvantages
are discussed in later sections. The following remarks give an overview of some
important features of the model and estimation procedures of this chapter.

1. Impacts of Correlation Structures

Since the main objective is to estimate the time-varying effects of X(t)
on the mean structure of Y (t), our estimation methods to be presented in
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the next section do not use the potential correlations of
(
Yi j, ti j, XT

i j

)
at two

different visit times. This is mainly due to the fact that, in situations where
the numbers of repeated measurements are not drastically different among
different subjects, the asymptotic biases of our smoothing estimators of β (t)
are not affected by the correlation structures of the data (Section 7.7). The
numbers of repeated measurements and the correlation structures may, in gen-
eral, affect the asymptotic variances of our smoothing estimators of β (t). As
shown in Chapters 3 to 5, since the correlation structures of the data are of-
ten completely unknown in practice, developing a smoothing estimator based
on the estimated correlations of the data is generally unrealistic. Thus, the
smoothing estimators of β (t) presented in this chapter are practical and have
appropriate theoretical properties, although they may not have the smallest
asymptotic variances. In some situations, the scientific objectives are best
achieved by evaluating the relationships between the outcome values at differ-
ent time points, so that the statistical interest is to evaluate the correlation
structures conditioning on the covariates. Statistical models and estimation
procedures related to the correlation structures of the data are discussed in
Chapters 12 to 15.

2. Issues with Missing Data

In practice, the subjects may not be all observed at the same time points, so
that the numbers of repeated measurements and the observation times are pos-
sibly different among subjects. In this sense, we do not assume that there are
“missing data” in the longitudinal observations

{(
Yi j, ti j, XT

i j

)
: i = 1, . . . , n; j =

1, . . . , ni

}
. If, for some reason, a subject has missing observations at a sched-

uled visit, the would be observations of the subject at this specific visit time are
equivalent to data missing completely at random, and consequently are ignored
in the computation of the smoothing estimators. The estimation methods of
this chapter, however, could be biased if some of the subjects have missing
observations due to reasons other than “missing completely at random,” such
as not having observations because the subject’s outcomes or covariates are
“undesirable.” Nonparametric regression models with data “not missing com-
pletely at random”may not be identifiable, and their estimation and inference
methods require further investigation.

3. Outcome-Dependent Covariates

Similar to parametric models for data with time-varying covariates, an im-
portant assumption for the model (7.1) is that the values of the time-varying
components in X(t) do not depend on the values of the outcome variable at
time points prior to t. This situation does not appear in the model and estima-
tion methods of Chapter 6, because the covariates there are all time-invariant.
If X(t) is time-varying and “outcome-dependent” in the sense that the value
of X(t) depends on the values of Y (s) for some s < t, then the nonparametric
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smoothing estimators of β (t) developed in this chapter are likely to be biased,
because the relationships between X(t) and Y (s) for s < t are not included in
(7.1). Useful models and estimation methods for several simple situations with
outcome-dependent time-varying covariates are discussed in Chapter 10.

4. Componentwise Smoothness

Because β (t) is a (k+ 1) column vector of curves, it is possible that the
different component curves in β (t) satisfy different smoothness conditions,
so that their estimators require different smoothing parameters. However, the
componentwise estimation approach of Chapter 6 cannot be directly extended
to the current model (7.1) because the covariates are time-varying. In Section
7.2, we introduce the popular local least squares approach suggested by Hoover
et al. (1998) and Wu, Chiang and Hoover (1998), which relies on using one
smoothing parameter to estimate all the component curves of β (t). Thus this
approach may only be used when all the component curves of β (t) satisfy
similar smoothness conditions. Because it depends on the intuitive idea of
local linear fitting, this approach is computationally simple and can be used
as an exploratory tool to gain some useful insight into the covariate effects.

To further refine the smoothing needs of different covariate curves, we in-
troduce in Chapter 8 the two-step smoothing method proposed by Fan and
Zhang (2000), which has the capability to select different smoothing parame-
ters for different coefficient curves. This estimation approach depends on first
obtaining some“raw estimates” from a preliminary parametric estimation pro-
cedure and then smoothing these “raw estimates” for each of the component
curves. A further estimation method (discussed in Chapter 9) is based on
the global fitting through basis approximation, which is also able to provide
different smoothing needs for different coefficient curves. These different esti-
mation approaches all have their advantages and disadvantages under different
situations, and are all useful in practice.

5. Model Checking

An important question for modeling the relationship between Y (t)
and {t, X(t)} is whether the model (7.1) is appropriate for the dataset{(

Yi j, ti j, XT
i j

)
: i = 1, . . . , n; j = 1, . . . , ni

}
. This question can be answered, at

least partially, by a model checking procedure comparing the fitness of (7.1)
with a more general alternative. Since model checking requires different sta-
tistical procedures, this topic is beyond the scope of this chapter, and some
comparisons of the model (7.1) with a number of alternatives are deferred to
Chapter 9. The focus of this chapter is based on the premise that the rela-
tionship between Y (t) and X(t) is already appropriately described in (7.1).
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7.2 Smoothing Based on Local Least Squares Criteria

7.2.1 General Formulation

The equation (7.3) suggests that β (t) can be intuitively estimated by a local
least squares method using the measurements observed within a neighborhood
of t. Assume that, for each l and some integer p ≥ 0, βl(t) is p times differ-
entiable and its pth derivative is continuous. Approximating βl

(
ti j

)
by a pth

order polynomial

βl

(
ti j

)
≈

p

∑
r=0

[
blr(t)

(
ti j − t

)r
]

(7.5)

for all l = 0, . . . , k, a local polynomial estimator of β (t) =
(
β0(t), . . . , βk(t)

)T

based on a kernel neighborhood is

b̂0(t) =
(
b̂00(t), . . . , b̂k0(t)

)T
, (7.6)

where
{

b̂lr(t) : l = 0, . . . , k; r = 0, . . . , p
}
minimizes the local least squares score

function

Lp,K

(
t; h, w

)

=
n

∑
i=1

ni

∑
j=1

wi

{
Yi j −

k

∑
l=0

{
X
(l)
i j

[ p

∑
r=0

blr(t)
(
ti j − t

)r

]}}2

K
( ti j − t

h

)
, (7.7)

w =
(
w1, . . . , wn

)T
, wi are the non-negative weights satisfying ∑n

i=1

(
wi ni

)
= 1,

K(·) is a kernel function, usually chosen to be a probability density function,

and h> 0 is a bandwidth. For any r = 1, . . . , p, (r!) b̂lr(t) is the local polynomial

estimator of the rth derivative β
(r)
l (t) of βl(t). In real applications, the choices

of
{

p, h, K(·), w
}
in (7.7) lead to different smoothing estimators b̂0(t) of β (t).

Among these choices, the most influential one is the bandwidth h.
Notice that (7.7) is a naive local least-square criterion which attempts to

use one bandwidth h for simultaneously computing all the local polynomial
estimators b̂l0 and (r!) b̂lr(t), r = 1, . . . , p. Although (7.6) has the limitation
of using a single bandwidth, the resulting estimators are still useful as a pre-
liminary step for the estimation of β (t). In particular, the naive local least
squares criterion (7.7) may be modified by a few simple steps to obtain im-
proved estimators that allow for componentwise specific bandwidths and other
improvements over b̂0(t) given in (7.6). The following sections discuss some

useful special cases of the estimators b̂0(t) and their modifications.
Similar to the smoothing estimators for longitudinal data in the previous

chapters (e.g., Section 3.1), the subject uniform weight w∗
i = 1/(nni) and the

measurement uniform weight w∗∗
i = 1/N are often used in practice. Theoreti-

cally, the choice of w∗∗
i = 1/N may produce inconsistent estimators when some

ni are much larger than the others, while the estimators based on w∗
i = 1/(nni)

are always consistent regardless the choices of ni. Details of these theoretical
properties are discussed in Section 7.5.
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7.2.2 Least Squares Kernel Estimators

The simplest special case of (7.6) is the least squares kernel estimator, also
referred to as the local constant fit, which is obtained by minimizing the score
function (7.7) with p = 0. Using the matrix representation

Yi =
(
Yi1, . . . , Yini

)T
, b0(t) =

(
b00(t), . . . , bk0(t)

)T
,

Xi =




1 X
(1)
i1 · · · X

(k)
i1

1 X
(1)
i2 · · · X

(k)
i2

...
...

...
...

1 X
(1)
ini

· · · X
(k)
ini




and Ki(t) =




Ki1 0 · · · 0

0 Ki2 · · · 0

...
...

...
...

0 · · · 0 Kini




with Ki j = K
[
(ti j − t)/h

]
, the score function (7.7) with p = 0 reduces to

L0,K

(
t; h, w

)
=

n

∑
i=1

ni

∑
j=1

wi

{
Yi j −

k

∑
l=0

[
X
(l)
i j bl0(t)

]}2

K
( ti j − t

h

)
,

=
n

∑
i=1

wi

[
Yi −Xi b0(t)

]T
Ki(t)

[
Yi −Xi b0(t)

]
. (7.8)

If the matrix ∑n
i=1 wiX

T
i Ki(t)Xi is invertible, i.e.,

[
∑n

i=1 wiX
T
i Ki(t)Xi

]−1

uniquely exists, then (7.8) can be uniquely minimized and its minimizer gives
the following kernel estimator

β̂ LSK
K

(
t; h, w

)
=
[ n

∑
i=1

wiX
T
i Ki(t)Xi

]−1 [ n

∑
i=1

wiX
T
i Ki(t)Yi

]
(7.9)

of β (t) =
(
β0(t), . . . , βk(t)

)T
. For the special case of k = 0, i.e., the model incor-

porates no covariate other than time t, (7.1) reduces to the simple case (3.1)
with β0(t) = µ(t) = E[Y (t) | t], and (7.9) is the kernel estimator defined in (3.4).

In the expansion (7.5), the estimator β̂ LSK
K

(
t; h, w

)
uses only the first con-

stant term, so that it is equivalent to a “local constant estimator.” The main

advantage of β̂ LSK
K

(
t; h, w

)
over its more general alternatives of (7.6) with p≥ 1

is its computational simplicity. A potential drawback for the kernel or local
constant estimation approach, as demonstrated by Fan and Gijbels (1996) for
the case of cross-sectional i.i.d. data, is its potential bias near the boundary

of the time points. But, β̂ LSK
K

(
t; h, w

)
is still very competitive in most appli-

cations, when the main interest for the estimation β (t) is not at t near the
boundary of its support.

7.2.3 Least Squares Local Linear Estimators

An automatic procedure to reduce the potential boundary bias associated with
the kernel estimators is to use a local polynomial estimator based on (7.5) and
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(7.6) with p ≥ 1. But, a high-order local polynomial fit, such as p ≥ 2, can
be impractical in some applications because it is computationally intensive.
The simplest practical approach that provides immediate improvement on
boundary bias over the kernel estimators (7.9) is to use a local linear fit that
minimizes (7.7) with p = 1. Following equation (7.7), the local linear score
function becomes

L1,K

(
t; h, w

)
(7.10)

=
n

∑
i=1

ni

∑
j=1

wi

{
Yi j −

k

∑
l=0

{
X
(l)
i j

[
bl0(t)+ bl1(t)

(
ti j − t

)]}}2

K

( ti j − t

h

)
.

The minimizer of L1,K

(
t; h, w

)
can be derived by setting the derivatives of right

side of (7.10) with respect to

{(
bl0(t), bl1(t)

)T
: l = 0, . . . , k

}

to zero, which leads to a set of normal equations. Assuming that the normal
equations have a unique solution, the minimizer

{(
b̂l0(t), b̂l1(t)

)T
: l = 0, . . . , k

}

of (7.10) is the solution of the normal equations.
To simplify the notation, it is easier to formulate the minimizer of (7.10)

with respect to
{(

bl0(t), bl1(t)
)T

: l = 0, . . . , k
}

using the following matrices
and vectors:

Nlr =


 ∑n

i=1 ∑
ni
j=1 wi X

(l)
i j X

(r)
i j Ki j ∑n

i=1 ∑
ni
j=1 wi X

(l)
i j X

(r)
i j

(
ti j − t

)
Ki j

∑n
i=1 ∑

ni
j=1 wi X

(l)
i j X

(r)
i j

(
ti j − t

)
Ki j ∑n

i=1 ∑
ni
j=1 wi X

(l)
i j X

(r)
i j

(
ti j − t

)2
Ki j


 ,

Mr =
( n

∑
i=1

ni

∑
j=1

wi X
(r)
i j Yi j Ki j ,

n

∑
i=1

ni

∑
j=1

wi X
(r)
i j

(
ti j − t

)
Yi j Ki j

)T

,

Nr =
(
N0r, . . . , Nkr

)
, N=

(
N

T
0 , . . . , N

T
k

)T
, M=

(
M

T
0 , . . . ,M

T
k )

T ,

bl(t) =
(
bl0(t), bl1(t)

)T
and b(t) =

(
b0(t), . . . ,bk(t)

)T

for r = 0, . . . , k and l = 0, . . . , k, where Ki j = K
[(

ti j − t
)
/h
]
is given in (7.8).

Setting the partial derivatives of L1,K

(
t; h, w

)
of (7.10) with respect to bl0(t)

and bl1(t) to zero, the minimizer of (7.10), if exists, satisfies the following
normal equation

N b̂(t) =M, (7.11)

where b̂(t) =
(
b̂0(t), . . . , b̂k(t)

)T
and b̂l(t) =

(
b̂l0(t), b̂l1(t)

)T
for l = 0, . . . , k. If

the matrix N is invertible at t, i.e., N−1 exists, then the solution of (7.11) exists
and is uniquely given by

b̂(t) = N
−1

M. (7.12)
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For each l = 0, . . . , k, the least squares local linear estimator β̂ LSL
l,K

(
t; h, w

)
of

βl(t) has the expression

β̂ LSL
l,K

(
t; h, w

)
= eT

2 l+1 b̂(t), (7.13)

where eq is the 2(k+ 1) column vector with 1 at its qth place and zero else-
where.

Explicit expressions of the higher-order least squares local polynomial es-
timators can be, in principle, derived by setting the derivatives of the score
function (7.7) with any p ≥ 2 to zero. Although some results in the literature,
such as Fan and Gijbels (1996), have shown that higher-order local polyno-
mial estimators with p ≥ 2 may have some theoretical advantages over the
kernel estimators or local linear estimators, these higher-order local polyno-
mial estimators are rarely used in practice, because they are more difficult
to compute. The theoretical advantages of the higher-order local polynomial
estimators over the kernel estimators or the local linear estimators depend on
the smoothness assumptions of the coefficient curves β (t), which are usually
unknown in practice. Details of the general higher-order estimators based on
(7.6) and (7.7) are not discussed in this book, since a local linear fitting is suf-
ficiently satisfactory in almost all the biomedical studies that have appeared
in the literature.

7.2.4 Smoothing with Centered Covariates

In some situations, modifications of the estimation methods in Sections 7.2.2
and 7.2.3 are needed in order to provide better scientific interpretations of the
results. We discuss here a useful modification based on centered covariates.

1. Centered Covariates

The baseline coefficient curve β0(t) of the model (7.1) is generally inter-
preted as the mean value of Y (t) at time t, when all the covariates X (l(t),
l = 1, . . . , k, are zero. It is often the case that some of the covariates cannot
have values at zero, so that the baseline coefficient curve β0(t) does not have a
meaningful interpretation. Under such situations, the model (7.1) and the lo-
cal least squares estimators (7.6) may not have useful scientific interpretations.
This drawback has been noticed by Wu, Yu and Chiang (2000), which, as a
remedy, has proposed to use a covariate centered modification of the model
(7.1), so that the baseline coefficient can be interpreted as the conditional
mean of Y (t) when the centered covariates are set to zero. We present here
the covariate centered time-varying coefficient model and the corresponding
smoothing estimators studied by Wu, Yu and Chiang (2000).

For any l = 1, . . . , k, let

µ
X(l)(t) = E

[
X (l)(t)

]
and Z(l)(t) = X (l)(t)− µ

X(l)(t)

be the mean curve of X (l)(t) and the centered version of the time-varying
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covariate X (l)(t) (Z(0) = X (0) ≡ 1), respectively. The covariate centered time-
varying coefficient model is

Y (t) = Z(t)T β ∗(t)+ ε(t), (7.14)

where Z(t) =
(
1, Z(1)(t), . . . , Z(k)(t)

)T
is the vector of centered covariates and

β ∗(t) =
(
β ∗

0 (t), β1(t), . . . , βk(t)
)T

is the vector of coefficient curves. Compared
with the original time-varying coefficient model (7.1), the relationship between
the baseline coefficient curves β0(t) and β ∗

0 (t) is given by

β ∗
0 (t) = β0(t)+

k

∑
l=1

µ
X(l)(t)βl(t), (7.15)

which represents the mean of Y (t), when X (l)(t), l = 1, . . . , k, have values at
their means µX(l)(t), i.e., Z(l)(t), l = 1, . . . , k, are set to zero. Other coefficient
curves of (7.1) and (7.14) remain the same. Thus,

{
β1(t), . . . , βk(t)

}
have the

same interpretations in both (7.1) and (7.14).

2. Plug-In Estimation with Local Least Squares Criterion

A simple “plug-in” estimation approach based on the local least squares
score function (7.7) is to first obtain the estimates of

{
β0(t), . . . , βk(t)

}
and{

µ
X(1)(t), . . . , µ

X(k)(t)
}
and then estimate β ∗

0 (t) by plugging in the correspond-
ing curve estimates into (7.15). Under the framework of kernel estimators, if

X (l)(t) is a time-dependent covariate, a centered version of X
(l)
i j can be esti-

mated by

Ẑ
(l)
i j = X

(l)
i j − µ̂

X(l)

(
ti j

)
, (7.16)

where, based on the kernel function κl(·) and bandwidth γl , µ̂
X(l)

(
ti j

)
is the

kernel estimator of µ
X(l)(t) at t = ti j such that

µ̂
X(l)(t) =

∑n
i=1 ∑

ni
j=1

{
wi X

(l)
i j κl [(t − ti j)/γl ]

}

∑n
i=1 ∑

ni
j=1

{
wi κl [(t − ti j)/γl ]

} . (7.17)

For the special case of time-invariant covariates, covariate centering can be
simply achieved by substituting µ̂

X(l)(t) of (7.16) with the sample mean. Specif-

ically, if X (l)(t) = X (l) is time-invariant, then X
(l)
i j = X

(l)
i for all j = 1, . . . , ni, and

Z
(l)
i can be estimated by Ẑ

(l)
i = X

(l)
i − X̄ (l), where X̄ (l) = n−1 ∑n

i=1 X
(l)
i is the sam-

ple mean of
{

X
(l)
i : i = 1, . . . , n

}
. If the kernel estimation method is used, Wu,

Yu and Chiang (2000) suggest that a direct estimation approach based on
(7.8), (7.15) and (7.17) is to estimate

{
β0(t), . . . , βk(t)

}
by

{
β̂ LSK

0 (t), . . . , β̂ LSK
k (t)

}
,
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which are the corresponding components of β̂ LSK(t) given in (7.9), and then
estimate β ∗

0 (t) by

β̂ ∗LSK
0 (t) = β̂ LSK

0 (t)+
k

∑
l=1

µ̂
X(l)(t) β̂ LSK

l (t), (7.18)

so that the resulting estimator of β ∗(t) =
(
β ∗

0 (t), β1(t), . . . , βk(t)
)T

is

β̂ ∗LSK(t) =
(

β̂ ∗LSK
0 (t), β̂ LSK

1 (t), . . . , β̂ LSK
k (t)

)T

. (7.19)

We can see that the estimators in (7.18) and (7.19) depend on the kernel
estimators of both

{
β0(t), . . . , βk(t)

}
and

{
µ

X(1)(t), . . . , µ
X(k)(t)

}
.

3. Covariate-Centered Kernel Estimation

As an alternative to the direct least squares kernel estimators (7.19), a
two-step covariate-centered kernel estimation method suggested by Wu, Yu
and Chiang (2000) is to extend the local least squares score function (7.8) to

the model (7.14). Let Ẑi j =
(
1, Ẑ

(1)
i j , . . . , Ẑ

(k)
i j

)T
be the estimator of the centered

covariate vector Zi j =
(
1, Z

(1)
i j , . . . , Z

(k)
i j

)T
and

Ẑi =
(
Ẑi1, . . . , Ẑini

)T

be the estimator of the ni × (k + 1) centered covariate matrix. Substituting

the Xi(t) of (7.8) by Ẑi, the two-step covariate centered kernel estimator is
obtained by minimizing

L∗
0,K

(
t; h, w

)
=

n

∑
i=1

ni

∑
j=1

wi

{
Yi j −

k

∑
l=0

[
Ẑ
(l)
i j bl0(t)

]}2

K
( ti j − t

h

)
,

=
n

∑
i=1

wi

[
Yi − Ẑi b0(t)

]T

Ki(t)
[
Yi − Ẑi b0(t)

]
, (7.20)

with respect to b0(t) =
(
b00(t), . . . , bk0(t)

)T
. If
[

∑n
i=1 wi Ẑ

T
i Ki(t) Ẑi

]
is invertible

and its inverse is
[

∑n
i=1 wi Ẑ

T
i Ki(t) Ẑi

]−1
, the two-step covariate centered kernel

estimator of β ∗(t) =
(
β ∗

0 (t),β1(t), . . . , βk(t)
)T

uniquely exists and is given by

β̃ ∗LSK
K

(
t; h, w

)
=

(
β̃ ∗LSK

0,K

(
t; h, w

)
, β̃ ∗LSK

1,K

(
t; h, w

)
, . . . , β̃ ∗LSK

k,K

(
t; h, w

))T

=

[
n

∑
i=1

wi Ẑ
T
i Ki(t) Ẑi

]−1 [ n

∑
i=1

wi Ẑ
T
i Ki(t)Yi

]
, (7.21)

where Ki(t) and Yi are defined as in (7.8).
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4. Multiple Bandwidths and Kernels

The estimators mentioned above, both with and without covariate cen-
tering, rely on a single pair of bandwidth and kernel function

{
h, K(·)

}
to

estimate all k+ 1 coefficient curves. In some practical situations, the coeffi-
cient curves

{
β0(t), β1(t), . . . , βk(t)

}
or
{

β ∗
0 (t), β1(t), . . . , βk(t)

}
may belong to

different smoothness families, so that an estimator which uses different pairs
of bandwidth and kernel function

{
h, K(·)

}
for different components of β (t)

or β ∗(t) is generally preferred.
As an example of this approach based on the estimators given in (7.9)

and (7.21), a straightforward modification of the above smoothing estimation
procedures is to use a linear combination of the form

β̂ LSK
K

(
t; h, w

)
=

k

∑
l=0

eT
l+1 β̂ LSK

Kl

(
t; hl , w

)
(7.22)

for the estimation of β (t) =
{

β0(t), β1(t), . . . , βk(t)
}
and

β̃ ∗LSK
K

(
t; h, w

)
=

k

∑
l=0

eT
l+1 β̃ ∗LSK

Kl

(
t; hl, w

)
(7.23)

for the estimation of β ∗(t) =
{

β ∗
0 (t), β1(t), . . . , βk(t)

}
, where, with kernel

Kl(·) and bandwidth hl for each 0 ≤ l ≤ k, K(·) =
(
K0(·), . . . , Kk(·)

)T
, h =(

h0, . . . , hk

)T
, ep is the [(k + 1)× 1] vector with 1 at its pth place and zero

elsewhere. In (7.22) and (7.23), β̂ LSK
K

(
t; h, w

)
and β̃ ∗LSK

K

(
t; h, w

)
may use dif-

ferent pairs of bandwidth and kernel function to estimate different components
of β (t) or β ∗(t). As a general methodology, the idea of (7.22) and (7.23) may
be applied to other smoothing estimators as well.

5. Some Additional Remarks

The large sample properties of both β̂ ∗LSK(t) of (7.19) and β̃ ∗LSK
K

(
t; h, w

)

of (7.21) have been studied by Wu, Yu and Chiang (2000). These asymptotic

results, which are presented in Section 7.5, suggest that both β̂ ∗LSK(t) and

β̃ ∗LSK
K

(
t; h, w

)
are useful in practice, and neither β̂ ∗LSK(t) nor β̃ ∗LSK

K

(
t; h, w

)
is

uniformly superior to the other. In particular, when all the covariates are time-

invariant, β̂ ∗LSK(t) and β̃ ∗LSK
K

(
t; h, w

)
are asymptotically equivalent. However,

when X (l)(t) for l ≥ 1 changes significantly with t, β̃ ∗LSK
K

(
t; h, w

)
, which requires

centering the time-varying X (l)(t) first, could be theoretically and practically

superior to β̂ ∗LSK(t). We discuss more details on the comparisons between
these two kernel estimators in Section 7.5.

After a covariate is centered, the baseline coefficient curve of the model
is changed, but the interpretations of the other coefficient curves, namely{

β1(t), . . . , βk(t)
}
, remain the same. Thus, the decision on whether a covariate
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should be centered or not primarily depends on the biological interpretations of
the corresponding baseline coefficient curves β0(t) or β ∗

0 (t). Clearly, smoothing
methods other than the approaches in (7.18) and (7.21) may also be applied
to the estimation of β ∗(t). But, because of the computational complications
associated with covariate centering, statistical properties for local smoothing
estimators other than (7.21) have not been systematically investigated in the
literature.

7.2.5 Cross-Validation Bandwidth Choice

Following the approach of Chapter 6, we present here the leave-one-subject-
out cross-validation (LSCV) procedure to select the bandwidths for the es-

timators (7.9), (7.13), (7.21), (7.22) and (7.23). Let h =
(
h0, . . . , hk

)T
be the

bandwidths, β̂
(
t; h, w

)
be a smoothing estimator of β (t) =

(
β0(t), . . . , βk(t)

)T

or
(
β ∗

0 (t), β1(t), . . . , βk(t)
)T

based on h, and β̂ (−i)
(
t; h, w

)
be an estimator com-

puted using the same method as β̂
(
t; h, w

)
but with the ith subject’s measure-

ments deleted. The LSCV score for β̂
(
t; h, w

)
is

LSCV
(
h, w

)
=

n

∑
i=1

ni

∑
j=1

wi

[
Yi j −XT

i j β̂ (−i)
(
t; h, w

)]2

, (7.24)

which measures the predictive error of β̂
(
t; h, w

)
for the model (7.1). The

LSCV bandwidth vector hLSCV is the minimizer of the cross-validation score
LSCV

(
h, w

)
provided that the right side of (7.24) can be uniquely minimized.

An automatic search of the global minima of (7.24) usually requires a sophisti-
cated optimization software. In practice, particularly when the dimensionality
(k+ 1) of h is high, it is often reasonable to use a bandwidth vector whose
cross-validation score LSCV

(
h, w

)
is close to the global minima.

The reasons for using the LSCV score (7.24) are the same as the LSCV
scores in Chapters 3 to 6. First, by deleting the subjects one at a time, the cor-
relation structure of the remaining data and the measurements of the deleted
subject is preserved. Second, since in real applications the correlation struc-
tures of the data are often completely unknown and difficult to estimate, the
LSCV score (7.24) is a widely acceptable choice because it does not require
any specific assumptions on the intra-subject correlations, hence, can be im-
plemented in all practical situations. Third, when the number of subjects is
sufficiently large, minimizing (7.24) leads to a bandwidth vector that approx-
imately minimizes the following average squared error

ASE
[
β̂
(
·; h, w

)]
=

n

∑
i=1

ni

∑
j=1

wi

{
XT

i j

[
β (ti j)− β̂

(
ti j; h, w

)]}2

. (7.25)

The last assertion follows heuristically from the decomposition

LSCV
(
h, w

)
=

n

∑
i=1

ni

∑
j=1

{
wi

[
Yi j −XT

i j β (ti j)
]2
}
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+2
n

∑
i=1

ni

∑
j=1

{
wi

[
Yi j −XT

i j β (ti j)
]

×
[
XT

i j

(
β (ti j)− β̂ (−i)

(
ti j; h, w

))]2
}

+
n

∑
i=1

ni

∑
j=1

{
wi

[
XT

i j

(
β (ti j)− β̂ (−i)

(
ti j; h, w

))]2
}
. (7.26)

Here, (7.25) and the definition of β̂ (−i)
(
t; h, w

)
imply that the third term at

the right side of (7.26) is approximately the same as ASE
[
β̂
(
·; h, w

)]
. Because

the first term at the right side of (7.26) does not depend on the bandwidth
and the second term is approximately zero, hLSCV approximately minimizes

the average squared error ASE
[
β̂
(
·; h, w

)]
.

7.3 Pointwise and Simultaneous Confidence Bands

Since the asymptotic distributions for the smoothing estimators of β (t) given
in Section 7.2 have only been developed for a few special cases based on kernel
smoothing, asymptotically approximate inferences for β (t) are not generally
available beyond these special cases. Even for the special cases where the
asymptotic distributions are available, the corresponding approximate infer-
ences require the “plug-in” approach by substituting the unknown quantities
in the asymptotic biases and variances with their smoothing estimates. Thus,
similar to the situations in Section 6.4, a more practical inference approach is
to consider the resampling-subject bootstrap procedure. We describe here the
bootstrap approximate pointwise and simultaneous inferences for β (t).

7.3.1 Pointwise Confidence Intervals by Bootstrap

Let β̂ (t) =
(
β̂0(t), . . . , β̂k(t)

)T
be an estimator of β (t) constructed based on

any of the methods in Section 7.2, and A =
(
a0, . . . , ak

)T
be a known (k+ 1)

column vector. Then,

AT E
[
β̂ (t)

]
=

k

∑
l=0

al E
[
β̂l(t)

]

is a linear combination of the components of E
[
β̂ (t)

]
. The resampling-subject

bootstrap procedure constructs an approximate
[
100× (1−α)

]
% pointwise

percentile interval for AT E
[
β̂(t)

]
using the following steps.

Approximate Bootstrap Pointwise Confidence Intervals:

(a) Computing Bootstrap Estimators. Generate B independent bootstrap
samples using the resampling-subject bootstrap procedure of Section 3.4.1

and compute the B bootstrap estimators
{

β̂ b
1 (t), . . . , β̂ b

B(t)
}
of β (t).
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(b) Approximate Bootstrap Confidence Intervals. Calculate Lb
A,α/2

(t)

and Ub
A,α/2

(t), the lower and upper
[
100× (α/2)

]
th percentiles, respectively,

of the B bootstrap estimators AT β̂ b(t). The approximate
[
100× (1−α)

]
%

bootstrap confidence interval for AT E
[
β̂ (t)

]
based on percentiles is

(
Lb

A,α/2(t),Ub
A,α/2(t)

)
. (7.27)

The normal approximated bootstrap confidence interval for AT E
[
β̂ (t)

]
is

AT β̂ (t)± z1−α/2× ŝe
(

t; AT β̂ b
)
, (7.28)

where ŝe
(
t; AT β̂ b

)
is the estimated standard deviation of the B bootstrap

estimates
{

AT β̂ b
1 (t), . . . , AT β̂ b

B(t)
}
which is given by

ŝe
(

t; AT β̂ b
)
=

{
1

B− 1

B

∑
s=1

[
AT β̂ b

s (t)−
1

B

B

∑
r=1

AT β̂ b
r (t)

]2}1/2

, (7.29)

and z1−α/2 is the [100× (1−α/2)]th percentile of the standard normal dis-
tribution. ✷

The pointwise confidence intervals given in (7.27) and (7.28) are only ap-

proximate intervals for AT E
[
β̂ (t)

]
, because they do not contain bias correc-

tions. When the asymptotic bias of β̂ (t) is small, the coverage probabilities

of (7.27) and (7.28) containing AT β̂(t) are close to [100× (1−α)]%. Since
the asymptotic bias of a smoothing estimator is often difficult to be accu-
rately estimated in practice, the“plug-in”approach for correcting the unknown
asymptotic bias may not lead to better coverage probabilities over the simple
variability bands given in (7.27) and (7.28).

Pointwise confidence intervals for a single component of β (t) can be con-
structed by selecting the corresponding component of A to be 1 and 0 else-
where. In particular, the pointwise resampling-subject bootstrap confidence
interval for βr(t), 0 ≤ r ≤ k, can be computed by (7.27) or (7.28) with A be-
ing the (k+ 1) column vector having 1 at its (r+ 1)th place and 0 elsewhere.
Pointwise confidence intervals for the difference of two component curves of
β (t) can be similarly constructed by taking the corresponding elements of A

to be 1 and −1 and 0 elsewhere. For example, the pointwise bootstrap confi-
dence interval for

[
βr1

(t)−βr2
(t)
]
can be computed by (7.27) or (7.28) with A

being the (k+1) column vector having 1 and -1 at its (r1 +1)th and (r2 +1)th
places, respectively, and 0 elsewhere. Other special cases of (7.27) and (7.28)
can be similarly constructed by choosing the appropriate vector A.
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7.3.2 Simultaneous Confidence Bands

We now describe the “bridging-the-gap” simultaneous confidence bands for
AT β (t) = ∑k

l=0 al βl(t) over t ∈ [a, b], where [a, b] is any given interval in T .
The first step is to select a type of pointwise confidence intervals based on the

estimator β̂ (t) =
(
β̂0(t), . . . , β̂k(t)

)T
of Section 7.2. In general, let lA,α/2(t) and

uA,α/2(t) be the lower and upper bounds, respectively, of a
[
100× (1−α)

]
%

pointwise confidence interval for AT β (t) based on β̂ (t), so that the correspond-
ing interval is given by (

lA,α/2(t), uA,α/2(t)
)
. (7.30)

A simple choice for (7.30) is to use the resampling-subject bootstrap confidence
intervals given in (7.27) and (7.28).

The next step is to construct a set of confidence intervals which cover
AT β (t) over a grid of time points in [a, b] ∈ T with at least

[
100× (1−α)

]
%

of the coverage probability. Thus, we partition [a, b] into M equally spaced
intervals with grid points

a = ξ1 < · · ·< ξM+1 = b, such that ξ j+1 − ξ j = (b− a)/M for j = 1, . . . , M.

The integer M is usually chosen subjectively with the intent that the re-
sulting confidence bands are not too wide. Given

{
ξ1, · · · , ξM+1

}
, a set of

approximate
[
100× (1−α)

]
% simultaneous confidence intervals for AT β (ξ j),

j = 1, . . . , M+ 1, is then the collection of intervals
{(

LA,α/2

(
ξ j

)
,UA,α/2

(
ξ j

))
: j = 1, . . . , M+ 1

}
, (7.31)

which satisfies the inequality

lim
n→∞

P
[
LA,α/2

(
ξ j

)
≤ AT β

(
ξ j

)
≤UA,α/2

(
ξ j

)
for all j = 1, . . . , M+ 1

]
≥ 1−α.

A simple choice of (7.31) is based on the Bonferroni adjustment of the point-
wise confidence interval of (7.30), such that

(
LA,α/2

(
ξ j

)
,UA,α/2

(
ξ j

))
=
(

lA,α/[2(M+1)]

(
ξ j

)
, uA,α/[2(M+1)]

(
ξ j

))
. (7.32)

To bridge the gaps between the grid points
{

ξ j : j = 1, . . . , M+1
}
, we rely

on some smoothness conditions for AT β (t). Given the values of AT β
(
ξ j

)
and

AT β
(
ξ j+1

)
, the linear interpolation for t ∈ [ξ j,ξ j+1] is

(
AT β

)(I)
(t) =

[
M
(
ξ j+1 − t

)

b− a

][
AT β

(
ξ j

)]
+

[
M
(
t − ξ j

)

b− a

][
AT β

(
ξ j+1

)]
. (7.33)

By (7.31) and (7.33), a simultaneous confidence band for the linear interpola-

tion
(
AT β

)(I)
(t) over t ∈ [a, b] is

(
L
(I)
A,α/2

(t),U
(I)
A,α/2

(t)
)
, (7.34)
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where L
(I)
A,α/2

(t) is the linear interpolation of
{

LA,α/2

(
ξ j

)
, LA,α/2

(
ξ j+1

)}
and

U
(I)
A,α/2

(t) is the linear interpolation
{

UA,α/2

(
ξ j

)
,UA,α/2

(
ξ j+1

)}
. If the deriva-

tive of AT β (t) with respect to t is bounded, such that

sup
t∈[a,b]

∣∣∣
(
AT β

)′
(t)
∣∣∣≤ c1, for a known constant c1 > 0, (7.35)

then it follows that
∣∣∣AT β (t)−

(
AT β

)(I)
(t)
∣∣∣≤ 2c1

[
M (ξ j+1 − t)(t − ξ j)

b− a

]
,

for all t ∈ [ξ j, ξ j+1], and an approximate
[
100× (1−α)

]
% simultaneous confi-

dence band for AT β (t) is
(

L
(I)
A,α/2

(t)− 2c1

[
M (ξ j+1 − t)(t − ξ j)

b− a

]
,

U
(I)
A,α/2

(t)+ 2c1

[
M (ξ j+1 − t)(t − ξ j)

b− a

])
. (7.36)

If the second derivative of AT β (t) with respect to t is bounded, such that

sup
t∈[a,b]

∣∣∣
(
AT β

)′′
(t)
∣∣∣≤ c2, for a known constant c2 > 0, (7.37)

then ∣∣∣AT β (t)−
(
AT β

)(I)
(t)
∣∣∣≤ c2

2

[
M (ξ j+1 − t)(t − ξ j)

b− a

]
,

for all t ∈ [ξ j, ξ j+1], and an approximate
[
100× (1−α)

]
% simultaneous confi-

dence band is given by
(

L
(I)
A,α/2

(t)− c2

2

[
M (ξ j+1 − t)(t − ξ j)

b− a

]
,

U
(I)
A,α/2

(t)+
c2

2

[
M (ξ j+1 − t)(t − ξ j)

b− a

])
. (7.38)

When AT β (t) satisfy smoothness conditions other than (7.35) and (7.37),
simultaneous confidence bands for AT β (t) can be similarly constructed using
the linear interpolation bands of (7.34) and the inequalities obtained from
the smoothness conditions. The smoothness conditions defined through the
derivatives as (7.35) and (7.37) are easy to interpret in real applications.

7.4 R Implementation

7.4.1 The NGHS BP Data

The NGHS data has been described in Section 1.2. In Section 5.2.2, we have
analyzed the time-trends of body mass index (BMI) for the 1213 African
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American girls and 1166 Caucasian girls, who were followed from ages 9 or
10 years to 18 or 19 years. Since the objective of this study is to investigate
the patterns of cardiovascular risk factors, an important outcome variable is
the subject’s systolic blood pressure (SBP). Although the children’s blood
pressure generally increases with age and height, the longitudinal relationship
between the time-trends of blood pressure and the covariates of interests may
not follow a certain parametric family.

1. Estimation with the Time-Varying Coefficient Model

The structured nonparametric model (7.1) appears to be a natural option
for an exploratory analysis. In this analysis, we evaluate the potential covariate
effects of race, height and BMI on the time-trends of SBP using the time-
varying coefficient model (7.1). For the ith NGHS participant, we denote by
ti j the age in years at the jth study visit, Yi j the SBP level at ti j during the

study, εi j the error term at ti j, X
(1)
i the indicator variable for race (X

(1)
i = 1 for

African American, X
(1)
i = 0 for Caucasian), X

(2)
i j and X

(3)
i j the height and BMI

at ti j. The model (7.1) can be written as

Yi j = β0

(
ti j

)
+β1

(
ti j

)
X
(1)
i +β2

(
ti j

)
X
(2)
i j +β3

(
ti j

)
X
(3)
i j + εi j . (7.39)

Instead of using the actual height and BMI values, we use in the above
model the age-adjusted height and BMI percentiles for X (2)(ti j) and X (3)(ti j),
respectively, which are computed by subtracting 50% from the individual’s
height and BMI percentiles obtained from the U.S. Center for Disease Control
and Prevention (CDC) Growth Charts (https://www.cdc.gov/growthcharts/).
Consequently, β0(t) represents the baseline SBP curve, i.e., the mean time
curve of SBP for a Caucasian girl with a median height and a median BMI
level, and βl(t), l = 1, 2, 3, represent the effects of race, height and BMI, respec-
tively, on the individual’s SBP during the adolescence years. This definition
of X (2)(ti j) and X (3)(ti j) leads to meaningful clinical interpretations for the
model (7.1). Hence, there is no need to consider further “covariate centering”
as described in Section 7.2.4.

To obtain the local least squares smoothing estimates for the coefficient
curves as described in Section 7.2, we need to select a kernel function K(·),
an order of polynomial p and a bandwidth h. The bandwidth h is the most
important parameter to determine the smoothness of the fitted curves. The
resulting local polynomial estimators are the weighted least squares solution
of (7.7), which may be obtained by simply applying the R function lm(). For
a given t, we set the design matrix for lm() to include

{
X(l) : l = 0, 1, . . . , k

}
,

where X(l) has p components,

{
X
(l)
i j , X

(l)
i j

(
ti j − t

)
, . . . , X

(l)
i j

(
ti j − t

)p
}
,

and set the weight argument to include wi K
[
(ti j − t)/h

]
. Then we can take

https://www.cdc.gov/growthcharts/
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the (2 l+1)th, l = 0, 1, . . . , k, components of the coefficient estimates to obtain

b̂0(t) =
(
b̂00(t), . . . , b̂k0(t)

)T
in (7.6). Alternatively, we may also use the algo-

rithm in Section 7.2.3 to compute the matrices N and M, and solve equation
(7.11) to get the local linear estimators.

For the NGHS SBP data, we estimate the model coefficients
{

βl(t) : l =
0, 1, 2, 3

}
using a local linear fit with the Epanechnikov kernel and a subjective

bandwidth h = 3.5 by using the following R commands:

> library(npmlda)

# Obtain a grid of time

> Age.grid <- seq(9, 19, by=0.5)

# Call function LocalLm.Beta() for local least squares fits for

# baseline and 3 covariate effects at Age.grid

> Beta <- with(NGHS, LocalLm.Beta(Age.grid, AGE, X1=Black,

X2=HTPCTc, X3=BMIPCTc, SBP, Bndwdth=3.5, Weight=1/ni))

Figure 7.1 displays the estimated coefficient curves for the covariates be-
tween 9 to 19 years of age for the NGHS girls and their 95% pointwise con-
fidence intervals computed based on the resampling-subject bootstrap proce-
dure of Section 7.3.1 with 1000 bootstrap replications. The subject uniform
weight w∗

i = 1/(nni) discussed in Section 7.2.1 is used. The fitted curves with
the LSCV cross-validated bandwidth h = 1.6 are slightly undersmoothed but
suggest very similar time-trends for the baseline and coefficient curves.

Remarkably, these coefficient curves in Figure 7.1 suggest very interesting
baseline growth pattern and time-varying covariate effects on the time-varying
SBP patterns of adolescent girls. As expected, the estimated baseline coeffi-
cient curve shows that the mean SBP for Caucasian girls with the median
height and the median BMI increases with age during adolescent years. The
effect of race, which changes with time, suggests that the African American
girls tend to have higher mean SBP levels than the Caucasian girls. However,
this racial difference is not statistically significant at younger ages but be-
comes more significant at later adolescent years. The lower panels of Figure 7.1
show the estimated coefficient curves for the two time-dependent covariates,
height and BMI percentiles. The effect of height percentile on SBP is positive,
suggesting that the SBP levels of adolescent girls tend to increase with height
percentile and the influence of height percentile is larger for girls with younger
ages and declines with age. Finally, the BMI percentile is also positively asso-
ciated with SBP level, and its effect is larger at older ages compared to that
at early adolescent years.

2. Estimation with the Linear Mixed-Effects Model

We see from Figure 7.1 that the above structured nonparametric results
based on the model (7.39) suggest that the relationship between the mean of
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Figure 7.1 Covariate effects on systolic blood pressures of NGHS girls using local
linear estimators. The solid curves in (A)-(D) show the estimated coefficient curves

β̂ LSL
l,K

(
t; h, w∗), l = 0, 1, 2, 3, respectively, based on (7.13) using a Epanechnikov kernel

and a bandwidth h= 3.5. The dashed curves indicate the corresponding bootstrap 95%
pointwise confidence intervals.

SBP Y (t) and the girls’ age t, race X (1), height percentile X (2)(t) and BMI per-
centile X (3)(t) may be approximately described by a parametric linear mixed-
effects model described in Section 2.1. We examine this possibility by fitting
the data to the following second-order linear mixed-effects model

Yi j = α0i +α1 ×Agec
i j +α2 ×X

(1)
i +α3 ×X

(2)
i j +α4 ×X

(3)
i j

+α5 ×Agec
i j ×X

(1)
i j +α6 ×Agec

i j ×X
(2)
i j (7.40)

+α7 ×Agec
i j ×X

(3)
i j + ei j ,

where, for convenience and clinical interpretations, Agec
i j is the girls’ centered

age computed by subtracting the starting age of 9 years from the girl’s actual

age at the jth visit, and, X
(1)
i , X

(2)
i j and X

(3)
i j are the girl’s race, height percentile

and BMI percentile as defined in (7.39). In (7.40), the time-varying covariate
effects are described by the coefficients

{
α5, α6, α7

}
for the interaction terms

{
Agec

i j ×X
(1)
i j , Agec

i j ×X
(2)
i j , Agec

i j ×X
(3)
i j

}
.
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The parameter estimates and their inferences of (7.40) can be computed
using the following R code:

> NGHS.fit <- lme(SBP~AGEc+Race+Race:AGEc+HTPCTc+HTPCTc:AGEc

+ BMIPCTc + BMIPCTc:AGEc, random=~1|ID, data=NGHS)

> summary(NGHS.fit)

Linear mixed-effects model fit by REML

...

Fixed effects:

Value Std.Error DF t-value p-value

(Intercept) 100.12814 0.21507240 16938 465.5555 0.0000

AGEc 0.87370 0.02517459 16938 34.7055 0.0000

Race 0.30588 0.30215527 2374 1.0123 0.3115

HTPCTc 0.04558 0.00478288 16938 9.5290 0.0000

BMIPCTc 0.08750 0.00439813 16938 19.8955 0.0000

AGEc:Race 0.07878 0.03540669 16938 2.2251 0.0261

AGEc:HTPCTc -0.00131 0.00065129 16938 -2.0166 0.0438

AGEc:BMIPCTc 0.00252 0.00062072 16938 4.0556 0.0001

...

The output above shows that the baseline SBP increases with age because
both α̂0 = 100.128 and α̂1 = 0.874 are statistically significantly larger than
zero. There are significant positive associations of race, height percentile and
BMI percentile with SBP over time. Furthermore, the significant interaction
terms indicate that the covariate effects on SBP are varying with time. Hence,
these results from the linear mixed-effects model (7.40) are consistent with
those obtained from the time-varying coefficient model (7.39).

Since the cardiovascular risk factors track from childhood to adulthood,
this example suggests that the time-varying coefficient models are useful ap-
proaches to explore the racial differences and correlates in blood pressures
or other risk factors in this type of longitudinal studies. The findings could
provide rationales for future interventions to reduce the excess cardiovascular
mortality, as discussed in Daniels et al. (1998).

7.4.2 The BMACS CD4 Data

The BMACS CD4 data has been described in Section 1.2 and analyzed in
several previous chapters. In this analysis, we consider using the local least
squares smoothing method to estimate the effects of three time-invariant co-
variates, pre-HIV infection CD4 percentage, cigarette smoking, and age at
HIV infection, on the mean CD4 percentage after the infection using the time-
varying coefficient model (7.1). In comparison with the componentwise local
method in Chapter 6, the estimators in Section 7.2 can be applied to more
general models that also allow for time-dependent covariates.
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Figure 7.2 Covariate effects on post-infection CD4 percentage using local linear es-

timators. The solid curves in (A)-(D) show the estimated coefficient curves β̂l(t),
l = 0, 1, 2, 3, respectively, based on (7.6) using the Epanechnikov kernel and the cross-
validated bandwidth h = 1.8. The dashed curves indicate the corresponding bootstrap
95% pointwise confidence intervals.

Figure 7.2 displays the estimated coefficient curves from 0.1 to 5.9 years
post-HIV infection for the BMACS CD4 data, where the continuous covariates
of pre-infection CD4 percentage and age at HIV infection are first centered by
subtracting their corresponding sample averages, 42.9% and 34.2 years, from
the individual values, respectively. The four coefficients

{
βl(t) : l = 0, . . . , 3

}

are obtained from a local linear estimator with the Epanechnikov kernel, sub-
ject uniform weight w∗

i = 1/(nni), and the LSCV cross-validated bandwidth
h = 1.8. Their 95% pointwise confidence intervals are computed using the
resampling-subject bootstrap with 1000 bootstrap replications.

The results for the baseline and covariate effects from the local least squares
estimates, shown in Figure 7.2, are very similar to the findings obtained from
the componentwise methods in Figures 6.1 and 6.2. They all suggest that
the mean baseline CD4 percentage decreases quickly after HIV infection, the
pre-infection CD4 percentage is positively associated with post-infection CD4
percentage but this effect is declining with time since HIV infection. However,
neither smoking nor age at infection has a significant association with the
post-infection CD4 percentage.
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7.5 Asymptotic Properties for Kernel Estimators

This section summarizes the asymptotic properties of the local least squares
kernel estimators for the time-varying coefficient model (7.1). These smooth-
ing estimators are representatives of the one-step smoothing methods for
(7.1), and their asymptotic properties give an overview on how the smooth-
ing method works in practice. By minimizing the local-squares score function

(7.8), the expression of the least squares kernel estimator β̂ LSK
K

(
t; h, w

)
of β (t)

in (7.1) is given by (7.9). The asymptotic risks of β̂ LSK
K

(
t; h, w

)
are expressed

using the mean squared errors.
The main results of this section have two interesting features, which distin-

guish the asymptotic risk of β̂ LSK
K

(
t; h, w

)
from its counterpart of the Nadaraya-

Watson kernel estimators in nonparametric regression with cross-sectional

i.i.d. data. First, the asymptotic bias of the kernel estimator β̂ LSK
K

(
t; h, w

)

is affected by the smoothness of the time-varying covariates X(t) as well as
the smoothness of β (t) and the underlying design density of t. Second, the

asymptotic variance of β̂ LSK
K

(
t; h, w

)
is influenced by the intra-subject corre-

lation of the data and the numbers of repeated measurements ni, as well as
the variance of the error term ε(t). Thus, as a consequence, the convergence

rates of β̂ LSK
K

(
t; h, w

)
in general depend on the number of subjects n and the

numbers of repeated measurements ni. In contrast, the convergence rates of
the kernel estimators in nonparametric regression with cross-sectional i.i.d.
data only depend on the sample size n.

7.5.1 Asymptotic Assumptions

The estimation methods of Section 7.2 can accommodate both fixed and ran-
dom time points. We make the following technical assumptions for the asymp-

totic properties of β̂ LSK
K

(
t; h, w

)
throughout this chapter:

(a) The time points
{

ti j : j = 1, . . . , ni; i = 1, . . . , n
}
are chosen independently

according to some design distribution FT and design density fT .

(b) For all i = 1, . . . , n, j = 1, . . . , ni, and r, l = 0, . . . , k,





σ2(t) = E
[
ε2(t)

]
,

ρε(t) = limδ→0 E
[
ε(t + δ )ε(t)

]
,

ξlr(t) = E
(
X
(l)
i j X

(r)
i j

∣∣ti j = t
)
.

(7.41)

(c) For all l,r = 0, . . . , k, ξlr(t) is Lipschitz continuous with order α0, i.e.,

∣∣ξlr(s1)− ξlr(s2)
∣∣≤ c0 |s1 − s2|α0

for s1 and s2 in the support of fT (t) and some c0 > 0, and βl(t) and fT (t)
are Lipschitz continuous, respectively, with orders α1 > 0 and α2 > 0.
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(d) The variance curve σ2(t) and the limiting covariance curve ρε(t) are con-

tinuous, and E
[(

X
(l)
i j

)4]
< ∞.

(e) The kernel function K(·) is non-negative, has compact support on the real
line, integrates to one and has finite second moment, that is, there are
constants c1 < c2, such that,

{
K(u)> 0 if c1 ≤ u ≤ c2, K(u) = 0 if u < c1 or u > c2,∫

K(u)du = 1 and
∫

K2(u)du < ∞.
(7.42)

(f) The bandwidth satisfies h → 0 and nh → ∞ as n → ∞. ✷

Similar to the assumptions in Section 6.6.2, ρε(t) in general does not nec-
essarily equal σ2(t), and, when the error term ε(t) includes an independent
measurement error, σ2(t) > ρε(t). These assumptions are comparable to the
regularity conditions commonly used in nonparametric regression with cross-
sectional i.i.d. data (e.g., Härdle, 1990), and are sufficiently general to be satis-
fied in many interesting practical situations. Theoretically, these assumptions
can be further modified or weakened in various ways so that more desirable

asymptotic properties of the kernel estimator β̂ LSK
K

(
t; h, w

)
may be obtained.

7.5.2 Mean Squared Errors

The risk of β̂ LSK
K

(
t; h, w

)
or any other smoothing estimator of β (t) in Sec-

tion 7.2 depends on the choice of loss functions. Let Wl , l = 0, . . . , k, be non-
negative constants, and W = diag

(
W0, . . . ,Wk

)
be the (k + 1)× (k + 1) ma-

trix with diagonal elements
{

W0, . . . ,Wk

}
and zero elsewhere. The local mean

squared error of β̂ LSK(·) with weights W at time t is

MSE∗
W

[
β̂ LSK

K

(
t; h, w

)]

= E

{[
β̂ LSK

K

(
t; h, w

)
−β (t)

]T

W
[
β̂ LSK

K

(
t; h, w

)
−β (t)

]}
. (7.43)

Similar to the situation of Section 6.6, the mean squared error (7.43) may
not exist in general. Since this minor technical problem does not have real
implications about the practical value of an estimator, we use the following

slightly modified version of (7.43) for β̂ LSK
K

(
t; h, w

)
.

1. Approximation for
[
β̂ LSK

K

(
t; h, w

)
−β (t)

]

Let

R̂w(t) =
n

∑
i=1

(
wi/h

){
X

T
i Ki(t)

[
Yi −Xi β (t)

]}
, (7.44)

where w= (w1, . . . , wn)
T is the weights used in (7.9). The objective is to express
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the risks of β̂ LSK
K

(
t; h, w

)
through the second moment of R̂w(t). By straightfor-

ward algebra, which is given in the following, we have the approximation

D(t) =
[
1+ op(1)

][
β̂ LSK

K

(
t; h, w

)
−β (t)

]

= f−1
T (t)E−1

XXT (t) R̂w(t), (7.45)

where fT (t) is the density function of ti j given in Assumption (a), EXXT (t) =
E
[
X(t)XT (t)

]
. To derive (7.45), we first obtain from (7.9) that

β̂ LSK
K

(
t; h, w

)
−β (t)

=

[
n

∑
i=1

wiX
T
i Ki(t)Xi

]−1{ n

∑
i=1

wiX
T
i Ki(t)

[
Yi −Xiβ (t)

]}

=

[
n

∑
i=1

(
wi/h

)
X

T
i Ki(t)Xi

]−1

R̂w(t). (7.46)

Then, multiplying ∑n
i=1

(
wi/h

)
XT

i Ki(t)Xi to both sides of (7.46), we have

[
n

∑
i=1

(
wi/h

)
X

T
i Ki(t)Xi

][
β̂ LSK

K

(
t; h, w

)
−β (t)

]
= R̂w(t). (7.47)

By the definition of Ki(t) in Section 7.2.2, we have

E

[
n

∑
i=1

(
wi/h

)
X

T
i Ki(t)Xi

]
=

n

∑
i=1

(
wi/h

)
E
{
X

T
i E
[
Ki(t)

]
Xi

}
. (7.48)

To compute E
[
Ki(t)

]
, we note that, by Assumptions (a) and (c),

E

[
K
( ti j − t

h

)/
h

]
=

∫ [
K
( s− t

h

)/
h
]

fT (s)ds

=

∫
K(u) fT (t − hu)du

= fT (t)
[
1+ op(1)

]
. (7.49)

It follows from (7.46), Assumptions (a) through (f), and ∑n
i=1

(
wi ni

)
= 1 that

E

[
n

∑
i=1

(
wi/h

)
X

T
i Ki(t)Xi

]
= fT (t)EXXT (t)

[
1+ op(1)

]
, (7.50)

and, by the law of large numbers,

[
n

∑
i=1

(
wi/h

)
X

T
i Ki(t)Xi

]
= fT (t)EXXT (t)

[
1+ op(1)

]
. (7.51)

The approximation of (7.45) then follows directly from equations (7.47) and
(7.51).
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2. Approximated Mean Squared Errors

To avoid the technical inconvenience that might arise because of the
nonexistence of the mean squared errors, we describe the asymptotic risk

of β̂ LSK
K

(
t; h, w

)
through the mean squared error of D(t) in (7.45), which is

referred to as the modified mean squared error for β̂ LSK
K

(
t; h, w

)
,

MSE∗
W

[
β̂ LSK

K

(
t; h, w

)]
=

k

∑
l=0

k

∑
r=0

{
Mlr(t)E

[
R̂wl(t) R̂wr(t)

]}
, (7.52)

where R̂wl(t) is the lth element of the k+ 1 column vector R̂w(t) and Ml r(t) is
the (l, r)th element of the (k+ 1)× (k+ 1) matrix

M(t) = f−2
T (t)

[
E−1

XXT (t)
]T

WE−1

XXT (t).

Similar to the usual mean squared errors, MSE∗
W

[
β̂ LSK

K

(
t; h, w

)]
of (7.52)

is formed by two components, the square of the expectation of D(t) and the

variance-covariance matrix of D(t). The modified bias of β̂ LSK
K

(
t; h, w

)
is de-

fined to be the expectation of D(t) given by

B∗[β̂ LSK
K

(
t; h, w

)]
= E

[
D(t)

]
= f−1

T (t)E−1

XXT (t)E
[
R̂w(t)

]
. (7.53)

The modified variance-covariance matrix of β̂ LSK(t) is defined to be the
variance-covariance matrix of D(t) given by

Cov∗
[
β̂ LSK

K

(
t; h, w

)]

= Cov
[
D(t)

]
(7.54)

=
[

f−1
T (t)E−1

XXT (t)
]

Cov
[
R̂w(t)

][
f−1
T (t)E−1

XXT (t)
]T

.

We similarly define the modified mean squared error of a component es-

timator of β (t). For a given component β̂ LSK
K, l

(
t; h, w

)
for some 0 ≤ l ≤ k, its

corresponding approximation component is Dl(t), so that its modified bias and
variance are given by

B∗[β̂ LSK
K, l

(
t; h, w

)]
= E

[
Dl(t)

]
and V ∗[β̂ LSK

K, l

(
t; h, w

)]
=Var

[
Dl(t)

]
, (7.55)

respectively. Since the weight W defined in (7.43) is a diagonal matrix
with diagonal elements

{
W0, . . . ,Wk

}
, the modified mean squared error of

β̂ LSK
K

(
t; h, w

)
has the following variance-bias squared decomposition

MSE∗
W

[
β̂ LSK

K

(
t; h, w

)]

=
k

∑
l=0

Wl

{
B∗[β̂ LSK

K, l

(
t; h, w

)]}2

+
k

∑
l=0

Wl V
∗[β̂ LSK

K, l

(
t; h, w

)]
. (7.56)
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Taking Wl = 1 for any 0 ≤ l ≤ k and Wr = 0 for all r 6= l, the modified mean

squared error for the component estimator β̂ LSK
K, l

(
t; h, w

)
is given by

MSE∗[β̂ LSK
K, l

(
t; h, w

)]
=
{

B∗[β̂ LSK
K, l

(
t; h, w

)]}2

+V ∗[β̂ LSK
K, l

(
t; h, w

)]
. (7.57)

We derive in the next section the asymptotic representations of the bias and
variance terms in the right side of (7.56) and (7.57).

7.5.3 Asymptotic Risk Representations

We present here only the asymptotic risks for the kernel estimator β̂ LSK(t) of
(7.9) with the w∗∗

i = 1/N weight

β̂ LSK
K

(
t; h, w∗∗)=

(
β̂ LSK

K,0

(
t; h, w∗∗), . . . , β̂ LSK

K,k

(
t; h, w∗∗))T

.

The asymptotic risks of β̂ LSK
K

(
t; h, w

)
with weight w 6= w∗∗ can be derived as a

straightforward extension from that of β̂ LSK
K

(
t; h, w∗∗).

1. Expressions of Asymptotic Mean Squared Errors

We first state and prove a general result for the mean squared risk of the

kernel estimator β̂ LSK
K

(
t; h, w∗∗).

Theorem 7.1. When the number of subjects n is large, t is an interior
point of the support of fT and Assumptions (a) through (f) are satisfied, the
following conclusions hold:

(a) The asymptotic bias of β̂ LSK
K

(
t; h, w∗∗) is given by

B∗[β̂ LSK
K

(
t; h, w∗∗)]= f−1

T (t)E−1

XXT (t)
(
B0(t), . . . , Bk(t)

)T [
1+ o(1)

]
, (7.58)

where, for l = 0, . . . , k,





Bl(t) = ∑k
r=0

∫ [
βr(t − hu)−βr(t)

]
ξlr(t − hu) fT (t − hu)K(u)du,

B∗[β̂ LSK
K

(
t; h, w∗∗)]=

(
B∗

0

[
β̂ LSK

K

(
t; h, w∗∗)], . . . , B∗

k

[
β̂ LSK

K

(
t; h, w∗∗)])T

.

(b) The asymptotic variance term V ∗[β̂ LSK
K

(
t; h, w∗∗)] is

k

∑
l=0

Wl V ∗[β̂ LSK
K, l

(
t; h, w∗∗)] (7.59)

=

[
n

∑
i=1

(ni

N

)2
]

f 2
T (t)Z1(t)+

fT (t)

N h

[∫
K2(u)du

]
Z2(t)+ o

[
1

N h
+

n

∑
i=1

(ni

N

)2
]
,
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where, with the matrix M(t) defined in (7.52),

{
Z1(t) = ρε(t) ∑k

l1=0 ∑k
l2=0

[
Ml1 l2(t)ξl1 l2(t)

]
,

Z2(t) = σ2(t) ∑k
l1=0 ∑k

l2=0

[
Ml1 l2(t)ξl1 l2(t)

]
.

(c) The asymptotic mean squared error MSE∗
W

[
β̂ LSK

K

(
t; h, w∗∗)], which is ob-

tained by substituting (7.58) and (7.59) into (7.56), is given by

MSE∗
W

[
β̂ LSK

K

(
t; h, w∗∗)]

=
k

∑
l=0

Wl B∗
l

[
β̂ LSK

K

(
t; h, w∗∗)]+

[
n

∑
i=1

(ni

N

)2
]

f 2
T (t)Z1(t) (7.60)

+
fT (t)

N h

[∫
K2(u)du

]
Z2(t)+ o

[
1

Nh
+

n

∑
i=1

(ni

N

)2
]
.

Furthermore, MSE∗
W

[
β̂ LSK

K

(
t; h, w∗∗)]→ 0 if and only if max1≤i≤n

(
ni N−1

)
→

0 as n → ∞. �

Proof of Theorem 7.1 is given at the end of this section.

The general asymptotic bias expression of (7.58) leads to different special
cases under different smoothness assumptions for ξlr(t), βl(t), fT (t), σ2(t) and
ρε(t). A commonly used smoothness condition in the literature is to assume
that the nonparametric curves of interest are twice differentiable. Although
it is usually impractical to validate whether the unknown curves in a practi-
cal situation are twice differentiable, asymptotic results developed under the
twice differentiability assumption is often used as a general guideline to evalu-
ate the appropriateness of the smoothing estimators. The next theorem gives

the asymptotic mean squared error of β̂ LSK
K

(
t; h, w∗∗) under a special case of

Assumptions (c) and (d).

Theorem 7.2. Suppose that Assumptions (a) through (f) are satisfied,
and, in addition, βl(t), fT (t) and ξlr(t) are twice continuously differentiable.

When n is sufficiently large, the modified bias of β̂ LSK
K

(
t; h, w∗∗) has the asymp-

totic expression

B∗[β̂ LSK
K

(
t; h, w∗∗)]= f−1

T (t)E−1

XXT (t)h2
(
b0(t), . . . , bk(t)

)T
+ o
(
h2
)
, (7.61)

where

bl(t) =
k

∑
r=0

1

∑
a=0

a

∑
b=0

{
β
(2−a)
r (t)ξ

(a−b)
lr (t) f

(b)
T (t)

(2− a)!(a− b)!b!

[∫
u2 K(u)du

]}
,

and the asymptotic repression for the modified variance V ∗[β̂ LSK
K

(
t; h, w∗∗)]
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is given in (7.59). The asymptotic representation of MSE∗
W

[
β̂ LSK

K

(
t; h, w∗∗)],

which is obtained by substituting the right-hand sides of (7.59) and (7.60) into
(7.52), is given by

MSE∗
W

[
β̂ LSK

K

(
t; h, w∗∗)]

= h4 f−2
T (t)

k

∑
l=0

Wl

[
b∗l (t)

]2
+ bigbl[

n

∑
i=1

(ni

N

)2
]

f 2
T (t)Z1(t)

+
fT (t)

N h

[∫
K2(u)du

]
Z2(t)+ o

[
h4 +

1

N h
+

n

∑
i=1

(ni

N

)2
]
, (7.62)

where b∗l (t) is the (l + 1)th component of E−1

XXT (t)
(
b0(t), . . . , bk(t)

)T
. Further-

more, β̂ LSK
K

(
t; h, w∗∗) is consistent, i.e., MSE∗

W

[
β̂ LSK

K

(
t; h, w∗∗)]→ 0 as n → ∞,

when ∑n
i=1

(
ni N−1

)2 → 0, which holds if and only if max1≤i≤n

(
ni N

−1
)
→ 0 as

n → ∞. �

Proof of Theorem 7.2 is given at the end of this section.

2. Remarks on the Asymptotic Results

The theoretical results of Theorems 7.1 and 7.2 lead to a number of in-
teresting special cases, which can guide the practical use of the least squares

kernel estimator β̂ LSK
K

(
t; h, w∗∗). These asymptotic results have the following

implications:

Consistency: In general, β̂ LSK
K

(
t; h, w∗∗) is not necessarily a consistent

estimator of β (t) in the sense that MSE∗
w

[
β̂ LSK

K

(
t; h, w∗∗)] converges to 0 when

N converges to infinity but the sizes of ni, i = 1, . . . , n and n are unspecified.
For example, if ni = m for all i = 1, . . . , n and m converges to infinity but n

stays bounded, then, since N−2 ∑n
i=1 n2

i = n−1 is bounded away from zero for

sufficiently large N, MSE∗
w

[
β̂ LSK

K

(
t; h, w∗∗)] does not converge to zero as N goes

to infinity. ✷

Bounded Repeated Measurements: If ni are bounded, i.e., ni ≤ c for
some integer c ≥ 1 and all i = 1, . . . , n, and n is sufficiently large, then the
asymptotic variance term in (7.59) is dominated by the second term of the
right side of (7.59). Then, if we minimize the dominating terms of the asymp-

totic MSE∗
w

[
β̂ LSK

K

(
t; h, w∗∗)], the optimal bandwidth is hopt = O

(
N−1/5

)
. Sub-

stituting hopt into (7.60), the mean squared error MSE∗
w

[
β̂ LSK

K

(
t; hopt , w∗∗)] is

of the order N4/5. ✷

Effects of Correlations: It is seen from (7.60) that the asymptotic effects

of the intra-subject correlations on MSE∗
w

[
β̂ LSK

K

(
t; h, w∗∗)] are only included

in Z1(t) in the variance term (7.59). Without this extra term, the asymptotic



ASYMPTOTIC PROPERTIES FOR KERNEL ESTIMATORS 223

mean squared errors of β̂ LSK
K

(
t; h, w∗∗) would be the same as kernel estimators

with cross-sectional i.i.d. data. The effects of the intra-subject correlations
depends on the limiting values, ρε(t), of the covariances of εi(t) and εi(s)
as s → t. This is caused by the local averaging nature of kernel methods.
Specifically, the estimators tend to ignore the measurements at time points ti j

which are outside a shrinking neighborhood of t. Since the bandwidths shrink
to zero, any correlation between εi(t) and εi(s), t 6= s, is ignored when n is
sufficiently large. This local nature makes the least squares kernel estimators
useful under the current setting, since, in practice, we may only be aware of
the presence of the intra-subject correlations but have very little knowledge
about the specific correlation structures. By using a local smoothing method,
we essentially choose to ignore the correlation structures. These asymptotic
results provide some qualitative insight for the adequacy of the estimation
procedures. ✷

3. Theoretical Derivations

We provide here the proofs of Theorems 7.1 and 7.2.

1. Proof of Theorem 7.1:

Following the approximation of (7.45), it suffices to study the asymptotic
representations of E

[
R̂w(t)

]
and E

[
R̂wl(t) R̂wr(t)

]
for l, r = 0, . . . , k. Define

ai j l(t) =
k

∑
s=0

{
X
(l)
i j X

(s)
i j

[
βs(ti j)−βs(t)

]}
+X

(l)
i j εi(ti j).

It can be verified by direct computation from the definition of R̂w(t) in (7.46)
that

R̂wl(t) =
1

N h

n

∑
i=1

ni

∑
j=1

[
ai j l(t)K

( t − ti j

h

)]
, (7.63)

and, since E
[
ai j l(t)

∣∣ti j = s
]
= ∑k

r=0

{[
βr(s)−βr(t)

]
ξlr(s)

}
,

E
[
R̂wł(t)

]
= (N h)−1

n

∑
i=1

ni

∑
j=1

∫
E
[
ai j l(t)

∣∣ti j = s
]

K
( t − s

h

)
fT (s)ds

= Bl(t). (7.64)

Thus the asymptotic bias expression (7.58) follows from equations (7.53),
(7.63) and (7.64).

To derive the asymptotic variance expression (7.59), we consider the fol-
lowing decomposition

R̂wl(t) R̂wr(t) = Alr1 +Alr2 +Alr3
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where

Alr1 =
( 1

N h

)2 n

∑
i=1

ni

∑
j=1

ai j l(t)ai j r(t)K2
( t − ti j

h

)
,

Alr2 =
( 1

N h

)2 n

∑
i=1

∑
j 6= j′

ai j l(t)ai j′ r(t)K
( t − ti j

h

)
K
( t − ti j′

h

)
,

Alr3 =
( 1

N h

)2 n

∑
i6=i′

∑
j, j′

ai j l(t)ai′ j′ r(t)K
( t − ti j

h

)
K
( t − ti′ j′

h

)
.

By direct calculations with the change of variables, it is straightforward to
verify that

k

∑
l=0

k

∑
r=0

[
Ml r(t)E

(
Alr1

)]
=
( 1

Nh

)
fT (t)

[∫
K2(u)du

]
Z2(t)+ o

(
N−1h−1

)
.

Using the Cauchy-Schwarz inequality, we can show that

k

∑
l=0

k

∑
r=0

[
Ml r(t)E

(
Alr2

)]
= N−2

(
n

∑
i=1

n2
i −N

)
f 2
T (t)Z1(t)+ o

(
N−2

n

∑
i=1

n2
i

)
.

Finally, we can verify directly that

k

∑
l=0

Wl V ∗[β̂w l(t)
]
=

k

∑
l=0

k

∑
r=0

[
Ml r(t)E

(
Alr1 +Alr2

)]
,

which implies that the asymptotic expression (7.59) holds.
To show the last assertion in (c), we suppose ∑k

l,r=0

[
Ml r(t)ξl r(t)

]
> 0. Then

MSE∗
W

[
β̂ LSK

K

(
t; h, w∗∗)]→ 0 if and only if N−2 ∑n

i=1 n2
i → 0 as n → ∞. It is easy

to see that ∑n
i=1

(
ni N−1

)2 → 0 implies max1≤i≤n

(
ni N−1

)
→ 0. It suffices to

show that max1≤i≤n

(
ni N−1

)
→ 0 implies ∑n

i=1

(
ni N−1

)2 → 0. Assume now that

max1≤i≤n

(
ni N−1

)
→ 0. Then, for any ε > 0, max1≤i≤n

(
ni N−1

)
< (ε/2) for suf-

ficiently large n. Let 1 = k0 < k1 < · · · < km = n be positive integers such that

(ε/2)<∑
kl

i=kl−1

(
ni N−1

)
< ε for l = 1, . . . , m−1, and ∑

km

i=km−1

(
ni N−1

)
< ε. Then,

for all l = 1, . . . , m, ∑
kl

i=kl−1

(
ni N−1

)2
< ε2. Since N = ∑n

i=1 ni, we must have

m ≤ (2/ε), and, consequently, ∑n
i=1

(
ni N−1

)2
< 2ε. Since ε can be arbitrarily

small, this inequality implies that limn→∞ ∑n
i=1

(
ni N−1

)2
= 0. This completes

the proof of Theorem 7.1. �

2. Proof of Theorem 7.2:

Because the modified variance V ∗[β̂ LSK
K

(
t; h, w∗∗)] is the same as (7.59)

in Theorem 7.1, we only need to consider the asymptotic bias term

B∗[β̂ LSK
K

(
t; h, w∗∗)] given in (7.58). The smoothness assumption of βl(t), fT (t)
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and ξlr(t) in Assumption (c) and the compact support assumption of K(u) in
Assumption (e) and (7.42) suggest that the functions βr(t − hu), ξlr(t − hu)
and fT (t − hu) in the integral of Bl(t) can be approximated by the following
Taylor expansions

βr(t − hu)−βr(t) = −β ′
r(t)hu+(1/2)β ′′

r (t)h2 u2 + r1(h), (7.65)

ξlr(t − hu)− ξlr(t) = −ξ ′
lr(t)hu+(1/2)ξ ′′

lr(t)h2 u2 + r2(h), (7.66)

fT (t − hu)− fT (t) = − f ′T (t)hu+(1/2) f ′′T (t)h2 u2 + r3(h), (7.67)

for c1 ≤ u ≤ c2 with the constants c1 and c2 given in Assumption (e), where
rl(h), l = 1, 2, 3, are functions of h such that rl(h)/h2 → 0 as h → 0. The right
side of (7.61) is then obtained by substituting βr(t − hu)− βr(t), ξlr(t − hu)
and fT (t − hu) of (7.58) with the corresponding terms at the right side of
(7.65), (7.66) and (7.67). The asymptotic expression of the mean squared error

MSE∗
W

[
β̂ LSK

K

(
t; h, w∗∗)] given at the right side of (7.62) is obtained by substi-

tuting B∗[β̂ LSK
K

(
t; h, w∗∗)] and V ∗[β̂ LSK

K l

(
t; h, w∗∗)] of (7.56) with the right side

terms of (7.61) and (7.59), respectively. Since h → 0 and N h → ∞ as N → ∞,

the last assertion of the theorem, that is MSE∗
W

[
β̂ LSK

K

(
t; h, w∗∗)]→ 0 if and

only if max1≤i≤n

(
ni N−1

)
→ 0 as n → ∞ follows from Theorem 7.1. �

7.5.4 Asymptotic Distributions

We now derive the asymptotic distributions of the least squares kernel esti-

mator β̂ LSK
K

(
t; h, w∗∗) at a fixed time point t0 > 0. As an alternative to the

resampling-subject bootstrap confidence bands of Section 7.3, the asymptot-
ically normal distributions derived in this section can be used to construct
asymptotically approximate confidence intervals for β (t0). These intervals can
then be used in conjunction with the method of Section 7.3.2 to construct
simultaneous confidence bands for β (t) with t inside a given interval (a, b).

1. Asymptotic Normality

In addition to Assumptions (a) through (f), we assume the stronger con-
ditions that




βl(t), fT (t), ξrl(t) have continuous second derivatives at t0

for all l, r = 0, . . . , k;

E
[∣∣ε(t)

∣∣2+δ
]
and E

[∣∣X (l)
i j

∣∣4+δ
]
are finite for all 1 ≤ i ≤ n,

1 ≤ j ≤ ni, 0 ≤ l ≤ k, t ∈ S
(

fT

)
and some δ > 0;

h = N−1/5 h0 for some constant h0 > 0;

limn→∞ N−6/5 ∑n
i=1 n2

i = λ for some 0 ≤ λ < ∞,

(7.68)

and denote, for all l, r = 0, . . . , k,

µ1(K) =

∫
u2K(u)du, µ2(K) =

∫
K2(u)du,
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bl(t0) = h
3/2

0

k

∑
c=0

{
µ1(K)

[
β ′

c(t0)ξ ′
lc(t0) fT (t0)+β ′

c(t0)ξlc(t0) f ′T (t0)

+(1/2)β ′′
c (t0)ξlc(t0) fT (t0)

]}
, for l = 0, . . . , k, (7.69)

B(t0) = f−1
T (t0)E−1

XXT (t0)
(
b0(t0), . . . , bk(t0)

)T
, (7.70)

Dlr(t0) = σ2(t0)ξlr(t0) fT (t0)µ2(K)+λ h0 ρε(t0)ξlr(t0) f 2
T (t0), (7.71)

D(t0) =




D00(t0) D01(t0) · · · D0k(t0)

...
...

...
...

Dk0(t0) Dk1(t0) · · · Dkk(t0)


 ,

D∗(t0) = f−2
T (t0)E−1

XXT (t0)D(t0)E−1
XXT (t0). (7.72)

The next theorem shows the asymptotic normality of β̂ LSK
K

(
t; h, w∗∗) at t0.

Theorem 7.3. Suppose that Assumptions (a) to (f) and (7.68) are satis-

fied. When n is sufficiently large, β̂ LSK
K

(
t0; h, w∗∗) has asymptotically a multi-

variate normal distribution, such that

(N h)1/2
[
β̂ LSK

K

(
t0; h, w∗∗)−β (t0)

]
→ N

(
B(t0), D∗(t0)

)
(7.73)

in distribution as n → ∞, where B(t0) and D∗(t0) are defined in (7.70) and
(7.72), respectively. �

Proof of Theorem 7.3:
This theorem is a special case of Theorem 7.4 at the end of this section. �

2. Remarks on Asymptotic Normality

A direct implication of Theorem 7.3 is that, to ensure good asymp-

totic properties of β̂ LSK
K

(
t0; h, w∗∗), the numbers of repeated measurements{

ni : i = 1, . . . , n
}
must be small relative to the overall sample size N. It was

shown in Theorem 7.2 that β̂ LSK
K

(
t0; h, w∗∗) is a consistent estimator of β (t0) if

and only if ∑n
i=1 n2

i = o
(
N2
)
, which is equivalent to max1≤i≤n

(
ni/N

)
= o(1). The-

orem 7.3 assumes a somewhat stronger condition, ∑n
i=1 n2

i =O
(
N6/5

)
, which en-

sures β̂ LSK
K

(
t0; h, w∗∗) to have an attainable convergence rate of N−2/5. If ∑n

i=1 n2
i

converges to infinity faster than N6/5, it can be shown with a slight modifica-

tion of the proof of Theorem 7.3 that the attainable rate for β̂ LSK
K

(
t0; h, w∗∗)

is slower than N−2/5.
Another important assumption in this section is that t0 is an interior point

of the support S
(

fT

)
. It is well known in cross-sectional i.i.d. data case that

kernel estimators suffer from increased biases at the boundary of the design
intervals. Methods for improving the theoretical and practical performance
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of kernel estimators have been extensively studied in the literature, such as
Rice (1984), Hall and Wehrly (1991) and Müller (1993). Here, it is natural

to expect β̂ LSK
K

(
t0; h, w∗∗) to have a relatively larger bias when t0 is near the

boundary of S
(

fT

)
. The asymptotic properties of β̂ LSK

K

(
t0; h, w∗∗) for t0 near

the boundary of S
(

fT

)
have not been explicitly derived. Possible modifica-

tions to improve the boundary asymptotic properties of β̂ LSK
K

(
t0; h, w∗∗) are

still not well understood and warrant further investigation.

3. Theoretical Derivations

Before giving the proof of Theorem 7.3, we state and prove a technical
lemma. These results are then used to prove a general asymptotic normality

result of β̂ LSK
K

(
t; h, w∗∗) for t at a set of distinct time points within the support

S
(

fT

)
. By (7.44) and the approximation (7.45), the asymptotic distributions

of β̂ LSK
K

(
t; h, w∗∗) can be investigated through the asymptotic distributions of

R̂w∗∗(t). Let s =
(
s1, . . . , sJ

)
, J ≥ 1, be a set of distinct interior points within

the support S
(

fT

)
and

R̂w∗∗(s) =
(
R̂T

w∗∗(s1), . . . , R̂T
w∗∗(sJ)

)T
(7.74)

It suffices to study the asymptotic distribution of R̂w∗∗(s). We first state and
prove the technical lemma for R̂w∗∗(s).

Lemma 7.1. Suppose that Assumptions (a) through (f) and (7.68) are
satisfied, R̂w∗∗(s) is defined in (7.74), and ξlr

(
s1,s2

)
and ρε

(
s1, s2

)
are con-

tinuous for any s1 6= s2 in R2. When n is sufficiently large, the asymptotically
approximated bias and variance of R̂w∗∗(s) are given by

{
E
[
(N h)1/2R̂w∗∗(s)

]
= b(s)+ op(1),

Cov
[
(N h)1/2R̂w∗∗(s)

]
= D(s)+ op(1),

(7.75)

respectively, where

b(s) =
(
b0(s1), . . . , bk(s1), . . . , b0(sJ), . . . , bk(sJ)

)T
, (7.76)

D(s) =




D(s1, s1) · · · D(s1, sJ)

...
...

...

D(sJ , s1) · · · D(sJ , sJ)


 ,

D(s1, s2) =




D00(s1, s2) · · · D0k(s1, s2)

...
...

...

Dk0(s1, s2) · · · Dkk(s1, s2)


 ,
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Dlr(s1, s2) =





σ2(s1)ξlr(s1) fT (s1)µ2(K)

+λ h0 ρε(s1)ξlr(s1, s2) f 2
T (s1), if s1 = s2,

λ h0 ρε(s1, s2)ξlr(s1, s2) fT (s1) fT (s2), if s1 6= s2,

(7.77)

ξlr

(
s1, s2

)
= E

[
X
(l)
i j1

X
(r)
i j2

∣∣ti j1 = s1, ti j2 = s2

]

and bl(s), l = 0, . . . , k, defined in (7.69). �

Proof of Lemma 7.1:
We note first that the lth element of R̂w∗∗(s) at a single time point s ∈

S
(

fT

)
is given by (7.63). For any i = 1, . . . , n and l = 0, . . . , k, let

ψil(s) =
ni

∑
j=1

[
ai jl(s)K

( s− ti j

h

)]
, (7.78)

where ai jl(s) is defined in (7.63). Substituting the corresponding term in (7.63)

by (7.78), R̂w∗∗(s) can be written as a sum of independent vectors

R̂w∗∗(s) = (N h)−1
n

∑
i=1

Ai(s), (7.79)

where Ai(s) is a J(k+ 1) column vector such that

Ai(s) =
(
ψi0(s1), . . . , ψik(s1), . . . , ψi0(sJ), . . . , ψik(sJ)

)T
.

Since the design time points are assumed to be independent, i.e., Assump-
tion (a), direct calculation using the definition of ξlr(t) in (7.41) and the change
of variables show that

E
[
ψil(s)

]
=

ni

∑
j=1

∫
E
[
ai jl(s)

∣∣ti j = v
]

K
( s− v

h

)
fT (v)dv

= ni h
k

∑
r=0

∫ [
βr(s− hu)−βr(s)

]
ξlr(s− hu) fT (s− hu)K(u)du.

Then, by (7.79) and (7.68), and taking the Taylor expansions on the right side
of the above equation, we have that

E
[
(N h)1/2 R̂w∗∗(s)

]
= b(s)+ o(1).

To compute the covariance of (N h)1/2 R̂w∗∗(s), we note first that

Cov
[
R̂w∗∗l(s1), R̂w∗∗r(s2)

]
= E

[
R̂w∗∗l(s1) R̂w∗∗r(s2)

]
−E

[
R̂w∗∗l(s1)

]
E
[
R̂w∗∗r(s2)

]
,

and, by (7.79), it is sufficient to compute the right side terms of the following
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equation

E

{[
(N h)−1/2

n

∑
i=1

ψil(s1)

][
(N h)−1/2

n

∑
i=1

ψir(s2)

]}
(7.80)

= (N h)−1

{
n

∑
i=1

E
[
ψil(s1)ψir(s2)

]
+ ∑

i1 6=i2

E
[
ψi1l(s1)ψi2r(s2)

]}
.

For the first term of the right side of (7.80), we consider the further decom-
position

ψil(s1)ψir(s2) =
ni

∑
j=1

[
ai jl(s1)ai jr(s2)K

(s1 − ti j

h

)
K
( s2 − ti j

h

)]
(7.81)

+ ∑
j1 6= j2

[
ai j1l(s1)ai j2r(s2)K

(s1 − ti j1

h

)
K
( s2 − ti j2

h

)]
.

Using (7.68), the change of variables and the fact that εi(·) is a mean zero
stochastic process independent of Xi j, we can show by direct calculation that,
as n → ∞,

E
[
ai jl(s1)ai jr(s2)

∣∣ti j = v
]

=
k

∑
c=0

{[
βc(v)−βc(s1)

][
βc(v)−βc(s2)

]
E
[
X
(l)
i j

(
X
(c)
i j

)2
X
(r)
i j

∣∣∣ti j = v
]}

+σ2(v)E
[
X
(l)
i j X

(r)
i j

∣∣ti j = v
]

+ ∑
c1 6=c2

{[
βc1

(v)−βc1
(s1)

][
βc2

(v)−βc2
(s2)
]

×E
[
X
(l)
i j X

(c1)
i j X

(r)
i j X

(c2)
i j

∣∣ti j = v
]}

→ σ2(sc)ξlr(sc), if v → sc, c = 1,2.

Then, it follows from the above equation that

E

{ ni

∑
j=1

[
ai jl(s1)ai jr(s2)K

( s1 − ti j

h

)
K
( s2 − ti j

h

)]}
(7.82)

=
ni

∑
j=1

∫
E
[
ai jl(s1)ai jr(s2)

∣∣ti j = v
]

K
(s1 − v

h

)
K
(s2 − v

h

)
fT (v)dv

=

{
ni hσ2(s1)ξlr(s1) fT (s1)

[∫
K2(u)du

]
+ o
(
ni h
)
, if s1 = s2,

o
(
ni h
)
, if s1 6= s2.

Similarly, direct calculation then shows that, as n → ∞, v1 → s1 and v2 → s2,

E
[
ai j1l(s1)ai j2r(s2)

∣∣ti j1 = v1, ti j2 = v2

]
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=
k

∑
c=0

{[
βc(v1)−βc(s1)

][
βc(v2)−βc(s2)

]

×E
[
X
(l)
i j1

X
(c)
i j1

X
(r)
i j2

X
(c)
i j2

∣∣ti j1 = v1, ti j2 = v2

]}

+ρε(v1, v2)E
[
X
(l)
i j1

X
(r)
i j2

∣∣∣ti j1 = v1, ti j2 = v2

]

+ ∑
c1 6=c2

{[
βc1

(v1)−βc1
(s1)
][

βc2
(v2)−βc2

(s2)
]

×E
[
X
(l)
i j1

X
(c1)
i j1

X
(r)
i j2

X
(c2)
i j2

∣∣∣ti j1 = v1, ti j2 = v2

]}

→
{

ρε(s1, s2)ξlr(s1, s2), if s1 6= s2,

ρε(s1)ξlr(s1, s1), if s1 = s2,

and the expectation of the second term of the right side of (7.82) is

E

{
∑

j1 6= j2

[
a
(l)
i j1
(s1)a

(r)
i j2
(s2)K

( s1 − ti j1

h

)
K
( s2 − ti j2

h

)]}
(7.83)

= ∑
j1 6= j2

{∫ ∫
E
[
a
(l)
i j1
(s1)a

(r)
i j2
(s2)
∣∣ti j1 = v1, ti j2 = v2

]

×K
(s1 − v1

h

)
K
( s2 − v2

h

)
fT (v1) fT (v2)dv1 dv2

}

=





h2 ni

(
ni − 1

)
ρε(s1, s2) fT (s1) fT (s2)ξlr(s1, s2)

+o
[
h2 ni

(
ni − 1

)]
, if s1 6= s2,

h2 ni

(
ni − 1

)
ρε(s1) f 2

T (s1)ξlr(s1, s1)

+o
[
h2 ni

(
ni − 1

)]
, if s1 = s2.

Combining (7.81), (7.82) and (7.83), it follows that, when n is sufficiently large,

(N h)−1
n

∑
i=1

E
[
ψil(s1)ψir(s2)

]
(7.84)

=





σ2(s1)ξlr(s1) fT (s1)
[∫

K2(u)du
]
+ o
[
hN−1

(
∑n

i=1 n2
i −N

)]

+hN−1
(

∑n
i=1 n2

i −N
)

ρε(s1)ξlr(s1, s1) f 2
T (s1), if s1 = s2,

hN−1
(

∑n
i=1 n2

i −N
)

ρε(s1, s2)ξlr(s1, s2) fT (s1) fT (s2)

+o
[
hN−1

(
∑n

i=1 n2
i −N

)]
, if s1 6= s2.

Since h=N−1/5 h0 and limn→∞ N−6/5 ∑n
i=1 n2

i = λ , it is easy to see that, as n→∞,

hN−1

(
n

∑
i=1

n2
i −N

)
= N−6/5

(
n

∑
i=1

n2
i −N

)
h0 → λ h0.

Next, we define

Ml(h, s) =
k

∑
r=0

∫ [
βr(s− hu)−βr(s)

]
ξlr(s− hu) fT (s− hu)K(u)du,
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so that E
[
ψil(s)

]
= ni hMl(h, s), and it directly follows that

(
N h
)−1

n

∑
i1 6=i2=1

E
[
ψi1 l

(
s1

)
ψi2 r

(
s2

)]

−E

[(
N h
)−1/2

n

∑
i=1

ψi l

(
s1

)]
E

[(
N h
)−1/2

n

∑
i=1

ψi r

(
s2

)]

=
(
N h
)−1

n

∑
i1 6=i2=1

E
[
ψi1 l

(
s1

)]
E
[
ψi2 r

(
s2

)]

−
(
N h
)−1/2

n

∑
i=1

E
[
ψi l

(
s1

)]
×
(
N h
)−1/2

n

∑
i=1

E
[
ψi r

(
s2

)]

=
(
N h
)−1

n

∑
i1 6=i2=1

[
ni1 hMl(h, s1)ni2 hMr

(
h, s2

)]

−
(
N h
)−1/2

n

∑
i=1

[
ni hMl(h, s1)

]
×
(
nh
)−1/2

n

∑
i=1

[
ni hMr

(
h, s2)

]

=
N h2

N2 h

[
n

∑
i=1

(
ni

n

∑
i′ 6=i=1

ni′
)
−N2

]
Ml

(
h,s1

)
Mr

(
h, s2

)

= N h

[
N−2

n

∑
i=1

(
ni

n

∑
i′ 6=i=1

ni′
)
− 1

]
Ml

(
h, s1

)
Mr

(
h, s2

)

=
(
N h
)

N−2

(
n

∑
i=1

n2
i

)
Ml

(
h, s1

)
Mr

(
h, s2

)

=
(
N h
)

N−4/5 Ml

(
h, s1

)
Mr

(
h, s2

)
λ o(1) (by Assumption (b))

→ 0, (7.85)

since Ml

(
h, s1

)
→ 0, Mr

(
h, s2

)
→ 0 and, by Assumption (a),

N−4/5 Ml

(
h, s1

)
Mr

(
h, s2

)
= o
(
N h
)
.

Now, by (7.68) and the calculations given in (7.81), (7.84) and (7.85), we
have shown that, for any interior points s1 and s2 in the support of f and
l, r = 0, . . . , k,

Cov
[
(N h)1/2 R̂w∗∗l(s1), (N h)1/2 R̂w∗∗r(s2)

]
= Dlr(s1, s2)+ o(1).

This implies the assertion of the lemma. �

The technical results of Lemma 7.1 lead to the following asymptotic nor-

mality result for β̂ LSK
K

(
s, h, w∗∗), which covers the asymptotic normality result

of Theorem 7.3 as a special case.

Theorem 7.4. Under the assumptions of Lemma 7.1, β̂ LSK
K

(
s; h, w∗∗) has
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asymptotically a multivariate normal distribution, such that, as n → ∞,

(N h)1/2
[
β̂ LSK

K

(
s; h, w∗∗)−β (s)

]
→ N

(
B(s), D∗(s)

)
in distribution, (7.86)

where, for r1, r2 = 1, . . . , J,

B(s) =
(
B(s1), . . . , B(sJ)

)T
,

B(s) =
[

fT (s)
]−1

E−1

XXT (s)
(
b0(s), . . . , bk(s)

)T
,

D∗(s) =




D∗(s1, s1) · · · D∗(s1, sJ)

...
...

...

D∗(sJ, s1) · · · D∗(sJ , sJ)


 ,

D∗(sr1
, sr2

) = f−1
T

(
sr1

)
f−1
T

(
sr2

)
E−1

XXT

(
sr1

)
D
(
sr1

, sr2

)
E−1

XXT

(
sr2

)

and bl(s) and D(s1, s2) are defined in Lemma 7.1. �

Proof of Theorem 7.4:
By the assumptions of Lemma 7.1, we can directly verify that R̂w∗∗(s)

satisfies the conditions of the Cramer-Wold theorem (cf. Theorem of Section
1.5.2, Serfling (1980)) and the Lindeberg’s condition (cf. Theorem A of Section
1.9.2, Serfling (1980)). Thus,

(N h)1/2 R̂w∗∗(s)→ N
(
b(s), D(s)

)
in distribution

as n → ∞. The theorem then follows from (7.46) and the limiting distribution
of (N h)1/2 R̂w∗∗(s). �

7.5.5 Asymptotic Pointwise Confidence Intervals

We establish a procedure for constructing approximate confidence intervals
based on the asymptotic normal distributions established above. These infer-
ence procedures, which depend on the “plug-in” estimates of the derivatives
in (7.68), may not be as practical as the bootstrap procedures described in
Section 7.3. The objective here is to demonstrate that such an inference pro-
cedure is at least theoretically possible for the time-varying coefficient models
(7.1) or (7.14), although their practical values appear to be somewhat limited.

1. Formulation of Confidence Intervals

The asymptotic normality of Theorem 7.3 suggests that we can construct
an approximate

[
100× (1−α)

]
th pointwise confidence interval of AT β (t0) for

any known (k+ 1) column vector A. The resulting lower and upper bounds,

Lα

[
β̂ LSK

K

(
t0; h, w∗∗)] and Uα

[
β̂ LSK

K

(
t0; h, w∗∗)], respectively, of this asymptoti-

cally approximate confidence interval should satisfy

lim
n→∞

P
{

Lα

[
β̂ LSK

K

(
t0; hw∗∗)]≤ AT β (t0)≤Uα

[
β̂ LSK

K

(
t0; h, w∗∗)]}= 1−α (7.87)
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and are given by

[
AT β̂ LSK

K

(
t0; h, w∗∗)− (N h)−1/2 AT B(t0)

]

±Zα/2 (N h)−1/2
[
AT D∗(t0)A

]1/2
,

(7.88)

where Zα/2 is the
[
100× (1−α/2)

]
percentile of the standard normal distri-

bution, B(t0) is defined in (7.70) and D∗(t0) is defined in (7.72). In particular,
taking A = (0, . . . , 0, 1, 0, . . . , 0)T to be the vector with 1 at its (l + 1)th place
and 0 elsewhere, (7.88) gives the approximate [100× (1−α)]% confidence in-
terval of βl(t0) for any 0 ≤ l ≤ k.

Because the bias and variance-covariance terms, B(t0) and D∗(t0), depend
on the unknown functions, the lower and upper bounds given in (7.88) cannot

be used directly in practice. If we have consistent estimators B̂(t0) and D̂∗(t0)
for B(t0) and D∗(t0), respectively, then a“plug-in”asymptotically approximate
[100× (1−α)]% confidence interval for AT β (t0) is

(
L̂α

[
β̂ LSK

K

(
t0; h, w∗∗)], Ûα

[
β̂ LSK

K

(
t0; h, w∗∗)])

with the lower and upper bounds given by

[
AT β̂ LSK

K

(
t0; h, w∗∗)− (N h)−1/2 AT B̂(t0)

]

±Zα/2 (N h)−1/2
[
AT D̂∗(t0)A

]1/2
,

(7.89)

which is constructed by substituting B(t0) and D∗(t0) in (7.88) by B̂(t0) and

D̂∗(t0). A class of kernel-type consistent estimators of B(t0) and D∗(t0) are
given below.

2. Approximate Error Bars

In practice, it is usually difficult to estimate the asymptotic bias term
because B(t0) involves the derivatives of the unknown functions. A simple
alternative to the approximate confidence interval (7.89) of AT β (t0) is to ignore
the bias term and use the “plug-in” approximate error bar

(
L̂∗

α

[
β̂ LSK

K

(
t0; h, w∗∗)], Û∗

α

[
β̂ LSK

K

(
t0; h, w∗∗)])

with the lower and upper bounds given by

AT β̂ LSK
K

(
t0; h, w∗∗)± zα/2 (N h)−1/2

[
AT D̂∗(t0)A

]1/2
. (7.90)

The asymptotic normality (7.73) suggest that, theoretically, when the band-

width satisfies h= o
(
N−1/5

)
, the bias of β̂ LSK

K

(
t0; h, w∗∗) is negligible. Thus, the

above error bar has approximately
[
100× (1−α)

]
% probability covering the

true value of AT β (t0) if a “small” bandwidth in the sense that h = o
(
N−1/5

)
is
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used. Although the bandwidth choice h = o
(
N−1/5

)
leads to a slower conver-

gence rate for β̂ LSK
K

(
t0; h, w∗∗) than the attainable rate of N−2/5, the error bar

of (7.90) has the advantage of being computationally simple, since no estima-
tor of B(t0) is needed. Thus, in practice, (7.90) can be used as an approximate
pointwise confidence interval. ✷

3. Estimation of Asymptotic Bias and Variance

Following the definitions of (7.69) through (7.72), B(t0) and D∗(t0) depend
on the unknown functions fT (t0), f ′T (t0), β ′

r(t0), β ′′
r (t0), ξl r(t0), ξ ′

l r(t0), ρε(t0)
and σ2(t0). We present a class of intuitive kernel smoothers for the estimation
of these quantities, which can be used in (7.69) through (7.72) to construct

consistent estimators B̂(t0) and D̂∗(t0) for the approximate confidence interval

(7.89) or the approximate error bar (7.90). The construction of B̂(t0) and

D̂∗(t0) can be proceeded by the following four steps:

(1) Estimation of fT (t0) and ξlr(t0). In addition to Assumption (e), we as-
sume that the kernel functions K(u) used here are twice continuously dif-
ferentiable with respect to u. If h( f ,0) and h(ηlr,0) are bandwidths satisfying
limn→∞ h(·,0) = 0 and limn→∞ N h(·,0) = ∞, then fT (t0) and ξl r(t0) can be esti-
mated by

f̂T

(
t0; h( f ,0)

)
=
[
N h( f ,0)

]−1
n

∑
i=1

ni

∑
j=1

K

(
t0 − ti j

h( f ,0)

)
(7.91)

and

ξ̂l r

(
t0; h(ξl r,0)

)
=

[
N h(ηl r,0)

f̂T

(
t0; h(ξl r,0)

)]−1

×
n

∑
i=1

ni

∑
j=1

[
X
(l)
i j X

(r)
i j K

(
t0 − ti j

h(ξl r ,0)

)]
, (7.92)

respectively. Let ÊXXT (t0) be the (k+1)× (k+1) matrix whose (l, r)th ele-

ment is ξ̂l r

(
t0; h(ξl r,0)

)
. Suppose that ÊXXT (t0) is invertible. Then, EXXT (t0)

and E−1
XXT (t0) can be estimated by ÊXXT (t0) and Ê−1

XXT (t0), respectively.

(2) Estimation of Derivatives. Let f
(d)
T (t0), β

(d)
r (t0) and ξ

(d)
lr (t0), d = 1, 2, be

the dth derivatives of fT (t0), βr(t0) and ξl r(t0), respectively. Let h( f ,d), h(βr,d)

and h(ξl r ,d)
be the corresponding bandwidths for the estimators of fT (t0),

βr(t0) and ξl r(t0), which satisfy limn→∞ h(·,d) = 0 and limn→∞ N h2d+1
(·,d) = ∞.

Then, following the kernel derivative estimators with cross-sectional i.i.d.

data, e.g., Härdle (1990, Chapter 3), f
(d)
T (t0), β

(d)
r (t0) and ξ

(d)
l r (t0) can be es-

timated by the corresponding dth derivatives f̂
(d)
T

(
t0; h( f ,d)

)
, β̂

(d)
r

(
t0; h(βr,d)

)

and ξ̂
(d)
l r

(
t0; h(ξl r ,d)

)
of f̂T

(
t0; h( f ,d)

)
, β̂r

(
t0; h(βr,d)

)
and ξ̂l r

(
t0; h(ηl r,d)

)
at time

t0, where β̂r

(
t0; h(βr,d)

)
is the rth component of β̂ LSK

K

(
t0; h, w∗∗).
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(3) Estimation of Variances and Covariances. For the estimation of vari-
ance σ2(t0) and covariance ρε(t0), we use smoothing estimators based on
the residuals

ε̂i

(
ti j ; h

)
= Yi j −XT

i j β̂ LSK
K

(
ti j; h, w∗∗). (7.93)

Let h(σ) be a bandwidth satisfying limn→∞ h(σ) = 0 and limn→∞ N h(σ) = ∞.

The variance σ2(t0) can be simply estimated by

σ̂2
(
t0; h(σ)

)
=

[
1

N h(σ) f̂T (t0; h(σ))

]
n

∑
i=1

ni

∑
j=1

[
ε̂2

i (ti j; h)K
( t0 − ti j

h(σ)

)]
. (7.94)

The estimation of ρε(t0) is usually more difficult than the estima-
tion of σ2(t0). Since ρε(s1, s2) = E

[
εi(s1)εi(s2)

]
for s1 6= s2 and ρε(t0) =

lims→t0 ρε(s, t0), we can estimate ρε(t0) by smoothing
[
ε̂i

(
ti j1 ; h

)
ε̂i

(
ti j2 ; h

)]

for j1 6= j2 when ni, i = 1, . . . , n, are large, that is

ρ̂ε

(
t0; h(ρ)

)
=

∑n
i=1 ∑

ni

j1 6= j2=1

[
ε̂i(ti j1 ; h) ε̂i(ti j2 ; h)K

(
t0−ti j1

h(ρ)

)
K

(
t0−ti j2

h(ρ)

)]

∑n
i=1 ∑

ni

j1 6= j2=1

[
K
(

t0−ti j1
h(ρ)

)
K
(

t0−ti j2
h(ρ)

)] ,

(7.95)
where h(ρ) satisfies limn→∞ h(ρ) = 0 and limn→∞ N h(ρ) = ∞.

(4) Plug-in Bias and Variance Estimators. Finally, we obtain the kernel

estimator B̂(t0) by substituting f
(d)
T (t0), β

(d)
c (t0) and ξ

(d)
l c (t0), d = 0, 1, 2, of

(7.69) and (7.70) with f̂ (d)
(
t0; h( f ,d)

)
, β̂

(d)
c

(
t0; h(βc,d)

)
and ξ̂

(d)
l c

(
t0; h(ξl c,d)

)
,

and obtain D̂∗(t0) by substituting fT (t0), ξl r(t0), σ2(t0) and ρε(t0) of (7.71)

and (7.72) with f̂T

(
t0; h( f ,0)

)
, ξ̂l r

(
t0; h(ξl r ,0)

)
, σ̂2

(
t0; h(σ)

)
and ρ̂ε

(
t0; h(ρ)

)
. ✷

An important requirement for the above plug-in estimation to work well is
that the sample size n and the numbers of repeated measurements

{
n1, . . . , nn

}

must be large. For example, in the estimation of variances and covariances
in step (3), since ρ̂ε

(
t0; h(ρ)

)
is obtained by smoothing the adjacent resid-

uals for each subject, it only works well asymptotically when the numbers
of repeated measurements ni, i = 1, . . . , n, are large, so that one can actu-
ally smooth

[
ε̂i

(
ti j1 ; h

)
ε̂i

(
ti j2 ; h

)]
in the vicinity of t0. When there is no mea-

surement error for
{

Yi j : i = 1, . . . , n; j = 1, . . . , ni

}
, that is, σ2(t0) = ρε(t0),

σ̂2
(
t0; h(σ)

)
is practically a better estimator of ρε(t0) than ρ̂ε

(
t0; h(ρ)

)
. But

when
{

Yi j : i = 1, . . . , n; j = 1, . . . , ni

}
are subject to measurement errors and{

ni : i = 1, . . . , n
}
are small, we have that σ2(t0)> ρε(t0) and both σ̂2

(
t0; h(σ)

)

and ρ̂ε

(
t0; h(ρ)

)
are subject to large biases for the estimation of ρε(t0). It can be

seen from (7.94) and (7.95) that the adequacy of σ̂2
(
t0; h(σ)

)
and ρ̂ε

(
t0; h(ρ)

)

also depends on the bandwidth h of β̂ LSK
K

(
t; h, w∗∗).
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4. Consistency of Bias and Variance Estimators

An important requirement for the appropriateness of the asymptotically
approximate confidence intervals (7.89) and error bars (7.90) is that the esti-

mators B̂(t0) and D̂∗(t0) are consistent for B(t0) and D∗(t0). When B̂(t0) and

D̂∗(t0) are chosen by the plug-in estimators, the consistency of B̂(t0) and D̂∗(t0)
requires that the estimators of the unknown functions fT (t0), f ′T (t0), β ′

r(t0),
β ′′

r (t0), ξl r(t0), ξ ′
l r(t0), ρε(t0) and σ2(t0) are also consistent.

The next lemma shows the consistency of the kernel estimators for the un-
known functions fT (t0), f ′T (t0), β ′

r(t0), β ′′
r (t0), ξl r(t0), ξ ′

l r(t0), ρε(t0) and σ2(t0)
given above. The asymptotic consistency of the plug-in bias and variance es-
timators B̂(t0) and D̂∗(t0) directly follows from the consistency of the kernel
estimators of these components. This lemma suggests that, despite their prac-
tical drawbacks of computational complexity, the plug-in type asymptotically
approximate pointwise confidence intervals of (7.89) and (7.90) can be indeed
constructed in practice.

Lemma 7.2. Suppose that Assumptions (a) through (f) and (7.68) are
satisfied and K(u) is continuously twice differentiable with a compact support
on the real line. The following consistency results hold:

(a) If limn→∞ h(·;d) = 0 and limn→∞ N h2d+1
(·;d) = ∞ for d = 0, 1, 2, then





f̂
(d)
T (t0; h( f ,d)) → f

(d)
T (t0),

β̂
(d)
r

(
t0; h(βr,d)

)
→ β

(d)
r (t0),

ξ̂
(d)
lr

(
t0; h(ηl r,d)

)
→ ξl r(t0), l, r = 0, . . . , k,

in probability as n → ∞.

(b) If limn→∞ h(·) = 0 and limn→∞ N h(·) = ∞, then σ̂2
(
t0; h(σ)

)
→ σ2(t0) and

ρ̂ε

(
t0; h(ρ)

)
→ ρε(t0) in probability as n → ∞. �

Proof of Lemma 7.2:
Because the derivations for all the estimators involve many tedious

and repetitive computations, we only sketch the proofs for f̂
(1)
T

(
t0; h( f ,1)

)
,

ξ̂l r

(
t0; h(ηl r,0

)
and ρ̂ε

(
t0; h(ρ)

)
. The consistency of other estimators can be sim-

ilarly derived with tedious but straightforward calculations.

(a) Consistency of f̂
(1)
T

(
t0;h( f ,0)

)
:

Since the subjects are independent, direct calculation, integration by parts
and the change of variables show that, as n → ∞,

∣∣∣E
[

f̂
(1)
T

(
t0; h( f ,1)

)]
− f

(1)
T (t0)

∣∣∣=
∣∣∣∣
∫

K(u)
[

f
(1)
T

(
t0 − h( f ,1)u

)
− f

(1)
T (t0)

]
du

∣∣∣∣→ 0
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and

Var
[

f̂
(1)
T

(
t0; h( f ,1)

)]
= N−1 h−3

( f ,1) fT (t0)

{∫ [
K′(u)

]2
du

}
+ o
(

N−1 h−3
( f ,1)

)
→ 0.

Thus, the above limits imply that limn→∞ E
{[

f̂
(1)
T

(
t0; h( f ,1)

)
− f

(1)
T (t0)

]2}
= 0.

Consequently, f̂
(1)
T

(
t0; h( f ,1)

)
→ f

(1)
T (t0) in probability as n → ∞, which shows

the consistency of f̂
(1)
T

(
t0; h( f ,0)

)
.

(b) Consistency of ξ̂lr

(
t0; h(ξl r,0

)
:

First, let us denote

ν̂ξ

(
t0; h(ηl r,0)

)
=
(
N h(ξl r,0)

)−1
n

∑
i=1

ni

∑
j=1

[
X
(l)
i j X

(r)
l j K

(
t0 − ti j

h(ηl r,0)

)]
.

Using the same method as in the proof of Lemma 7.1, it can be verified by
direct calculations that f̂T

(
t0; h(ξl r,0)

)
→ f (t0) in probability as n → ∞. Then,

by the definition of ξ̂l r

(
t0; h(ξl r ,0)

)
given in (7.92), it suffices to show that

ν̂ξ

(
t0; h(ξl r,0)

)
→ ξlr(t0) fT (t0) in probability as n → ∞.

By direct calculations, it can be verified that, as n → ∞,

E
[
ν̂ξ

(
t0; h(ηl r,0)

)]

=
(
N h(ξl r,0)

)−1
n

∑
i=1

ni

∑
j=1

{∫
E

[
X
(l)
i j X

(r)
i j

∣∣∣ti j = s

]
K

(
t0 − s

h(ξl r,0)

)
f (s)ds

}

→ ξl r(t0) f (t0)

and

Var
[
ν̂η

(
t0, h(ξl r,0)

)]

=
(
N h(ξl r ,0)

)−2
n

∑
i=1

ni

∑
j=1

{∫
E
[(

X
(l)
i j

)2 (
X
(r)
i j

)2
∣∣∣ti j = s

]
K2

(
t0 − s

h(ξl r ,0)

)
f (s)ds

}

+o
(

N−1 h−1
(ξl r,0)

)

→ 0.

The above two limits imply that E
[
ν̂ξ

(
t0; h(ξl r,0)

)
−ξl r(t0) f (t0)

]2 → 0 holds as

n → ∞, which further implies that ν̂ξ

(
t0; h(ξl r ,0)

) → ξl r(t0) f (t0) in probability

as n → ∞. This shows the consistency of ξ̂l r

(
t0; h(ξl r,0

)
.

(c) Consistency of ρ̂ε

(
t0; h(ρ)

)
:

We first define

ν̂ρ

(
t0;h(ρ)

)
=

(
n

∑
i=1

n2
i −N

)−1

h−2
(ρ)
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×
n

∑
i=1

ni

∑
j1 6= j2=1

[
ε̂i

(
ti j1 , h

)
ε̂i

(
ti j2 , h

)
K

(
t0 − ti j1

h(ρ)

)
K

(
t0 − ti j2

h(ρ)

)]

and

ν̂∗
ρ

(
t0; h(ρ)

)
=

(
n

∑
i=1

n2
i −N

)−1

h−2
(ρ)

n

∑
i=1

ni

∑
j1 6= j2=1

[
K

(
t0 − ti j1

h(ρ)

)
K

(
t0 − ti j2

h(ρ)

)]
.

By the definition of ρ̂ε

(
t0; h(ρ)

)
in (7.95), it follows that

ρ̂ε

(
t0; h(ρ)

)
= ν̂ρ

(
t0; h(ρ)

)/
ν̂∗

ρ

(
t0; h(ρ)

)
.

It then suffices to show that ν̂∗
ρ

(
t0; h(ρ)

)
→ f 2

T (t0) and ρ̂ε

(
t0; h(ρ)

)
→ ρε(t0) f 2

T (t0)
in probability as n → ∞.

For the consistency of ν̂∗
ρ

(
t0; h(ρ)

)
, we can show by direct calculations as

those in the proof of Lemma 7.1 that, as n → ∞,

E
[
ν̂∗

ρ

(
t0; h(ρ)

)]

=

(
n

∑
i=1

n2
i −N

)−1

h−2
(ρ)

×
[

n

∑
i=1

ni

∑
j1 6= j2=1

∫ ∫
K

(
t0 − s1

h(ρ)

)
K

(
t0 − s2

h(ρ)

)
fT (s1) fT (s1)ds1 ds2

]

→ fT (t0)

and

Cov
[
ν̂∗

ρ

(
t0; h(ρ)

)]
=

(
n

∑
i=1

n2
i −N

)−1

h−2
(ρ)

[∫
K2(u)du

]2

f 2
T (t0)+ o(1)→ 0.

Thus, we have that, as n→ ∞, E
[
ν̂∗

ρ

(
t0; h(ρ)

)
− f 2

T (t0)
]2 → 0, which implies that

ν̂∗
ρ

(
t0; h(ρ)

)
→ f 2

T (t0) in probability.

To show the consistency of ν̂ρ

(
t0; h(ρ)

)
, we define the pseudo-residual

ε̃i

(
ti j

)
= Yi j −XT

i j β
(
ti j

)

and

ν̃ρ

(
t0; h(ρ)

)
=

(
n

∑
i=1

n2
i −N

)−1

h−2
(ρ)

×
n

∑
i=1

ni

∑
j1 6= j2=1

[
ε̃i

(
ti j1

)
ε̃i

(
ti j2

)
K

(
t0 − ti j1

h(ρ)

)
K

(
t0 − ti j2

h(ρ)

)]
.

By Theorem 7.1 and similar calculations in the consistency of ν̂∗
ρ

(
t0; h(ρ)

)
, we

can verify that there are constants a1 > 0 and a2 > 0 such that, as n → ∞,

sup
ti j1

∈[t0−a1,t0+a1], ti j2
∈[t0−a2,t0+a2]

∣∣∣ε̂i

(
ti j1 ; h

)
ε̂i

(
ti j2 ; h

)
− ε̃i

(
ti j1

)
ε̃i

(
ti j2

)∣∣∣→ 0
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in probability, and

(
n

∑
i=1

n2
i −N

)−1

h−2
(ρ)

n

∑
i=1

∑
j1 6= j2

∣∣∣∣K
(

t0 − ti j1

h(ρ)

)
K

(
t0 − ti j2

h(ρ)

)∣∣∣∣

is bounded in probability when n is sufficiently large. Thus,

∣∣ν̂ρ

(
t0; h(ρ)

)
− ν̃ρ

(
t0; h(ρ)

)∣∣
≤ sup

ti j1
∈[t0−a1,t0+a1], ti j2

∈[t0−a2,t0+a2]

∣∣ε̂i

(
ti j1 ; h

)
ε̂i

(
ti j2 ; h

)
− ε̃i

(
ti j1

)
ε̃i

(
ti j2

)∣∣

×
(

n

∑
i=1

n2
i −N

)2

h2
(ρ)

n

∑
i=1

ni

∑
j1 6= j2=1

∣∣∣∣K
(

t0 − ti j1

h(ρ)

)
K

(
t0 − ti j2

h(ρ)

)∣∣∣∣

→ 0 in probability as n → ∞.

It suffices to show that ν̃ρ

(
t0; h(ρ)

)
→ ρε(t0) f 2

T (t0) in probability as n → ∞.

Similar calculations as in (b) shows that, as n → ∞, E
[
ν̃ρ

(
t0; h(ρ)

)]
→

ρε(t0) f 2
T (t0) and Var

[
ν̃ρ

(
t0; h(ρ)

)]
→ 0. Thus, ν̃ρ

(
t0; h(ρ)

)
→ ρε(t0) f 2

T (t0) in
probability as n → ∞. This completes the proof. �

7.6 Remarks and Literature Notes

The methods presented in this chapter focus on the time-varying coefficient
model (7.1) using a series of local smoothing methods. This model has a wide
range of applications in longitudinal studies. The main advantages of this
model are: (i) its simple interpretation as a standard multiple linear model
for the outcome variable Y (t) and the covariate vector X(t) at each fixed time
point t; (ii) its flexibility of allowing the coefficients β (t) to be unknown curves
of t, which leads to different linear models at different time points. Among
different smoothing estimation methods, this chapter focuses on two main
kernel-type smoothing methods, the one-step least squares kernel smoothing
method and the covariate centered kernel smoothing method. In practice,
both smoothing methods, with or without covariate centering, have their ad-
vantages and disadvantages. The theoretical developments, however, are only
focused on the kernel smoothing method without covariate centering.

Appropriate confidence intervals of the smoothing estimators can be com-
puted using the resampling-subject bootstrap method. These confidence in-
tervals have been shown in the previous chapters to have appropriate coverage
probabilities, and such a bootstrap approach has the potential to preserve the
unknown correlation structures of the data. On the other hand, the asymptot-
ically approximate confidence intervals rely on the asymptotic distributions of
the smoothing estimators, which have to be developed on a case-by-case basis.
Even if the asymptotic distributions of the smoothing estimators are available,
the asymptotic biases and variances still have to be estimated in order to com-
pute the lower and upper bounds of the approximated confidence intervals.
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In many situations, however, it is not easy to obtain accurate estimates for
the asymptotic biases and variances. Since the resampling-subject bootstrap
confidence intervals are entirely data-driven and do not depend on the bias
and variance estimates, it is practically a more convenient inference procedure
than the asymptotically approximate inference methods.

Results for the least squares kernel smoothing method without covariate
centering are based on Hoover et al. (1998) and Wu, Chiang and Hoover
(1998). Methods for the kernel smoothing method with covariate centering
are based on Wu, Yu and Chiang (2000).



Chapter 8

The Two-Step Local Smoothing

Methods

We describe in this chapter a class of two-step local smoothing methods for
the estimation of the coefficient curves β (t) in the time-varying coefficient
model (7.1). This class of estimators is based on the simple idea that the
coefficient curves β (t) can be first estimated by the least squares method
at a sequence of isolated time points, and then these isolated estimates can
be treated as pseudo-observations and smoothed over to produce the final
smoothed estimator of β (t). Compared with the one-step local smoothing
methods in Chapter 7, this class of methods have two major advantages. First,
the two-step smoothing methods of this chapter can naturally incorporate dif-
ferent bandwidths for different components of β (t), which provides some addi-
tional flexibility for adjusting the possibly different smoothing needs in β (t).
Second, since the two-step smoothing methods only depend on the existing
estimation methods, they are computationally simple, and their bandwidths
can be easily selected by modifying the cross-validation procedures with the
classical cross-sectional i.i.d. data. The idea of two-step smoothing can be
generalized to other structured nonparametric models constructed from some
local parametric or semiparametric models when t is fixed, such as the time-
varying transformation models of Chapters 13 and 14, in which the two-step
estimation approach is the only available option in the literature.

8.1 Overview and Justifications

The local least squares smoothing estimators of Chapter 7 may be impractical
in many longitudinal settings, because it is often difficult to decide whether
the bandwidth and kernel function

(
hl , Kl

)
of the component curve estimator

β̂
(
t; Kl , hl

)
are appropriate for βl(t). This is due to the lack of direct obser-

vations of βl(t), that is, the approximate shape of βl(t) cannot be directly

detected from the data
{(

Yi j, ti j, XT
i j

)T
: i = 1, . . . , n; j = 1, . . . , ni

}
. If we can

construct some “pseudo-observations”of βl(t), then appropriate smoothing es-
timators can be constructed specifically for each βl(t), l = 1, . . . , k, so that the
final estimator of β (t) has appropriate smoothness for each of its components.

241
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This intuitive estimation method is described in Fan and Zhang (2000) as the
“two-step estimation” for functional linear models.

1. The Two-Step Estimation Procedure

In order to describe the“raw estimates”step of Fan and Zhang’s procedure,
we first redefine the design time points. Let

T =
{

t j : j = 1, . . . , J
}

(8.1)

be the distinct time points among the time points
{

ti j : i = 1, . . . , n; j =
1, . . . , ni

}
previously defined in Section 7.1.1. For each given time t j in T,

let S j be the collection of all the subjects observed at t j, that is,

S j =
{

i : 1 ≤ i ≤ n; ti j∗ = t j for some 1 ≤ j∗ ≤ ni

}
, (8.2)

and, m j be the number of subjects observed at time design point t j, i.e.,

m j =
{
# of i : i ∈ S j

}
. (8.3)

Then, the Fan and Zhang two-step estimation procedure for the time-varying
coefficient model (7.1) is given as follows.

The Two-Step Estimation Procedure:

(a) Raw Estimators. Compute the raw estimates β̂ RAW
l (t j) of βl(t) using the

subjects in S j for all the distinct design time points
{

t j ∈ T : j = 1, . . . , J
}

and l = 0, . . . , k.

(b) Smoothing Estimators. Estimate each coefficient curve βl(t) for any
t in the time range T by a kernel or local polynomial smoothing estimator

based on β̂ RAW
l (t j) for all t j ∈ T, j = 1, . . . , J. ✷

Although Fan and Zhang (2000) uses the local polynomial estimators to
illustrate their method, other smoothing methods such as splines may also be
used. To ensure existence of the raw estimates in a real situation, the following
time-point binning strategy is often used.

Time-Point Binning. Computation of the raw estimators β̂ RAW
l (t j) at t j

for any 1 ≤ j ≤ J requires m j defined in (8.3) to be sufficiently large, so that
there are enough subjects observed at t j. In practice, particularly for a sparse
longitudinal study, i.e., study with relatively small numbers of repeated mea-
surements over time, the numbers of subjects with observations at some design
time points in T given in (8.1) may be small. Consequently, the raw estimates
at these design time points may not be computable. In such situations, a use-
ful approach is to round off or group some of the adjacent design time points
into small bins and compute the raw estimates within each bin. In biological
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studies, the time scale is often rounded off to an acceptable precision. Thus,
“time-point binning”may have already been used at the data collection stage.
Of course, “time-point binning”may only make practical sense when both the
raw and smoothing estimators are interpretable. Typically, “time-point bin-
ning” is used when the number of design time points J is large and the t j’s are
spread around the intended time range T .

2. Justifications of the Two-Step Estimation Procedure

There are a number of practical advantages associated with the Fan and
Zhang two-step estimation method:

(a) Visualization of the Raw Estimates. Since only the local observa-
tions at each of the “design time points” in T are used in the first step for

computing the raw estimates, we can treat
{

β̂ RAW
l (t j) : j = 1, . . . , J

}
as the

“pseudo-observations” of βl(t) for t varying within its range T . The plots

and visualization of these “pseudo-observations”
{

β̂ RAW
l (t j) : j = 1, . . . , J

}

can be used to guide the appropriate smoothness choices for the estimation
of βl(t).

(b) Componentwise Smoothing. Since the raw estimators are usually not

smooth in the sense that β̂ RAW
l (t j) and β̂ RAW

l (t j+1) at two adjacent design
time points t j and t j+1 may vary significantly, the smoothing step is aimed
at reducing the variability of the raw estimates, so that an appropriately
smoothing estimator specifically for βl(t) can be constructed for all the
time points t. This smoothing step is crucial since it allows us to pool
information from neighboring time points to improve the raw estimators
and leads to smoothing estimates for the underlying smooth coefficient
functions for t ∈ T . If we ignore the smoothing step and simply estimate
βl(t) by linear interpolation of the raw estimates at the design time points
T, the resulting estimate of βl(t) could be spiky because of the variability
of the raw estimates.

(c) Computational Simplicity. Both the raw and smoothing estimates can
be easily computed using the existing computational methods and software
packages. For a given design time point t j, the model (7.1) is a linear model,

so that the raw estimates
{

β̂ RAW
0 (t j), . . . , β̂ RAW

k (t j)
}

can be computed by
the standard statistical software packages for least squares estimation. The

smoothing estimators of βl(t) based on the pseudo-observations
{

β̂ RAW
l (t j) :

j = 1, . . . , J
}
for any 0 ≤ l ≤ k can be easily computed using any existing

smoothing technique and software package. In addition, the existing well-
developed smoothing parameter selectors, such as the bandwidth selectors,
can be easily adopted in the smoothing step.

(d) Simple Interpretations of the Estimates. A useful by-product of
the scatter plots of the raw estimates is the intuitive interpretations of the
coefficient functions. At each design time point t j, the covariate effects are
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simply characterized by the linear model coefficients
{

β0(t j), . . . , βk(t j)
}
,

which are estimated by
{

β̂ RAW
0 (t j), . . . , β̂ RAW

k (t j)
}
. The coefficient functions{

β0(t), . . . , βk(t)
}
, which have values close to

{
β0(t j), . . . , βk(t j)

}
when t is

close to t j, are naturally estimated by borrowing information from the raw
estimates at the design time points within some neighborhood of t. ✷

8.2 Raw Estimators

For the first step of the two-step estimation procedure, we give the expressions
of the least squares parameter estimators at a fixed time point in T. These
estimates are used as the pseudo-observations for the second step where the
smoothing estimators of β (t) are constructed.

8.2.1 General Expression and Properties

For a given t j in the design time points T, we can collect all the outcomes

Yi j∗ and covariates Xi j∗ from the subjects in S j, and denote by
{

Ỹ j, X̃ j

}
the

corresponding response vector and design matrix. Following the time-varying
coefficient model (7.1), the observations

{
Ỹ j, X̃ j

}
collected at time t j follow

the standard linear model

Ỹ j = X̃T
j β (t j)+ ẽ j, (8.4)

where ẽ j is the vector of random error for the subjects in S j, and the distri-
bution of any element of ẽ j is the same as the distribution of ε(t j) in (7.1). It
then follows from the definitions of the models (7.1) and (8.4) that

{
E
(
ẽ j

)
= 0,

Cov
(
ẽ j

)
= σ2(t j)Im j

,
(8.5)

where σ2(t j) is the variance of ε(t j) and Im j
is the (m j ×m j) identity matrix.

We note three issues related to the use of the local linear model (8.4):

(a) Since the measurements from the subjects not in S j are not included in{
Ỹ j, X̃ j

}
, this approach is equivalent to assuming that the subjects without

measurements at t j are missing completely at random.

(b) When the “time-point binning” approach is used, a subject’s observation
time ti j∗ is grouped into one of the design time points t j, hence, is treated as
t j, if ti j∗ is not in T but stays within a small neighborhood of t j. By using the
model (8.4) with time-point binning, the differences between the subject’s
observations at ti j∗ and t j are assumed to be small, and, therefore, ignored.
Thus, the estimation results based on (8.4) and time-point binning may
be slightly biased, but the size of bias can be reduced by using small time
bins. In practice, it is preferable to use the time bins as small as possible
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provided that the raw estimates from (8.4) exist and there are meaningful
interpretations for the raw and smoothing estimates. Time-point binning
may affect the asymptotic properties of the smoothing estimators. But this
issue has not been investigated in the literature.

(c) An implicit assumption of (8.4) is that each subject is observed at most
once at a given design time point. This assumption, which eliminates the
possibility of repeated measurements from the same subject at any t j ∈ T,
is a practical one for most biomedical studies. If a subject has two or more
observations at time points within a very small neighborhood of t j, then it
is reasonable to use the averages at these time points. ✷

Suppose that the design matrix X̃ j is of rank (k + 1). If we denote by(
X̃ j X̃T

j

)−1
the inverse of

(
X̃ j X̃T

j

)
, the standard least squares estimator of β (t j)

based on
{

Ỹ j, X̃ j

}
is obtained by minimizing

L j

[
β (t j)

]
=
[
Ỹ j − X̃T

j β (t j)
]T [

Ỹ j − X̃T
j β (t j)

]
(8.6)

with respect to β (t j), and has the expression

β̂ RAW (t j) =
(
X̃ j X̃T

j

)−1
X̃ j Ỹ j. (8.7)

In standard linear regression models, the biases and variances of the least
squares estimators are usually computed by conditioning on the observed co-
variates or assuming that the covariates are fixed and nonrandom. For the

sample
{(

Yi j, ti j, XT
i j

)T
: i = 1, . . . , n; j = 1, . . . , ni

}
, let

D =
{(

t j, XT
i j∗
)

: j = 1, . . . , J; i = 1, . . . , n; j∗ = 1, . . . , ni

}
(8.8)

be the observed time design points and covariates. Direct calculation based on
(8.5), (8.6) and (8.7) shows that, conditioning on D , the mean and covariance

matrix of β̂ RAW (t j) are

{
E
[
β̂ RAW (t j)

∣∣D
]

= β (t j),

Cov
[
β̂ RAW (t j)

∣∣D
]

= σ2(t j)
(
X̃ j X̃T

j

)−1
.

(8.9)

The first equation of (8.9) indicates that, under the approximation of time-

point binning, β̂ RAW (t j) is approximately an unbiased estimator of β (t j). Since
each subject is assumed to be observed at most once at t j, the second equation

of (8.9) shows that the covariance matrix of β̂ RAW (t j) depends on the number

of subjects m j in S j. The variation of the raw estimate β̂ RAW (t j) is small if

m j is large. Since m j may not increase with n, the variation of β̂ RAW (t j) is not
necessarily smaller when the sample size n increases.



246 THE TWO-STEP LOCAL SMOOTHING METHODS

8.2.2 Component Expressions and Properties

Components of the raw estimator β̂ RAW (t j) can be expressed explicitly. For

any l = 0, 1, . . . , k, let β̂ RAW
l (t j) be the (l + 1)th component of β̂ RAW (t j). Then,

by (8.7), β̂ RAW
l (t j) has the expression

β̂ RAW
l (t j) = eT

l+1,k+1

(
X̃ j X̃T

j

)−1
X̃ j Ỹ j, (8.10)

where el,k+1 is a (k+ 1)-dimensional unit vector with 1 at its lth entry and 0
elsewhere. By the conditional mean and the conditional covariance matrix of

β̂ RAW (t j) given in (8.9), the mean and variance of β̂ RAW
l (t j) conditioning on the

covariate set D are

{
E
[
β̂ RAW

l (t j)|D
]

= βl(t j),

Var
[
β̂ RAW

l (t j)|D
]

= eT
l+1,k+1σ2(t j)

(
X̃ j X̃T

j

)−1
el+1,k.

(8.11)

In particular, the variance of β̂ RAW
l (t j) conditioning on D is the (l+1)th diag-

onal element of σ2(t j)
(
X̃ j X̃T

j

)−1
.

The correlation structure of the data affects the covariance of β̂ RAW
l (·) at

different design time points. Let
{

t j, t j∗ : j 6= j∗
}
be any design time points in

T of (8.1). The covariance of β̂ RAW
l (t j) and β̂ RAW

l (t j∗) conditioning on D is

Cov
[
β̂ RAW

l (t j), β̂ RAW
l (t j∗)

∣∣D
]

= ρ(t j, t j∗)eT
l+1,k+1

(
X̃ j X̃T

j

)−1
X̃ j M j j∗ X̃T

j

(
X̃ j X̃T

j

)−1
el+1,k+1, (8.12)

where ρ(s, t) is the covariance function defined in (7.1) and M j j∗ is a matrix

with entries 0 or 1, such that, its (a, b)th entry is 1, if the ath entry of Ỹ j

and the bth entry of Ỹ j∗ are from the same subject, and 0 otherwise. Since
some subjects may have observations at only one of the time points t j or t j∗

for j 6= j∗, the purpose of M j j∗ is to make sure that only the subjects who
have been observed at both t j and t j∗ are used for computing the conditional

covarianceCov
[
β̂ RAW

l (t j), β̂ RAW
l (t j∗)

∣∣D
]
. When j = j∗, M j j is an identity matrix.

8.2.3 Variance and Covariance Estimators

The variances and covariances of the raw estimate β̂ RAW (t j) given in (8.9),
(8.11) and (8.12) depend on the unknown variance σ2(t j) and covariance
ρ(t j, t j∗) for t j 6= t j∗ . Following the well-known residual-based approaches in
linear models, these two quantities can be easily estimated based on the resid-
uals from the least squares fit of the model (8.4). To compute the residuals

of β̂ RAW (t j) in (8.7) from the local model (8.4), let Im j
be the m j ×m j identity

matrix and
P j = X̃T

j

(
X̃ j X̃T

j

)−1
X̃ j, (8.13)
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so that X̃T
j β̂ RAW (t j) = P j Ỹ j. It follows from (8.4) that the residuals from the

least squares fit is
̂̃e j =

(
Im j

−P j

)
Ỹ j. (8.14)

Let tr
(̂̃e j
̂̃eT

j∗
)
be the trace of ̂̃e j

̂̃eT

j∗ , i.e., the sum of the diagonal elements

of ̂̃e j
̂̃eT

j∗ , for any j, j∗ = 1, . . . , J. Conditioning on the covariate set D , the

expectation of tr
(̂̃e j
̂̃eT

j∗
)
is

E
[
tr
(
̂̃e j
̂̃eT

j∗

)∣∣∣D
]
= tr

[(
Im j

−P j

)
MT

j j∗
(
Im j

−P j

)T ]
γ(t j , t j∗), (8.15)

where γ(t j , t j∗) = σ2(t j) if j = j∗, and γ(t j , t j∗) = ρ(t j, t j∗) if j 6= j∗. If the trace

tr
[(

Im j
−P j

)
MT

j j∗
(
Im j

−P j

)T ] 6= 0, it follows from (8.15) that

γ(t j, t j∗) = E
[
tr
(
̂̃e j
̂̃eT

j∗

)∣∣∣D
]/

tr
[(

Im j
−P j

)
MT

j j∗
(
Im j

−P j

)T ]
.

Substituting E
[
tr
(
̂̃e j
̂̃eT

j∗

)∣∣∣D
]
of the above equation with the observed trace

of residuals tr
(
̂̃e j
̂̃eT

j∗

)
, a natural estimator of γ(t j, t j∗) is

γ̂(t j, t j∗) = tr
(
̂̃e j
̂̃eT

j∗

)/
tr
[(

Im j
−P j

)
MT

j j∗
(
Im j

−P j

)T ]
. (8.16)

In particular, when j = j∗, estimation of the variance σ2(t j) requires the
local sample size to be larger than the number of parameters in the model
(8.4), i.e., m j > k+ 1. The specific estimators of σ2(t j) and ρ(t j, t j∗) are





σ̂2(t j) = γ̂(t j, t j) = tr
(
̂̃e j
̂̃eT

j∗

)/(
m j − k− 1

)
, if j = j∗,

ρ̂(t j , t j∗) = γ̂(t j, t j∗), if j 6= j∗.
(8.17)

The estimators of

Cov
[
β̂ RAW (t j)|D

]
, Var

[
β̂ RAW

l (t j)|D
]

and Cov
[
β̂ RAW

l (t j), β̂ RAW
l (t j∗)

∣∣D
]

are obtained by substituting σ2(t j) and ρ(t j, t j∗) in (8.9), (8.11) and (8.12) with
their corresponding estimators σ̂2(t j) and ρ̂(t j, t j∗) in (8.17). These variance
and covariance estimators are useful for deriving the statistical properties of
the final smoothing estimators of β (t).

8.3 Refining the Raw Estimates by Smoothing

When the local sample size m j is sufficient large at the design time point t j, the
raw estimates described above are asymptotically unbiased and have the same
theoretical properties as with the standard linear models. These estimates are
not suitable for practical use and need to be refined by a smoothing step.
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8.3.1 Rationales for Refining by Smoothing

There are four reasons to refine the raw estimates through an appropriate
smoothing procedure:

(a) Since the raw estimates are obtained at each of the design time points{
t j : j = 1, . . . , J

}
, they are generally not smooth from one time point to

the next. In addition to the temporal trends across the time points, the
variations of the raw estimates between different time points are in part
caused by the random errors.

(b) The raw estimates are generally not efficient for any design time point
t j, because the information across different time points is ignored and only
the subjects observed within a neighborhood of t j are used. Given that the
observations from a nearby time point t j∗ may provide useful information
about the value of β (t j), more efficient estimators of β (t j) may be obtained
by utilizing the observations from neighboring design time points.

(c) It is possible that there are not enough subjects observed at some design
time points, so that the raw estimates at these time points are missing.
In such cases, it is natural to use the raw estimates from the neighboring
design time points to estimate the coefficient curves at the time points with
missing raw estimates.

(d) Since the statistical objective is to estimate the coefficient curves β (t),
raw estimates from the design time points do not give direct estimates
of β (t) when t ∈ T is not a design time point, i.e., t 6∈ T. A smoothing
step using the raw estimates near t is a natural approach to construct an
estimator of β (t). ✷

8.3.2 The Smoothing Estimation Step

Following Chapters 3 to 5, several smoothing methods can be applied to the

raw estimates to obtain a smoothing estimator β̂l(t) of βl(t), 0 ≤ l ≤ k, for all

t within the time range T . Using
{

β̂ RAW
l (t j) : 0 ≤ l ≤ k; j = 1, . . . , J

}
as the

pseudo-observations, the smoothing estimators are linear functions of these
raw estimates.

1. Expression of the Smoothing Estimators

Suppose that βl(t) is (p+1)-times differentiable. A linear estimator of the

qth derivative β
(q)
l (t) of βl(t) for any 0 ≤ q < p+ 1 is given by the form

β̂
(q)
l (t) =

J

∑
j=1

wl,q

(
t j, t
)

β̂ RAW
l

(
t j

)
, (8.18)

where wl,q(t j , t) are the weights constructed by various smoothing methods,
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such as, splines and local polynomials. Setting q = 0, the smoothing estimator
of βl(t) from (8.18) is

β̂l(t) = β̂
(0)
l (t) =

J

∑
j=1

wl,0

(
t j, t
)

β̂ RAW
l

(
t j

)
. (8.19)

In most real applications, we are concerned with the estimation of βl(t), rather
than its derivatives. Only in rare situations, such as estimating the changes

or curvatures of βl(t), the derivative estimates β̂
(q)
l (t) are required. For prac-

tical purposes, we focus on the smoothing estimators of βl(t), although the
derivative estimates of (8.18) are presented as a theoretical possibility.

2. The Two-Step Local Polynomial Estimators

For a specific estimator, the choice of weights wl,q(t j, t) in (8.18) has to
be selected. The only two-step smoothing method that has been systemat-
ically studied in the literature is the local polynomial fitting by Fan and
Zhang (2000). For any t j ∈ T and t ∈ T , let {h, K(·)} be the bandwidth and
kernel function, Kh(t) = K(t/h)/h, and





C j =
(
1, t j − t, . . . , (t j − t)p

)T
, j = 1, . . . , J,

C =
(
C1,C2, . . . ,CJ

)T
,

Wj = Kh(t j − t), W = diag
(
W1, . . . ,WJ

)
.

(8.20)

The pth order local polynomial estimator of β
(q)
l (t), 0 ≤ q < p+ 1, is derived

from (8.18) with the weights

wl,q(t j, t) = q!eT
q+1, p+1

(
CT WC

)−1
C j Wj, (8.21)

and has the expression

β̂
(q)
l (t) =

J

∑
j=1

{[
q!eT

q+1, p+1

(
CT WC

)−1
C j Wj

]
β̂ RAW

l (t j)
}
. (8.22)

The pth order local polynomial estimator of βl(t) is β̂
(0)
l (t).

Taking p = 1 and C j =
(
1, t j − t

)T
in (8.21), the local linear estimator of

βl(t) is derived from (8.19) with the weights

wl,0(t j, t) = eT
1,2

(
CT WC

)−1
C j Wj, (8.23)

and has the expression

β̂ L
l (t) = β̂

(0)
l (t) =

J

∑
j=1

{[
eT

1,2

(
CT WC

)−1
C j Wj

]
β̂ RAW

l (t j)
}
. (8.24)
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Although it is possible to use higher-order local polynomial estimators with
p ≥ 2, the local linear estimators (8.24) are most commonly used in practice.
This is mostly due to the fact that the additional structural complicity of
higher-order local polynomials often does not translate into better fits with
real data.

The local polynomial estimators (8.22) and (8.24) are obtained by treating{
β̂ RAW

l (t j) : 0 ≤ l ≤ k; j = 1, . . . , J
}
as the pseudo-observations and minimizing

Ll, p(t) =
J

∑
j=1

{
β̂ RAW

l (t j)−
p

∑
q=0

[
blq(t)(t j − t)q

]}2

K
( t j − t

h

)
(8.25)

with respect to blq(t), where different bandwidth h and kernel K(·) may be

used for each βl(t). If b̂lq(t) for q = 0, . . . , p uniquely minimize (8.25), then

b̂l0(t) = β̂
(0)
l (t) is the two-step pth order local polynomial estimator of βl(t)

given in (8.22), and, for q ≥ 1, (q!) b̂lq(t) = β̂
(q)
l (t) is the local polynomial

estimator of the qth derivative of βl(t) with respect to t.

3. The Two-Step Kernel Estimators

The special case of local constant fitting leads to the kernel smoothing
estimator of βl(t), which is obtained by minimizing

Ll(t) =
J

∑
j=1

[
β̂ RAW

l (t j)− bl(t)
]2

K
( t j − t

h

)
(8.26)

with respect to bl(t). The resulting two-step kernel smoothing estimator of
βl(t) is

β̂ K
l (t) =

J

∑
j=1

[
β̂ RAW

l (t j)K

( t j − t

h

)]/ J

∑
j=1

K

( t j − t

h

)
, (8.27)

which corresponds to (8.25) with p = 0.

4. Some Remarks on the Smoothing Step

A major advantage of using the two-step smoothing estimators in (8.18),
(8.19), (8.22), (8.24) and (8.27) is their computational simplicity, because the
existing computing software for cross-sectional i.i.d. data can be readily used.
The raw estimates can be computed by the standard software for linear models.
The smoothing estimates at the second step can be computed using the stan-
dard smoothing software for nonparametric regression. The entire procedure
does not depend on the correlation structures of the observations over time.
This is possible because the statistical objective is to estimate the unknown
coefficient curves at any time point t ∈ T , while the correlation structures of
(7.1) at different time points are not estimated.
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8.3.3 Bandwidth Choices

Component curve bandwidths can be selected using the usual cross-validation
method in nonparametric regression by deleting the raw estimates one design
time point at a time. The main idea is to find a reasonable bandwidth such

that the resulting smoothing estimator β̂
(0)
l (t) has appropriate smoothness for

the pseudo-observations
{

β̂ RAW
l (t j) : 0 ≤ l ≤ k; j = 1, . . . , J

}
.

Let β̂
(0,− j)
l (t; hl) be any estimator of βl(t) given in (8.22), (8.24) or (8.27)

computed using the bandwidth hl kernel Kl(·) and the pseudo-observations
of raw estimates with the one at the time design point t j deleted, that is,{

β̂ RAW
l (t j∗) : 0 ≤ l ≤ k; j∗ 6= j; 1 ≤ j∗ ≤ J

}
. The leave-one-time-point-out cross-

validation (LTCV) score is defined by

LTCVl(hl) =
J

∑
j=1

[
β̂ RAW

l (t j)− β̂
(0,− j)
l (t j; hl)

]2

. (8.28)

The cross-validated bandwidth hl,LTCV is the minimizer of LTCVl(hl) with re-
spect to hl , provided that the unique minimizer of (8.28) exists. Heuristically,

LTCVl(hl) measures the predictive error of β̂
(0,− j)
l (t j; hl) for β̂ RAW

l (t j).
In contrast to the leave-one-subject-out cross-validation (LSCV) of Sec-

tion 7.2.5 for the one-step local smoothing estimators, the LTCV (8.28) is
specific for each component curve βl(t) and can provide different smooth-
ing needs for different 0 ≤ l ≤ k. The LTCV bandwidth vector from (8.28) is

hLTCV =
(
h0,LTCV , . . . , hk,LTCV

)T
. However, because the raw estimates β̂ RAW

l (t j)

and β̂ RAW
l (t j∗) for any j 6= j∗ are possibly correlated, the approximate relation-

ship linking the ASE in (7.25) with the LSCV in (7.26) may not necessarily
hold for the LTCV score (8.28). Practical properties of the cross-validated
bandwidths hLTCV have to be investigated through simulation studies.

8.4 Pointwise and Simultaneous Confidence Bands

Approximate inferences for β (t) based on the asymptotic distributions under
general assumptions of

{
n, ni : i = 1, . . . , n

}
and

{
m j : j = 1, . . . , J

}
are still not

available for the smoothing estimators of Section 8.3. Similar to Section 7.3, a
practical inference approach is to consider the resampling subject bootstrap.
We describe the bootstrap pointwise confidence intervals and the simulta-
neous confidence bands for β (t) constructed using the similar procedures in
Section 7.3

8.4.1 Pointwise Confidence Intervals by Bootstrap

Let β̂ (t) =
(
β̂0(t), . . . , β̂k(t)

)T
be an estimator of β (t) constructed using any of

the estimation methods of Section 8.3. Let A=
(
a0, . . . , ak

)T
be a known (k+1)

column vector, so that AT E
[
β̂ (t)

]
= ∑k

l=0 al E
[
β̂l(t)

]
is a linear combination of
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the components of E
[
β̂ (t)

]
. The resampling-subject bootstrap procedure for an

approximate
[
100× (1−α)

]
% pointwise percentile interval has the following

steps.

Approximate Bootstrap Pointwise Confidence Intervals:

(a) Computing Bootstrap Estimators. Generate B independent boot-
strap samples as in Section 7.3 and compute B bootstrap estimators{

AT β̂ b
1 (t), . . . , AT β̂ b

B(t)
}
.

(b) Approximate Bootstrap Intervals. Calculate lb
A,α/2

(t) and ub
A,α/2

(t), the

lower and upper [100× (α/2)]th percentiles, respectively, of the B bootstrap
estimators. The approximate

[
100× (1−α)

]
% percentile bootstrap confi-

dence interval for AT β (t) is

(
lb
A,α/2(t), ub

A,α/2(t)
)
. (8.29)

The normal approximated bootstrap confidence interval for AT β (t) is

AT β̂ (t)± z1−α/2× ŝe
(
t; AT β̂ b

)
, (8.30)

where ŝe
(
t; AT β̂ b

)
is the sample standard deviation of the B bootstrap esti-

mates, which is given by

ŝe
(
t; AT β̂ b

)
=

{
1

B− 1

B

∑
s=1

[
AT β̂ b

s (t)−
1

B

B

∑
r=1

AT β̂ b
r (t)

]2}1/2

, (8.31)

and z1−α/2 is the [100× (1−α/2)]th percentile of the standard normal dis-
tribution. ✷

Since the smoothing estimator β̂ (t) has a small asymptotic bias for β (t),
the above procedure only gives approximate pointwise confidence intervals
for AT β (t), which, strictly speaking, is an approximate variability band based

on AT β̂(t). A strict pointwise confidence interval would require an unbiased

estimator for the asymptotic bias of β̂ (t). The intervals (8.29) and (8.30) do
not contain the required bias correction. When small bandwidths are used,

the asymptotic bias of β̂(t) is small, so that the coverage probabilities that
the intervals (8.29) and (8.30) containing AT β (t) are close to

[
100×(1−α)

]
%.

The asymptotic bias of β̂(t) is often difficult to be accurately estimated. As a
result, the “plug-in” bias correction of substituting the unknown asymptotic
bias with their estimates may not improve the coverage probability over the
simple variability bands of (8.29) and (8.30).

Pointwise confidence intervals for βr(t), 0 ≤ r ≤ k, can be computed using
(8.29) and (8.30) with A being the (k+ 1) column vector having 1 at its (r+
1)th place and 0 elsewhere. Pointwise confidence intervals for the difference
of two component curves of β (t) can be similarly constructed by taking the
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corresponding elements of A to be 1 and −1 and 0 elsewhere. For example, the
pointwise bootstrap confidence interval for

[
βr1

(t)−βr2
(t)
]
can be computed

by (8.29) and (8.30) with A being the (k+ 1) column vector having 1 and -1
at its (r1 + 1)th and (r2 + 1)th places and 0 elsewhere. Other special cases of
(8.29) and (8.30) can be similarly constructed with appropriate choice of A.

8.4.2 Simultaneous Confidence Bands

The“bridging-the-gap”simultaneous confidence bands for AT β (t) over t ∈ [a, b]
can be similarly constructed as in Section 7.3.2. In this case, we let

(
lA,α/2(t), uA,α/2(t)

)
(8.32)

be the
[
100 × (1 − α)

]
% pointwise confidence interval in (8.29) or (8.30),

and partition [a, b] into M equally spaced intervals with grid points a =
ξ1 < · · · < ξM+1 = b, such that ξ j+1 − ξ j = (b − a)/M for j = 1, . . . , M. A
set of approximate

[
100× (1 − α)

]
% simultaneous confidence intervals for{

AT β (ξ j) : j = 1, . . . , M+ 1
}
is the intervals

{(
LA,α/2(ξ j),UA,α/2(ξ j)

)
: j = 1, . . . , M+ 1

}
, (8.33)

such that

lim
n→∞

P
{

LA,α/2(ξ j)≤ AT β (ξ j)≤UA,α/2(ξ j) for all j = 1, . . . , M+ 1
}
≥ 1−α.

The special case of (8.33) based on the Bonferroni adjustment is

(
LA,α/2(ξ j),UA,α/2(ξ j)

)
=
(
lA,α/[2(M+1)](ξ j), uA,α/[2(M+1)](ξ j)

)
. (8.34)

Based on (8.33) and the interpolation

(
AT β

)(I)
(t) =

[
M
(
ξ j+1 − t

)

b− a

][
AT β (ξ j)

]
+

[
M
(
t − ξ j

)

b− a

][
AT β (ξ j+1)

]
, (8.35)

a simultaneous confidence band for
(
AT β

)(I)
(t) over t ∈ [a, b] is

(
L
(I)
A,α/2

(t),U
(I)
A,α/2

(t)
)
, (8.36)

where L
(I)
A,α/2

(t) and U
(I)
A,α/2

(t) are the corresponding linear interpolations of

lower and upper bounds.
Using the same derivations as in (7.35) to (7.38), we obtain the following

two types of simultaneous confidence bands. If

sup
t∈[a,b]

∣∣∣
(
AT β

)′
(t)
∣∣∣≤ c1 for a known constant c1 > 0, (8.37)
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an approximate
[
100× (1−α)

]
% simultaneous confidence band for AT β (t) is

(
L
(I)
A,α/2

(t)− 2c1

[
M (ξ j+1−t) (t−ξ j)

b−a

]
,

U
(I)
A,α/2

(t)+ 2c1

[
M (ξ j+1−t) (t−ξ j)

b−a

])
.

(8.38)

If the second derivative of AT β (t) is bounded,

sup
t∈[a,b]

∣∣∣
(
AT β

)′′
(t)
∣∣∣≤ c2 for a known constant c2 > 0, (8.39)

an approximate
[
100× (1−α)

]
% simultaneous confidence band is

(
L
(I)
A,α/2

(t)− c2
2

[
M (ξ j+1−t) (t−ξ j)

b−a

]
,

U
(I)
A,α/2

(t)+ c2
2

[
M (ξ j+1−t) (t−ξ j)

b−a

])
.

(8.40)

8.5 R Implementation

8.5.1 The NGHS BP Data

The NGHS data has been described in Section 1.2. In Chapter 7, we used a
time-varying coefficient model and the one-step local smoothing method to
evaluate the effect of race, height and body mass index (BMI) on the systolic
blood pressure (SBP). We illustrate here the two-step smoothing method for
the coefficient curves β (t) in the same varying coefficient model

Yi j = β0

(
ti j

)
+β1

(
ti j

)
X (1)+β2

(
ti j

)
X (2)

(
ti j

)
+β3

(
ti j

)
X (3)

(
ti j

)
+ εi j , (8.41)

where, for the ith NGHS girl, ti j denotes her age (in years) at the jth study
visit, Yi j and εi j are her SBP level and random measurement error at age ti j,

X (1) denotes her race (1 indicates African American, 0 indicates Caucasian),
and X (2)

(
ti j

)
and X (3)

(
ti j

)
are the girl’s age-adjusted height percentile and BMI

percentile at age ti j. In this model, β0(t) represents the baseline SBP curve,
i.e., the mean time curve of SBP for Caucasian girls with the median height
and the median BMI, and βl(t), l = 1, 2, 3, represent the effects of race, height
and BMI, respectively, on the SBP during the adolescence years.

To apply the two-step smoothing estimation procedure of Sections 8.2 and
8.3, we first obtain the set of design time points. The original observed visit
times ti j spread from 9 to 19 years for the 2379 NGHS girls and many visit
times only have 1 to 2 observations. To use the time-point binning of Sec-
tion 8.1, we round off the adjacent study visit times to the nearest tenth, so
that the resulting set of design time points consists of 100 small time bins,
T =

{
t1 = 9.0, t2 = 9.1, . . . , t100 = 18.9}. The number of observations at time t j,

j = 1, . . . , 100, range from 77 to 277 with no more than one observation per
subject at each time t j, since each participant was only scheduled to have one
visit per year.
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Figure 8.1 Covariate effects on systolic blood pressure of NGHS girls. The scatter
plots and the solid curves in (A)-(D) show the raw estimates, the two-step local linear

estimates for the coefficient curves β̂l(t), l = 0, 1, 2, 3, respectively, with the cross-
validated bandwidths. The dashed curves indicate the corresponding 95% pointwise
bootstrap confidence intervals.

As discussed in Sections 8.1 and 8.2, an advantage of the two-step ap-
proach is the computational simplicity. We can apply the standard statistical
procedures to compute the raw estimates in the first step and then obtain the
final smoothing estimates over time using any smoothing method described
in Section 8.3. For this NGHS example, at each distinct design time t j, the
raw estimates βl

(
t j

)
, l = 0, 1, 2, 3 for the model (8.41) are the coefficients

of a standard linear regression model. Figure 8.1 shows these raw estimates
for β̂ RAW

l

(
t j

)
, l = 0, 1, 2, 3 computed using the lm() in R and the two-step

local linear smoothing estimates using the Epanechnikov kernel and the cross-
validated bandwidths.

Unlike the one-step procedure in Chapter 7, we can observe the general
time-trend based on the scatter plots of the raw estimates and apply differ-
ent amounts of smoothing or use different bandwidths for the four compo-
nents of covariate coefficients. Following Section 8.2.3, we use the leave-one-
time-point-out cross-validation (LTCV) for each covariate effect and select the
bandwidth hLTCV = (1.3, 4.0, 2.4, 1.5)T for the coefficient curves of the base-
line, race, height and BMI, respectively. For statistical inference, we compute
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the 95% pointwise confidence intervals based on the resampling-subject boot-
strap of Section 8.4 with 1000 replications. To ease the computational burden,
the cross-validated bandwidths obtained from the original sample were used
for the bootstrap standard error bands.

Compared to the one-step smoothing estimates in Chapter 7, the coefficient
curves in Figure 8.1 estimated by the two-step local smoothing method suggest
similar findings for these covariate effects on the longitudinal SBP levels of
the NGHS girls. Perhaps most importantly, the results obtained from both
methods demonstrate that these covariate effects are not constant over time.
The baseline coefficient curve shows that the mean SBP for the Caucasian
girls with the median height and the median BMI increases with the girls’
age. The coefficient curves for race and BMI percentile are all positive and
gradually increase with age, while the coefficient curve for height percentile
indicates that there is a positive association between height and SBP and the
height effect decreases with age.

We note that, for a nonparametric time-varying coefficient model, one may
use either the one-step or the two-step local smoothing methods to estimate
the coefficient curves. These two estimation methods are generally expected
to yield similar results. In practice, for long-term longitudinal cohort studies,
such as the NGHS, the results from these estimation approaches would provide
useful insight into the covariate effects on certain disease risk factors, which
could lead to significant implications for tracking these risk factors over time
and developing future intervention strategies to reduce the disease risks.

8.6 Remark on the Asymptotic Properties

Asymptotic properties, such as consistency and the asymptotic bias and vari-

ance expressions, for the two-step local polynomial estimator β̂
(q)
l (t) of (8.22)

have been presented in Fan and Zhang (2000). Thus, we focus in this chap-
ter on the practical issues of the two-step estimation method, and omit the
presentation of its asymptotic properties. Detailed asymptotic derivations are
referred to in Fan and Zhang (2000). Technically, the theoretical derivations of
these asymptotic properties are similar to the two-step smoothing estimators
to be presented in Chapters 13 and 14 for the time-varying transformation
models. In these chapters, as well as the derivations of Fan and Zhang (2000),
the asymptotic properties are established by first deriving the bias, variance
and covariance expressions of the raw estimators and then computing the
asymptotic expressions using the fact that the smoothing estimators are lin-
ear statistics of the corresponding raw estimates. This technical approach is
repeatedly used in Sections 13.5.4 and 14.5.4.

8.7 Remarks and Literature Notes

This chapter presents a two-step smoothing procedure for estimating the co-
efficient curves of the time-varying coefficient model (7.1). The main idea
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of a two-step method is to first fit a linear model at the grid time design
points T so that the raw coefficient estimates can be obtained at the distinct
time points of T, and then smooth these raw coefficient estimates over the
time range. Compared with the one-step estimation methods for the same
model in Chapter 7, a two-step method is intuitive and has the advantages of
being computationally simple and having the flexibility of allowing different
smoothing parameters for different coefficient curves in (7.1).

Although our presentation is focused on the kernel-type local polynomial
estimators, it is clear that the smoothing estimators of the two-step procedure
may also be computed using other smoothing methods, such as the B-splines
and the penalized smoothing splines. However, statistical properties for the
two-step estimation procedures of (7.1) based on splines have not been in-
vestigated in the literature, which remains to be a worthy topic of further
statistical research. In practice, both the one-step and two-step smoothing
procedures should be considered, as each of these procedures has its own ad-
vantages and disadvantages. For example, the two-step smoothing procedure
on one hand has the extra flexibility than the one-step smoothing procedure,
because it allows different bandwidths for different components of β (t). On
the other hand, the appropriateness of the two-step smoothing estimators de-
pends on the time-point binning choices and the raw estimators. The two-step
smoothing procedure can be essentially viewed as a favorable alternative to
the one-step smoothing procedure.

Computationally, both the one-step and the two-step smoothing methods
can be easily implemented in practice. Appropriate confidence intervals of the
smoothing estimators can be computed using the resampling-subject boot-
strap procedure. Although theoretical properties of the bootstrap confidence
intervals still need further investigation, these confidence intervals have been
shown in the literature to have appropriate coverage probabilities. Results of
Sections 8.2, 8.3 and 8.4 are based on Fan and Zhang (2000).
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Chapter 9

Global Smoothing Methods

We describe in this chapter a class of global smoothing methods based on
basis approximations for estimating the coefficient curves of the time-varying
coefficient model (7.1). These basis approximation smoothing methods are
natural extensions of the methods in Chapter 4 to models with time-varying
covariates. Compared with the local smoothing methods in Chapters 7 and 8,
the basis approximation methods can be viewed as a flexible extension of the
classical parametric regression models described in Section 2.1 to nonpara-
metric models, which have also been referred to in the literature as extended
linear models, for example, Stone et al. (1997).

9.1 Basis Approximation Model and Interpretations

Intuitively, a basis approximation intends to express an unknown coefficient
function through a linear combination of some basis functions, and the lin-
ear coefficients are parameters which determine the shape of the coefficient
function. Thus, on one hand, when the number of basis functions is fixed, the
unknown coefficient curve is approximated by a parametric model. On the
other hand, the model has the flexibility to accommodate the specific shape
of the coefficient function by increasing the number of basis functions. This
natural link between a linear model and a nonparametric regression model
makes the basis approximation smoothing method a useful alternative to the
local smoothing methods of Chapters 7 and 8 in real applications.

9.1.1 Data Structure and Model Formulation

Following the general setup of Chapter 7, including the data structure
and the time-varying coefficient models, we consider the stochastic pro-
cesses

{(
Y (t), t, XT (t)

)
: t ∈ T

}
, where Y (t) is a real-valued response pro-

cess, X(t) =
(
X (0)(t), . . . , X (k)(t)

)T
is a Rk+1-valued covariate process, and T

is the range of time points. The realizations of these processes for each sub-
ject are obtained at a set of distinct and possibly irregularly spaced time
points in the fixed interval T . The statistical interest is focused on eval-
uating the mean effects of t and X(t) on the response Y (t). A longitudi-
nal sample of

{(
Y (t), t, XT (t)

)
: t ∈ T

}
from n randomly selected subjects

259
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is denoted by
{(

Yi j, ti j, XT
i j

)
: i = 1, . . . , n; j = 1, . . . , ni

}
, where ti j is the time

of the jth measurement for the ith subject, ni is the number of repeated

measurements of the ith subject, and Yi j = Yi

(
ti j

)
and Xi j =

(
X
(0)
i j , . . . , X

(k)
i j

)T

are the ith subject’s observed outcome and covariates at time ti j. The to-
tal number of observations in the sample is N = ∑n

i=1 ni. As in regression
models where a baseline effect is desired, the baseline for X(t) is set by

X (0)(t) = X
(0)
i j = 1. The time-varying coefficient model (7.1) for the longitu-

dinal sample
{(

Yi j, ti j, XT
i j

)
: i = 1, . . . , n; j = 1, . . . , ni

}
is

Yi j = XT
i j β
(
ti j

)
+ εi j, (9.1)

where, for all t ∈ T , β (t) =
(
β0(t), . . . , βk(t)

)T
are smooth functions of t, εi j =

εi

(
ti j

)
is a realization of the zero-mean stochastic process ε(t) as defined in

(7.1), and Xi j and εi =
(
εi1, . . . , εini

)T
are independent.

9.1.2 Basis Approximation

For local smoothing methods, the curves in the coefficient vector β (t) =(
β0(t), . . . , βk(t)

)T
are estimated either by the one-step local smoothing

method in Chapter 7 or the two-step local smoothing method in Chapter 8.
For the basis approximation approach, we approximate each βl(t) in β (t) by
a basis function expansion

βl(t)≈
Kl

∑
s=0

[
γ∗ls Bls(t)

]
, t ∈ T , (9.2)

where
{

Bls(t) : s = 1, . . . , Kl

}
is a set of basis functions, such as polynomial

bases, Fourier bases or B-splines (polynomial splines). Since the basis functions

{
Bls(t) : l = 0, . . . , k; s = 1, . . . , Kl

}
,

are known, when the approximation sign in (9.2) is replaced by the equality

sign, βl(t) = ∑
Kl

s=0

[
γ∗ls Bls(t)

]
for all l = 0, . . . , k lead to a multiple linear model

in (9.1). But, in general, when βl(t) for some 0 ≤ l ≤ k are unknown functions,
(9.2) only holds for an approximate sign “≈” when the number of basis func-
tions Kl is sufficiently large, so that the resulting model (9.1) is a structured
nonparametric model, which is only approximated by a multiple linear model.

9.1.3 Remarks on Estimation Methods

The estimation methods of this chapter are concerned with the general struc-
tured nonparametric model (9.1) when (9.2) holds for some Kl , l = 0, . . . , k,
which may increase when the sample size n increases. This estimation relies
on a simple one-step “global” procedure, in which the estimator of βl(t) for all
t ∈T is determined by the estimators of the coefficients γ∗ls, and no binning of
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data as described in Chapter 8 is needed when the observations are sparse at
distinct time points. Different amounts of smoothing can be used for different
individual coefficient curves. The coefficients in the basis expansion, γ∗ls, are
estimated by least squares. The numbers of basis terms,

{
Kl : l = 0, . . . , k

}
,

play the role of smoothing parameters, and are selected using a leave-one-
subject-out cross-validation procedure. By taking Bl1(t) = 1 to be the basis
in the expansion (9.2) if βl(t) is known to be a constant, a basis approxima-
tion method suggests a non-iterative solution to the partially linear model
discussed in Section 2.3.

In the main results of this chapter, we first describe the estimation meth-
ods based on both the general basis approximations and the special case of
B-splines. Because of its popularity in applications, we describe the real data
example and computing procedures exclusively for the B-spline method. But,
in order to demonstrate the feasibility of basis approximations as a general
global smoothing method, the asymptotic properties and theoretical deriva-
tions include both general basis choices and B-splines. Our goal is to show
that, despite the popularity of B-splines in the literature, other basis func-
tions should also be considered if they are deemed appropriate for a particular
situation.

9.2 Estimation Method

9.2.1 Approximate Least Squares

We assume that the approximation (9.2) holds for a set of basis functions and
constants

{
Bls(t), γ∗ls : l = 0, . . . , k; s = 1, . . . , Kl

}
. The basis approximation of

the time-varying coefficient model (9.1) is given by

{
Yi j ≈ Y ∗

i j

Y ∗
i j = ∑k

l=0 ∑
Kl
s=1

[
X
(l)
i j γ∗ls Bls

(
ti j

)]
+ εi j.

(9.3)

In (9.3), Y ∗
i j is a pseudo-observation which represents the ith subject’s “obser-

vation” at time ti j if ∑k
l=0 ∑

Kl
s=1

[
X
(l)
i j γ∗ls Bls

(
ti j

)]
is the true mean of the process

at time ti j. Since Y ∗
i j is not actually observed but approximates the real ob-

served outcome Yi j, we can estimate the coefficients γ∗ls of (9.3) by minimizing
the approximate square error

ℓ(γ) =
n

∑
i=1

ni

∑
j=1

{
wi

[
Yi j −

k

∑
l=0

Kl

∑
s=1

X
(l)
i j Bls

(
ti j

)
γls

]2}
(9.4)

with respect to the γls, where wi is a known non-negative weight satisfying

∑n
i=1

(
niwi

)
= 1 for the ith subject, γ =

(
γT

0 , . . . ,γ
T
k

)T
and γl =

(
γl1, . . . ,γlKl

)T
.

We define γ̂ =
(
γ̂T

0 , . . . , γ̂T
k

)T
with γ̂l =

(
γ̂l1, . . . , γ̂lKl

)T
for l = 0, . . . , k to be the

approximate least squares estimator of γ =
(
γT

0 , . . . , γT
k

)T
if (9.4) is uniquely

minimized by γ̂. Here γ̂ is referred to as an approximate least squares estimator
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because Yi j is used in (9.4) instead of the unobserved pseudo-observation Y ∗
i j.

Using (9.2) and γ̂l , it is natural to estimate βl(t) by

β̂l(t) =
Kl

∑
s=1

[
γ̂ls Bls(t)

]
, (9.5)

which we refer to as the least squares basis approximation estimator of βl(t)
based on

{
Bls(t), γ∗ls : l = 0, . . . , k; s = 1, . . . , Kl

}
.

To give the explicit expressions for γ̂ and β̂l(t), we define the following
matrices from the basis functions, for i = 1, . . . , n and j = 1, . . . , ni,





B(t) =




B01(t) . . . B0K0
(t) 0 . . . 0 0 . . . 0

...
...

...

0 . . . 0 0 . . . 0 Bk1(t) . . . BkKk
(t)


 ,

Ui

(
ti j

)
=
[
XT

i j B
(
ti j

)]T
,

Ui =
(
Ui

(
ti1
)
, . . . , Ui

(
tini

))T
,

Yi =
(
Yi1, . . . , Yini

)T
.

(9.6)
Then (9.4) under the matrix representation (9.6) is

ℓ(γ) =
n

∑
i=1

[(
Yi −Ui γ

)T
Wi

(
Yi −Ui γ

)]
, (9.7)

where Wi = diag
(
wi, . . . , wi

)
is the ni×ni diagonal matrix with wi as its diago-

nal elements and 0 elsewhere. If ∑n
i=1

(
UT

i Wi Ui

)
is invertible, the approximate

least squares estimator γ̂ is uniquely defined by

γ̂ =
[ n

∑
i=1

(
UT

i Wi Ui

)]−1 [ n

∑
i=1

(
UT

i WiYi

)]
. (9.8)

The least squares basis approximation estimator of β (t) under the matrix
representation (9.6) is

β̂ (t) =
(
β̂0(t), . . . , β̂k(t)

)T
= B(t) γ̂. (9.9)

If the equality sign holds for (9.2), i.e., Yi j =Y ∗
i j holds in (9.3), β̂ (t) reduces

to the least squares estimator of β (t) from a multiple linear model. This implies
that the statistical properties of (9.9) depend on the functional space which
contains the true vector of coefficient curves β (t). The next section gives some
further discussion of the issues related to the assumptions of functional spaces
and basis choices.
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9.2.2 Remarks on Basis and Weight Choices

We provide a few remarks on linear functional spaces for approximating βl(t),
the choices of basis functions and the weights wi used in (9.4).

1. Linear Functional Spaces

Let Gl be the linear functional space spanned by the basis functions{
Bl1(t), . . . , BlKl

(t)
}
. The real coefficient curve βl(t) may or may not belong

to Gl . If βl(t) belongs to Gl , then (9.2) holds with an equality sign, and βl(t)
belongs to a multiple linear model. More generally, βl(t) does not necessar-
ily belong to Gl , so that, for a real study, we could only assume that (9.2)
holds with sufficiently large Kl . Fortunately, in many biomedical studies, it is
reasonable to assume that βl(t), l = 0, . . . , k, are sufficiently smooth functions
(see Section 9.5 for formal assumptions), so that (9.2) holds for a number of
popular basis choices provided that Kl is allowed to increase as the sample
size n increases. Once the basis

{
Bl1(t), . . . , BlKl

(t)
}
is chosen, Gl and the least

squares basis approximation estimator β̂l(t) are uniquely determined. On the
other hand, different sets of basis functions can be used to span the same lin-

ear functional space Gl , and thus give the same estimator β̂l(t), although the
corresponding least squares estimator γ̂ may be different. For example, both
the B-spline basis and the truncated power basis can be used to span a space
of spline functions.

Any basis system for function approximation can be used. The Fourier
basis may be desirable when the underlying functions exhibit periodicity, and
polynomials are familiar choices which can provide good approximations to
smooth functions. However, these bases may not be sensitive enough to exhibit
certain local features without using a large Kl . In this respect, polynomial
splines such as B-splines are often desirable. Ideally, a basis should be chosen
to achieve an excellent approximation using a relatively small value of Kl .
Some general guidance on basis choices are described in Ramsay and Silverman
(2005, Section 3.2.2). We demonstrate the practical example of this chapter
using B-splines because they can exhibit local features and provide stable
numerical solutions (de Boor, 1978, Ch. II).

2. Weight Choices

The choice of wi in (9.4) may have a significant influence on the theo-

retical and practical properties of γ̂ and β̂ (t). As in Section 4.1, the choice
w∗

i = 1/(nni) corresponds to the subject uniform weight, while w∗∗
i = 1/N cor-

responds to the measurement uniform weight. It is conceivable that an ideal
choice of wi may also depend on the intra-subject correlation structures of the
data

{(
Yi j, ti j, XT

i j

)
: i = 1, . . . , n; j = 1, . . . , ni

}
. However, because the actual

correlation structures are often completely unknown in practice, the subject
uniform weight w∗

i = 1/(nni) may be appropriate if the numbers of repeated
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measurements vary significantly for different subjects, while the measurement
uniform weight w∗∗

i = 1/N appears to be a practical choice if ni, i = 1, . . . ,n,
are relatively similar. Some theoretical implications of the choices for wi are
discussed later in Section 9.5.

9.2.3 Least Squares B-Spline Estimators

As discussed in Chapter 4 for evaluating the time-trend of Y (t) without covari-
ates, polynomial splines, or equivalently B-splines, are piecewise polynomials
with the polynomial pieces jointing together smoothly at a set of interior
knot points. A polynomial spline of degree d ≥ 0 on T with knot sequence
ξ0 < ξ1 < .. . < ξM+1, where ξ0 and ξM+1 are the two end points of the interval
T , is a function that is a polynomial of degree d on each of the intervals[
ξm, ξm+1

)
, 0 ≤ m ≤ M− 1, and

[
ξM, ξM+1

]
, and globally has continuous d − 1

continuous derivatives for d ≥ 1. A piecewise constant function, linear spline,
quadratic spline and cubic spline corresponds to d = 0, 1, 2 and 3, respectively.
The collection of spline functions of a particular degree and knot sequence form
a linear space. Good references for spline functions include de Boor (1978) and
Schumaker (1981).

1. B-Splines Least Squares Criteria

Suppose that each βl(t), l = 0, . . . , k, can be approximated by a set of B-

spline basis functions B
(S)
l (t) =

{
B
(S)
ls (t) : t ∈T ; s = 1, . . . , Kl

}
, which spans the

linear space

G
(S)
l =

{
linear function space spanned by B

(S)
l (t)

}
. (9.10)

Once B
(S)
l (t) is selected with a fixed Kl , G

(S)
l is a linear space with a fixed

degree and knot sequence. We then have the B-spline basis approximation

βl(t)≈
Kl

∑
s=1

[
γ∗lk B

(S)
ls (t)

]
. (9.11)

Because of its good numerical properties, the B-spline basis functions are
used for the applications of this chapter. The approximation sign in (9.11) is
replaced by a strict equality sign with a fixed and known Kl , when βl(t) belongs

to the linear space G
(S)
l
. For the general case that βl(t) may not belong to Gl,

it is natural to allow Kl to increase with the sample size n, so that a more
accurate approximation in (9.11) is obtained when the sample size increases.

Following (9.1), (9.3) and (9.11), we have the B-spline approximated time-
varying coefficient model





Yi j ≈ Y
(S)
i j ,

Y
(S)
i j = ∑k

l=0 ∑
Kl
s=1

[
X
(l)
i j γ∗ls B

(S)
ls

(
ti j

)]
+ εi j,

(9.12)
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where Y
(S)
i j is the pseudo-observation with conditional mean given by the B-

spline linear model ∑k
l=0 ∑

Kl
s=1

[
X
(l)
i j γ∗ls B

(S)
ls

(
ti j

)]
. We can then estimate the B-

spline coefficients γ∗lk, hence βl(t), based on (9.12) with any given Kl by mini-
mizing

ℓS(γ) =
n

∑
i=1

ni

∑
j=1

{
wi

[
Yi j −

k

∑
l=0

Kl

∑
s=1

X
(l)
i j B

(S)
lk

(
ti j

)
γlk

]2}
(9.13)

with respect to γlk, where wi are the non-negative weights defined in (9.4),

γ =
(
γT

0 , . . . , γT
k

)T
and γl =

(
γl1, . . . , γlKl

)T
.

2. Matrix Expression of B-Spline Estimators

For the expressions of (9.13) and the corresponding estimators, we define
the following matrices from the B-spline basis, for i = 1, . . . , n and j = 1, . . . , ni,





B(S)(t) =




B
(S)
01 (t) . . . B

(S)
0K0

(t) 0 . . . 0 0 . . . 0

...
...

...

0 . . . 0 0 . . . 0 B
(S)
k1 (t) . . . B

(S)
kKk

(t)


 ,

U
(S)
i

(
ti j

)
=
[
XT

i j B(S)
(
ti j

)]T
,

U
(S)
i =

(
U
(S)
i

(
ti1
)
, . . . , U

(S)
i

(
tini

))T

,

Yi =
(
Yi1, . . . , Yini

)T
.

(9.14)
Similar to (9.7), ℓS(γ) of (9.13) can be expressed using the matrix representa-
tion

ℓS(γ) =
n

∑
i=1

[(
Yi −U

(S)
i γ

)T
Wi

(
Yi −U

(S)
i γ

)]
, (9.15)

where Wi = diag
(
wi, . . . , wi

)
is the ni × ni diagonal matrix with wi as its diag-

onal elements and 0 elsewhere.
Since we are considering the special case of polynomial spline basis func-

tions, the matrix ∑n
i=1

[(
U
(S)
i

)T
Wi U

(S)
i

]
is invertible under some mild condi-

tions. A simple set of conditions for ∑n
i=1

[(
U
(S)
i

)T
Wi U

(S)
i

]
to be invertible is

given in Lemma 9.3 of Section 9.5. Then, under the conditions in Lemma 9.3,
ℓS(γ) has a unique minimizer

γ̂(S) =
((

γ̂
(S)
0

)T
, . . . ,

(
γ̂
(S)
k

)T
)T

=

{
n

∑
i=1

[(
U
(S)
i

)T
Wi U

(S)
i

]}−1{ n

∑
i=1

[(
U
(S)
i

)T
WiYi

]}
, (9.16)

where, for l = 0, . . . , k, γ̂
(S)
l =

(
γ̂
(S)
l1 , . . . , γ̂

(S)
lKl

)T
. The polynomial spline estimator
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of β (t) is

β̂ (S)(t) =
(

β̂
(S)
0 (t), . . . , β̂

(S)
k (t)

)T

= B(S)(t) γ̂(S), (9.17)

where, in particular, the polynomial spline estimator of the component curve
βl(t) is

β̂
(S)
l (t) =

Kl

∑
s=1

[
γ̂
(S)
ls B

(S)
ls (t)

]
. (9.18)

We note that, for an arbitrary smooth curve βl(t), β̂
(S)
l (t) should be on

average getting closer to βl(t) when the number of basis terms, Kl , increases. If

the B-spline functions B
(S)
ls (t) are polynomials with a fixed degree d, increasing

Kl implies the number of knots needs to be increased and the locations of
the knots are also changed accordingly. Thus, when d is fixed, the number
and location of the knots determine the smoothing parameter Kl . In most
applications, it is common to use linear (d = 1) or quadratic (d = 2) splines
with equally spaced knots, i.e., all adjacent knots have equal distance between
them, which leaves the number of knots to be the only factor determining the
smoothing parameter Kl . In practice, we can select the smoothing parameters

subjectively by examining the fitness of β̂
(S)
l (t) graphically under different knot

numbers. But, unlike simple regression models, we do not have observations for
a direct scatter plot of βl(t), so that subjective choices of knot numbers through
graphical examinations may not be justifiable in practice. A more appealing
approach is to use the data-driven smoothing parameter choice based on the
leave-one-subject-out cross-validation, which is discussed in detail in the next
section.

9.2.4 Cross-Validation Smoothing Parameters

Similar to the smoothing parameter selection method of Section 4.1, the
leave-one-subject-out cross-validation (LSCV) can be extended to the ba-

sis approximation estimators β̂ (t) for selecting the smoothing parameters{
Kl : l = 0, . . . , k

}
. The purpose of this cross-validation is to preserve the corre-

lation structures of the data, which are often completely unknown in practice.
The similar cross-validation has been used in the local smoothing methods of
Chapter 7 for the time-varying coefficient models.

1. LSCV for Basis Estimators

Let γ̂(−i) be the least squares estimator given in (9.8) computed from the
remaining sample after deleting all the observations of the ith subject. Sub-
stituting γ̂(−i) into (9.9), we obtain the least squares basis approximation es-
timator

β̂ (−i)(t) = B(t) γ̂(−i). (9.19)
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We define the LSCV score for K =
(
K0, . . . , Kk

)T
based on β̂ (−i)(t) to be

LSCV (K) =
n

∑
i=1

ni

∑
j=1

{
wi

[
Yi j −XT

i j β̂ (−i)
(
ti j

)]2
}
, (9.20)

and the LSCV smoothing parameters KLSCV =
(
K0,LSCV , . . . , Kk,LSCV

)T
to be

the minimizer of LSCV (K) provided that (9.20) can be uniquely minimized
with respect to K.

There are two advantages of using the LSCV (9.20) for the model (9.1)
and the global smoothing estimator (9.9). First, as in the local smoothing for
the time-varying coefficient models, this approach does not require modeling
the intra-subject correlation structures of the data. In contrast to the local
smoothing methods where only the observations around the time point t are
used in computing the estimates, the global smoothing estimator of (9.9) uses
all the observations throughout the time range T , so that the LSCV method
(9.20) selects the smoothing parameters based on all the observations. If the
intra-subject correlation structured are modeled through wi, then the LSCV
of (9.20) selects the smoothing parameters with the correlations of the data
taken into consideration. In most practical situations, it is difficult to model
the correlation structures appropriately. Second, since the smoothing param-
eters Kl are allowed to be different for different coefficient curves l = 0, . . . , k,
the LSCV method (9.20) leads to possibly different cross-validated smoothing
parameters Kl,LSCV . Thus, when different smoothing is required for different
coefficient curves βl(t), the LSCV method (9.20) has the flexibility of provid-
ing appropriate smoothing for each component curve. This is in contrast to
the one-step local smoothing methods of Chapter 7, where only one smoothing
parameter, i.e., the bandwidth, is selected through the LSCV method.

An intuitive justification of KLSCV based on (9.20) can be provided using
the same rationale as in Section 7.2. Under the global smoothing setting, we

consider the average squared error of β̂
(
ti j

)
defined by

ASE(K) =
n

∑
i=1

ni

∑
j=1

{
wi

[
XT

i j

[
β
(
ti j

)
− β̂

(
ti j

)]]2
}

(9.21)

and the decomposition

LSCV (K) =
n

∑
i=1

ni

∑
j=1

{
wi

[
Yi j −XT

i j β
(
ti j

)]2}

+2
n

∑
i=1

ni

∑
j=1

{
wi

[
Yi j −XT

i j β
(
ti j

)][
XT

i j β
(
ti j

)
−XT

i j β̂ (−i)
(
ti j

)]}

+
n

∑
i=1

ni

∑
j=1

{
wi

[
XT

i j

[
β
(
ti j

)
− β̂ (−i)

(
ti j

)]]2
}
. (9.22)

The first term on the right side of (9.22) does not depend on the smooth-

ing parameters K =
(
K0, . . . , Kk

)T
, and, because of the definition of β̂ (−i)(t)
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in (9.19), the expectation of the second term is zero. Thus, by minimizing
LSCV (K), KLSCV approximately minimizes the third term on the right side of
(9.22) which approximates the average squared error ASE(K) of (9.21).

2. LSCV for B-Spline Estimators

Because of computation complexity involved in the smoothing parameters,
it is often impractical to automatically select all three smoothing components
in B-spline smoothing: the degrees of spline, the number of knots and the
locations of knot choices. Since the number of knots is the most influential
factor affecting the smoothness of a B-spline approximation (Stone et al.,
1997). A computationally simpler choice, which has been used in Chapter 4
and proposed by Rice and Wu (2001) and Huang, Wu and Zhou (2002, 2004),
is to use splines with equally-spaced knots and fixed degrees and select only
the number of knots based on the data. Since the knots are equally spaced
within the time range T of interest, if T = [T0, T1] is a closed interval with
lower and upper endpoints T0 and T1, then T0 and T1 are the two boundary

knots, and, by (9.10), Kl is the dimension of G
(S)
l and is related to the number

Ml of interior knots through

Kl = Ml + 1+ d, (9.23)

where d is the degree of the spline.

For the LSCV based on the B-spline estimator β̂ (S)(t) given in (9.17), we
define γ̂(−i,S) to be the least squares B-spline estimator of (9.16) computed us-
ing the remaining sample after deleting all the observations of the ith subject,
and

β̂ (−i,S)(t) = B(S)(t) γ̂(−i,S) (9.24)

to be the corresponding B-spline estimator of β (t) based on γ̂(−i,S). The LSCV
score for the B-spline estimator (9.17) is

LSCV (S)(K) =
n

∑
i=1

ni

∑
j=1

{
wi

[
Yi j −XT

i j β̂ (−i,S)
(
ti j

)]2}
. (9.25)

If the right side of (9.25) can be uniquely minimized with respect to K =(
K0, . . . , Kk

)T
, the LSCV smoothing parameter vector

K
(S)
LSCV =

(
K
(S)
0,LSCV , . . . , K

(S)
k,LSCV

)T

is the minimizer of (9.25). It is seen from (9.23) that, when the degree of spline

d is fixed, the LSCV smoothing parameter K
(S)
l,LSCV is uniquely determined by

the number of internal knots Ml for splines with equally spaced knots.
Although our attention in B-splines is restricted to splines with equally

spaced knots, this choice of knots is computationally simple and works well
for the real data example of Section 9.4. In general, however, it might be
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worthwhile to investigate using the data to also select the knot locations.
B-splines without any specified knot numbers and locations are referred to
as free-knot splines. There has been considerable work on free-knot splines
with cross-sectional i.i.d. data, for example, Stone et al. (1997), Hansen and
Kooperberg (2002) and Stone and Huang (2003). Extension of the methodol-
ogy and theory of free-knot splines to the time-varying coefficient model (9.1)
has not been systematically investigated in the literature.

3. M-fold LSCV

When the number of subjects n is large, calculating the LSCV score (9.20),
or (9.25) for the case of B-splines, can be computationally intensive. In such sit-
uations, we can reduce the computational cost by using the leave-M-subjects-
out cross-validation (M-fold LSCV), in which we split the subjects into M

roughly equal-sized groups and computed the basis approximation estimators
using the remaining sample after deleting all the observations from each of
the M subject groups.

Let M[i] be the group containing the ith subject and denote by β̂−M[i](t)
the estimate of β (t) with the observations of the M[i]th group of the subjects
removed. Then the M-fold LSCV score is

LMSCV (K) =
n

∑
i=1

ni

∑
j=1

{
wi

[
Yi j −XT

i j β̂ (−M[i])
(
ti j

)]2}
. (9.26)

If the right side of (9.26) can be uniquely minimized with respect to K =(
K0, . . . , Kk

)T
, the M-fold LSCV smoothing parameter vector

KLMSCV =
(
K0,LMSCV , . . . , Kk,LMSCV

)T

is the minimizer of LMSCV (K).
The standard LSCV of (9.20) is the special case of (9.26) with M = 1. The

only reason of using the M-fold LSCV (9.26) with M > 1 is to save computing
time by calculating the cross-validation scores one group at a time, instead of
one subject at a time. For this reason, the choice of M depends on the avail-
able computing power and the desired computing time. Within the desirable
computing time, it is preferable to choose M as small as possible.

9.2.5 Conditional Biases and Variances

Statistical properties of the basis approximation estimators can be first derived
by evaluating their biases and variances conditioning on the observed time
points and covariates. These conditional biases and variances can then be used
to compute the conditional mean squared errors. Asymptotic expressions of
the conditional biases, variances and mean squared errors of the least squares
estimators (9.8) and (9.9) are presented in Section 9.5.
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1. Conditional Bias

We first derive the general expressions of the conditional biases of (9.8)
and (9.9). The conditional biases of the B-spline estimators (9.16) and (9.18)

are just special cases with the spline basis functions B
(S)
l (t) in (9.10). Let

X =
{

Xi j, ti j : i = 1, . . . , n; j = 1, . . . , ni

}
(9.27)

be the set of the observed covariates and time points of the longitudinal sam-
ple. Using (9.8), the conditional expectation of γ̂ given X is





γ̃ = E
(
γ̂
∣∣X
)
=
[

∑n
i=1

(
UT

i Wi Ui

)]−1 [
∑n

i=1

(
UT

i Wi Ỹi

)]
,

Ỹi = E
(
Yi

∣∣X
)
=
(
Ỹi1, . . . , Ỹini

)T
,

Ỹi j = XT
i j β
(
ti j

)
.

(9.28)

It follows from (9.9) and (9.28) that the conditional bias of β̂ (t) given X is

Bias
[
β̂(t)

∣∣∣X
]
= E

[
β̂ (t)−β (t)

∣∣∣X
]
= B(t) γ̃ −β (t), (9.29)

and, for l = 0, . . . , k, the conditional bias of β̂l(t) given X is

Bias
[
β̂l(t)

∣∣∣X
]
= E

[
β̂l(t)−βl(t)

∣∣∣X
]
= eT

l+1

[
B(t) γ̃ −β (t)

]
, (9.30)

where el+1 is the [(k+1)×1] column vector with 1 as its (l+1)th element and
zero elsewhere.

If, for all l = 0, . . . , k, βl(t) belongs to Gl , the linear function space spanned
by
{

Bl1(t), . . . , BlKl
(t)
}
, we can write β (t) = B(t)γ∗ for some γ∗, so that γ̃ = γ∗

and the conditional bias E
[
β̂(t)− β (t)

∣∣X
]
is 0. In general, the conditional

biases may not be zero, but it is possible to make the conditional biases
asymptotically negligible as n tends to infinity by choosing large values of
K0, . . . , Kk.

2. Conditional Variance and Covariance

To derive the conditional variances of the estimators given X , we first
note from (9.1) that the conditional variance-covariance matrix of Yi by





Vi =Cov
(
Yi

∣∣X
)
=




ρ
(
ti1, ti1

)
· · · ρ

(
ti1, tini

)

...
...

...

ρ
(
tini

, ti1
)

· · · ρ
(
tini

, tini

)


 ,

ρ
(
ti j , ti j′

)
=Cov

(
εi j, εi j′

)
and ρ

(
ti j, ti j

)
= σ2

(
ti j

)
,

(9.31)

where σ2
(
ti j

)
and ρ

(
ti j, ti j′

)
are the variance and covariance of εi j defined in
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(7.1). Using (9.31) and the expression of γ̂ in (9.8), the conditional variance-
covariance matrix of γ̂ is

Cov
(
γ̂
∣∣X
)

=

[
n

∑
i=1

(
UT

i Wi Ui

)]−1[ n

∑
i=1

(
UT

i Wi Vi Wi Ui

)]

×
[

n

∑
i=1

(
UT

i Wi Ui

)]−1

. (9.32)

It then follows from the (9.32) and the expression of β̂(t) in (9.9) that





Cov
[
β̂(t)

∣∣∣X
]
= B(t)Cov

(
γ̂
∣∣X
)

BT (t),

Var
[
β̂l(t)

∣∣∣X
]
= eT

l+1 Cov
[
β̂(t)

∣∣∣X
]

el+1, l = 0, . . . ,k,
(9.33)

where el+1 is the same [(k+ 1)× 1] column vector defined in (9.30).
If the random errors εi j of (9.1) are from a known Gaussian process and

the conditional biases of the estimators are negligible, the above conditional
variance-covariance matrices (9.32) and (9.33) can be used for statistical in-
ferences. However, the intra-subject correlation structure ρ

(
ti j, ti j′

)
is often

unknown in practice and needs to be estimated. Without the normality as-
sumption on εi j, we can construct the asymptotically approximated inference
procedures for the smoothing estimators, if the asymptotic distributions of
the smoothing estimators can be derived.

9.2.6 Estimation of Variance and Covariance Structures

We present here a tensor product spline method for the estimation of the co-
variance function ρ(t, s) for t, s ∈ T and variance function σ2(t) = Var[ε(t)].

Since, by (9.33), the conditional variance of β̂l(t) is determined by the covari-
ance structure of the error process ε(t) of (9.1), a crucial step for the estima-

tion of the conditional variance of β̂l(t) is to estimate the variance-covariance
matrix Vi of (9.31).

1. Spline Estimation of Covariances

Nonparametric estimation for the covariance structures of longitudinal
data has been investigated in the literature. For example, Diggle and Ver-
byla (1998) suggests a local smoothing method to estimate the covariance
structures, Li et al. (2009) studies influence diagnostics for outliers, and Li et
al. (2012) presents a testing method based on variance components. However,
estimation methods based on local smoothing could be computationally inten-
sive under the current context, since the estimated covariance function needs
to be evaluated at each distinct pair of observation times. On the other hand,
the tensor product spline estimators are much more computationally feasible.



272 GLOBAL SMOOTHING METHODS

The B-spline approach depends on approximating the covariance function

ρ(t, s) =Cov
[
ε(s), ε(t)

]

of (7.1) by a tensor product spline on T ×T , such that,

ρ(t, s)≈
K

∑
l1=1

K

∑
l2=1

[
ul1l2 Bl1(t)Bl2(s)

]
, t, s ∈ T and t 6= s, (9.34)

where
{

Bl(t) : l = 1, . . . , K
}
is a spline basis on T with a fixed knot sequence.

The above approximation is only required to hold when t 6= s, since, in most
practical longitudinal settings, the correlation function ρ(t, s) is not necessarily
continuous at t = s in the sense that

lim
s→t

ρ(t, s)< σ2(t).

Furthermore, we note that E
(
εi j εi j′

)
= ρ

(
ti j, ti j′

)
for j 6= j′ and ρ(t, s) = ρ(s, t).

To motivate the tensor product spline estimation method, we consider first
that, if the errors

{
εi j : i = 1, . . . , n; j = 1, . . . , ni

}
are observed, then ρ(t, s),

t 6= s, could be estimated by finding
{

ul1l2 : ul1l2 = ul2l1 ; l1, l2 = 1, . . . , K} which
minimize

n

∑
i=1

ni

∑
j, j′=1, j< j′

{
εi j εi j′ −

K

∑
l1=1

K

∑
l2=1

[
ul1l2 Bl1

(
ti j

)
Bl2

(
ti j′
)]}2

. (9.35)

Since εi j are not really observed, we can estimate εi j by the residuals

ε̂i j = Yi j −XT
i j β̂
(
ti j

)
, (9.36)

where, in principle, β̂
(
ti j

)
may be chosen as any appropriate basis approxima-

tion estimator of β (t).
To be consistent with the spline basis function of (9.34), a simple and

intuitive choice is to use the B-spline estimator β̂ (S)(t) in (9.36). Replacing(
εi j εi j′

)
with

(
ε̂i j ε̂i j′

)
in (9.35), the residual least squares estimator ûl1l2 of

ul1l2 minimizes

n

∑
i=1

ni

∑
j, j′=1, j< j′

{
ε̂i j ε̂i j′ −

K

∑
l1=1

K

∑
l2=1

[
ul1l2 Bl1

(
ti j

)
Bl2

(
ti j′
)]}2

(9.37)

with respect to ul1l2 , assuming that (9.37) can be uniquely minimized. Based
on ûl1l2 , the tensor product spline estimator of ρ(t, s) is

ρ̂(t,s) =
K

∑
l1=1

K

∑
l2=1

[
ûl1l2 Bl1(t)Bl2(s)

]
(9.38)

for all t, s ∈ T and t 6= s. ✷
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2. Spline Estimation of Variances

For the estimation of the variance σ2(t) of ε(t) defined in (7.1), we use the
B-spline approximation

σ2(t)≈
K

∑
l=1

vl Bl(t) (9.39)

based on the B-spline basis functions
{

Bl(t) : l = 1, . . . , K
}
. Using the residuals

ε̂i j given in (9.36), the least squares estimator v̂l of vl is obtained by minimizing
the square risk

n

∑
i=1

ni

∑
j=1

[
ε̂2

i j −
K

∑
l=1

vl Bl

(
ti j

)]2

, (9.40)

provided that (9.40) can be uniquely minimized with respect to vl . Substitut-
ing v̂l into (9.39), we obtain

σ̂2(t) =
K

∑
l=1

v̂l Bl(t) (9.41)

as the B-spline estimator of σ2(t) based on
{

Bl(t) : l = 1, . . . ,K
}

and the
residuals ε̂i j.

3. Estimation of the Variances and Covariances

Replacing the ρ
(
ti j, ti j′

)
and σ2

(
ti j

)
of (9.31) by their tensor product spline

estimators ρ̂
(
ti j, ti j′

)
of (9.38) and σ̂2

(
ti j

)
of (9.41), we can estimate Vi by

V̂i = Ĉov
(
Yi

∣∣X
)

(9.42)

=




σ̂2
(
ti1
)

ρ̂
(
ti1, ti2

)
· · · ρ̂

(
ti1, ti(ni−1)

)
ρ̂
(
ti1, tini

)

ρ̂
(
ti2, ti1

)
σ̂2
(
ti2, ti2

)
· · · ρ̂

(
ti2, ti(ni−1)

)
ρ̂
(
ti2, tini

)

...
...

...
...

...

ρ̂
(
tini

, ti1
)

ρ̂
(
tini

, ti2
)

· · · ρ̂
(
tini

, ti(ni−1)

)
σ̂2
(
tini

)



.

Consequently, replacing Vi of (9.32) with V̂i, the tensor product spline esti-
mator of Cov

(
γ̂
∣∣X
)
is

Ĉov
(
γ̂
∣∣X
)

=

[
n

∑
i=1

(
UT

i Wi Ui

)]−1[ n

∑
i=1

(
UT

i Wi V̂i Wi Ui

)]

×
[

n

∑
i=1

(
UT

i Wi Ui

)]−1

, (9.43)

and, by (9.33), the estimators of Cov
[
β̂ (t)

∣∣X
]
and Var

[
β̂l(t)

∣∣X
]
are

{
Ĉov

[
β̂ (t)

∣∣X
]

= B(t)Ĉov
(
γ̂
∣∣X
)

BT (t),

V̂ar
[
β̂l(t)

∣∣X
]

= eT
l+1 Ĉov

[
β̂ (t)

∣∣X
]

el+1, l = 0, . . . , k.
(9.44)
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The estimation of ρ(t,s) and σ2(t) relies on choosing the appropriate spline
spaces. In practice, we can use equally spaced knot sequences and select the
number of knots either subjectively or through the cross-validation procedures
described in Section 9.2.4. However, such data-driven choices are often com-
putationally intensive. In most applications, the number of knots between 5
and 10 often gives satisfactory results. The spline estimators of the covariance
and variance functions given above need not be positive definite for a given
finite sample, although, because of their consistency, they are asymptotically
positive definite. So far, there is no satisfactory solution to the problem of
constructing a nonparametric covariance or variance function estimator that
is positive definite under finite longitudinal samples. How to impose the finite
sample positive definiteness constraint to the current spline estimator is an
important problem that deserves further investigation.

9.3 Resampling-Subject Bootstrap Inferences

Statistical inferences for the basis approximation estimators γ̂ and β̂(t) can be
constructed using the same resampling subject bootstrap methods as in Sec-
tion 7.3. In this section, we present the resampling subject bootstrap methods
for the construction of (i) pointwise confidence intervals for β (t0) at a time
point t0 ∈ T , (ii) a class of simultaneous confidence bands for β (t) for all
t ∈ [a, b] ⊂ T , and (iii) a simple method for testing the null hypothesis that
βl(t) is a constant for all t ∈ T .

9.3.1 Pointwise Confidence Intervals

Based on the estimation procedure of Section 9.2, let

{
γ̂ =

(
γ̂T

0 , . . . , γ̂T
k

)T
with γ̂l =

(
γ̂l1, . . . , γ̂lKl

)T

β̂ (t) =
(
β̂0(t), . . . , β̂k(t)

)T

be the basis approximation estimators of γ∗ and β (t) =
(
β0(t), . . . , βk(t)

)T
de-

fined in (9.8) and (9.9), respectively, based on a given set of basis functions{
Bls(t) : s= 1, . . . , Kl ; l = 0, . . . , k

}
. Let A=

(
a0, . . . , ak

)T
be a known (k+1) col-

umn vector. For any given 0 ≤ α ≤ 1 and time point t ∈T , our objective is to
construct an approximate

[
100× (1−α)

]
th confidence interval for AT E

[
β (t)

]

based on AT E
[
β̂ (t)

]
. In particular, the

[
100× (1−α)

]
th confidence interval

for E
[
βl(t)

]
can be constructed by selecting A with al = 1 and as = 0 for all

s 6= l. By selecting the polynomial spline basis functions
{
B

(S)
l (t), . . . , B

(S)
k (t)

}

of (9.10), our procedure leads to an approximate
[
100× (1−α)

]
th confidence

interval for AT E
[
β (t)

]
based on β̂ (S)(t) of (9.17). Using similar procedures as

in Section 7.3, the resampling subject bootstrap pointwise confidence intervals
for AT E

[
β (t)

]
can be constructed by the following steps.
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Approximate Bootstrap Pointwise Confidence Intervals:

(a) Computing Bootstrap Estimators. Generate B independent bootstrap
samples using the resampling-subject bootstrap procedure of Section 3.4.1

and compute the B bootstrap estimators
{

γ̂b, β̂ b(t) : b = 1, . . . , B
}
.

(b) Approximate Percentile Bootstrap Confidence Intervals. Calcu-
late lA,α/2(t) and uA,α/2(t), the lower and upper [100× (1−α/2)]th per-

centiles, respectively, of the B bootstrap estimators
{

AT β̂ b(t) : b = 1, . . . , B
}

computed above. The approximate
[
100× (1−α/2)

]
th pointwise bootstrap

confidence interval for AT β (t) is

(
lA,α/2(t), uA,α/2(t)

)
. (9.45)

In particular, the approximate
[
100× (1−α/2)

]
th pointwise bootstrap con-

fidence interval for βl(t), 0 ≤ l ≤ k, is

(
ll,α/2(t), ul,α/2(t)

)
, (9.46)

where ll,α/2(t) and ul,α/2(t) are the lower and upper
[
100× (1 −α/2)

]
th

percentiles, respectively, of the B bootstrap estimators
{

β̂ b
l (t) : b= 1, . . . , B

}
.

(c) Normal Approximated Bootstrap Confidence Intervals. Using
normal approximation of the critical values, the normal approximated boot-
strap confidence interval is given by

AT β̂ (t)± z1−α/2 ŝe
[
AT β̂ b(t)

]
, (9.47)

where zp is the [100× p]th percentile of the standard normal distribution

and ŝe
[
AT β̂ b(t)

]
is the sample standard error of β̂ b(t) computed from the

B bootstrap estimators
{

AT β̂ b(t) : b = 1, . . . , B
}
. The normal approximated

confidence interval for βl(t), 0 ≤ l ≤ k, is

β̂l(t)± z1−α/2 ŝe
[
β̂ b

l (t)
]
, (9.48)

with ŝe
[
β̂ b(t)

]
being the sample standard error of β̂ b

l (t) computed from the

B bootstrap estimators
{

β̂ b
l (t) : b = 1, . . . , B

}
. ✷

We note that, since neither the percentile intervals in step (b) nor the

normal approximated error bars in step (c) adjust for the bias of β̂(t), these
intervals may not lead to proper pointwise confidence intervals for AT β (t), un-

less the bias of β̂ (t) is negligible relative to its variance. In the local smoothing
estimation methods of Chapter 7, one potential approach is to consider a“plug-
in” approach, which adjusts the locations of the intervals using an estimated

bias of β̂(t). But, the explicit expressions for the basis approximation estima-
tors of β (t) depend on the appropriateness of the chosen basis functions and
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are generally not available (see Section 9.5). Even for a specifically given basis

choice, such as the B-splines, the bias term of β̂(t) is difficult to derive explic-
itly, because it depends on the “closeness” between the true coefficient curves
β (t) and the linear functional space Gl spanned by

{
Bl1(t), . . . , BlKl

(t)
}
. Thus,

unlike the local smoothing methods of Chapter 7, the “plug-in” approach for

bias correction is not applicable for the basis approximation estimators β̂ (t).
Because it is not exactly known how well the basis expansion approximates

the true coefficient curves β (t), E
[
β̂(t)

]
is in essence the estimable part of β (t).

Within the framework of basis approximations, we can only treat E
[
β̂(t)

]
as

the parameter of interest and simply use the intervals in steps (b) and (c) as
the approximate confidence intervals for AT β (t). This is a sensible approach

since E
[
β̂ (t)

]
, as a good approximation of β (t), is expected to capture the main

feature of β (t). To obtain proper coverage probabilities for the approximate
intervals (9.45) and (9.47), we may make the bias of the basis approxima-

tion estimator β̂(t) negligible by selecting a set of large
{

K0, . . . , Kk

}
in the

computation of β̂ (t).

9.3.2 Simultaneous Confidence Bands

The same “bridging-the-gap” approach of Section 7.3.2 can also be used to
extend the above pointwise confidence intervals to simultaneous confidence
bands for AT E

[
β (t)

]
over a given sub-interval [a, b] of T . This approach has

three main steps.

1. Confidence Bands on Partitioned Time Points

For the first step, we partition [a, b] into M+1 equally spaced grid points
a = ξ1 < · · ·< ξM+1 = b for some integer M ≥ 1, and construct a set of approx-
imate

[
100× (1−α)

]
percent simultaneous confidence intervals

(
LA,α

(
ξr

)
,UA,α

(
ξr

))
(9.49)

for
{

AT E
[
β (ξr)

]
: r = 1, . . . , M+ r

}
, such that

lim
n→∞

P

{
LA,α

(
ξr

)
≤ AT E

[
β̂
(
ξr

)]
≤UA,α

(
ξr

)
, for all r = 1, . . . , M+ 1

}

≥ 1−α. (9.50)

The simple choice based on Bonferroni adjustment of the bootstrap pointwise
intervals (9.45) or (9.47) gives

(
LA,α

(
ξr

)
,UA,α

(
ξr

))
=
(

lA,α
(
ξr

)
, uA,α

(
ξr

))
(9.51)

or
(

LA,α

(
ξr

)
,UA,α

(
ξr

))
= AT β̂

(
ξr

)
± z1−α/[2(M+1)] ŝe

[
AT β̂ b

(
ξr

)]
. (9.52)
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For refinements, one may use the inclusion-exclusion identities to calculate(
LA,α

(
ξr

)
,UA,α

(
ξr

))
with more accurate coverage probabilities. These refine-

ments, however, involve more extensive computations, and may not be always
practical for large longitudinal studies. As in Section 7.3.2, the integer M is
chosen subjectively, since the optimal choices of M under the current situation
are not available.

2. Linear Interpolated Confidence Bands

We now construct the simultaneous confidence bands for the linear in-
terpolations of

{
AT E

[
β̂
(
ξr

)]
: r = 1, . . . , M + 1

}
at any time point t ∈ [a, b].

Let E(I)
[
β̂l(t)

]
be the linear interpolation of E

[
β̂l

(
ξr

)]
and E

[
β̂l

(
ξr+1

)]
for

ξr ≤ t ≤ ξr+1 and any 0 ≤ l ≤ k, such that

E(I)
[
β̂l(t)

]
= M

(
ξr+1 − t

b− a

)
E
[
β̂l

(
ξr

)]
+M

(
t − ξr

b− a

)
E
[
β̂l

(
ξr+1

)]
. (9.53)

The linear interpolation of AT E
[
β̂
(
ξr

)]
and AT E

[
β̂
(
ξr+1

)]
for ξr ≤ t ≤ ξr+1 is

AT E(I)
[
β̂ (t)

]
= AT

(
E(I)

[
β̂0(t)

]
, . . . , E(I)

[
β̂k(t)

])T

, (9.54)

where E(I)
[
β̂ (t)

]
=
(
E(I)

[
β̂0(t)

]
, . . . , E(I)

[
β̂k(t)

])T
. Let

(
L
(I)
A,α(t),U

(I)
A,α(t)

)
be the

linear interpolation of
(
LA,α

(
ξr

)
,UA,α

(
ξr

))
and

(
LA,α

(
ξr

)
,UA,α

(
ξr

))
for any

ξr ≤ t ≤ ξr+1 defined by





L
(I)
A,α(t) = M

(
ξr+1−t

b−a

)
LA,α

(
ξr

)
+M

(
t−ξr

b−a

)
LA,α

(
ξr+1

)
,

U
(I)
A,α(t) = M

(
ξr+1−t

b−a

)
UA,α

(
ξr

)
+M

(
t−ξr

b−a

)
UA,α

(
ξr+1

)
.

(9.55)

It follows from (9.49), (9.53), (9.54) and (9.55) that

lim
n→∞

P
{

L
(I)
A,α(t)≤ AT E(I)

[
β̂ (t)

]
≤U

(I)
A,α(t), for all t ∈ [a, b]

}
≥ 1−α, (9.56)

and, consequently,
(
L
(I)
A,α(t),U

(I)
A,α(t)

)
is an approximate [100× (1−α)]th con-

fidence band for AT E(I)
[
β̂ (t)

]
.

3. Bridging-the-Gap Confidence Bands

To bridge the gap between the real estimators AT E
[
β̂ (t)

]
and the linear

interpretations AT E(I)
[
β̂ (t)

]
of (9.54), we construct the bands for AT E

[
β̂ (t)

]

based on the following two smoothness assumptions:
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(a) Bounded First Derivatives. If the derivative of AT E
[
β̂ (t)

]
with respect

to t satisfies

sup
t∈[a,b]

∣∣∣∣
{

AT E
[
β̂ (t)

]}′
∣∣∣∣≤ c1, for a known constant c1 > 0, (9.57)

then it follows from direct calculations that

∣∣∣AT E
[
β̂(t)

]
−AT E(I)

[
β̂ (t)

]∣∣∣≤ 2c1

[
M (ξr+1 − t)(t − ξr)

b− a

]
(9.58)

for all t ∈
[
ξr, ξr+1

]
, so that

(
L
(I)
A,α(t)− 2c1

[
M (ξr+1 − t)(t − ξr)

b− a

]
,U

(I)
A,α(t)+ 2c1

[
M (ξr+1 − t)(t − ξr)

b− a

])
.

(9.59)

is the approximate
[
100× (1−α)

]
confidence band for AT E

[
β̂ (t)

]
.

(b) Bounded Second Derivatives. If the second derivative of AT E
[
β̂ (t)

]

with respect to t satisfies

sup
t∈[a,b]

∣∣∣∣
{

AT E
[
β̂ (t)

]}′′
∣∣∣∣≤ c2, for a known constant c2 > 0, (9.60)

then it follows from direct calculations that
∣∣∣∣AT E

[
β̂ (t)

]
−AT E(I)

[
β̂(t)

]∣∣∣∣≤
c2

2

[
M (ξr+1 − t)(t − ξr)

b− a

]
(9.61)

for all t ∈
[
ξr, ξr+1

]
, so that

(
L
(I)
A,α(t)−

c2

2

[
M (ξr+1 − t)(t − ξr)

b− a

]
,U

(I)
A,α(t)+

c2

2

[
M (ξr+1 − t)(t − ξr)

b− a

])
.

(9.62)

is the approximate
[
100× (1−α)

]
confidence band for AT E

[
β̂ (t)

]
.

4. Remarks on Practical Concerns

As discussed in the local smoothing estimators of β (t) in Section 7.3.2,
smoothing conditions other than (9.57) and (9.60) can also be considered us-
ing the similar “bridging-the-gap” inequalities (9.58) and (9.61). We use the
smoothing conditions (9.57) and (9.60) because they are intuitive and easy

to interpret in practice. For (9.57), we require that the slope of AT E
[
β̂ (t)

]
is

bounded above by a known constant c1. For (9.60), we require that the cur-

vature of AT E
[
β̂ (t)

]
is bounded above by a known constant c2. In biomedical

studies, the upper bounds of the slopes and curvatures can be determined by
the specific biological mechanism or scientific nature of the studies.
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We note also that the simultaneous confidence bands of (9.59) and (9.62)

are for AT E
[
β̂ (t)

]
, which are different from AT β (t) because the bias term of

β̂ (t) is ignored. As discussed in Section 9.3.1, E
[
β̂ (t)

]
already captures the

main features of β (t), and it is difficult to estimate the bias of β̂ (t) without
knowing how close the function space spanned by the basis functions is to the
true curves β (t). Simulation results in the literature, such as Huang, Wu and
Zhou (2002, 2004), suggest that both (9.59) and (9.62) can be used as ap-
proximate simultaneous bands for AT β (t) and they give appropriate coverage
probabilities for most practical situations.

9.3.3 Hypothesis Testing for Constant Coefficients

Because of its nature as an “extended linear model,” the basis approximation
(9.2) allows a simple bootstrap goodness-of-fit procedure for testing whether
the coefficient curves are time-varying, i.e., βl(t) = β 0

l for some constants β 0
l

with l = 0, . . . , k. This test procedure gives a simple and useful tool because we
are often interested in knowing whether the effects of a set of covariates are
time-varying. Using the weighted least squares basis approximations (9.8) and
(9.9), a goodness-of-fit test statistic can be constructed based on comparing
the weighted residual sum of squares under both the null and the alternative
hypotheses.

1. Testing Time-Varying Covariate Effects

For clarity, we illustrate the main idea of this goodness-of-fit test procedure
using the example of testing

{
H0 : βl(t) = β 0

l for all t ∈ T and all 1 ≤ l ≤ k;

H1 : βl(t) are time-varying at least for some 1 ≤ l ≤ k,
(9.63)

where β 0
l are unknown constants. The null hypothesis H0 in (9.63) suggests

that none of the coefficient functions, except the baseline curve, is time-
varying, and the alternative H1 is that at least some of the covariates have
time-varying coefficients. The testing procedure presented for (9.63) can be
modified for testing other null and alternative hypotheses. Since the baseline
curve β0(t) is allowed to be time-varying under both the null hypothesis H0 and
the alternative H1 in (9.63), we can, by (9.2), use the following approximation





β0(t)≈ ∑
K0
s=1

[
γ∗0s B0s(t)

]
, under both H0 and H1;

βl(t) = β 0
l , for all 1 ≤ l ≤ k under H0;

βl(t)≈ ∑
Kl
s=1

[
γ∗ls Bls(t)

]
, for all 1 ≤ l ≤ k under H1.

(9.64)

Using (9.64), we can estimate the coefficient curves and compute the residual
sum of squares for the fitted models under both the null hypothesis H0 and
the alternative H1.
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The test statistics for (9.63) can be derived by comparing these residual
sum of squares. Under the null hypothesis H0, (9.64) suggests that we set the
basis functions Bls(t) = 1 for all l = 1, . . . , k and Kl = 1. By (9.8) and (9.9),
the least squares basis approximation estimators of β0(t) and

{
β 0

1 , . . . , β 0
k

}

are given by

{
β̂0(t) = ∑

K0
s=1

[
γ̂0

0s B0s(t)
]
, under H0;

β̂l(t) = β̂ 0
l , for all 1 ≤ l ≤ k under H0.

(9.65)

The weighted residual sum of squares under H0 computed using the estimators
in (9.65) is

RSS0 =
n

∑
i=1

ni

∑
j=1

wi

{
Yi j −

K0

∑
s=1

[
X
(0)
i j B0s

(
ti j

)
γ̂0

0s

]
−

k

∑
l=1

Kl

∑
s=1

[
X
(l)
i j β̂ 0

l

]}2

. (9.66)

On the other hand, under the general alternative H1 and (9.64), we can directly
apply (9.8) and (9.9), and obtain the estimators

β̂l(t) =
Kl

∑
s=1

[
γ̂ls Bls(t)

]
for all 0 ≤ l ≤ k under H1, (9.67)

and obtain the corresponding weighted residual sum of squares

RSS1 =
n

∑
i=1

ni

∑
j=1

wi

{
Yi j −

k

∑
l=0

Kl

∑
s=1

[
X
(l)
i j Bls

(
ti j

)
γ̂lk

]}2

. (9.68)

Since the model under H0 is a special case of the model under H1, it follows
that RSS0 ≥ RSS1. The models under H0 and H1 are similar if [RSS0−RSS1] is
small. By measuring the relative size of [RSS0−RSS1] with RSS1, we define the
goodness-of-fit test statistic for the hypotheses in (9.63) to be

Tn =
RSS0 −RSS1

RSS1

, (9.69)

and we can reject the null hypothesis H0 of (9.63) if Tn is larger than an
appropriate critical value. In Section 9.5, we show that Tn is asymptotically
consistent in the sense that, if H0 holds, Tn converges to zero in probability,
and, if H1 holds, Tn is larger than a positive constant with probability tending
to one.

2. Resampling-Subject Bootstrap Critical Values

We compute the critical value for rejecting H0 using a resampling-subject
bootstrap procedure similar to the one described in Section 4.2.3. Since the
observed outcomes

{
Yi j : i = 1, . . . , n; j = 1, . . . , ni

}
are not necessary from the

model under H0, we need to construct some pseudo-outcome observations
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based on our available estimators and residuals, so that the distribution of
Tn under H0 can be estimated.

Based on the estimators under the alternative H1 in (9.65), the residuals
of the model (9.1) are

ε̂i j = Yi j −
k

∑
l=0

Kl

∑
s=1

[
X
(l)
i j Bls

(
ti j

)
γ̂lk

]
(9.70)

for i= 1, . . . , n and j = 1, . . . , ni. Using the estimators under the null hypothesis
H0 in (9.65) and the residuals in (9.70), the pseudo-outcome values under the
model in H0 are given by

{
Y

p
i j : i = 1, . . . , n; j = 1, . . . , ni

}
with

Y
p

i j =
K0

∑
s=1

[
X
(0)
i j B0s

(
ti j

)
γ̂0

0s

]
+

k

∑
l=1

Kl

∑
s=1

[
X
(l)
i j β̂ 0

l

]
+ ε̂i j. (9.71)

The distributions of Tn under the null hypothesis H0 can then be evaluated
from a set of bootstrap samples of

{
Y

p
i j : i = 1, . . . , n; j = 1, . . . , ni

}
. The follow-

ing steps describe this resampling-subject bootstrap procedure for computing
the null distribution of Tn and the p-value of the test for (9.63).

Resampling-Subject Bootstrap Testing Procedure:

(a) Resample n subjects with replacement from
{(

Y
p

i j , ti j, Xi j

)
: i= 1, . . . , n; j =

1, . . . , ni

}
to obtain the bootstrap sample

{(
Y

p,b
i j , tb

i j, Xb
i j

)
: i = 1, . . . , n; j =

1, . . . , ni

}
.

(b) Repeat the above bootstrap sampling procedure B times, so that B inde-
pendent resampling-subject bootstrap samples are obtained.

(c) From each bootstrap sample, calculate the test statistic T b
n using (9.66),

(9.68) and (9.69), and derive the empirical distribution of
{

T b
n : b =

1, . . . , B
}
based on the B independent bootstrap samples.

(d) Reject the null hypothesis H0 at the significance level α when the observed
test statistic Tn is greater than or equal to the

[
100× (1−α)

]
th percentile

of the empirical distribution of T b
n . The p-value of the test is the empirical

probability of
(
T b

n ≥ Tn

)
. ✷

For ease of computation, the same basis system can be used for each βl(t)
in the calculations of T b

n and Tn in the above resampling bootstrap testing
procedure. Theoretically, it is possible to use different basis approximations
for different bootstrap replications. But, changing basis functions is likely to
significantly increase the computational complexity.

The above testing procedure can be modified in a straightforward way to
test other null and alternative hypotheses. For example, instead of the hy-
potheses in (9.63), we may want to test the null hypothesis that a subset of
the coefficient functions are constants versus the general alternative that the
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coefficient functions are time-varying. To do this, we need to proceed with
the following steps: (a) modifying (9.64) to establish the appropriate basis
approximations under both the null and alternative hypotheses, (b) deriv-
ing the corresponding estimators and weighted residual sum of squares as in
(9.65) through (9.68), (c) computing the test statistic Tn defined in (9.69) and
its distribution under the null hypothesis using the above resampling-subject
bootstrap testing procedure, and (d) computing the p-value or critical value
of the test.

9.4 R Implementation with the NGHS BP Data

9.4.1 Estimation by B-Splines

The NGHS Blood Pressure (BP) data has been analyzed in Sections 7.4.1
and 8.4 with the time-varying coefficient model (7.1) and local smoothing
methods. We illustrate here the global smoothing method by B-splines for
estimating the coefficient curves with the same dataset. As in Chapters 7
and 8, we denote that, for the ith NGHS girl, ti j is the age in years at the jth

study visit, Yi j is the systolic blood pressure (SBP) level at age ti j, X
(1)
i is the

indicator for race (1 if African American, 0 if Caucasian), X
(2)
i j and X

(3)
i j are the

girl’s age-adjusted height and body mass index (BMI) percentiles, respectively,
at age ti j, which are centered by subtracting 50% from the girl’s actual height
and BMI percentiles. Same as (7.39), the time-varying coefficient model (7.1)
for these variables is

Yi j = β0

(
ti j

)
+β1

(
ti j

)
X
(1)
i +β2

(
ti j

)
X
(2)
i j +β3

(
ti j

)
X
(3)
i j + εi j, (9.72)

where εi j is the error term for the ith girl at age ti j. In this model, β0(t) repre-
sents the baseline SBP curve, i.e., the mean time curve of SBP for a Caucasian
girl with the median height and the median BMI level in the population, and
βl(t), l = 1, 2, 3, represent the effects of race, height and BMI, respectively,
on the SBP level during the adolescence years.

In contrast to the one-step local methods of Chapter 7, the global smooth-
ing method can provide different amounts of smoothing for the coefficient
estimates by using different knots for βl(t), l = 0, 1, 2, 3. Unlike the two-step
local smoothing methods of Chapter 8, the global smoothing method based
on basis approximations does not require data binning when the observations
are sparse at distinct observation time points.

In our application to this dataset, we use the weighted least squares esti-
mation procedure described in (9.13) to (9.18) with cubic B-splines, equally
spaced knots and the subject uniform weight w∗

i = 1/(ni n). Based on the

cross-validation procedure (9.25), the numbers of internal knots for β̂l(t),
l = 0, 1, 2, 3, are chosen to be KLSCV = (4, 0, 0, 0)T , which suggests that{

β̂1(t), β̂2(t), β̂3(t)
}
were actually estimated using cubic polynomials. We note

that different choices of the degrees or knot locations for polynomial splines
or other types of basis functions may also be used similarly.
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Figure 9.1 Covariate effects on systolic blood pressure of NGHS girls. The solid

curves in (A)-(D) show the cubic B-spline estimates for the coefficient curves β̂l(t),
l = 0, 1, 2, 3, respectively. The dashed curves indicate the corresponding 95% pointwise
confidence intervals computed from the bootstrap percentile procedure (9.46).

The following R commands are used to obtain the weighted least squares
solution for the B-spline estimated coefficients γ̂ from (9.13) using the standard
R regression procedure:

# set up knots

> nknots <- c(4,0,0,0)+2

> KN0 <- seq(from=9, to=19, length=nknots[1])[-c(1,nknots[1])]

> KN1 <- seq(from=9, to=19, length=nknots[2])[-c(1,nknots[2])]

> KN2 <- seq(from=9, to=19, length=nknots[3])[-c(1,nknots[3])]

> KN3 <- seq(from=9, to=19, length=nknots[4])[-c(1,nknots[4])]

# generate cubic B-spline regression basis

> Bs.age <- bs(NGHS$AGE, knots=KN0, intercept=T)

> Bs.race <- bs(NGHS$AGE, knots=KN1, intercept=T)* NGHS$Black

> Bs.HT <- bs(NGHS$AGE, knots=KN2, intercept=T)* NGHS$HTPCTc

> Bs.BMI <- bs(NGHS$AGE, knots=KN3, intercept=T)* NGHS$BMIPCTc
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# Fit a weight least squares models to get the coefficient

# estimates

> fit.WLS <- lm(SBP ~ 0 + Bs.age + Bs.race + Bs.HT + Bs.BMI,

weights=1/ni, data=NGHS)

> summary(fit.WLS)

...

Coefficients:

Estimate Std. Error t value Pr(>|t|)

Bs.age1 97.675065 0.651817 149.850 < 2e-16 ***

Bs.age2 98.762326 0.511900 192.933 < 2e-16 ***

Bs.age3 101.184166 0.444347 227.714 < 2e-16 ***

Bs.age4 106.366454 0.363764 292.405 < 2e-16 ***

Bs.age5 105.505418 0.388155 271.813 < 2e-16 ***

Bs.age6 107.951453 0.477944 225.867 < 2e-16 ***

Bs.age7 106.571675 0.501244 212.614 < 2e-16 ***

Bs.age8 107.006195 0.531819 201.208 < 2e-16 ***

Bs.race1 0.760543 0.586170 1.297 0.194

Bs.race2 -0.794169 1.085292 -0.732 0.464

Bs.race3 1.517382 1.075168 1.411 0.158

Bs.race4 1.224773 0.508564 2.408 0.016 *

Bs.HT1 0.043056 0.011007 3.912 9.20e-05 ***

Bs.HT2 0.096770 0.019829 4.880 1.07e-06 ***

Bs.HT3 -0.004087 0.019150 -0.213 0.831

Bs.HT4 0.037284 0.008931 4.175 3.00e-05 ***

Bs.BMI1 0.067379 0.010274 6.558 5.59e-11 ***

Bs.BMI2 0.076266 0.018980 4.018 5.89e-05 ***

Bs.BMI3 0.115021 0.018910 6.082 1.21e-09 ***

Bs.BMI4 0.096801 0.008589 11.270 < 2e-16 ***

...

The coefficient curves β̂l(t) are computed from the cubic B-spline coefficient
estimates (9.18) over a grid of time points using the following R commands:

> tgrid <- seq(from=9, to=19, by=0.1)

> Bs0 <- bs(tgrid, knots=KN0, intercept=T)

> Bs1 <- bs(tgrid, knots=KN1, intercept=T)

> Bs2 <- bs(tgrid, knots=KN2, intercept=T)

> Bs3 <- bs(tgrid, knots=KN3, intercept=T)

> nn <- cumsum(c(ncol(Bs0), ncol(Bs1), ncol(Bs2), ncol(Bs3)))

> Beta0 <- Bs0 %*% fit.WLS$coef[1:nn[1]]

> Beta1 <- Bs1 %*% fit.WLS$coef[(nn[1]+1):nn[2]]

> Beta2 <- Bs2 %*% fit.WLS$coef[(nn[2]+1):nn[3]]

> Beta3 <- Bs3 %*% fit.WLS$coef[(nn[3]+1):nn[4]]
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Figure 9.1 shows the estimated coefficients curves of the baseline SBP time-
trend, and the time-varying effects of race, height and BMI. Although all four
curves are relatively smooth, the coefficient curves for race, height and BMI
have relative lower curvatures compared to the baseline SBP curve. This sug-
gests that the global cubic polynomial is quite reasonable for the estimation
of these covariate effects, while the extra curvature of the baseline SBP curve
justifies the four internal knots selected by the cross-validation procedure.
The approximate 95% pointwise confidence intervals were obtained using the
approximate percentile bootstrap procedure (9.46) with 1000 replications and
the same knot choice obtained from the original B-spline estimators. The find-
ings in Figure 9.1 for the coefficient curves are similar to the results obtained
from the local smoothing estimates in Chapters 7 and 8.

9.4.2 Testing Constant Coefficients

The estimated curves in Figure 9.1 seem to suggest that the coefficient curves{
βl(t) : l = 0, 1, 2, 3

}
of (9.72) are indeed time-varying. To verify this find-

ing, we apply the goodness-of-fit test procedure of Section 9.3.3 to test the
hypotheses that some of the coefficient curves are not time-varying or identi-
cally zero.

We consider the following eight tests of the null hypotheses for the co-
efficient curves versus the general alternatives that the corresponding null
hypotheses are not true and all the coefficients are allowed to be time-varying
as in the model (9.72).

Null Hypotheses:

(a) H0: β0(t) = β0 with unknown β0 and βl(t) = 0, l = 1, 2, 3. The baseline
SBP curve is an unknown constant, and the effects of race, height and BMI
are identically zero across the age range.

(b) H0: βl(t) = 0, l = 1, 2, 3. The baseline SBP curve may be time-varying,
but the effects of race, height and BMI are identically zero across the age
range.

(c) H0: β1(t) = 0. The baseline SBP curve and the effects of height and BMI
may be time-varying, but the effect of race is identically zero across the age
range.

(d) H0: β2(t) = 0. The baseline SBP curve and the effects of race and BMI
may be time-varying, but the effect of height is identically zero across the
age range.

(e) H0: β3(t) = 0. The baseline SBP curve and the effects of race and height
may be time-varying, but the effect of BMI is identically zero across the
age range.

(f) H0: β1(t) = β1 with unknown β1. The baseline SBP curve and the effects of
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Table 9.1 The null and alternative hypotheses, observed test statistics Tn computed
from the NGHS BP data and the empirical p-values obtained from the resampling-
subject bootstrap procedure.

Null hypothesis Test Statistic Empirical
H1: H0 is not true Tn P-value
(a) H0: β0(t) = β0, unknown β0

& βl(t) = 0, l = 1, 2, 3 0.262 <0.0002
(b) H0: βl(t) = 0, l = 1, 2, 3 0.136 <0.0002
(c) H0: β1(t) = 0 0.0019 0.206
(d) H0: β2(t) = 0 0.0212 <0.0002
(e) H0: β3(t) = 0 0.0867 <0.0002
(f) H0: β1(t) = β1, unknown β1 0.00049 0.233
(g) H0: β2(t) = β2, unknown β2 0.00151 0.0064
(h) H0: β3(t) = β3, unknown β3 0.00139 <0.0002

height and BMI may be time-varying, but the effect of race is time-invariant
across the age range.

(g) H0: β2(t) = β2 with unknown β2. The baseline SBP curve and the effects of
race and BMI may be time-varying, but the effect of height is time-invariant
across the age range.

(h) H0: β3(t) = β3 with unknown β3. The baseline SBP curve and the effects of
race and height may be time-varying, but the effect of BMI is time-invariant
across the age range.

To apply the testing procedure of Section 9.3.3 to the above tests, we
compute the weighted residual sum of squares RSS0 under each of the specific
null hypotheses (a) through (h), and the weighted residual sum of squares
RSS1 under the general alternative that the corresponding null hypothesis is
not true. Here, the RSS0 and RSS1 are not computed exactly from (9.66) and
(9.68) but should be the modified versions of (9.66) and (9.68) by taking
the specific null and alternative hypotheses in (a) through (h) into account.
To compute the critical values of the test statistics Tn as defined in (9.69),
we apply the resampling-subject bootstrap procedure in Section 9.3.3 with
B = 5000 replications within each bootstrap run.

Table 9.1 summarizes the observed test statistics Tn computed from the
original NGHS BP dataset and their corresponding empirical p-values ob-
tained from the resampling-subject bootstrap procedure. As expected and con-
sistent with the results in Figure 9.1, we observe that the baseline SBP curve
and the covariate effects of height and BMI are all significantly time-varying
with very small empirical p-values. However, there is insufficient evidence for a
significant time-varying effect of race after including the time-varying baseline
SBP curve and covariate effects of height and BMI into the model.
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9.5 Asymptotic Properties

The asymptotic properties of this section are discussed separately for the gen-
eral basis approximation estimators and the B-spline approximation estima-
tors. For estimators based on the general basis functions, we only establish the

consistency and convergence rates of β̂ (t). Further details of the asymptotic
properties, such as the asymptotic mean squared errors and the asymptotic
distributions, depend on the choices of basis functions and may not be ex-
pressed under a general formulation. When the estimators are obtained from
the B-spline basis approximations, their asymptotic mean squared errors and
asymptotic distributions can be explicitly derived using the special properties
of B-splines.

9.5.1 Integrated Squared Errors

We first establish a framework for the asymptotic consistency and convergence

rates of the estimator β̂ (t) of (9.9) based on a set of known basis functions{
Bls(t) : s = 1, . . . , Kl; l = 0, . . . , k

}
. The forms of the basis functions are not

specified as long as the approximations (9.2) can be used. Consequently, the
asymptotic results of this section may be applied to the commonly used basis
functions, such as polynomial bases, Fourier bases, Wavelet bases, and B-spline
bases.

Unlike the local smoothing estimators of Chapters 7 and 8, the basis ap-

proximation estimator β̂(t) depends on the linear function space

{
Gl =

{
linear function space spanned by Bl(t)

}
,

Bl =
{

Bls(t) : s = 1, . . . , Kl

} (9.73)

used to approximate βl(t). Thus, in order to assess the performance of β̂(t),
it is important to introduce a distance which is used to measure the closeness

between β̂ (t) and β (t). Let

‖a‖L2
=

[∫

T

a2(t)dt

]1/2

(9.74)

be the L2-norm (L2-distance) of any square integrable real-valued function a(t)
on T and let

‖A‖L2
=

(
k

∑
l=0

∥∥al

∥∥2

L2

)1/2

(9.75)

be the L2-norm of any vector of real-valued functions A(t) =
(
a0(t), . . . , ak(t)

)T

on T . Based on the L2-distances (9.74) and (9.75), we define the integrated
squared error (ISE) of βl(t) as

ISE
(
β̂l

)
=
∥∥∥β̂l −βl

∥∥∥
2

L2

=

∫

T

[
β̂l(t)−βl(t)

]2

dt (9.76)
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and the integrated squared error of β (t) =
(
β0(t), · · · , βk(t)

)T
as

ISE
(
β̂
)
=

k

∑
l=0

[
ISE

(
β̂l

)]
. (9.77)

The above integrated squared errors lead to the following definition of
asymptotic consistency and useful measure of functional approximation for

the estimator β̂ (t) for t ∈ T :

Consistency. The estimator β̂ (t) is asymptotically consistent for β (t)

for t ∈ T if limn→∞ ISE
(
β̂
)
= 0 holds in probability, or equivalently

limn→∞ ISE
(
β̂l

)
= 0 holds in probability for all l = 0, . . . ,k. ✷

Bias-Variance Decomposition. Similar to the well-known strategy of
bias-squared and variance decomposition, we can decompose the integrated

squared error ISE
(
β̂
)
into the sum of two components. First, let

β̃ (t) =
(

β̃0(t), . . . , β̃k(t)
)T

= E
[
β̂ (t)

∣∣X
]

(9.78)

be the conditional expectation of the estimator β̂ (t) given the covariates X ,
where

X =
{(

ti j, XT
i j

)T
: i = 1, . . . , n; j = 1, . . . , ni

}
. (9.79)

The Cauchy-Schwarz inequality and the definition of consistency given above

imply that, β̂l(t) is an asymptotically consistent estimator of βl(t) for t ∈ T ,

i.e., limn→∞ ISE
(
β̂l

)
= 0 in probability, if and only if both

∥∥β̂l − β̃l

∥∥
L2

and
∥∥β̃l −βl

∥∥
L2

tend to zero in probability. Consequently, the consistency of β̂(t)

holds for t ∈ T if and only if
∥∥β̂l − β̃l

∥∥
L2

and
∥∥β̃l − βl

∥∥
L2

tend to zero in

probability for all l = 0, . . . , k. ✷

Functional Approximation. Since we approximate βl(t) by functions in

the linear space Gl defined in (9.73), the asymptotic derivations of ISE
(
β̂
)

depend on some L∞-distances between βl(t) and Gl . Specifically, let

D
(
βl ,Gl

)
= inf

g∈Gl

sup
t∈T

∣∣βl(t)− g(t)
∣∣ (9.80)

be the L∞-distance between βl(t) and Gl . Then, as will be seen in Section 9.5.3,

the asymptotic properties of ISE
(
β̂
)
depend on





ρn = ∑k
l=0 D

(
βl ,Gl

)
,

An,l = supg∈Gl ,‖g‖L2
6=0

(
supt∈T |g(t)|

/
‖g‖L2

)
,

An = max0≤l≤k An, l.

(9.81)
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Examples of ρn and An for the commonly used basis functions, such as polyno-
mials, splines and trigonometric bases, have been given in Huang (1998, Sec-
tion 2.2). Intuitively, ρn describes the overall L∞-distance between βl(t) and Gl

for all l = 0, . . . , k, while An describes the largest ratio of the L∞-distance over
the L2-distance for all the functions in Gl and all l = 0, . . . , k. The purpose
of (9.81) is to provide an upper bound for the “distance” between the true
coefficient curves β (t) and the product space

{
G0 ×·· ·×Gk

}
, which contains

the basis approximations of β (t). ✷

9.5.2 Asymptotic Assumptions

We make the following technical assumptions for the derivations of asymptotic

consistency and convergence rates of the basis approximation estimator β̂(t)
of (9.9) under any known basis functions

{
Bls(t) : s = 1, . . . , Kl; l = 0, . . . , k

}
:

(a) The observation time points follow a random design in the sense that{
ti j : i = 1, . . . , n; j = 1, . . . , ni

}
are chosen independently from an unknown

distribution FT (·) with a density fT (·) on the finite interval T . The density
function fT (t) is uniformly bounded away from 0 and infinity, i.e., there
are positive constants M1 and M2 such that M1 ≤ f (t) ≤ M2 for all t ∈ T .

(b) Let EXXT (t) = E
[
X(t)XT (t)

]
and λ0(t) ≤ . . . ≤ λk(t) be the eigenvalues of

EXXT (t). Then, λl(t) for all l = 0, . . . , k are uniformly bounded away from 0
and infinity for all t ∈ T .

(c) The range of the covariates X (l)(t) is bounded in the sense that there is a
positive constant M3 such that

∣∣X (l)(t)
∣∣≤ M3 for all t ∈ T and l = 0, . . . , k.

(d) There is a positive constant M4 such that the second moment of the error
process ε(t) is bounded by M4, i.e., E

[
ε(t)2

]
≤ M4, for all t ∈ T . ✷

The above assumptions, with some minor exceptions, are essentially similar
to the assumptions of Section 7.5.1 for the least squares kernel estimators.
These assumptions can be easily verified in real applications. It is important
to note that, because our objective is to establish the asymptotic consistency

of a general basis approximation estimator β̂(t), the above assumptions are
sufficiently weak for this purpose. Some stronger assumptions will be used later
in Section 9.5.3 to establish the asymptotic mean square errors and asymptotic
distributions of the B-spline estimators of β (t).

9.5.3 Convergence Rates for Integrated Squared Errors

1. General Basis Approximation Estimators

The next theorem, whose proof is given in Section 9.5.4, establishes the
general results of asymptotic consistency and convergence rates for the least

squares basis approximation estimator β̂(t) of (9.9).
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Theorem 9.1. Let Kn = max0≤l≤k Kl be the maximum number of basis ap-
proximation terms with Kl for any 0 ≤ l ≤ k defined in (9.2), where Kn may
or may not tend to infinity as n tends to infinity. If Assumptions (a) through
(d) are satisfied, limn→∞ ρn = 0 and

lim
n→∞

{
A2

n Kn max

[
max

1≤i≤n

(
ni wi

)
,

n

∑
i=1

(
n2

i w2
i

)]}
= 0 (9.82)

for ρn and An defined in (9.81), then β̂ (t) uniquely exists with probability
tending to one and is a consistent estimator of β (t) for any t ∈ T .

In addition, the convergence rates under the L2-norms are given as follows:

(a)
∥∥β̂ − β̃

∥∥2

L2
= Op

[
Kn ∑n

i=1

(
n2

i w2
i

)]
,

(b)
∥∥β̃ −β

∥∥
L2

= Op

(
ρn

)
, and

(c) ISE
(
β̂
)
= Op

[
Kn ∑n

i=1

(
n2

i w2
i

)
+ρ2

n

]
. �

Proof of Theorem 9.1 is given in Section 9.5.4.

Each of the convergence rates in Theorem 9.1(a)-(b) gives a specific com-

ponent of the overall convergence rate of IST
(
β̂
)
. For Theorem 9.1(a), β̃(t),

which is defined in (9.78) to be the conditional mean of β̂ (t) given the covari-
ates, can be viewed as the “estimable part” of β (t), and the convergence rate
under the L2-norm depends on Kn, the numbers of basis approximation terms,

as well as ∑n
i=1

(
n2

i w2
i

)
. Here ‖β̂ − β̃‖2

L2
represents the variance part of ISE

(
β̂
)
,

which tends to zero slower when Kn increases. The component ‖β̃ −β‖L2
in

Theorem 9.1(b) is the L2-distance between β̃ (t) and the true coefficient curves
β (t). Since, by (9.81), ρn measures how well the linear space Gl approximates

βl(t) for all l = 0, . . . , k, it is not surprising that ‖β̃ − β‖L2
, which can be

viewed as the bias part of ISE
(
β̂
)
, depends on ρn. In practice, it is impossible

to know the value of ρn for a given set of function spaces
{
G0, . . . ,Gk

}
, so

that ‖β̃ −β‖L2
is the un-estimable component of ISE

(
β̂
)
. This is in contrast

to the local smoothing estimator results of Section 7.5, where the bias of a
local smoothing estimator of β (t) depends on the smoothness assumptions of
the unknown coefficient curves β (t), which can be estimated in practice. Since

Theorem 9.1 is for β̂ (·) with general basis choices, the convergence rate of

ISE
(
β̂
)
given Theorem 9.1(c) is not necessarily the optimal rate for a partic-

ular type of basis functions.

2. Optimal Convergence Rate for B-Spline Estimators

For the special case of B-splines, the next theorem gives the improved

convergence rates for β̂ (S)(t) of (9.18). In this theorem, we assume that each
Gl is a space of polynomial splines on T with a fixed degree and the knots have
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bounded mesh ratio, that is, the ratios of the differences between consecutive
knots are bounded away from zero and infinity uniformly in n.

Theorem 9.2. Suppose that β̂ (S)(t) is defined as in (9.18) with a B-spline
basis. If the conditions of Theorem 9.1 are satisfied, then

(a)
∥∥β̂ (S)− β̃ (S)

∥∥2

L2
= Op

{
∑n

i=1 n2
i w2

i

[(
Kn/ni

)
+ 1
]}
,

(b)
∥∥β̃ (S)−β

∥∥
L2

= Op

(
ρn

)
, and

(c) ISE
(
β̂ (S)

)
= Op

{
∑n

i=1 n2
i w2

i

[(
Kn/ni

)
+ 1
]
+ρ2

n

}
. �

Proof of Theorem 9.1 is given in Section 9.5.4.

Similar interpretations for the results of Theorem 9.1(a)-(c) can be ex-
tended to Theorem 9.2(a)-(c). In the following remarks, we illustrate a num-
ber of possible convergence rates under some special choices of wi and basis
functions.

Effect of Weight Choices. As shown in both Theorems 9.1 and 9.2,
different choices of wi generally lead to different convergence rates for the esti-

mators. For the general basis approximation estimators β̂ (t) in Theorem 9.1,

the convergence rates for the variance part ‖β̂ − β̃‖2
L2

given in Theorem 9.1(a)
are

{
∑n

i=1

(
Kn n2

i w2
i

)
= Kn/n, when wi = 1/(nni);

∑n
i=1

(
Kn n2

i w2
i

)
= Kn ∑n

i=1

(
n2

i /N2
)
, when wi = 1/N,

(9.83)

and, by Theorem 9.1(c), the convergence rates for ISE
(
β̂
)
are

{
∑n

i=1

(
Kn n2

i w2
i

)
+ρ2

n = Kn/n+ρ2
n , when wi = 1/(nni);

∑n
i=1

(
Kn n2

i w2
i

)
+ρ2

n = Kn ∑n
i=1

(
n2

i /N2
)
+ρ2

n , when wi = 1/N.
(9.84)

Similarly, for the B-spline approximation estimators β̂ (S)(t) in Theorem 9.2,

the convergence rates for the variance part ‖β̂ (S)− β̃ (S)‖2
L2

given in Theorem
9.2(a) are





∑n
i=1 n2

i w2
i

[(
Kn/ni

)
+ 1
]
= Kn ∑n

i=1

(
1/nin

2
)
+Kn/n,

when wi = 1/(nni);

∑n
i=1 n2

i w2
i

[(
Kn/ni

)
+ 1
]
= Kn/N +∑n

i=1

(
n2

i /N2
)
,

when wi = 1/N,

(9.85)
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and, by Theorem 9.2(c), the convergence rates for ISE
(
β̂
)
are





∑n
i=1 n2

i w2
i

[(
Kn/ni

)
+ 1
]
+ρ2

n = Kn ∑n
i=1

(
1/ni n

2
)
+Kn/n+ρ2

n ,

when wi = 1/(nni);

∑n
i=1 n2

i w2
i

[(
Kn/ni

)
+ 1
]
+ρ2

n = Kn/N +∑n
i=1

(
n2

i /N2
)
+ρ2

n ,

when wi = 1/N.

(9.86)

As shown in Theorems 7.1 and 7.2 of Section 7.5, limn→∞ ∑n
i=1

(
n2

i /N2
)
= 0 if

and only if limn→∞ max1≤i≤n

(
ni/N

)
= 0. Thus, similar to the local smoothing

methods of Chapter 7, the wi = 1/N weight may lead to inconsistent estimators

β̂ (·), while wi = 1/(nni) leads to consistent β̂(·) for all choices of ni. ✷

Effects of Functional Approximations.When specific smoothness con-
ditions for β (t) are given, more precise convergence rates can be deduced
by determining the size of D(βl ,Gl), the discrepancy between βl(t) and the
linear space Gl . For example, when βl(t) has bounded second derivatives
and Gl is a space of cubic B-splines with Kn interior knots on T , we have
D(βl ,Gl) =O(K−2

n ) (Schumaker, 1981, Theorem 6.27) and, by Theorem 9.1(c),

ISE
(
β̂
)
= Op(Kn

/
n+K−4

n ). For the special choice of Kn = O(n1/5), this reduces

to ISE(β̂) = Op(n
−4/5), which is the optimal convergence rate for nonpara-

metric regression with cross-sectional i.i.d. data under the same smoothness
conditions (Stone, 1982). ✷

9.5.4 Theoretical Derivations

We provide a number of technical results, which are useful for the theoretical
derivations of the main consistency results, and then give the proofs of The-
orems 9.1 and 9.2. We assume, without loss of generality, that

{
Bls(t) : s =

1, . . . , Kl

}
is an orthonormal basis for the linear space Gl for any l = 1, . . . ,k

with inner product

〈 f1, f2〉=
∫

T

f1(t) f2(t)dt.

Then, for any gl ∈ Gl there is an unique representation gl(t) = ∑
Kl
s=1 γls Bls(t),

so that the L2-norm of g(t) =
(
g0(t), . . . , gk(t)

)T
is

‖g‖L2
=

[
k

∑
l=0

∥∥gl

∥∥2

L2

]1/2

=

(
k

∑
l=0

Kl

∑
s=1

γ2
ls

)1/2

.

Following the notation of Huang (1998, p. 246), we write an ≍ bn if both an

and bn are positive and an/bn and bn/an are bounded for all n. Let T be the
random variable of time with distribution F(t) and density f (t) for any t ∈T .
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1. Three Technical Lemmas

The following series of lemmas summarize the useful technical results for
the proof of Theorem 9.1.

Lemma 9.1. If the condition (9.82) in Theorem 9.1 is satisfied, then

sup
gl∈Gl , l=0, ...,k

∣∣∣∣
∑n

i=1 ∑
ni
j=1 wi

[
∑k

l=0 X
(l)
i j gl

(
ti j

)]2

E
[

∑k
l=0 X (l)(T )gl(T )

]2 − 1

∣∣∣∣= op(1) (9.87)

holds, when n is sufficiently large. �

Proof of Lemma 9.1:
The lemma can be proved using arguments similar to those in the proof of

Lemma 10 of Huang (1998). Thus, we do not repeat the tedious details here,
since all the derivations can be directly adapted by changing the notation used
under the current context. �

Lemma 9.2. If the condition (9.82) in Theorem 9.1 holds, U =(
UT

1 , · · · , UT
n

)T
with Ui defined in (9.6) and W is the block diagonal matrix with

diagonal matrices W1, . . . , Wn defined in (9.7), there is an interval
[
M1, M2

]

with some positive constants endpoints 0 < M1 < M2, such that, as n → ∞,

P
{
all the eigenvalues of UT WU fall in

[
M1, M2

]}
→ 1. (9.88)

Then, with probability tending to 1, UT WU=∑n
i=1

(
UT

i Wi Ui

)
is invertible with

inverse matrix
(
UT WU

)−1
, and β̂ (t) exists uniquely for all t ∈ T . �

Proof of Lemma 9.2:
By Lemma 9.1, the following equation holds with probability tending to

one as n → ∞,

γT UT WUγ =
n

∑
i=1

ni

∑
j=1

{
wi

[
k

∑
l=0

X
(l)
i j gl

(
ti j

)]2}

≍ E

{[
k

∑
l=0

X (l)(T )gl(T )

]2}
, (9.89)

where gl(t) = ∑
Kl
s=1

[
γls Bls(t)

]
for l = 0, . . . , k, and γ is the vector with entries

γls for s = 1, . . . , Kl and l = 0, . . . , k. Using conditional expectations and As-
sumptions (a) and (b), we have that

E

{[
k

∑
l=0

X (l)(T )gl(T )

]2}
=

∫

T

gT (t)EXXT (t)g(t) fT (t)dt
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≍
∫

T

gT (t)g(t)dt (9.90)

=
k

∑
l=0

∥∥gl

∥∥2

L2

holds uniformly for all gl ∈ Gl , l = 0, . . . , k. Consequently, γT UT WUγ ≍ γT γ
holds uniformly for all γ. The conclusion of (9.88) follows. �

Lemma 9.3 If the condition (9.82) holds, then

∥∥β̂ − β̃
∥∥2

L2
= Op

[
Kn

n

∑
i=1

(
n2

i w2
i

)]
(9.91)

and (
k

∑
l=0

∥∥β̃l −βl

∥∥2

L2

)1/2

= Op

(
ρn

)
(9.92)

hold, when n is sufficiently large. �

Proof of Lemma 9.3:
First, using direct calculation, we get





∥∥β̂ − β̃
∥∥2

L2
= ∑k

l=0 ∑
Kl
s=1

∣∣γ̂ls − γ̃ls

∣∣2,

γ̂ − γ̃ =
[

∑n
i=1

(
UT

i Wi Ui

)]−1
∑n

i=1

(
UT

i Wi εi

)
=
(
UT WU

)−1
UT Wε

(9.93)

and, by Lemma 9.2, with probability tending to 1 as n → ∞,

∣∣∣
(
UT WU

)−1
UT Wε

∣∣∣
2

≍ εT WUUT Wε. (9.94)

Using the Cauchy-Schwarz inequality and Assumptions (c) and (d), we have
that

E
(∣∣UT

i Wi εi

∣∣2
)
= E

{
k

∑
l=0

Kl

∑
s=1

w2
i

[ ni

∑
j=1

X
(l)
i j Bls

(
ti j

)
εi j

]2}
= O

(
Kn n2

i w2
i

)
. (9.95)

Consequently, it follows from (9.95) that

E
(
εT WUUT Wε

)
=

n

∑
i=1

E
(
εT

i Wi Ui UT
i Wi εT

i

)
= O

[
Kn

n

∑
i=1

(
n2

i w2
i

)]
. (9.96)

The Markov inequality then implies that, by (9.96),

∣∣∣
(
UT WU

)−1
UT Wε

∣∣∣
2

= OP

[
Kn

n

∑
i=1

(
n2

i w2
i

)]
. (9.97)

The first assertion of the lemma (9.91) follows from (9.93) and (9.97).
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To prove the second assertion (9.92), we consider the vector of functions

g∗(t) =
(
g∗0(t), . . . , g∗k(t)

)T
with g∗l ∈Gl , such that

sup
t∈T

∣∣g∗l (t)−βl(t)
∣∣= D

(
βl ,Gl

)
. (9.98)

Since, by the triangle inequality,

∣∣β̃l(t)−βl(t)
∣∣≤
∣∣β̃l(t)− g∗l (t)

∣∣+
∣∣g∗l (t)−βl(t)

∣∣, (9.99)

it follows from (9.98) and (9.99) that it suffices to show that

(
k

∑
l=0

∥∥β̃l − g∗l
∥∥2

L2

)1/2

= Op

(
ρn

)
. (9.100)

Since g∗l ∈Gl , there is a γ∗ =
(
(γ∗0 )

T , . . . , (γ∗k )
T )T with γ∗l =

(
γ∗l1, . . . , γ∗lKl

)T
such

that g∗(t) = B(t)γ∗. In addition, we note that β̃ (t) = B(t) γ̃. It follows from
Lemma 9.2 that

k

∑
l=0

∥∥β̃l − g∗l
∥∥2

L2
=

k

∑
l=0

Kl

∑
s=1

∣∣γ̃ls − γ∗ls
∣∣2

≍
(
γ̃ − γ∗

)T

(
n

∑
i=1

UT
i Wi Ui

)(
γ̃ − γ∗

)
. (9.101)

Let Ỹi =
(
Ỹi1, . . . , Ỹini

)
with Ỹi j = XT

i j β
(
ti j

)
for j = 1, . . . , ni and i = 1, . . . , n.

Since, by the definition of γ̃,

n

∑
i=1

[
UT

i Wi

(
Ỹi −Ui γ̃

)]
= 0,

it follows from (9.98) and the definition of γ∗ that

n

∑
i=1

wi

∣∣Ui γ̃ −Ui γ∗
∣∣2 ≤

n

∑
i=1

wi

∣∣Ỹi −Ui γ∗
∣∣2 (9.102)

and, by Assumption (c),

∣∣∣XT
i j

[
β
(
ti j

)
−B
(
ti j

)
γ∗
]∣∣∣= O

(
ρn

)
. (9.103)

Thus, combining (9.102) and (9.103), we have the inequality

(
γ̃ − γ∗

)T

(
n

∑
i=1

UT
i Wi Ui

)(
γ̃ − γ∗

)
≤

n

∑
i=1

ni

∑
j=1

(
wi ρ2

n

)
= ρ2

n . (9.104)

The assertion of the lemma (9.92) then follows from (9.100) and (9.104). This
completes the proof of Lemma 9.3. �
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2. Proofs of Main Theorems

Proof of Theorem 9.1:
Theorem 9.1 is a direct consequence of Lemma 9.3 and the triangle in-

equality. �

Proof of Theorem 9.2:
This theorem can be proved along the same lines as Theorem 9.1. But,

since in this case the basis functions are B-splines, we need to use the special
properties of B-spline functions. For l = 1, . . . , k and s = 1, . . . , Kl , we denote
by Nls(t) the B-splines as defined in de Boor (1978, Ch. IX), and set Bls(t) =

K
1/2

l Nls(t), where the B-splines Nls(t) are non-negative functions satisfying

{
∑

Kl
s=1 Nls(t) = 1 for t ∈ T ,

∫
T

Nls(t)dt ≤ M/Kl for some constant M,
(9.105)

and, in addition, there are positive constants M1 > 0 and M2 > 0, such that

M1

Kl

( Kl

∑
s=1

γ2
ls

)
≤
∫

T

[ Kl

∑
s=1

γls Nls(t)

]2

dt ≤ M2

Kl

( Kl

∑
s=1

γ2
ls

)
, (9.106)

for γls ∈ R and s = 1, . . . , Kl .
If we use the above properties (9.105) and (9.106) of B-splines, (9.95) can

be strengthened to

E
[∣∣UT

i Wi εi

∣∣2
]

= E

{
k

∑
l=0

Kl

∑
s=1

w2
i

[ ni

∑
j=1

X
(l)
i j Bls

(
ti j

)
εi j

]2}

≤ w2
i

k

∑
l=0

{[
ni +

(
n2

i − ni

) 1

Kl

]
Kl

}
. (9.107)

The rest of the proof is proceeded the same as that of Theorem 9.1, and thus
is omitted to avoid repetition. �

9.5.5 Consistent Hypothesis Tests

The concept of asymptotic consistency can be analogously extended to the
procedures of hypothesis testing. As described in the previous section, the
purpose of asymptotic consistency for a smoothing estimator is to ensure the
good property that the estimator is getting close to the true coefficient curves
β (t) when the number of subjects n increases.

1. Consistency of Test Procedure

For hypothesis testing, we would like to have a test statistic which has
the following property: When the number of subjects n is large, the value of
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the test statistic is close to zero if the null hypothesis holds, and the value of
the test statistic is larger than a constant if the alternative hypothesis holds.
Thus, we have the following definition for the asymptotic consistency of a test
statistic.

Consistency of Test Statistic. A test statistic Tn for testing the null
hypothesis H0 versus the alternative H1 is asymptotic consistent if Tn → 0

as n → ∞ in probability when H0 holds, and Tn > δ in probability for some
constant δ > 0 when n is sufficiently large and H1 holds. ✷

2. Rejection Region of Consistent Test

If a test statistic Tn is asymptotically consistent (or simply consistent),
our decision of rejecting or accepting the null hypothesis H0 can be made
by evaluating whether Tn is larger than a critical value. Especially, once an
appropriate critical value is obtained, our testing decision is:

{
Rejecting the null hypothesis H0 if Tn ≥ c;

Accepting the null hypothesis H0 if Tn < c.
(9.108)

When the number of subject n is sufficiently large and Tn is consistent, this
testing procedure will ensure a small type I error, P

(
Tn ≥ c

∣∣H0

)
, and a large

power, P
(
Tn ≥ c

∣∣H1

)
. The next theorem shows that the test statistic Tn de-

fined by (9.68) and (9.69) is asymptotically consistent for testing the null and
alternative hypotheses H0 and H1, respectively, in (9.63). Consequently, the
decision rule given in (9.108) is appropriate.

Theorem 9.3. Suppose that the assumptions of Theorem 9.1 are satisfied,
inft∈T σ2(t)> 0, supt∈T E

[
ε4(t)

]
< ∞, and Tn =

(
RSS0−RSS1

)
/RSS1 as defined

in (9.69), where the residual sum of squares RSS0 and RSS1 are defined in
(9.68). Under the null hypothesis H0 of (9.63), Tn → 0 in probability as n → ∞.
Otherwise, if the alternative hypothesis H1 of (9.63) holds and infc∈R

∥∥βl −
c
∥∥

L2
> 0 for some l = 1, . . . , k, then there exists a positive constant δ > 0 such

that Tn > δ with probability tending to one. �

Proof of Theorem 9.3:
Under the null hypothesis H0 of (9.63), we can write

β̂ 0(t) =
(

β̂ 0
0 (t), β̂ 0

1 , . . . , β̂ 0
k

)T

with β̂ 0
0 (t) =

K0

∑
s=1

[
γ̂0

0s B0s(t)
]
. (9.109)

It can be shown by direct calculation and Lemma 9.1 that, with probability
tending to one as n → ∞,

RSS0 −RSS1 =
n

∑
i=1

ni

∑
j=1

{
wi

[
XT

i j

(
β̂
(
ti j

)
− β̂ 0(t)

)]2
}
≍
∥∥β̂ − β̂ 0

∥∥2

L2
. (9.110)



298 GLOBAL SMOOTHING METHODS

Then, under H0, we have that, by the triangle inequality,
∥∥β̂ − β̂ 0

∥∥
L2

≤
∥∥β̂ −β

∥∥
L2
+
∥∥β̂ 0 −β

∥∥
L2

→ 0 in probability, as n → ∞. (9.111)

It then follows from (9.110) and (9.111) that, under H0,

RSS0 −RSS1 → 0 in probability, as n → ∞. (9.112)

On the other hand, under the alternative H1, because
∥∥β̂ − β̂ 0

∥∥
L2

≥
∥∥β̂ 0 −β

∥∥
L2
−
∥∥β̂ −β

∥∥
L2
, (9.113)

it follows from
∥∥β̂ −β

∥∥
L2

= op(1) and (9.113) that, as n → ∞,

∥∥β̂ − β̂ 0
∥∥

L2 ≥
k

∑
l=1

∥∥β̂ 0
l −βl

∥∥
L2
− op(1)≥

k

∑
l=1

inf
c∈R

∥∥βl − c
∥∥

L2
− op(1). (9.114)

The assumption that infc∈R

∥∥βl − c
∥∥

L2
> 0 for some l = 1, . . . , k imply that, by

(9.114), there is a positive constant δ > 0 such that, under H1,

RSS0 −RSS1 > δ in probability, as n → ∞. (9.115)

It remains to show that, with probability tending to 1, RSS1 is bounded

away from zero and infinity. By the definition of RSS1 in (9.68) and β̃ (t) =

E
[
β̂ (t)

∣∣X
]
, we have that

RSS1 =
n

∑
i=1

ni

∑
j=1

{
Yi j −XT

i j β
(
ti j

)
+XT

i j

[
β
(
ti j

)
− β̃

(
ti j

)]

+XT
i j

[
β̃
(
ti j

)
− β̂

(
ti j

)]}2

. (9.116)

It follows from the proof of Theorem 9.1 that




∑n
i=1 ∑

ni
j=1 wi

{
XT

i j

[
β
(
ti j

)
− β̃
(
ti j

)]}2
= op(1),

∑n
i=1 ∑

ni
j=1 wi

{
XT

i j

[
β̃
(
ti j

)
− β̂
(
ti j

)]}2
= op(1).

(9.117)

Thus, by (9.116) and (9.117), it suffices to show that, with probability tend-
ing to 1, ∑n

i=1 ∑
ni
j=1

(
wi ε2

i j

)
is bounded away from zero and infinity. By the

assumption that supt∈T E
[
ε4(t)

]
< ∞, there is a constant c > 0 such that

Var

{
n

∑
i=1

ni

∑
j=1

(
wi ε2

i j

)}
≤

n

∑
i=1

{
w2

i ni

ni

∑
j=1

E
(
ε4

i j

)}
≤

n

∑
i=1

(
n2

i w2
i c
)
→ 0. (9.118)

The Chebyshev inequality then implies that, by (9.118),

n

∑
i=1

ni

∑
j=1

(
wi ε2

i j

)
−E

{
n

∑
i=1

ni

∑
j=1

(
wi ε2

i j

)}
→ 0 in probability, as n → ∞. (9.119)

Since ∑n
i=1

(
ni wi

)
= 1 and E

(
ε2

i j

)
is bounded away from zero and infinity, the

right side of (9.116) is bounded away from zero and infinity. The conclusions
of the theorem follow from (9.112), (9.115) and (9.116). �
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9.6 Remarks and Literature Notes

This chapter presents the global smoothing methods by basis approximation
for the time-varying coefficient model (7.1) or equivalently (9.1). These meth-
ods are generalizations of the methods of Chapter 4 to the structured linear
model with time-varying covariates and rely on approximating the unknown
coefficient functions by some expansions of known basis functions. The ba-
sis approximated time-varying coefficient models are often referred to as the
extended linear models, as they are equivalent to the classical linear models
when the terms of basis expansions are fixed.

The methods in this chapter have two major differences from the local
smoothing methods in Chapters 7 and 8. First, because the basis approxi-
mation approach has a natural connection to the parametric linear models,
we have the added benefit of performing simple goodness-of-fit tests for the
coefficient curves. On the other hand, due to the lack of an approximate para-
metric modeling structure, this type of simple test statistics cannot be directly
constructed using the local smoothing methods in Chapters 7 and 8. Another
difference between the global smoothing methods in this chapter and the local
smoothing methods in Chapters 7 and 8 is the frameworks of their asymptotic
properties. In the local smoothing methods, the asymptotic biases of the esti-
mators are determined by the smoothness conditions, such as the derivatives,
of the unknown coefficient curves. In the basis approximation smoothing meth-
ods, the asymptotic biases of the estimators are measured by the “closeness”
of the basis approximated curves to the unknown true curves. Thus, unlike
the local smoothing methods where the asymptotic biases of the estimators
can be expressed explicitly, the asymptotic biases of the basis approxima-
tion estimators do not have explicit expressions. Despite the differences in
their theoretical frameworks, both the global smoothing methods and the lo-
cal smoothing methods are popular methods in practice, because they often
lead to very similar results in real applications.

The materials in Sections 9.1 to 9.3 are adopted from Huang, Wu and
Zhou (2002). The asymptotic properties and their proofs in Section 9.5 are
based on Huang, Wu and Zhou (2002) and Huang, Wu and Zhou (2004).
Interpretations and implications of basis approximations and the extended
linear models with cross-sectional i.i.d. data have been discussed in Stone
et al. (1997) and Huang (1998, 2001 and 2003). These interpretations and
implications still hold under the current framework of time-varying coefficient
models with longitudinal data. Some technical results of Section 9.5 are derived
from the results of Huang (1998).
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Chapter 10

Models for Concomitant Interventions

The time-varying coefficient models discussed in Chapters 6 to 9 present a
simple and flexible structured nonparametric approach for modeling the time-
varying covariate effects on the outcome variable of interest. Despite their suc-
cess in many longitudinal studies, these models have a number of restrictions
which limit their practical values. For example, the time-varying coefficient
models, as shown in (7.1), require that the linear coefficients to be functions
of time only and the values of the time-dependent covariates do not depend on
the values of the outcome variable at the previous time points. To broaden the
scope of applications, we present generalizations of the time-varying coefficient
models in three areas: (a) structured modeling for the effects outcome-adaptive
covariates; (b) mixed-effects extension to incorporate subject-specific effects;
(c) incorporating time-lagging effects using the conditional distributions. In
this chapter, we consider the extension in (a) with concomitant interventions.
The results of this chapter demonstrate that, because the initiation of con-
comitant interventions often depends on the outcome variable, the usual ap-
proach of mixed-effects models or nonparametric models may lead to biased
inferences for the effects of a concomitant intervention. The extensions in (b)
and (c) are discussed in Chapters 11 to 14.

10.1 Concomitant Interventions

10.1.1 Motivation for Outcome-Adaptive Covariate

It is well-known in the literature of longitudinal analysis that, when a covari-
ate depends on the values of the outcome variable at the previous time points,
the conditional-mean based regression methods in the previous chapters may
lead to unsatisfactory results (e.g., Pepe and Anderson, 1994). This type of
covariates, whose values may depend on the previous outcome values, are re-
ferred herein as “outcome-adaptive” covariates. In general, outcome-adaptive
covariates are necessarily time-dependent. Examples of outcome-adaptive co-
variates in epidemiological studies or longitudinal clinical trials may include
behavior variables, psychological risk factors, and medication use, among oth-
ers, because, for a study participant, he or she may take actions and change
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the values of these variables over time depending on his or her health status
observed at the previous time points.

1. Concomitant Intervention as Outcome-Adaptive Covariate

As a special case of the outcome-adaptive covariates, concomitant inter-
ventions are common in longitudinal clinical trials. It has been long recognized
in the medical and statistical literature that, because of its outcome-adaptive
nature, a concomitant intervention cannot be treated as a regular covariate in
a mixed-effects model or a nonparametric regression model, and special consid-
eration has to be given in the model to characterize the initiation and change
of this variable. In this chapter, after a brief introduction of the data structure
with a concomitant intervention, we describe the modeling and estimation ap-
proaches of Wu, Tian and Bang (2008) and Wu, Tian and Jiang (2011), and
summarize the similarities and differences between these approaches.

For longitudinal clinical trials with randomly assigned study treatments, ef-
fects of the study treatments are modeled through a time-invariant categorical
covariate vector, while other factors of interest, such as age, gender, ethnic-
ity and disease risk factors, can be modeled through either time-invariant or
time-dependent covariates. Since the study treatments are randomly assigned
at the start of the study, these study treatments do not depend on the values
of the outcome variables which are observed at different time points during
the study. Because of randomization, the time-invariant covariates, such as
age, gender, ethnicity and the baseline disease risk factors, are also expected
to be balanced among patients receiving different study treatments, and do
not depend on the later values of the outcome variables. However, some of the
time-dependent covariates, particularly the covariates which can be controlled
by the study participants and investigators, are possibly outcome-adaptive,
because, due to ethical or logistical reasons, changes of these variables at a
time point may depend on the values or time-trends of the outcome variable
prior to that time point.

A typical scenario of outcome-adaptive covariates is the presence of con-
comitant interventions. Unlike the randomly assigned study treatments, con-
comitant interventions are not randomly assigned and often initiated to some
of the study subjects when they exhibit less satisfactory trends in their health
outcomes. The scenario of concomitant interventions bears some similarities
to longitudinal studies with informative missing data. In the case of informa-
tive missing data, the study subjects with undesirable outcome time-trends
tend to drop out from the study earlier than those with more desirable out-
come time-trends. The only difference between concomitant intervention and
informative drop-out is that, in studies with concomitant interventions, the
outcomes of the study subjects continue to be observed after the start of the
concomitant interventions, while in informative drop-out settings the study
subjects who drop out of the study have no follow-up observations after the
drop-out times.
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In a clinical trial, study subjects who have taken a concomitant interven-
tion in addition to their assigned study treatments may generally have different
disease pathology from those who do not need the concomitant intervention.
Thus, in addition to the primary objective of evaluating the study treatment
effects, it is also important, perhaps as a secondary objective, to evaluate the
effects of the additional concomitant intervention on the outcome variables of
the study population.

2. Motivation from the ENRICHD Study

The Enhancing Recovery in Coronary Heart Disease Patients (ENRICHD)
Study described in Section 1.2 and analyzed in Section 2.4.2 is a typical exam-
ple which involves a concomitant intervention in addition to the randomly as-
signed treatment regimens. In this randomized clinical trial for evaluating the
efficacy of a six-month cognitive behavior therapy (CBT) versus usual cardio-
vascular (UC) care, the Beck Depression Inventory (BDI) scores for patients in
the CBT arm were repeatedly measured at weekly visits during the treatment
and four yearly follow-up visits, while BDI scores for patients in the UC arm
were only measured at baseline, the six-month visit and the yearly follow-up
visits. By the study design (cf. ENRICHD, 2001), pharmacotherapy with an-
tidepressants was allowed as a concomitant intervention in both the CBT and
the UC arms, if a patient had high baseline BDI scores or nondecreasing BDI
trends five weeks after enrollment or antidepressants were requested by the pa-
tient or the primary-care physicians. Although Taylor et al. (2005) reported
that pharmacotherapy improved survival among 1834 depressed ENRICHD
patients, their results, however, did not address the question of whether phar-
macotherapy was beneficial for lowering the patients’ depression severity.

10.1.2 Two Modeling Approaches

Although the issues of evaluating the concomitant intervention effects have
been discussed in the literature of statistical methods for clinical trials (e.g.,
Cook and DeMets, 2008, Section 6.2), regression methods adjusting for the
potential biases in statistical estimation and inferences with longitudinal data
have just been suggested recently.

1. The Varying-Coefficient Mixed-Effects Model

Using the repeatedly measured BDI scores in a sub-sample of 91 pa-
tients who received pharmacotherapy as a concomitant intervention within
the treatment period in the CBT arm of the ENRICHD study, Wu, Tian and
Bang (2008) suggests that the naive mixed-effects models may give mislead-
ing results for the pharmacotherapy effects on the BDI trends over time, and
a varying-coefficient mixed-effects model can be used to reduce the potential
bias associated with the estimated pharmacotherapy effects. A main drawback
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of the approach of Wu, Tian and Bang (2008) is that the proposed regression
model uses only part of the sample, i.e., the subjects who started the con-
comitant pharmacotherapy intervention during the study, while information
provided by the subjects who did not start the pharmacotherapy during the
study is ignored. This may lead to the loss of information.

2. The Shared-Parameter Change-Point Model

In order to adequately capture the concomitant intervention effects using
all subjects of the sample, an alternative regression model based on shared pa-
rameters is proposed in Wu, Tian and Jiang (2011). Using the framework of
the shared-parameter models in Follmann and Wu (1995), the approach of Wu,
Tian and Jiang (2011) describes the covariate effects on the response variable
through a change-point mixed-effects model, and incorporates the random co-
efficients and the intervention starting time (change-point time) through a se-
ries of joint distributions. Patients who have received a concomitant interven-
tion at baseline or have not received any concomitant intervention during the
study period are treated as censored. A likelihood-based method is established
for statistical estimation and inferences, and its computation is implemented
through a two-stage iteration procedure. Applying their procedures to the
ENRICHD pharmacotherapy data, the results of Wu, Tian and Jiang (2011)
suggest that their proposed method leads to adequate estimates when a con-
comitant intervention is present, while the naive mixed-effects model is likely
misspecified under such situations.

10.1.3 Data Structure with a Single Intervention

For ease of presentation, we consider in this chapter the longitudinal samples
with one possible concomitant intervention and only time-invariant covariates.
The main reason of excluding the cases with time-dependent covariates is to
distinguish the regular time-dependent covariates, whose values at a given
time point do not depend on the values of the outcome variable at previous
times, from the concomitant intervention, whose values may change based
on the previous outcome values. For simplicity, our models and methods of
this chapter are limited to a single possible concomitant intervention and the
study subjects can only change from without concomitant intervention to with
concomitant intervention. The more complicated cases with possibly multiple
concomitant interventions, multi-levels of concomitant interventions (e.g., dif-
ferent intervention dosages) and other time-dependent covariates require more
complicated modeling strategies. Although they are interesting and useful for
real applications, these more complicated cases require substantial further re-
search and are beyond the scope of this book.

Following the notation of Chapter 6, the longitudinal sample consists of
the following components.
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Longitudinal Sample with a Concomitant Intervention:

(a) The study has a total of n randomly selected subjects within the time range[
T0, T1

]
, where T0 and T1 are the beginning and ending times of the study.

(b) The ith subject has ni visits and observations
{

ti j , Yi j, Xi

}
at the jth visit,

where ti j, the study time, is defined by the time elapsed from the beginning

of the study to the jth visit, Xi =
(
1, X

(1)
i , . . . , X

(P)
i

)T
is the RP+1-valued

time-invariant covariate vector, and Yi j is the real-valued outcome variable.

(c) The study involves only one concomitant intervention. The ith subject
can change from “without concomitant intervention” to “with concomitant
intervention” only once during the study.

(d) For the ith subject, 1 ≤ i ≤ n, the concomitant intervention starting time
or change-point time is denoted by Si, and the concomitant intervention
indicator is defined by

λi j =

{
0, if ti j < Si;

1, if ti j ≥ Si.
(10.1)

(e) Since not every subject has a change-point time during the study, the ith
subject’s change-point time is observed if ti1 ≤ Si ≤ tini

. If Si < ti1 or Si > tini
,

the subject’s change-point time is left or right censored, respectively. The

indicator variable for censoring δ
(c)
i is defined by

δ
(c)
i =





0, if ti1 ≤ Si ≤ tini
;

1, if Si > tini
;

2, if Si < ti1.

(10.2)

The observed change-point times are





S (c) =
{
S

(c)
i =

(
S
(c)
i , δ

(c)
i

)
; i = 1, . . . , n

}
;

S
(c)
i = Si, if δ

(c)
i = 0;

S
(c)
i = tini

, if δ
(c)
i = 1;

S
(c)
i = ti1, if δ

(c)
i = 2.

(10.3)

For subjects whose concomitant intervention time is observed during the

study period, i.e., any subject 1 ≤ i ≤ n with δ
(c)
i = 0, the time elapsed from

the start of the concomitant intervention to the jth, 1 ≤ j ≤ ni, visit time is
defined by

Ri j =





ti j − Si, if δ
(c)
i = 0;

0, if δ
(c)
i = 1;

ti j , if δ
(c)
i = 2.

(10.4)
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(f) The overall longitudinal sample with a concomitant intervention is

D =
{(

Yi j, ti j, XT
i , S

(c)
i , δ

(c)
i , Ri j, λi j

)
: i = 1, . . . , n; j = 1, . . . , ni

}
, (10.5)

where the subjects may or may not receive the concomitant intervention
during the study. ✷

In many practical situations, the above longitudinal sample (10.5)
can be simplified, so that simpler statistical models for the effects of{

ti j, XT
i , S

(c)
i , δ

(c)
i , Ri j, λi j

}
on Yi j can be considered. On the other hand, when

there are more than one concomitant interventions or a concomitant interven-
tion has more than one change-point, the data structure in (10.5) should be
generalized to account for multiple concomitant intervention indicators and
multiple change-points. These possible special cases and generalizations are
discussed in the following remarks.

Observed Concomitant Intervention for All Subjects: If we consider
only the subjects in (10.5) who have the observed concomitant intervention

during the study period, i.e., subjects with δ
(c)
i = 0, and ignore those with

“censored change-point times,” i.e., subjects with δ
(c)
i = 1 or 2, we obtain the

longitudinal sample D0, which is a sub-sample of D given by

D0 =
{(

Yi j, ti j, XT
i , Si, Ri j, λi j

)
: i = 1, . . . , n(0); j = 1, . . . , ni; δ

(c)
i = 0

}
. (10.6)

Because D0 is a sub-sample of D , the subject indices in D0 have been relabeled
from the subject indices in D , i.e., the ith subject in D0 is not necessarily the
ith subject in D , and n(0) ≤ n. The reason for considering D0 is that, since
the change-point time Si is observed for every subject in D0, it is possible
to evaluate the concomitant intervention effect by comparing the time-trends
of the outcome variable Y (t) for t before and after the change-point time Si.
This is the approach used by Wu, Tian and Bang (2008). But, the potential
drawback of using D0 is that the information provided by the subjects who

have“censored change-point times,” i.e., subjects with δ
(c)
i = 1 or 2, is ignored

in the analysis, which may lead to inefficient estimation of the concomitant
intervention effect. ✷

“Right-Censored” Intervention Starting Times: The longitudinal
sample D in (10.5) includes also the subjects who have started the concomi-

tant intervention before the study starting time T0, i.e., subjects with δ
(c)
i = 2,

which, borrowing from the term in the survival analysis literature, is referred
herein as the “left-censored intervention starting time” or “left-censored inter-
vention change-point time.” This is intended to extract the potentially useful
information from the study subjects who started the concomitant intervention
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before the study starting time and have continued the concomitant interven-
tion throughout the study period. But, in most studies, the exact starting time
of the concomitant intervention before the trial’s starting time T0 is unknown,
so that it is usually the intent of the study investigators to exclude the subjects
who already started the concomitant intervention before the trial’s starting
time T0. As such, the longitudinal sample includes only the “right-censored
intervention starting time” and is given by

D1 =
{(

Yi j, ti j, XT
i , S

(c)
i , δ

(c)
i , Ri j, λi j

)
:

δ
(c)
i = 0 or 1; i = 1, . . . , n; j = 1, . . . , ni

}
. (10.7)

The subjects in D1 who never start the concomitant intervention during the
study period [T0, T1] are viewed as having the “right-censored intervention
starting times.” These subjects may provide some useful information for mod-
eling the time-trends of Y (t) for T0 < t < Si. The modeling and estimation
methods of Wu, Tian and Jiang (2011) are intended to avoid the potential
shortcomings of using only D0 in (10.6) by including the subjects with “right-
censored intervention starting times.” ✷

Multiple Concomitant Intervention Times: Generalization of the
sample D in (10.5) to include multiple concomitant intervention times is also
possible. In such cases, there are possibly multiple types of concomitant inter-
ventions available to the trial subjects and each subject may start and stop a
concomitant intervention multiple times during the trial period [T0, T1]. It is
also possible that the dosage of a given concomitant intervention is continuous,
which can be changed during the trial period [T0, T1]. If we recognize that
the decision of changing a concomitant intervention or changing the dosage of
a concomitant intervention at a given time may depend on the trial subject’s
values of the outcome variable at the prior time points, then these concomitant
interventions, their starting times and their dosages should be modeled dif-
ferently from other covariates Xi. But, appropriate statistical models for data
beyond the scope of D in (10.5) are subject to various complexities in com-
putation and interpretations, and have not been systematically investigated
in the literature. Thus, this generalization, although practically interesting, is
beyond the scope of this book. ✷

10.2 Naive Mixed-Effects Change-Point Models

Based on the data structures summarized in (10.5), a number of regression
models can be considered as natural candidates to describe the time-trends
between the outcome variable Yi j and the covariates, including Xi as well as the
presence and time length of the concomitant intervention which are denoted
by
{

λi j, Ri j

}
. Because the starting time Si of the concomitant intervention may

depend on the values and time-trends of Yi j at time points ti j before Si, some
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of the seemingly “natural” regression models may lead to biased results if the
relationship between Si and the time-trends of Yi j for ti j < Si is not properly
taken into account. As an illustration of this crucial point, we demonstrate
below in this section that some of the seemingly “natural”mixed-effects mod-
els may indeed lead to erroneous conclusions. As a remedy, we establish in
Sections 10.4 and 10.5 two main modeling approaches to remove or reduce the
potential biases in longitudinal models.

Since a concomitant intervention is not randomly assigned, it is understood
in practice that the effects of a concomitant intervention cannot be properly
evaluated by directly comparing the outcome values between the subjects
who received the intervention and those who did not receive the intervention.
This fact has been noted in the ENRICHD trial by a number of publications,
such as, ENRICHD (2003) and Taylor et al. (2005). Thus, we use the time-
trends of BDI scores among patients who used antidepressants and who did
not use antidepressants in the ENRICHD trial (Section 10.1.1) as an illustrat-
ing example. In the discussions below, we outline the practical justifications
and considerations for modeling the concomitant intervention effects through
“mixed-effects change-point models.”

10.2.1 Justifications for Change-Point Models

Given that the concomitant intervention is not randomly assigned, it is gen-
erally inappropriate to compare the summary statistics or time-trends of the
outcome variable between patients with or without the concomitant interven-
tion. As described in Section 10.1.1, since a patient in the ENRICHD trial
could start using antidepressants as a concomitant intervention if he or she
had high or nondecreasing depression severity measured by the BDI scores,
it could be potentially misleading to compare the mean BDI scores at the
six-month visit between the patients who used antidepressants and who did
not use antidepressants during the period from baseline to six months. The
reason is that the patients with the concomitant intervention, i.e., using an-
tidepressants, could have higher mean BDI scores than patients without the
concomitant intervention even if the concomitant intervention via antidepres-
sants could indeed have the true effects of lowering depression severity through
BDI scores. For the same reason, it may not be appropriate to compare the
mean values of the BDI changes from baseline to six months between the pa-
tients who used antidepressants and those who did not use antidepressants
during the six-month period, because it is possible that the patients who had
antidepressants as the concomitant intervention could be those whose depres-
sion severity could not be lowered by treatments other than antidepressants.

The practical issues considered above suggest that it is generally inap-
propriate to compare the means of the outcome variable at the end of the
study or the means of the changes of the outcome variable at two time points
between patients with and without the concomitant intervention. It is reason-
able, however, to compare the time-trends of the outcome variable before and
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after the concomitant intervention starting time through a “subject-specific
change-point” regression model. Although a subject with unfavorable health
status is more likely to start a concomitant intervention than a subject with
acceptable health status, it is possible to use the available data to model and
estimate the values and time-trends of the outcome variable before and af-
ter the concomitant intervention. We can then compare the subject-specific
time-trends and trajectories of the outcome variable before and after the con-
comitant intervention. If, on average, the time-trends and trajectories of the
outcome variable exhibit favorable health status after the concomitant in-
tervention than before the concomitant intervention, then it is plausible to
attribute the favorable change of health status to the positive “effect” of the
concomitant intervention.

10.2.2 Model Formulation and Interpretation

To make the change-point approach more precise, let µ0

(
ti j, Xi; ai

)
be the

ith subject’s trajectory before the concomitant intervention, which is pa-

rameterized by the subject-specific parameters ai =
(
ai1, . . . , aid0

)T
for some

d0 ≥ 1, and let µ1

(
ti j, Xi, Ri j; bi

)
be the change of the trajectory after the

concomitant intervention, which is parameterized by the subject-specific pa-

rameters bi =
(
bi1, . . . , bid1

)T
for some d1 ≥ 1. Since µ1

(
ti j, Xi, Ri j; bi

)
describes

the changing trajectory of the ith subject after the concomitant intervention
starting time (or change-point time) Si, it may depend on the “intervention
duration time” Ri j = ti j − Si as well as ti j and Xi. The ith subject’s outcome
variable Yi j at time point ti j is then given by

Yi j = µ0

(
ti j, X; ai

)
+λi j µ1

(
ti j, Xi, Ri j; bi

)
+ εi j, (10.8)

where εi j are mean zero random errors such that εi1, j1 and εi2, j2 are inde-
pendent if i1 6= i2, Var

(
εi j

)
= σ2

(
ti j

)
and Cov

(
εi, j1 , εi, j2

)
= ρ

(
ti, j1 , ti, j2

)
. For the

special case that εi j is simply a measurement error, the εi j for all i = 1, . . . , n

and j = 1, . . . , ni are independent random variables with mean zero and
Var
(
εi j

)
= σ2

(
ti j

)
. When the ith subject’s jth visit time is before the concomi-

tant intervention, i.e., ti j ≤ Si, the subject’s concomitant intervention indicator
is λi j = 0, and the subject’s trajectory of the outcome variable is µ0

(
ti j , Xi; ai

)
.

Similarly, when ti j is after the concomitant intervention time Si, i.e., ti j > Si

and λi j = 1, the ith subject’s trajectory of the outcome variable is

µ0

(
ti j, Xi; ai

)
+ µ1

(
ti j, Xi, Ri j; bi

)
.

The usual mixed-effects model framework, e.g., Verbeke and Molenberghs
(2000) and Diggle et al. (2002), suggests that a naive mixed-effects model
for evaluating the pre- and post-intervention trajectories can be established
by imposing a joint distribution for the random parameters ai and bi to the
model (10.8). Assuming that the subject-specific parameter

(
aT

i , bT
i

)
has a
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known joint distribution G(·), (10.8) suggests that the naive mixed-effects
change-point model for the concomitant intervention can be given by





Yi j = µ0

(
ti j, Xi; ai

)
+λi j µ1

(
ti j, Xi, Ri j; bi

)
+ εi j,

(
aT

i , bT
i

)T ∼ joint distribution G(·),
E
(
aT

i , bT
i

)T
=
(
αT , β T

)T
and Cov

(
aT

i , bT
i

)T
= V,

Var
(
εi j

)
= σ2

(
ti j

)
and Cov

(
εi, j1 , εi, j2

)
= ρ

(
ti, j1 , ti, j2

)
,

(10.9)

where the mean
(
αT , β T

)
and covariance matrix V are unknown,

(
aT

i , bT
i

)

and εi j are independent, and εi1, j1 and εi2, j2 are independent for any i1 6= i2
and any j1 and j2. A mathematically convenient special case is to assume

that
(
aT

i , bT
i

)
has the multivariate normal distribution N

[(
αT , β T

)T
, V
]
. Un-

der (10.9), a positive (or negative) value for µ1

(
ti j, Xi, Ri j; bi

)
would suggest

that the concomitant intervention tends to increase (or decrease) the mean of
Yi j given

{
ti j, Xi, Ri j

}
.

There are several interesting special cases of the mixed-effects change-point
model (10.9), which can be derived by setting special parametric models for
µ0

(
ti j, Xi; ai

)
and µ1

(
ti j, Xi, Ri j; bi

)
. For example, let d0 = d1 = P+ 2, so that

ai =
(
ai0, . . . , ai,P+2

)T
and bi =

(
bi0, . . . , bi,P+2

)T
. A linear model of (10.9) with

normal subject-specific parameters is given by





Yi j =
(
XT

i , ti j

)
ai +λi j

(
XT

i , Ri j

)
bi + εi j,

= ai0 + ai1 X
(1)
i + · · ·+ ai,P+1 X

(P)
i + ai,P+2 ti j

+λi j

(
bi0 + bi1 X

(1)
i + · · ·+ bi,P+1 X

(P)
i + bi,P+2 Ri j

)
+ εi j,

(
aT

i , bT
i

)T ∼ N
[(

αT , β T
)T

, V
]
,

E
(
aT

i , bT
i

)T
=
(
αT , β T

)T
and Cov

(
aT

i , bT
i

)T
= V,

Var
(
εi j

)
= σ2

(
ti j

)
and Cov

(
εi, j1 , εi, j2

)
= ρ

(
ti, j1 , ti, j2

)
,

(10.10)

where, with σ2
(
ti j

)
and ρ

(
ti, j1 , ti, j2

)
as defined in (10.9), α =

(
α0, α1, . . . , αP+2

)T

and β =
(
β0, β1, . . . , βP+2

)T
, which are the means of ai and bi, respectively, are

the population parameters of interest. The parameters
{

ai0, ai1, . . . , ai,P+2

}
in

(10.10) describe the linear effects of
{

1, X
(1)
i , . . . , X

(P)
i , ti j

}
for the ith subject

before starting the concomitant intervention, i.e., λi j = 0, in which the mean
of Yi j has the linear time-trend ai,P+2 ti j. After the concomitant intervention,

λi j = 1, the effects of the covariates
{

1, X
(1)
i , . . . , X

(P)
i

}
on the mean of Yi j are

described by

{(
ai0 + bi0

)
,
(
ai1 + bi1

)
, . . . ,

(
ai,P+1 + bi,P+1

)}
,

while the time-trend for the mean of Yi j has the linear form

ai,P+2 ti j + bi,P+2 Ri j =
(
ai,P+2 + bi,P+2

)
ti j − bi,P+2 Si,
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which depends on the time elapsed after the start of the concomitant inter-
vention Ri j = ti j − Si.

Other linear or nonlinear special cases of (10.9) can be similarly devel-
oped as (10.10). In particular, the time-trends for the mean of Yi j may not
be necessarily linear or depend on Ri j as characterized in (10.10). The major
implication of (10.9) and its special linear case (10.10) is that the concomitant
intervention effect for each subject is described by the subject-specific param-
eter vector bi. Any bi that gives µ1

(
ti j, Xi, Ri j; bi

)
= 0 would indicate that the

concomitant intervention does not affect the values of the outcome variable
Yi j for the ith subject.

10.2.3 Biases of Naive Mixed-Effects Models

Although the mixed-effects change-point model in (10.9) seems natural and in-
tuitive, it does not really distinguish the concomitant intervention from other
covariates in a fundamental way, because it only involves the concomitant
intervention through the time-dependent indicator variable λi j. A major con-
sequence of this naive approach is that this model may lead to bias and erro-
neous statistical inferences when the initiation of the concomitant intervention
is “self-selective” in the sense that it strongly depends on the values of the out-
come variable of the subject. Because the model (10.9) does not really take
the “self-selectiveness”of the concomitant intervention into account, Wu, Tian
and Bang (2008) show that (10.9) can be a misspecified model even if µ0

(
·; ai

)
,

µ1

(
·; bi

)
, εi j and G(·) are all correctly specified. Consequently, misleading con-

clusions may occur even under very simple situations where (10.9) appears to
have natural interpretations.

A Synthetic Example of Concomitant Intervention

To illustrate the potential bias associated with the naive modeling ap-
proach of (10.9), we present a simple synthetic example which shows that
(10.9) leads to erroneous conclusions, and then we show that some seemingly
“not-so-intuitive” alternatives of (10.9) can be used to reduce the bias. This
example motivates the more general approaches for modeling the concomitant
intervention to be discussed in Sections 10.4 and 10.5.

1. Data Generation

Suppose that we have a longitudinal study with n = 24 independent sub-
jects. For the ith subject, 1 ≤ i ≤ 24, there are ni = 10 repeated measurements
at the set of integer time points {1, 2, . . . , 10}, and the jth measurement time,
j = 1, . . . , ni, ni = 10, is given by ti j = j. Following the data structure (10.6), let
Si be the change-point time for the ith subject changing from “without con-
comitant intervention” to “with concomitant intervention,” and let λi j be the
corresponding“concomitant intervention indicator” such that λi j = 0 if Si < ti j,
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and λi j = 1 if Si ≥ ti j. Assume that the ith subject’s outcome variable Yi j ob-
served at the jth measurement time ti j = j only depends on the concomitant
intervention status λi j at time ti j = j and a mean zero measurement error εi j,
so that the subject-specific model for Yi j is

Yi j = ai + bi λi j + εi j, (10.11)

where ai is the ith subject’s mean of Yi j for ti j = j before the concomitant
intervention, bi is the change of the ith subject’s mean of Yi j from “without
concomitant intervention” to “with concomitant intervention,” and the

{
εi j :

i = 1, . . . , 24; j = 1, . . . , 10
}
are i.i.d. with the N(0, σ2) distribution. The mean

of Yi j in the model (10.11) does not depend on ti j = j.
Given the model (10.11), the next issue is to specify how the starting time

of concomitant intervention Si depends on the outcome variable at time points
ti j prior to Si. For simplicity, let Si depend on the outcome variable Yi j through
some specified values of

(
ai, bi

)
and (α, β ) in the following manner:

Steps for Generating Synthetic Data:

(a) Let α = 19.5 and β =−1.5 be the means of
{

a1, . . . , a24

}
and

{
b1, . . . , b24

}
,

respectively.

(b) For the first 12 subjects, i.e., 1 ≤ i ≤ 12, their change-point time is Si = 2,
and the values of their outcome variable Yi j are generated using ai = 20,
bi =−1.0 and ε ∼ N(0,3).

(c) For the remaining 12 subjects, i.e., 13 ≤ i ≤ 24, their change-point time
is Si = 8, and Yi j are generated using ai = 19, bi =−2.0 and ε ∼ N(0, 3). ✷

In the form of (10.11), the true model of the data is





Yi j = 20−λi j + εi j, λi j =

{
0, if 1 ≤ j ≤ 2,

1, if 3 ≤ j ≤ 10,
i = 1, . . . , 12;

Yi j = 19− 2λi j + εi j, λi j =

{
0, if 1 ≤ j ≤ 8,

1, if 9 ≤ j ≤ 10,
i = 12, . . . , 24,

(10.12)

where εi j are i.i.d with N(0, 3). Our objective based on the observations gen-
erated from (10.12) is to estimate the population mean parameters (α, β ) =
(19.5,−1.5), where β = −1.5 represents the mean concomitant intervention
effect on the outcome variable Yi j.

2. Estimation with Naive Mixed-Effects Models

Suppose that we already know that, for all 1≤ i≤ 24, Yi j depends on j only
through λi j for all j = 1, . . . , 10, but the distributions of the random intercepts
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ai and bi are unknown. Then, a natural model for the current situation is

{
Yi j = ai + bi λi j + εi j,

(
ai, bi

)T ∼ joint distribution G(·),
(10.13)

where, for all 1 ≤ i ≤ 24 and 1 ≤ j ≤ 10, εi j are i.i.d. mean zero measurement
errors, G(·) is an unknown distribution function, E(ai) = α and E(bi) = β
are the fixed-effects parameters. Clearly, (10.13) is a special case of the naive
mixed-effects change-point model (10.9). Given a sample

{(
Yi j, ti j , Si

)
: i = 1, . . . , 24; j = 1, . . . , 10

}
(10.14)

generated from the unknown true model (10.12), we can estimate the mean
and covariance parameters of (10.13) using a number of standard statistical
analysis software packages, such as SAS and R. Among them, the mean con-
comitant intervention effect β is the primary parameter of interest. A negative
value of β would suggest that the concomitant intervention could on average
lower the value of the outcome variable Y (t). Conversely, a positive β on av-
erage increases the value of Y (t).

Since the exact distribution function G(·) is unknown, we use the common
practice in the literature, e.g., the linear mixed-effects models in Section 2.1,
and estimate the mean parameters (α, β )T by assuming that G(·) is a multi-
variate normal distribution with a given correlation structure. Since the corre-
lation structures of the data are generally unknown, three linear mixed-effects
model (LME) estimation procedures in the R statistical package can be used
to estimate (α, β )T :

• LME with working independent (LMEWI) correlation structure;

• LME with random intercept (LMERI);

• LME with random intercept and slope (LMERIS).

Similarly, parameter estimates can also be obtained by the generalized esti-
mating equation (GEE) procedure with three correlation structures:

• GEE with working independent (GEEWI) correlation structure;

• GEE with exchangeable correlation (GEEEC) structure;

• GEE with unstructured correlation (GEEUC) structure.

Further details for the parameter estimations with linear mixed-effects models
can be found in Verbeke and Molenberghs (2000).

3. Simulation Results of Naive Mixed-Effects Models

To examine whether the naive mixed-effects change-point model (10.13)
can lead to appropriate estimates for the mean concomitant intervention effect
β , we present here the results from a simulation study with 10,000 indepen-

dent samples of (9.14). In this study, we compute the estimators β̂ and their
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standard errors from each of the simulated samples using each of the stan-
dard estimation procedures, namely LMEWI, LMERI, LMERIS, GEEWI,
GEEEC and GEEUC, in SAS. Table 10.1 summarizes the averages of the
estimators and their standard errors (SE) and the empirical coverage prob-
abilities of the corresponding 95% confidence intervals covering the true pa-
rameter β =−1.5 computed from the 10,000 simulated samples and the naive
mixed-effects model (10.13).

Table 10.1 Averages and standard errors (SE) of the parameter estimates and the
empirical coverage probabilities of the corresponding 95% confidence intervals (CI)
covering the true parameter β =−1.5 computed from 10,000 simulated samples with
the naive mixed-effects change-point model (9.13)

Empirical Coverage
Correlation Structure Estimate SE Probability of 95% CI

LME
Working Independence -0.598 0.395 37.8%
Random Intercept -0.731 0.403 51.0%

Random Intercept and Slope -0.788 0.431 60.4%
GEE

Working Independence -0.598 0.385 36.2%
Exchangeable -0.709 0.385 46.7%
Unstructured -0.752 0.572 43.9%

The results of Table 10.1 suggest that all these LME and GEE procedures
with different correlation structure assumptions give similar estimates for β ,
which are around -0.6 and -0.7 and far from the true value of β =−1.5. Since
the standard errors for these estimates are comparable, it is not surprising that
the 95% confidence intervals shown in Table 10.1 have low empirical coverage
probabilities, which suggest that the model (10.13) leads to excessive biases
and inadequate estimates for β .

4. An Alternative Using “Individual Fitting”

We now consider an ad hoc and seemingly oversimplified approach which
can lead to better estimates of the mean concomitant intervention effect β
than the LME and GEE results shown in Table 10.1. For the simple setup
considered here, we use an “individual fitting” estimator of β based on the
mixed-effects model (10.13), in which we ignore the standard estimation pro-
cedures in the literature and compute the mean changes of Yi j before and after
the concomitant intervention for each subject individually.

Since the time-trends of Yi j do not depend on ti j = j when λi j is given,
we can simply calculate the subject-specific differences for the mean values
of Yi j before and after the concomitant intervention, and then estimate the
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population parameter β by the sample mean of the differences, which lead to
the “individual fitting” estimator of β given by

β̂ind =
(1

n

) n

∑
i=1

[
∑

ni

j=1

(
Yi j 1[δi j=1]

)

∑
ni
j=1 1[δi j=1]

−
∑

ni

j=1

(
Yi j 1[δi j=0]

)

∑
ni
j=1 1[δi j=0]

]
. (10.15)

A simple application of (10.15) to our simulated samples leads to estimates of
β very close to its true value of -1.5. This suggests that it is indeed possible
to reduce the biases shown in Table 10.1 by considering the subject-specific
model of (10.11), while the mixed-effects model (10.13) and the well-known
likelihood and estimating equation based procedures are misspecified and may
lead to significant estimation biases.

However, the “individual fitting” approach of (10.15) is generally not used
in the literature due to two reasons. First, it is known in the literature that
“individual fitting” estimation methods using the repeated measurements sep-
arately from each subject, such as (10.15), are generally less efficient than
the well-known procedures, such as the maximum likelihood estimates, the re-
stricted maximum likelihood estimates, and the generalized estimating equa-
tion estimates (e.g., Verbeke and Molenberghs, 2000; Diggle et al., 2002).
Second, it is difficult to generalize the “individual fitting” approaches to re-
gression models with more complicated terms and patterns than the simple
cases exhibited in (10.11). Fitting data from the repeated measurements of
each subject require the numbers of repeated measurements to be sufficiently
large.

5. An Alternative Incorporating Concomitant Intervention Starting Time

Comparing the underlying mechanism for generating the data in (10.14)
with the model (10.13), a potential flaw of using (10.13) is that the model does
not incorporate the potential relationship between the change-point time Si

and the values of Yi j before the change-point time, i.e., the values of Yi j when
δi j = 0. Indeed, under the real data generating mechanism (10.12), subjects
with subject-specific mean value of Yi j at j = 1 to be 20 have change-point
time at Si = 2, while subjects with subject-specific mean value of Yi j at j = 1

to be 19 have change-point time at Si = 8. Although this fact is unknown
at the estimation stage, the potential relationship between Si and Yi j is not
incorporated in the model (10.13).

To see whether the potential bias for the estimation of β could be reduced
by incorporating the change-point time Si into the model, we consider a simple
generation of (10.13) given by

{
Yi j = a0i + a1i Si + bi λi j + εi j,
(
a0i, a1i, bi

)T ∼ N
[
(α0, α1, β )T , V

]
,

(10.16)

where
(
α0, α1, β

)T
is the vector of mean parameters, V is the unknown covari-

ance matrix for
(
a0i, a1i, bi

)T
and εi j are the measurement errors as in (10.13).
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We note that (10.16) is not at all the true model, since the model used to
generate the data in (10.14) is in fact (10.12) and Yi j does not depend on Si

through a simple linear model. We will give some justifications of considering
(10.16) in Section 10.4, where it is described as a special case of the varying-
coefficient mixed-effects models of Wu, Tian and Bang (2008). But for now,
(10.16) simply suggests that, for subjects with different values of Si, the mean
values of Yi j before the concomitant intervention are also different, and the
relationship between Yi j and Si is approximated by a simple linear model.

The structures of V generally do not have major influences on the estima-

tion of
(
α0, α1, β

)T
, and many commonly used parametric structures may be

used when implementing the estimation procedures (Diggle et al., 2002). It
is important to note that the interpretation of β is the same in both (10.13)
and (10.16). Although (10.16) is at best a rough approximation of the true
underlying data generating mechanism, the main intent here is to evaluate
whether the bias for the estimation of the concomitant intervention effect can
be reduced by incorporating Si into the model.

Table 10.2 Averages and standard errors (SE) of the parameter estimates and the
empirical coverage probabilities of the corresponding 95% confidence intervals (CI)
covering the true parameter β =−1.5 computed from the simulated samples with the
mixed-effects model (10.16)

Empirical Coverage
Correlation Structure Estimate SE Probability of 95% CI

LME
Working Independence -1.498 0.485 94.7%
Random Intercept -1.498 0.483 94.6%

Random Intercept and Slopes -1.498 0.496 95.2%

Table 10.2 summarizes the averages of the estimators and their standard
errors (SE), and the empirical coverage probabilities of the corresponding 95%
confidence intervals covering the true parameter β = −1.5 computed from
the 10,000 simulated samples, the mixed-effects model (10.16) and the same
LME procedures as the ones used in Table 10.1. The mean estimates for β
in Table 10.2 are very close to the true value of β = −1.5, with comparable
standard errors in both Tables 10.1 and 10.2. The 95% confidence intervals
in Table 10.2 have empirical coverage probabilities that are very close to the
nominal level of 95% and much higher than the ones shown in Table 10.1.
Clearly, (10.16) leads to much smaller bias for the estimation of β than (10.13).

10.3 General Structure for Shared Parameters

The data structure of Section 10.1.3 can be viewed as a special case of outcome-
adaptive covariates, because the data involve only one concomitant interven-
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tion and each study subject has at most one change-point from “without con-
comitant intervention” to “with concomitant intervention.”This simple struc-
ture of outcome adaptiveness, which has only one change-point time, suggests
that a natural extension for the mixed-effects model (10.9) is to incorporate the
initiation of the concomitant intervention into the regression model. Specifi-
cally, the model should allow the intervention starting time Si to be correlated
with the subject-specific parameters

{
ai, bi

}
.

Let µ0(·; ai) and
[
µ0(·; ai)+µ1(·; bi)

]
be the subject-specific response curves

before and after the start of the concomitant intervention, respectively, where
µ1(·; bi) is known as the concomitant intervention effect. A shared-parameter
change-point model for the dataset

{
Yi j, ti j, Xi, Si

}
is

{
Yi j = µ0

(
ti j, Xi; ai

)
+ δi j µ1

(
ti j, Xi, Ri j; bi

)
+ εi j,

(
aT

i , bT
i , Si

)T ∼ Joint Distribution,
(10.17)

where Ri j = Ti j−Si, εi j are mean zero errors withCov(εi j1 , εi j2) =σi j1 j2 , εi1 j1 and
εi2 j2 are independent if i1 6= i2, Si and

{
ti j , Xi

}
are independent conditioning

on
{

ai, bi

}
, and

{
ai, bi

}
and

{
ti j, Xi

}
are independent.

Using the matrix representation Yi =
(
Yi1, . . . , Yini

)T
and ti =

(
ti1, . . . , tini

)T
,

the joint likelihood function of
(
YT

i , Si

)T
given

{
ti, Xi

}
based on (10.17) is

f
(
Yi, Si

∣∣ti, Xi

)
=
∫

f
(
Yi

∣∣ti, Xi, Si, ai, bi

)
f
(
Si

∣∣ai, bi

)
dH
(
ai, bi

)
, (10.18)

where f (·|·) denotes the conditional density and H(·, ·) is the joint distribu-
tion function of

{
ai, bi

}
. The f (Si

∣∣ai, bi) term in the integration distinguishes
(10.18) from the usual likelihood functions for the mixed-effects models, such
as (2.8). The subject-specific parameters

{
ai, bi

}
in (10.17) are associated with

both the response curves of Yi j and the distribution of Si, which suggests the
name of “shared-parameter model.”The population parameters E(ai) = α and
E(bi) = β are also shared in both the upper and lower displays of (10.17).

The shared-parameter model was proposed in Follmann and Wu (1995)
for the purpose of modeling the behaviors of informative missing data. Unlike
Follmann andWu (1995), the subjects are still being observed after the change-
point time Si in (10.17). The correlation between Si and ai suggests that the
ith subject’s change-point time is affected by the pre-intervention response
curve µ0(·; ai), and the correlation between Si and bi suggests that Si may also
influence the response curve µ1(·; bi), which describes the intervention effects.

The main advantage of (10.17) is that it distinguishes the concomitant
intervention from randomly assigned study treatments and other covariates
by modeling the association between the change-point time Si and the out-
come variable Yi j. However, at its current form, (10.17) is still too general
to be used in real applications, because the likelihood based estimation and
inferences cannot be easily derived without specific expressions of (10.18). In
real applications, sub-classes of (10.17) are needed with specific expressions of
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µ0(·; ai), µ1(·; bi) and the joint distributions of
{

ai, bi, Si

}
. We focus on two

different special cases of (10.17), each of which has its own advantages and
disadvantages and is suitable for a specific data structure.

10.4 The Varying-Coefficient Mixed-Effects Models

As discussed above, direct application of (10.17) and (10.18) is usually limited
by two issues: (a) the joint likelihood function (10.18) requires a known distri-
bution function for

{
ai, bi, Si

}
; (b) parameter estimation by maximizing the

likelihood function (10.18) can be computationally intensive when the num-
ber of parameters is large. When all the subjects have observed change-point
times within the study period, that is, T0 < Si < T1 for all 1 ≤ i ≤ n, we can
extend the varying-coefficient approach of Chapters 6 to 9 to the change-point
time Si and consider a computationally simple regression model, which does
not depend on the distribution function of Si.

10.4.1 Model Formulation and Interpretation

1. General and Linear Model Expressions

When Si are observed for all 1 ≤ i ≤ n, we can consider the conditional
distribution

f
(
Yi

∣∣Si, ti, Xi

)
=

∫
f
(
Yi

∣∣ti, Xi, Si, ai, bi

)
dG
(
ai, bi

∣∣Si

)
, (10.19)

and rewrite (10.17) as a varying-coefficient model using the conditional dis-
tribution of

{
ai, bi

}
given Si. Although µ0(·) and µ1(·) are allowed to take

general parametric or nonparametric forms, this approach is illustrated here
assuming that µ0(·) and µ1(·) are linear functions of the form

µ0

(
ti j, Xi; ai

)
= ZT

i j ai and µ1

(
ti j, Xi, Si; bi

)
= WT

i j bi, (10.20)

where Zi j =
(
Zi j0, . . . , Zi jD1

)T
is generated by

{(
ti j, XT

i

)
: 1 ≤ j ≤ ni; δi j = 0

}

and Wi j =
(
Wi j0, . . . ,Wi jD2

)T
is generated by

{(
ti j, XT

i , Si

)
: 1 ≤ j ≤ ni; δi j = 1

}
.

If we view Si as a possible confounder for the means of Yi j in (10.17), we
can in principle evaluate the concomitant intervention effect by comparing
the mean trajectories of Yi j before and after the concomitant intervention
conditioning on a given Si. Let

α(Si) = E(ai|Si), β (Si) = E(bi|Si), a∗i = ai −α(Si) and b∗
i = bi −β (Si).

A varying-coefficient mixed-effects model for the data
{(

Yi j, ti j, XT
i , Si

)
: i = 1, . . . , n; j = 1, . . . , ni

}

based on (10.17) and (10.20) is
{

Yi j = ZT
i j

[
α
(
Si

)
+ a∗i

]
+ δi j WT

i j

[
β
(
Si

)
+b∗

i

]
+ εi j,

(
a∗T

i , b∗T
i

)T ∣∣Si ∼ G
(
· |Si

) (10.21)



THE VARYING-COEFFICIENT MIXED-EFFECTS MODELS 321

where, for Si = s, G(·|s) is a distribution function with mean zero and covari-

ance matrix Cov
[(

a∗T
i , b∗T

i

)T ∣∣s
]
= C(s). The population-mean parameters are

unknown curves α(s) and β (s), which, in this case, are both smooth functions
of s. When Si = s, the mean concomitant intervention effect is β (s). The special
choice of β (s) = 0 for all s ∈ (T0,T1) implies that the concomitant intervention
has no population-mean effect on the time-trend curve of Yi j.

2. Interpretations and Remarks

Parametric vs. Nonparametric Models:
The models (10.17) and (10.21) characterize the concomitant interven-

tion effects using different parameters, which lead to different types of models
and estimation methods. In (10.17), the concomitant intervention effect is
summarized in µ1(·; bi

)
, so that the population parameter determining the

concomitant intervention effects is β = E(bi), although the estimation of β is
possibly influenced by the observations of Si. In (10.21), on the other hand,
because of the definition of b∗

i as a re-centered subject-specific parameter, the
statistical inference is based on β (s), which is the concomitant intervention
effects conditioning on the Si = s. Thus, when α(s) and β (s) are smoothing
curves of s without further parametric assumptions, (10.21) is a structured
nonparametric model, while (10.17) may be either a parametric or nonpara-
metric model depending on the assumptions on µ0(·; ai), µ1(·; bi) and the joint
distribution of (aT

i , bT
i , Si). In this section, the estimation of α(s) and β (s) of

(10.21) is proceeded using the basis approximations as in Chapter 9, and pa-
rameter estimation of the parametric versions of (10.17) is proceeded using
the maximum likelihood method. ✷

Advantage of Conditional Change-Point Approach:
The advantage of (10.21) over a naive mixed-effects model, such as (10.9), is

that the statistical inference of the concomitant intervention effect of (10.21) is
made separately for subjects with different values of concomitant intervention
change-point time Si = s. This is somewhat analogous to the sub-group analysis
for subjects with different categorical values of Si, and, as demonstrated in
Section 10.2.3, may reduce the estimation bias associated with a naive mixed-
effects model. This conditional approach is reasonable, because subjects with
different concomitant intervention change-point times are likely to be different.
The change-point coefficient β (s) gives a precise description of the concomitant
intervention effect for subjects with Si = s.

The advantage of the conditional approach of (10.21) is also seen from the
synthetic example of Section 10.2.3. In this example, the true concomitant
intervention effects in (10.12) are different for individuals with Si = 2 and
individuals with Si = 8, and the population mean concomitant intervention
effect is β = −1.5. The estimators shown in Table 10.1, which are obtained
from the model (10.13) without conditioning on the change-point time Si, all
have significant biases no matter what correlation structures are used. On the
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other hand, the estimators shown in Table 10.2, which rely on (10.16), are all
nearly unbiased, although (10.16) is not necessarily close to the true model
(10.12). Thus, the bias for the estimation of β can be reduced by models
conditioning on Si. ✷

10.4.2 Special Cases of Conditional-Mean Effects

A number of interesting special cases of (10.21) may be considered in real
applications by specifying the forms of α(s), β (s) and G(·|Si = s). An obvious
choice for G(·|Si = s) is the multivariate normal distribution with mean zero
and covariance matrix C =Cov

[(
a∗T

i ,b∗T
i

)∣∣s
]
, which, for simplicity, is assumed

to be time-invariant. Extension to time-dependent covariances can be made
by modeling C(s). Since the main objective is to estimate the population-
mean effects of the concomitant intervention and the explicit forms of G(·|Si)
are often unknown, using appropriate models for α(s) and β (s) is often more
important than using a suitable model for C(s).

1. Parametric Models for Mean Effects

Linear models for α(s) and β (s) of (10.21) can be expressed as




α(s; γ) =
(
α0(s; γ0), . . . , αD1

(s; γD1
)
)T

, αd(s; γ) = ∑
Ld

l=0 γdl Tdl(s);

β (s; τ) =
(
β0(s; τ0), . . . , βD2

(s; τD2
)
)T

, βd(s; τ) = ∑
Md
m=0 τdm T ∗

dm(s);

γd =
(
γd0, . . . , γdLd

)T
, γ =

(
γ0, . . . , γD1

)T
;

τd =
(
τd0, . . . , τdMd

)T
, τ =

(
τ0, . . . , τD2

)T
,

(10.22)
where {Ld , Md} are fixed, and {Tdl(s), T

∗
dm(s)} are known transformations of

s. The choice of Tdl(s) = sl and T ∗
dm(s) = sm leads to the global polynomials

for αd(s; γ) and βd(s; τ). The parameters γ and τ characterize the time-trends
of Yi j. In particular, the concomitant intervention effects are determined by τ.
Other parametric models for α(s) and β (s), such as, piece-wise linear models,
piece-wise polynomials and other nonlinear models, are also possible choices.
But, since these models are less often used compared with the linear models
of (10.22), explicit forms of these models are not described in detail here.

2. Basis Approximations for Mean Effects

When the parametric forms of α(s) and β (s) of (10.21) are unknown,
nonparametric analysis can be performed by approximating α(s) and β (s)
with basis expansions. If

{
Bd1

(s) =
(
Bd10(s), . . . , Bd1Ld1

(s)
)T

: 0 ≤ d1 ≤ D1

}

and {
B

∗
d2
(s) =

(
B

∗
d20(s), . . . , Bd2Md2

(s)
)T

: 0 ≤ d2 ≤ D2

}
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are two sets of pre-specified basis functions, their basis approximations for
α(s) and β (s) are given by

αd(s; γ)≈
Ld

∑
l=0

γdl Bdl(s) and βd(s; τ)≈
Md

∑
m=0

τdm B
∗
dm(s), (10.23)

where Ld and Md may tend to infinity as n → ∞. Unlike (10.22), the dimen-
sionality of (γd0, . . . , γdLd

)T and (τd0, . . . , τdMd
)T may tend to infinity, so that

we may view (10.23) as a special case of the infinite dimensional extended
linear models. The real quantities of interest in practice are the curves αd(s; γ)
and βd(s; τ) instead of the coefficients γdl and τdm.

Common choices of basis functions include truncated polynomial bases,
Fourier bases or B-splines. Currently, only B-splines with fixed knot sequences
have been investigated for the model (10.21) in the literature (Wu, Tian and
Bang, 2008). An alternative smoothing approach could be to approximate α(s)
and β (s) by smoothing splines as in Chapter 5. But nonparametric estimation
and inference with smoothing splines in (10.21) have not been studied, since
explicit expressions and statistical properties of smoothing spline estimators
require different mathematical derivations from B-splines.

10.4.3 Likelihood-Based Estimation

When the conditional mean curves α(s) and β (s) are specified by parametric
forms and the distribution of εi j and the conditional distribution G(·|Si) be-
long to known parametric families, parameter estimation of the model (10.21)
can be obtained by a likelihood-based estimation procedure. If the condi-
tional density function (10.18) has an explicit parametric expressions, the
parameters can be in principle estimated by maximizing the log-likelihood

∑n
i=1 log f

(
Yi,Si

∣∣ti,Xi

)
. But, since the distribution of Si is usually unknown in

practice, the approach suggested by Wu, Tian and Bang (2008) is to maxi-
mize the partial likelihood composed by the conditional joint densities given{

Si : i = 1, . . . , n
}
.

1. Estimators for Linear Models

We demonstrate this likelihood-based estimation method using the linear
conditional model formed by (10.21) and (10.22). When (10.21) and (10.22)
are satisfied, G(·|s) is Gaussian with mean zero and covariance matrix C(Si),
and (

εi1, . . . , εini

)T ∼ N
(
0, Γi

)
,

the model under consideration is




Yi j = ∑
D1
d=0 ∑

Ld

l=0 Zi jd γdl Tdl(s)+ZT
i j a∗i

+∑
D2
d=0 ∑

Md
m=0 δi j Wi jd τdmT ∗

dm(s)+ δi j WT
i j b∗

i + εi j,
(
a∗T

i , b∗T
i

)T ∣∣Si ∼ N
(
0, C(s)

)
,

(10.24)



324 MODELS FOR CONCOMITANT INTERVENTIONS

where the parameters of interest γ and τ are defined in (10.22). Since the
marginal distribution of Si in the model (10.24) is unknown, we can estimate
γ and τ by maximizing the following partial log-likelihood function,

L
(
γ, τ
∣∣ti, Xi, Si

)
=

n

∑
i=1

log

[∫
f
(
Yi

∣∣ti, Xi, Si, ai, bi

)
dG
(
ai, bi

∣∣Si

)]
, (10.25)

which is the conditional log-likelihood function of
{

Yi : i = 1, . . . , n
}

given{
Si, ti, Xi : i = 1, . . . , n

}
,

To obtain the matrix representation of the maximum partial log-likelihood
estimators of γ and τ, we define





Wi = the matrix whose jth row is
(
ZT

i j, δi j WT
i j

)
,

Td(s) =
(
Tdl(s), . . . , TdLd

(s)
)T

,

T ∗
d (s) =

(
T ∗

d1(s), . . . , T
∗

dMd
(s)
)T

,

T (s) = diag
{
T T

0 (s), . . . , T T
D1
(s), T ∗T

0 (s), . . . , T ∗T
D2

(s)
}
,

T (Si) = Ti,

Vi = the covariance matrix of

ei j = ZT
i j a∗i + δi j WT

i j b∗
i + εi j, 1 ≤ j ≤ ni,

(10.26)

where diag(A1, . . . , Ak) represents the block diagonal matrix with diagonal
block matrices {A1, . . . , Ak}.

Using the notation in (10.26), the matrix representation for (10.22) is





(
αT (s; γ), β T (s; τ)

)T
= T (s)

(
γT , τT

)T
,

γd =
(
γd0, . . . , γdLd

)T
, γ =

(
γT

0 , . . . , γT
D1

)T
,

τd =
(
τd0, . . . , τdMd

)T
, τ =

(
τT

0 , . . . , τT
D2

)T
.

(10.27)

When Vi are known, maximizing (10.25) for the model (10.24) leads to the

maximum likelihood estimator of
(
γT , τT

)T
of the form

(
γ̂ML(T )

τ̂ML(T )

)
=

[
n

∑
i=1

(
Wi Ti

)T
V−1

i

(
Wi Ti

)]−1 [ n

∑
i=1

(
Wi Ti

)T
V−1

i Yi

]
(10.28)

provided that ∑n
i=1

[
(Wi Ti)

T V−1
i (Wi Ti)

]
is nonsingular. When Vi are unknown

but can be consistently estimated by a nonsingular estimator V̂i, we can esti-

mate
(
γT , τT

)T
by

(
γ̃ML(T )

τ̃ML(T )

)
=

[
n

∑
i=1

(
Wi Ti

)T
V̂−1

i

(
Wi Ti

)]−1[ n

∑
i=1

(
Wi Ti

)T
V̂−1

i Yi

]
. (10.29)

A class of covariance estimators V̂i is derived in Section 10.4.5.
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2. Estimators for Basis Approximated Models

When αd(s; γ) and βd(s; τ) are nonparametric curves which can be ap-
proximated by the right-side expansions of (10.23), an infinite dimensional
extended linear model version of (10.24) is





Yi j ≈ ∑
D1
d=0 ∑

Ld

l=0 Zi jd γdl Bdl(s)+ZT
i j a∗i

+∑
D2
d=0 ∑

Md
m=0 δi j Zi jd τdm B∗

dm(s)

+δi j WT
i j b∗

i + εi j,
(
a∗T

i , b∗T
i

)T ∣∣Si ∼ N
(
0, C(s)

)
.

(10.30)

For any given Ld and Md , we substitute Tdl(s) and T ∗
dm(s) in (10.26) with

the basis functions Bdl(s) and B∗
dm(s), respectively, and get





Bd(s) =
(
Bdl(s), . . . , BdLd

(s)
)T

,

B∗
d(s) =

(
B∗

d1(s), . . . , B
∗
dMd

(s)
)T

,

B(s) = diag
{
BT

0 (s), . . . , B
T
D1
(s), B∗T

0 (s), . . . , B∗T
D2
(s)
}
,

B(Si) = Bi.

(10.31)

The approximate maximum likelihood estimators γ̂ML(B) and τ̂ML(B) for the
case of known Vi are then given by
(

γ̂ML(B)

τ̂ML(B)

)
=

[
n

∑
i=1

(
Wi Bi

)T
V−1

i

(
Wi Bi

)]−1 [ n

∑
i=1

(
Wi Bi

)T
V−1

i Yi

]
(10.32)

provided that ∑n
i=1

[
(Wi Bi)

T V−1
i (Wi Bi)

]
is nonsingular, where Wi and Vi are

defined in (10.26). The likelihood-based nonparametric basis approximation

estimators of
(
αT (s), β T (s)

)T
under the basis approximations of (10.23) with

known Vi is
(

α̂T
ML(s; B)), β̂ T

ML(s; B)
)T

= B(s)
(

γ̂T
ML(B), τ̂T

ML(B)
)T

. (10.33)

Using the same approach as in (10.29), when Vi is unknown but a consistent

estimator V̂i (Section 10.4.5) of Vi is available, the approximate maximum
likelihood estimators γ̃ML(B) and τ̃ML(B) are then given by
(

γ̃ML(B)

τ̃ML(B)

)
=

[
n

∑
i=1

(
Wi Bi

)T
V̂−1

i

(
Wi Bi

)]−1 [ n

∑
i=1

(
Wi Bi

)T
V̂−1

i Yi

]
, (10.34)

and the nonparametric basis approximation estimators of
(
αT (s), β T (s)

)T

computed using (10.34) is

(
α̃T

ML(s; B), β̃ T
ML(s; B)

)T

= B(s)
(

γ̃T
ML(B), τ̃T

ML(B)
)T

. (10.35)

provided that ∑n
i=1

[
(Wi Bi)

T V̂−1
i (Wi Bi)

]
is nonsingular.
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10.4.4 Least Squares Estimation

Likelihood-based estimators of α(s) and β (s) for (10.21) cannot be computed
if the explicit forms of G(·|Si) and the distribution of εi j are unknown. In this
case, the special case (10.24) may not be satisfied. A practical approach is to
directly estimate the coefficient curves α(s) and β (s) in (10.21) using least
squares.

1. Least Squares Estimators for Linear Models

When α(s) =α(s; γ) and β (s) = β (s; τ) belong to some parametric families,
which are determined by Euclidean space parameters γ and τ, respectively, a
practical approach is to compute the weighted least squares estimators γ̂LS

and τ̂LS by minimizing the score function

ℓ(γ, τ) =
n

∑
i=1

{[
Yi −

(
ZT

i α(Si; γ)+ (δW)T
i β (Si; τ)

)]T

×Λi

[
Yi −

(
ZT

i α(Si; γ)+ (δW)T
i β (Si; τ)

)]}
(10.36)

with respect to γ and τ, where

Zi =
(
Zi1, . . . , Zini

)T
, (δ W)i =

(
δi1 Wi1, . . . , δini

Wini

)T
,

and Λi are pre-specified symmetric nonsingular ni × ni weight matrices. The
main advantage of the weighted least squares estimators is that (10.36) does
not depend on the explicit distribution functions of εi j and the conditional
distribution function G(·|s), so that (10.36) is not limited to (10.24) or other
special cases and can be applied to the general model (10.21). Statistical prop-
erties of the weighted least squares estimators γ̂LS and τ̂LS depend on the chosen
parametric families for α(s; γ) and β (s; τ). At the very minimum, the forms
of α(s; γ) and β (s; τ) have to ensure the existence and uniqueness of the min-
imizer (γ̂T , τ̂T ) of (10.36).

For the special case that α(s; γ) and β (s; τ) are given by the linear model
(10.22), explicit expressions of the weighted least squares estimator of (γT , τT )
uniquely exists and is given by

(
γ̂LS(T )

τ̂LS(T )

)
=

[
n

∑
i=1

(
Wi Ti

)T
Λi

(
Wi Ti

)]−1 [ n

∑
i=1

(
Wi Ti

)T
Λi Yi

]
, (10.37)

provided that ∑n
i=1[Wi Ti]

T Λi [Wi Ti] is nonsingular, where Wi, Ti and T are
defined in (10.26).

2. Least Squares Basis Approximation Estimators

For the case that α(s) and β (s) are nonparametric functions but can be
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approximated by the basis approximations (10.23), we have the infinite di-
mensional extended linear model, which is a basis approximation version of
(10.21) such that





Yi j ≈ ∑
D1
d=0 ∑

Ld

l=0 Zi jd γdl Bdl(s)+ZT
i j a∗i

+∑
D2
d=0 ∑

Md
m=0 δi j Wi jd τdm B∗

dm(s)+ δi j WT
i j b∗

i + εi j,
(
a∗T

i , b∗T
i

)T ∣∣Si ∼ G(·|Si).

(10.38)

Substituting the αd(s; γ) and βd(s; τ) in (10.36) with the right side approxi-
mation terms of (10.23), the weighted least squares nonparametric estimator(
γ̃T

LS(B), τ̃T
LS(B)

)T
has the expression

(
γ̃LS(B)

τ̃LS(B)

)
=

[
n

∑
i=1

(
Wi Bi

)T
Λi

(
Wi Bi

)]−1 [ n

∑
i=1

(
Wi Bi

)T
Λi Yi

]
, (10.39)

provided that ∑n
i=1[Wi Bi]

T Λi [Wi Bi] is nonsingular, where Wi is defined in
(10.26) and

{
Bi, B

}
are defined in (10.31). Substituting the coefficients γdl

and τdm in (10.23) with the corresponding estimates given in (10.39), the basis
approximation estimators of the coefficient curves α(s; γ) and β (s; τ) are

(
α̃T

LS(s; B), β̃ T
LS(s; B)

)T

= B(s)
(

γ̃T
LS(B), τ̃T

LS(B)
)T

. (10.40)

In practice, a number of choices for the weight function Λi in (10.36) may
be considered. When Λi = V−1

i and the distribution function of εi j and the
conditional distribution function G(·|s) are assumed to be normal, (10.37)
and (10.39) are the same as the maximum likelihood estimators or their basis
approximated versions. When Vi are unknown, as is often the case in practice,
subjective choices for Λi may be used. One potential plug-in approach is to
estimate Vi from the data and compute the estimates by substituting Λi with
the estimates of V−1

i . But, in practice, Vi is often difficult to estimate. The
question of whether such plug-in estimators have superior statistical proper-
ties than the estimators with subjective Λi choices has not been satisfactorily
answered in the literature, and requires further systematic investigation.

10.4.5 Estimation of the Covariances

1. Models for Covariances

We now discuss a number of ways to model and estimate the covariance
structure Vi defined in (10.26). By the definition of ei j in (10.26), the ( j1, j2)th
component of Vi is

Vi, j1, j2 = E
[
ei j1 ei j2

]
= ρi, j1, j2(A, B, C)+σi, j1, j2 , (10.41)
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where A = E
(
a∗i a∗T

i

)
, B = E

(
b∗

i b∗T
i

)
, C = E

(
a∗i b∗T

i

)
, σi, j1, j2 = E

(
εi j1 εi j2

)
and

ρi, j1, j2(A, B, C) = ZT
i j1

AZi j2 +ZT
i j1

C
(
δi j2 Wi j2

)
+
(
δi j1 WT

i j1

)
CZi j2

+
(
δi j1 WT

i j1

)
B
(
δi j2 Wi j2

)
.

For the special case that εi j are independent measurement errors, such that
σi, j1, j2 = 0 if j1 6= j2 and σ2 if j1 = j2, Vi follows the parametric model
Vi(A, B, C, σ2) with

Vi, j1, j2 =

{
ρi, j1, j2(A, B, C), if j1 6= j2;

ρi, j, j(A, B, C)+σ2, if j1 = j2 = j.
(10.42)

Other modeling structures for Vi can be constructed by incorporating para-
metric or nonparametric models of σi, j1, j2 (e.g., Diggle et al., 2002).

For the general case of εi j having unknown correlation structures, σi, j1, j2 is
a nonparametric component in (10.41), hence, can be either directly estimated
or approximated by a basis approximation. Under a different regression model,
Diggle and Verbyla (1998) suggests a local smoothing method for estimating
the covariance structures. However, local smoothing could be computationally
intensive, since the covariance estimates have to be computed at all the distinct
pairs of observation times. To ease the burden of computation, Huang, Wu and
Zhou (2004) suggests that a consistent covariance estimator can be constructed
by B-spline approximations.

Using the B-spline approach, we can approximate σi, j1, j2 by

σi, j1, j2(u, v) =

{
∑

K1
k=1 ∑

K1
l=1 ukl Bk

(
ti j1

)
Bl

(
ti j2

)
, if j1 6= j2:

∑
K2
k=1 vk Bk

(
ti j

)
, if j1 = j2 = j,

(10.43)

where {Bk} is a spline basis with a fixed knot sequence,

u =
{

ukl = ulk : k, l = 1, . . . , K1

}
and v =

{
vk : k = 1, . . . , K2

}
.

Substituting the right-side expressions of σi, j1, j2(u,v) in (10.43) into (10.41),
Vi is approximated by Vi(A, B, C, u, v), such that

Vi, j1, j2 =





ρi, j1, j2(A, B, C)

+∑
K1
k=1 ∑

K1
l=1 ukl Bk

(
ti j1

)
Bl

(
ti j2

)
, if j1 6= j2;

ρi, j1, j2(A, B, C)+∑
K2
k=1 vk Bk

(
ti j

)
, if j1 = j2 = j

(10.44)

gives the basis approximated components defined in (10.41).

2. Least Squares Covariance Estimators

Once an approximate parametric model for Vi is established, such as
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(10.42) and (10.44), the estimators of Vi can be computed by a least squares
method. Let

êi j = Yi j −
[
ZT

i j α̂(Si)+ δi j WT
i j β̂ (Si)

]
(10.45)

be the residual of Yi j computed based on some consistent estimators α̂(s)

and β̂ (s). If Vi, j1, j2 = ρi, j1, j2(A, B, C) + σi, j1, j2(u, v), we can estimate Vi by

Vi

(
Â, B̂, Ĉ, û, v̂

)
, where

{
Â, B̂, Ĉ, û, v̂

}
minimizes the score function

L(A, B,C, u, v) =





∑n
i=1 ∑

ni
j1, j2=1, j1< j2

{
êi j1 êi j2 −

[
ρi, j1, j2(A, B, C)

+∑k ∑l ukl Bk

(
ti j1

)
Bl

(
ti j2

)]}2

,

subject to ukl = ulk, when j1 6= j2;

∑n
i=1 ∑

ni
j=1

{
ê2

i j −
[
ρi, j, j(A, B, C)+∑k vk Bk

(
ti j

)]}2

,

when j1 = j2 = j.
(10.46)

Since the estimator of Vi may also be used in the estimation procedures of
Sections 10.4.3 and 10.4.4, we can adopt a two-step procedure by first obtain-

ing the preliminary estimators α̂(s) and β̂(s) using the estimation procedures
of Sections 10.4.3 and 10.4.4 with Vi ignored, and then estimating Vi using

V̂i = Vi

(
Â, B̂, Ĉ, û, v̂

)
.

The estimator V̂i can then be used in the estimation procedures of Sec-
tions 10.4.3 and 10.4.4 to obtain the refined estimators of α(s) and β (s).

Because (10.46) involves many parameters, minimizing the score function
L(A, B,C, u, v) can be computationally intensive in practice. Fortunately, as
discussed in Sections 10.4.3 and 10.4.4, the choice of Vi may only affect the
variability of the estimators for the mean coefficient curves α(s) and β (s) in the

model (10.21). As discussed in Huang, Wu and Zhou (2004), Vi

(
Â, B̂, Ĉ, û, v̂

)

need not be positive definite for a finite sample, although, by consistency,
it is asymptotically positive definite. The problem of imposing finite sample
positive definiteness to the spline estimators of Vi deserves substantial fur-
ther investigation. The adequacy of Vi

(
Â, B̂, Ĉ, û, v̂

)
depends on the choices

of knots and the degrees of the splines. Although it is possible to develop
data-driven knots using some cross-validation or generalized cross-validation
procedures, statistical properties of such procedures are still unknown. Sub-
jective knot choices, such as using a few equally spaced knots, often give
satisfactory results in biomedical applications.

10.5 The Shared-Parameter Change-Point Models

As an alternative to the varying-coefficient models of the previous section, we
summarize in this section a class of Shared-Parameter Change-Point Models,
which, as a special case of the general model (10.17), can be used to evaluate
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the concomitant intervention effects with possibly censored change-point times
in (10.5). This class of models is developed in Wu, Tian and Jiang (2011),
which extends the shared-parameter model framework described in Follmann
and Wu (1995) to the context with concomitant interventions.

10.5.1 Model Formulation and Justifications

Despite its advantages over the naive mixed-effects models in handling con-
comitant intervention, the varying-coefficient mixed effects model (10.21) has
the main drawback of requiring the change-point times Si to be observed
for all the subjects. This is because the concomitant intervention effects
on the outcome are described through the coefficient curves α(s) and β (s)
and the estimation methods of Section 10.4 require the observed values of
{Si : i = 1, . . . , n}. For many situations, including the ENRICHD study (Sec-
tion 1.2.2), some subjects may start the concomitant intervention at baseline,
and some other subjects may not use the concomitant intervention during the
study period at all, so that the structure fits into the general framework of
(10.5). Regression models requiring the observed values of the change-point
times for all the subjects, such as (10.21), can only be applied to a subset of the
study subjects in (10.5), which may lead to biased conclusions or information
loss.

In order to incorporate the censored change-point times
{

S
(c)
i , δ

(c)
i : i =

1, . . . , n
}
, we further specify the general shared-parameter change-point model

(10.17) using a number of practical scenarios. When the concomitant interven-
tion change-point time only depends on the pre-intervention trends ai of the
outcome variable, a useful special case of the shared-parameter change-point
model (10.17) is

{
Yi j = µ0(ti j, Xi; ai)+λi j µ1(ti j , Xi, Ri j; bi)+ εi j,

ai ∼ Fa(·), Si|ai ∼ Fs(·|ai), bi|ai ∼ Fb(·|ai),
(10.47)

where Fa(·) is the cumulative distribution function (CDF) of ai, Fs(·|ai) and
Fb(·|ai) are the conditional CDFs of Si and bi given ai, bi and Si are independent
given ai and the random error term εi j are defined as in (10.17).

In contrast to the varying-coefficient model (10.21), where the conditional
means of ai and bi given Si are used, (10.47) specifies that both the change-
point time Si and the concomitant intervention effect bi are affected by the
pre-intervention time-trends ai, and these dependence relationships are de-
scribed through the conditional distribution functions Fs(·|ai) and Fb(·|ai). By
modeling the conditional distribution of Si given ai, (10.47) allows Si to be
left- or right-censored. For simplicity, (10.47) assumes that bi does not de-
pend on Si, although further generalizations may allow the distribution of bi

to depend on both Si and ai simultaneously. Further special cases of (10.47)
can be derived by specifying the function forms of µ0(·; ai), µ0(·; bi), Fs(·|ai),
Fb(·|ai) and Fa(·). These special cases lead to the models described below.
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10.5.2 The Linear Shared-Parameter Change-Point Model

Further specifications of Fa(·), Fs(·|ai) and Fb(·|ai) in (10.47) may be consid-
ered in practice to balance the computational feasibility and flexibility of the
model. A useful and mathematically tractable specification for (10.47) is to
assume that Si and bi depend on ai only through some linear functions of
their conditional means. This approach leads to a linear shared-parameter
change-point model of the form




Yi j = µ0

(
ti j, Xi; ai

)
+λi j µ1

(
ti j, Xi, Ri j; bi

)
+ εi j,

ai = α + e
(a)
i , Si = γT

(
1, aT

i

)T
+ e

(s)
i , bi = β T

(
1, aT

i

)T
+ e

(b)
i ,

α =
(
α1, . . . , αd0

)T
, αd ∈ R,

β =
(
β T

1 , . . . , β T
d1

)T
, βl =

(
βl0, . . . , βld0

)T
, βld ∈ R,

γ =
(
γ0, . . . , γd0

)T
, εi =

(
εi1, . . . , εini

)T
,

(10.48)

where εi, e
(a)
i , e

(b)
i and e

(s)
i are independent mean zero random errors with

covariance matrices Vy, Va, Vb and σ2
s , respectively. The unknown parameters

in (10.48) are the mean components and the covariance structures

{
θ =

(
αT , β T

1 , . . . , β T
d1
, γT
)T

,

V =
{

Vy, Va, Vb, σ2
s

}
.

(10.49)

The linearity in (10.48) refers only to the linear relationship between ai,
Si and bi. The functions µ0(ti j, Xi; ai) and µ1(ti j, Xi, Ri j; bi) may or may not
have linear parametric forms. Since (10.48) involves many parameters, it is
often motivated to use linear models for µ0(ti j, Xi; ai) and µ1(ti j, Xi, Ri j; bi) in
practice to reduce the model complexity of (10.48), so that computationally
feasible estimation procedures can be developed. If µ0(·; ai) and µ1(·; bi) are
both linear functions, a fully linear model of (10.48) can be derived by writing

µ0

(
ti j, Xi; ai

)
= aT

i Z
(0)
i j and µ1

(
ti j, Xi, Ri j; bi

)
= bT

i Z
(1)
i j ,

where Z
(0)
i j is a d0 × 1 vector specified by

{
ti j, Xi

}
and Z

(1)
i j is a d1 × 1 vec-

tor specified by
{

ti j, Si, Xi

}
. This leads to the following fully linear shared-

parameter change-point model





Yi j = aT
i Z

(0)
i j +λi j bT

i Z
(1)
i j + εi j,

ai = α + e
(a)
i , Si = γT

(
1, aT

i

)T
+ e

(s)
i , bi = β T

(
1, aT

i

)T
+ e

(b)
i ,

α =
(
α1, . . . , αd0

)T
, αd ∈ R,

β =
(
β T

1 , . . . , β T
d1

)T
, βl =

(
βl0, . . . , βld0

)T
, βld ∈ R,

γ =
(
γ0, . . . , γd0

)T
, εi =

(
εi1, . . . , εini

)T
,

(10.50)
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where the population parameters of interest are the same as in (10.49).
The main advantage of (10.50) is its simplicity. For an intuitive interpre-

tation, this model suggests that the outcome value of the ith subject at time

point ti j would have the subject-specific mean aT
i Z

(0)
i j if ti j is before the con-

comitant intervention. If ti j is after the concomitant intervention, the subject-

specific mean outcome would be aT
i Z

(0)
i j +bi Z

(1)
i j with bi Z

(1)
i j being the change

of the subject’s outcome due to the concomitant intervention. However, since
the population-mean coefficients are α and β , the predicted outcome at time

ti j for a new subject with design vectors Z
(0)
i j and Z

(1)
i j would be αT Z

(0)
i j if

ti j is before the concomitant intervention, and αT Z
(0)
i j +β T Z

(1)
i j if ti j is after

the concomitant intervention. Given α and β , we would predict that the con-
comitant intervention would on average increase (or decrease) the predicted

outcome for a new subject with design vectors Z
(0)
i j and Z

(1)
i j if β T Z

(1)
i j > 0 (or

β T Z
(1)
i j < 0). Since not all subjects have change-point times Si fully observed

during the study, adequate estimation of α and β from the data (10.5) de-
pends on the appropriateness of the models. We will see later in the numerical
results of Section 10.7 that, although the linear relationships among ai, bi and
Si may be subjective and “over-simplified,” (10.50) still represents a remark-
able improvement over the models without considering the effects of ai on Si

and bi.

10.5.3 The Additive Shared-Parameter Change-Point Model

When the relationship between Si and ai in (10.47) is unknown, a nonpara-
metric model for {Si, ai} is

Si = µ (s)(ai)+ ε
(s)
i ,

where µ (s)(ai) = E(Si|ai) is a smooth function of ai. Since unstructured esti-
mation of µ (s)(ai) could be difficult when ai is a high-dimensional vector, a
simple additive approach is to replace the relationship between Si and ai in
(10.47) with

Si =
d0

∑
d=0

µ
(s)
d (aid)+ ε

(s)
i , (10.51)

where µ
(s)
d (aid) are smooth functions of aid . Based on (10.51), an additive

shared-parameter model for (10.47) is
{

Yi j = µ0

(
ti j, Xi; ai

)
+λi j µ1

(
ti j, Xi, Ri j; bi

)
+ εi j,

ai = α + e
(a)
i , Si = ∑

d0

d=0 µ
(s)
d (aid)+ ε

(s)
i ,bi = β T

(
1, aT

i

)T
+ e

(b)
i ,
(10.52)

where α =
(
α1, . . . , αd0

)T
and β =

(
β1, . . . , βd1

)T
are defined as in (10.48).

Further generalizations of (10.52) are theoretically possible but at the expense
of computational complexity.
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Additional special cases of (10.52) can be constructed by specifying the
forms of µ0(·; ai) and µ1(·; bi). The additive relationship between Si and ai

in (10.51) follows a nonparametric model, so that (10.52) is a semiparamet-
ric model if µ0(·; ai) and µ1(·; bi) are specified by parametric functions. Since
(10.52) is a relatively complex model involving many parameters and nonpara-
metric curves, it is of practical interest to consider some simple structures,
such as the linear models, for µ0(·; ai) and µ1(·; bi), so that computationally
feasible estimators of the parametric and nonparametric components can be
obtained. For this reason, the practical applications of (10.48) and (10.52) in
this chapter all assume linear models for µ0(·; ai) and µ1(·; bi). When linear

models of the form µ0(·; ai) = aT
i Z

(0)
i j and µ1(·; bi) = bT

i Z
(1)
i j are used in (10.52),

we obtain a semiparametric additive shared-parameter change-point model




Yi j = aT
i Z

(0)
i j +λi j bT

i Z
(1)
i j + εi j,

ai = α + e
(a)
i , Si = ∑

d0
d=0 µ

(s)
d (aid)+ ε

(s)
i ,bi = β T

(
1, aT

i

)T
+ e

(b)
i ,

(10.53)

where Z
(0)
i j and Z

(1)
i j are the design vectors defined in (10.50).

10.5.4 Likelihood-Based Estimation

For both models (10.48) and (10.52), the main objective is to estimate the
mean parameters α and β , while other parameters, such as γ and the variance
parameters, are generally not of primary interest. Because of the complexity
of the models, the estimators of α and β are obtained through the maximum
likelihood method for the parametric model (10.48) and the approximate max-
imum likelihood method for the semiparametric model (10.50). For both of
these likelihood-based methods, the underlying marginal and conditional dis-
tributions are assumed to be known.

1. Maximum Likelihood Estimation

We first consider the case that (10.47) is a parametric model. If the dis-
tribution functions are explicitly specified with a known parametric form, the
parameters in (10.47) can be estimated by the following maximum likelihood
estimators (MLE). Denote by

Yi =
(
Yi1, . . . , Yini

)T
, ti =

(
ti1, . . . , tini

)T
and Di =

{
ti, Xi

}
.

Let fy(·), fb(·), fs(·) and fa(·) be the density functions of Yi j, bi, Si and ai. The
joint density of

{
bi, Si, ai

}
in (10.47) can be expressed as

f
(
bi, Si, ai

)
= fb

(
bi

∣∣ai

)
fs

(
Si

∣∣ai

)
fa

(
ai

)
.

The conditional density of
{

Yi, Si

}
given Di =

{
ti, Xi

}
can be derived by in-

tegrating over ai and bi and is given by

f(y,s)
(
Yi, Si

∣∣Di

)
=

∫ ∫
fy

(
Yi

∣∣Di, Si, ai, bi

)
fb

(
bi

∣∣ai

)
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× fs

(
Si

∣∣ai

)
fa

(
ai

)
dai dbi. (10.54)

Since the observed change-point time is the double censored version{
S
(c)
i , δ

(c)
i

}
, we may not be able to use the above conditional density func-

tion (10.54) directly in estimation.

Recall from (10.2) that δ
(c)
i = 1 implies that the ith subject does not start

the concomitant intervention at or before the last measurement time tini
, while

δ
(c)
i = 2 implies that the ith subject has already started the concomitant in-
tervention before the first measurement time ti1. In this case, we can consider

the conditional density of S
(c)
i =

{
S
(c)
i , δ

(c)
i

}
given ai,

fs

(
S
(c)
i , δ

(c)
i

∣∣ai

)
=





fs

(
Si

∣∣ai

)
, if δ

(c)
i = 0,

1−Fs

(
tini

∣∣ai

)
, if δ

(c)
i = 1,

Fs

(
ti1
∣∣ai

)
, if δ

(c)
i = 2.

(10.55)

Let f(y,1)(·|Di, ai) and f(y,2)(·|Di, ai, bi) be the densities of Yi given{
Di, ai, δ

(c)
i = 1

}
and

{
Di, ai, bi, δ

(c)
i = 2

}
, respectively. Integrating out ai

and bi using (10.55), the corresponding conditional densities of Yi given

Di =
{

ti, Xi

}
for subjects with δ

(c)
i = 1 and δ

(c)
i = 2 are

f(y,1)
(
Yi

∣∣Di

)
=

∫
f(y,1)

(
Yi

∣∣Di, ai

)[
1−Fs

(
tini

∣∣ai

)]
fa

(
ai

)
dai

and

f(y,2)
(
Yi

∣∣Di

)
=

∫ ∫
f(y,2)

(
Yi

∣∣Di, ai, bi

)
Fs

(
ti1
∣∣ai

)
fb

(
bi

∣∣ai

)
fa

(
ai

)
dai dbi.

The log-likelihood function of
{

Yi, S
(c)

i

}
conditioning on Di, i = 1, . . . , n, and

the MLE φ̂ML =
{

θ̂ML, V̂ML

}
are given by





Lc(φ) = (1/n) ∑
i:δ

(c)
i =0

log f(y,s)
(
Yi, Si

∣∣Di

)

+(1/n) ∑l=1,2 ∑
i:δ

(c)
i =l

log f(y,l)
(
Yi

∣∣Di

)
,

Lc

(
φ̂ML

)
= maxφ Lc(φ),

(10.56)

where f(y,s)(·|·) is given in (10.54), φ = {θ , V} is defined in (10.49), and the

parametric family for f(y,s)(·|·) is denoted by
{

f(y,s)(·; φ |Di); φ
}
. We assume in

(10.56) that the maximizer φ̂ML =
{

θ̂ML, V̂ML

}
of Lc(φ) exists and is unique,

and the log-likelihood function Lc(φ) satisfies the regularity conditions of the
maximum likelihood estimators (cf. Serfling, 1980, Section 4.2).

2. Basis Approximation Estimation

Estimation for the additive shared-parameter change-point model (10.52)
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can be achieved through maximizing an approximate likelihood function for

(10.52) by substituting µ
(s)
d (·), d = 0, . . . , d0, with some expansions of basis

functions. Under some mild smoothness conditions on µ
(s)
d (·) (Section 4.4.2),

we can consider a set of B-spline basis functions
{

B
(d)
1 (·), . . . , B

(d)
Pd

(·)
}
, and

approximate µ
(s)
d (·) by the B-spline expansion

µ
(s)
d (aid)≈

Pd

∑
p=1

γ
(d)
p B

(d)
p (aid) =

(
γ(d)
)T

B(d)(aid) (10.57)

for some Pd ≥ 1, where

B(d)(aid) =
(
B
(d)
1 (aid), . . . , B

(d)
Pd

(aid)
)T

and γ(d) =
(
γ
(d)
1 , . . . , γ

(d)
Pd

)T
is a set of real-valued coefficients. Substituting

(10.57) into (10.51), we have

Si ≈
d0

∑
d=0

(γ(d))T B(d)(aid)+ ε
(s)
i . (10.58)

Substituting ∑
d0
d=0 µ

(s)
d (aid) of (10.52) with ∑

d0
d=0(γ

(d))T B(d)(aid), the basis ap-
proximated additive shared-parameter change-point model is





Yi j = µ0

(
ti j, Xi; ai

)
+λi j µ1

(
ti j, Xi, Ri j; bi

)
+ εi j,

ai = α + e
(a)
i ,

Si ≈ ∑
d0

d=0(γ
(d))T B(d)(aid)+ ε

(s)
i ,

bi = β T
(
1,aT

i

)T
+ e

(b)
i ,

(10.59)

which is specified by the parameters





θ =
(
αT , β T

1 , . . . , β T
d1
, γT
)T

,

γ =
(
(γ(0))T , . . . , (γ(d0))T

)T
,

V =
{

Vy, Va, Vb, σ2
s

}
.

(10.60)

The objective for (10.59) is to estimate the mean parameters
(
αT , β T

1 , . . . , β T
d1

)T

in (10.60) with γ and V taken as nuisance parameters. To do this, we
need to write down the approximated log-likelihood function for (10.59),
where the approximation refers to substituting Si with the right-side term

∑
d0
d=0(γ

(d))T B(d)(aid)+ ε
(s)
i .

Let f ∗s (·; γ, σs|ai) be the conditional density of ∑
d0

d=0(γ
(d))T B(d)(aid)+ ε

(s)
i

given ai. If the distributions of εi j, e
(a)
i , e

(b)
i and e

(s)
i , which all have zero

means, are determined by the vector of variance parameters V, and the density
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fs(Si|ai) can be approximated by f ∗s (Si; γ, σs|ai), the approximate maximum

likelihood estimators φ̂AML =
{

θ̂AML, V̂AML

}
of the parameters φ =

{
θ T , VT

}T

of (10.60) can be obtained by maximizing the approximate log-likelihood func-

tion for
{

Yi, S
(c)

i

}
given Di =

{
ti, Xi

}
, such that,





L∗
c(φ) = (1/n) ∑

i:δ
(c)
i =0

log f ∗(y,s)
(
Yi, Si; φ

∣∣Di

)

+(1/n) ∑l=1,2 ∑
i:δ

(c)
i =l

log f ∗(y,l)
(
Yi; φ

∣∣Di

)
,

L∗
c

(
φ̂AML

)
= maxφ L∗

c(φ),

(10.61)

where f ∗(y,s)(·|Di) and f ∗(y,k)(·|Di), k = 1, 2, are given in (10.56) with fs(Si|ai)

replaced by f ∗s
(
Si; γ, σs

∣∣ai

)
. We assume in (10.61) that the maximizer φ̂AML ={

θ̂AML, V̂AML

}
of L∗

c(φ) exists and is unique, and, for any fixed Pd in (10.57), the
approximate log-likelihood function L∗

c(φ) satisfies the regularity conditions of
the MLEs (cf. Serfling, 1980, Section 4.2).

10.5.5 Gaussian Shared-Parameter Change-Point Models

To make the likelihood-based estimation methods of Section 10.5.4 more pre-
cise, we derive the expressions of the likelihood functions for the Gaussian
linear shared-parameter change-point model (10.48) and the Gaussian addi-
tive shared-parameter change-point model (10.52). This Gaussian assumption
refers that Fa(·), Fs(·|ai), Fb(·|ai) and the distribution of εi j are all Gaussian.

1. The Gaussian Linear Shared-Parameter Change-Point Model

The model (10.48) is a Gaussian linear shared-parameter change-point

model if the error terms εi, e
(a)
i , e

(b)
i and e

(s)
i have mean zero multivariate

normal distributions. As noted in Section 10.5.2, the linearity of (10.48) refers
to the linear relationships of {Si, ai} and {bi, ai}, while µ0

(
Ti1, Xi; ai

)
and

µ1

(
Ti1, Xi, Ri1; bi

)
could be either linear or nonlinear functions.

Let Vy, Va, Vb and σ2
s be the corresponding covariance matrices of εi, e

(a)
i ,

e
(b)
i and e

(s)
i ,

m
(0)
i =

(
µ0

(
Ti1, Xi; ai

)
, . . . , µ0

(
Tini

, Xi; ai

))T

and

m
(1)
i =




µ0

(
Ti1, Xi; ai

)
+λi1 µ1

(
Ti1, Xi, Ri1; bi

)

...

µ0

(
Tini

, Xi; ai

)
+λini

µ1

(
Tini

, Xi, Rini
; bi

)


 .

The log-likelihood function (10.56) is determined by the mean structure

θ =
(
αT , β T

1 , . . . , β T
d1
, γT
)T
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and covariance structure V of (10.49). Direct computation using f(y,s)
(
Yi, Si

∣∣Di

)
,

f(y,1)
(
Yi

∣∣Di

)
, f(y,2)

(
Yi

∣∣Di

)
and the normality assumption for the distributions

of the error terms εi, e
(a)
i , e

(b)
i and e

(s)
i shows that, for the ith subject, the

summation terms involved in (10.56) can be expressed as

log f(y,s)
(
Yi, Si; θ , V

∣∣Di

)

= C(y,s)−
1

2
log
(
σ2

s · |Vy| · |Vb| · |Va|
)

+ log

∫ ∫
exp

{
−1

2

[(
Yi −m

(1)
i

)T
V−1

y

(
Yi −m

(1)
i
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and
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×
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where C(y,s), C(y,1) and C(y,2) are the normalizing constants. The likelihood func-
tion for the Gaussian model of (10.48) is obtained by substituting the sum-
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mation terms of (10.56) with the corresponding log-likelihood terms (10.62),
(10.63) and (10.64).

2. The Gaussian Additive Shared-Parameter Change-Point Model

Similar to the above Gaussian linear model, the model (10.52) is a Gaussian

additive shared-parameter change-point model if the error terms εi, e
(a)
i , e

(b)
i

and e
(s)
i have mean zero multivariate normal distributions. Since µ

(s)
d (·), d =

0, . . . , d0, are nonparametric functions, the parameters to be estimated from
(10.52) are

{
α, β , V = {Vy, Va, Vb, σ2

s }
}
, unless basis expansions are used to

approximate µ
(s)
d (·).

We first show the general expression of (10.61) without using basis ap-

proximations for µ
(s)
d (·). Under the Gaussian assumption, the log-likelihood

functions involved in (10.61) are given by
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log f(y,1)
(
Yi; θ , V

∣∣Di

)

= C(y,1)−
1

2
log
(
σ2

s · |Vy| · |Va|
)

+ log

∫ ∫
exp
{
− 1

2

[(
Yi −m

(0)
i

)T
V−1

y

(
Yi −m

(0)
i

)

+
(
ai −α

)T
V−1

a

(
ai −α

)]}

×
{∫ ∞

Tini

exp
[
−
(
S−∑

d0
d=0 µ

(s)
d

(
aid

))2

2σ2
s

]
dS

}
dai, (10.66)

and
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where C(y,s), C(y,1) and C(y,2) are the normalizing constants. The likelihood func-
tion for the Gaussian model of (10.52) is obtained by substituting the sum-
mation terms of (10.56) with the corresponding log-likelihood terms (10.65),
(10.66) and (10.67).

In order to numerically evaluate the log-likelihood functions obtained from
(10.56), (10.65), (10.66) and (10.67), we have to consider specific expressions

of µ
(s)
d (·). When µ

(s)
d

(
aid

)
is approximated by the B-spline expansion (10.57),

the approximate log-likelihood function under the Gaussian model is (10.61)
with
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and

log f ∗(y,2)
(
Yi; θ , V
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log
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The approximate log-likelihood functions under the Gaussian additive shared-
parameter change-point model (10.59) is given by substituting (10.68), (10.69)
and (10.70) into (10.61). The parameters in (10.60) can be estimated by the
approximate maximum likelihood estimators through a Newton-Raphson al-
gorithm.

10.5.6 A Two-Stage Estimation Procedure

The log-likelihood functions (10.56) and (10.61) involve nonlinear terms of
the parameters. A global maximization of (10.50) or (10.61) over θ and V

simultaneously could be computationally infeasible even under the Gaussian
models specified in Section 10.5.5. In order to alleviate the computational
burden, a suggestion by Wu, Tian and Jiang (2011) is to use the following two-
stage estimation procedure, which combines restricted maximum likelihood
estimation (REMLE) procedure with the Newton-Raphson algorithm:

Two-Stage Maximum Likelihood Algorithm:

(a) Assume that {εi j, ai, bi, Si} of (10.48) or (10.52) are independent random
variables with covariance matrices V =

{
Vy, Va, Vb, σ2

s

}
, that is, the naive

mixed-effects change-point model (10.9) holds with ai and bi independent.

Compute V̂ of V using the REMLE procedure.

(b) Substitute V with V̂, and maximize Lc

(
θ , V̂

)
of (10.56) or L∗

c

(
θ , V̂

)
of

(10.61) with respect to θ using the Newton-Raphson procedure. The maxi-

mizer θ̂ = argmaxθ Lc

(
θ , V̂

)
is the maximum likelihood estimator for θ of

(10.49). Similarly, the maximizer θ̂ = argmaxθ L∗
c

(
θ , V̂

)
is the approximate

maximum likelihood estimator for θ of (10.60). ✷

From the expressions of f(y,s)
(
Yi, Si

∣∣Di

)
and f(y,k)

(
Yi

∣∣Di

)
for k = 1, 2, it is

easy to see that the Newton-Raphson algorithm for maximizing Lc

(
θ , V̂

)
at

stage (b) involves multidimensional integrations over the functions of ai, bi and
Si with respect to the joint distributions of ai and bi. All the necessary quan-
tities involved in the Newton-Raphson algorithm, including the log-likelihood
functions, and their gradients and Hessian matrices, can be computed using
Monte Carlo simulations, in which case large Monte-Carlo samples are re-
quired to compute the gradient and the Hessian matrix in each iteration, so
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that a complete Newton-Raphson algorithm can be costly to implement. If
a suitable initial estimator is available, computation of the algorithm can be
significantly reduced by a “one-step”Newton-Raphson procedure (e.g., Bickel,
1975). In Wu, Tian and Jiang (2011), the authors suggest to use the esti-
mators computed from the REMLE procedure as a natural candidate for the
initial estimator θ̂0 and to compute the initial estimators of γ by fitting the

regression model Si = γT
(
1, ã

pred
i

)
+ ε

(s)
i using the subjects with Si observed,

i.e., δ
(c)
i = 0, where ã

pred
i is the predicted value for ai.

10.6 Confidence Intervals for Parameter Estimators

We now present the confidence intervals for the mean concomitant interven-
tion effects estimated in Sections 10.4 and 10.5. The asymptotic confidence
intervals can only be used for the linear shared-parameter change-point model
(10.48) when the distributions of the error terms are known. When nonpara-
metric components are present, the resampling-subject bootstrap procedures
have to be used for all the models in Sections 10.4 and 10.5 due to the lack of
asymptotic normality results.

10.6.1 Asymptotic Confidence Intervals

Approximated inferences for the linear shared-parameter change-point model
(10.48) can be constructed using the asymptotic distribution of the maximum

likelihood estimator θ̂ , when n is large and the model (10.48) follows a known
parametric family. Under the usual regularity conditions for the maximum like-
lihood estimators (e.g., Serfling, 1980, Chapter 4), the asymptotic normality

of the estimators implies that θ̂ has approximately the multivariate normal
distribution N(θ , Σ), where Σ is the asymptotic variance-covariance matrix.
An approximate

[
100× (1−α)

]
th confidence interval for a linear combination

ℓ(θ ) of θ is

ℓ
(
θ̂
)
±Zα/2 Σ̂1/2, (10.71)

where Σ̂ is the estimator of the asymptotic variance-covariance matrix of ℓ(θ )
and Zα/2 is the

[
100× (1−α/2)

]
th percentile of the standard normal distri-

bution.
It follows from (10.48) and (10.49) that Σ̂ can be constructed by a“plug-in”

type method using the available estimators θ̂ and V̂ =
{

V̂y, V̂a, V̂b, σ̂2
s

}
, where

V̂ is the REMLE described in Section 10.5.6. However, a potential drawback
of the “plug-in” approximate confidence interval (10.71) is its computational
complexity, since in practice many parameters from the mean and variance-
covariance structures have to appropriately estimated at the same time. For
this reason, the following resampling-subject bootstrap procedure is often a
more practical procedure than the “plug-in” approach based on (10.71).
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10.6.2 Bootstrap Confidence Intervals

For the varying-coefficient mixed-effects model (10.21) and the additive
shared-parameter change-point model (10.52), the unknown components in-
clude the finite dimensional parameters as well as the nonparametric coeffi-
cient curves. The asymptotic distributions of the corresponding least squares
estimators and approximate maximum likelihood estimates have not been
systematically investigated in the literature. As a practical alternative, the
resampling-subject bootstrap procedure introduced in Section 3.4 can be used
to compute the confidence intervals for the unknown finite dimensional pa-
rameters or the coefficient curves.

Let ξ be an unknown finite dimensional parameter or coefficient curve of

the model (10.21) or (10.52), and ξ̂ be an estimator of ξ computed based on
any of the appropriate estimation methods in Sections 10.4 and 10.5. Specific

steps for constructing the bootstrap confidence intervals for ξ based on ξ̂ are
given in the following.

Approximate Bootstrap Confidence Intervals:

(a) Computing Bootstrap Estimators. Generate B independent bootstrap
samples using the resampling-subject bootstrap procedure of Section 3.4.1

and compute the B bootstrap estimators ξ̂ boot =
{

ξ̂ b : b = 1, . . . , B
}
of ξ .

(b) Approximate Bootstrap Confidence Intervals. The
[
100 × (1 −

α)
]
% bootstrap confidence interval for ξ based on percentiles is given by

(
Lboot

α/2 (ξ ),Uboot
α/2 (ξ )

)
, (10.72)

where Lboot
α/2

(ξ ) and Uboot
α/2

(ξ ) are the corresponding lower and upper
[
100×

(α/2)
]
th percentiles of the B bootstrap estimators ξ̂ boot. The

[
100× (1−

α)
]
% bootstrap confidence interval for ξ based on the normal approximation

is given by

ξ̂ ±Zα/2 SD
(
ξ̂ boot

)
. (10.73)

where ξ̂ is the estimator of ξ computed based on the original sample and

SD
(
ξ̂ boot

)
is the sample standard deviation of ξ̂ boot. ✷

The above bootstrap approach has been used in Wu, Tian and Bang (2008)
and Wu, Tian and Jiang (2011). The percentile bootstrap interval (10.72) is

not necessarily symmetric about ξ̂ . On the other hand, the normal approxi-

mated interval (10.73) may not be appropriate if the distribution of ξ̂ is not
approximated by the normal distribution with mean zero and standard devia-

tion SD
(
ξ̂ boot

)
. In the simulation results of Wu, Tian and Bang (2008) and Wu,

Tian and Jiang (2011), both (10.72) and (10.73) lead to intervals with appro-
priate empirical coverage probabilities for any final dimensional parameters or
coefficient curves of the models (10.21) and (10.52).
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10.7 R Implementation to the ENRICHD Data

10.7.1 The Varying-Coefficient Mixed-Effects Models

A brief summary of the ENRICHD study has been described in Section 1.2.
A preliminary analysis of the patterns of depression severity measured by the
Beck Depression Inventory (BDI) score over time has been presented in Sec-
tion 2.4.2. The objective here is to evaluate the additional effects of pharma-
cotherapy (i.e., the use of antidepressants) on the time-trends of BDI scores for
patients who received pharmacotherapy during the six-month cognitive behav-
ior therapy (CBT) treatment period. Pharmacotherapy with antidepressants
is a concomitant intervention in this clinical trial, because the decision of us-
ing antidepressants and its starting time was made by the patients or their
primary care physicians.

1. The ENRICHD BDI Data

Our dataset here includes 557 depressed patients (with a total of 7117
observations) in the CBT arm who had their status of antidepressant use
(yes or no) and exact dates of the antidepressant starting time recorded and
attended 5 or more treatment sessions during the CBT treatment period. In
order to have a meaningful clinical interpretation, three types of patients were
excluded from our analysis: (1) patients in the usual care arm due to the
lack of BDI scores observed between the baseline and the end of six months,
(2) patients whose pharmacotherapy status or starting dates of antidepressant
use were not recorded, and (3) patients who had poor adherence to the required
weekly treatment sessions, that is, attended less than 5 (approximately 20%)
of the sessions. Because antidepressant use for each patient was individually
monitored and recorded as accurate as possible by study psychiatrists, it is
reasonable to assume that the missing records on the antidepressant starting
dates were missing completely at random. Within our sample, 11 patients
used antidepressants before baseline, 92 started antidepressant use during the
treatment period, and 454 did not use antidepressants before and during the
treatment period. The number of visits for these patients ranges from 5 to 36
and has a median of 12.

2. A Subset Analysis of the ENRICHD BDI Data

We first illustrate the application of the varying-coefficient mixed-effects
models of Section 10.4 to a subset of the ENRICHD data, i.e., the 92 EN-
RICHD patients in the CBT arm who started antidepressant use during the
treatment period. This subset of 92 patients contains a total of 1465 observa-
tions with clear records of the pharmacotherapy starting time. Among the 92
patients analyzed here, 45 of them started pharmacotherapy at baseline and
the remaining 47 patients started pharmacotherapy between 10 and 172 days.

Following the data structure in Section 10.1.3, we denote by Yi j, ti j, Si,
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Ri j = ti j − Si and λi j = 1[ti j≥Si] the ith patient’s BDI score, trial visit time,
starting time of pharmacotherapy, time from initiation of pharmacotherapy,
and pharmacotherapy indicator, respectively, at the jth visit. The time units
are months in the analysis. A simple case of the naive mixed-effects change-
point models (10.9) for evaluating the trends of BDI score over ti j is the linear
mixed-effects model

{
Yi j = ai0 + ai1 ti j + bi0 λi j + bi1 λi j Ri j + εi j ,
(
ai0, ai1, bi0, bi1

)T ∼ N
(
(α0, α1, β0, β1)

T , Σ
)
.

(10.74)

where εi j is an independent measurement error with mean zero and unknown

variance σ2, and
(
ai0, ai1, bi0, bi1

)T
and εi j are independent. When λi j = 1 and

Ri j = r, the term β0 + β1 r describes the mean pharmacotherapy effect at r

months since the start of pharmacotherapy. As illustrated in Section 2.4.2,
we can use the R lme to fit the naive linear mixed-effects change-point model
(10.74) and obtain the parameter estimates from the fixed effects. The results
are summarized in Table 10.3.

Table 10.3 Parameter estimates, their standard errors (SE) and p-values for testing
the null hypothesis that the corresponding parameter is zero obtained from the naive
linear mixed-effects change-point model (10.74) based on the subsample of ENRICHD
patients with observed pharmacotherapy starting time.

Parameter Estimate SE p-value
α0 23.360 1.115 <0.0001
α1 -0.610 0.478 0.2024
β0 -3.582 1.000 0.0004
β1 -1.547 0.516 0.0028

However, the above model (10.74) ignores the correlation between Si and
the pre-pharmacotherapy depression trends, which may lead to potential bias
and erroneous conclusions. One source of the correlation between Si and the
pre-pharmacotherapy depression trends is the design of the ENRICHD study,
since, by the study protocol, patients who had 25 or higher on baseline Hamil-
ton Depression Rating Scale or showed less than 50% reduction in BDI scores
after 5 weeks of CBT treatment were referred to study psychiatrists for consid-
eration of pharmacotherapy. As demonstrated in Figure 10.1, those patients
with higher BDI scores at baseline or undesirable BDI trends were more likely
to take medication sooner.

To model the effects of pharmacotherapy start time Si, we can use the
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Figure 10.1 The BDI observations of four patients randomly chosen from the EN-
RICHD BDI dataset. The vertical line indicates the starting time of pharmacother-
apy.

following varying-coefficient mixed-effects (VCME) model





Yi j = α0(Si)+α1(Si)ti j +β0 λi j +β1 λi j Ri j + ei j ,

α0(Si) = γ00 + γ01 Si,

α1(Si) = γ10 + γ11 Si,

ei j = a∗i0 + a∗i1 ti j + b∗i0 λi j + b∗i1 λi j Ri j + εi j.

(10.75)

The mean pre-pharmacotherapy BDI trend in this VCME model (10.75) is
associated with Si through intercept α0(Si) and slope α1(Si). Similarly, the
mean pharmacotherapy effect at r months after the start of pharmacotherapy
is described by the term β0 + β1r. A negative (positive) value for β0 + β1r

corresponds to a beneficial (harmful) effect for reducing depression.
For simplicity, this VCME model (10.75) assumes that β0(Si) = β0 and

β1(Si) = β1, so that the effects of pharmacotherapy only depend on how long
the antidepressant has been used. Under this assumption, β0 and β1 have
the same interpretations in both the naive linear mixed-effects change-point
model (10.74) and the VCME model (10.75), although they differ in modeling
the pre-pharmacotherapy time-trends of BDI scores.

The following R code is used to fit the VCME model (10.75) to the subset of
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92 patients in the ENRICHD study with complete records of pharmacotherapy
starting dates:

> library(nlme)

> data(BDIdata)

> BDIsub <- subset(BDIdata, med.time >=0 & med.time < 200,)

# Recode the covariates and time variables in months

> BDIsub$Tijm <- BDIsub$time*12/365.25

> BDIsub$Sim <- BDIsub$med.time*12/365.25

> BDIsub$TijSim <- with(BDIsub,Tijm*Sim)

> BDIsub$Med <- with(BDIsub, ifelse(time-med.time>=0, 1,0))

> BDIsub$Rijm <- with(BDIsub, Med*(Tijm -Sim))

# Fit the VCME model

> VCME.fit <- lme(BDI ~ 1+Sim + Tijm + TijSim + Med + Rijm,

random=~Tijm + Med + Rijm|ID, data=BDIsub)

> summary(VCME.fit)

Linear mixed-effects model fit by REML

Data: BDIsub

...

Fixed effects: BDI ~ 1 + Sim + Tijm + TijSim + Med + Rijm

Value Std.Error DF t-value p-value

(Intercept) 25.640517 1.4418923 1369 17.782546 0.0000

Sim -1.377896 0.5901003 90 -2.335021 0.0218

Tijm -0.237399 0.8153425 1369 -0.291165 0.7710

TijSim 0.069672 0.1728152 1369 0.403161 0.6869

Med -4.489470 1.0506389 1369 -4.273086 0.0000

Rijm -2.052332 0.7675756 1369 -2.673785 0.0076

...

Number of Observations: 1465

Number of Groups: 92

After running the above R commands for the VCME model (10.75), we
summarize in Table 10.4 the estimates and their corresponding standard er-
rors and p-values obtained by the R lme procedure based on unstructured
covariance matrix and restricted maximum likelihood (REML). The negative
estimates for (β0,β1) in Tables 10.3 and 10.4 suggest that the beneficial effect
of pharmacotherapy for this patient population is detected under both models,
when only the patients who had pharmacotherapy change-point time within
the CBT period are included in the analysis. Remarkably, we also observe
from Table 10.4 a slightly stronger depression lowering effect and a negative
estimate of γ01, which suggests a negative correlation between the antidepres-
sant start time Si and the baseline BDI scores. Thus, as demonstrated in the
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Table 10.4 Parameter estimates, their standard errors (SE) and p-values for test-
ing the null hypothesis that the corresponding parameter is zero obtained from the
varying-coefficient mixed-effects model (10.75) based on the sub-sample of ENRICHD
patients with observed pharmacotherapy starting time.

Parameter Estimate SE p-value
γ00 25.641 1.442 <0.0001
γ01 -1.378 0.590 0.0218
γ10 -0.237 0.815 0.771
γ11 0.070 0.173 0.6869
β0 -4.489 1.051 <0.0001
β1 -2.052 0.768 0.0076

simulation study in Wu, Tian and Bang (2008), by allowing the random co-
efficients to be correlated with Si, the VCME model would lead to less biased
estimates for the effects of the concomitant pharmacotherapy intervention.

10.7.2 Shared-Parameter Change-Point Models

The models discussed above can only be applied to the 92 patient subset of the
ENRICHD BDI data, since they require the patient’s change-point time Si to
be observed during the CBT treatment period. Thus, the estimated beneficial
effects of antidepressants for lowering BDI scores obtained from these models
ignore the information from those patients who did not start pharmacother-
apy during the CBT treatment period. Using the shared-parameter change-
point models, the analysis illustrated here is based on all the 557 patients
in the ENRICHD BDI dataset, which includes 11 patients who used antide-
pressants before baseline and 454 patients who did not use antidepressants
during the CBT treatment period. Following the notation in Section 10.1.3,
let Yi j, ti j, Si, Ri j = ti j −Si and λi j = 1[ti j≥Si] be the ith patient’s BDI score, trial
visit time, starting time of pharmacotherapy, time from initiation of pharma-
cotherapy, and pharmacotherapy indicator, respectively, at the jth visit. For

all 1 ≤ i ≤ n, the observed
(
S
(c)
i , δ

(c)
i

)
is
(
S
(c)
i = Si, δ

(c)
i = 0

)
if the ith patient

used antidepressants within the CBT treatment period,
(
S
(c)
i = tini

, δ
(c)
i = 1

)
if

the patient did not use antidepressant within the CBT treatment period, and(
S
(c)
i = tin1

, δ
(c)
i = 2

)
if the patient used antidepressants before baseline or at

the start of the clinical trial.

1. A Linear Shared-Parameter Change-Point Model

A series of analyses described in Wu, Tian and Jiang (2011) suggest that a
special case of the shared-parameter change-point model (10.47) can be used
as a parsimonious approximation to the BDI time-trend for this study. When
the linear functions µ0

(
ti j; ai

)
= ai0+ai1 ti j and µ1

(
ti j; bi

)
= bi0+bi1 Ri j are used,
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the linear shared-parameter change-point model is
{

Yi j = ai0 + ai1 Ti j +λi j

(
bi0 + bi1 Ri j

)
+ εi j,

(
ai0, ai1, bi0, bi1

)T ∼ N
(
(α0,α1,β0,β1)

T , Σ
)
,

(10.76)

where (α0, α1, β0, β1)
T and Σ are the unknown mean vector and the unstruc-

tured variance-covariance matrix for the multivariate normal distribution, and
εi j are independent measurement errors as in (10.47) with the N(0, σ2) distri-
bution. In (10.76), {ai0, ai1} represent the intercept and slope of the ith sub-
ject’s BDI trajectory before pharmacotherapy, and {bi0, bi1} are the intercept
and slope of the change of the subject’s BDI trajectory after pharmacotherapy.

We fit the naive linear mixed-effects change-point model (10.76) to all the
557 patients in the ENRICHD BDI dataset, which includes the 465 patients
with censored pharmacotherapy starting times. For patients who already used
antidepressants before baseline, we set Si = 0 and Ri j = ti j. For patients who
did not use antidepressants during the CBT treatment period, we have λi j = 0

for any ti j, so that the BDI time-trend for these patients is described only by
µ0

(
ti j; ai

)
= ai0 + ai1 ti j.

The following R commands are used to generate Table 10.5, which summa-
rizes the results for fitting the naive linear mixed-effects change-point model
for all the patients with observed or censored times of pharmacotherapy:

> library(nlme)

> data(BDIdata)

> nrow(BDIdata ) # No. of observations

[1] 7117

> length(unique(BDIdata$ID)) # No. of patients

[1] 557

# Recode the covariates and time variables in months

> BDIdata$Tijm <- BDIdata$time*12/365.25

> BDIdata$med.time[BDIdata$med.time <0] <- 0

> BDIdata$Med <- with(BDIdata, ifelse(time-med.time>=0, 1,0))

> BDIdata$Rijm <- with(BDIdata, Med*(time-med.time)*12/365.25)

> Naive.LME <- lme(BDI ~ Tijm + Med + Rijm, data=BDIdata,

random=~ Tijm + Med + Rijm|ID )

> summary(Naive.LME)

We note that the positive estimates of β0 and β1 in Table 10.5 contra-
dict the results summarized in Tables 10.3 and 10.4, where an improvement
of depression measured by BDI was seen for the patients who started phar-
macotherapy during the CBT treatment period. If we interpret the positive
estimates of β0 and β1 in Table 10.5 as an indication for the increase of pa-
tients’ mean BDI scores (i.e., having worsening depression) after the start of
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Table 10.5 Parameter estimates, their standard errors (SE) and p-values for test-
ing the null hypothesis that the corresponding parameter is zero obtained from the
naive linear mixed-effects change-point model based on all the 557 patients in the
ENRICHD BDI dataset.

Parameter Estimate SE p-value
α0 14.453 0.312 <0.0001
α1 -1.887 0.067 <0.0001
β0 3.579 0.825 <0.0001
β1 0.035 0.227 0.8758

pharmacotherapy, we would reach an erroneous conclusion. Since the “self-
selectiveness” of pharmacotherapy is not considered in the model (10.74), the
positive estimates of β0 and β1 under this model for the full ENRICHD BDI
data do not reflect the real effect of pharmacotherapy on depression sever-
ity. We show in the next analysis that a proper approach is to incorporate
the relationship between the pharmacotherapy starting time Si and the pre-
pharmacotherapy trends into the model. By doing so, the beneficial effects of
pharmacotherapy can be demonstrated as in Tables 10.3 and 10.4.

2. A Shared-Parameter Change-Point Model

To account for the possible link between pharmacotherapy starting time
and the BDI trend before the start of pharmacotherapy, a shared-parameter
model that directly generalizes the model (10.76) is





Yi j = ai0 + ai1 Ti j +λi j

(
bi0 + bi1 Ri j

)
+ εi j,

(
ai0, ai1

)T
= (α0, α1)

T + ε
(a)
i ,

Si = γ0 + γ1 ai0 + ε
(s)
i ,

(
bi0, bi1

)T
=

(
β00 +β01 ai0 +β02 ai1,

β10 +β11 ai0 +β12 ai1

)T
+ ε

(b)
i ,

(10.77)

where ε
(s)
i and ε

(b)
i are mean zero bivariate normal random vectors with un-

structured covariance matrices Σ(a) and Σ(b) , respectively, ε
(s)
i is a mean zero

normal random variable with variance σ2
s , and ε

(s)
i , ε

(b)
i , and ε

(s)
i are indepen-

dent. It is interesting to see that in (10.77) we model the dependence between(
bi0, bi1

)T
and

(
ai0, ai1

)T
through a linear model. The interpretations of the

population-mean parameters in (10.77) are similar to their counterparts spec-
ified in the model (10.74).

We apply the algorithm of Section 10.5.5 to compute the maximum like-
lihood estimates for the Gaussian model (10.77) and obtain the standard er-
rors and 95% confidence intervals for the estimators based on the resampling-
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subject bootstrap procedure of Section 10.6.2 with 1000 bootstrap replications.
The results are summarized in the left panel of Table 10.6. After examining
the 95% CIs for the parameter estimates obtained from (10.77), we set β01,
β02, β10 and β11 of (10.77) to zero, repeat the estimation procedure for the
sub-model of (10.77), and summarize the results in the right panel of Table
10.6.

The following R functions are used to compute the parameter estimates,
their standard errors and 95% bootstrap confidence intervals:

> library(npmlda)

> Results.full <- SPM.full(data=BDIdata, n.iter=10, n.boot=1000)

> Results.sub <- SPM.sub(data=BDIdata, n.iter=10, n.boot=1000)

Table 10.6 Parameter estimates, their standard errors (SE) and 95% bootstrap confi-
dence intervals obtained from the linear shared-parameter change-point model (10.77)
and its sub-model with β01, β02, β10 and β11 set to zero based on all the 557 patients
in the ENRICHD BDI dataset.

Shared-Parameter Model Shared-Parameter Sub-model
Parameter Est SE 95% CI Est SE 95% CI

α0 15.94 0.35 (15.24, 16.63) 15.84 0.35 (15.17, 16.55)
α1 -2.03 0.07 (-2.18, -1.89) -2.00 0.07 (-2.15, -1.86)
β00 20.94 6.90 (7.56, 34.58) -6.44 0.98 (-8.41, -4.61)
β01 -0.62 0.33 (-1.29, 0.04) —– —– —–
β02 3.52 1.51 (-0.06, 5.98) —– —– —–
β10 -2.11 2.34 (-6.98, 2.24) —– —– —–
β11 -0.06 0.09 (-0.24, 0.12) —– —– —–
β12 -1.52 0.34 (-2.18, -0.87) -0.23 0.08 (-0.38, -0.07)
γ0 15.68 1.21 (13.63, 18.51) 15.71 1.29 (13.50, 18.51)
γ1 -0.49 0.05 (-0.61, -0.40) -0.50 0.06 (-0.62, -0.40)

Comparing the results in Tables 10.5 and 10.6, we observe that, under
the naive mixed-effects change-point model and the shared-parameter change-
point models, the estimates of α1 are negative and mostly similar, which sug-
gests that the mean BDI score for these patients tends to decrease over the
trial time since the start of the CBT sessions. However, the parameters for
describing the BDI score after pharmacotherapy are very different between
the two types of modeling. For the naive mixed-effects change-point model

summarized in Table 10.5, the estimate β̂0 = 3.579 (SE = 0.825), while, under
the shared parameter sub-model (10.77), the mean effect of pharmacother-

apy on BDI is always negative, i.e., β̂00 + β̂12 α̂1 Ri j < 0, since β̂00 = −6.441,

β̂12 = −0.232, α̂1 = −2.001 and 0 ≤ Ri j ≤ 6. Thus the results of the shared-
parameter change-point model (10.77) suggest that pharmacotherapy has a
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beneficial effect on average for lowering a patient’s depression score, i.e., re-
ducing depression severity. We also note from Table 10.6 that the 95% CI
for γ1 obtained from the model (10.77) indicates that the starting time of
pharmacotherapy Si is significantly negatively correlated with the subject-
specific baseline BDI values, therefore the naive mixed-effects change-point
model (10.74) without incorporating this correlation is likely to be misspeci-
fied and would lead to biased estimate for the effect of the concomitant inter-
vention for this dataset.

10.8 Consistency

Asymptotic properties for the maximum likelihood estimators of the paramet-
ric models (10.24) (Section 10.5.3) and (10.50) (Section 10.5.4) can be derived
by direct applications of the general asymptotic theory of the maximum likeli-
hood estimators, for example, Serfling (1980, Chapter 4). Because the focus is
on structured nonparametric models, we only briefly comment in this section
on the asymptotic derivations for the maximum likelihood estimators, and
devote the main effort on the general results of asymptotic consistency for the
B-spline approximation estimators (10.40) and (10.61).

10.8.1 The Varying-Coefficient Mixed-Effects Models

We establish here the rates of convergence, hence consistency, for the poly-

nomial spline, i.e., B-spline, estimators
(
α̃T

LS(s;B), β̃ T
LS(s;B)

)T
of (10.40) with

weight Λi = diag
(
1/ni, · · · , 1/ni

)
, where the basis functions Bdl(s) and B∗

dm(s)
of (10.23) are chosen as the B-spline basis functions. Consistency for basis
approximation estimators using other basis functions can in principle be de-
rived using similar approaches in conjunction with the special properties of the
chosen basis functions. But, asymptotic derivations for basis approximation
estimators other than the B-splines have not been developed in the literature,
hence, are out of scope for this chapter.

Following the definition of asymptotic consistency in Sections 4.4.2 and
9.5.1, we define an estimator g̃(s) of an unknown curve g(s) on s ∈ S to be
consistent if its L2-norm satisfies

∥∥g̃− g
∥∥

L2
=

{∫

s∈S

[
g̃(s)− g(s)

]2
ds

}1/2

→ 0, (10.78)

as n → ∞ in probability. From the unknown coefficient curves and finite di-
mensional parameters defined in (10.21) and (10.23), we denote by α̃LS,d(s; B)

the B-spline estimator of αd(s), 0 ≤ d ≤ D1, and by β̃LS,d(s; B) the B-spline
estimator of βd(s), 0 ≤ d ≤ D2.

The objective is to show that α̃LS,d(s; B) and β̃LS,d(s; B) are asymptoti-
cally consistent estimators of αd(s) and βd(s) for any d. We assume in this

section the following assumptions for α̃LS,d(s; B) and β̃LS,d(s; B).
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Asymptotic Assumptions:

(a) The concomitant intervention change-point times {S1, . . . , Sn} are inde-
pendent continuous random variables with unknown distribution function
FS(·) and density function fS(·). The density function fS(·) is uniformly
bounded away from 0 and infinity on its support [T0, T1].

(b) The conditional expectation E
[(

ZT
i j , δi j WT

i j

)T (
ZT

i j,δi j WT
i j

)∣∣Si = s
]

has
eigenvalues λ1(s) ≤ ·· · ≤ λD(s) with D = D1 +D2 + 2, which are uniformly
bounded away from 0 and infinity for all s ∈ [T0, T1]. The elements of Zi j

and Wi j are also bounded.

(c) For the B-spline approximation model (10.38), let

ei j = ZT
i j a∗i + δi j WT

i j b∗
i + εi j (10.79)

be the random error terms of Yi j. Conditioning on Si = s, E
[
e2

i j

∣∣Si = s
]
are

uniformly bounded for all s ∈ [T0, T1].

(d) For the B-spline approximations of (10.23), let




Kn = max
{

max0≤d≤D1
Ld , max0≤d≤D2

Md

}
,

L∞

(
αd , G

(1)
d

)
= inf

g(1)∈G
(1)
d

sups∈S

∣∣αd(s)− g(1)(s)
∣∣,

L∞

(
βd , G

(2)
d

)
= inf

g(2)∈G
(2)
d

sups∈S

∣∣βd(s)− g(2)(s)
∣∣,

(10.80)

where G
(1)
d and G

(2)
d are the linear spaces spanned by Bd and B∗

d, respec-
tively. Then, the following limits

Kn logKn

n
→ 0, L∞

(
αd , G

(1)
d

)
→ 0 and L∞

(
βd , G

(2)
d

)
→ 0. (10.81)

hold for all d as n → ∞. ✷

The above assumptions are in fact similar to Assumptions (a)-(d) of Sec-
tion 9.5.2 with a slight twist toward the estimators of (10.40). The next
theorem summarizes the asymptotic consistency of the B-spline estimators(
α̃T

LS(s; B), β̃ T
LS(s; B)

)T
of (10.40) with weight Λi = diag

(
1/ni, · · · , 1/ni

)
.

Theorem 10.1. If Assumptions (a)-(d) above are satisfied, then the fol-
lowing conclusions hold:

(a) For d = 0, . . . , D1, α̃LS,d(s;B) are consistent estimators of αd(s).

(b) For Kn, L∞

(
αd , G

(1)
d

)
and L∞

(
βd , G

(2)
d

)
defined in (10.80), we have

∥∥α̃LS,d −αd

∥∥2

L2
= OP

(
1

n
+

Kn

n2

n

∑
i=1

1

ni

+ρ2
n

)
, (10.82)

where

ρn = max

{
max

0≤d≤D1

L∞

(
αd , G

(1)
d

)
, max

0≤d≤D2

L∞

(
βd , G

(2)
d

)}
.
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(c) The conclusions in (a) and (b) also hold for β̃LS,d(s; B), d = 0, . . . , D2. �

The conclusions of Theorem 10.1(a) show the asymptotic consistency of

α̃LS,d(s;B) and β̃LS,d(s; B), while those of Theorem 10.1(b) give the conver-
gence rates of these estimators. Since, in addition to n, the right side of (10.82)
is also a function of Kn, ∑n

i=1(1/ni) and ρn, we observe that the convergence

rates of α̃LS,d(s;B) and β̃LS,d(s; B) also depend on the numbers of repeated
measurements as well as how well the functional linear spaces spanned by the
B-spline bases approximate the unknown true curves α(s) and β (s).

Proof of Theorem 10.1:
Since the result of Theorem 10.1(a) is a direct consequence of (10.82), we

only prove (10.82). Let





γ =
(
γ00, . . . , γdl , . . . , γD1,LD1

)T
= E

[
γ̃LS(B)

]
,

αLS,d(s; B) = ∑
Ld

l=0 γdlBdl(s).
(10.83)

By the triangular inequality, it follows from (10.83) that

∣∣∣α̃LS,d(s; B)−αd(s)
∣∣∣≤
∣∣∣α̃LS,d(s; B)−αLS,d(s)

∣∣∣+
∣∣∣αLS,d(s; B)−αd(s)

∣∣∣. (10.84)

For two sequences of positive numbers an and bn, let an ≍ bn denote that both
an/bn and bn/an are bounded for all n. It then follows from the properties of
the B-splines, (9.105) and (9.106), that

∥∥α̃LS,d −αLS,d

∥∥2

L2
=

∥∥∥∥
Ld

∑
l=0

(
γ̃LS,dl − γdl

)
Bdl

∥∥∥∥
2

L2

≍ K−1
n

∣∣γ̃LS,d − γd

∣∣2, (10.85)

where | · | is the Euclidean norm. Let ∆LS be the L2-norm

∆LS =
∥∥∥
(
α̃T

LS, β̃ T
LS

)T −
(
αLS, β LS

)T
∥∥∥

L2

. (10.86)

Applying (10.39), (10.40) and Lemma A.3 of Huang, Wu and Zhou (2004) to
(10.86), we get

∆2
LS =

∣∣∣∣
[

n

∑
i=1

(
Wi Bi

)T
Λi

(
Wi Bi

)]−1 [ n

∑
i=1

(
Wi Bi

)T
Λi ei

]∣∣∣∣
2

≍ K2
n n−2

∣∣∣∣
[

n

∑
i=1

(
Wi Bi)

T Λi ei

]T [ n

∑
i=1

(
Wi Bi)

T Λi ei

]∣∣∣∣, (10.87)

where ei = (ei1, . . . , eini
)T . The same argument as in the proof of Lemma A.4
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of Huang, Wu and Zhou (2004) shows that

[
n

∑
i=1

(
Wi Bi

)T
Λi ei

]T [ n

∑
i=1

(
Wi Bi

)T
Λi ei

]

= OP

{
n

∑
i=1

[
n−1

i +K−1
n

(
1− n−1

i

)]}
. (10.88)

Consequently, it follows from (10.39), (10.83) and (10.88) that

∣∣γ̃LS,dl − γLS,dl

∣∣= OP

{
K2

n n−2
n

∑
i=1

[
n−1

i +K−1
n

(
1− n−1

i

)]}
, (10.89)

and by (10.85) and (10.89),

∥∥α̃LS,d −αLS,d

∥∥2

L2
= OP

{
Kn n−2

n

∑
i=1

[
n−1

i +K−1
n

]}
. (10.90)

On the other hand, let g
(1)
d (s) ∈ G

(1)
d be a linear element in G

(1)
d such that

g
(1)
d (s) =

Ld

∑
l=0

γ∗dl Bdl(s)

and the L∞-norm
∥∥g

(1)
d −αd

∥∥
∞

is smaller than or equal to ρn. Similarly, we
define τ∗dm, γ∗d , τ∗d , and

g
(2)
d (s) =

Ld

∑
l=0

γ∗dl B
∗
dl(s).

The same argument as in (10.85) shows that

∥∥∥αLS,d − g
(1)
d

∥∥∥
2

L2

≍ K−1
n

∣∣γd − γ∗d
∣∣2. (10.91)

The same argument as in the proof of Lemma A.7 of Huang, Wu and Zhou
(2004) shows that ∣∣γLS − γ∗

∣∣2 ≤ Kn ρ2
n , (10.92)

Hence, combining (10.91) and (10.92), we get

∥∥∥αLS,d − g
(1)
d

∥∥∥
2

L2

= OP

(
ρ2

n

)
. (10.93)

It then follows from (10.93) and the definition of ρn that

∥∥αLS,d −αd

∥∥
L2

= OP(ρn). (10.94)

The assertion of (10.82) follows from (10.90) and (10.94). The conclusions for

β̂LS,d(s) can be proved using the same method. �
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10.8.2 Maximum Likelihood Estimators

The shared-parameter change-point model (10.47) belongs to a parametric
family when Fa(·), Fs(·|·), Fb(·|·) and the distribution function of εi j are deter-
mined by a finite dimensional parameter φ . In particular, the linear shared-
parameter change-point model (10.48) is parametrized by φ = {θ , V} with θ
and V defined in (10.49), if the covariance structure V is specified by a fi-

nite dimensional parameter, where θ =
(
αT , β T

1 , . . . , β T
d1
, γT
)T

are the mean
structure parameters of interest.

Even for the fully parametric model of (10.48), the asymptotic properties
of the maximum likelihood estimators of based on (10.56) may depend on the
assumptions for the numbers of repeated measurements. If the numbers of
repeated measurements are bounded by a positive constant, that is, ni ≤ m

for some m > 0 and all 1 ≤ i ≤ n, then it follows from the classical asymptotic
theory for the MLEs (cf. Serfling, 1980, Section 4.2) that φ̂ML = {θ̂ML, V̂ML}
obtained by maximizing (10.56) is consistent and has asymptotically a mul-
tivariate normal distribution when fy,s(·), fy,1(·) and fy,2(·) satisfy the regu-
larity conditions for the maximum likelihood estimators, such as Conditions
(R1), (R2) and (R3) of Serfling (1980, page 144). It is straightforward to
check through some tedious calculations that the likelihood functions (10.56),
(10.62), (10.63) and (10.64) of the Gaussian linear shared-parameter change-
point model (10.48) satisfy Conditions (R1), (R2) and (R3) of Serfling (1980),
so that its maximum likelihood estimators are consistent and have asymptot-
ically normal distributions. Asymptotic inferences, such as asymptotic confi-
dence intervals and testing procedures, of the maximum likelihood estimators
can be derived using the methods in Serfling (1980, Sections 4.2 and 4.4).

If the numbers of repeated measurements ni also tend to infinity as n tends
to infinity, the existing asymptotic results for the maximum likelihood esti-
mators with cross-sectional i.i.d. data may not apply. The asymptotic distri-
butions of the maximum likelihood estimators will then depend on the rates
of ni tending to infinity as well as the structures of the intra-subject cor-
relations. Asymptotic inferences for the maximum likelihood estimators for
the model (10.48) under the general situations of limn→∞ ni → ∞ and different
intra-subject correlation structures have not been systematically investigated
in the literature and require substantial further development.

10.8.3 The Additive Shared-Parameter Models

We summarize here the asymptotic properties of the B-spline approximate
maximum likelihood estimators φ̂AML =

{
θ̂AML, V̂AML

}
of (10.61) using the B-

spline basis functions B(d)(·) in (10.58).

1. Framework of Consistency

The general framework of asymptotic consistency and convergence rates for
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regression models with cross-sectional i.i.d. data is described in Stone (1994)
and Stone et al. (1997). As an extension, Huang (2001) establishes a general
asymptotic framework for the approximate maximum likelihood estimation
with cross-sectional i.i.d. data and a number of nonparametric models, such as
the partially linear models, generalized additive models, and functional analy-
sis of variance models. Our theoretical development for φ̂AML =

{
θ̂AML, V̂AML

}

of (10.61) is based on the framework of Huang (2001).

General Framework:

(a) The variance-covariance structure V in (10.60) is specified by a parameter
ρ in a Euclidean space.

(b) For each 1 ≤ d ≤ d0, the nonparametric function µ
(s)
d (·) of (10.57) is a

function on the real line which belongs to a Hilbert space Hd . Then, the

set of nonparametric functions
{

µ
(s)
1 (·), . . . , µ

(s)
d0
(·)
}

belongs to the tensor
product Hilbert space

{
µ
(s)
1 (·), . . . , µ

(s)
d0
(·)
}
∈ H1 ⊗ ·· · ⊗Hd0

.

(c) Let R be the Euclidean space containing {α, β , ρ}. Then
{

α, β , ρ , µ
(s)
1 (·), . . . , µ

(s)
d0
(·)
}

belongs to the model space
{

α, β , ρ , µ
(s)
1 (·), . . . , µ

(s)
d0
(·)
}
∈ H = R ⊗H1 ⊗·· ·⊗Hd0

.

(d) For a function h∈H with
{

Yi, S
(d)

i ; i= 1, . . . , n
}
, the log-likelihood func-

tion is




Lc(h) = L
(0)
c (h)+L

(1)
c (h)+L

(2)
c (h),

L
(0)
c (h) = (1/n) ∑

i:δ
(c)
i =0

log f(y,s)
(
Yi, Si; h

∣∣Di

)
,

L
(l)
c (h) = (1/n) ∑

i:δ
(c)
i =l

log f(y,l)
(
Yi; h

∣∣Di

)
for l = 1, 2.

(10.95)

(e) The expected log-likelihood is Λc(h) = E{Lc(h)}, where the expectation is
taken with respect to the true function η ∈ H defined to the maximizer of
Λc(h) in H .

(f) The nonparametric function µ
(s)
d (·) is approximated using (10.57) with a

spline basis B(d)(·).
(g) The parameters are γ(d) which belong to a Euclidean space Gd. The pa-

rameters in (10.60) belong to the estimation space

G = R⊗G1 ⊗·· ·⊗Gd0
⊂ H ,

which is a finite-dimensional space.
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(h) The log-likelihood function Lc(h) and its expectation Λc(h) are well defined
on H and G .

(i) In case that the true function is η(·), which may be outside of H , the
objective is to estimate

η∗ = arg max
h∈H

Λc(h)

defined to be the best approximation to η in H .

(j) Let η = argmaxg∈G Λc(g) be the best approximation to η∗ in G . The ap-
proximate maximum likelihood estimate of η∗ is η̂ = argming∈G Lc(g), and
η∗, η and η̂ are characterized by the decomposition

η̂ −η∗ =
(
η −η∗)+

(
η̂ −η

)
, (10.96)

where η −η∗ and η̂ −η are the approximation and estimation errors, re-
spectively.

(k) Since each h∈H is a function on a Euclidean space U , we define ‖h‖∞ =
supu∈U |h(u)| and ‖h‖ to be the L∞ and L2 norms of h(·), respectively, such
that ‖h‖< ∞ and ‖h‖ ≤C0‖h‖∞ for a positive constant C0. ✷

2. Asymptotic Assumptions

Let Nn = dim(G ) be the dimensionality of G , i.e., the number of elements
in G ,

An = sup
g∈G ,‖g‖6=0

‖g‖∞

‖g‖ ≥ 1 and ρn = inf
g∈G

∥∥g−η∗∥∥
∞
. (10.97)

We make the following assumptions for the B-spline approximate maximum
likelihood estimators φ̂AML, which are almost identical to Conditions A.1 to
A.4 of Huang (2001):

(a) The numbers of repeated measurements are bounded by a positive constant,
that is ni ≤ m for some m > 0 and all 1 ≤ i ≤ n. The best approximation η∗

in H to η exists, and there is a positive constant K0 such that ‖η∗‖∞ ≤ K0.

(b) For each pair of bounded functions
{

hl(·) ∈ H : l = 1, 2
}
, Λc[h1 + τ (h2 −

h1)] is twice continuously differentiable with respect to τ for 0 ≤ τ ≤ 1. For
any positive constant K, there are positive numbers M1 and M2 such that

−M1

∥∥h2 − h1

∥∥2 ≤ d2

dτ2
Λc

[
h1 + τ (h2 − h1)

]
≤−M2

∥∥h2 − h1

∥∥2
(10.98)

for 0 ≤ τ ≤ 1 and all h1(·) ∈ H , h2(·) ∈ H with ‖h1‖∞ ≤ K and ‖h2‖∞ ≤ K.

(d) There is a positive constant K0 such that, for n sufficiently large, the best
approximation η in G to η uniquely exists and ‖η‖∞ ≤ K0.

(e) For any pair
{

gl ∈ G : l = 1, 2
}
, Lc

[
g1 + τ

(
g2 −g1

)]
is twice continuously
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differentiable with respect to 0 ≤ τ ≤ 1. In addition,

sup
g∈G

∣∣dLc(η + τg)
/

dτ|τ=0

∣∣
‖g‖ = OP

[(Nn

n

)1/2
]
, (10.99)

and, for any positive constant K, there is a positive number M such that

d2

dτ2
Lc

[
g1 + τ

(
g2 − g1

)]
≤−M

∥∥g2 − g1

∥∥2
(10.100)

for 0 ≤ τ ≤ 1 and any
{

gl ∈ G : l = 1, 2
}
with ‖g1‖∞ ≤ K and ‖g2‖∞ ≤ K,

except on an event whose probability tends to zero as n → ∞. ✷

For a few brief remarks of the above assumptions, the boundedness as-
sumption for ni in (a) ensures that the proofs of Huang (2001) can be directly
extended to the longitudinal data setting. Assumption (b), i.e., (10.97), guar-
antees that Λc(·) is strictly concave on H , so its unique maximizer over H

exists. Assumptions (c) and (d) are comparable to the assumptions in Huang
(2001). Assumptions (a) and (b) are used to quantify the errors of the approx-
imation (10.57) using the spline basis functions. Assumptions (c) and (d) are
used to derive the errors of estimation within the approximated linear spaces
spanned by the spline basis function.

3. Main Asymptotic Results

The following theorems summarize the convergence rates of the approxi-
mation and estimation errors.

Theorem 10.2. (Approximation Error) If Assumptions (a) and (b) are
satisfied, K1 is a positive constant such that K1 > K0 with K0 given in As-
sumption (a) and limn→∞ An ρn = 0, then η exists uniquely, ‖η‖∞ ≤ K1 for n

sufficiently large, and ‖η −η∗‖2 = Op

(
ρ2

n

)
. �

Proof of Theorem 10.2:
The derivations are identical to the proofs of Theorem A.1 of Huang (2001).

Therefore, we do not repeat the derivations here and refer to the technical
details in Huang (2001). �

Theorem 10.3. (Estimation Error) If Assumptions (c) and (d) hold,
limn→∞

(
A2

n Nn/n
)
= 0, and K1 is a positive constant such that K1 > K0 with

K0 given in Assumption (c), then η̂ exists uniquely,
∥∥η̂
∥∥

∞
≤ K1, except on an

event whose probability tends to zero as n → ∞, and
∥∥η̂ −η

∥∥2
= Op

(
Nn/n

)
. �

Proof of Theorem 10.3:
The derivations are identical to the proofs of Theorem A.2 of Huang (2001).
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Therefore, we do not repeat the derivations here and refer to the technical
details in Huang (2001). �

Combining Theorems 10.2 and 10.3, the following theorem summarizes the
convergence rate for the B-spline approximate maximum likelihood estimator
η̂ .

Theorem 10.4. (Overall Error) If Assumptions (a) to (d) are satisfied,
limn→∞

(
An ρn

)
= 0 and limn→∞

(
A2

n Nn/n
)
= 0, then η and η̂ exist uniquely for

n sufficiently large and
∥∥η̂ −η∗∥∥2

= Op

(
Nn/n+ρ2

n

)
. �

Proof of Theorem 10.4:
This theorem is a direct consequence of Theorems 10.2 and 10.3, so its

proof is omitted, because it is identical to the ones in Huang (2001). �

4. Remarks of Asymptotic Results

We make the following remarks to further clarify some implications of
Theorems 10.2, 10.3 and 10.4.

Practical Implications:
Although the above theorems provide a general framework for the asymp-

totic behaviors of the approximate maximum likelihood estimators, their ap-
plications in practice are limited because their asymptotic distributions and
asymptotic variances have not been derived. Inference procedures based on
the asymptotic distributions of B-spline estimators have been available only
for certain nonparametric models, for example, Huang, Wu and Zhou (2004).
Similar procedures, however, have been mostly lacking for likelihood-based
spline methods. ✷

Strict Concavity Condition:
The strict concavity condition of (10.97) could be potentially too strong

and difficult to verify in practical situations. Wu, Tian and Jiang (2011) use
the Gaussian additive shared-parameter model as a natural choice in the sim-
ulation study. However, it is not clear that, under the model (10.59) and the
approximate log-likelihood functions (10.61), (10.68) through (10.70), what

conditions on µ
(s)
d (·) are necessary and sufficient to satisfy the inequalities

of (10.99). In the maximum likelihood estimation with parametric models, it
is possible to encounter situations where the log-likelihood functions are not
strictly concave but can be uniquely maximized over a pre-specified parameter
space. An asymptotic theory that generalizes Assumption (b) to include non-
strictly concave expected log-likelihood functions would yield useful insight on
the asymptotic behaviors of the approximate maximum likelihood estimators.
Therefore, further research along this direction is warranted. ✷
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10.9 Remarks and Literature Notes

The main results of this chapter show that concomitant interventions, as
a special case of the outcome-adaptive covariates, should not be treated as
usual time-dependent covariates in naive mixed-effects models. For the simple
case of having only one concomitant intervention with only one change-point
from“without concomitant intervention”to“with concomitant intervention,”a
shared-parameter change-point model may be considered to reduce the estima-
tion bias and correct the self-selectiveness of the concomitant intervention. The
methods presented in this chapter have a narrow focus on a single concomitant
intervention in a longitudinal clinical trial. Concomitant interventions may
commonly appear in other settings, such as in an epidemiological study where
study subjects may take antihypertensive medication during the study when
their blood pressure levels either exhibit some undesirable trends or stay in an
intolerable range. In the ENRICHD study (Section 10.7), pharmacotherapy
as a concomitant was initiated under a vague guideline and a linear shared-
parameter change-point model appears to be a reasonable choice. However,
this model may not be suitable when the intervention selection mechanism is
different, and in some situations the entire shared-parameter approach may
have to be re-evaluated.

As a special case of the shared-parameter change-point models, a varying-
coefficient mixed-effects model may be considered mainly because it has a
simple and clear biological interpretation for the simple situation where there
is only one concomitant intervention and the change-point time is observed
for all subjects in the study. Compared with the shared-parameter change-
point models, the least squares based estimation method for the varying-
coefficient mixed-effects models does not require the known parametric forms
of the distribution functions. The shared-parameter change-point models, on
the other hand, may be applied to concomitant interventions with double cen-
sored change-point time, but their estimation requires computationally inten-
sive maximum likelihood and approximate maximum likelihood algorithms.

The results of this chapter are mainly adopted from Wu, Tian and
Bang (2008) and Wu, Tian and Jiang (2011). Technical derivations for B-
spline estimators depend heavily on the results presented in Huang (2001,
2003) and Huang, Wu and Zhou (2004). Future research in this area may be
pursued with several potentially worthy extensions. First, subjects in longitu-
dinal studies may have single or multiple concomitant interventions which can
be turned on or off at different time points. In such situations, more general
shared-parameter change-point models may be needed to accommodate the
possibility of multiple interventions and/or multiple change-points. Second, all
shared-parameter change-point models studied in this section rely on linear
functions to describe the time-trends before and after the intervention, but
it is possible that linear response curves are inadequate for certain disease
outcomes. Models with nonlinear response curves can be justified in practice
and should be investigated. Third, the estimation approach of this section
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depends on the classical frequentist’s framework for the B-spline methods.
In a different context, Fahrmeir and Lang (2000) demonstrate a promising
Bayesian inference procedure for generalized additive mixed models based on
Markov random field priors. Similar Bayesian estimation and inference ap-
proaches for the models of this section may lead to computationally simpler
estimation and inference procedures. Fourth, large sample properties, such as
convergence rates and asymptotic distributions, of the maximum likelihood
and approximate maximum likelihood estimators are still not well understood
and should be systematically developed to provide theoretical justifications
for these estimators. Finally, since it may not be always clear whether an in-
tervention is a concomitant intervention, a model diagnostic method would be
a valuable tool to be developed.
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Chapter 11

Nonparametric Mixed-Effects Models

The classical linear mixed-effects models of Chapter 2 involve four compo-
nents: the population-mean terms describing the average time trends and co-
variate effects; the subject-specific terms describing the individual deviations
from the population-mean terms; the distributions of the subject-specific pa-
rameters; and the overall measurement errors. These classical models depend
on the crucial assumption that both the population-mean and subject-specific
terms follow the linear model structure. In practice, the parametric forms of
the population mean and subject-specific terms are often unknown, and a
misspecified parametric family may lead to erroneous conclusions. We present
in this chapter a class of nonparametric mixed-effects models to describe the
following aspects from the data: (a) the differences in population time-trends
among different subgroups and covariates, (b) the population and individual
covariate effects on the outcomes, (c) the population and individual changes
over time, and (d) the percentile curves of the outcomes. By extending the
population-mean and subject-specific terms to nonparametric functions of
time, the models of this chapter are more flexible than the classical linear
mixed-effects models.

11.1 Objectives of Nonparametric Mixed-Effects Models

The estimation methods described in Chapters 3 through 10 are all based on
the so-called “marginal models”, meaning that the models describe the time-
trends and covariate effects for the outcome variable of the population being
studied. A main feature of the marginal models in these chapters is that the
correlation structures are completely unknown and unspecified. Consequently,
the marginal models are not equipped to describe the covariate effects of
an individual and the individual differences from the general population. In
many longitudinal studies, the study objectives require both the population
and subject-specific time-trends and covariate effects, so that a structured
nonparametric model is needed to incorporate the population and subject-
specific structures simultaneously.

As a nonparametric generalization of the classical parametric mixed-effects
models, the methods discussed in this chapter are based on the assumption
that the marginal and subject-specific functions for the mean time-trends and

363
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the covariate effects are smooth functions of time, which can be approximated
by some expansions of a class of basis functions. Specifically, we focus on the
B-spline, i.e., polynomial splines, bases because of their numerical stability. As
a general principle, however, other bases, such as wavelet and Fourier bases,
can be used as well.

The nonparametric methods then depend on the specified basis approxi-
mations and are focused on the following objectives:

(a) Estimation of the population mean time-trends and covariate effects;

(b) Estimation of the covariance function without a requirement that it be
stationary or belong to any particular parametric family;

(c) Estimation of the eigenfunctions and eigenvalues of the covariance func-
tion;

(d) Prediction of the individual outcome values;

(e) Estimation of functionals of individual time-trends, such as derivatives
and location of extrema;

(f) Estimation of the effects of covariates on the shapes of individual time-
trends;

(g) Exploration of the patterns of variability among the individual time-trends
and identification of unusual ones.

With the exception of the objective (a), none of the objectives in (b)
through (g) above can be accomplished by the marginal models described
in Chapters 3 to 10. We demonstrate in the real data application of Sec-
tion 11.4 that adequate estimation and prediction results for the objectives
(b) through (g) can lead to useful insights in a longitudinal study. We note
that the asymptotic properties for the B-spline estimators of the population
mean parameter curves of this chapter are the same as the ones discussed
in Chapter 9. Thus, this chapter is primarily focused on the methods and
applications of the nonparametric mixed-effects models.

11.2 Data Structure and Model Formulation

Following the general framework of Chapters 7 and 8, we consider the stochas-

tic processes
{(

Y (t), t, XT (t)
)T

: t ∈T
}
for a population of interest, where Y (t)

is a real-valued response process, X(t) =
(
X (1)(t), . . . , X (k)(t)

)T
is a Rk-valued

covariate process, and T is the set of time points.

11.2.1 Data Structure

For n randomly selected subjects from the population, the subject-specific
processes within the time range t ∈ T are denoted by
{

Zi(t) =
(
Yi(t), t, XT

i (t)
)T

: Xi(t) =
(
X
(1)
i (t), . . . , X

(k)
i (t)

)T
; t ∈ T ; i = 1, . . . , n

}
.
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For each i = 1, . . . , n, there are ni observations of
{

Zi(t) : t ∈ T
}
obtained at

a set of time design points ti =
(
ti1, . . . , tini

)T
. The longitudinal sample is then

denoted by

Z =
{

Zi j =
(
Yi j, ti j, XT

i j

)T
: i = 1, . . . , n; j = 1, . . . , ni

}
,

where Yi j = Yi

(
ti j

)
, Xi j = Xi

(
ti j

)
, Xi j =

(
X
(1)
i j , . . . , X

(k)
i j

)T
and X

(l)
i j = X

(l)
i

(
ti j

)
for

l = 1, . . . , k.

11.2.2 Mixed-Effects Models without Covariates

Without incorporating the covariate vector X(t), our objective is to evaluate
the population mean of Y (t) and the subject-specific time-trends of Yi(t) for

1 ≤ i ≤ n based on the observations
{(

Yi j, ti j

)T
: i = 1, . . . , n; j = 1, . . . , ni

}
.

1. Model Formulation

As a direct generalization of the parametric mixed-effects models of Chap-
ter 2, we consider the following nonparametric mixed-effects model for the
time-trends of Yi(t),

Yi(t) = β0(t)+β0i(t)+ εi(t), (11.1)

where β0(t) = E
[
Yi(t)

]
is a smooth function of t representing the population

mean time-trend of Y (t), β0i(t), also a smooth function of t, represents the ith
individual’s departure from the population mean time-trend which satisfies
E
[
β0i(t)

]
= 0, and εi(t) is the measurement error which satisfies

E
[
εi(t)

]
= 0, Var

[
εi(t)

]
= σ2(t) and Cov

[
εi(t1), εi(t2)

]
= 0 if t1 6= t2.

Applying (11.1) to the observations
{(

Yi j, ti j

)T
: i = 1, . . . , n; j = 1, . . . , ni

}
, the

model (11.1) is
Yi j = β0

(
ti j

)
+β0i

(
ti j

)
+ εi j, (11.2)

where εi j = εi

(
ti j

)
is the measurement error at time point ti j which satisfies

E
(
εi j

)
= 0, Var

(
εi j

)
= σ2 and Cov

(
εi j1 , εi j2

)
= 0 if j1 6= j2.

Interpretations of β0(t) and β0i(t) are similar to their counterparts in para-
metric mixed-effects models of Chapter 2, except that, under the current con-
text, β0(t) and β0i(t) are flexible curves of t which do not belong to any para-
metric families. It is common in the literature, for example, Shi, Weiss and
Taylor (1996), Rice and Wu (2001), Guo (2002), Liang, Wu and Carroll (2003)
and Wu and Liang (2004), to refer to β0(t) as the population-mean coefficient
curve, β0i(t) the ith individual’s subject-specific deviation and β0(t) + β0i(t)
the ith individual’s subject-specific outcome trajectory. The estimated subject-
specific outcome trajectory is used for the prediction of an individual’s out-
come time-trend.

In contrast to the parametric mixed-effects models, we assume that β0(t)
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and β0i(t) of (11.1) and (11.2) are some flexible and smooth functions of time
t, which may not belong to known parametric families. In practice, however,
we have to assume that β0(t) and β0i(t) satisfy some structural assumptions.
These assumptions are generally more flexible than the classical parametric
families and are imposed to ensure that β0(t) and β0i(t) are estimable.

2. B-spline Approximated Mixed-Effects Model

Using the ideas of basis approximation illustrated in Chapter 9, we assume
here that β0(t) and β0i(t) can be approximated by the following B-spline basis
expansions {

β0(t) ≈ ∑
K0
s=1

[
γ0s B0s(t)

]
= γT

0 B0(t),

β0i(t) ≈ ∑
K∗

0
s=1

[
γ0si B0s(t)

]
= γT

0i B∗
0(t),

(11.3)

where B0(t) =
(
B01(t), . . . , B0K0

(t)
)T

and B∗
0(t) =

(
B01(t), . . . , B0K∗

0
(t)
)T

are B-
spline basis functions with numbers of terms K0 ≥ 1 and K∗

0 ≥ 1, respectively,

γ0 =
(
γ01, . . . , γ0K0

)T
and γ0i =

(
γ01i, . . . , γ0K∗

0 i

)T
(11.4)

are the corresponding coefficients, and
{

γ0i : i = 1, . . . , n
}
are assumed to be

mutually uncorrelated random vectors. As noted in Chapter 9, many basis
choices can be used to approximate β0(t) and β0i(t). We use B-splines in (11.3)
because they exhibit local features and provide stable numerical solutions.

Substituting β0(t) and β0i(t) with the right-side terms of (11.3) and as-
suming that γ0i and εi(t) have normal distributions, the B-spline approximated
nonparametric mixed-effects model (11.1) is given by





Yi(t) ≈ Y ∗
i (t),

Y ∗
i (t) = ∑

K0
s=1

[
γ0s B0s(t)

]
+∑

K∗
0

s=1

[
γ0si B0s(t)

]
+ εi(t)

= γT
0 B0(t)+ γT

0i B∗
0(t)+ εi(t),

γ0i ∼ N
(
0, D0

)
,

εi(t) ∼ N
(
0,σ2

)
,

(11.5)

where B0(t), B∗
0(t), γ0s, γ0si and εi(t) are defined in (11.1), (11.3) and (11.4),

σ > 0 is the unknown time-invariant standard deviation of the measurement
error εi(t), γ0i and εi(t) are independent, and D0 is the variance-covariance
matrix of γ0i. Substituting t with ti j, (11.5) gives the B-spline approximated
model for (11.2).

Since Y ∗
i (t) follows a linear mixed-effects model when K0 and K∗

0 are fixed
and known, (11.5) can be viewed as an extended linear mixed-effects model.
In model (11.5), both the population mean function β0(t) and the individ-
ual random effects β0i(t) are approximated by linear combinations of the B-
spline basis. This allows the population mean time-trend β0(t) to be a general
smooth function and each individual to have their own smooth time-trend
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β0(t)+β0i(t). By using subject-specific individual time-trends, this modeling
approach does not force all subjects to have the same time-trends. In contrast,
the parametric models for β0(t) and β0i(t), such as the linear or polynomial
functions, force the time-trends of all the individuals to have similar patterns,
which can be unrealistic in real applications.

The mean zero assumption for γ0i and εi(t) reflects the facts that γ0i de-
scribes the individual’s deviation from the population mean time-trends and
εi(t) is a measurement error. The normality assumption for γ0i and εi(t) is made
for the purpose of computational convenience. Although other parametric dis-
tribution families may be assumed for γ0i and εi(t), the B-spline approximated
mixed-effects models with non-normal distributions for γ0i and εi(t) have not
been systematically studies, mostly due to computational complexity of the
estimation procedures.

3. B-spline Approximation of Variance-Covariance Matrix

Using the B-spline approximated model (11.5), the covariance structure,
including serial correlation, is modeled through the random coefficients γ0i.
The covariance of the random process {Y (t) : t ∈T

}
at time points t1 6= t2 can

be approximated as

Cov
[
Y (t1), Y (t2)

]
=

K∗
0

∑
s1=1

K∗
0

∑
s2=1

[
d0s1s2

B0s1
(t1)B0s2

(t2)
]
, (11.6)

where, because E
(
γ0si

)
= 0, d0s1s2

= E
(
γ0s1i × γ0s2i

)
is the (s1, s2)th element of

D0. The expression at the right side of (11.6) shows that, when measurement
error εi(t) exists, the variance of Y (t) at time t is

Var
[
Y (t)

]
=

K∗
0

∑
s1=1

K∗
0

∑
s2=1

[
d0s1s2

B0s1
(t)B0s2

(t)
]
+σ2. (11.7)

Combining (11.6) and (11.7), we can write the variance-covariance of Y (t1)
and Y (t2) at {t1, t2} as

Cov
[
Y (t1), Y (t2)

]
=

K∗
0

∑
s1=1

K∗
0

∑
s2=1

[
d0s1s2

B0s1
(t1)B0s2

(t2)
]
+σ2 1[t1=t2], (11.8)

where 1[t1=t2] is the indicator function with value 1 if t1 = t2, and 0 if t1 6= t2. It
then follows from (11.8) that, as t2 → t1,

lim
t2→t1

Cov
[
Y (t1),Y (t2)

]
<Var

[
Y (t1)

]
,

which shows that the covariance process Cov
[
Y (t), Y (t + δ )

]
has an upward

jump of size σ2 > 0 at δ = 0.
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4. Matrix Representations

To rewrite (11.5) using the matrix expression, we define





ti =
(
ti1, . . . , tini

)T
, Yi(ti) =

(
Yi1, . . . , Yini

)T
,

B0s(ti) =
(
B0s(ti1), . . . , B0s(tini

)
)T

, s = 1, . . . , max
{

K0, K∗
0

}
,

B0(ti) =
(
B01(ti), . . . , B0K0

(ti)
)
, B∗

0(ti) =
(
B01(ti), . . . , B0K∗

0
(ti)
)
,

γ0 =
(
γ01, . . . , γ0K0

)T
, γ0i =

(
γ01i, . . . , γ0K∗

0 i

)T
,

εi(ti) =
(
εi(ti1), . . . , εi(tini

)
)T

, i = 1, . . . , n,

and then rewrite the B-spline approximated model (11.5) as





Yi(ti) ≈ Y ∗
i (ti),

Y ∗
i (ti) = B0(ti)γ0 +B∗

0(ti)γ0i + εi(ti),

γ0i ∼ N
(
0, D0

)
,

εi(ti) ∼ N
(
0, σ2 Ini

)
,

(11.9)

where Ini
is the ni ×ni identity matrix and Γ0i and εi(ti) are independent. The

variance-covariance matrix of Y ∗
i (ti) is

Vi =Cov
[
Y ∗

i (ti)
]
= B∗

0(ti)D0 B∗
0(ti)

T +σ2 Ini
. (11.10)

The above matrix expressions are useful in Section 11.3 for estimating the
coefficient curves and constructing the outcome trajectories.

11.2.3 Mixed-Effects Models with a Single Covariate

To illustrate the effect of incorporating covariates, we first present the simple
case of modeling the stochastic processes

{
(Y (t), t,X(t))T : t ∈T

}
with a single

continuous covariate X(t) = X(t). The corresponding subject-specific curves
and observations are

{ {
Zi(t) =

(
Yi(t), t, Xi(t)

)T
: t ∈ T ; i = 1, . . . , n

}
,

{
Zi j =

(
Yi j, ti j, Xi j

)T
: i = 1, . . . , n; j = 1, . . . , ni

}
,

where Yi j = Yi

(
ti j

)
and Xi j = Xi

(
ti j

)
. Since the covariate process may also be

measured with error, we consider first the covariate measured without error
and then the covariate measured with error.

1. Models without Measurement Error

As the simplest flexible extension of the nonparametric mixed-effects model
(11.1), we assume that, at any time point t ∈ T , the ith subject’s outcome
process Yi(t) depends on its covariate process Xi(t) through a linear model with
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population and subject-specific coefficients. This gives the following simplest
mixed-effects varying-coefficient model, which was proposed by Liang, Wu and
Carroll (2003),

Yi(t) = β0(t)+
[
β1(t)+β1i(t)

]
Xi(t)+ εi(t), (11.11)

where β0(t) = E
[
Yi(t)

∣∣Xi(t) = 0
]
and β1(t) are smooth functions of t describing

the population intercept and slope of Yi(t) at time t, β1i(t), also a smooth
function of t, represents the ith individual’s subject-specific deviation of the
slope function, εi(t) is the mean zero measurement error as in (11.1) which
satisfies Var

[
εi(t)

]
= σ2 and Cov

[
εi(t1), εi(t2)

]
= 0 for t1 6= t2, and Xi(t) and εi(t)

are independent.
We note that, in (11.11), there is no random intercept term, and the

subject-specific deviation is only assumed for the coefficient term β1i(t). This
assumption is made for the simple purpose of illustrating the effects of includ-
ing a random intercept term to describe the individual covariate effects on the
outcome process. In a real application, it is often appropriate to consider a
more general model of the form

Yi(t) = β0(t)+β0i(t)+
[
β1(t)+β1i(t)

]
Xi(t)+ εi(t), (11.12)

which has a subject-specific intercept curve β0i(t) satisfying E
[
β0i(t)

]
= 0 in

addition to β0(t), β1(t), β1i(t) and εi(t) defined in (11.11).
To rewrite (11.11) and (11.12) under the observed data, let





ti =
(
ti1, . . . , tini

)T
, Yi(ti) =

(
Yi1, . . . , Yini

)T
,

β0(ti) =
(
β0(ti1), . . . , β0(tini

)
)T

, β0i(ti) =
(
β0i(ti1), . . . , β0i(tini

)
)T

,

β1(ti) =
(
β1(ti1), . . . , β1(tini

)
)T

, β1i(ti) =
(
β1i(ti1), . . . , β1i(tini

)
)T

,

Xi(ti) =
(
Xi(ti1), . . . , Xi(tini

)
)T

, εi(ti) =
(
εi(ti1), . . . , εi(tini

)
)T

.
(11.13)

For the observations
{

Yi(ti), ti, Xi(ti) : i = 1, . . . , n
}
, (11.11) can be written as

Yi(ti) = β0(ti)+
[
β1(ti)+β1i(ti)

]
∗Xi(ti)+ εi(ti), (11.14)

and (11.12) can be written as

Yi(ti) = β0(ti)+β0i(ti)+
[
β1(ti)+β1i(ti)

]
∗Xi(ti)+ εi(ti), (11.15)

where, for any a(ti) =
(
a(ti1), . . . , a(tini

)
)T

, a(ti) ∗ Xi(ti) is the vector of
component-wise products, i.e.,

a(ti)∗Xi(ti) =
(
a(ti1)Xi(ti1), . . . , a(tini

)Xi(tini
)
)T

.

The expressions in (11.14) and (11.15) are useful for describing the estimation
procedures.
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2. Approximated Models without Covariate Measurement Error

Assuming that the coefficient curves of (11.11) and (11.12) can be ap-
proximated by some expansions of basis functions, we can derive the basis
approximated models for (11.11) and (11.12). Using the B-spline approach of
(11.3), we assume that the coefficient curves

{
β0(t), β0i(t), β1(t), β1i(t)

}
can be

approximated by the following B-spline basis expansions





β0(t) ≈ ∑
K0
s=1

[
γ0s B0s(t)

]
= γT

0 B0(t),

β0i(t) ≈ ∑
K∗

0
s=1

[
γ0si B0s(t)

]
= γT

0i B∗
0(t),

β1(t) ≈ ∑
K1
s=1

[
γ1s B1s(t)

]
= γT

1 B1(t),

β1i(t) ≈ ∑
K∗

1
s=1

[
γ1si B1s(t)

]
= γT

1i B∗
1(t),

(11.16)

where




B0(t) =
(
B01(t), . . . , B0K0

(t)
)T

, B∗
0(t) =

(
B01(t), . . . , B0K∗

0
(t)
)T

,

B1(t) =
(
B11(t), . . . , B1K1

(t)
)T

, B∗
1(t) =

(
B11(t), . . . , B1K∗

1
(t)
)T

(11.17)
are B-spline basis functions with K0 ≥ 1, K∗

0 ≥ 1, K1 ≥ 1 and K∗
1 ≥ 1 numbers

of terms, respectively,





γ0 =
(
γ01, . . . , γ0K0

)T
, γ0i =

(
γ01i, . . . , γ0K∗

0 i

)T
,

γ1 =
(
γ11, . . . , γ1K1

)T
, γ1i =

(
γ11i, . . . , γ1K∗

1 i

)T
,

(11.18)

are the corresponding coefficients for the intercept and slope curves,
(
γ0i, γ1i

)T

are mean zero random vectors with some covariance matrix Γ, which satisfies

E
(
γT

0i, γT
1i

)T
= 0 and Cov

(
γT

0i, γT
1i

)T
= Γ. (11.19)

Substituting the B-spline approximations at the right side terms of (11.16)
to the model (11.11) and assuming normal distributions for the subject-specific
effects and the measurement errors, the B-spline approximated nonparametric
mixed-effects model for (11.11) is





Yi(t) ≈ Y ∗
i (t),

Y ∗
i (t) = ∑

K0
s=1

[
γ0s B0s(t)

]
+∑

K1
s=1

[
γ1s B1s(t)Xi(t)

]

+∑
K∗

1
s=1

[
γ1si B1s(t)Xi(t)

]
+ εi(t)

= γT
0 B0(t)+

[
γT

1 B1(t)+ γT
1i B∗

1(t)
]

Xi(t)+ εi(t),

γ1i ∼ N
(
0, D1

)
,

εi(t) ∼ N
(
0,σ2

)
,

(11.20)

where B0(t), B1(t), B∗
1(t), γ0s, γ1s, γ1si and εi(t) are defined in (11.17), (11.18)
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and (11.19), σ > 0 is the unknown time-invariant standard deviation of the
measurement error εi(t), γ1i and εi(t) are independent, and D1 is the variance-
covariance matrix of γ1i. Similarly, the generalization of (11.20) with the in-
clusion of subject-specific intercept curve is then given by





Yi(t) ≈ Y ∗
i (t),

Y ∗
i (t) = ∑

K0
s=1

[
γ0s B0s(t)

]
+∑

K∗
0

s=1

[
γ0si B0s(t)

]

+
{

∑
K1
s=1

[
γ1s B1s(t)

]
+∑

K∗
1

s=1

[
γ1si B1s(t)

]}
Xi(t)

+εi(t)

=
[
γT

0 B0(t)+ γT
0i B∗

0(t)
]
+
[
γT

1 B1(t)+ γT
1i B∗

1(t)
]

Xi(t)

+εi(t),
(
γT

0i, γT
1i

)T ∼ N
(
0, D01

)
,

εi(t) ∼ N
(
0,σ2

)
,

(11.21)

where B0(t), B∗
0(t), B1(t), B∗

1(t), γ0s, γ0si, γ1s, γ1si and εi(t) are defined in (11.17),
(11.18) and (11.19), σ > 0 is the unknown time-invariant standard deviation
of the measurement error εi(t),

(
γT

0i, γT
1i

)
and εi(t) are independent, and D01 is

the variance-covariance matrix of
(
γT

0i, γT
1i

)
.

Comparing (11.20) with (11.21), we notice that, although (11.12) only in-
volves one more subject-specific intercept curve than (11.11), their B-spline
approximated mixed-effects models have significantly different model complex-
ity. Specifically, (11.21) involves K∗

0 more individual coefficients and a more
complex covariance matrix D01 than (11.20). In practice, the additional model
complexity may lead to computational complexity. Thus, it is generally ad-
visable to start with a simpler model in real applications. For this reason, we
illustrate the estimation methods by focusing on the simple B-spline approx-
imated model (11.20) in the following sections.

Using the notation of (11.13) and





Bls(ti) =
(
Bls(ti1), . . . ,Bls(tini

)
)T

,

Bls(ti)∗Xi(ti) =
(

Bls(ti1)Xi(ti1), . . . , Bls(tini
)Xi(tini

)
)T

, l = 0,1,
(11.22)

the expressions of (11.20) and (11.21) for the observations
{

Yi(ti), ti, Xi(ti) : i =
1, . . . , n

}
are





Yi(ti) ≈ Y ∗
i (ti),

Y ∗
i (ti) = ∑

K0
s=1

[
γ0s B0s(ti)

]
+∑

K1
s=1

[
γ1s B1s(ti)∗Xi(ti)

]

+∑
K∗

1
s=1

[
γ1si B1s(ti)∗Xi(ti)

]
+ εi(ti)

γ1i ∼ N
(
0, D1

)
,

εi(t) ∼ N
(
0, σ2

)
,

(11.23)
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and




Yi(ti) ≈ Y ∗
i (ti),

Y ∗
i (ti) = ∑

K0
s=1

[
γ0s B0s(ti)

]
+∑

K∗
0

s=1

[
γ0si B0s(ti)

]

+
{

∑
K1
s=1

[
γ1s B1s(ti)

]
+∑

K∗
1

s=1

[
γ1si B1s(ti)

]}
∗Xi(ti)

+εi(ti)
(
γT

0i, γT
1i

)T ∼ N
(
0, D01

)
,

εi(t) ∼ N
(
0, σ2

)
.

(11.24)

The above expressions are useful for describing the estimation procedures for
(11.11) and (11.12).

3. Models with Covariate Measurement Error

In some applications, the actual values of the covariate process Xi(t) are
not directly observed but are measured with errors. In this case, we have a
measurement error model for Xi(t) at time t ∈ T with the following form,

Wi(t) = Xi(t)+ ui(t), (11.25)

whereWi(t) is the observable covariate value, Xi(t) is the underlying true covari-
ate value and ui(t) represents the measurement error of the covariate process.
Similar to model (11.1), we assume in (11.25) that the measurement error
process ui(t) satisfies

E
[
ui(t)

]
= 0, Var

[
ui(t)

]
= σ2

u (t) and Cov
[
ui(t1), ui(t2)

]
= 0 if t1 6= t2. (11.26)

When the covariate Xi(t) is measured with error, the varying-coefficient
mixed-effects models (11.11) and (11.12) of Liang, Wu and Carroll (2003)
become {

Yi(t) = β0(t)+
[
β1(t)+β1i(t)

]
Xi(t)+ εi(t),

Wi(t) = Xi(t)+ ui(t)
(11.27)

and
{

Yi(t) = β0(t)+β0i(t)+
[
β1(t)+β1i(t)

]
Xi(t)+ εi(t),

Wi(t) = Xi(t)+ ui(t),
(11.28)

respectively, with the coefficient curves defined in (11.11), (11.12), (11.25)
and (11.26). Since Xi(t) is measured with error, the observed sample for{

Yi(ti), ti, Xi(ti) : i = 1, . . . ,n
}
is

{
Yi(ti), ti,Wi(ti) : Wi(ti) =

(
Wi(ti1), . . . ,Wi(tini

)
)T

; i = 1, . . . , n
}
. (11.29)
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Based on (11.29), the models (11.27) and (11.28) become

{
Yi(ti) = β0(ti)+

[
β1(ti)+β1i(ti)

]
Xi(ti)+ εi(t),

Wi(ti) = Xi(ti)+ ui(ti)
(11.30)

and
{

Yi(ti) = β0(ti)+β0i(ti)+
[
β1(ti)+β1i(ti)

]
Xi(ti)+ εi(ti),

Wi(ti) = Xi(ti)+ ui(ti),
(11.31)

respectively, where ui(ti) =
(
ui(ti1), . . . , ui(tini

)
)T

. ✷

4. Approximated Models with Covariate Measurement Error

We use the same approach as (11.1) to write Xi(t) as the sum of a fix-effect
curve α(t) and a subject-specific curve αi(t), such that,

Xi(t) = α(t)+αi(t) (11.32)

with E
[
αi(t)

]
= 0. Here, we approximate α(t) and αi(t) by the B-spline basis

expansions {
α(t) ≈ ∑

p
s=0 ξs Bxs(t) = ξ T Bx(t),

αi(t) ≈ ∑
q
s=0 ξsi B∗

xs(t) = ξ T
i B∗

x(t),
(11.33)

where ξ =
(
ξ0, . . . , ξp

)T
and ξi =

(
ξ0i, . . . , ξqi

)T
which satisfies E

(
ξis

)
= 0 for

s = 1, . . . , q and Cov
(
ξi

)
= Σξ . Using the B-spline approximation in (11.32)

and (11.33), the B-spline approximated nonparametric mixed-effects model of
(11.27) with covariate measurement error under normal distribution assump-
tion is





Yi(t) ≈ Y ∗
i (t),

Xi(t) ≈ X∗
i (t),

X∗
i (t) = ∑

p
s=0 ξs Bxs(t)+∑

q
s=0 ξsi B∗

xs(t)

= ξ T Bx(t)+ ξ T
i B∗

x(t),

Wi(t) ≈ X∗
i (t)+ ui(t),

Y ∗
i (t) = ∑

K0
s=1

[
γ0s B0s(t)

]
+∑

K1
s=1

[
γ1s B1s(t)Xi(t)

]

+∑
K∗

1
s=1

[
γ1si B1s(t)X∗

i (t)
]
+ εi(t)

= γT
0 B0(t)+

[
γT

1 B1(t)+ γT
1i B∗

1(t)
]

X∗
i (t)+ εi(t),

ξi ∼ N
(
0, Σξ

)
,

ui(t) ∼ N
(
0, σ2

u (t)
)
, Cov

[
ui(t1), ui(t2)

]
= 0 if t1 6= t2,

γ1i ∼ N
(
0, D1

)
,

εi(t) ∼ N
(
0, σ2

)
,

(11.34)
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and the B-spline approximated nonparametric mixed-effects model of (11.28)
with covariate measurement under normal distribution assumption is





Yi(t) ≈ Y ∗
i (t),

Xi(t) ≈ X∗
i (t),

X∗
i (t) = ∑

p
s=0 ξs Bxs(t)+∑

q
s=0 ξsi B∗

xs(t)

= ξ T Bx(t)+ ξ T
i B∗

x(t),

Wi(t) ≈ X∗
i (t)+ ui(t),

Y ∗
i (t) = ∑

K0
s=1

[
γ0s B0s(t)

]
+∑

K∗
0

s=1

[
γ0si B0s(t)

]

+
{

∑
K1
s=1

[
γ1s B1s(t)

]
+∑

K∗
1

s=1

[
γ1si B1s(t)

]}
X∗

i (t)

+εi(t)

=
[
γT

0 B0(t)+ γT
0i B∗

0(t)
]
+
[
γT

1 B1(t)+ γT
1i B∗

1(t)
]

X∗
i (t)

+εi(t),

ξi ∼ N
(
0, Σξ

)
,

ui(t) ∼ N
(
0, σ2

u (t)
)
, Cov

[
ui(t1), ui(t2)

]
= 0 if t1 6= t2,

(
γT

0i, γT
1i

)T ∼ N
(
0, D01

)
,

εi(t) ∼ N
(
0, σ2

)
,

(11.35)

where the corresponding parameters and coefficient curves are defined in
(11.20), (11.21), (11.32) and (11.33). Substituting t with ti in (11.34) and
(11.35), we can obtain the B-spline approximated models for the observed
data (11.29). To avoid repetition, the exact expressions of these models are
omitted.

11.2.4 Extensions to Multiple Covariates

We now extend the models of Section 11.2.3 to the case with multiple covari-
ates. This extension follows the approach for the univariate covariate case, as
all the covariate effects are included as simple linear terms.

1. Models without Covariate Measurement Errors

With the presence of the covariate vector X(t), we have the additional
objective of evaluating the population-average and subject-specific covariate

effects based on the observations
{(

Yi j, ti j, XT
i j

)T
: i = 1, . . . , n; j = 1, . . . , ni

}
.

Extending the varying-coefficient mixed-effects model (11.12) to the case of
multivariate covariates, we can incorporate the additional covariate effects by
adding the additional population-mean and subject-specific terms to (11.12).
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For the convenience of exposition, we decompose X(t) to





X(t) =
(
X(1)(t)T , X(2)(t)T

)T
,

X(1)(t) =
(
X (1)(t), . . . ,X (L)(t)

)T
,

X(2)(t) =
(
X (L+1)(t), . . . ,X (k)(t)

)T

(11.36)

for some L ≤ k, and express the varying-coefficient mixed-effects model as

Yi(t) = β0(t)+β0i(t)+∑L
l=1

[
βl(t)+βli(t)

]
X
(l)
i (t)

+∑k
l=L+1 βl(t)X

(l)
i (t)+ εi(t).

(11.37)

Under the observations
{(

Yi j, ti j, XT
i j

)T
: i = 1, . . . , n; j = 1, . . . , ni

}
, (11.37) be-

comes

Yi j = β0(ti j)+β0i(ti j)+∑L
l=1

[
βl(ti j)+βli(ti j)

]
X
(l)
i j

+∑k
l=L+1 βl(ti j)X

(l)
i j + εi(ti j).

(11.38)

The second summation term, i.e., from L+1 to k, disappears when all the
covariates have subject-specific effects, i.e., L = k. On the other hand, when
L = 0, the summation from l = 1 to L disappears, which suggests that none of
the coefficients have subject-specific effects. The coefficient curves in (11.37)
have the same interpretations as in (11.12). Specifically,

{
β0(t), β0i(t)

}
are the

population-mean curve and the subject-specific deviation,
{

βl(t) : l = 1, . . . , k
}

are the population-mean coefficient curves which represent the population-
mean covariate effects of Xi(t), and

{
βli(t) : l = 1, . . . , L

}
describe the subject-

specific covariate effect deviations. ✷

2. Approximated Models without Covariate Measurement Errors

The B-spline approximation for the varying-coefficient mixed-effects model
(10.38) can be constructed by substituting the following approximations

{
βl(t) ≈ ∑

Kl

s=1 γls Bls(t) = γT
l Bl(t), l = 0, . . . ,k,

βli(t) ≈ ∑
K∗

l
s=1 γlsi Bls(t) = γT

li B∗
l (t), l = 0, . . . , L,

(11.39)

to (11.38), where, for l = 0, . . . , k,

Bl(t) =
(
Bl1(t), . . . , BlKl

(t)
)T

and B∗
l (t) =

(
B∗

l1(t), . . . , B∗
lK∗

l
(t)
)T

, (11.40)

are B-spline basis functions, and

γl =
(
γl1, . . . , γlKl

)T
and γli =

(
γl1i, . . . , γlK∗

l

)T
(11.41)

are the corresponding coefficients. Under the assumption of normal distri-
butions, the B-spline approximated mixed-effects varying-coefficient model is
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given by




Yi(t) ≈ Y ∗
i (t),

Y ∗
i (t) = ∑

K0
s=1

[
γ0s B0s(t)

]
+∑

K∗
0

s=1

[
γ0si B0s(t)

]

+∑L
l=1

{
∑

Kl
s=1

[
γls Bls(t)

]

+∑
K∗

l
s=1

[
γlsi Bls(t)

]}
X
(l)
i (t)

+∑k
l=L+1

{
∑

Kl
s=1 γls Bls(t)

}
X
(l)
i (t)+ εi(t)

=
[
γT

0 B0(t)+ γT
0i B∗

0(t)
]

+∑L
l=1

[
γT

l Bl(t)+ γT
li B∗

l (t)
]

X
(l)
i (t)

+∑k
l=L+1

[
γT

l Bl(t)X
(l)
i (t)

]
+ εi(t),

(
γT

0i, . . . , γT
Li

)T ∼ N
(
0, D0L

)
,

εi(t) ∼ N
(
0, σ2

)
,

(11.42)

where, for l = 0, . . . , K, Bl(t), B∗
l (t), γls, γlsi, εi(t) and σ > 0 are defined in

(11.17), (11.18) and (11.19),
(
γT

0i, . . . , γT
Li

)
and εi(t) are independent, and D0L

is the variance-covariance matrix of
(
γT

0i, . . . , γT
Li

)
.

3. Models with Covariate Measurement Errors

Extensions of the covariate measurement error models (11.28) and (11.35)
can be constructed by combining the measurement error model (11.32) with
(11.38) and (11.42). This extension depends on which covariates are measured
with error. If the components in X(1)(t) of (11.36) satisfy the measurement
error model, we have the expression

W
(l)
i (t) = X

(l)
i (t)+ u

(l)
i (t), l = 1, . . . , L, (11.43)

for i = 1, . . . , n, where X
(l)
i (t) is the ith subject’s underlying value of X (l)(t),

W
(l)
i (t) is the ith subject’s observed value for X

(l)
i (t), and u

(l)
i (t) is the corre-

sponding measurement error which, similar to (11.26), satisfies




E
[
u
(l)
i (t)

]
= 0, Var

[
u
(l)
i (t)

]
= σ2

u(l)
(t),

Cov
[
u
(l)
i (t1), u

(l)
i (t2)

]
= 0 if t1 6= t2,

u
(l1)
i (t) and u

(l2)
i (t) are independent if l1 6= l2.

(11.44)

The observed data under the covariate measurement error model (11.43) are




{(
Yi j, ti j, WT

i j ,
(
X
(2)
i j

)T
)T

: i = 1, . . . , n; j = 1, . . . , ni

}
,

Wi j =
(
W

(1)
i j , . . . ,W

(L)
i j

)T
, W

(l)
i j = W

(l)
i (ti j) for l = 1, . . . , L,

X
(2)
i j =

(
X
(L+1)
i j , . . . , X

(k)
i j

)T
, X

(l)
i j = X

(l)
i (ti j) for l = L+ 1, . . . , k.

(11.45)
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The extension of (11.37) with covariate measurement errors is





Yi(t) = β0(t)+β0i(t)+∑L
l=1

[
βl(t)+βli(t)

]
X
(l)
i (t)

+∑k
l=L+1 βl(t)X

(l)
i (t)+ εi(t),

W
(l)
i (t) = X

(l)
i (t)+ u

(l)
i (t), l = 1, . . . , L

(11.46)

with the coefficient curves defined in (11.37), (11.43) and (11.44). Under the
observations (11.45), (11.46) becomes





Yi j = β0(ti j)+β0i(ti j)+∑L
l=1

[
βl(ti j)+βli(ti j)

]
X
(l)
i j

+∑k
l=L+1 βl(ti j)X

(l)
i j + εi(ti j),

W
(l)
i j = X

(l)
i j + u

(l)
i j , l = 1, . . . , L,

(11.47)

where u
(l)
i j = u

(l)
i (ti j).

The B-spline approximated models for (11.46) and (11.47) can be con-
structed using the approach of (11.32) and (11.33). In this case, we first de-

compose X
(l)
i (t) of (11.43) into the sum of a fixed effect curve α(l)(t) and a

subject-specific curve α
(l)
i (t), so that

X
(l)
i (t) = α(l)(t)+α

(l)
i (t), l = 1, . . . , L, (11.48)

with E
[
α
(l)
i (t)

]
= 0, and then approximate α(l)(t) and α

(l)
i (t) by the following

B-spline expansions

{
α(l)(t) ≈ ∑

pl
s=0 ξ

(l)
s B

(l)
xs (t) =

(
ξ (l)
)T

B
(l)
x (t),

α
(l)
i (t) ≈ ∑

ql
s=0 ξ

(l)
si B

∗(l)
xs (t) =

(
ξ
(l)
i

)T
B
∗(l)
x (t),

(11.49)

so that, for l = 1, . . . , L, X
(l)
i (t) has the following approximation,





X
(l)
i (t) ≈ X

∗(l)
i (t),

X
∗(l)
i (t) = ∑

pl
s=0 ξ

(l)
s B

(l)
xs (t)+∑

ql
s=0 ξ

(l)
si B

∗(l)
xs (t)

=
(
ξ (l)
)T

B
(l)
x (t)+

(
ξ
(l)
i

)T
B
∗(l)
x (t).

(11.50)

Combining (11.42), (11.43) and (11.50), the B-spline approximated model for
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(11.46) is given by





Yi(t) ≈ Y ∗
i (t),

X
(l)
i (t) ≈ X

∗(l)
i (t),

X
∗(l)
i (t) = ∑

pl
s=0 ξ

(l)
s B

(l)
xs (t)+∑

ql
s=0 ξ

(l)
si B

∗(l)
xs (t)

=
(
ξ (l)
)T

B
(l)
x (t)+

(
ξ
(l)
i

)T
B
∗(l)
x (t),

W
(l)
i (t) ≈ X

∗(l)
i (t)+ u

(l)
i (t),

Y ∗
i (t) = ∑

K0
s=1

[
γ0s B0s(t)

]
+∑

K∗
0

s=1

[
γ0si B0s(t)

]

+∑L
l=1

{
∑

Kl
s=1

[
γls Bls(t)

]

+∑
K∗

l
s=1

[
γlsi Bls(t)

]}
X
(l)
i (t)

+∑k
l=L+1

{
∑

Kl
s=1 γls Bls(t)

}
X
(l)
i (t)

+εi(t)

=
[
γT

0 B0(t)+ γT
0i B∗

0(t)
]

+∑L
l=1

[
γT

l Bl(t)+ γT
li B∗

l (t)
]

X
(l)
i (t)

+∑k
l=L+1

[
γT

l Bl(t)X
(l)
i (t)

]
+ εi(t),

u
(l)
i (t) ∼ N

(
0, σ2

u(l)
(t)
)
,

Cov
[
u
(l)
i (t1), u

(l)
i (t2)

]
= 0 if t1 6= t2,

(
γT

0i, . . . , γT
Li

)T ∼ N
(
0, D0L

)
,

εi(t) ∼ N
(
0, σ2

)
,

(11.51)

where the corresponding parameters and coefficient curves are defined in
(10.41), (10.42) and (10.49).

11.3 Estimation and Prediction without Covariates

Using the B-spline approximated models of Section 10.2, the B-spline coef-
ficients, hence, the population-mean and subject-specific coefficient curves,
can be estimated using the method of least squares. These least squares es-
timates can be used to evaluate the population-mean time-trends of the out-
come variable and covariate effects, as well as to predict the subject-specific
outcome trajectories. We first consider the B-spline approximated nonpara-
metric mixed-effects model (11.5) or its matrix representation (11.9). Since,
when the expansion terms k0 and k∗0 are fixed, the model (11.5) is a linear
mixed-effects model, we can then estimate the population-mean coefficients γ0

and predict the subject-specific coefficients γ0i of (11.9) using the procedures
described in Chapter 2.1 and the classical estimation and prediction results
cited there, e.g., Laird and Ware (1982), Verbeke and Molenberghs (2000),
Diggle et al. (2002) and Fitzmaurice et al. (2009). We consider two situations
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separately: the components of the covariance matrix (11.10) are known, and
the covariance matrix (11.10) is unknown and has to be estimated from the
data.

11.3.1 Estimation with Known Covariance Matrix

When the covariance structure is known, i.e., the components D0 and σ of
(11.9) are known, and Vi of (11.10) is invertible with inverse

V−1
i =

[
B∗

0(ti)D0 B∗
0(ti)

T +σ2 Ini

]−1

, (11.52)

the normality assumption of (11.9) suggests that the population-mean coeffi-
cients γ0 can be estimated by

γ̂0 =
[ n

∑
i=1

B0(ti)
T V−1

i B0(ti)
]−1 [ n

∑
i=1

B0(ti)
T V−1

i Yi(ti)
]
. (11.53)

Using the best linear unbiased prediction (BLUP) described in Laird and Ware
(1982) and Robinson (1991), the BLUP estimate of the spline coefficients of
the random effect for subject i is

γ̂0i = D0 B∗
0(ti)

T V−1
i

[
Yi(ti)−B0(ti) γ̂0

]
. (11.54)

From the expressions of (11.53) and (11.54), both γ̂0 and γ̂0i are linear estima-
tors in the sense that they are linear functions of the observations

{
Yi(ti) : i =

1, . . . , n
}
. When the B-spline model holds exactly, i.e., Yi(ti) = Y ∗

i (ti), for any
fixed k0 and k∗0, then the estimator γ̂0 of (11.53) maximizes the likelihood based
on the marginal distribution of the data and is also the minimum variance es-
timator. The expression for γ̂0i in (11.54) is of course not maximum likelihood
but, as described in Laird and Ware (1982, Section 3.1), can be derived by an
extension of the Gauss-Markov theorem to cover random effects.

Since γ̂0 and γ̂0i are linear functions of Yi(ti), the approximate variances of
γ̂0 and γ̂0i can be given by

Var
(
γ̂0

)
=
[ n

∑
i=1

B0(ti)
T V−1

i B0(ti)
]−1

(11.55)

and

Var
(
γ̂0i

)
= D0 B∗

0(ti)
T
{

V−1
i −V−1

i B0(ti) (11.56)

×
[ n

∑
i=1

B0(ti)
T V−1

i B0(ti)
]−1

B0(ti)
T V−1

i

}
B∗

0(ti)D0,

respectively. These variances are useful to assess the errors of the estima-
tion. However, because (11.56) ignores the variation of γ0i, (10.55) cannot be
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used to assess the estimation error of
(
γ̂0i − γ0i

)
. As suggested in Laird and

Ware (1982), the variance of
(
γ̂0i − γ0i

)
can be approximated by

Var
(
γ̂0i − γ0i

)
= D0 −D0 B∗

0(ti)
T V−1

i B∗
0(ti)D0

+D0 B∗
0(ti)

T V−1
i B0(ti)

[ n

∑
i=1

B0(ti)
T V−1

i B0(ti)
]−1

×B0(ti)
T V−1

i B∗
0(ti)D0. (11.57)

These expressions of the approximate variances are approximations of the
general formulas given by Harville (1974).

11.3.2 Estimation with Unknown Covariance Matrix

The components D0 and σ of (11.10) are usually unknown in practice, so
that the covariance matrix Vi, hence V−1

i , is unknown. A practical approach
in such situations is to estimate D0, σ and Vi from the data, and compute
the estimators γ̂0 and γ̂0i using (11.53) and (11.54) by substituting Vi with
its consistent estimator. Using this approach, if we have consistent estimators
D̂0 and σ̂ for D0 and σ , respectively, we can obtain a consistent variance-
covariance estimator of Vi by

V̂i = B∗
0(ti)D̂0 B∗

0(ti)
T + σ̂2 Ini

, (11.58)

and, thus, estimate V−1
i by V̂−1

i provided that V̂i is invertible. Substituting

D0 and V̂i of (11.53) and (11.54) with D̂0 and V̂i, respectively, our practical
approximate estimator of γ0 is

γ̂0

(
D̂0, σ̂

)
=
[ n

∑
i=1

B0(ti)
T V̂−1

i B0(ti)
]−1 [ n

∑
i=1

B0(ti)
T V̂−1

i Yi(ti)
]
, (11.59)

and the practical BLUP of γ0i is

γ̂0i

(
D̂0, σ̂

)
= D̂0 B∗

0(ti)
T V̂−1

i

[
Yi(ti)−B0(ti) γ̂0

(
D̂0, σ̂

)]
. (11.60)

If Yi(ti) = Y ∗
i (ti) in (11.9), then, as pointed out by Laird and Ware (1982,

Section 3.2), D̂0, σ̂ , γ̂0

(
D̂0, σ̂

)
and γ̂0i

(
D̂0, σ̂

)
can be simultaneously obtained

by maximizing the joint likelihood function based on the marginal distribu-
tion of

{
Yi(ti) : i = 1, . . . , n

}
. Here, since Yi(ti)≈ Y ∗

i (ti) in (11.9), we can think

of D̂0, σ̂ , γ̂0

(
D̂0, σ̂

)
and γ̂0i

(
D̂0, σ̂

)
as the approximated maximize likelihood

estimators of D0, σ , γ0 and γ0i, respectively.
Estimation of the approximate variances of γ̂0

(
D̂0, σ̂

)
, γ̂0i

(
D̂0, σ̂

)
and[

γ̂0i

(
D̂0, σ̂

)
− γ0i

]
can be naturally achieved by substituting D0 and Vi in

(11.55), (11.56) and (11.57) with their estimates D̂0 and V̂i. In this case, the
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estimators of Var
[
γ̂0

(
D̂0, σ̂

)]
, Var

[
γ̂0i

(
D̂0, σ̂

)]
and Var

[
γ̂0i

(
D̂0, σ̂

)
− γ0i

]
have

the expressions

Var
[
γ̂0

(
D̂0, σ̂

)]
=
[ n

∑
i=1

B0(ti)
T V̂−1

i B0(ti)
]−1

, (11.61)

Var
[
γ̂0i

(
D̂0, σ̂

)]
= D̂0 B∗

0(ti)
T
{

V̂−1
i − V̂−1

i B0(ti) (11.62)

×
[ n

∑
i=1

B0(ti)
T V̂−1

i B0(ti)
]−1

B0(ti)
T V̂−1

i

}
B∗

0(ti)D̂0,

and

Var
[
γ̂0i

(
D̂0, σ̂

)
− γ0i

]
= D̂0 − D̂0 B∗

0(ti)
T V̂−1

i B∗
0(ti)D̂0

+D̂0 B∗
0(ti)

T V̂−1
i B0(ti)

[ n

∑
i=1

B0(ti)
T V̂−1

i B0(ti)
]−1

×B0(ti)
T V̂−1

i B∗
0(ti)D̂0, (11.63)

respectively. The appropriateness of these variance estimators depend strongly
on the adequacy of D̂0 and V̂i.

Computation of the approximated maximum likelihood estimators D̂0, σ̂ ,
V̂i, γ̂0

(
D̂0, σ̂

)
and γ̂0i

(
D̂0, σ̂

)
as shown in (11.58), (11.59) and (11.60) can be ac-

complished using the expectation-maximization (EM) algorithm as described
in Laird andWare (1982, Section 4). Because our B-spline approximated model
relies on Yi(t)≈Y ∗

i (t) in (11.5), these approximated maximum likelihood esti-
mators computed through the EM algorithm are specific for the pre-specified
B-spline basis functions B0(ti) and B∗

0(ti) with fixed numbers of basis terms K0

and K∗
0 .

11.3.3 Individual Trajectories

As discussed above, we use the estimators γ̂0 and γ̂0i defined in (11.53) and
(11.54), if the covariance components D0 and σ are known, and we use the
estimators (11.59) and (11.60), if D0 and σ are unknown. The correspond-
ing estimate of the ith individual’s outcome trajectory based on the B-spline
approximated model (11.5) is then the smooth curve

Ŷi(t) =
K0

∑
s=1

γ̂0s B0s(t)+
K∗

0

∑
s=1

γ̂0si B0s(t) = B0(t) γ̂0 +B∗
0(t) γ̂0i, (11.64)

which we refer to herein as the B-spline BLUP trajectory of Yi(t). We note that
(11.64) combines information from the entire sample and from the individual
subject in that it uses the population covariance structure to estimate the
B-spline coefficients and shrinks the curve toward the population mean. The
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BLUP trajectory (11.64) is well defined even when the observations from a
particular subject are too sparse to support an ordinary least square fit.

When the local pattern of a subject-specific trajectory at a time point t

is of interest, the derivative of Ŷi(t) with respect to t, Ŷ ′
i (t) = dŶi(t)/dt which

represents the ith subject’s local slope at t, can be easily computed from
(11.64) and has the expression

Ŷ ′
i (t) =

K0

∑
s=1

γ̂0s B′
0s(t)+

K∗
0

∑
s=1

γ̂0si B′
0s(t) = B′

0(t) γ̂0 +B∗′
0 (t) γ̂0i, (11.65)

which, similar to (11.64), is referred to as the BLUP derivative trajectory of
Yi(t), where B′

0s(t) = dB0s(t)/dt,

B′
0(t) =

(
B′

01(t), . . . , B′
0K0

(t)
)T

and B′
0(t) =

(
B′

01(t), . . . , B′
0K∗

0
(t)
)T

.

A positive or negative derivative trajectory Ŷ ′
i (t) would give indications of

whether the ith subject’s outcome trajectory is locally increasing or decreasing,
respectively, at t. On the other hand, a zero derivative of Ŷi(t) at t would
suggest that the ith subject’s outcome trajectory Yi(t) has a local maximum,
a local minimum or a saddle point at t.

11.3.4 Cross-Validation Smoothing Parameters

For practical applications of (11.64) and (11.65), the number and locations
of the knots for the splines corresponding to the population mean function
and the subject-specific random effects have to be specified. The number
and locations of the knots are determined by the B-spline basis functions{

B0s(t) : s = 1, 2, . . .
}

and the numbers of terms K0 and K∗
0 . The equation

(1.37) of Section 1.5.2 gives the exact expressions of B-spline basis expansions.
In general, it is computationally intensive to use B-splines with data-driven
choices of number and locations of the knots. As discussed in Sections 4.1.2
and 9.2.4, for computational convenience, we often use subjectively chosen
knot locations and only select the number of knots through a data-driven pro-
cedure. In practice, we can consider several sets of knot locations and choose
the one which gives the “best” results. A possible option is to place more knots
at time points where there are more observations or where there is large cur-
vature in the response curve. Another subjective choice of knots location is to
simply use “equally spaced knots”

{
ξ1, . . . , ξK

}
where ξl −ξl−1 = ξl+1 −ξl > 0

for all l = 1, . . . , K. We assume here that the B-splines have equally spaced
knots, so that the numbers of basis terms K0 and K∗

0 in (11.64) determine the
numbers and locations of the knots.

1. Leave-One-Observation-Out Cross-Validation

We presented in Chapters 4 and 9 the leave-one-subject-out cross-
validation (LSCV) for selecting the smoothing parameters in B-spline esti-
mators of the population-mean coefficient curves, in which the LSCV scores
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were constructed by deleting all the repeated measurements from each sub-
ject one at a time. Under the current framework of mixed-effects models, Shi,
Weiss and Taylor (1996, Section 3) suggest a natural cross-validation proce-
dure which evaluates the differences between the observed values Yi j with the

BLUP trajectories Ŷi(ti j) of (11.64) for all i = 1, . . . , n and j = 1, . . . , ni. Since

Ŷi(ti j) depends on the observations of the ith subject, this cross-validation pro-
cedure is computed by deleting the subject’s observations at each of the time
points.

Let Ŷ
(−i j)
iK0 K∗

0
(ti j) be the B-spline BLUP trajectory of Yi(t) at time point t = ti j

computed from (11.64) with the observation Yi j deleted. The cross-validation

score based on Ŷ
(−i j)
iK0 K∗

0

(
ti j

)
is defined by

CV (K0, K∗
0 ) =

n

∑
i=1

ni

∑
j=1

wi

[
Yi j − Ŷ

(−i j)
iK0 K∗

0
(ti j)

]2

, (11.66)

which we refer to as the leave-one-observation-out cross-validation (LOCV),
where the weight wi satisfies ∑n

i=1 ∑
ni
j=1 wi = 1 and, in practice, can be simply

chosen to be wi = 1/N. The cross-validated smoothing parameters are denoted
by (K0,cv, K∗

0,cv) which minimizes the LOCV score (11.66), assuming that the
minimizer of CV (K0, K∗

0 ) uniquely exists. The advantage of using (11.66) is
that (K0,cv, K∗

0,cv) intuitively leads to the best BLUP trajectories among all
choices of (K0, K∗

0 ).

We note that, since Ŷ
(−i j)
iK0 K∗

0
(ti j) still depends on the observations of the ith

subject at time points other than ti j, the LOCV score (11.66) depends on the

squared difference of the correlated Yi j and Ŷ
(−i j)
iK0 K∗

0
(ti j). It is still not well un-

derstood whether the potential correlations between Yi j and Ŷ
(−i j)
iK0 K∗

0
(ti j) could

significantly influence the theoretical properties of the LOCV smoothing pa-
rameters (K0,cv, K∗

0,cv). A main advantage of using (11.66) is that it is compu-
tationally straightforward as CV (K0, K∗

0 ) is equivalent to the cross-validation
score for a linear model.

2. Likelihood-Based Leave-One-Subject-Out Cross-Validation

Since our general expectation for a suitable cross-validation is that the
deleted data and the remaining data in the cross-validation scores should be
uncorrelated, we present here a likelihood-based leave-one-subject-out cross-
validation (LSCV) procedure, which is suggested by Rice and Wu (2001) for
computing the data-driven choices of K0 and K∗

0 . Under the B-spline ap-
proximated model (11.9) and (11.10), the joint log-likelihood function for{

Yi(ti) : i = 1 , . . . , n
}
is given by

ℓ
(
K0, K∗

0 , γ0, σ , D0

)
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= −1

2

n

∑
i=1

[
ni log(2π)+ log

∣∣Vi

∣∣]

−1

2

n

∑
i=1

[
Yi(ti)−B0(ti)γ0

]T
V−1

i

[
Yi(ti)−B0(ti)γ0

]
. (11.67)

To cross-validate the joint likelihood ℓ
(
K0, K∗

0 , γ0, σ , D0

)
, we denote by γ̂

(−i)
0 ,

σ̂ (−i) and D̂
(−i)
0 the estimators of γ0, σ and D0, respectively, obtained by ap-

plying the procedures of Section 11.3.1 to the remaining data with the entire
observations of the ith subject deleted. The likelihood-based LSCV smooth-
ing parameters (K0,LSCV , K∗

0,LSCV ) are the maximizers of the LSCV likelihood
function

ℓLSCV (K0, K∗
0 ) =

n

∑
i=1

ℓ
(
K0, K∗

0 , γ̂
(−i)
0 , σ̂ (−i), D̂

(−i)
0

)
, (11.68)

where ℓ
(
K0, K∗

0 , γ̂
(−i)
0 , σ̂ (−i), D̂

(−i)
0

)
is computed with the observations of the ith

subject deleted and the summation up to n− 1 at the right side of (11.67).
In practice, we can speed up the computation by considering M-fold cross-
validation of (11.68), which is achieved by deleting M subjects from the data
within each cross-validation step.

3. Other Variable Selection Procedures

Since the model (11.5) depends on approximation through a linear space
spanned by the B-spline basis functions, the selection of (K0, K∗

0 ) can also be
viewed as a model selection problem in linear models. By treating (11.5) as a
linear model, other variable selection methods for linear models can also be
applied to select the suitable (K0, K∗

0 ). In particular, the Akaike Information
Criterion (AIC) and the Bayesian Information Criterion (BIC) have been used
in Rice and Wu (2001) to select (K0, K∗

0 ). We do not repeat the technical
details of these methods here because they are all well-known standard variable
selection methods for the linear regression models. However, the theoretical
properties of these variable selection methods under the current longitudinal
data with B-spline approximated models (11.5) have not been systematically
investigated in the literature. The numerical results of Rice and Wu (2001)
gave similar results for the cross-validation approaches of (11.66) and (11.68)
and the variable selection approaches based on the AIC and the BIC.

11.4 Functional Principal Components Analysis

The estimation methods of the previous section all depend on approximation
through pre-specified basis functions. This approach may involve a large num-
ber of parameters, which can lead to two potential problems. First, for sparse
longitudinal data when the numbers of repeated measurements ni are small,
the estimation procedures of Section 11.3 may not be computed because the
number of parameters is too large. Second, even if the parameter estimated,
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the large number of parameters may lead to over-fitting of the data, which lead
to large variations of the parameter estimates. In order to address this prob-
lem of over-fitting, a number of authors, i.e., James, Hastie and Sugar (2000),
Rice and Wu (2001) and Yao, Müller and Wang (2005a, 2005b), proposed a
functional principal components analysis (FPCA) method based on the well-
known Karhunen-Loève expansion which can be used to efficiently extract the
features of the time-trends from the data. We describe here the FPCA method
and its applications for the nonparametric mixed-effects model (11.1).

11.4.1 The Reduced Rank Model

Given that the main source of over-fitting is the excess number of parameters
in the B-spline approximated mixed-effects model (11.5), a useful modification
is to summarize the random effect term of (11.1) by a few principal compo-
nent functions. This produces a low-rank and low-frequency approximation to
the covariance structure through eigenfunction decomposition as described in
Rice and Silverman (1991) without requiring the data to be regularly spaced.
Eigenfunctions of the estimated covariance functions can be easily computed
and can provide insight into the modes of variability present among the indi-
vidual curves.

We assume that, instead of the approximation (11.6), the covariance func-
tion Cov

[
Y (s), Y (t)

]
of Yi(t) in (11.1) can be expressed as an orthogonal expan-

sion in terms of eigenfunctions φl(t) and non-increasing eigenvalues λl , such
that

Cov
[
Y (s), Y (t)

]
=

∞

∑
l=1

λl φl(s)φl(t) (11.69)

for all s 6= t ∈ T , where ∑∞
l=1 λl < ∞, λ1 ≥ λ2 ≥ ·· ·,

∫
φ2

l (t)dt = 1,
∫

φl1(t)φl2(t)dt = 0 for any l1 6= l2,

and λl and φl(t) are unknown and need to be estimated from the data. It
directly follows from (11.69) that, for any 1 ≤ l ≤ ∞, λl φl(t) is the projection
of Cov[Y (s), Y (t)] to the eigenfunction φl(t) in the sense that

∫

T

Cov
[
Y (s), Y (t)

]
×φl(s)ds = λl φl(t). (11.70)

Associated with the eigenfunction decomposition (11.69) is that the subject-
specific deviation curve β0i(t) of (11.1) can be expressed as β0i(t)=∑∞

l=1 ξil φl(t),
so that (11.1) becomes

Yi(t) = β0(t)+
∞

∑
l=1

ξil φl(t)+ εi(t), (11.71)

where ξil are uncorrelated random variables with E(ξil) = 0 and variance
E(ξ 2

il ) = λl , and ξil and εi(t) are independent.
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The main advantage of the above eigenfunction decompositions is that in
practice it is only necessary to use the first few eigenfunctions to capture the
main features in (11.71). The remaining terms can then be ignored because
they have ignorable contributions to the time-trends of Y (t). If we use the first
K∗∗

0 ≥ 1 terms of eigenfunction decompositions in (11.69) and (11.70), we then
obtain the reduced rank model for (11.70)





Yi(t) = β0(t)+∑
K∗∗

0
l=1 ξil φl(t)+ εi(t),

Cov
[
Yi(s), Yi(t)

]
= ∑

K∗∗
0

l=1 λl φl(s)φl(t), s 6= t ∈ T ,
(11.72)

where K∗∗
0 may be either subjectively selected or chosen from the data. By

using the first few eigenfunctions and eigenvalues, we can reduce the model
complexity from (11.70) to (11.72), extract the main features of the individual
curves, and gain insights into the modes of variability present among the indi-
vidual curves. Interpretations of the eigenfunctions and eigenvalues depend on
the outcomes of the study. In general, the first eigenfunction corresponds to an
overall shift of the outcome level, the second to a time-trend, and the third to a
change of the time-trend. Based on these interpretations, we can characterize
the features of an individual curve through its corresponding eigenvalues.

11.4.2 Estimation of Eigenfunctions and Eigenvalues

There are two broad approaches for the estimation of the eigenfunctions and
eigenvalues of (11.72) in the literature. The first approach relies on substitut-
ing Cov[Y (s), Y (t)] of (11.70) with a nonparametric estimator and computing
the estimated eigenfunctions

{
φl(t) : l = 1, . . . , K∗∗

0

}
on a fine grid of time

points. The eigenfunctions at any time t ∈T are then estimated by the linear
interpolations of the estimated values at the grid points. The second approach
relies on approximating the eigenfunctions in (11.72) with some spline ex-
pansions and estimating the corresponding coefficients through a maximum
likelihood procedure. The estimated eigenfunctions are obtained by plugging
the estimated coefficients into the spline expansions. We now describe the
details of these two estimation approaches and discuss their advantages and
disadvantages in real applications.

1. Projection Estimators

In this approach, we first obtain a nonparametric smoothing estimator
Ĉov[Y (s), Y (t)] of Cov[Y (s), Y (t)] for any s 6= t ∈T . Using the B-spline approx-

imation (11.6) and the approximated maximum likelihood estimator D̂0 used
in (11.58), the B-spline estimator of Cov[Y (s), Y (t)] is

Ĉov
[
Y (s), Y (t)

]
=

K∗
0

∑
s1=1

K∗
0

∑
s2=1

[
d̂0s1s2

B0s1
(s)B0s2

(t)
]
, (11.73)
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where d̂0s1s2
is the (s1, s2)th element of D̂0. Using the projection (11.70), esti-

mate the eigenfunctions φl(t) and eigenvalues λl by the solutions φ̂l(t) and λ̂l

of the projection equation

∫

T

Ĉov
[
Y (s), Y (t)

]
× φ̂l(s)ds = λ̂l φ̂l(t). (11.74)

Computation of (11.74) is carried out by discretizing the left-side integral into
a summation over a fine grid of time points Tgrid in T and obtaining the

numerical solutions λ̂l and φ̂l(t) over t ∈ Tgrid . The values of φ̂l(t) at t 6∈ Tgrid

are the values of linear interpolations computed using
{

φ̂l(t) : t ∈ Tgrid

}
. The

B-splines projection estimators (11.74) were described in Rice and Wu (2001).
In reality, spline estimators of Cov[Y (s), Y (t)] are not the only choice, and

other types of smoothing estimators can also be used in (11.74). Yao, Müller
and Wang (2005a, 2005b) studied the projection estimators (11.74) based on
a local linear surface smoothing estimator of Cov[Y (s), Y (t)] and derived their
asymptotic properties including consistency, convergence rates and asymptotic
distributions. Since the projection methods based on local linear smoothing
estimators are different from the basis approximation methods described in
this chapter, we refer to Yao, Müller and Wang (2005a, 2005b) for the details
of the local smoothing projection methods.

2. Basis Approximated Eigenfunction Estimators

The second approach for the estimation of φl(t) and λl is to consider B-
spline approximations for the unknown functions of the reduced rank model
(11.72). This approach was suggested by James, Hastie and Sugar (2000) as
a viable alternative to the projection method (11.74) because of two reasons.
First, the projection method (11.74) depends on nonparametric smoothing
estimators of Cov[Y (s), Y (t)] without effectively utilizing the fact that only
the first K∗∗

0 terms in the orthogonal eigenfunction expansions are needed in
the reduced rank model (11.72). Second, the final product obtained from the
projection method (11.74) is a unsmoothed linear interpolation estimator of
φl(t) based on a subjectively chosen fine grid of time points. The approach
here is to approximate the eigenfunctions φl(t) by B-splines so that smoothed
eigenfunction estimators can be computed directly from the reduced rank
model (11.72).

Following the procedure described in James, Hastie and Sugar (2000), we
consider a spline basis b(t) and parameters





b(t) =
(
b1(t), . . . , bK0

(t)
)T

,

γ =
(
γ1, . . . , γK0

)T
, ξi =

(
ξi1, . . . , ξiK∗∗

0

)T
,

θl =
(
θl1, . . . , θlK∗∗

0

)T
for l = 1, . . . , K0,

θ =
(
θ T

1 , . . . , θ T
K0

)T
,

(11.75)
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which satisfy the following constraints

θ T θ = I,
∫

T

bT (t)b(t)dt = 1 and
∫ ∫

T ×T

bT (t)b(s)dt ds = 0, (11.76)

where I is the K∗∗
0 ×K∗∗

0 identity matrix. We can then approximate β0(t), φl(t)
and Cov[Y (s), Y (t)] by

{
β0(t) ≈ γT b(t), φl(t) ≈ θ T

l b(t),

Cov
[
Yi(s), Yi(t)

]
≈ b(s)θ Dθ T bT (t)+σ2 1[s=t],

(11.77)

respectively, where D = diag
{

λ1, . . . , λK∗∗
0

}
is the diagonal matrix for the vari-

ances of ξi. The B-spline approximated reduced rank model has the form




Yi(t) ≈ Y ∗
i (t),

Y ∗
i (t) = γT b(t)+ ξ T

i θ T b(t)+ εi(t),

ξi ∼ N
(
0, D

)
,

εi(t) ∼ N
(
0, σ2

)
.

(11.78)

Using the representation similar to (11.9), we have

Yi(ti)∼ N
(

b(ti)γ, b(ti)θ Dθ T bT (ti)+σ2 I
)
, (11.79)

where b(ti) =
(
b1(ti), . . . , bK0

(ti)
)

and bl(ti) =
(
bl(ti1), . . . , bl(tini)

)T
for l =

1, . . . , K0. Let f
[
Yi(ti); γ, θ , D, σ , K0, K∗∗

0

]
be the density of Yi(ti). The joint

log-likelihood function for the data is

L
(
γ, θ , D, σ , K0, K∗∗

0

)
=

n

∑
i=1

log f
[
Yi(ti); θ , D, σ , K0, K∗∗

0

]
. (11.80)

The B-spline approximated maximum likelihood estimators
{

γ̂, θ̂ , D̂, σ̂
}
are

then maximizers of (11.80), i.e.,

L
(
γ̂, θ̂ , D̂, σ̂ , K0, K∗∗

0

)
= max

γ,θ ,D,σ
L
(
γ, θ , D, σ , K0, K∗∗

0

)
, (11.81)

provided that (11.80) can be uniquely maximized. Consequently, the estimated
eigenfunctions and eigenvalues are

{
φ̂l(t) = θ̂l b(t), l = 1, . . . , K∗∗

0 ,

λ̂l = the lth diagonal element of D̂.
(11.82)

By focusing only on the first K∗∗
0 main components of Cov[Y (s), Y (t)],

the approximated maximum likelihood method (11.82) has the advantage
over the projection method (11.74) of avoiding estimating the entire surface
Cov[Y (s), Y (t)]. However, it has the main drawback of being computationally
intensive because the maximization of (11.80) over

{
γ, θ , D, σ

}
is generally a

difficult nonconvex optimization problem. Thus, both the projection method
(11.74) and the approximated maximum likelihood method (11.82) may be
used in practice.
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11.4.3 Model Selection of Reduced Ranks

In practice, we would like to select K∗∗
0 so that the model (11.72), on one

hand, captures the main features of variation and, on the other, is succinct
with fewer parameters. Since (11.72) relies on linear expansions, the selection
of K∗∗

0 is a model selection problem in linear models. We present here two
practical approaches for the selection of K∗∗

0 . The first approach is based on
evaluating the proportion of the total variation explained by the corresponding
eigenfunction, which gives a heuristic interpretation of the model. The second
approach is variable selection through AIC, which evaluates the contribution
of each eigenfunction to the likelihood function.

1. Proportion of the Total Variation

Since, for a given K∗∗
0 in (11.69) and (11.72), the eigenvalues λ1 ≥ λ2 ≥

·· · ≥ λK∗∗
0

determine the covariance functions of
{

Yi(s), Yi(t)
}
, the proportion

of λl over ∑
K∗∗

0
l=1 λl ,

PTVl =
λl

∑
K∗∗

0

l=1 λl

, (11.83)

is a natural measure of the proportion of the total variation contributed by
the eigenfunction φl(t). The main features of the individual curve of Yi(t) are
captured by the first few terms with large PTVl values, while the remain-
ing terms can be ignored because they only have minor contributions to the
total variation. In practice, we can start by fitting a model with a relative
larger value of K∗∗

0 , examine the values of PTV1 ≥ PTV2 ≥ ·· · ≥ PTVK∗∗
0
, and

select a submodel with a smaller value of K∗∗
0 . The numerical applications of

James, Hastie and Sugar (2000) and Rice and Wu (2001) demonstrate that
this approach, although somewhat subjective, provides useful insights into the
features of individual curves.

2. Model Selection by AIC

This approach is built on the idea that (11.78) is approximately a linear
model, so that the likelihood function (11.81) is nondecreasing as K∗∗

0 increases.
The contribution of an additional eigenfunction can then be examined by the
increase of this likelihood function when K∗∗

0 is increased by one. This suggests
that the well-known model selection procedures can be applied to select an
appropriate K∗∗

0 . When the Akaike Information Criterion (AIC), e.g., Akaike
(1970), is used to (11.79), we would like to find K∗∗

0 which maximizes

AIC
(
K∗∗

0

)
=−L

(
γ̂, θ̂ , D̂, σ̂ , K0, K∗∗

0

)
+K∗∗

0 , (11.84)

where L
(
γ̂, θ̂ , D̂, σ̂ , K0, K∗∗

0

)
is given in (11.81). Although the theoretical prop-

erties of (11.84) are still not well understood, the AIC approach has been
shown by Rice and Wu (2001) and Yao, Müller and Wang (2005a) to lead to
interpretable results in real applications.
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11.5 Estimation and Prediction with Covariates

We now consider the estimation based on the B-spline approximated models of
Section 11.2.3 with a univariate time-varying covariate. The case of multiple
covariates in Section 11.2.4 is a direct extension of the method presented
here. We omit the detailed description of the multiple covariate case, since
it is straightforward and requires more complex notation. We note that it is
still not well understood how the functional principal components analysis
methods of Section 11.4 could be adequately extended to the models with
time-varying covariates.

11.5.1 Models without Covariate Measurement Error

As a simple extension of the model (11.1), we first consider the estimation
of the population-mean and subject-specific coefficient curves β0(t), β1(t) and
β1i(t) of the model (11.11) or, equivalently, (11.14). Since in (11.14) the covari-
ate Xi(ti) is observed without measurement error, it is suggested in Liang, Wu
and Carroll (2003, Section 3.2) that β0(t), β1(t) and β1i(t) can be estimated by
applying the procedures of Section 11.3.1 to the B-spline approximated model
(11.20). Following the framework of (11.20), let




Xi(t) =
(
B01(t), . . . , B0K0

(t), B11(t)Xi(t), . . . , B1K1
(t)Xi(t)

)T
,

Zi(t) =
(
B11(t)Xi(t), . . . ,B1K∗

1
(t)Xi(t)

)T
,

γ =
(
γT

0 , γT
1

)T
.

(11.85)

We can rewrite the approximated model (11.20) as




Yi(t) ≈ γT Xi(t)+ γT
1i Zi(t)+ εi(t),

γ1i ∼ N
(
0, D1

)
,

εi(t) ∼ N(0, σ2).

(11.86)

At the observed time points ti, we define




Xi(ti) =
(
Xi(ti1), . . . , Xi(tini

)
)T

,

Zi(ti) =
(
Zi(ti1), . . . , Zi(tini

)
)T

,

εi(ti) =
(
εi(ti1), . . . , εi(tini

)
)
,

(11.87)

and write the model (11.86) as




Yi(ti) ≈ Xi(ti)γ +Zi(ti)γ1i + εi(ti),

γ1i ∼ N
(
0, D1

)
,

εi(ti j) ∼ N(0, σ2), j = 1, . . . ,ni.

(11.88)

The covariance matrix of Yi(ti) under (11.86) can be approximated by

Cov
[
Yi(ti)

]
≈ Vi = Zi(ti)D1 Zi(ti)

T +σ2 Ini
. (11.89)
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If D1 and σ are known Vi is nonsingular, the same approach as (11.53) and
(11.54) leads to the population-mean estimator

γ̂ =
[ n

∑
i=1

Xi(ti)
T
V

−1
i Xi(ti)

]−1 [ n

∑
i=1

Xi(ti)V
−1

i Yi(ti)
]

(11.90)

and the BLUP random-effect estimator

γ̂1i = D1 Zi(ti)
T

V
−1

i

[
Yi(ti)−Xi(ti) γ̂

]
. (11.91)

Under the general situation that the covariance structures D1 and σ are un-
known, the parameters in (11.89) can be estimated by maximizing the joint
likelihood function based on the marginal distribution of

{
Yi(ti) : i = 1, . . . , n

}
,

as illustrated in Laird and Ware (1982, Section 3.2). Let D̂1 and σ̂ be the
consistent estimators of D1 and σ , respectively, obtained by maximizing the
joint likelihood function of (11.89). We can express the maximum likelihood
estimator of Vi as

V̂i = Zi(ti)D̂1 Zi(ti)
T + σ̂2 Ini

. (11.92)

Substituting Vi of (11.90) and (11.91) with V̂i, we obtain the maximum like-
lihood estimator of the population-mean and random effect as

γ̂
(
D̂1, σ̂

)
=
[ n

∑
i=1

Xi(ti)
T

V̂
−1

i Xi(ti)
]−1 [ n

∑
i=1

Xi(ti) V̂
−1

i Yi(ti)
]

(11.93)

and
γ̂1i

(
D̂1, σ̂

)
= D̂1 Zi(ti)

T
V̂

−1
i

[
Yi(ti)−Xi(ti) γ̂

(
D̂1, σ̂

)]
, (11.94)

respectively.

11.5.2 Models with Covariate Measurement Error

For the case that the covariate Xi(t) is measured with error, we consider the
estimation of the population-mean and subject-specific coefficient curves β0(t),
β1(t) and β1i(t) of the model (11.27) or, equivalently, (11.30), which includes
the model (11.11) as a special case. Using the B-spline approximated model
(11.34), a practical method for the estimation of β0(t), β1(t) and β1i(t), which is
suggested by Liang, Wu and Carroll (2003, Section 3.2), is to use the two-step
procedure described below.

Two-Step B-Spline Estimation Procedure:

(a) Measurement Error Calibration. Applying the estimation procedures
(11.59) and (11.60) to the B-spline approximated model Xi(t) = X∗

i (t) ≈
ξ T Bx(t)+ξ T

i B∗
x(t) in (11.34), we estimate the population-mean and subject-

specific coefficients ξ and ξi by

ξ̂
(
Σ̂ξ , σ̂u

)
=
[ n

∑
i=1

Bx(ti)
T V̂−1

Xi
Bx(ti)

]−1 [ n

∑
i=1

Bx(ti)
T V̂−1

Xi
Yi(ti)

]
, (11.95)
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and

ξ̂i

(
Σ̂ξ , σ̂u

)
= Σ̂ξ B∗

x(ti)
T V̂−1

Xi

[
Yi(ti)−Bx(ti) ξ̂

(
Σ̂ξ , σ̂u

)]
, (11.96)

respectively, where, by (11.58),

V̂Xi
= B∗

x(ti) Σ̂ξ B∗
x(ti)

T + σ̂2
u Ini

(11.97)

is the estimator of the covariance matrix VXi
=Cov

[
X∗

i (ti)
]
and Σ̂ξ and σ̂u

are the consistent estimators of Σξ and σu as described in Section 11.3.1.
Using the estimators of (11.85) and (11.86), we compute the estimated
individual’s trajectory

X̂i(t) = Bx(t) ξ̂ +B∗
x(t) ξ̂i, (11.98)

of Xi(t) using the BLUP formula (11.64).

(b) Regression Curve Estimation. Substituting X∗
i (t) of (11.34) with

X̂i(t), we approximate (11.34) by the approximated model





Yi(t) ≈ γT
0 B0(t)+

[
γT

1 B1(t)+ γT
1i B∗

1(t)
]

X̂i(t)+ εi(t),

γ1i ∼ N(0, D1),

εi(t) ∼ N(0, σ2).

(11.99)

Similar to (11.85) and (11.86), we define





X̂i(t) =
(
B01(t), . . . , B0K0

(t), B11(t) X̂i(t), . . . , B1K1
(t) X̂i(t)

)T
,

Ẑi(t) =
(
B11(t) X̂i(t), . . . , B1K∗

1
(t) X̂i(t)

)T
,

γ =
(
γT

0 , γT
1

)T
,

(11.100)
and rewrite the approximated model (11.99) as





Yi(t) ≈ γT X̂i(t)+ γT
1i Ẑi(t)+ εi(t),

γ1i ∼ N
(
0, D1

)
,

εi(t) ∼ N(0, σ2).

(11.101)

If D1 and σ are known, we substitute Xi(t) and Zi(t) in (11.90) and (11.91)

with X̂i(t) and Ẑi(t), and obtain the population-mean and BLUP estimators





γ̂ =
[

∑n
i=1 X̂i(ti)

T V
−1

i X̂i(ti)
]−1[

∑n
i=1 X̂i(ti)V

−1
i Yi(ti)

]
,

γ̂1i = D1 Ẑi(ti)
T V

−1
i

[
Yi(ti)− X̂i(ti) γ̂

]
.

(11.102)

If D1 and σ are unknown, we compute the consistent estimators D̂1 and
σ̂ of D1 and σ , respectively, by maximizing the joint likelihood function of
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(11.101), and obtain the population-mean and BLUP estimators





V̂i = Zi(ti)D̂1 Zi(ti)
T + σ̂2 Ini

,

γ̂
(
D̂1, σ̂

)
=

[
∑n

i=1 X̂i(ti)
T V̂

−1
i X̂i(ti)

]−1

×
[

∑n
i=1 X̂i(ti) V̂

−1
i Yi(ti)

]
,

γ̂1i

(
D̂1, σ̂

)
= D̂1 Ẑi(ti)

T V̂
−1

i

[
Yi(ti)− X̂i(ti) γ̂

(
D̂1, σ̂

)]
,

(11.103)

by substituting Vi of (11.101) with V̂i. ✷

The main idea of the above procedure is to first substitute the Xi(t) in
(11.34) with its estimated subject-specific trajectory and then estimate the co-
efficient curves for Yi(t) using the maximum likelihood or restricted maximum
likelihood approach. Extension of this procedure to the mixed-effects varying-
coefficient model (11.42) with multiple time-varying covariates is straightfor-
ward. In this case, we compute the subject-specific trajectory for each of the

covariate curve X
(l)
i (t), 1 ≤ l ≤ k, and proceed to step (b) by substituting{

X
(l)
i (t) : l = 1, . . . ,k

}
with their estimated trajectories.

11.6 R Implementation

11.6.1 The BMACS CD4 Data

The BMACS CD4 data has been described in Section 1.2 and analyzed in
previous chapters. In Sections 3.5.2 and 4.3.2, we applied the unstructured
local smoothing method and the B-spline based global smoothing method to
estimate the population mean time curve of CD4 percentage after the HIV
infection, but the subject-specific time-trends of CD4 percentage were not
considered. In this section, we use this dataset to illustrate how to model the
subject-specific CD4 percentage curves using B-spline functions with random
coefficients. Consequently, as shown in Shi, Weiss and Taylor (1996) and Rice
and Wu (2001), we estimate the variance and covariance functions using their
approximations by tensor products of B-splines and demonstrate the useful-
ness of these variance-covariance estimates in real applications.

As shown in Figure 1.1 of Section 1.2.2, the CD4 percentage observations
are noisy and sparse, and the dynamic features are not visually apparent
except for a decreasing trend over time since HIV infection. Therefore, it is
desirable to apply nonparametric methods, such as a spline approximated non-
parametric mixed-effects model, since there are no natural a priori parametric
models for estimating the mean, variance and covariance functions of these re-
peatedly measured curves.We consider in this example the simple model (11.1)
without covariates other than time. The model with time-varying covariates
is considered in the next example.
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Under the assumption that both the population-mean CD4 percentage
curve β0(t) and subject-specific deviation curve β0i(t) of the model (11.1) are
smooth functions of time t, we use B-spline basis with fixed knots to approxi-
mate β0(t) and β0i(t) nonparametrically. The B-spline approximated nonpara-
metric mixed-effects model is given by (11.5), where the covariance structure of
the random curve Y (t) modeled by (11.6) and the subject-specific trajectories
estimated by (11.64). When K0 and K∗

0 are fixed, the model (11.5) is a clas-
sical linear mixed-effects model with the design matrix formed by B-splines.
Using the methodology and algorithm developed for the linear mixed-effects
models (e.g., Bates et al., 2015), we can then obtain the estimates of the spline
coefficients, the variance-covariance parameters, and the best linear unbiased
prediction (BLUP) estimates of the random effect and the outcome trajec-
tory of individual subjects. For simplicity, we used B-splines with equally
spaced knots in this example with the degree and number of knots chosen
by model selection criteria, such as the Akaike Information Criterion (AIC).
Other methods based on the cross-validation procedures may also be used.

The following R commands are used to compute the estimated fixed- and
random-effects based on the quadratic spline with two equally spaced interior
knots, which were selected by the AIC:

> library(lme4)

> data(BMACS)

> T.range<- range(BMACS$Time)

> Nk <- 4

> KN <- seq(from=T.range[1], to=T.range[2], length=Nk)[-c(1,Nk)]

> bs.time <- bs(BMACS$Time, knots=KN, degree=2, intercept=T)

> fmCD4 <- lmer(CD4 ~ 0+bs.time+(0+bs.time|ID), data=BMACS)

> summary(fmCD4)

Linear mixed model fit by REML [‘lmerMod’]

Formula: CD4 ~ 0 + bs.time + (0 + bs.time | ID)

Data: BMACS

REML criterion at convergence: 12046.4

Scaled residuals:

Min 1Q Median 3Q Max

-4.6213 -0.4912 -0.0250 0.4826 4.4676

Random effects:

Groups Name Variance Std.Dev. Corr

ID bs.time1 94.04 9.697

bs.time2 93.40 9.664 0.53

bs.time3 127.84 11.307 0.46 0.59

bs.time4 178.23 13.350 0.25 0.54 0.80
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bs.time5 198.19 14.078 0.20 0.59 0.81 0.99

Residual 20.34 4.510

Number of obs: 1817, groups: ID, 283

Fixed effects:

Estimate Std. Error t value

bs.time1 36.4274 0.7116 51.19

bs.time2 32.3948 0.7340 44.14

bs.time3 25.3571 0.8417 30.13

bs.time4 22.4103 1.1668 19.21

bs.time5 21.4717 1.3303 16.14

Correlation of Fixed Effects:

bs.tm1 bs.tm2 bs.tm3 bs.tm4

bs.time2 0.170

bs.time3 0.358 0.203

bs.time4 0.091 0.394 0.387

bs.time5 0.096 0.278 0.531 0.548

Using the model output for the estimated fixed- and random-effects param-
eters, we then compute the curve for the mean CD4 percentage, and estimate
the covariance, the corresponding eigenvalues, eigenfunctions and the individ-
ual trajectories on a given grid of time points (Sections 11.3.3 and 11.4.2).
These estimates are obtained using the following R commands:

> N <- 50

> Tgrid <- seq(from=T.range[1], to=T.range[2], length=N)

> BS <- bs(Tgrid, knots=KN, degree=2, intercept=T)

# obtain the mean curve estimate

> mean.hat <- BS %*% fixef(fmCD4)

# obtain the estimate of covariance for random effects and

# outcome

> GAMMA0 <- matrix(NA, 5, 5)

> VC <- as.data.frame(VarCorr(fmCD4))

> diag(GAMMA0) <- VC$vcov[1:5]

> GAMMA0[lower.tri(GAMMA0)] <- VC$vcov[6:15]

> GAMMA <- t(GAMMA0)

> GAMMA[lower.tri(GAMMA)] <- GAMMA0[lower.tri(GAMMA0)]

> COV.MAT <- matrix(NA, N, N)

> Index <- expand.grid(1:N, 1:N)

> f <- function(i){sum( GAMMA * (BS[Index[i,1],]

%o% BS[Index[i,2],]))}
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> COV.MAT <- matrix(do.call(‘rbind’, lapply(1:(N^2),f)),

nrow=N, byrow=F)

# obtain the eigenvalues and eigenvectors

> Eigenfun <- eigen(COV.MAT)

> Nsub <- 283

> IDlevel<-rownames(coef(fmCD4)[[1]])

> BLUP.est <- matrix(NA, nrow= Nsub, ncol= N)

> Proj1 <- Proj2 <- numeric(Nsub)

> for (i in 1:Nsub)

{

Datai <- BMACS[BMACS$ID==IDlevel[i],]

BLUP.est[i,] <- BS %*% t(as.vector(coef(fmCD4)[[1]][i,]))

Proj1[i] <- BLUP.est[i,] %*% Eigenfun$vectors[,1]

Proj2[i] <- BLUP.est[i,] %*% Eigenfun$vectors[,2]

}

Figure 11.1(A) shows the estimated population mean curve along with the
observed individual trajectories of CD4 percentages over time. The estimated
covariance function and the corresponding first and second eigenfunctions are
shown in Figures 11.1(B)-(D), respectively. Interpretation for the eigenfunc-
tions have been discussed in Section 11.4 and the literature, e.g., Rice and
Silverman (1991) and Rice and Wu (2001). In this case, we note that the first
eigenfunction corresponds to the overall level of CD4 percentage, while the
second eigenfunction corresponds to the general trend and direction for the
change of CD4 percentage over time. Since the first four eigenfunctions in
our numerical results account for 85%, 11%, 2% and 1% of the total variabil-
ity, we only consider the first two eigenfunctions, which explain most of the
variability.

In practice, the eigenvalues can be useful to explore and identify the ex-
treme cases explained by the corresponding eigenfunctions. Here, we calculate
the individual projections into the directions of the eigenfunctions by the in-
ner products of the BLUP estimates and the eigenfunctions. By identifying
the extreme cases or outliers of the obtained eigenvalues, subjects with un-
usual CD4 percentage trajectories can be quickly singled out from a group of
study subjects. Without examining the eigenvalues, it can be very challeng-
ing to visually identify the subjects with “unusual” outcome trajectories from
the observation plots because of the irregular sampling and substantial noise
among a large number of curves.

Figure 11.2 shows four subjects with extreme projections on the first two
eigenfunctions. Although the population mean curve of CD4 percentage shows
a decreasing trend over time with relatively low curvature, the BLUP estimates
of the individual smoothed curves based on the nonparametric mixed-effects
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Figure 11.1 (A) Estimated mean function and individual trajectories of 283 se-
quences of CD4 percentages. (B) Estimated covariance function for CD4 percent-
ages. The first eigenfunction (C) and the second eigenfunction (D) of the estimated
covariance function.

model capture the subject-specific deviations from the mean CD4 percentage
curve and fit the subjects’ observations quite well. For example, the top row of
Figure 11.2 shows two most extreme cases in the direction of the first eigen-
function. The subject shown in Figure 11.2(A) has the smallest projection,
which is associated with the subject’s very high levels of CD4 percentage over
time, while the subject shown in Figure 11.2(B) has extremely large projec-
tion, which is associated with the corresponding low levels of CD4 percentage.
Compared with the estimated population mean curve of CD4 percentage, the
CD4 percentage trajectories of these two subjects have dramatic shifts from
the population mean curve in opposite directions. The outcome trajectories
in Figures 11.2(C)-(D) are from two subjects with extreme projection on the
second eigenfunction. The subject in Figure 11.2(C) has extremely large pro-
jection (on the second eigenfunction), which, contrary to most other subjects,
gives an increasing trend in the subject’s outcome trajectory. On the other
hand, the subject in Figure 11.2(D) has the smallest projection, which leads
to a much faster declining CD4 percentage trend compared to other sub-
jects in the sample. Because the levels of CD4 percentage are associated with
the strength and functioning of the subject’s immune system, the two sub-
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Figure 11.2 The observations (dots) and smoothed curves (dashed lines) of four sub-
jects with extreme projections on the first two eigenfunctions. Then mean curve (solid
line) and all individual trajectories (gray dashed lines) are also displayed in each case.

jects shown in Figures 11.2(B) and (D), who have either very low levels of
CD4 percentage or a rapidly declining CD4 percentage time-trend, would be
at high risk of worse clinical outcomes. Thus, these flexible nonparametric
mixed-effects modeling and the associated curve exploration technique may
provide helpful insight into disease risk classification and options for individ-
ual treatment decisions.

11.6.2 The NGHS BP Data

We illustrate here how to apply the nonparametric mixed-effects models of
Section 11.2 to evaluate the covariate effects and estimate the subject-specific
smoothed curves using spline approximation. The NGHS data has been de-
scribed in Section 1.2. In Chapters 7 to 9, we applied the varying-coefficient
model and the smoothing methods to estimate the baseline curve of systolic
blood pressure (SBP) and the time-varying covariate effects. These models did
not address the individual SBP trajectories. We present the special case of the
model (11.51) with SBP as the outcome variable and two covariates, race and
height percentiles, in which the actual height measurements are subject to
measurement error.
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For simplicity in the modeling and interpretation, we consider the spe-
cial case of (11.51) with only random effect or subject-specific variations for
the baseline curve. The model with subject-specific variation for the covari-
ate effects can be easily applied by including additional random terms in the
model. For the ith NGHS participant at t years of age, we denote by Yi(t),

X
(1)
i , X

(2)
i (t) and εi(t) the subject’s SBP level, race, height percentile and mea-

surement error, respectively. Here, X
(1)
i = 0 if the girl is Caucasian, X

(1)
i = 1 if

she is African American, and X
(2)
i (t) is the age-adjusted height percentile as

calculated in Section 7.4.1. Our varying-coefficient mixed-effects model, as a

special case of (11.46), for
{

Yi(t), X
(1)
i , X

(2)
i (t)

}
is

{
Yi(t) = β0(t)+β0i(t)+β1(t)X

(1)
i +β2(t)X

(2)
i (t)+ εi(t),

Wi(t) = X
(2)
i (t)+ ui,

(11.104)

where ui is the mean zero measurement error and Wi(t) is the observed age-
adjusted height percentile. The B-spline approximations of (11.104) become





X
(2)
i (t) ≈ ∑

p
s=1 ξs Bs(t)+∑

p
s=1 ξsi Bs(t),

Wi(t) = X
(2)
i + ui, ui ∼ N

(
0, σ2

u

)
,

Yi(t) = ∑
K0
s=1 γ0s Bs(t)+∑

K∗
0

s=1 γ0si Bs(t)

+∑
K1
s=1 γ1s Bs(t)X

(1)
i +∑

K2
s=1 γ2s Bs(t)X

(2)
i (t)+ εi(t),

εi(t) ∼ N
(
0, σ2

)
, γT

0i =
(
γ01i, . . . , γ0K∗

0 i

)T ∼ N
(
0, D

)
.

(11.105)

Applying the procedures in Section 11.3, we use the following two-step
procedure to correct the measurement error of height percentile in (11.105).

First, we use the B-spline approximated model for
{

X
(2)
i (t), t

}
and (11.64) to

obtain the BLUP individual trajectories X̂
(2)
i (t). We use the cubic spline with

three equally spaced interior knots at 11.5, 14.5 and 16.5 years of age (the two
boundary knots are at 9 and 19 years of age). Because the cubic spline fits the
observed height percentiles very well, the BLUP height percentile trajecto-
ries closely match the individual observations and changes over time. Second,

we substitute the X
(2)
i (t) with the individual trajectory X̂

(2)
i (t) in (11.105) to

estimate the covariate effects
{

βl(t), βli(t) : l = 0, 1, 2; i = 1, . . . , n
}

and the
smoothed individual SBP trajectories.

The calculations for the coefficient curves and individual trajectories can
be carried out using following R commands:

> KN1 <- seq(from=9, to=19, length=5)[-c(1,5)]

> Bs.age <- bs(NGHS$AGE, knots=KN1)

> fm.Ht <- lmer(HTPCT ~ 1+ Bs.age +(1+ Bs.age|ID), data=NGHS)

> NGHS$Htfitted <- fitted(fm.Ht ) #BLUP estimate for height
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Figure 11.3 The longitudinal height percentiles for three girls from the NGHS with
estimated subject-specific curves and population-mean curves plotted in solid and
dashed lines.

> KN2 <- seq(from=9, to=19, length=4)[-c(1,4)]

> Bs.Age <- bs(NGHS$AGE, knots=KN2, intercept=T)

> Bs.Race <- bs(NGHS$AGE, knots=NULL,intercept=T)*NGHS$Black

> Bs.Ht <- bs(NGHS$AGE, knots=NULL,intercept=T)

*(NGHS$Htfitted-50)

> fm.SBP <- lmer(SBP~ 0+ Bs.Age+ Bs.Race+ Bs.Ht+(0+ Bs.Age|ID),

data=NGHS)

Figure 11.3 shows the observed height percentiles for six girls from the
NGHS and the individual trajectories obtained from (11.5) and (11.64). Al-

though the estimated mean curve E
[
X
(2)
i (t)|t

]
stays close to 60% over the

adolescent years, the trajectories X̂
(2)
i (t) have considerable variations. These

plots suggest that it is reasonable to use the estimated trajectories in the

model for Yi(t) to correct the measurement errors of X
(2)
i (t).

Figure 11.4 shows the mean baseline curve β0(t), and the two mean co-
efficient curves for race and height percentile β1(t) and β2(t), respectively,
estimated by the cubic spline with two equally spaced interior knots at 12.3
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Figure 11.4 The mean baseline curve β0(t), and two coefficient curves for race and
height percentile β1(t) and β2(t) with 95% bootstrap pointwise confidence interval
based on the model (11.105) with the cubic B-spline basis approximation.

and 15.7 years of age chosen by the BIC. These curves suggest that the mean
SBP increase with age, and the SBP measurements also depend on race and
height percentile. The positive race coefficient curve suggests that the African
American girls tend to have higher SBP levels than the Caucasian girls in this
age range, and this racial difference in SBP increases with age. The height
percentile coefficient curve indicates that the SBP levels increase with the
height percentile for these adolescent girls, but this effect of height percentile
on SBP tapers off at the older ages towards adulthood.

Furthermore, Figure 11.5 shows the observed longitudinal SBP measure-
ments for three randomly selected subjects, with the estimated baseline mean
curves and the subject-specific SBP trajectories based on the above B-spline
approximated mixed-effects model (11.105). These scatter plots and the BLUP
trajectory curves suggest that the model provide a fairly good fit to the SBP
data.

11.7 Remarks and Literature Notes

The statistical models discussed in this chapter can be naturally viewed as
“extended linear mixed-effects models.” These models are attractive because,
unlike the population based models of Chapters 3 to 10, they have built-
in subject-specific time-trends, which capture the intra-subject correlation
structures at different time points. Because the population-mean and subject-
specific time-trends are nonparametric, these models are more flexible than
the parametric mixed-effects models. But, on the other hand, we utilize the
linear model structures by allowing the nonparametric time-trends to be ap-
proximated by expansions of some basis functions. This modeling approach
allows for simple interpretations of the intra-subject correlations through an
additive subject-specific deviation from the population time-trends.

The estimation methods of this chapter are natural extensions of the well-
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Figure 11.5 The longitudinal SBP measurements for three NGHS girls with the es-
timated subject-specific curves and the mean population curves plotted in solid and
dashed lines, respectively. The average height percentiles at the beginning of the study
for the three girls were 11%, 79%, and 25%.

known least squares and maximum likelihood methods in parametric mixed-
effects models. By using basis expansions, we can approximate different shapes
of the population average and subject-specific time-trends as well as the co-
variance surfaces. Comparing with the models and methods of the previous
chapters, the methods in this chapter have the advantage of providing indi-
vidual outcome trajectory predictions, which can be used to cluster subjects
with different outcome trajectories. We further elaborate the use of individual
outcome trajectories in the applications of Chapter 15.

The methods of this chapter can be found from a large number of publica-
tions in the“functional data analysis”literature. Our presentation of this chap-
ter is mostly summarized from Shi, Weiss and Taylor (1996), James, Hastie
and Sugar (2000), Rice and Wu (2001), Liang, Wu and Carroll (2003), Wu
and Liang (2004), and Yao, Müller and Wang (2005a, 2005b). In order to limit
our focus, the results of this chapter represent only a fraction of the general
area of functional data analysis. Other smoothing methods, such as the local
polynomial estimation for the nonparametric mixed-effects models developed
by Wu and Zhang (2002), are not included because of our intention to limit
the scope.
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Chapter 12

Unstructured Models for Distributions

The statistical methods described in the previous chapters are all based on
modeling the conditional means of the response variables with various longi-
tudinal variance-covariance structures given time and a set of covariates. The
conditional means and the longitudinal variance-covariance structures can be
modeled either parametrically or nonparametrically. Although the conditional
mean based models are popular in practice, they may be inadequate when the
scientific objectives of the study require the evaluation of the conditional dis-
tribution functions. We present in this and the subsequent chapters a series
of nonparametric models and estimation methods based on the conditional
distribution functions. To start from a simple case, this chapter is focused on
longitudinal data with time-invariant and categorical covariates, in which case
the conditional distribution functions of the outcome variable can be directly
estimated through a kernel smoothing method with an unstructured nonpara-
metric model. The more complicated cases for the estimation of conditional
distribution functions with time-dependent covariates require some modeling
structures which are discussed in Chapters 13, 14 and 15. Throughout these
chapters, we define a statistical index, the Rank-Tracking Probability, to mea-
sure the temporal tracking ability of a longitudinal variable, and discuss its
estimation under various conditional distribution based models.

12.1 Objectives and General Setup

12.1.1 Objectives

Longitudinal analysis based on the conditional distribution functions is useful
in practice because it can be used to evaluate two primary objectives.

(1) Temporal Trends of Conditional Distributions:When the outcome
variable has non-Gaussian or skewed distributions, the temporal trends of
the outcome variable and the covariate effects may be better described
through the time-varying patterns of conditional distributions or condi-
tional quantiles. The conditional-mean based regression models, on the
other hand, do not lead to useful inferences about the distribution functions
or quantiles, when the distributions of the error terms are non-Gaussian or

405
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unknown. However, we should note that the estimation with conditional-
distribution based models generally requires a larger sample size than the
estimation with conditional-mean based models.

(2) Developing Statistical Indices for Tracking: An important objective
in longitudinal study is to evaluate the tracking ability of a time-varying
variable of interest. The concept of tracking is originated from the need
of predicting future values of risk factors from serial measurements in epi-
demiological studies or longitudinal clinical trials, and has been studied
by Clark, Woolson and Schrott (1976), Ware and Wu (1981), Foulkes and
Davis (1981) and McMahan (1981) under two general definitions and a
number of model formulations. As discussed in Foulkes and Davis (1981),
the first definition of tracking is concerned with the ability to predict the
future value of an outcome variable from its repeated measurements in the
past, while the second definition relating to tracking concerns the mainte-
nance over time of relative ranking with the response distribution among
a group of peers. Despite the different technical definitions of tracking, the
main objective in biomedical studies is to identify persistent disease risk
factors which may eventually lead to disease events. ✷

12.1.2 Applications

Applications of conditional distribution functions and tracking are widely
available in biomedical studies. For example, Webber et al. (1991) described
tracking of coronary heart disease risk factors in children in The Bogalusa
Heart Study, and Wilsgaard et al. (2001) analyzed the tracking of cardiovas-
cular risk factors in The Tromso Study. In these studies, the scientific objective
is to determine whether an individual with unfavorable levels of cardiovascu-
lar risk factors, such as blood pressure, body mass index, and serum lipids, at
younger ages is more likely to have unfavorable levels of the same risk factors
at older ages.

We demonstrate the applications of the methods of this chapter using
the NGHS study described in Section 1.2. This study is a typical example
exhibiting the potential shortcomings of the conditional mean based regression
method and the practical needs for statistical inferences from the conditional
distribution based models. The NGHS study is appropriate for conditional
distribution based regression because of the following features:

(1) Relevant Scientific Objectives: The scientific questions of the NGHS
study require the evaluation of the conditional distribution functions.
Among the publications based on the NGHS data, Daniels et al. (1998)
studied the longitudinal mean effects of race, height and body mass in-
dex on the levels of systolic and diastolic blood pressures, Thompson et
al. (2007) investigated the associations between childhood overweight and
cardiovascular disease risk factors, and Obarzanek et al. (2010) evaluated
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the prevalence and incidence of hypertension and their relationships with
childhood obesity. These results all depend on modeling the conditional
means of the outcome variables of interest, which are not sufficient to de-
scribe the time-dependent conditional distributions. An important objec-
tive for the NGHS is to determine whether the conditional distributions
of the cardiovascular risk factors, such as blood pressure and body mass
index change over time, and whether a girl’s risk factor at an earlier age
has any significant tracking ability to influence her risk factor at a later
age. The importance of evaluating the risk factor’s temporal patterns and
tracking abilities in the NGHS study can be seen from the discussions in
Thompson et al. (2007) and Obarzanek et al. (2010). More generally, Kavey
et al. (2003) illustrates the importance of tracking the risk factors within
subjects over various age ranges in pediatric cardiovascular studies.

(2) Sufficiently Large Sample Size: The sample size of the study is suffi-
ciently large to warrant adequate estimation of the conditional distribution
functions. As a typical large epidemiological study, the NGHS has 2379 sub-
jects (1213 African American girls and 1166 Caucasian girls) and there are
sufficient observations spread out across the age range. This large sample
size provides sufficient data to model and estimate the conditional distri-
butions and conditional quantiles of the cardiovascular risk factors, such
as blood pressure, body mass index and serum lipids, during adolescence.
Clinical classifications of blood pressure and body mass index for children
or adolescents are defined through their conditional quantiles (NGHSRG,
1992, and NHBPEP, 2004).

(3) Adequate Numbers of Repeated Measurements: The study design
has up to 10 annual follow-up visits for each participant. Although, as in
almost all practical studies, some subjects have early withdraws or miss-
ing data on some of the planned visits, the numbers of repeated measure-
ments still provide sufficient information to evaluate the population-wide
and subject-specific temporal trends of the outcome variables of interest.
These repeated measurements make it possible to estimate the tracking
abilities of the risk factors.

(4) Unknown Distribution Functions: The conditional distributions of
many of the cardiovascular risk factors in the NGHS study are unknown,
non-Gaussian and skewed given age, race and other covariates. Since the
conditional mean based regression models may not give appropriate statis-
tical inferences on the conditional distribution functions if the distributions
of the error terms are unknown, conditional distribution based regression
models are more appropriate to answer the relevant scientific questions.

The above features are common in most epidemiological studies, which
usually have large sample sizes and sufficiently long follow-up periods. When
the studies have small to moderate sample sizes, nonparametric estimation
of the conditional distribution functions is difficult and unreliable. In such



408 UNSTRUCTURED MODELS FOR DISTRIBUTIONS

cases, additional assumptions on the distribution functions, such as assump-
tions of parametric families, are required to accommodate the lack of infor-
mation associated with the small to moderate sample sizes. Since the focus
of this book is on nonparametric models and their corresponding estimation
methods, these parametric models and estimation methods are omitted from
our presentations, and we refer to the original papers, such as Ware and Wu
(1981), Foulkes and Davis (1981) and McMahan (1981).

12.1.3 Estimation of Conditional Distributions

Nonparametric estimation methods for the conditional distribution functions
have been studied in the literature under a number of settings. For the case
with independent identically distributed data or a time series sample, Hall,
Wolff and Yao (1999) presented a nonparametric smoothing method to esti-
mate the conditional cumulative distribution functions (CDF) using either a
local logistic estimator or an adjusted Nadaraya-Watson estimator, and Hall,
Racine and Li (2004) proposed a cross-validation smoothing method to esti-
mate the conditional probability densities. For longitudinal samples with time-
dependent covariates, Wu, Tian and Yu (2010) and Wu and Tian (2013b) sug-
gested a time-varying transformation model and a two-step smoothing method
for estimating the temporal trends of the conditional distribution functions
and the covariate effects.

When the covariates in the longitudinal sample are categorical and time-
invariant, Wu and Tian (2013a) suggested a kernel smoothing method to es-
timate the conditional distribution functions without assuming any model-
ing structures. Since this chapter is only concerned with longitudinal sam-
ples with categorical and time-invariant covariates, the estimation procedures
along with their applications and theoretical properties discussed in this chap-
ter follow the ones described in Wu and Tian (2013a).

12.1.4 Rank-Tracking Probability

With respect to the two concepts of tracking ability described in Section 12.1.1,
namely “predicting the future outcome” and “maintaining relative ranking,”
our focus in this chapter is on the definition and nonparametric estimation of
the tracking index rank-tracking probability (RTP) suggested by Wu and Tian
(2013a), which is essentially a nonparametric statistical index measuring the
“maintaining relative ranking” ability. Definition and nonparametric estima-
tion of the RTP for samples with time-dependent covariates require additional
model structure assumptions, which are presented in Chapters 13, 14 and 15.

The RTP defined in this chapter is similar to the tracking index suggested
by Foulkes and Davis (1981) as they both are indices measuring the“maintain-
ing relative ranking”ability of the outcome variable. The only difference is that
the tracking index defined and estimated by Foulkes and Davis (1981) is un-
der the parametric assumption that the longitudinal outcomes and covariates
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follow a mixed-effects model. Under the parametric families of mixed-effects
models, the “maintaining relative ranking” tracking index of Foulkes and Davis
(1981) is consistent with the “predicting the future outcome” tracking defini-
tions presented by Ware and Wu (1981) and McMahan (1981), which rely on
the serial correlations of the repeated measurements. This is because, under
the parametric assumption of the mixed-effects models, the serial correlation
of the repeated measurements can be used to construct the tracking index of
Foulkes and Davis (1981). In this sense, the serial correlation can be viewed
as an indirect measure for the “maintaining relative ranking” ability.

Among other methods for tracking index in the literature, estimation of
serial correlations in longitudinal analysis with nonparametric models can be
found, for example, in Wu and Pourahmadi (2003) and Fan and Wu (2008).
However, regression models based on serial correlations or conditional vari-
ance and covariance structures are generally insufficient to provide an intu-
itive quantitative measure of the “tracking ability” in many biomedical studies
similar to the NGHS, particularly when the parametric families of the con-
ditional distributions are unknown. The RTP, on the other hand, is a more
direct and intuitive index for measuring the tracking ability under the setting
of nonparametric models.

12.2 Data Structure and Conditional Distributions

12.2.1 Data Structure

The main results of this chapter are based on the following data structure,
which is a special case of the longitudinal data with categorical and time-
invariant covariates. This data structure is motivated by the practicality and
clinical implications of the NGHS design (NGHSRG, 1992). We start from
this simple special case because of its simplicity in mathematical expressions
and straightforward interpretations in many biomedical studies.

Sample with Categorical and Time-Invariant Covariates:

(a) The sample has n independent subjects, and the ith subject has ni obser-
vations at time points {ti j ∈ T ; j = 1, . . . , ni}, where T is the time interval
of interest. The total number of observations is N = ∑n

i=1 ni.

(b) At any time point t ∈ T , Y (t) is the real-valued outcome variable. The
jth observation of Y (t) for the ith subject, i.e., the ith subject’s observed
outcome at time ti j, is given by Yi j.

(c) The covariate X is time-invariant and categorical with x ∈ {1, . . . , K}. The
ith subject’s observed covariate is Xi.

(d) The longitudinal sample for
(
Y (t), X , t

)
is

Z =
{(

Yi j, Xi, ti j

)
: 1 ≤ i ≤ n; 1 ≤ j ≤ ni

}
,

which is a much simplified special case of commonly seen longitudinal data
(e.g., Section 11.2.1). ✷
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In the application to the NGHS study of this chapter, we assume that Y (t)
is non-negative because all the important risk factors considered in the NGHS
study are non-negative. But the methods and theory presented here allow for
any Y (t) on the real line.

The assumption of categorical and time-invariant covariate X is made
for the simplicity of mathematical expressions and biological interpretations.
When there are continuous or time-dependent covariates, nonparametric esti-
mation of the conditional distribution functions and other related quantities
requires multivariate smoothing methods, which could be computationally
infeasible and difficult to interpret in practice. For the next two chapters,
we present a useful dimension reduction approach based on the time-varying
transformation models of Wu, Tian and Yu (2010) and Wu and Tian (2013a,
2013b), which can be used to estimate the conditional distribution functions
with continuous and time-varying covariates. But this extension requires struc-
tural assumptions for the conditional distribution functions and their estima-
tion procedures. The nonparametric estimation method of this chapter does
not require these structural modeling assumptions.

The above data structure is consistent with the data formulation used in
the NGHS publications, such as Daniels et al., (1998), Obarzanek et al. (2010)
and Wu, Tian and Yu (2010). In these NGHS publications, the longitudinal

sample has a set of J > 1 design time points t =
(
t(1), . . . , t(J)

)T
, which contains

the distinct values of all possible visit times. Each of the n independent sub-
jects has actual visit times within a subset of t. If the ith subject is observed
at time point t( j∗), the corresponding outcome variable is Yi(t( j∗)), which may
not be the same as the Yi j in the data structure (2) above, since t( j∗) and ti j

are not necessarily the same. To see the connection between Yi(t( j∗)) and Yi j

for a given time point t( j∗) ∈ t, we define

S j∗ =
{
the set of subjects with outcome observed at t( j∗)

}
. (12.1)

When i ∈ S j∗ , the observed outcome for the subject at t( j∗) is Yi(t( j∗)). Thus,
for each ti j ∈T given in our data structure (1), we can find an integer j∗ such
that ti j = t( j∗), so that i ∈ S j∗ and Yi(t( j∗)) = Yi j. Using the design time points
t and (12.1), the numbers of observations at each time point in t are given by

n j∗ = #
{

i ∈ S j∗
}

and n j∗1 j∗2
= #
{

i ∈ S j∗1

⋂
S j∗2

}
, (12.2)

which are the number of subjects in S j∗ and the number of subjects in both
S j∗1 and S j∗2 , respectively. Clearly, n j∗1 j∗2 ≤ min

{
n j∗1 , n j∗2

}
.

It is often the case in practice that there are a large number of distinct
time points, so that the numbers of subjects observed at each of these time
points are small. In such cases, adjacent time points may need to be pooled
together to create a reasonable set of design time points t. In Obarzanek et al.
(2010), Wu, Tian and Yu (2010) and Wu and Tian (2013a, 2013b), the design
time points of the NGHS study are specified by rounding up the age of the
participants at the first decimal place, which is chosen because one decimal
point is clinically sufficiently accurate.
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12.2.2 Conditional Distribution Functions

Because the objective is to investigate the temporal trends of the distribution
functions, we would like to estimate the conditional distributions of Y (t) given
X = x at any time point t. These conditional distributions are treated as smooth
functions of t within the time range T . For a given t ∈ T and X = x, the
conditional probability that Y (t) belongs to a set A(x, t), which may change
with (x, t), is

PA(x, t) = P
[
Y (t) ∈ A(x, t)

∣∣X = x, t
]
. (12.3)

The estimation and statistical inferences of PA(x, t) depend on the shapes of
A(x, t) and whether A(x, t) is known or has to be estimated from the data. In
some cases, A(x, t) is known from the scientific objectives or assumptions. In
other cases, A(x, t) is only assumed to satisfy some conditions, but its actual
values depend on unknown quantities which have to be estimated from the
data. For both cases of A(x, t) known or unknown, our statistical objective is
to estimate PA(x, t) using the sample Z of Section 12.2.1.

The choices of A(x, t) depend on the scientific objectives of the analysis. In
particular, if A(x, t) =

(
0, y(x, t)

]
for a given function y(x, t) of (x, t), PA(x, t) is

the conditional cumulative distribution function (CDF) of Y (t) given (x, t),

Ft

[
y(x, t)

∣∣x
]
= P

[
Y (t)≤ y(x, t)

∣∣x, t
]
. (12.4)

Note that the above conditional CDF allows y(x, t) to change with (x, t). A
special case of (12.4) is to assume that y(x, t) = y, so that the statistical ob-
jective is to estimate the simple conditional CDF Ft [y|x] as a smooth function
of t ∈ T . Although it is simple to estimate Ft [y|x] for a fixed y, it is often
useful in practice to allow A(x, t) to change with both x and t. For example,
the ranges of blood pressure status for children and adolescents are defined
by risk categories determined by gender and age (e.g., NHBPEP, 2004). Thus,
in pediatric studies, it is often meaningful to evaluate the conditional CDF
defined by (12.2) with y(x, t) being a pre-determined gender- and age-specific
risk threshold curve.

12.2.3 Conditional Quantiles

Functionals of PA(x, t) may also be of interest and need to be estimated in
practice. A particularly useful class of functionals of Ft

[
y(x, t)

∣∣x
]
of (12.4),

which has been used for defining pediatric hypertension status (e.g., NHBPEP,
2004), is the conditional quantiles. If, for any given on X = x and t, there
is a unique inverse of Ft

[
y(x, t)|x

]
= α for some 0 < α < 1, the (100×α)th

conditional quantile given (x, t) is the inverse of Ft

[
y(x, t)|x

]
= α denoted by

yα(x, t) = F−1
t (α|x). (12.5)

When x and a suitable α are given, yα(x, t) describes the (100×α)th quantile
as a function of t for the population characterized by X = x. For example,
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classifications of blood pressure and hypertension status for children and ado-
lescents are defined in NHBPEP (2004) by the quantiles conditioning on the
individual’s age and gender. It is reasonable to assume in most biomedical
studies that yα(x, t) is a smooth function of t for any α ∈ (0, 1) and x.

Further functionals of the conditional quantiles yα(x, t) maybe also of inter-
est in a number of applications. A useful functional of the conditional quantiles
yα(x, t) is the Inter-Quantile Range (IQR) for (α1, α2) with 0 < α2 < α1 < 1

defined by

∆α1,α2
(x, t) = yα1

(x, t)− yα2
(x, t), (12.6)

which is assumed to be a smooth function of t ∈ T for the population charac-
terized by X = x. Examples of the IQR ∆α1,α2

(x, t) may be the blood pressure
range between different hypertension categories defined for children and ado-
lescents. More generally, it may be also useful to evaluate a Generalized Inter-
Quantile Range (GIQR) defined to be the differences of conditional quantiles
under different values of (x1, t1) and (x2, t2),

∆α1,α2

[
(x1, t1), (x2, t2)

]
= yα1

(x1, t1)− yα2
(x2, t2), (12.7)

which, for any (α1, x1) and (α2, x2), are assumed to be smooth func-
tions of (t1, t2). Similar to the IQR of (12.6), examples of the GIQR
∆α1,α2

[
(x1, t1), (x2, t2)

]
may be the difference in blood pressure levels for Cau-

casian and African American girls with the same hypertension categories.
Functionals of yα(x, t), other than (12.6) and (12.7), may also be defined

based on the specific scientific questions. But, as general statistical quantities
of interest, the IQR and GIQR defined in (12.6) and (12.7) are two of the
most frequently used functionals of yα(x, t) in real applications, so that our
conditional quantile estimation methods of this chapter are limited to the
quantities of (12.5), (12.6) and (12.7).

12.2.4 Rank-Tracking Probabilities

Given the importance of measuring the tracking ability among subjects
with certain health status (e.g., Kavey et al., 2003; Thompson et al., 2007;
Obarzanek et al., 2010), a direct index for measuring tracking can be defined
through a conditional probability of the outcome variable Y (t) at different
time points.

1. Definition of Rank-Tracking Probabilities

Suppose that, for any X = x and t ∈T , the health status of a subject at time
t is determined by whether Y (t)∈A(x, t) for a pre-determined set A(x, t). Then,
the tracking ability of Y (t) at any two time points s1 < s2 can be measured
by the conditional probability of Y (s2) ∈ A(x, s2) given Y (s1) ∈ A(x, s1) and
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X = x, which is referred in Wu and Tian (2013a) as the RTP based on A(·, ·)
at s1 < s2,

RT PA

(
x, s1, s2

)
= P

[
Y (s2) ∈ A(x, s2)

∣∣Y (s1) ∈ A(x, s1), X = x
]
. (12.8)

Clearly, the interpretations of RTP depend on the choices and interpreta-
tions of A(·, ·), and the choice of A(·, ·) depends on the study questions and
scientific objectives. In biomedical studies, the subject’s health status at time
t is often specified by the conditional quantiles of Y (t), so that a common
choice of A(x, t) is the quantile-based interval

Aα(x, t) =
(
yα(x, t), ∞

)
, (12.9)

where yα(x, t) is the (100×α)th quantile of Y (t) given X = x. As a special case
of (12.8), we can define the quantile based RTP as

RT Pα1,α2

(
x, s1, s2

)
= P

[
Y (s2)> yα2

(x, s2)
∣∣Y (s1)> yα1

(x, s1), X = x
]
, (12.10)

which is the probability that Y (t) is above the (100×α2)th quantile at time
t = s2 given that X = x and Y (t) is already above the (100×α1)th quantile at
time t = s1. For the special case that the covariate X is not included, the RTP
based on a time-dependent outcome set A(t) is

RT PA

(
s1, s2

)
= P

[
Y (s2) ∈ A(s2)

∣∣Y (s1) ∈ A(s1)
]
, (12.11)

and similarly its quantile-based analogue is

RT Pα1,α2

(
s1, s2

)
= P

[
Y (s2)> yα2

(s2)
∣∣Y (s1)> yα1

(s1)
]
, (12.12)

where yα(t) is the (100×α)th quantile of Y (t).

2. Interpretations of Rank-Tracking Probabilities

Although the value of RTPA

(
x, s1, s2

)
is within [0, 1], the strength of track-

ing for Y (t) is actually measured by the value of RTPA

(
x, s1, s2

)
relative to the

probability P
[
Y (s2) ∈ A(x, s2)

∣∣X = x
]
. We can then distinguish tracking ability

under the following situations:

(a) No Tracking Ability: If

RT PA

(
x, s1, s2

)
= P

[
Y (s2) ∈ A(x, s2)

∣∣X = x
]
, (12.13)

then knowing Y (s1) ∈ A(x, s1) does not increase the chance of Y (s2) ∈
A(x, s2), which implies that Y (s1) ∈ A(x, s1) has no tracking ability for
Y (s2) ∈ A(x, s2).
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(b) Positive or Negative Tracking Ability: On the other hand, Y (s1) ∈
A(x, s1) is said to have positive or negative tracking ability for Y (s2) ∈
A(x, s2), if

RTPA

(
x, s1, s2

)
> P

[
Y (s2) ∈ A(s2, x)

∣∣X = x
]

(12.14)

or
RT PA

(
x, s1, s2

)
< P

[
Y (s2) ∈ A(s2, x)

∣∣X = x
]
, (12.15)

respectively. ✷

It easily follows that Y (s1) has no “tracking ability” for Y (s2) if Y (s1) and Y (s2)
are conditionally independent given X .

12.2.5 Rank-Tracking Probability Ratios

Since the tracking index RTPA

(
x, s1, s2

)
is only meaningful when it is com-

pared with the probability P
[
Y (s2)∈ A(s2, x)

∣∣X = x
]
, a modified index for mea-

suring the relative tracking ability for Y (t) at time points s1 < s2 based on the
RTP is the Rank-Tracking Probability Ratio (RTPR) defined by

RT PRA

(
x, s1, s2

)
=

RT PA

(
x, s1, s2

)

P
[
Y (s2) ∈ A(s2, x)

∣∣X = x
] . (12.16)

Intuitively, RTPRA

(
x, s1, s2

)
describes the relative strength of the conditional

probability RT PA

(
s1, s2, x

)
with the information of Y (s1) ∈ A(x, s1) incorpo-

rated over the conditional probability P
[
Y (s2) ∈ A(s2, x)

∣∣X = x
]
without incor-

porating the information of Y (s1) ∈ A(x, s1).
When knowing Y (s1) ∈ A(x, s1) or not at an earlier time point s1 does not

affect the probability of Y (s2) ∈ A(x, s2) at a later time point s2 > s1, the equal-
ity of RTPA

(
s1, s2, x

)
and P

[
Y (s2) ∈ A(s2, x)

∣∣X = x
]
suggests that Y (s1) has no

tracking ability for Y (s2). The strength of positive or negative tracking ability
can then be measured by comparing RTPRA

(
x, s1, s2

)
with 1. Specifically, we

can define that




RT PRA

(
x, s1, s2

)
= 1,

if Y (s1) has no tracking ability for Y (s2);

RT PRA

(
x, s1, s2

)
> 1,

if Y (s1) has positive tracking ability for Y (s2);

RT PRA

(
x, s1, s2

)
< 1,

if Y (s1) has negative tracking ability for Y (s2).

(12.17)

Special cases of the quantile-based RTPRs can also be defined by select-
ing A(·, ·) to be the interval Aα(·, ·) of (12.9). Using the RTP of (12.10), the
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quantile-based RTPR of Y (t) with (α1, α2) at time points (s1, s2) given X = x

is

RTPRα1,α2
(x, s1, s2) =

RTPα1,α2

(
x, s1, s2

)

P
[
Y (s2)> yα2

(x, s2)
∣∣X = x

] , (12.18)

where yα(x, t) is the (100×α)th quantile of Y (t) given X = x. The advantage
of using the quantile-based RTPR is its simplicity in scientific interpretations.
The application to the NGHS study presented in Section 12.4 is using the
quantile-based RTPR defined above.

12.2.6 Continuous and Time-Varying Covariates

Since the data structure of this chapter (Section 12.2.1) only allows for time-
invariant and categorical covariates, the conditional distributions and rank-
tracking probability defined above, although having simple and straightfor-
ward interpretations, cannot be applied to the more general case with con-
tinuous and time-varying covariates. This is because the changing covariates
at different time points have not been taken into account in the definitions of
PA(x, t) of (12.3) and RTPA(x, s1, s2) of (12.8). We give here some brief com-
ments on conceptual issues of this extension. Details of the actual approaches,
including dimension reduction strategies through structural nonparametric
models for distribution functions, are described in the next three chapters.

1. Conditional Distribution Functions with Time-Dependent Covariates

When there are continuous and time-varying covariates, we can denote
the covariate vector by X(t), and given the covariate values X(t) = x, the
conditional probability of (12.3) is easily extended to

PA(x, t) = P
[
Y (t) ∈ A(x, t)

∣∣X(t) = x, t
]
. (12.19)

Unstructured nonparametric estimation of PA(x, t) in (12.19) would require a
multivariate smoothing method over both x and t, which could be difficult to
compute, particularly when the dimensionality of X(t) is high. A dimension
reduction alternative, which was proposed by Wu, Tian and Yu (2010), is to
model PA(x, t) using a class of time-varying transformation models, so that
the dependence of PA(x, t) on x at each given t is characterized through a
structured nonparametric model which is determined by a set of coefficient
curves. The models and estimation method of Wu, Tian and Yu (2010) are
described in Chapter 13.

2. Tracking with Time-Dependent Covariates

Different definitions of the RTPs may be used depending on how the contin-
uous and time-varying covariates are incorporated and the practical objectives
of the tracking index. A definition of RTP, which may be close to the practical
interpretations suggested by Kavey et al. (2003), is to consider the probability
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of Y (s2) ∈ A[X(s2), s2] at time s2 given Y (s1)∈ A[X(s1), s1] and X(s1)∈ B(s1) for
some set B(s1) of the covariates at time s1. This consideration motivates the
following definition of the “Rank-Tracking Probability”based on {A(·, ·), B(·)}
at time points s1 < s2,

RT PA(B, s1, s2) (12.20)

= P
{

Y (s2) ∈ A[X(s2), s2]
∣∣Y (s1) ∈ A[X(s1), s1], X(s1) ∈ B(s1)

}
.

In real applications, specific choices of A(·, ·) and B(·) have to be determined
in order to have meaningful interpretations for RTPA(B, s1, s2). Other special
versions of RTP and their corresponding RTPRs can be analogously defined.
Similar to the estimation of PA(x, t) in (12.19), the multivariate smoothing
estimation of RTPA(B, s1, s2), without any structured modeling assumptions,
is often infeasible in practice. Structured nonparametric methods for the esti-
mation of (12.20) are presented in Chapter 14.

12.3 Estimation Methods

We present in this section two kernel smoothing methods for the estimation
of conditional distribution functions and their useful functionals, such as con-
ditional quantiles, RTPs and RTPRs. There are a few potential alternative
smoothing estimation methods, such as the local polynomial estimators, the
local logistic estimators, the adjusted Nadaraya-Watson estimators, or the
global smoothing methods using basis approximations, which could be ex-
tended to the situations considered in this chapter. But, as for now, these
alternative methods have not yet been systematically investigated in the lit-
erature.

12.3.1 Conditional Distribution Functions

By the definition of PA(x, t) in (12.3), we can rewrite PA(x, t) as

PA(x, t) = E
{

1[Y (t)∈A(x,t),X=x]|X = x, t
}
, (12.21)

where, with a pre-specified set A(x, t), 1[Y (t)∈A(x,t),X=x] = 1 if Y (t) ∈ A(x, t) and
X = x, and 0 otherwise. Since x ∈ {1, . . . , K} and K is a finite integer, which is
often small in practice, we consider two different kernel smoothing approaches
to estimate PA(x, t).

Let Kx(·) be a kernel function, which is often taken to be a probability
density function, and let hx be a positive bandwidth for a given x ∈ {1, . . . , K}.
The local sum of squares error of any estimator pA(x, t) of PA(x, t) based on
1[Yi j∈A(x,ti j),Xi=x], Kx(·) and the subject uniform weight (nni)

−1 is

L(x, t) =
n

∑
i=1

ni

∑
j=1

{( 1

nni

)[
1[Yi j∈A(x,ti j),Xi=x]− pA(x, t)

]2

Kx

( t − ti j

hx

)}
. (12.22)
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Effectively (nni)
−1 in (12.22) weighs the observations from subjects with small

numbers of repeated measurements more heavily than the observations from
subjects with large numbers of repeated measurements. Minimizing (12.22)
with respect to pA(x, t), the kernel estimator of PA(x, t) is given by

P̂A(x, t) =
∑n

i=1

{
n−1

i ∑
ni

j=1

[
1[Yi j∈A(x,ti j),Xi=x] Kx((t − ti j)/hx)

]}

∑n
i=1

{
n−1

i ∑
ni
j=1[Kx((t − ti j)/hx)]

} . (12.23)

If, as an alternative to (12.22), the measurement uniform weight N−1 =(
∑n

i=1 ni

)−1
is assigned to each of the observations, we can minimize the local

sum of squares error

L∗(x, t) =
n

∑
i=1

ni

∑
j=1

{( 1

N

)[
1[Yi j∈A(x,ti j),Xi=x]− pA(x, t)

]2

Kx

( t − ti j

hx

)}
(12.24)

with respect to pA(x, t). The minimizer of (12.24) leads to the kernel estimator

P̂∗
A(x, t) =

∑n
i=1 ∑

ni
j=1

[
1[Yi j∈A(x,ti j),Xi=x]Kx((t − ti j)/hx)

]

∑n
i=1 ∑

ni
j=1[Kx((t − ti j)/hx)]

. (12.25)

The above two estimators are special cases of the kernel estimators with
the general weight wi

Lw(x, t) =
n

∑
i=1

ni

∑
j=1

{
wi

[
1[Yi j∈A(x,ti j),Xi=x]− pA(x, t)

]2

Kx

( t − ti j

hx

)}
, (12.26)

which has the expression

P̂A,w(x, t) =
∑n

i=1 ∑
ni
j=1

[
wi 1[Yi j∈A(x,ti j),Xi=x] Kx((t − ti j)/hx)

]

∑n
i=1 ∑

ni
j=1

[
wi Kx((t − ti j)/hx)

] . (12.27)

Similar to the discussion of weight choices in the previous chapters, e.g., Chap-
ters 7, 8 and 9, the special cases of wi = (1/nni) and wi = 1/N are the most
commonly used weights in practice. Thus, our presentation of the kernel esti-
mators for PA(x, t) are also limited to these two weight choices.

We note that, in (12.23) and (12.25), different kernel functions Kx(·) and
bandwidths hx are allowed for different values x of the covariate X . This is
only possible when the number of possible values for X is not too large. The
possibility of using different kernel functions and bandwidths allows for differ-
ent smoothness adjustments in P̂A,w(x, t) for different x. Because of the local
smoothing nature of (12.23) and (12.25), the potential correlations of the re-
peated measurements are not used. This phenomenon is consistent with other
local smoothing approaches in longitudinal analysis, such as the methods of
Chapters 6 through 9. The potential correlations of the measurements, how-
ever, affect the values of RTPs and their smoothing estimators. In particu-
lar, nonparametric estimators for the RTPs cannot be obtained from cross-
sectional i.i.d. data.
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When all the subjects have similar numbers of repeated measurements, i.e.,
the ni’s are similar for all i = 1, . . . , n, P̂A(x, t) and P̂∗

A(x, t) should be approxi-

mately the same, although P̂∗
A(x, t) is more influenced by subjects with more

repeated measurements. The estimator P̂A,w(x, t) shares some similarities with
the componentwise kernel estimators of Chapter 6 for the conditional mean
based varying-coefficient models. The weight choices between wi = (1/nni) and
wi = (1/N) have been shown in Section 6.8 to lead to kernel estimators with
different asymptotic properties. The asymptotic properties between P̂A(x, t)
and P̂∗

A(x, t), which are presented in Section 12.6, are also potentially different,
while neither one is uniformly superior to the other.

Although it is known in the literature that the Nadaraya-Watson kernel
approach may have excessive biases at the boundary points compared with
the local polynomial smoothing method, it has the main advantages that it
is computationally simple and produces estimates of the conditional distribu-
tions with values between 0 and 1. The local polynomial smoothing estimator
using 1[Yi j∈A(x,t),Xi=x] does not always lead to an estimator of PA(x, t) with values
between 0 and 1. Under the cross-sectional i.i.d. data or time series data, Hall,
Wolff and Yao (1999) proposed to estimate the conditional distribution func-
tions by the local logistic method (LLM) or the adjusted Nadaraya-Watson
Estimator (ANWE), and showed that the estimators obtained from LLM and
ANWE have good asymptotic properties with values between 0 and 1. How-
ever, LLM and ANWE are computationally intensive, and their extension to
the current longitudinal data structure has not been investigated in the liter-
ature, although this extension warrants substantial future research.

12.3.2 Conditional Cumulative Distribution Functions

To estimate the conditional CDF Ft

[
y(x, t)|x

]
, we need to specify whether

the threshold y(x, t) is known in advance. When y(x, t) is pre-specified and
known, the estimation of Ft

[
y(x, t)|x

]
is a direct application of the estimators

in (12.23), (12.25) and (12.27). In some situations, however, y(x, t) is not given
and has to be estimated first before applying the methods in (12.23), (12.25)
and (12.27).

1. Conditional CDF Estimation with Known Threshold

Applying (12.23) and (12.25) to the estimation of Ft

[
y(x, t)|x

]
for a given

threshold value y(x, t), the corresponding kernel estimators based on the
weights (1/nni) and (1/N) are

F̂t

[
y(x, t)|x

]
=

∑n
i=1

{
n−1

i ∑
ni
j=1

[
1[Yi j≤y(x,ti j),Xi=x] Kx((t − ti j)/hx)

]}

∑n
i=1

{
n−1

i ∑
ni
j=1

[
Kx((t − ti j)/hx)

]} (12.28)
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and

F̂∗
t

[
y(x, t)|x

]
=

∑n
i=1 ∑

ni
j=1

[
1[Yi j≤y(x,ti j),Xi=x] Kx((t − ti j)/hx)

]

∑n
i=1 ∑

ni
j=1

[
Kx((t − ti j)/hx)

] , (12.29)

respectively. The kernel conditional CDF estimator for a general weight func-
tion wi based on (12.27) is

F̂t,w

[
y(x, t)|x

]
=

∑n
i=1

{
wi ∑

ni
j=1

[
1[Yi j≤y(x,ti j),Xi=x] Kx((t − ti j)/hx)

]}

∑n
i=1 wi

{
∑

ni
j=1

[
Kx((t − ti j)/hx)

]} . (12.30)

These estimators in (12.28), (12.29) and (12.30) have the attractive property
of having non-decreasing values between 0 and 1 as y(x, t) increases.

If Kx(·) is chosen to be the uniform density function on (−1/2, 1/2), then
F̂t

[
y(x, t)|x

]
, F̂∗

t

[
y(x, t)|x

]
and F̂t,w

[
y(x, t)|x

]
are the local empirical conditional

CDFs constructed based on the observed indicators for ti j ∈ (t − hx, t + hx),

I (t, hx) =
{

1[Yi j≤y(x,ti j),Xi=x] : |ti j − t|< hx

}
. (12.31)

For more general kernel functions, the estimators in (12.28), (12.29) and
(12.30) are some weighted local empirical distribution functions based on some
observed indicator data similar to I (t, hx).

2. Conditional CDF Estimation with Estimated Threshold

When the threshold y(x, t) is unknown, we have to obtain a consistent
estimator of y(x, t) before applying the kernel estimators (12.23), (12.25) and
(12.27). This can be done by splitting the sample into two sub-samples, so
that y(x, t) can be estimated from the first sub-sample and Ft

[
y(x, t)|x

]
can be

estimated from the second sub-sample with y(x, t) replaced by its consistent
estimator. The main reason of using sample splitting is to ensure that the
estimator for y(x, t) and the estimator for Ft

[
y(x, t)|x

]
are constructed from

two independent datasets. For the ease of notation, we assume here that ŷ(x, t)
is a consistent estimator of y(x, t) computed from a sample (or a sub-sample)
that is independent from our dataset Z specified in Section 12.2.1. Then, the
corresponding kernel estimators based on the weights (1/nni), (1/N) and wi

are

F̂t

[
ŷ(x, t)|x

]
=

∑n
i=1

{
n−1

i ∑
ni
j=1

[
1[Yi j≤ŷ(x,ti j),Xi=x] Kx((t − ti j)/hx)

]}

∑n
i=1

{
n−1

i ∑
ni
j=1

[
Kx((t − ti j)/hx)

]} , (12.32)

F̂∗
t

[
ŷ(x, t)|x

]
=

∑n
i=1 ∑

ni
j=1

[
1[Yi j≤ŷ(x,ti j),Xi=x] Kx((t − ti j)/hx)

]

∑n
i=1 ∑

ni
j=1

[
Kx((t − ti j)/hx)

] , (12.33)

and

F̂t,w

[
ŷ(x, t)|x

]
=

∑n
i=1

{
wi ∑

ni
j=1

[
1[Yi j≤ŷ(x,ti j),Xi=x] Kx((t − ti j)/hx)

]}

∑n
i=1 wi

{
∑

ni
j=1

[
Kx((t − ti j)/hx)

]} , (12.34)



420 UNSTRUCTURED MODELS FOR DISTRIBUTIONS

respectively. Since ŷ(x, t) is a consistent estimator of y(x, t), these estimators
have values between 0 and 1 and are asymptotically non-decreasing as y(x, t)
increases.

12.3.3 Conditional Quantiles and Functionals

A direct application of the above conditional CDF estimators is that they can
be used to construct the conditional quantile estimators. Suppose that, for
any 0 < α < 1, t ∈ T and X = x, yα(x, t) is the unique (100×α)th conditional
quantile of Ft

[
y(x, t)|x

]
defined in (12.5). A simple estimator of yα(x, t) based

on F̂t

[
y(x, t)|x

]
can be obtained by

ŷα(x, t) =
1

2

{
inf

y

[
y : F̂t(y|x)≥ α

]
+ sup

y

[
y : F̂t(y|x)< α

]}
. (12.35)

Similarly, replacing F̂t(y|x) of (12.35) with F̂∗
t (y|x) of (12.29) or F̂t,w(y|x) of

(12.30), we obtain a simple estimator ŷ∗α(x, t) based on F̂∗
t (y|x), such that,

ŷ∗α(x, t) =
1

2

{
inf

y

[
y : F̂∗

t (y|x)≥ α
]
+ sup

y

[
y : F̂∗

t (y|x)< α
]}

(12.36)

or ŷα(x, t) based on F̂t,w(y|x), such that,

ŷα ,w(x, t) =
1

2

{
inf

y

[
y : F̂t,w(y|x)≥ α

]
+ sup

y

[
y : F̂t,w(y|x)< α

]}
. (12.37)

Since yα(x, t) is nondecreasing as α increases, ŷα(x, t), ŷ∗α(x, t) and ŷα ,w(x, t)
are all non-decreasing functions of α.

Functionals of the conditional quantiles can be estimated by substituting
yα(x, t) with ŷα(x, t), ŷ∗α(x, t) or ŷα ,w(x, t). In particular, ∆α1,α2

[(
x1, t1

)
,
(
x2, t2

)]

of (12.7) can be estimated by

∆̂α1,α2

[(
x1, t1

)
,
(
x2, t2

)]
= ŷα1

(
x1, t1

)
− ŷα2

(
x2, t2

)
, (12.38)

∆̂∗
α1,α2

[(
x1, t1

)
,
(
x2, t2

)]
= ŷ∗α1

(
x1, t1

)
− ŷ∗α2

(
x2, t2

)
(12.39)

or
∆̂α1,α2,w

[(
x1, t1

)
,
(
x2, t2

)]
= ŷα1,w

(
x1, t1

)
− ŷα2,w

(
x2, t2

)
. (12.40)

For example, we can estimate the conditional inter-quartile range given (x, t)
by

∆̂0.75,0.25(x, t) = ŷ0.75(x, t)− ŷ0.25(x, t). (12.41)

Substituting ŷα(x, t) with ŷ∗α(x, t) or ŷα ,w(x, t) for α = 0.75 and 0.25, we can

estimate ∆0.75,0.25(x, t) by ∆̂∗
0.75,0.25(x, t) or ∆̂0.75,0.25,w(x, t).
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12.3.4 Rank-Tracking Probabilities

For the estimation of the rank-tracking probability RTPA(x, s1, s2) with s1 < s2

and x ∈
{

1, . . . , K
}
, we define the indicator function

IA(x,·)[Y (s2), Y (s1), X ] = 1[Y (s2)∈A(x,s2),Y(s1)∈A(x,s1),X=x], (12.42)

and use the conditional probabilities

PA(x, s1, s2) = P
[
Y (s2) ∈ A(x, s2), Y (s1) ∈ A(x, s1)

∣∣X = x
]

= E
[
IA(x, ·)[Y (s2), Y (s1), X ]

∣∣X = x
]

(12.43)

and

P
[
Y (s1) ∈ A(x, s1)

∣∣X = x
]
= E

[
1[Y(s1)∈A(x,s1),X=x]

∣∣X = x
]
. (12.44)

Thus, it follows from (12.8), (12.34), (12.35) and (12.36) that the RTP-based
on A(·, ·) at s1 < s2 can be rewritten as

RTPA(x, s1, s2) =
E
[
IA(x, ·)[Y (s2), Y (s1), X ]

∣∣X = x
]

E
[
1[Y(s1)∈A(x,s1),X=x]

∣∣X = x
] . (12.45)

The estimation of RTPA(x, s1, s2) can be naturally carried out by estimating the
numerator PA(x, s1, s2) and denominator P

[
Y (s1) ∈ A(x, s1)

∣∣X = x
]
in (12.45)

separately, and then calculating their ratios.

1. Estimation of Joint Probabilities

Similar to (12.23), we can estimate PA(x, s1, s2) by minimizing the weighted
local square error with the 1/(nni) weight

L(x, s1, s2) =
n

∑
i=1

ni

∑
j1 6= j2=1

{( 1

nni

)[
IA(x, ·)[Yi j2 , Yi j1 , Xi]− pA(x, s1, s2)

]2

×Kx

(
s1 − ti j1

hx,1
,

s2 − ti j2

hx,2

)}
(12.46)

with respect to pA(x, s1, s2), so that the resulting kernel estimator of
PA(x, s1, s2), which minimizes (12.46) is

P̂A(x, s1, s2) (12.47)

=
∑n

i=1 ∑
ni

j1 6= j2=1

{
(nni)

−1IA(x, ·)[Yi j2 , Yi j1 , Xi]Kx

(
s1−ti j1

hx,1
,

s2−ti j2
hx,2

)}

∑n
i=1 ∑

ni

j1 6= j2=1

{
(nni)−1Kx

(
s1−ti j1

hx,1
,

s2−ti j2
hx,2

)} ,

where, for each x ∈
{

1, . . . , K
}
, Kx(·, ·) is a non-negative kernel function on the

plane R×R, and hx,1 and hx,2 are the corresponding bandwidths.
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When the 1/N weight is used, we estimate PA(x, s1, s2) by minimizing the
weighted local square error

L∗(x, s1, s2) =
n

∑
i=1

ni

∑
j1 6= j2=1

{( 1

N

)[
IA(x, ·) [Yi j2 , Yi j1 , Xi]− pA(x, s1, s2)

]2

×Kx

(
s1 − ti j1

hx,1
,

s2 − ti j2

hx,2

)}
(12.48)

with respect to pA(x, s1, s2), and obtain the kernel estimator

P̂∗
A(x, s1, s2) (12.49)

=
∑n

i=1 ∑
ni

j1 6= j2=1

{
IA(x, ·) [Yi j2 , Yi j1 , Xi]Kx

(
s1−ti j1

hx,1
,

s2−ti j2
hx,2

)}

∑n
i=1 ∑

ni

j1 6= j2=1

{
Kx

(
s1−ti j1

hx,1
,

s2−ti j2
hx,2

)} ,

where Kx(·, ·), hx,1 and hx,2 are the same as in (12.46) and (12.47). More
generally, for the weight function wi, the weighted local square error is

Lw(x, s1, s2) =
n

∑
i=1

ni

∑
j1 6= j2=1

{
wi

[
IA(x, ·) [Yi j2 , Yi j1 , Xi]− pA(x, s1, s2)

]2

×Kx

(
s1 − ti j1

hx,1
,

s2 − ti j2

hx,2

)}
, (12.50)

and, by minimizing (12.50) with respect to pA(x, s1, s2), we obtain the kernel
estimator

P̂A,w(x, s1, s2) (12.51)

=
∑n

i=1 ∑
ni

j1 6= j2=1

{
wi IA(x, ·) [Yi j2 , Yi j1 , Xi]Kx

(
s1−ti j1

hx,1
,

s2−ti j2
hx,2

)}

∑n
i=1 ∑

ni

j1 6= j2=1

{
wi Kx

(
s1−ti j1

hx,1
,

s2−ti j2
hx,2

)} ,

where Kx(·, ·), hx,1 and hx,2 are the same as in (12.46) and (12.47).

2. Estimation of RTP through Ratios of Probability Estimators

Substituting both expected values of the numerator and denominator
in (12.45) with their corresponding estimators, the kernel estimators of
RTPA(x, s1, s2) based on the weight functions 1/(nni), 1/N and wi are, re-
spectively,

R̂TPA(x, s1, s2) =
P̂A(x, s1, s2)

P̂A(x, s1)
, (12.52)

where P̂A(x, s1) is defined in (12.23),

R̂TP
∗
A(x, s1, s2) =

P̂∗
A(x, s1, s2)

P̂∗
A(x, s1)

, (12.53)
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where P̂∗
A(x, s1) is defined in (12.25), and

R̂TPA,w(x, s1, s2) =
P̂A,w(x, s1, s2)

P̂A,w(x, s1)
, (12.54)

where P̂A,w(x, s1) is defined in (12.27). The bandwidths hx, hx,1 and hx,2 in
(12.52), (12.53) and (12.54) may not be the same in general. However, for
computational simplicity, the same bandwidth hx for hx,1 and hx,2 may be
used in practice.

As known in the literature, under-smoothing or over-smoothing of kernel
estimators are mainly caused by inappropriate bandwidth choices, but are
rarely influenced by the shapes of the kernel functions (e.g., Härdle, 1990, Sec.
4.5). Thus, a number of kernel functions may be used for the computation of
P̂A(x, t), P̂∗

A(x, t), P̂A(x, s1, s2) and P̂∗
A(x, s1, s2). For the numerical results of this

chapter, we use the Epanechnikov kernel

KE(u) = (3/4)
(
1− u2

)
1[|u|<1] (12.55)

for the univariate smoothing estimators P̂A(x, t) and P̂∗
A(x, t), and the multi-

plicative Epanechnikov kernel

KE(u1, u2) = (3/4)2
(
1− u2

1

)(
1− u2

2

)
1[|u1|<1, |u2|<1] (12.56)

for P̂A(x, s1, s2) and P̂∗
A(x, s1, s2).

12.3.5 Cross-Validation Bandwidth Choices

We present here two cross-validation approaches for the selection of data-
driven bandwidths. These data-driven bandwidths are for the conditional dis-
tribution functions. Other quantities, such as the conditional quantiles and the
rank-tracking probabilities, are estimated from the plug-in estimators of the
conditional distribution functions with the corresponding data-driven band-
widths. For local smoothing estimators of the conditional means, sensible
bandwidth choices may often be determined by comparing the plots of the
observations and the fitted curves. For the estimation of conditional distri-
bution functions and their functionals, the observations are local indicators,
such as (12.42), with values 0 or 1, so that it is difficult to visualize the ap-
propriateness of a bandwidth through a plot. A data-driven bandwidth would
be helpful to adjust the fitness of the smoothing estimators in practice.

1. Leave-One-Subject-Out Cross-Validation

The first approach for the selection of data-driven bandwidths is to use
the leave-one-subject-out cross-validation (LSCV), which has been used for
smoothing with conditional-mean based regression models in Chapters 6 and
7. This bandwidth selection method is based on deleting all the observations
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of a subject one at a time, and has been investigated by Wu, Tian and Yu
(2010), Wu and Tian (2013a, 2013b) for conditional-distribution based regres-
sion models.

LSCV Bandwidth for Estimator with a Single Time:
Applying this cross-validation procedure to the kernel estimator P̂A,w(x, t)

based on the wi weight (12.27), we compute the cross-validated bandwidth
hx,LSCV using the following two steps:

(a) Compute the leave-one-subject-out estimator P̂A,w,−i

(
x, ti j ; hx

)
at all the

time points
{

ti j : i = 1, . . . , n; j = 1, . . . , ni

}
using the remaining data from

the sample with the ith subject’s observations deleted.

(b) Compute the following LSCV score based on P̂A,w,−i

(
x, ti j; hx

)
,

LSCVPA,w(hx) =
n

∑
i=1

ni

∑
j=1

{
wi

[
1[Yi j∈A(x,ti j),Xi=x]− P̂A,w,−i

(
x, ti j; hx

)]2
}
. (12.57)

If the right side of (12.57) can be uniquely minimized with respect to hx, the
minimizer of LSCVPA,w(hx) is the LSCV bandwidth hx,LSCV . ✷

LSCV Bandwidth for Estimator with Bivariate Time:
For the bivariate smoothing estimator P̂A,w(x, s1, s2) of (12.51), a pair of

bandwidths (hx,1, hx,2) need to be selected for the two time points (s1, s2). The
LSCV bandwidth selection procedure can be computed as follows:

(a) Compute the leave-one-subject-out estimator P̂A,w,−i

(
x, ti j1 , ti j2 ; hx,1, hx,2

)

at all the time points ti j1 < ti j2 using the remaining data from the sample
with the ith subject’s observations deleted.

(b) Compute the following LSCV score based on P̂A,w,−i

(
x, ti j1 , ti j2 ; hx,1, hx,2

)

LSCVPA,w(hx,1, hx,2) =
n

∑
i=1

ni

∑
j1 6= j2=1

{
wi

[
IA(x, ·)[Yi j2 , Yi j1 , Xi] (12.58)

−P̂A,w,−i

(
x, ti j1 , ti j2 ; hx,1, hx,2

)]2

1[ni≥2]

}
.

If the right side of (12.58) can be uniquely minimized with respect to the
bandwidth pair (hx,1, hx,2), the minimizer of LSCVPA,w(hx,1, hx,2) is the LSCV
bandwidth pair (hx,1,LSCV , hx,2,LSCV ). ✷

For the computation of hx,1,LSCV and hx,2,LSCV , the subjects with observa-
tions at only one time point (i.e., the subjects with ni = 1) are omitted in
the minimization of (12.58). For simplicity, we may take hx,1 = hx,2 in (12.58),
so that a single LSCV bandwidth hx,1,LSCV = hx,2,LSCV is used for both time
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points s1 and s2. The LSCV bandwidths obtained from (12.57) and (12.58)
can be used in (12.54) for the estimation of RTPA(x, s1, s2).

Although theoretical properties of the LSCV bandwidths under the current
context require further systematic investigation, the appropriateness of (12.57)
and (12.58) in practice may be seen heuristically from some of their expansions.
We illustrate this heuristic justification using the univariate case of (12.57)
with the wi = 1/(nni) weight. The bivariate case of (12.58) can be justified
similarly. A direct expansion of (12.57) for wi = 1/(nni) shows that

LSCVPA
(hx) =

n

∑
i=1

ni

∑
j=1

{( 1

nni

)[
1[Yi j∈A(x,ti j),Xi=x]−PA

(
x, ti j

)]2
}

+
n

∑
i=1

ni

∑
j=1

{( 1

nni

)[
PA

(
x, ti j

)
− P̂A,−i

(
x, ti j; hx

)]2
}

+2
n

∑
i=1

ni

∑
j=1

{( 1

nni

)[
1[Yi j∈A(x,ti j),Xi=x]−PA

(
x, ti j

)]

×
[
PA

(
x, ti j

)
− P̂A,−i

(
x, ti j; hx

)]}
. (12.59)

The first term at the right side of (12.59) does not depend on the bandwidth.
Since the ith subject is not included in the estimator P̂A,−i

(
x, ti j; hx

)
, the ex-

pected value of the third term at the right side of (12.59) is zero. Since the
expectation of the second term at the right side of (12.59) is approximately
the expectation of the average squared error

ASE
[
P̂A(x, ·)

]
=

n

∑
i=1

ni

∑
j=1

{( 1

nni

)[
PA

(
x, ti j

)
− P̂A,−i

(
x, ti j; hx

)]2
}
, (12.60)

we observe that, by minimizing LSCV1,PA
(x), the LSCV bandwidth approxi-

mately minimizes the expectation of ASE
[
P̂A(x, ·)

]
.

2. Leave-One-Time-Point-Out Cross-Validation
A potential drawback of the LSCV approach above is that minimizing

the cross-validation scores (12.57) and (12.58) can be computationally inten-
sive. To alleviate the computational burden, an alternative cross-validation
approach, which mimics the cross-validation with cross-sectional data and is
suggested by Wu, Tian and Yu (2010), is by deleting the distinct design time

points t =
(
t(1), . . . , t(J)

)T
one at a time. We refer to this approach as the leave-

one-time-point-out cross-validation (LTCV).

Notation for Distinct Time Points:
We first recall the notation for distinct time points. Since {t(1), . . . , t(J)}

contains all the distinct possible time points after proper round-up or binning
(e.g., Wu, Tian and Yu, 2010, Remark 2 and Sec. 4), the time points of the
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ith subject, for each 1 ≤ i ≤ n, {ti1, . . . , tini
} are only a subset of t, and, on the

other hand, each t( j∗) contains the observations from n j∗ different subjects.
Then, for each time point t( j∗) ∈ t, the set of subjects with observations at t( j∗)
is S j∗ . For each i ∈S j∗ , the observed outcome at time point t( j∗) is Yi(t( j∗)). ✷

The LTCV bandwidths for the kernel estimators of the conditional prob-
abilities with univariate time and bivariate time PA(x, t) and PA(x, s1, s2), re-
spectively, based on the general wi weight function are computed using the
following steps.

LTCV Bandwidth for Estimator with a Single Time:

(a) Compute the leave-one-time-point-out estimator P̂
−( j∗)
A,w

(
x, t( j∗); hx

)
using

(12.27) with the remaining data after deleting all the observations at time
point t( j∗), i.e., with

{
Yi(t( j∗)); i ∈ S j∗

}
deleted.

(b) Compute the following LTCV score based on P̂
−( j∗)
A,w

(
x, t( j∗); hx

)
,

LTCVPA,w(hx) =
J

∑
j∗=1

∑
i∈S j∗

{
1[Yi(t( j∗ ))∈A(x,t( j∗)),Xi=x]

−P̂
−( j∗)
A,w

(
x, t( j∗); hx

)}2

. (12.61)

If the right side of (12.61) can be uniquely minimized with respect to hx, the
minimizer of LTCVPA,w(hx) is the LTCV bandwidth hx,LTCV . ✷

LTCV Bandwidth for Estimator with Bivariate Time:

(a) Compute the leave-one-time-point-out estimator P̂
−( j∗1 , j∗2)
A,w

[
x, t( j∗1)

, t( j∗2)
; hx,1,

hx,2

]
using (12.51) with the remaining data after deleting all the observa-

tions at time points
{

t( j∗1)
, t( j∗2)

}
, i.e., with

{
(Yi(t( j∗1)

), Yi(t( j∗2)
)); i∈S j∗1

∩S j∗2

}

deleted.

(b) Compute the following LTCV score based on P̂
−( j∗1, j∗2)
A,w

[
x, t( j∗1)

, t( j∗2)
; hx,1, hx,2

]
,

LTCVPA,w(hx,1, hx,2) =
J

∑
j∗1 6= j∗2=1

∑
i∈S j∗

1
∩S j∗

2

{
IA(x, ·)

[
Yi(t( j∗2)

), Yi(t( j∗1)
), Xi = x

]

−P̂
−( j∗1, j∗2)
A

[
x, t( j∗1)

, t( j∗2)
; hx,1, hx,2

]}2

. (12.62)

If the right side of (12.62) can be uniquely minimized with respect to the
bandwidth pair (hx,1, hx,2), the minimizer of LTCVPA,w(hx,1, hx,2) is the LTCV
bandwidth pair (hx,1,LTCV , hx,2,LTCV ). ✷

Similar to the LSCV score in (12.58), the subjects with observations at
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only one time point are omitted in (12.62), and the computation for min-
imizing LTCVPA,w(hx,1, hx,2) may be simplified by setting hx,1 = hx,2, so that
hx,1,LTCV = hx,2,LTCV . Unlike the LSCV bandwidths, which rely on deleting
independent subjects one at a time, the LTCV bandwidths of (12.61) and
(12.62) rely on deleting the design time points in t one at a time, and ignores
the potential intra-subject correlations across the time points. Therefore, the
heuristic justification for the LSCV bandwidths may not be directly applied to
the LTCV bandwidths. A potential advantage of using the LTCV bandwidths
instead of the LSCV bandwidths is that minimizing (12.61) and (12.62) is
often computationally simpler than minimizing (12.57) and (12.58). The sim-
ulation results of Wu, Tian and Yu (2010) show that the LTCV approach may
often lead to adequate bandwidth choices under various longitudinal designs
similar to the NGHS data. The computational simplicity makes LTCV an
attractive approach in practice compared with the LSCV approach.

12.3.6 Bootstrap Pointwise Confidence Intervals

Explicit expressions of the asymptotic distributions for the estimators in Sec-
tions 12.3.1 to 12.3.5 have not been described in the literature. Wu and Tian
(2013a) suggest to use the same resampling subject bootstrap method as in
Section 8.3.1 to construct the pointwise confidence intervals for these estima-
tors. This resampling subject bootstrap is based on the practical suitability of
the bootstrap confidence intervals shown in the simulation study of Wu and
Tian (2013a). Following the spirit of the resampling bootstrap procedure of
Section 8.3.1, we construct the bootstrap pointwise confidence intervals for
PA(x, t) and PA(x, s1, s2) using the following steps.

Bootstrap Pointwise Confidence Intervals with a Single Time:

(a) Bootstrap Estimators: Draw B resampling-subject bootstrap samples

Z
b =

{(
Y b

i j, Xb
i , tb

i j

)
: 1 ≤ i ≤ n; 1 ≤ j ≤ ni

}
, b = 1, . . . , B, (12.63)

and compute the bootstrap estimators
{

P̂b
A,w(x, t) : b = 1, . . . , B

}
us-

ing (12.27).

(b) Approximated Bootstrap Confidence Intervals: Calculate the lower
and upper [100 × (1 − α/2)]th percentiles of the B bootstrap estimators{

P̂b
A,w(x, t) : b = 1, . . . , B

}
, and denote the corresponding percentiles by

LPA,w,α/2(t) and UPA,w,α/2(t). The [100×(1−α)]th bootstrap percentile point-

wise confidence interval for PA(x, t) is

(
LPA,w,α/2(t),UPA,w,α/2(t)

)
. (12.64)

The [100× (1−α/2)]th normal approximated pointwise confidence interval
for PA(x, t) is

P̂A,w(x, t)± z1−α/2 ŝe
[
P̂b

A,w(x, t)
]
, (12.65)
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where ŝe
[
P̂b

A,w(x, t)
]
is the sample standard error of the bootstrap estimators{

P̂b
A,w(x, t) : b = 1, . . . , B

}
. ✷

The steps for constructing the bootstrap confidence intervals for
PA(x, s1, s2) are essentially the same as above with the minor modifications
that the estimators of (12.47) based on the original sample and the bootstrap
samples have to be used.

Bootstrap Pointwise Confidence Intervals with Bivariate Time:

(a) Bootstrap Estimators: Generate the bootstrap samples as in step (a)
above and obtain the bootstrap estimators

{
P̂b

A,w(x, s1, s2) : b = 1, . . . , B
}
.

(b) Approximated Bootstrap Confidence Intervals: The [100× (1 −
α)]% bootstrap percentile pointwise confidence interval for PA(x, s1, s2) is

(
LPA,w,α/2(s1, s2), UPA,w,α/2(s1, s2)

)
, (12.66)

where LPA,w,α/2(s1, s2) and UPA,w,α/2(s1, s2) are the lower and upper [100×
(1−α/2)]th percentiles of the bootstrap estimators. The [100× (1−α/2)]%
normal approximated pointwise confidence interval for PA(x, s1, s2) is

P̂A,w(x, s1, s2)± z1−α/2 ŝe
[
P̂b

A,w(x, s1, s2)
]
, (12.67)

where ŝe
[
P̂b

A,w(x, s1, s2)
]
is the sample standard error of the bootstrap esti-

mators. ✷

Similar to the discussion of Section 7.3.1, the normal approximated
intervals of (12.65) and (12.67) are not rigorously proper asymptotically
[100×(1−α)]th confidence intervals because they do not adjust for the asymp-
totic biases of P̂A,w(x, t) and P̂A,w(x, s1, s2). Theoretically, we may consider a
plug-in approach to adjust the potential bias using an estimator of the asymp-
totic bias. But, since it is usually difficult to obtain an appropriate estimate of
the asymptotic bias, such plug-in type approximate confidence intervals may
not have practical advantages over (12.65) and (12.67), which completely ig-
nore the asymptotic biases. Bootstrap pointwise confidence intervals for the
functionals of PA(x, t) and PA(x,s1,s2) can be constructed using similar proce-
dures as above. For example, the bootstrap confidence intervals for the condi-
tional quantiles yα(x, t) can be constructed using ŷα ,w(x, t), and the bootstrap
confidence intervals for the rank-tracking probability RT PA(x, s1, s2) and the
rank-tracking probability ratio RT PRA(x, s1, s2) can be constructed using their
corresponding estimators (12.54) and (12.55).
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12.4 R Implementation

12.4.1 The NGHS BMI Data

The NGHS body mass index (BMI) data has been described in Sections 1.2
and 5.2.2. The study had high retention rate during 10 years of follow-up. The
median visits for the individual girls is 9, with range 1 to 10 and inter-quartile
range of 8 to 10. Among all the important risk factors that have been studied
by the NGHS investigators, childhood overweight and obesity measured by
BMI have been linked by a number of NGHS publications, e.g., Daniels et al.
(1998), Kimm et al. (2000, 2001, 2002), Thompson et al. (2007) and Obarzanek
et al. (2010), to cardiovascular disease risk factors including hypertension and
unhealthy lipid levels. Applying the procedures of Section 12.3 to the NGHS
BMI data, the kernel estimates are obtained for the conditional probabilities
of overweight and obesity, as well as the RTPs for BMI given race and various
ages for this population of adolescent girls. These estimates, particularly the
estimated RTPs, illustrate the importance of tracking BMI at an early age for
the prevention of later incidence of overweight and obesity for this population.

Because the entry age starts at 9, the observed age in our analysis is limited
to T = [9,19) and rounded up to the first decimal point. This age round-up
has the required clinical accuracy for age (Obarzanek et al., 2010), which leads
to J = 100 distinct time-design points

{
t(1) = 9.0, t(2) = 9.1, . . . , t(100) = 18.9

}
.

For a given 1 ≤ j∗ ≤ J, i ∈S j∗ denotes that the ith girl has a BMI observation
Yi

(
t( j∗)

)
at age t( j∗), Xi = 0 if she is Caucasian, and Xi = 1 if she is African

American. Clearly, Yi

(
t( j∗)

)
= Yi j, if t( j∗) = ti j is the age of the ith girl at the

jth BMI measurement, 1 ≤ j ≤ ni. The random variables for BMI at age t ∈T

and race are Y (t) and X , respectively. Since a main objective of this study is
to evaluate the patterns and temporal trends of overweight and obesity for
this cohort of girls (e.g., Kimm et al., 2002), we define

A(x, t) =
{(

Y (t), X
)

: Y (t)> y(t), X = x
}
,

where y(t) is a given BMI quantile determined by the CDC BMI growth chart
for girls at age t (Kuczmarski, et al., 2002), so that





PA(x, t) = P[Y (t)> y(t)|X = x, t],

PA

(
x, s1, s2

)
= P

[
Y (s1)> y(s1), Y (s2)> y(s2)

∣∣X = x, s1, s2

]
,

RT PA

(
x, s1, s2

)
= P

[
Y (s2)> y(s2)

∣∣Y (s1)> y(s1), X = x
]
.

(12.68)

In particular, we choose y(t) in (12.68) to be the 85th percentile of the CDC
BMI growth chart, which was used by Obarzanek et al. (2010) to define over-
weight and obese girls at age t.

For the kernel estimation of PA(x, t) and PA(x, s1, s2), we use the correspond-
ing univariate and bivariate Epanechnikov kernels with both (nni)

−1 and N−1

weights and the LSCV and LTCV bandwidths, where the same bandwidth
hx,1 = hx,2 is used in the estimation of PA(s1,s2,x). Since both (nni)

−1 and N−1
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weights give similar estimators (as most girls in NGHS have ni between 8 and
10) and the bandwidths obtained from LSCV and LTCV are comparable, we
only present the estimation results from the N−1 weight with the LTCV band-
widths. Computed separately for Caucasian and African American girls, the
univariate and bivariate LTCV bandwidths for the estimates of PA(x, t) and
PA(x, s1, s2) are h0,LTCV = 3.5, h1,DTCV = 2.6, h0,1,LTCV = h0,2,LTCV = 0.8 and
h1,1,LTCV = h1,2,LTCV = 0.9. The estimators for

{
RTPA

(
x, s1, s2

)
= P

[
Y (s2)> y(s2)

∣∣Y (s1)> y(s1), X = x
]
,

RT PRA

(
x, s1, s2

)
= RTPA

(
x, s1, s2

)/
P
[
Y (s2)> y(s2)

∣∣X = x
] (12.69)

based on (12.68) are computed by substituting their components with the cor-
responding kernel estimators. The 95% pointwise confidence intervals are com-
puted from the resampling-subject bootstrap empirical quantile confidence
intervals with B = 500 bootstrap samples.

We compute the kernel estimates of the PA(x, t) and PA(x,s1,s2) with s2 =
s1+2 and A(·) including those girls with BMI percentile greater than the CDC
age-adjusted 85th percentile for the African American girls. Then, we use these
kernel estimates to compute their RTP and RTPR of overweight and obesity.
Similarly, we can compute the conditional probabilities and tracking indices
for the Caucasian girls. The R code for the computation is given below:

> library(npmlda)

> NGHS.B <- NGHS[NGHS$RACE==2,]

> IDD <- unique(NGHS.B$ID)

> nID <- length(IDD)

> nID # no. of subjects

[1] 1213

> nrow(NGHS.B) # no. of visits

[1] 10028

> Grid <- 0.2

> S1cat <- seq(9.0, 18.8, by=Grid)

> S12cat <- seq(9.0, 16.8, by=Grid)

## Compute the PA(x,s1 )##

> KK1 <- length(S1cat)

> Yvec<- (NGHS.B$BMIPCT>=85)*1

> Xvec<- NGHS.B$agebin

> Prob.S1 <- numeric(KK1)

> for(k in 1:KK1)

{

Prob.S1[k]<-NW.Kernel(Xvec, Yvec, S1cat[k], Bndwdth=2.6)

}
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Figure 12.1 The estimated conditional probability curves and their bootstrap 95%
empirical quantile pointwise CIs.

## Compute the PA(x,s1,s2) ##

> KK2 <- length(S12cat)

> Prob.S1S2 <- numeric(KK2)

> IDD <- NGHS.B$ID

> for(k in 1:KK2)

{

Prob.S1S2[k] <- Kernel2D(IDD, Xvec, Yvec, X01=S12cat[k],

X02=S12cat[k]+2, Bndwdth1=0.9, Bndwdth2=0.9)

}

## Compute RTP and RTPR ##

> IND1 <- (S1cat >=9 & S1cat <=16.8)

> IND2 <- (S1cat >=11 & S1cat <=18.8)

> RTP <- Prob.S1S2/(Prob.S1[IND1])

> RTPR <- RTP/(Prob.S1[IND2])
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Figure 12.1 shows the estimated probabilities,





PA(x, t) = P
[
Y (t)> y(t)

∣∣X = x, t
]

for t ∈ [10, 18],

PA

(
x, s1, s1 + 2

)
= P

[
Y (s1)> y(s1), Y (s1 + 2)> y(s1 + 2)∣∣X = x, s1, s1 + 2

]
for s1 ∈ [10, 16]

(12.70)

and their corresponding 95% pointwise confidence intervals, where y(t) is the
85th percentile of the CDC BMI growth chart for girls at age t. In (12.70),
PA(x, t) with x = 0 or 1 represents the probability of a Caucasian or an African
American girl being overweight or obese at age t, and PA(x,s1,s1+2) with x= 1

or 0 represents the joint probability of an African American or a Caucasian girl
being overweight or obese at both age s1 and age s1 +2. The estimated PA(x, t)
for both racial groups are higher than 15%, suggesting that this cohort of girls
have higher overweight or obese probabilities than the general population of
girls described in the CDC BMI growth chart. The African American girls also
tend to have higher overweight or obese probability than the Caucasian girls.
The probability of overweight and obesity for African American girls appears
to be gradually increasing over age, but the probability for Caucasian girls
stays constant across the age range.

Figure 12.2 shows the estimated RTPA

(
x, s1, s1 + 2

)
and RTPRA

(
x, s1, s1 +

2
)
for s1 ∈ [10, 16] years and their corresponding 95% pointwise confidence

intervals. Here RT PA

(
x, s1, s1 + 2

)
with x = 1 or 0 represents the probability

of an African American or Caucasian girl being overweight or obese at age
s1 + 2 given that she is already overweight or obese at age s1. The top panels
of Figure 12.2 show that, given that a girl is already overweight or obese at
age s1, her overweight or obese probability at age s1 +2 is approximately 90%
or 80% if she is African American or Caucasian, respectively. The bottom
panels of Figure 12.2 show that RT PRA

(
x, s1, s1 +2

)
is approximately between

2.1 and 2.5 for African American girls, and between 3.2 and 3.6 for Caucasian
girls. These RTPR estimates suggest that BMI has high degree of “positive
tracking ability” for both racial groups.

12.5 Asymptotic Properties

We establish the asymptotic biases, variances and mean squared errors of the
kernel estimators P̂A(x, t) and P̂∗

A(x, t) defined in (12.23) and (12.25), respec-
tively. The results of this section suggest that, since these estimators rely on
the two different weights wi = 1/(nni) and wi = 1/N, their asymptotic proper-
ties are also different. We pay special attention to these two weights because,
in the absence of the actual intra-subject correlation structures, they are the
most commonly used weight choices in real applications. The asymptotic prop-
erties of P̂A,w(x, t) of (12.27) with a general weight wi can be derived using the
same steps in the proofs of the theorems of this section, but are omitted due
to the lack of interest for using weights other than 1/(nni) and 1/N.

Asymptotic properties for the other estimators of Section 12.3, such as the



ASYMPTOTIC PROPERTIES 433

10 11 12 13 14 15 16

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

A. BMI: African American

s1(age in years)

R
T

P
(1

,s
1
, 
s

1
+

2
)

10 11 12 13 14 15 16

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

B. BMI: Caucasian

s1(age in years)

R
T

P
(0

,s
1
, 
s

1
+

2
)

10 11 12 13 14 15 16

1
.0

1
.5

2
.0

2
.5

3
.0

3
.5

4
.0

C. BMI:African American

s1(age in years)

R
T

P
R

(1
,s

1
, 
s

1
+

2
)

10 11 12 13 14 15 16

1
.0

1
.5

2
.0

2
.5

3
.0

3
.5

4
.0

D. BMI: Caucasian

s1(age in years)

R
T

P
R

(0
,s

1
, 
s

1
+

2
)

Figure 12.2 The estimated RTP and RTP curves and their bootstrap 95% empiri-
cal quantile pointwise CIs for BMI over the 85th population BMI percentile at the
corresponding age.

estimators of the conditional distribution functions with bivariate time and the
rank-tracking probabilities, can be derived using similar approaches. But, the
details of these extensions, which require tedious computations, have not been
explicitly developed in the literature. Although our theoretical development
of this section is limited to the estimators P̂A(x, t) and P̂∗

A(x, t) under a single
time, the technique of this section is applicable to kernel estimators of other
conditional distribution functions and their functionals.

12.5.1 Asymptotic Assumptions

The following assumptions are assumed throughout this chapter:

(a) For all t ∈T and x, there are a density function f (x, t)> 0 and an integer
dx ≥ 0, such that f (x, t) is continuously differentiable with respect to t and
PA(x, t) is (dx + 2) time continuously differentiable with respect to t.

(b) For each x, Kx(·) is a compactly supported (dx+2)th order kernel function
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in the sense that, for all 1 ≤ k < dx + 2, Kx(·) satisfies
{ ∫

Kx(u)du = 1,
∫

uk Kx(u)du = 0,

µ(dx+2) =
∫

udx+2 Kx(u)du < ∞, R(Kx) =
∫

K2
x (u)du.

(12.71)

Without loss of generality, the support of Kx(·) is assumed to be [−1,1].

(c) For each x, the bandwidth hx satisfies hx → 0 and nhx → ∞ as n → ∞.

(d) For all i = 1, . . . , n and any j1 6= j2,
∣∣ti j1 − ti j2

∣∣> hx. ✷

The above assumptions are consistent with the standard assumptions used
for kernel smoothing estimators in conditional mean based regression models,
e.g., Sections 6.6.2 and 7.5.1. In particular, Assumption (d), which is used in
the derivations of Section 12.5.3, is appropriate in practice, because in most
longitudinal studies the subject’s visit times are spread apart by design, so
that meaningful scientific information may be obtained at different visits.

12.5.2 Asymptotic Mean Squared Errors

1. Asymptotic Expressions with the Subject Uniform Weight

We present first the approximate mean squared errors of P̂A(x, t) in (12.23),
which has the subject uniform weight wi = 1/(nni) weight. To consider the
numerator and the denominator at the right side of (12.23) separately, we
define the numerator and denominator to be

p̂A(x, t) =
n

∑
i=1

ni

∑
j=1

{( 1

nni hx

)[
1[Yi j∈A(x,ti j),Xi=x] Kx

( t − ti j

hx

)]}
(12.72)

and

f̂ (x, t) =
n

∑
i=1

ni

∑
j=1

[( 1

nni hx

)
Kx

( t − ti j

hx

)]
, (12.73)

respectively, such that

P̂A(x, t) =
p̂A(x, t)

f̂ (x, t)
. (12.74)

Using the same approximation argument as (3.37) and (3.38), we note that

f̂ (x, t)→ f (x, t) in probability as n → ∞ and hx → 0, (12.75)

for any t in the support of f (x, t), and, by (12.72) through (12.75),

[
1−δ (x, t)

][
P̂A(x, t)−PA(x, t)

]
=
[

f (x, t)
]−1 [

p̂A(x, t)−PA(x, t) f̂ (x, t)
]
, (12.76)

where δ (x, t) = 1−
[

f̂ (x, t)
/

f (x, t)
]
. Consequently, by f (x, t) > 0, (12.75) and

(12.76), we have that δ (x, t) = op(1) and

[
1+ op(1)

][
P̂A(x, t)−PA(x, t)

]
=
[

f (x, t)
]−1

R̂A(x, t), (12.77)
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where R̂A(x, t) = p̂A(x, t)−PA(x, t) f̂ (x, t).
Using the right side of (12.77), we define the approximate mean squared

error (MSE) and the approximate mean integrated squared error (MISE) of
P̂A(x, t) to be

MSE
[
P̂A(x, t), PA(x, t)

]

= E

{[
f−1(x, t) R̂A(x, t)

]2
}

=
{

E
[

f−1(x, t) R̂A(x, t)
]}2

+V
{[

f (x, t)
]−1

R̂A(x, t)
}

(12.78)

and

MISE
[
P̂A(x), PA(x)

]
=

∫
MSE

[
P̂A(x, t), PA(x, t)

]
π(t)dt, (12.79)

where E(·) and V (·) are the conditional expectation and variance given x,
and π(t) is a pre-specified non-negative weight function on T . Following the
decomposition of (12.78), we refer to





Bias
[
P̂A(x, t)

]
= E

[
f−1(x, t) R̂A(x, t)

]
,

Var
[
P̂A(x, t)

]
= V

[
f−1(x, t) R̂A(x, t)

] (12.80)

as the bias and variance terms of P̂A(x, t). The following theorem summarizes
the asymptotic expression for the MSE of P̂A(x, t).

Theorem 12.1. When the number of subjects n is large, t is an interior
point of the support of f (x, ·) and Assumptions (a)-(d) of Section 12.5.1 are
satisfied, the following asymptotic expressions for P̂A(x, t) hold:

(a) The asymptotic bias of (12.80) is

Bias
[
P̂A(x, t)

]
= h

(dx+2)
x µ(dx+2)

[
P
(dx+2)
A (x, t)

(dx + 2)!
+

P
(dx+1)
A (x, t) f ′(x, t)

(dx + 1)! f (x, t)

]

+o
(

h
(dx+2)
x

)
. (12.81)

(b) The asymptotic variance of (12.80) is

Var
[
P̂A(x, t)

]
=

[
nhx f (x, t)

]−1

[
n

∑
i=1

(nni)
−1

][
1−PA(x, t)

]
PA(x, t)R(Kx)

+o

(
h−1

x n−2
n

∑
i=1

n−1
i

)
. (12.82)

(c) The asymptotic mean squared error of (12.78) is

MSE

[
P̂A(x, t), PA(x, t)

]
=

{
Bias

[
P̂A(x, t)

]}2

+Var
[
P̂A(x, t)

]

+o

(
h

2 (dx+2)
x + h−1

x n−2
n

∑
i=1

n−1
i

)
, (12.83)
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where the asymptotic expressions of Bias
[
P̂A(x, t)

]
and Var

[
P̂A(x, t)

]
are

given by (12.81) and (12.82), respectively. �

Proof of Theorem 12.1 is given in Section 12.5.3.

In particular, when PA(x, t) is twice continuously differentiable, i.e., dx = 0,
the asymptotic expressions of the bias, variance and MSE in (12.81), (12.82)
and (12.83) are simplified to

Bias
[
P̂A(x, t)

]
= h2

x µ(2)

[
P′′

A (x, t)

2
+

P′
A(x, t) f ′(x, t)

f (x, t)

]
+ o
(
h2

x

)
, (12.84)

Var
[
P̂A(x, t)

]
=

[
nhx f (x, t)

]−1

[
n

∑
i=1

(nni)
−1

][
1−PA(x, t)

]
PA(x, t)R(Kx)

+o

(
h−1

x n−2
n

∑
i=1

n−1
i

)
(12.85)

and

MSE
[
P̂A(x, t), PA(x, t)

]
=

{
Bias

[
P̂A(x, t)

]}2

+Var
[
P̂A(x, t)

]

+o

(
h4

x + h−1
x n−2

n

∑
i=1

n−1
i

)
, (12.86)

respectively.

2. Asymptotic Expressions with the Measurement Uniform Weight

The asymptotic expressions of the bias, variance and MSE for P̂∗
A(x, t) of

(12.25) with the measurement uniform weight wi = 1/N weight can be derived
using the same approach as above. In this case, we define

p̂∗A(x, t) =
n

∑
i=1

ni

∑
j=1

{( 1

N hx

)[
1[Yi j∈A(x,ti j),Xi=x] Kx

( t − ti j

hx

)]}
(12.87)

and

f̂ ∗(x, t) =
n

∑
i=1

ni

∑
j=1

{( 1

N hx

)
Kx

( t − ti j

hx

)}
, (12.88)

so that,

P̂∗
A(x, t) =

p̂∗A(x, t)

f̂ ∗(x, t)
. (12.89)

Following the same arguments in (12.75) to (12.76), we have the approximation

[
1+ op(1)

][
P̂∗

A(x, t)−PA(x, t)
]
= f−1(x, t) R̂∗

A(x, t), (12.90)
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where R̂∗
A(x, t) = p̂∗A(x, t)−PA(x, t) f̂ ∗(x, t). The approximate mean squared er-

rors are

MSE
[
P̂∗

A(x, t), PA(x, t)
]

=
{

E
[

f−1(x, t) R̂∗
A(x, t)

]}2

+V
[

f−1(x, t) R̂∗
A(x, t)

]
(12.91)

and

MISE

[
P̂∗

A(x), PA(x)
]
=

∫
MSE

[
P̂∗

A(x, t), PA(x, t)
]

π(t)dt. (12.92)

The bias and variance for P̂∗
A(x, t) are

{
Bias

[
P̂∗

A(x, t)
]

= E
[

f−1(x, t) R̂∗
A(x, t)

]
,

Var
[
P̂∗

A(x, t)
]

= V
[

f−1(x, t) R̂∗
A(x, t)

]
.

(12.93)

The following theorem shows the asymptotic MSE of P̂∗
A(x, t).

Theorem 12.2. When the number of subjects n is large, t is an interior
point of the support of f (x, ·) and Assumptions (a)-(d) of Section 12.5.1 are
satisfied, the following asymptotic expressions for P̂∗

A(x, t) hold:

(a) The asymptotic bias of (12.93) is

Bias
[
P̂∗

A(x, t)
]

= h
(dx+2)
x µ(dx+2)

[
P
(dx+2)
A (x, t)

(dx + 2)!
+

P
(dx+1)
A (x, t) f ′(x, t)

(dx + 1)! f (x, t)

]

+o
(
h
(dx+2)
x

)
. (12.94)

(b) The asymptotic variance of (12.93) is

Var
[
P̂∗

A(x, t)
]

=
[
N hx f (x, t)

]−1[
1−PA(x, t)

]
PA(x, t)R(Kx)

+o
[
(N hx)

−1
]
. (12.95)

(c) The asymptotic mean squared error of (12.93) is

MSE
[
P̂∗

A(x, t), PA(x, t)
]

=
{

Bias
[
P̂∗

A(x, t)
]}2

+Var
[
P̂∗

A(x, t)
]

+o
[
(N hx)

−1 + h
2(dx+2)
x

]
, (12.96)

where the asymptotic expressions of Bias
[
P̂∗

A(x, t)
]
and Var

[
P̂∗

A(x, t)
]
are

given by (12.94) and (12.95), respectively. �

Proof of Theorem 12.2 is given in Section 12.5.3.

For the case that PA(x, t) is twice continuously differentiable, i.e., dx = 0,
the asymptotic expressions of the bias, variance and MSE are

Bias
[
P̂∗

A(x, t)
]
= h2

x µ(2)

[P′′
A(x, t)

2
+

P′
A(x, t) f ′(x, t)

f (x, t)

]
+ o
(
h4

x

)
, (12.97)
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Var
[
P̂∗

A(x, t)
]
=
[
N hx f (x, t)

]−1[
1−PA(x, t)

]
PA(x, t)R(Kx)+o

[
(N hx)

−1
]
(12.98)

and

MSE
[
P̂∗

A(x, t), PA(x, t)
]

=
{

Bias
[
P̂∗

A(x, t)
]}2

+Var
[
P̂∗

A(x, t)
]

+o
[
(N hx)

−1 + h4
x

]
. (12.99)

The main implication of Theorems 12.1 and 12.2 is that both kernel estima-
tors P̂A(x, t) and P̂∗

A(x, t) have the same asymptotic biases, but their asymptotic
variances are different because of the different weight choices. These asymp-
totic variances depend on the number of subjects n as well as the numbers
of repeated measurements ni. If all the subjects have similar numbers of re-
peated measurements, e.g., ni ≈ m for all i = 1, . . . ,n, then P̂A(x, t) and P̂∗

A(x, t)
are asymptotically equivalent in the sense that they have approximately the
same asymptotic variances because n−2 ∑n

i=1 n−1
i ≈ N. On the other hand, if

the number of repeated measurements ni vary significantly across subjects,
the asymptotic variances of P̂A(x, t) and P̂∗

A(x, t) could be very different.

12.5.3 Theoretical Derivations

We now give the proofs of Theorems 12.1 and 12.2. The derivations of both
proofs follow the same technical approach, although the convergence rates are
differences. These derivations also bear some resemblance to the proofs for the
time-varying coefficient models given in Section 7.5.

Proof of Theorem 12.1:
By (12.72), (12.73) and the change of variables, we have that, for any x,

E

[
f (x, t)−1 R̂A(x, t)

]

=
1

nhx f (x, t)

n

∑
i=1

ni

∑
j=1

∫
1

ni

{
E
[
1[Yi j∈A(x,ti j),Xi=x]

∣∣ti j = s
]
−PA(x, t)

}

×Kx

( t − s

hx

)
f (x, s)ds (12.100)

= f (x, t)−1
∫ [

PA(x, t − hx u)−PA(x, t)
]

f (x, t − hx u)Kx(u)du.

Then, it follows from the Assumptions (a)-(d) of Section 12.5.1 and the Tay-
lor’s expansions of PA(x, t − hx u) at PA(x, t) and f (x, t − hx u) at f (x, t) that

E
[

f (x, t)−1 R̂A(x, t)
]

(12.101)

= hdx+2
x µ(dx+2)

[
P
(dx+2)
A (x, t)

(dx + 2)!
+

P
(dx+1)
A (x, t) f ′(x, t)

(dx + 1)! f (x, t)

](
1+ o(1)

)
,

which shows (12.81).
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To derive the expression of V
[

f (x, t)−1 R̂A(x, t)
}
in (12.82), we define

Zi j(x, t) =
1

ni

[
1[Yi j∈A(x,ti j),Xi=x]−PA(x, t)

]
, (12.102)

so that, direct expansions based on (12.72), (12.73) and (12.77) show that

[
f (x, t)−1 R̂A(x, t)

]2

= A1(x, t)+A2(x, t)+A3(x, t), (12.103)

where it follows from (12.102) that

A1(x, t) =

[
1

f (x, t)nhx

]2 n

∑
i=1

ni

∑
j=1

[
Z2

i j(x, t)K2
x

( t − ti j

hx

)]
,

A2(x, t) =

[
1

f (x, t)nhx

]2 n

∑
i=1

∑
j1 6= j2

[
Zi j1(x, t)Zi j2(x, t)Kx

( t − ti j1

hx

)
Kx

( t − ti j2

hx

)]

and

A3(x, t)=

[
1

f (x, t)nhx

]2 n

∑
i1 6=i2

∑
j1, j2

[
Zi1 j1(x, t)Zi2 j2(x, t)Kx

( t − ti1 j1

hx

)
Kx

( t − ti2 j2

hx

)]
.

Direct calculation for the expected value of A1(x, t) shows that

E
[
A1(x, t)

]
=

[
1

f (x, t)nhx

]2 n

∑
i=1

ni

∑
j=1

∫
E
[
Z2

i j(x, t)
∣∣ti j = s

]
K2

x

( t − s

hx

)
f (s)ds,

=

[
1

f (x, t)nhx

]2 n

∑
i=1

ni

∑
j=1

{( 1

n2
i

) ∫ [
PA(x, s)− 2PA(x, s)PA(x, t)

+PA(x, t)
]

K2
x

( t − s

hx

)
f (s)ds

}
(12.104)

=
1

f (x, t)nhx

[
n

∑
i=1

( 1

nni

)][
1−PA(x, t)

]
PA(x, t)R(Kx) [1+ o(1)].

For the expectation of A2(x, t), we have a bounded function c(x, t) so that

E
[
A2(x, t)

]

=

[
1

f (x, t)nhx

]2 n

∑
i=1

∑
j1 6= j2

{∫ ∫
E
[
Zi j1(x, t)Zi j2(x, t)

∣∣ti j1 = s1, ti j2 = s2

]

×Kx

( t − s1

hx

)
Kx

( t − s2

hx

)
f (s1) f (s2)ds1 ds2

}

= 0, (12.105)

since, by Assumption (d), |s1 − s2| > δ , the [−1,1] support of Kx(·) implies
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that, for all t ∈ T , Kx[(t − s1)/hx]×Kx[(t − s2)/hx] = 0 when hx is sufficiently
small.

For the expectation of A3(x, t), it can be shown by the independence of
subjects i1 and i2 that

E
[
A3(x, t)

]
= E2

[
f (x, t)−1 R̂A(x, t)

]
. (12.106)

Combining the results of (12.103) through (12.106), we have that

V
[

f (x, t)−1 R̂A(x, t)
]

(12.107)

=
1

f (x, t)nhx

[
n

∑
i=1

( 1

nni

)][
1−PA(x, t)

]
PA(x, t)R(Kx) [1+ o(1)].

The conclusion of (12.82) follows from (12.103) and (12.107). The conclusion of
(12.83) is a direct consequence of (12.78), (12.81) and (12.82). The conclusions
of (12.84), (12.85) and (12.86) follow from (12.81), (12.82) and (12.83) by
taking dx = 0. This completes the proof of the theorem. �

Proof of Theorem 12.2:
To show the asymptotic bias (12.94), direct calculation using N = ∑n

i=1 mi,
(12.87) and (12.88) shows that, for any x,

E
[

f (x, t)−1 R̂∗
A(x, t)

]

=

[
1

N hx f (x, t)

]
n

∑
i=1

ni

∑
j=1

∫ {
E
[
1[Yi j∈A(x,ti j),Xi=x]

∣∣ti j = s
]
−PA(x, t)

}

×Kx

( t − s

hx

)
f (x, s)ds (12.108)

= f (x, t)−1

∫ [
PA(x, t − hx u)−PA(x, t)

]
f (x, t − hx u)Kx(u)du,

which is the same as E
[

f (x, t)−1 R̂A(x, t)
]
in (12.101). Consequently, (12.94)

follows from (12.81).
For the variance term V

[
f (x, t)−1 R̂∗

A(x, t)
]
, we define

Z∗
i j(x, t) = 1[Yi j∈A(x,ti j),Xi=x]−PA(x, t), (12.109)

so that, by (12.109) and the same expansion as (12.103), we have

[
f (x, t)−1 R̂∗

A(x, t)
]2

= A∗
1(x, t)+A∗

2(x, t)+A∗
3(x, t), (12.110)

where

A∗
1(x, t) =

[
1

f (x, t)N hx

]2 n

∑
i=1

ni

∑
j=1

{[
Z∗

i j(x, t)
]2

K2
x

( t − ti j

hx

)}
,
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A∗
2(x, t) =

[
1

f (x, t)N hx

]2 n

∑
i=1

∑
j1 6= j2

[
Z∗

i j1
(x, t)Z∗

i j2
(x, t)Kx

( t − ti j1

hx

)
Kx

( t − ti j2

hx

)]

and

A∗
3(x, t)=

[
1

f (x, t)N hx

]2 n

∑
i1 6=i2

∑
j1, j2

[
Z∗

i1 j1
(x, t)Z∗

i2 j2
(x, t)Kx

( t − ti1 j1

hx

)
Kx

( t − ti2 j2

hx

)]
.

Direct calculation similar to (12.104), (12.105) and (12.106) shows that

E
[
A∗

1(x, t)
]
=

1

f (x, t)N hx

[
1−PA(x, t)

]
PA(x, t)R(Kx)[1+ o(1)], (12.111)

and, by Assumptions (b), (c) and (d) of Section 12.5.1, i.e., the compact
support of Kx(·) and hx → 0 as n → ∞, we have

E
[
A∗

2(x, t)
]

=

[
1

f (x, t)N hx

]2 n

∑
i=1

∑
j1 6= j2

{∫
E
[
Zi j1(x, t)Zi j2(x, t)

∣∣ti j1 = s1, ti j2 = s2

]

×Kx

( t − s1

hx

)
Kx

( t − s2

hx

)
f (s1) f (s2)ds

}

= 0, (12.112)

and
E
[
A3(x, t)

]
=
{

E
[

f (x, t)−1 R̂A(x, t)
]}2

. (12.113)

The conclusion of (12.95) follows from (12.110) through (12.113). The con-
clusion of (12.96) directly follows from (12.94) and (12.95). The conclusions
of (12.97) to (12.98) are special cases of (12.94) to (12.86), respectively, with
dx = 0. The proof is completed. �

12.6 Remarks and Literature Notes

As discussed in the previous chapters, the conditional-mean based regression
models have been well established in the literature, for example, Hart and
Wehrly (1993), Shi, Weiss and Taylor (1996), Hoover et al. (1998), Fan and
Zhang (2000), Lin and Carroll (2001), Rice and Wu (2001), James, Hastie
and Sugar (2000), Diggle et al. (2002), Molenberghs and Verbeke (2005), Sen-
türk and Müller (2006), Zhou, Huang and Carroll (2008), and Fitzmaurice
et al. (2009). The theory and methods presented in this chapter, which is
adapted from Wu and Tian (2013a), provide a comprehensive statistical tool
for evaluating the conditional distribution functions and their functionals in a
longitudinal study. Such methods are usually appropriate for long-term follow-
up studies, which have a large number of subjects and sufficient numbers of
repeated measurements over time. Our application to the NGHS BMI data
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demonstrates that the “Rank-Tracking Probability” is a useful nonparamet-
ric index for the tracking ability of a health outcome over time. Other useful
statistical indices for the tracking ability in the literatures, such as Ware and
Wu (1981), Foulkes and Davis (1981) and McMahan (1981), depend on the
parametric mixed-effects models. Although our methodology and theoretical
results are limited to the kernel smoothing estimators under two different
weight schemes and a set of asymptotic assumptions, they provide some use-
ful insight into the accuracy of the statistical results under different repeated
measurement scenarios.

There are a number of theoretical and methodological aspects that war-
rant further investigation. First, further theoretical and simulation studies
are needed to investigate the properties of other smoothing methods, such as
global smoothing methods through splines and other basis approximations,
and their corresponding asymptotic inference procedures. Second, many lon-
gitudinal studies have multivariate outcome variables, so that appropriate
statistical models and estimation methods for multivariate conditional distri-
bution functions deserve to be systematically investigated. The extension of
flexible conditional distribution based statistical models incorporating both
time-dependent and time-invariant covariates are discussed in Chapters 13
and 14.



Chapter 13

Time-Varying Transformation Models - I

The conditional distribution functions and their functionals discussed in Chap-
ter 12 are only limited to the situations with time-invariant and categori-
cal covariates. For this reason, nonparametric estimators of the conditional
distribution functions can be constructed using the kernel smoothing meth-
ods without imposing any modeling structures between the response variable
and the covariates. This unstructured estimation approach may not work well
when there are time-varying and continuous covariates, because unstructured
estimation in such situations requires high-dimensional multivariate kernel
smoothing that may only work when the sample size is unusually large. In
this chapter, we introduce a class of structured nonparametric models, namely
the time-varying transformation models, for the conditional distribution func-
tions, which can incorporate the time-varying and continuous covariates. This
class of models, which was first suggested by Wu, Tian and Yu (2010), pro-
vides a simple and flexible framework for connecting the well-known regression
models in survival analysis with the time-varying random variables.

13.1 Overview and Motivation

As discussed in Section 12.1.1, the regression methods for longitudinal data
presented in Chapters 6 through 11 primarily focus on evaluating the time-
varying mean response curves and their relationships with the covariates.
These conditional mean-based regression models could be inadequate when
the scientific objective is to evaluate the conditional distribution functions
and the outcome variables have skewed or non-Gaussian distributions. A well-
known approach for skewed random variables in practice is to apply a trans-
formation, such as the Box-Cox transformation, to these variables so that the
transformed variables have approximately Gaussian conditional distributions,
e.g., Lipsitz, Ibrahim and Molenberghs (2000). A limitation of this approach is
that the form of the transformation has to be time-invariant and known in ad-
vance. For longitudinal studies, the outcome variable Y (t) may have different
skewed distributions over time t, so that a fixed and known transformation for
Y (t) may not lead to an approximately Gaussian distribution for all t within
the range of interest.

The approach of this chapter directly models the conditional distributions

443
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of the outcome variable Y (t) at a time point t giving the covariates. This ap-
proach is motivated by the attempt for modeling the covariate effects on the
distributions of blood pressure and other cardiovascular risk factors in the
National Growth and Health Study (NGHS). Since a main objective of the
NGHS is to evaluate the patterns of obesity and cardiovascular risk factors
during adolescence, prior publications of this study, such as Daniels et al.
(1998) and Thompson et al. (2007), studied the longitudinal effects of child-
hood obesity on the levels of several cardiovascular risk factors, such as blood
pressure, lipoprotein cholesterol (LDL) and triglyceride (TG), using the con-
ditional means or the probabilities of unhealthy risk levels specified by certain
threshold values. These results, although informative to some extent, do not
give a clear indication of whether similar associations between childhood obe-
sity and cardiovascular risks still hold if other definitions of unhealthy risk
levels are used. It is desirable to have a flexible regression method to describe
the covariate effects on the entire distribution of a risk variable.

In Chapters 6 through 8, we have seen the varying-coefficient models as
a useful dimensional reduction strategy, because these models retain a simple
parametric structure at each time point and preserve the nonparametric flex-
ibility when the time point varies. Extending the idea of varying coefficients
to the conditional distribution functions, a natural approach is to consider a
class of time-varying transformation models. The transformation models with
cross-sectional i.i.d. data have been studied extensively in survival analysis,
for example, Cheng, Wei and Ying (1995), Lu and Ying (2004), Lu and Tsi-
atis (2006) and Zeng and Lin (2006). The extension to longitudinal data can
be established by allowing the coefficients of the transformation models to
be nonparametric functions of time. Our focus in this chapter is on the esti-
mation of the coefficient curves through a two-step procedure. This two-step
estimation procedure is computationally simple and can automatically adjust
the smoothing parameters for different coefficient curves.

13.2 Data Structure and Model Formulation

13.2.1 Data Structure

For simplicity, we use a set of slightly different notation to describe the same
longitudinal samples from the previous chapters, such as Sections 6.1 and
12.2. Similar notation has been used in Section 7.4 for describing the two-step
estimation procedure of Fan and Zhang (2000) for conditional means.

Population Random Variables and Distribution Functions:
The real-valued outcome variable of interest at time t is Y (t), and the

covariate vector at time t ∈ T is X(t) =
(
X1(t), . . . , XP(t)

)T
, where, for any

1 ≤ p ≤ P, Xp(t) is allowed to be time-varying and may be either continuous
or discrete. The conditional cumulative distribution function (CDF) of Y (t) at
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time t given X(t) = x is

Ft(y|x) = P
[
Y (t)≤ y|X(t) = x, t

]
. (13.1)

The statistical objectives are to model the relationship between Ft(y|x) and x,
and to estimate the effects of Xp(t), 1 ≤ p ≤ P, on Ft(y|x) for any t ∈ T .

Longitudinal Data with Time-Varying Covariates:

(a) The sample has n independent subjects, and each subject is observed at a
randomly selected subset of J > 1 distinct design time points t= (t1, . . . , tJ)

T .

(b) Since not all the subjects are observed at every t j, we denote by S j the
set of subjects whose observations are available at time t j.

(c) Let Yi(t j) and Xi(t j) =
(
Xi1(t j), . . . , XiP(t j)

)T
be the real-valued outcome and

the P×1 covariate vector, respectively, at t j for the ith subject when i ∈S j.
The longitudinal sample of {Y (t), X(t), t ∈ T } is

{
Z =

{
Yi(t j), Xi(t j), t j : i ∈ S j; j = 1, . . . , J

}
,

D =
{

Xi(t j), t j : i ∈ S j; j = 1, . . . , J
} (13.2)

with D being the set of observed covariates.

(d) Denote the number of subjects in S j and the number of subjects in both
S j1 and S j2 when j1 6= j2 by

n j = #
{

i ∈ S j

}
and n j1 j2 = #

{
i ∈ S j1

⋂
S j2

}
, (13.3)

respectively. It clearly follows that n j1 j2 ≤ min
{

n j1 , n j2

}
. ✷

13.2.2 The Time-Varying Transformation Models

As a flexible dimension reduction alternative to unstructured Ft(y|x), we con-
sider a class of linear transformation models, which adopt the following struc-
tured time-varying covariate effects on Ft(y|x) at each t ∈ T ,





g
[
St(y|X)

]
= h(y, t)+XT (t)β (t),

β (t) =
(
β1(t), . . . , βP(t)

)T
,

βp(t) = smooth function on T , p = 1, . . . , p,

(13.4)

where g(·) is a known decreasing link function, St(y|X) = 1−Ft(y|X) is the
probability of Y (t)> y, h(·, ·) is an unspecified and strictly increasing function
in y, and βp(t) describes the effect of the covariate Xp(t) on the “survival
function” St(y|X). When t is fixed, (13.4) is a semiparametric transformation
model with βp(t) representing the change of g

[
St(y|X)

]
associated with a unit

increase of Xp(t). Under this framework of longitudinal data, we are interested
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in the time-trends of the covariate effects. Hence, the estimation and inferences
then focus on the coefficient curves

{
βp(t) : p = 1, . . . , P

}
over t ∈ T .

Useful special cases of (13.4) can be obtained by specifying the forms of
g(·). In particular, the time-varying proportional hazards model is given by
(13.4) with

g
[
St(y|X)

]
= log

{
− log

[
St(y|X)

]}
, (13.5)

and the time-varying proportional odds model is given by (13.4) with

g
[
St(y|X)

]
=− log

[
St(y|X)/Ft(y|X)

]
. (13.6)

There is no theoretical guideline on which link function g(·) should be used for
a given longitudinal sample. In practice, g(·) is often selected by examining
the fitness of the data and evaluating the scientific or clinical interpretations
of the results. Our application of (13.4) to the NGHS blood pressure data
(Section 13.4) is based on the time-varying proportional odds model (13.6).

In survival analysis, most estimation methods for the linear transforma-
tion models are developed for failure times with random censoring. Examples
of the linear transformation models involving censored failure time data in-
clude Cheng, Wei and Ying (1995, 1997), Lu and Ying (2004) and Zeng and
Lin (2006). Although censoring remains a theoretical possibility in longitu-
dinal settings, none of the repeatedly measured variables in the NGHS data
involve censoring. Thus, nonparametric estimation of β (t) in (13.4) with Yi(t j)
subject to random censoring is only theoretically interesting. For practical con-
siderations, our estimation methods of this chapter are developed for (13.4)
without censoring.

13.3 Two-Step Estimation Method

We describe here a two-step estimation method similar to the one described in
Section 8.2 for the time-varying coefficient models. In this approach, we first

obtain the raw estimates of the coefficient curves β (t) =
(
β1(t), . . . , βP(t)

)T
of

(13.4) at the design time points t= (t1, . . . , tJ)
T , and then apply a nonparamet-

ric smoothing method to estimate β (t) at any t ∈ T by smoothing over the
raw estimates. Similar to the time-varying coefficient models of Chapter 8,
the smoothing step serves two purposes: First, it reduces the variability of
the curve estimates at t ∈ T by borrowing the information obtained from the
raw estimates at the design time points which are adjacent to t. Second, it
produces the curve estimates of β (t) for any time point t ∈ T . A main reason
for this two-step approach is its computational simplicity, since, for both the
raw estimator step and the smoothing step, we can use the existing methods
which are known to have good statistical properties.

13.3.1 Raw Estimates of Coefficients

The coefficients β (t j) of (13.4) can be estimated by adapting the estimating
equations of Cheng, Wei and Ying (1995) to the observations at t j. Using
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equation (1.4) of Cheng, Wei and Ying (1995), we can define

εi j = g
{

St j

[
Yi(t j)

∣∣Xi(t j)
]}

, (13.7)

and, by

P
[
εi j ≤ u

∣∣Xi(t j), t j

]
= P

{
St j

[
Yi(t j)

∣∣Xi(t j)
]
≥ g−1(u)

∣∣∣Xi(t j), t j

}
, (13.8)

we can verify, as in equation (1.4) of Cheng, Wei and Ying (1995), that (13.4)
is equivalent to

h
[
Yi(t j), t j

]
=−XT

i (t j)β (t j)+ εi j, (13.9)

where εi j are defined in (13.7) and have distribution function G(·) = 1−g−1(·).
For a given time design point t j, we define





Zi1, i2(t j) = 1[Yi1
(t j)≥Yi2

(t j)],

Xi1, i2(t j) = Xi1(t j)−Xi2(t j),

ξ (s) =
∫ ∞
−∞

[
1−G(t + s)

]
dG(t),

(13.10)

and, by taking the conditional expectation of Zi1,i2(t j) given Xi1 and Xi2 , it
follows from (13.7) and (13.10) that

E
[
Zi1,i2(t j)

∣∣Xi1 , Xi2 , t j

]
= P

{
h
[
Yi1(t j), t j

]
≥ h
[
Yi2(t j), t j

]∣∣Xi1 , Xi2 , t j

}

= P
[
εi1, j − εi2, j ≥ XT

i1,i2
(t j)β (t j)

]

= ξ
[
XT

i1,i2
(t j)β (t j)

]
. (13.11)

Then it follows from (13.10) and (13.11) that, conditioning on {Xi1 , Xi2}, the
expected value of

∆i1,i2

[
Xi1,i2(t j)

]
= Zi1,i2(t j)− ξ

[
XT

i1,i2
(t j)β (t j)

]
(13.12)

is zero, and, at the time design point t j, β (t j) can be estimated using a mo-
ment estimation approach by setting a weighted sample mean of (13.12) to
zero. Following this moment estimation approach, we can apply the estimation
method of Cheng, Wei and Ying (1995) for observations at the time design

point t j, which leads to the raw estimator for β (t j) as a solution β̃(t j) to the
estimating equation





∑i1 6=i2∈S j
Ui1i2

[
β̃ (t j)

]
= 0,

Ui1i2

[
β̃ (t j)

]
= w

[
XT

i1,i2
(t j) β̃ (t j)

]
Xi1,i2(t j)∆i1,i2

[
Xi1,i2(t j)

]
,

(13.13)

where w(·) is a pre-specified weight function.
The choice of w(·) in (13.13) is subjective and has some potential to affect

the statistical properties of the raw estimator β̃ (t j). However, the influence of
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w(·) on the final smoothing estimators is fairly limited, because many simple

choices of w(·) can lead to appropriate raw estimators β̃ (t j), at least in the
sense of asymptotic convergence rates, and the smoothing step further reduces
the variability of the final estimators of β (t). Since for each fixed t j, the esti-
mating equation (13.13) is identical to the estimating equation (2.2) of Cheng,
Wei and Ying (1995), their conclusions of uniqueness and asymptotic unique-
ness of the solutions also hold for (13.13). Thus, by the conclusions in Section
2 and Appendix 1 of Cheng, Wei and Ying (1995), we can show that, if w(·) is
positive, the estimating equation (13.13) has asymptotically a unique solution,
and, furthermore, when w(·) = 1 and the matrix ∑i1 6=i2∈S j

Xi1,i2(t j)XT
i1,i2

(t j)

is positive definite, the estimating equation (13.13) has a unique solution.
Cheng, Wei and Ying (1995) also illustrated through examples that the es-
timation procedure of (13.13) with w(·) = 1 worked well for the proportional
odds model and the model with standard normal error.

The assumption of having J distinct design time points t = (t1, . . . , tJ)
T is

a simplification for the theoretical discussions. In practice, the design time
points are usually not prespecified. In such situations, the dataset may have a

large number of distinct time points, and the raw estimate β̃ (t j) may not exist
when there are very few subjects observed at t j. If there are only a few such
time points, we may simply leave the raw estimates missing at these points,
and compute the smoothing estimates using the raw estimates obtained at
other time points. A more practical approach is to group the observed time
points into small time bins, so that the raw estimates can be computed at each
bin. When a binning method is used, we need to have small bin sizes, so that
the raw estimates are undersmoothed relative to the smoothing parameters
used in the smoothing step.

13.3.2 Bias, Variance and Covariance of Raw Estimates

Explicit expressions for the finite sample mean and variance of β̃ (t j) in (13.13)

are generally not available. So, we illustrate the asymptotic properties of β̃ (t j)

by establishing a large sample approximation for
[
β̃ (t j)−β (t j)

]
, defining the

bias, variance and covariance matrix for β̃ (t j), and deriving the asymptotic
expressions for the bias, variance and covariance matrix. Since, for a fixed t j,

the raw estimator β̃(t j) is the special case of the estimator in Cheng, Wei

and Ying (1995) without censoring, the asymptotic properties of β̃(t j) are
essentially the same as theirs, with the exception that, when different time
points are involved, the raw estimators are correlated because of the intra-
subject correlations of the data.

1. Large Sample Approximation

Because the raw estimator β̃ (t j) does not have a simple explicit expression,
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the asymptotic properties of the error term
[
β̃ (t j)−β (t j)

]
have to be inves-

tigated by an asymptotically equivalent term which has tractable asymptotic
expressions. For this reason, the next lemma gives an asymptotic approxi-
mation for the raw estimators, which can be used to study the asymptotic

expressions of the mean, covariance and variance of β̃ (t j).

Lemma 13.1. For any t j in the time design points t=
(
t1, . . . , tJ

)T
, the raw

estimator β̃ (t j) =
(
β̃1(t j), . . . , β̃P(t j)

)T
of β (t j) = (β1(t j), . . . ,βP(t j))

T satisfy the
following asymptotic approximation when n and n j are sufficiently large,





A(t j) =
(
A1(t j), . . . , AP(t j)

)T

=
[
I+ op(I)

][
β̃(t j)−β (t j)

]

=
[
n j (n j − 1)

]−1
Λ−1(t j) ∑i1 6=i2∈S j

Ui1,i2

[
β (t j)

]
,

Λ(t j) = −E
{

∂Ui1i2

[
β (t j)

]/
∂β (t j)

∣∣∣D
}
,

(13.14)

where I is the identity matrix. In particular, we have

Λ(t j) = E
{

w
[
XT

i1,i2
(t j)β (t j)

]
ξ ′[XT

i1,i2
(t j)β (t j)

]
Xi1,i2(t j)XT

i1,i2
(t j)
}
, (13.15)

when w(·) is a constant. �

Proof of Lemma 13.1 is given in Section 13.5.4.
Using the approximation (13.14), we essentially simplify the intractable

error term
[
β̃ (t j)−β (t j)

]
by its approximation A(t j) which is specified by the

random term ∑i1 6=i2∈S j
Ui1,i2

[
β (t j)

]
and the non-random term Λ(t j).

2. Bias, Variance and Covariance Matrix

Given the observed covariates D , we define the following bias, variance

and covariance matrix of β̃(t j) based on its approximation A(t j) of (13.14).

Bias: For p = 1, . . . , P and fixed t j, the bias of β̃p(t j) is defined by

Bias
[
β̃p(t j)

]
= E

[
Ap(t j)

∣∣D
]
. (13.16)

A raw estimator β̃ (t j) is asymptotically unbiased or simply unbiased at t j if

Bias
[
β̃p(t j)

]
= 0.

Variance: For p = 1, . . . , P and fixed t j, the variance of β̃p(t j) is defined
by

Var
[
β̃p(t j)

∣∣D
]
=Var

[
Ap(t j)

∣∣D
]
. (13.17)
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Variance-Covariance Matrix: For any { j1, j2}, the variance-covariance
matrix of β̃ (t j1) and β̃(t j2) is defined by

Cov
[
β̃ (t j1), β̃(t j2)

∣∣D
]
=Cov

[
A(t j1), A(t j2)

∣∣D
]
. (13.18)

For the special case of j1 = j2 = j, the diagonal elements of (13.18) are{
Var
[
A1(t j)|D

]
, . . . ,Var

[
AP(t j)|D

]}
. ✷

3. Asymptotic Properties

Asymptotic properties of the raw estimator β̃ (t j) can be summarized into
the following three aspects.

(1) Asymptotic Unbiasedness

The raw estimator β̃ (t j) is asymptotically unbiased for β (t j). This can be
seen from (13.11), (13.12) and the definition of Ui1i2

[
β (t j)

]
in (13.13), in which

we have
E
{

Ui1i2

[
β (t j)

]∣∣D
}
= 0. (13.19)

It then easily follows from (13.14), (13.16) and (13.19) that the raw estimator

β̃ (t j) of (13.13) is asymptotically unbiased at t j because

E
[
A(t j)

∣∣D
]
=
[
n j (n j − 1)

]−1
Λ−1(t j) ∑

i1 6=i2∈S j

E
{

Ui1,i2

[
β (t j)

]∣∣∣D
}
= 0. (13.20)

(2) Asymptotic Covariance Matrix
Using the definitions (13.14) and (13.18), the next lemma summarizes the

asymptotic expression of the variance-covariance matrix of β̃ (t j1) and β̃(t j2).

Lemma 13.2. The variance-covariance matrix of β̃ (t j1) and β̃ (t j2) for any
{ j1, j2} has the following asymptotic expression, when n j1 , n j2 and n j1, j2 are
sufficiently large,

Cov
[
A(t j1), A(t j2)

∣∣∣D
][

I + op(I)
]
= r j1 j2 Σ(t j1 , t j2), (13.21)

where, for all {i1, i2, i3} such that i1 6= i2 6= i3,

Σ(t j1 , t j2) = Λ−1(t j1)ρ(t j1 , t j2)
[
Λ−1(t j2)

]T
, (13.22)

ρ(t j1 , t j2) = E
{

Ui1i2

[
β (t j1)

]
Ui2i3

[
β (t j2)

]∣∣∣D
}

(13.23)

and

r j1 j2 =

[
4n j1 j2

n j1 n j2 (n j1 − 1)(n j2 − 1)

] {
(n j1 − n j1 j2)(n j2 − n j1 j2)

+
1

2
(n j1 j2 − 1)

[
(n j1 + n j2 − 2n j1 j2)+

1

3
(n j1 j2 − 2)

]}
. (13.24)
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When j1 6= j2, (13.21) gives the covariance matrix at two different time design
points t j1 6= t j2 . �

Proof of Lemma 13.2 is given in Section 13.5.4.
We refer to r j1 j2 Σ(t j1 , t j2) as the asymptotic variance-covariance matrix of

β̃ (t j1) and β̃ (t j2) because, by (13.21), Cov
[
A(t j1), A(t j2)

∣∣D
]
is asymptotically

equivalent to r j1 j2 Σ(t j1 , t j2). Since n j1 j2 ≤ min{n j1 , n j2}, it is clear from (13.24)
that the rate for r j1 j2 Σ(t j1 , t j2) converging to zero depends on how fast n j1 , n j2

and n j1 j2 converging to infinity.

(3) Asymptotic Variance
When j1 = j2 = j and n j j = n j is large, the same calculations as in the proof

of Lemma 13.2 suggests that (13.24) becomes

r j j =
2(n j − 2)

3n j (n j − 1)
≈ 2/(3n j). (13.25)

Let σ2
p(t j) be the pth diagonal element of Σ(t j, t j). The asymptotic variance of

β̃p(t j) defined in (13.17) is

Var
[
Ap(t j)

∣∣D
]
=

2

3n j

σ2
p(t j)

[
1+ op(1)

]
. (13.26)

These asymptotic variance and covariance expressions are useful for computing
the asymptotic biases and variances for the smoothing estimators.

13.3.3 Smoothing Estimators

For the second step of the estimation procedure, we need to obtain a smooth-

ing estimator for β (t) =
(
β1(t), . . . , βP(t)

)T
of (13.4) at any time point t ∈ T

by applying a smoothing method to the raw estimates
{

β̃ (t j) : j = 1, . . . , J
}

obtained in (13.13). The smoothing step can reduce the variation by sharing
information from the adjacent time points.

1. General Expressions of Linear Smoothing Estimators

By treating the raw estimates
{

β̃p(t j) : j = 1, . . . , J
}

as the pseudo-
observations for βp(t), p = 1, . . . , P, a “local” smoothing estimator of βp(t)
can be expressed as a linear estimator of the form

β̂p(t) =
J

∑
j=1

w(t j , t) β̃p(t j), (13.27)

where w(t j, t) is a smoothing weight function which gives more weight if the
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time point t j is close to t. If w(t j , t) is formed by a kernel function K(·), which
is often chosen as a probability density function, and a bandwidth h, such that

w(t j, t) = K
( t j − t

h

)/ J

∑
j=1

K
( t j − t

h

)
,

then β̂p(t) is given by

β̂p(t) =
J

∑
j=1

[
β̃p(t j)K

( t j − t

h

)]/ J

∑
j=1

K
( t j − t

h

)
, (13.28)

which is a kernel smoothing estimator of βp(t).
More generally, the qth derivatives of βp(t) with respect to t, which is

denoted by β
(q)
p (t), can also be estimated by a linear estimator based on{

β̃p(t j) : j = 1, . . . , J
}
. The special case of q = 0 corresponds to βp(t) itself,

that is β
(0)
p (t) = βp(t). Suppose that there is an integer Q ≥ 0 such that, for

a 1 ≤ p ≤ P, βp(t) is Q + 1 times differentiable with respect to t. The qth

derivative of βp(t), β
(q)
p (t), for any integer 0 ≤ q ≤ Q+ 1 can be estimated by

β̂
(q)
p (t) =

J

∑
j=1

wq,Q+1(t j, t) β̃p(t j), (13.29)

where the weight function wq,Q+1(t j, t) is determined by the smoothing method

as well as the values of q and Q. When q = 0, β̂p(t) = β̂
(0)
p (t) is an estimator

of βp(t). Specific choices of wq,Q+1(t j, t) can be constructed by splines, local
polynomials or other smoothing methods.

2. Local Polynomial Estimators

We focus in this chapter on the local polynomial estimators. Using the same
smoothing method of Section 7.2.3, we define, for any time design point t j ∈ t,
t ∈ T , the bandwidth and kernel pair {h, K(·) : h > 0} and Kh(t) = K(t/h)/h,





C j =
(
1, t j − t, . . . , (t j − t)Q

)T
, j = 1, . . . , J,

C =
(
C1, . . . ,CJ

)T
,

Wj = Kh

(
t j − t

)
and W = diag

(
W1, . . . ,WJ

)
.

(13.30)

Following (13.29), the Qth order local polynomial estimator of the qth deriva-

tive β
(q)
p (t), 0 ≤ q < Q+ 1, of βp(t) with respect to t uses the weight function

wq,Q+1

(
t j, t; h

)
= q!eT

q+1,Q+1

(
CT WC

)−1
C j Wj, j = 1, . . . , J, (13.31)

and has the expression

β̂
(q)
p (t) =

J

∑
j=1

{[
q!eT

q+1,Q+1

(
CT WC

)−1
C j Wj

]
β̃p(t j)

}
, (13.32)
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where eq+1,Q+1 = (0, . . . ,0,1,0, . . . ,0)T is the (Q+1) column vector with 1 at its
(q+1)th place and 0 elsewhere. By taking q= 0, the Qth order local polynomial
estimator of βp(t) has the expression

β̂
(0)
p (t) =

J

∑
j=1

{[
q!eT

1,Q+1

(
CT WC

)−1
C j Wj

]
β̃p(t j)

}
, (13.33)

where e1,Q+1 = (1, 0, . . . , 0)T . The special case of local linear estimator is ob-
tained by setting q = 0 and Q = 1 in (13.33). In this case, the local linear

estimator β̂ L
p (t) of βp(t) has the expression

β̂ L
p (t) =

J

∑
j=1

{[
eT

1,2

(
CT WC

)−1
C j Wj

]
β̃p(t j)

}
, (13.34)

where e1,2 = (1, 0)T . By taking e2,2 = (0, 1)T in (13.32), the derivative β ′
p(t) of

βp(t) with respect to t can be estimated by the local linear estimator

β̂
L,(1)
p (t)

J

∑
j=1

{[
eT

2,2

(
CT WC

)−1
C j Wj

]
β̃p(t j)

}
. (13.35)

In Chapter 7, the coefficient curves in the conditional mean based time-
varying coefficient models can also be estimated by a “one-step smoothing
method”, such as the least squares based smoothing methods of Section 7.2.
Similar one-step smoothing methods are still not available for the current
conditional distribution based time-varying transformation models, because
we are currently lacking a rank based smoothing method that avoids the initial
raw estimation. The two-step approach, on the other hand, utilizes the existing
estimation methods both in the raw estimation step and the smoothing step.
This approach is computationally simple and has the additional advantage
of automatically adjusting different smoothing needs for different coefficient
curves. However, it is important to note that the two-step approach often
requires large sample sizes. When binning is used, it also requires the bin sizes
to be small.

An important application of the time-varying transformation model (13.4)
is to estimate and predict the conditional distributions and quantiles of the
response variable Y (t) given the covariates X(t). Under this circumstance, we
would need to construct a nonparametric estimator of h(y, t) that is monotone
increasing or “order-preserving” in y for all t ∈ T . In principle, h(y, t) can
be estimated by first obtaining a set of raw estimators at the distinct time
design points {t j; j = 1, . . . , J} using the approach described in Cheng, Wei
and Ying (1997) and then smoothing the raw estimates over the time range
T . The methods for this estimation problem are discussed in Chapter 14.

13.3.4 Bandwidth Choices

Similar to the two-step smoothing estimation of Chapter 7, the choice of band-
width h of (13.33) is crucial for obtaining an appropriate smoothing estimate.
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We describe here two cross-validation methods for selecting the bandwidths
based on the data.

1. Leave-One-Subject-Out Cross-Validation

For the purpose of preserving the correlation structure of the data, the first
data-driven bandwidth choice is the leave-subject-out cross-validation (LSCV)
described in Section 7.2.5, which depends on deleting the entire observations of
a subject each time. Extending this approach to the local polynomial estimator

(13.33), we first compute the local polynomial estimator β̂
(0)
p,−(i1, i2)

(t; hp) for

any pairs of subjects {(i1, i2) : i1 6= i2; i1 = 1, . . . , n; i2 = 1, . . . , n} from (13.33)
with bandwidth hp using the remaining data with all the observations from the
subject pair (i1, i2) deleted. Let h = (h1, . . . , hP)

T be the vector of bandwidths,

where, for p = 1, . . . , P, hp is the bandwidth in β̂
(0)
p,−(i1, i2)

(t; hp), and let

β̂−(i1, i2)(t; h) =
(

β̂
(0)
1,−(i1, i2)

(t; h1), . . . , β̂
(0)
P,−(i1, i2)

(t; hP)
)T

(13.36)

be the local polynomial estimator for β (t) =
(
β1(t), . . . , βP(t)

)T
. The LSCV

cross-validation score is

LSCV (h) =
J

∑
j=1

∑
i1 6=i2∈S j

{
Zi1, i2(t j)− ξ

[
XT

i1, i2
(t j) β̂−(i1, i2)(t j; h)

]}2

, (13.37)

where Zi1, i2(t j) and ξ (·) are defined in (13.10). If (13.37) can be uniquely
minimized with respect to h, the LSCV bandwidth

hLSCV =
(
h1,LSCV , . . . , hP,LSCV

)T
(13.38)

is then the unique minimizer of (13.37).
When minimizing (13.37) is computationally intensive, we can replace

(13.37) by a “M-fold LSCV” to speed up the computation, which is calcu-
lated by deleting a block of subjects each time. In this approach, we randomly
divide the subjects into M blocks {b(m) : m = 1, . . . , M} and compute the M-
fold LSCV score

MLSCV (h) =
J

∑
j=1

M

∑
m=1

∑
i1 6=i2∈S j ;(i1, i2)∈b(m)

{
Zi1, i2(t j)− ξ

[
XT

i1, i2
(t j) β̂−b(m)(t j; h)

]}2

, (13.39)

where β̂−b(m)(t j; h) is the local polynomial estimator of β (t)=
(
β1(t), . . . , βP(t)

)T

computed from (13.33) with the bandwidth vector h = (h1, . . . , hP)
T and the

remaining data with all the observations in the entire block b(m) deleted. The
M-fold LSCV bandwidth is then the minimizer

hMLSCV =
(
h1,MLSCV , . . . , hP,MLSCV

)T
(13.40)
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of (13.39), assuming that the unique minimizer of (13.39) exists.
The minimization of (13.37) and (13.39) is computed over the multivariate

h = (h1, . . . ,hP)
T . This suggests that, when the dimensionality P is large, the

LSCV bandwidths (13.38) and (13.40) can be difficult to compute even though
the minimizers of (13.37) and (13.39) exist and are unique.

2. Leave-One-Time-Point-Out Cross-Validation

To speed up the computation, it is preferable to consider a component-wise
cross-validation score which can be minimized by a univariate bandwidth. In-

tuitively, since the smoothing estimator β̂
(0)
p (t) of (13.33) is obtained by treat-

ing the raw estimates
{

β̃p(t j) : j = 1, . . . , J
}
as the pseudo-observations, we can

consider a bandwidth that leads to “proper” smoothness over these pseudo-
observations. The leave-one-time-point-out cross-validation (LTCV) is per-
formed separately for each component curve βp(t) with p = 1, . . . , P by delet-

ing the pseudo-observations
{

β̃p(t j) : j = 1, . . . , J
}
one at a time or a block at a

time. To do this, we first compute the local polynomial estimator β̂
(0)
p,− j(t; hp)

from (13.33) with bandwidth hp using the remaining pseudo-observations with

β̃p(t j) deleted, and then compute the cross-validation score

LTCV (hp) =
J

∑
j=1

[
β̃p(t j)− β̂

(0)
p,− j(t j; hp)

]2

. (13.41)

If (13.41) can be uniquely minimized with respect to hp, the LTCV bandwidths
are given by

{
hLTCV =

(
h1,LTCV , . . . , hP,LTCV

)T
,

hp,LTCV = arg minhp
LTCV (hp) for p = 1, . . . ,P.

(13.42)

To speed up the computation, the above LTCV can be computed by group-
ing the time points {t1, . . . , tJ} into M blocks {b(m) : m = 1, . . . , M} and mini-
mizing the M-fold LTCV score

MLTCV (hp) =
M

∑
m=1

[
β̃p(t j)− β̂

(0)
p,−b(m)

(t j; hp)
]2

1[t j∈b(m)] (13.43)

with respect to hp, where β̂
(0)
p,−b(m)

(t j; hp) is the local polynomial estimator of

βp(t j) computed from (13.33) with bandwidth hp using the remaining pseudo-

observations with
{

β̃p(t j) : t j ∈ b(m)
}
deleted and 1[·] is the indicator function.

Assuming that (13.43) can be uniquely minimized, the M-fold LTCV band-
width vector is

{
hMLTCV =

(
h1,MLTCV , . . . , hP,MLTCV

)T
,

hp,MLTCV = arg minhp
MLTCV (hp) for p = 1, . . . , P.

(13.44)
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Since the LTCV score (13.41) is minimized for each p separately, it has
the potential to save computing time compared with the LSCV score (13.37).
An advantage of using the LSCV is that it has the potential to preserve the
intra-subject correlation structure of the data (e.g., Section 7.2). Although
the LTCV score (13.41) ignores the potential intra-subject correlations, it has
been shown to have similar performance compared to the LSCV methods by
simulation in Wu, Tian and Yu (2010).

13.3.5 Bootstrap Confidence Intervals

We have demonstrated previously in Section 7.3 that a “±Z1−α/2 stan-
dard error band,” which ignores the bias, can often lead to an approximate[
100× (1−α)

]
% confidence interval for a smoothing estimator. Since biases

of the smoothing estimators are often difficult to estimate, we consider here
the approximate pointwise confidence intervals of the local polynomial estima-

tor β̂
(0)
p (t) for βp(t) at any t ∈ T based on the resampling subject bootstrap

without bias correction. Because of the unknown correlation structures of the
data, it is difficult to implement in practice an approximate confidence interval

based on the asymptotic distributions of β̂
(0)
p (t).

Approximate Bootstrap Pointwise Confidence Intervals:

(a) Computing Bootstrap Estimators. Generate B bootstrap samples us-
ing the resampling-subject bootstrap procedure of Section 3.4.1, denote the
resulting bootstrap samples by

{
Z b =

{
Y b

i (t
b
j ), Xb

i (t
b
j ), tb

j : i ∈ S j, j = 1, . . . , J
}
,

Z Boot =
{
Z b : b = 1, . . . , B

}
,

(13.45)

and obtain B bootstrap estimators
{

β̂
(0)
p,b(t) : b = 1, . . . , B

}
.

(b) Approximate Bootstrap Confidence Intervals. Denote by l
p

α/2
(t)

and u
p

α/2
(t) the lower and upper [100×(α/2)]th percentiles of the B bootstrap

estimators. The [100× (1−α)]% bootstrap percentile pointwise confidence

intervals for β
(0)
p (t) is (

l
p

α/2
(t), u

p

α/2
(t)
)
. (13.46)

Let ŝe
Boot
p

(
t; β̂

(0)
p

)
be the sample standard deviation of the B bootstrap esti-

mators, i.e.,

ŝeBoot
p

(
t; β̂

(0)
p

)
=
{ 1

B− 1

B

∑
b=1

[
β̂
(0)
p,b(t)−

1

B

B

∑
b′=1

β̂
(0)
p,b′(t)

]2}1/2

.

The normal approximate pointwise confidence interval for βp(t) based on
the bootstrap samples Z Boot is

β̂
(0)
p (t)±Z1−α/2 ŝe

Boot
p (t), (13.47)
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where za is the [100× a]th quantile of the standard normal distribution. ✷

The above pointwise confidence intervals are potentially useful for the con-
struction of simultaneous confidence bands for all or a subset of the coefficient
curves β (t) =

(
β1(t), . . . ,βP(t)

)T
at a collection of the time points. The gen-

eralization to simultaneous confidence bands in principle can be carried out
using the similar methods discussed in Section 7.3.2. However, the problem of
simultaneous statistical inferences for the current time-varying transformation
models has not been investigated in the literature.

13.4 R Implementation

13.4.1 The NGHS Data

The NGHS has been described in Section 1.2. Recall that the NGHS is a mul-
ticenter population-based cohort study aimed at evaluating the longitudinal
changes and racial difference in cardiovascular risk factors between Caucasian
and African American girls during childhood and adolescence. We illustrate
here how to apply the time-varying transformation models to the NGHS data
to evaluate the age-specific covariate effects on the distribution functions of
four important outcome variables, namely, systolic and diastolic blood pres-
sures (SBP and DBP), low density lipoprotein (LDL) cholesterol, and triglyc-
eride (TG).

In a series of preliminary goodness-of-fit tests for normality, such as the
Shapiro-Wilk tests and the Kolmogorov-Smirnov tests, and visual inspections
of the quantile-quantile plots, we observed that SBP, DBP, LDL and TG for
this population of girls conditioning on various covariate values of age, race,
height and body mass index (BMI) were clearly not normally distributed.
In particular, many of these conditional distributions were skewed, and were
rejected for normality by the goodness-of-fit tests at 5% significance level.
These preliminary findings suggest that the conditional mean-based results,
such as obtained in Daniels et al. (1998), may not give an adequate descrip-
tion of the covariate effects on the overall conditional distributions of the blood
pressure and lipid levels, and the conclusions in Thompson (2007), based on
specific threshold choices for the outcome variables, may not hold if other
threshold values were used. However, the time-varying transformation models
have certain major advantages over the existing analyses. With a flexible and
parsimonious structure, the time-varying transformation models summarize
the age-specific effects of these covariates on the overall distributions of the
outcome variables. Moreover, statistical inferences for the age-dependent co-
efficient curves have meaningful biological interpretations and do not reply on
the normality assumption for the outcome variables or the threshold values
for defining unhealthy risk levels.

Since the children’s blood pressures are increasing with age and height
percentiles (NHBPEP, 2004; James et al., 2014), in our exploratory analysis,



458 TIME-VARYING TRANSFORMATION MODELS - I

we examine the odds-ratio plots of SBP and DBP under various age, race
and height strata. These odds-ratio plots suggest that the proportional odds
models give reasonable approximations to the relationships between the con-
ditional distribution functions of these outcomes and the covariates. Using the
notation of Section 13.2.1, SBP is the outcome Y (t), and race and height per-
centile are the covariates, X (1) and X (2)(t), respectively. We fit the following
time-varying proportional odds model to evaluate the age-specific covariate
effects of race and height on the distribution functions of SBP,

logit
[
P
(
Y (t)> y1

∣∣t, X (1), X (2)(t)
)]

= h(t)+β1(t)X (1)+β2(t)X (2)(t).

Here the visit time t (age) ranges from 9 to 19 years for the girls and the time-
varying covariate, height, is measured by the age-adjusted percentile computed
from the CDC population growth chart.

Because the entry age starts at 9 years, we use the age range T = [9,19),
and round off the age to one decimal place in years, which leads to J = 100

equally spaced age bins [9.0,9.1), . . . , [18.9,19.0) with time design points {t1 =
9.0, t2 = 9.1, . . . , t100 = 18.9}. If the ith girl has observations within

[
t j, t j+1

)
,

Yi

(
t j

)
and X

(2)
i

(
t j

)
are the ith girl’s observed blood pressure and height per-

centile at age t j, X
(1)
i = 1 for an African American girl, and X

(1)
i = 0 for a

Caucasian girl. A positive (negative) value for β1(t) suggests that African
American girls tend to have higher (lower) SBP levels than Caucasian girls at
age t, and β2(t) represents the changes of the log-odds of Y (t)> y associated
with a unit increase in height percentile X (2)(t) at age t.

We carry out the two-step procedure of Section 13.3 for estimating the

coefficient curves of SBP. First, the raw estimates β̃1

(
t j

)
and β̃2

(
t j

)
are com-

puted at the time design points with weight w(·) = 1 for SBP. Then, in the

second step, the smoothing estimates, β̂1(t) and β̂2(t), are computed using
the local linear method with the Epanechnikov kernel and the cross-validated
bandwidths. The covariate effects of race and height on the outcome DBP can
be estimated similarly. We use the following R code:

> library(npmlda)

> NGHS.sbp <- NGHS[!is.na(NGHS$SBP) & !is.na(NGHS$HTPCT),]

> Agebins <- seq(90, 189, by=1) #100 bins

# Raw estimates 100*2 matrix

> attach(NGHS.sbp)

> OR.SBP <- TVtrans.fit(Agebins, Y=SBP, X1=(RACE==2)*1,

X2=HTPCT)

# local linear smoothing estimates

> SBP.beta1.lm <- LocalLm(Agebins, Agebins, OR.SBP[,1], bw=16)

> SBP.beta2.lm <- LocalLm(Agebins, Agebins, OR.SBP[,2], bw=24)

Figure 13.1 shows the two-step local linear estimators of β1(t) and β2(t)
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Figure 13.1 The systolic blood pressure (A)-(B) and diastolic blood pressure (C)-(D).
Each row shows the raw estimates (circles), and the two-step local linear estimates
(solid lines) computed with the LTCV bandwidths, and their bootstrap standard error
bands (dashed lines) for the covariate effects of race and height.

computed from the LTCV cross-validated bandwidths and the “±1.96 stan-
dard error bands” from 1000 bootstrap repetitions. To ease the computational
burden, the cross-validated bandwidths obtained from the original sample are
used for the bootstrap standard error bands. Similar results are obtained from
the bandwidths based on the LSCV method or the bootstrap percentiles. For
both SBP and DBP, the effects of race and height clearly change over time.
The racial difference is close to zero and slightly increases with age, suggesting
that African American girls tend to have greater odds of high blood pressure
than Caucasian girls during the later adolescent years. The positive but de-
creasing estimate of β2(t) suggests that height contributes positively to the
odds of high SBP or DBP, but the height effect diminishes with age.

As reported in Thompson (2007), childhood overweight is significantly as-
sociated with unhealthful lipid levels. Hence we apply the time-varying propor-
tional odds models for LDL and TG levels to evaluate the covariate effects of
race and BMI. Figure 13.2 shows the coefficient curves based on the two-step
local linear estimators for LDL and TG, respectively. These results suggest
that there is no difference in the two racial groups in LDL, but there is signif-
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Figure 13.2 The low density lipoprotein (LDL) cholesterol (A)-(B) and triglyceride
(C)-(D). Each row shows the raw estimates (circles), and the two-step local linear es-
timates (solid lines) computed with the LTCV bandwidths, and their ±1.96 bootstrap
standard error bands (dashed lines) for the covariate effects of race and BMI.

icant race effect on the triglyceride levels, and this race effect varies with age.
As expected, there is also a strong BMI effect on the lipids. For both LDL
and TG, higher BMI is associated with greater odds of having high lipid levels
during the adolescent years for the NGHS girls.

13.5 Asymptotic Properties

We derive in this section the large sample properties of the local polynomial

estimator β̂
(q)
p (t) of (13.32) at any time point t ∈ T . The special case of q = 0

corresponds to the asymptotic properties for the local polynomial estimator of
βp(t). The derivation is followed by two main steps. First, we approximate the
estimator as a weighted linear combination of the dominating terms in (13.14).
Second, we compute the asymptotic errors using the asymptotic properties of

the raw estimator β̃ (t j) developed in Section 13.3.2.
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13.5.1 Conditional Mean Squared Errors

We consider the following conditional bias, variance and mean squared errors

(MSE) of β̂
(q)
p (t) given the observed covariates D in (13.2):





B
[
β̂
(q)
p (t)

∣∣D
]

= E
[
β̂
(q)
p (t)−β

(q)
p (t)

∣∣D
]
,

Var
[
β̂
(q)
p (t)

∣∣D
]

= E
{[

β̂
(q)
p (t)−E

(
β̂
(q)
p (t)

∣∣D
)]2∣∣∣D

}
,

MSE
[
β̂
(q)
p (t)

∣∣D
]

= E
{[

β̂
(q)
p (t)−β

(q)
p (t)

]2∣∣D
}

= B2
[
β̂
(q)
p (t)

∣∣D
]
+Var

[
β̂
(q)
p (t)

∣∣D
]
.

(13.48)

Although the quantities in (13.48) are only defined for the pth component

curve β̂
(q)
p (t), they can be straightforwardly generalized to the vector

β̂ (q)(t) =
(

β̂
(q)
1 (t), . . . , β̂

(q)
P (t)

)T

. (13.49)

If we assign equal weight to each of the component in β̂ (q)(t), a simple exten-
sion of the MSE to (13.49) is

MSE
[
β̂ (q)(t)

∣∣D
]

= ∑P
p=1 E

{[
β̂
(q)
p (t)−β

(q)
p (t)

]2∣∣D
}

= ∑P
p=1 B2

[
β̂
(q)
p (t)

∣∣D
]
+∑P

p=1 Var
[
β̂
(q)
p (t)

∣∣D
]
.

(13.50)

Clearly, (13.50) can be generalized by giving different weights to different
components. Since the MSE in (13.50) and its generalizations depend on the
asymptotic expressions of the terms in (13.48). The asymptotic developments
of this section are focused on (13.48).

13.5.2 Asymptotic Assumptions

We make the following assumptions throughout this section. These assump-
tions are similar to the ones given in Section 7.5.1 for the conditional mean
based time-varying coefficient models.

(a) When n → ∞, n j ≈ c j n for some constant 0 < c j < 1, and the bandwidth h

satisfies h → 0, n1/2 hQ−q+1 → ∞, nJ h2q+1 → ∞ and nh/(J n j1 j2)→ ∞.

(b) The design time points {t j ∈ T : j = 1, . . . , J} are independent and iden-
tically distributed with the density function π(t), and T is the support of
π(·).

(c) The coefficient curves {βp(t) : 1 ≤ p ≤ P} of (13.4) are Q+ 1 times con-
tinuously differentiable with respect to t.

(d) The matrix Λ(t j) of (13.14) is nonsingular and Σp1, p2
(t1, t2), the (p1, p2)th

element, are Q+ 1 times continuously differentiable with respect to (t1, t2).

(e) The kernel K(·) is a symmetric probability density on a bounded set. ✷



462 TIME-VARYING TRANSFORMATION MODELS - I

Assumption (a) serves the purpose of producing a consistent local polyno-

mial estimator β̂
(q)
p (t) when n and n j tend to infinity. In particular, h → 0,

n1/2 hQ−q+1 → ∞ and nJ h2q+1 → ∞ guarantee that both B
[
β̂
(q)
p (t)

∣∣D
]
and

Var
[
β̂
(q)
p (t)

∣∣D
]
tend to zero in probability, while nh/(J n j1 j2)→ ∞ ensures that

the asymptotic expression of Var
[
β̂
(q)
p (t)

∣∣D
]
is not affected by the covariance

structure of the data. We use these assumptions for the asymptotic proper-

ties of β̂
(q)
p (t) because they represent a large number of situations in practice.

Other asymptotic properties of β̂
(q)
p (t) may be derived if Assumption (a) is

replaced by another set of conditions.

13.5.3 Asymptotic Risk Expressions

For any Q and q, we define the following functionals of the kernel function
K(·): 




S =
(
s j1 j2

)
j1, j2=0, ...,Q

,

s j1 j2 =
∫

K(u)u j1+ j2 du,

Kq,Q+1(t) = eT
q+1,Q+1 S−1

(
1, t, · · · , tQ

)T
K(t),

BQ+1(K) =
∫

K(u)uQ+1 du,

V (K) =
∫

K2(u)du.

(13.51)

We denote by an ≈ bn that both an and bn converge to the same limit in
probability as n→ ∞. The next theorem shows the asymptotic approximations

for B
[
β̂
(q)
p (t)

∣∣D
]
, V
[
β̂
(q)
p (t)

∣∣D
]
, and MSE

[
β̂
(q)
p (t)

∣∣D
]
.

Theorem 13.1. Under Assumptions (a) to (e), the asymptotic expressions
of the conditional bias, variance and MSE as n → ∞ are

B
[
β̂
(q)
p (t)

∣∣D
]
=

hQ−q+1 (q!)

(Q+ 1)!
β
(Q+1)
p (t)BQ+1

(
Kq,Q+1

)[
1+ o(1)

]
, (13.52)

Var
[
β̂
(q)
p (t)

∣∣D
]
=

2(q!)2

3cnJ h2q+1 π(t)
σ2

p(t)V
(
Kq,Q+1

)[
1+ o(1)

]
, (13.53)

and

MSE
[
β̂
(q)
p (t)

∣∣D} =
h2(Q−q+1) (q!)2

[(Q+ 1)!]2

[
β
(Q+1)
p (t)BQ+1

(
Kq,Q+1

)]2

+
2(q!)2

3cnJ h2q+1 π(t)
σ2

p(t)V
(
Kq,Q+1

)
(13.54)

+o
[
h2(Q−q+1)+

(
nJ h2q+1

)−1
]

for some constant 0 < c < 1 given in Assumption (a), where σ2
p(t) is the pth

diagonal element of Σ(t, t) defined in (13.22). �
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Proof of Theorem 13.1 is given in Section 13.5.4.

The theoretically optimal bandwidths for β̂
(q)
p (t) can be derived by mini-

mizing the mean squared errors MSE
[
β̂
(q)
p (t)

∣∣D
]
with respect to h. The next

theorem gives the expression of the asymptotically optimal bandwidth for

β̂
(0)
p (t).

Theorem 13.2. If the assumptions of Theorem 13.1 are satisfied, when
q = 0 and Q = 1, the asymptotic expressions of the bias, variance and MSE

for β̂
(0)
p (t) are

B
[
β̂
(0)
p (t)

∣∣D
]

= (h2/2)β
′′
p(t)B2(K0,2) [1+ o(1)], (13.55)

V
[
β̂
(0)
p (t)

∣∣D
]

=
2

3cnJ hπ(t)
σ2

p(t)V (K0,2) [1+ o(1)], (13.56)

MSE
[
β̂
(0)
p (t)

∣∣D} = (h4/4)
[
β

′′
p (t)B2(K0,2)

]2

+
2

3cnJ hπ(t)
σ2

p(t)V (K0,2) (13.57)

+o

[
h4 +

(
nJ h

)−1
]
,

where K0,2(·), B2(K0,2) and V (K0,2) are defined in (13.51). The theoretically
optimal pointwise bandwidth is

hopt

[
βp(t)

]
=

{
2σ2

p(t)V (K0,2)

3cnJ π(t)
[
β ′′

p(t)B2(K0,2)
]2

}1/5

, (13.58)

which minimizes the right side of (13.57). �

Proof of Theorem 13.2 is given in Section 13.5.4.
Since the expression of hopt

[
βp(t)

]
in (13.58) depends on t ∈ T and the

unknown functions σ2
p(t), β

′′
p (t) and π(t), it only gives a theoretical sense of

the ideal bandwidth and cannot be directly used in practice. If we ignore the
constant term of (13.58) and focus on its convergence rate, an implication of
(13.58) is that an appropriate bandwidth hp should converge to zero in the

(nJ)1/5 rate, i.e., (nJ)1/5 hp → Cp(t) as n → ∞ and J → ∞ for some Cp(t) > 0.
Another implication of (13.58) is that, if the smoothness assumptions of two
different component curves βp1

(t) and βp2
(t) for p1 6= p2 are different, the

appropriate bandwidths hp1
and hp2

should also be different. Since the two-step
smoothing procedure of this chapter depends on component-wise smoothing
of the raw estimates for each p = 1, . . . , P, Theorem 13.2 suggests that the
appropriate bandwidth can be obtained for each βp(t).
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13.5.4 Theoretical Derivations

This section gives the proofs of Lemma 13.1, Lemma 13.2, Theorem 13.1 and
Theorem 13.2.

Proof of Lemma 13.1:
Using equation (13.13) and the Taylor’s expansion, we have the following

approximation when n and n j are sufficiently large,

∑
i1 6=i2∈S j

Ui1i2

[
β (t j)

]
= ∑

i1 6=i2∈S j

{
∂Ui1i2 [β (t j)]

∂β (t j)

}

×
[
β̃(t j)−β (t j)

][
I+ op(I)

]
. (13.59)

By the law of large numbers for U-statistics, e.g., Serfling (1980, Sec. 5.2), we
have that, as n → ∞,

[ 1

n j (n j − 1)

]
∑

i1 6=i2∈S j

{
∂Ui1i2 [β (t j)]

∂β (t j)

}
→ Λ(t j) in probability. (13.60)

Since Λ(t j) is nonsingular and A(t j) is defined as

A(t j) =
[ 1

n j (n j − 1)

]
Λ−1(t j) ∑

i1 6=i2∈S j

Ui1i2

[
β (t j)

]
,

the approximation of (13.14) follows from multiplying
[
n j (n j − 1)

]−1
Λ−1(t j)

to both sides of (13.59). �

Proof of Lemma 13.2:
By the definition of Ui1i2 [β (t j)] and (13.14), we have E

[
A(t j)

∣∣D
]
= 0 and

Cov
[
A(t j1), A(t j2)

∣∣D
]

=
[
n j1 (n j1 − 1)n j2 (n j2 − 1)

]−1
Λ−1(t j1)

× ∑
i1 6=i2∈S j1

∑
i3 6=i4∈S j2

E
{

Ui1i2

[
β (t j1)

]
Ui3i4

[
β (t j2)

]∣∣∣D
}

×
[
Λ−1(t j2)

]T
. (13.61)

To evaluate the summation term at the right side of (13.61), we consider two
sets of distinct integers {i1, i2} and {i3, i4}, and let c be the number of common
integers in these two sets. The values of c are 0, 1 and 2, since {i1, i2} and
{i3, i4} may have 0, 1 or 2 integers in common.

We now evaluate the right side of (13.61) for the three separate cases of
c = 0, 1 and 2. When c = 0, we have

E
{

Ui1i2

[
β (t j1)

]
Ui3i4

[
β (t j2)

]∣∣D
}
= 0 for i1 6= i2 6= i3 6= i4. (13.62)
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Thus, when computing the right side of (13.61), the summation terms with
i1 6= i2 6= i3 6= i4, i.e., c = 0, can be ignored.

When c = 1, it can be directly verified by the symmetry of Ui1i2 [β (t j)] that

ρ(t j1 , t j2) = E
{

Ui1i2

[
β (t j1)

]
Ui3i4

[
β (t j2)

]∣∣∣D
}

(13.63)

for any {i1, i2} and {i3, i4} that have only one integer in common. To com-
pute the number of ways of selecting one integer in common, there are four
situations which need to be considered:

(a) i1 = i3 ∈ S j1

⋂
S j2 , i2 ∈ S j1\S j2 , i4 ∈ S j2\S j1 ;

(b) i1 = i3 ∈ S j1

⋂
S j2 , i2 ∈ S j1

⋂
S j2 , i4 ∈ S j2\S j1 ;

(c) i1 = i3 ∈ S j1

⋂
S j2 , i2 ∈ S j1\S j2 , i4 ∈ S j2

⋂
S j1 ;

(d) i1 = i3 ∈ S j1

⋂
S j2 , i2 ∈ S j1

⋂
S j2 , i4 ∈ S j2

⋂
S j1 , i3 6= i4.

(13.64)

Here i ∈ S j1\S j2 means i ∈ S j1 and i 6∈ S j2 . The number of ways of selecting
one common integer corresponding to the situations in (13.64) is

(a) n j1 j2

(
n j1 − n j1 j2

)(
n j2 − n j1 j2

)
;

(b) n j1 j2

(
n j1 j2 − 1

)(
n j2 − n j1 j2

)/
2;

(c) n j1 j2

(
n j1 j2 − 1

)(
n j1 − n j1 j2

)/
2;

(d) n j1 j2

(
n j1 j2 − 1

)(
n j1 j2 − 2

)/
6.

(13.65)

When c= 2, we can assume by symmetry that i1 = i3 and i2 = i4, and define

ρ∗(t j1 , t j2

)
= E

{
Ui1i2

[
β (t j1)

]
Ui1i2

[
β (t j2)

]∣∣∣D
}
. (13.66)

The number of ways of selecting two common integers from {i1, i2} ∈ S j1 and
{i3, i4} ∈ S j2 is n j1 j2 (n j1 j2 − 1)/2.

Adding up all the terms for c = 1 and c = 2 using (13.63) through (13.66),
Assumption (a) shows that the summation term at the right side of (13.61) is

∑
i1 6=i2∈S j1

∑
i3 6=i4∈S j2

E
{

Ui1i2

[
β (t j1)

]
Ui3i4

[
β (t j2)

]∣∣∣D
}

= ∑
c=1

4ρ(t j1 , t j2)+ ∑
c=2

ρ∗(t j1 , t j2)

= 4n j1 j2

[
(n j1 − n j1 j2)(n j2 − n j1 j2)+

1

2
(n j1 j2 − 1)(n j1 + n j2 − 2n j1 j2)

+
1

6
(n j1 j2 − 1)(n j1 j2 − 2)

]
ρ(t j1 , t j2)+

n j1 j2 (n j1 j2 − 1)

2
ρ∗(t j1 , t j2)

= 4n j1 j2

[
(n j1 − n j1 j2)(n j2 − n j1 j2)+

1

2
(n j1 j2 − 1)(n j1 + n j2 − 2n j1 j2)

+
1

6
(n j1 j2 − 1)(n j1 j2 − 2)

]
ρ(t j1 , t j2)

[
1+ op(1)

]
, (13.67)
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since (n j1 j2 −1) = o
[
(n j1 j2 −1)(n j1 j2−2)

]
. Substituting (13.67) into (13.61), we

get the desired result of (13.21). This completes the proof of Lemma 13.2. �

Proof of Theorem 13.1:
Assuming that Assumption (a) is satisfied, the following four equations

have been shown in Lemma 1 and Lemma 2 of Fan and Zhang (2000, Appendix
A) to hold for the local polynomial weight function wq,Q+1(t j, t; h) defined in
(13.31):

wq,Q+1

(
t j, t; h

)
=

q!

J hq+1 π(t)
Kq,Q+1

( t j − t

h

)[
1+ op(1)

]
, j = 1, . . . , J; (13.68)

J

∑
j=1

wq,Q+1

(
t j, t; h

)(
t j − t

)k
= q!1[k=q], k = 0, . . . , P; (13.69)

J

∑
j=1

wq,Q+1

(
t j, t; h

)(
t j − t

)Q+1
= q!hQ−q+1 BQ+1

(
Kq,Q+1

)[
1+ op(1)

]
; (13.70)

J

∑
j=1

w2
q,Q+1

(
t j, t; h

)
=

(q!)2

J h2q+1 π(t)
V
(
Kq,Q+1

)[
1+ op(1)

]
; (13.71)

where Kq,Q+1(t) = eT
q+1,Q+1 S−1

(
1, t, . . . , tQ

)T
K(t), which is defined in (13.51),

is the equivalent kernel of the local polynomial fit with S =
(
skl

)
k, l=0,1, ...,Q

and

skl =
∫

K(u)uk+l du. We do not repeat the proofs of (13.68) through (13.71)
here, and simply use these equations as facts for our derivations. Details for
the derivations of (13.68) through (13.71) can be found in Fan and Zhang
(2000) and the references cited therein.

To derive the bias term (13.52) of β̂
(q)
p (t), we note the decomposition

B
[
β̂
(q)
p (t)

∣∣D
]

= E
[
β̂
(q)
p (t)

∣∣D
]
−β

(q)
p (t)

=
J

∑
j=1

{
wq,Q+1

(
t j, t; h

)
E
[
β̃p(t j)

∣∣D
]}

−β
(q)
p (t). (13.72)

Now, let

W1 =
J

∑
j=1

{
wq,Q+1

(
t j, t; h

)
E
[
β̃p(t j)−βp(t j)

∣∣D
]}

(13.73)

and

W2 =
J

∑
j=1

[
wq,Q+1

(
t j, t; h

)
βp(t j)

]
−β

(q)
p (t). (13.74)

It follows from (13.72) that B
[
β̂
(q)
p (t)

∣∣D
]
=W1 +W2, and it suffices to evaluate

W1 and W2 separately.
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Using the fact that n j ≈ cn for some 0 < c < 1 in Assumption (a) and

β̃p(t j)−βp(t j) = Op

(
n
−1/2
j

)
, it then follows from (13.73) that

W1 =
J

∑
j=1

[
wq,Q+1(t j , t)×Op

(
n
−1/2
j

)]
= Op(n

−1/2), (13.75)

where the last equality holds because, by (13.68), ∑J
j=1 wq,Q+1(t j, t) is bounded

in probability. To compute W2, we have, by the Taylor’s expansion of βp(t j) at
t in (13.74),

W2 =
J

∑
j=1

wq,Q+1(t j, t)

{Q+1

∑
k=0

β
(k)
p (t)

(t j − t)k

k!
+ op

[
(t j − t)Q+1

]}
−β

(q)
p (t)

=
Q+1

∑
k=0

β
(k)
p (t)

[
J

∑
j=1

wq,Q+1(t j, t)
(t j − t)k

k!

]
−β

(q)
p (t)

+
J

∑
j=1

{
wq,Q+1(t j, t)× op

[
(t j − t)Q+1

]}

= β
(q)
p (t)−β

(q)
p (t)+

(q!)hQ−q+1

(Q+ 1)!
β
(Q+1)
p (t)BQ+1

(
Kq,Q+1

)[
1+ op(1)

]

+
J

∑
j=1

{
wq,Q+1(t j, t)× op

[
(t j − t)Q+1

]}

=
(q!)hQ−q+1

(Q+ 1)!
β
(Q+1)
p (t)BQ+1

(
Kq,Q+1

)[
1+ op(1)

]
, (13.76)

where the last two equality signs follow from (13.68), (13.69) and (13.70). By
the assumption that limn→∞ n1/2 hQ−q+1 → ∞ in Assumption (a), (13.75) and
(13.76) then imply that W1 = op(W2), so that, consequently, by (13.72),

B
[
β̂
(q)
p (t)

∣∣D
]
=W2 + op(W2). (13.77)

The expression of the asymptotic bias (13.52) is a direct consequence of (13.76)
and (13.77).

For the derivation of the asymptotic variance (13.53), we note that

Var
[
β̂
(q)
p (t)

∣∣D
]

= E

{
J

∑
j=1

wq,Q+1(t j , t) β̃p(t j)−E
[
β̂
(q)
p (t)

∣∣D
]}2

= E

{
J

∑
j=1

wq,Q+1(t j , t)
[
β̃p(t j)−E

[
β̃p(t j)

∣∣D
]]}2

= W3 +W4, (13.78)

where, by (13.17) and (13.18),
{

W3 = ∑J
j=1 w2

q,Q+1(t j, t)Var
[
Ap(t j)

∣∣D
]
,

W4 = ∑ j1 6= j2
wq,Q+1(t j1 , t)wq,Q+1(t j2 , t)Cov

[
Ap(t j1)Ap(t j2)

∣∣D
]
.

(13.79)
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It suffices to evaluate W3 and W4 separately.
For W3, by Assumption (a), (13.71) and V

[
Ap(t j)

∣∣D
]
≈ [2/(3n j)]σ

2
p(t) in

(13.26),

W3 =
2(q!)2

3cnJ h2q+1 π(t)
σ2

p(t)V (Kq,Q+1)
[
1+ op(1)

]
. (13.80)

ForW4, we consider the convergence rate r j1 j2 of Cov
[
Ap(t j1)Ap(t j2)

∣∣D
]
given in

(13.21) and (13.24) for two distinct time points t j1 6= t j2 . Substituting (13.21)
into W4 in (13.79), it follows from (13.68) that W4 has the convergence rate

W4 = Op

(
r j1 j2

h2q+2

)
. (13.81)

Since n j1 j2 ≤ min{n j1 , n j2} for any j1 6= j2, we can directly verify from (13.24)
that

r j1 j2 = O

(
n j1 j2

n j1 n j2

)
, (13.82)

where n j1 j2 may or may not tend to infinity as n → ∞. It then follows from
(13.81) and (13.82) that

W4 = Op

(
n j1 j2

n j1 n j2 h2q+2

)
. (13.83)

Comparing (13.80) with (13.83), the assumptions of limn→∞

[
nh
/
(J n j1 j2)

]
= ∞

and n j ≈ c j n in Assumption (a) implies that

W4 = op(W3). (13.84)

The conclusion of (13.53) directly follows from (13.78), (13.80) and (13.84).

Finally, the conclusion of (13.54) is obtained by (13.48) with B2
[
β̂
(q)
p (t)

∣∣D
]
and

Var
[
β̂
(q)
p (t)

∣∣D
]
replaced by the dominating terms at the right sides of (13.52)

and (13.53), respectively. �.

Proof of Theorem 13.2:
When Q = 1, Assumption (c) implies that βp(t) is twice differentiable with

respect to t, and its second derivative β ′′(t) is a continuous function of t ∈ T .
The conclusions of (13.55), (13.56) and (13.57) follow from (13.52), (13.53) and
(13.54), respectively, by setting q = 0 and Q = 1. Minimizing the right side
of (13.57) with respect to h, the theoretically optimal pointwise bandwidth
satisfies the normal equation

h3
opt

[
βp(t)

][
β ′′

p (t)B2

(
K0,2

)]2

=
2

3cnJ π(t)
h−2

opt

[
βp(t)

]
σ2

p(t)V
(
K0,2

)
, (13.85)

which then leads to the conclusion of (13.58). �
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13.6 Remarks and Literature Notes

This chapter summarizes a time-varying nonparametric approach for modeling
the conditional distribution functions and their temporal trends. As a special
case of the conditional distribution based regression models, the time-varying
transformationmodels have practical advantages over the well-established con-
ditional mean-based regression models in longitudinal analysis when the sci-
entific objective is better achieved by analyzing the conditional distribution
functions. The application to the NGHS data illustrates the advantages of
modeling the conditional distribution functions in a typical biomedical study.
Similar to the conditional mean-based varying-coefficient models of Chapters 6
to 8, the time-varying transformation models effectively reduce the estimation
complexity by utilizing a regression structure which retains a high degree of
model flexibility.

The main scope of this chapter focuses on the two-step estimation method
described in Wu, Tian and Yu (2010). This estimation method, which is based
on smoothing over the raw estimates obtained from the estimating equations
of Cheng, Wei and Ying (1995), is limited to the covariate effects of the tar-
get distribution functions. The advantage of this two-step estimation method
is its conceptual simplicity and flexibility of providing different bandwidths
for different component curves. However, in view that the method of Cheng,
Wei and Ying (1995) is not the only available method for the transformation
models, alternative estimation methods other than the ones described in Wu,
Tian and Yu (2010) are possible but have not been systematically studied.
Existing possibilities include using alternative raw estimators of the trans-
formation models or alternative smoothing methods in the smoothing step.
The question of whether the two-step estimation method can be replaced by
a “one-step” estimation approach is not well understood and deserves further
investigation. This question is perhaps more interesting from the theoretical
and methodological point of view, because, judging from the NGHS applica-
tion of Section 13.4 and simulation results, the two-step estimation method
of Section 13.3 performs very well in practice. Further research based on the
established premises is warranted in several fronts. These include develop-
ing appropriate goodness-of-fit tests to formally examine the adequacy of the
time-varying models under appropriate statistical hypotheses, extending the
time-varying models to incorporate the joint distributions of a multivariate
response variable, and comparing the time-varying transformation models to
potential quantile regression models for longitudinal data.
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Chapter 14

Time-Varying Transformation Models -

II

In addition to the estimation of covariate effects, the time-varying transfor-
mation models of Chapter 13 can be further used to predict the ranking of
a subject’s health status at one or multiple time points. We describe in this
chapter the methods for estimating the conditional distribution functions and
some of their useful functionals based on the models and estimation methods
of Chapter 13. These estimators lead to useful statistical indices to quantita-
tively track the changes of health status in biomedical studies.

14.1 Overview and Motivation

In Chapter 12, we discussed two primary objectives for the longitudinal anal-
ysis of conditional distributions, namely estimation of temporal trends of
the conditional distributions and the rank-tracking probabilities. Since Chap-
ter 12 considers the simple data structure which contains only categorical and
time-invariant covariates, its estimation methods can be carried out with a
simple unstructured kernel smoothing method. When the data contain time-
dependent covariates, the unstructured model and kernel smoothing methods
are difficult to use because of the multivariate smoothing. In this chapter, we
present a two-step method to estimate the conditional distributions and the
rank-tracking probabilities using time-varying covariates and the models of
Chapter 13.

1. Motivation

The NGHS data, which has been repeatedly analyzed in the previous chap-
ters, is again an excellent motivating example for the methods of this chapter.
Because of the methodological limitations, two important questions of the
NGHS have not been answered in Chapters 12 and 13:

471



472 TIME-VARYING TRANSFORMATION MODELS - II

(a) What are the conditional distributions of blood pressure, either systolic
blood pressure (SBP) or diastolic blood pressure (DBP), given a set of time-
dependent covariates?

(b) Are the study subjects with a set of time-varying covariates and high blood
pressure levels at a younger age more likely to have high blood pressure levels
at an older age?

The first question is raised because the estimated curves of Chapter 13 only de-
scribe the covariate effects on the outcome variable’s conditional distributions
but not the actual predicted values of the distributions. The second question
is discussed in Kavey et al. (2003), Thompson et al. (2007) and Obarzanek
et al. (2010), where these authors illustrate the need to measure the “track-
ing ability” of a cardiovascular risk factor within subjects over different ages.
Appropriate answers for both questions depend on the models and estima-
tion methods for the conditional distribution functions. Given the simple and
flexible modeling structure in Chapter 13, it is natural to expect that the
above two questions could be investigated using the time-varying transforma-
tion models with time-dependent covariates. This motivates the estimation
methods of this chapter.

2. Conditional Distribution Estimators

We present in this chapter a two-step smoothing method, which was de-
veloped by Wu and Tian (2013b), to estimate the conditional distribution
functions and longitudinal tracking abilities. Similar to the tracking concept
in Chapter 12, we consider two useful functionals of the conditional distribu-
tions, the rank-tracking probability (RTP) and the rank-tracking probability
ratio (RTPR), based on the time-varying transformation models, and illus-
trate the interpretations of the RTP and the RTPR through the NGHS data.
We estimate the conditional distribution functions using the similar smoothing
estimators as Chapter 13, in which we first compute the raw estimates at a set
of distinct time points and then smooth the raw estimates through a smooth-
ing method. In the theoretical development, we derive the asymptotic biases,
variances and mean squared errors for the two-step local polynomial estima-
tors of the conditional distribution functions, and show that the smoothing
step may reduce the variances of the estimators. For the choices of data-driven
bandwidths, we present two cross-validation methods based on “leave subject
out one at a time” or “leave time point out one at a time.” Since high dimen-
sional smoothing is used to estimate the RTPs and the RTPRs, statistical
properties of the RTP and RTPR estimators are investigated by a simulation
study. We construct the pointwise confidence intervals for the smoothing esti-
mators using the resampling-subject bootstrap. The application to the NGHS
blood pressure (BP) data shows that the time-varying transformation models
and the two-step estimators can lead to useful scientific insights.
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14.2 Data Structure and Distribution Functionals

14.2.1 Data Structure

The data considered in this chapter has exactly the same structure as Chap-
ter 13. To briefly reiterate the notation and data structure of Section 13.2, we
consider the stochastic processes indexed by the time point t ∈T , where T is
a bounded subset of [0,∞). At any given t ∈T , Y (t) ∈ R is the real-valued out-

come variable, and X(t) =
(
X1(t), . . . , XP(t)

)T
, Xp(t) ∈ R for 1 ≤ p ≤ P, is the

RP-valued covariate vector. The longitudinal sample of {Y (t), X(t) : t ∈ T }
contains n independent subjects, and each subject is observed at a randomly
selected subset of J > 1 distinct time points t = (t1, . . . , tJ)

T ∈ T .
In a real study, the number of distinct time points J may be large, and not

all the subjects are observed at every t j. When the observed time points are
not exactly contained in t, it is common to round-off the observed time points
into t provided that the round-off has meaningful scientific interpretations. At
each t j, S j is the set of subjects with observations,

Z =
{

Yi(t j), Xi(t j), t j : i ∈ S j, j = 1, . . . , J
}

is the sample of
{

Y (t), X(t) : t ∈ T
}
, and

D =
{

Xi(t j), t j : i ∈ S j, j = 1, . . . , J
}

is the set of observed covariates, where Yi(t j) and Xi(t j) =
(
Xi1(t j), . . . , XiP(t j)

)T

are the outcome and covariates for the ith subject when i ∈ S j. We denote by
n j = #

{
i ∈ S j

}
the number of subjects in S j and n j1 j2 = #

{
i ∈ S j1

⋂
S j2

}
the

number of subjects in both S j1 and S j2 , where n j1 j2 ≤ min{n j1 , n j2}. Implica-
tions and justifications for this data structure have already been discussed in
Section 13.2.

14.2.2 Conditional Distribution Functions

The statistical objective is to estimate the conditional distribution functions
and the tracking ability of {Y (t) : t ∈ T } given {X(t), t} based on the sample
Z . Given any covariates X(t) = x(t) at time t ∈ T and any time-varying set
of outcomes A

[
x(t), t

]
⊆ R which depends on both t and x(t), the conditional

probability of Y (t) belonging to A
[
x(t), t

]
, i.e., Y (t) ∈ A

[
x(t), t

]
, is

PA

[
x(t), t

]
= P

{
Y (t) ∈ A

[
x(t), t

]∣∣X(t) = x(t), t
}
. (14.1)

The choice of A
[
x(t), t

]
can be either known or estimated from the data, and

is specified by the study objectives. For the interesting special case of

A
[
x(t), t

]
=
(
−∞, y[x(t), t]

]
(14.2)
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for some pre-specified function y
[
x(t), t

]
, PA

[
x(t), t

]
reduces to the conditional

cumulative distribution function (CDF), which, by (14.1), is

Ft

{
y
[
x(t), t

]∣∣x(t)
}
= P

{
Y (t)≤ y

[
x(t), t

]∣∣X(t) = x(t), t
}
. (14.3)

Other useful special cases of (14.1) may include different intervals, such as

A
[
x(t), t

]
=
(
y1[x(t), t], y2[x(t), t]

]
(14.4)

for some y1

[
x(t), t

]
< y2

[
x(t), t

]
, which lead to

P(y1[x(t),t],y2[x(t),t]]

[
x(t), t

]

= P

{
y1

[
x(t), t

]
< Y (t)≤ y2

[
x(t), t

]∣∣∣X(t) = x(t), t

}
. (14.5)

The probability defined in (14.5) may be used to define different categories of
health status or disease risks.

Although we assume in (14.1) the general situation that A
[
x(t), t

]
depends

on the values of the covariates x(t) at time t, disease progression or health
status in real applications may not depend on covariates. For situations where
the set of outcomes may change with time t but does not depend on the
covariates, we have

A
[
x(t), t

]
= A(t). (14.6)

The particular cases for the CDFs and their functionals based on (14.3) and
(14.4) are given by

Ft

[
y(t)
∣∣x(t)

]
= P

[
Y (t)≤ y(t)

∣∣∣X(t) = x(t), t
]

(14.7)

and

P(y1(t),y2(t)]

[
x(t), t

]
= P

[
y1(t)< Y (t)≤ y2(t)

∣∣∣X(t) = x(t), t
]
. (14.8)

The conditional CDF in Ft

[
y(t)
∣∣x(t)

]
reduces to the conditional CDF of (12.4)

when the covariate is time-invariant and categorical, i.e., x(t) = x.

14.2.3 Conditional Quantiles

The conditional quantiles of Y (t) at time t given X(t) = x(t) can be naturally
defined using (14.2) and (14.3). If, for any time t ∈ T and given X(t) = x(t),
there is a unique quantity yα

[
x(t), t

]
such that

Ft

{
yα

[
x(t), t

]∣∣x(t)
}
= α for some 0 < α < 1, (14.9)

then yα

[
x(t), t

]
is the (100×α)th conditional quantile given {x(t), t}, which is

defined to be the inverse of Ft

{
y
[
x(t), t

]∣∣x(t)
}
= α and is denoted by

yα

[
x(t), t

]
= F−1

t

[
α
∣∣x(t)

]
. (14.10)
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Useful functionals of the conditional quantiles yα

[
x(t), t

]
include the con-

ditional Inter-Quantile Range (IQR) defined by

∆α1,α2

[
x(t), t

]
= yα1

[
x(t), t

]
− yα2

[
x(t), t

]
for any 0 ≤ α2 < α1 < 1 (14.11)

or, when different covariate and time values {x1(t1), t1} and {x2(t2), t2} are
included,

∆α1,α2

{[
x1(t1), t1

]
,
[
x2(t2), t2

]}
= yα1

[
x1(t1), t1

]
− yα2

[
x2(t2), t2

]
. (14.12)

The generalized version (14.12) allows for quantile differences under differ-
ent sub-groups specified by the covariates and the different time points. For
example, when α1 = α2 = α and t1 = t2 = t, (14.12) reduces to

∆α

{[
x1(t), t

]
,
[
x2(t), t

]}
= yα

[
x1(t), t

]
− yα

[
x2(t), t

]
, (14.13)

which represents the difference of the (100×α)th quantiles at time t ∈ T

between the subjects with x1(t) and the subjects with x2(t). If two different
time points t1 6= t2 are used in (14.13), then

∆α

{[
x1(t1), t1

]
,
[
x2(t2), t2

]}
= yα

[
x1(t1), t1

]
− yα

[
x2(t2), t2

]
(14.14)

represents the difference of the (100×α)th quantiles between the subjects at
time t1 ∈ T with x1(t1) and the subjects at time t2 ∈ T with x2(t2).

14.2.4 Rank-Tracking Probabilities

As shown in Section 12.2.4, the tracking ability can be quantified by evaluating
whether a subject’s outcome at an earlier time point affects the distribution
of its outcome at a later time point. For the current situation with time-
varying covariates, a general index for measuring tracking ability should take
the covariates into account. Let A

[
X(t), t

]
⊆ R be a pre-specified set of possible

outcome values, which describes the health status of the subject at time t and
may depend on the covariates X(t). Let B(t)⊆RP be a set of the possible values
for the covariates X(t). The tracking ability of Y (s) at time points s1 < s2 can
be measured by the Rank-Tracking Probability (RTP)

RTPs1,s2
(A, B) = P

{
Y (s2) ∈ A

[
X(s2), s2

]∣∣∣

Y (s1) ∈ A
[
X(s1), s1

]
, X(s1) ∈ B(s1)

}
. (14.15)

In the RTP defined above, the outcome set A
[
X(t), t

]
is interpreted as a

covariate-specific health status indicator given that the covariates X(t) are pre-
determined. Once the scientific interpretations of A

[
X(t), t

]
are well defined,

RTPs1,s2
(A, B) measures the tracking ability of Y (t) at t = s1 and s2 through

the conditional probability of Y (s2) ∈ A
[
X(s2), s2

]
at time point s2 given that

Y (s1) ∈ A
[
X(s1), s1

]
and X(s1) ∈ B(s1) at time point s1. Thus, a large value
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of RT Ps1,s2
(A, B) would suggest strong tracking ability of Y (t) for the given

health status indicator A(·, ·) at time points s1 < s2 among the subjects with
X(s1)∈ B(s1). On the other hand, a small value of RT Ps1,s2

(A, B) suggests weak
tracking ability of Y (t) for A(·, ·) at s1 < s2. If A

[
X(t), t

]
is the interval given

in (14.2) for some y
[
X(t), t

]
, the RTP of (14.15) has the expression

RT Ps1,s2
(A, B) = P

{
Y (s2)≤ y

[
X(s2), s2

]∣∣∣

Y (s1)≤ y
[
X(s1), s1

]
, X(s1) ∈ B(s1)

}
. (14.16)

When the disease progression and health status are determined without
depending on the covariates, a covariate independent set A(t) ⊆ R defined in
(14.6) should be used. The RTP of (14.15) at time points s1 < s2 can be
simplified to

RT Ps1,s2
(A, B) = P

[
Y (s2) ∈ A(s2)

∣∣∣Y (s1) ∈ A(s1), X(s1) ∈ B(s1)
]
. (14.17)

If A(t) is given by (14.6) for some y(t), then

RTPs1,s2
(A, B) = P

[
Y (s2)≤ y(s2)

∣∣∣Y (s1)≤ y(s1), X(s1) ∈ B(s1)
]
. (14.18)

Examples of covariate independent set A(t) include hypertension and elevated
blood pressure levels defined for adult populations (James et al., 2014), where
elevated levels of systolic blood pressure or diastolic blood pressure are defined
for all adults without depending on other covariates.

14.2.5 Rank-Tracking Probability Ratios

The relative tracking strength for Y (s) with A
[
X(t), t

]
at s1 < s2 given X(s1) ∈

B(s1) can be measured by the Rank-Tracking Probability Ratio (RTPR)

RTPRs1,s2
(A, B) =

RTPs1,s2
(A, B)

P
{

Y (s2) ∈ A
[
X(s2), s2

]∣∣X(s1) ∈ B(s1)
} , (14.19)

which essentially compares RTPs1,s2
(A, B) with the conditional probability of

Y (s2) ∈ A
[
X(s2), s2

]
at time s2 given X(s1) ∈ B(s1) at time s1. As in Sec-

tion 12.2.5, the RTPRs1,s2
(A, B) can be used to distinguish the tracking ability

of Y (t) under the following situations:

(a) No Tracking Ability. If knowing Y (s1) ∈ A
[
X(s1), s1

]
does not change

the probability of Y (s2) ∈ A
[
X(s2), s2

]
among the subjects with X(s1) ∈

B(s1), then
RT PRs1,s2

(A, B) = 1, (14.20)

so that Y (s) has no tracking ability based on A
[
X(t), t

]
at the two time

points s1 < s2. Clearly, Y (s1) has no tracking ability for Y (s2) if Y (s1) and
Y (s2) are conditionally independent given X(s1) ∈ B(s1).
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(b) Positive or Negative Tracking Ability If

RTPRs1,s2
(A, B)> 1 or RTPRs1,s2

(A, B)< 1, (14.21)

then Y (t) has positive or negative, respectively, tracking ability based on
A
[
X(t), t

]
at the two time points s1 < s2.

For the special case of (14.2), RTPRs1,s2
(A, B) has the expression

RT PRs1,s2
(A, B) =

RTPs1,s2
(A, B)

P
{

Y (s2)≤ y
[
X(s2), s2

]∣∣X(s1) ∈ B(s1)
} , (14.22)

where RTPs1,s2
(A, B) is given by (14.16). ✷

Another useful special case is the RTPs and RTPRs defined by (14.15) and
(14.19) based on quantiles, i.e.,

A
[
X(t), t

]
= A(t) =

(
yα(t), ∞

)
, (14.23)

where yα(t) for any 0<α < 1 is the (100×α)th quantile of Y (t). Using (14.23),
the RTP and RTPR at time points s1 < s2 are





RT Ps1,s2

[(
yα1

, yα2

)
, B
]

= P
[
Y (s2)> yα2

(s2)
∣∣

Y (s1)> yα1
(s1), X(s1) ∈ B(s1)

]
,

RT PRs1,s2

[(
yα1

, yα2

)
, B
]

=
RTPs1 , s2

[(
yα1

,yα2

)
,B
]

P
[

Y (s2)>yα2
(s2)
∣∣X(s1)∈B(s1)

] .
(14.24)

In practice, RT Ps1,s2

[
(yα1

, yα2
), B
]
and RTPRs1,s2

[
(yα1

, yα2
), B
]
may be used to

evaluate the tracking ability of elevated levels of an outcome variable from s1

to s2. Implications of (14.24) for the NGHS blood pressure data are illustrated
in Section 14.4.

14.2.6 The Time-Varying Transformation Models

Nonparametric estimation of PA(x, t), RT Ps1,s2
(A, B) and RTPRs1,s2

(A, B) de-
fined in (14.1), (14.15) and (14.19), respectively, can be computationally in-
feasible and difficult to interpret, when the covariates X(t) are continuous and
time-varying. As a practical compromise between model flexibility and com-
putational feasibility, the time-varying transformation models given in (13.4)
can be used to construct a class of structured nonparametric estimators for
these quantities.

Recall that the model (13.4) assumes the following flexible structure for
the time-varying outcome and covariates {Y (t), X(t), t},

g
{

St

[
y|X(t)

]}
= h(y, t)+XT (t)β (t), (14.25)
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where g(·) is a known decreasing link function, St

[
y|X(t)

]
= 1− Ft

[
y|X(t)

]
,

h(·, ·) is an unknown baseline function strictly increasing in y, β (t) =(
β1(t), . . . , βP(t)

)T
, and βp(t) are smooth functions of t ∈ T . Useful special

cases of (14.25) include the proportional hazard model and the proportional
odds model defined in (13.5) and (13.6). If we denote the inverse of g(·) by

φ(u) = g−1(u) for any 0 ≤ u ≤ 1, (14.26)

it is shown in equation (13.9) that, for any subject with observations at time
t j, (14.25) is equivalent to

h
[
Yi(t j), t j

]
=−XT

i (t j)β (t j)+ εi j, (14.27)

where εi j = g
{

St j

[
Yi(t j)

∣∣Xi(t j)
]}

are random errors with distribution

G(·) = 1−φ(·).

Under (14.25), the conditional CDF of Y (t) given X(t) at time t is

Ft

[
y
∣∣X(t)

]
= 1−φ

[
h(y, t)+XT (t)β (t)

]
. (14.28)

The conditional probability of Y (t) ∈ A[X(t), t] can be computed from the
expression of Ft [y|X(t)] in (14.28) and A[X(t), t]. For example, if A(t) = (y(t), ∞)
and, for time points s1 < s2, y(s1) = y1, y(s2) = y2, and B(s1) = x(s1) for some
fixed x(s1), then it follows that, under (14.28),





RTPs1,s2

[(
y1, y2

)
, x
]

=
Ss1, s2

[
y1,y2

∣∣x(s1)
]

φ
[

h(y1,s1)+xT (s1)β (s1)
] ,

RT PRs1,s2

[(
y1, y2

)
, x
]

=
Ss1, s2

[
y1,y2

∣∣x(s1)
]

φ
[

h(y1,s1)+xT (s1)β (s1)
]

Ss2

[
y2

∣∣x(s1)
] ,

(14.29)

where Ss1,s2

[
y1, y2

∣∣x(s1)
]
and Ss2

[
y2

∣∣x(s1)
]
are the conditional probabilities de-

fined by
{

Ss1,s2

[
y1, y2

∣∣x(s1)
]

= P
[
Y (s2)> y2, Y (s1)> y1

∣∣X(s1) = x(s1)
]
,

Ss2

[
y2

∣∣x(s1)
]

= P
[
Y (s2)> y2

∣∣X(s1) = x(s1)
]
.

(14.30)

It is important to note that (14.25) only assumes the structure between
X(t) and Y (t) at a given time t ∈ T . Since the structure between Y (s2) and{

Y (s1), X(s1)
}

for any s1 < s2 is not specified, (14.25) may not be used to
estimate the conditional probabilities in (14.30). There are two reasons for
leaving the correlation structure at two time points unspecified. First, the
dependence structures between the observations at different time points are
usually completely unknown, so that unstructured smoothing estimators of
(14.28) are preferred in an exploratory analysis. Second, the unstructured
smoothing estimators are always needed because any appropriate models for
the correlation structure across time points need to be compared with the
unstructured smoothing estimators.
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14.3 Two-Step Estimation and Prediction Methods

Using the similar estimation approach of Chapter 13, we present a two-step
method for the nonparametric estimation and prediction of the conditional
distribution functions and their corresponding RTPs and RTPRs based on the
time-varying transformation models (14.25). In this method, we first obtain
the raw estimates of β (t j), h(·, t j) and Ft j

(·|·) at each distinct time point t j and
then compute their smoothing estimates at any t ∈ T based on the available
raw estimates. This two-step method is used because it is generally difficult
to compute any potentially likelihood-based estimators for (14.25) without
assumptions on the correlation structures for Z .

14.3.1 Raw Estimators of Distribution Functions

We construct the raw estimators of the conditional CDF Ft

[
y
∣∣X(t)

]
of (14.25)

at a time design point t j, 1 ≤ j ≤ J, using the following three steps:

(a) estimating the coefficients β (t j);

(b) estimating the baseline function h(y, t j);

(c) estimating the conditional CDF Ft j

[
y
∣∣X(t j)

]
itself.

For step (a), a class of raw estimators of β (t j) have already been established
in Section 13.3.1 by applying the estimating equations of Cheng, Wei and
Ying (1995) to the subjects with observations at the time point t j, i.e., sub-

jects in S j. Let β̃(t j) be the raw estimator of β (t j) obtained by solving the
estimating equation (13.13) using the observations from the subjects in S j.

The statistical properties of β̃ (t j) have been derived in Section 13.3.2.

For the estimation of h(y, t j) in step (b), we substitute β (t j) with β̃ (t j) and
observe from (14.25) that

St j

[
y
∣∣Xi(t j)

]
= 1−Ft j

[
y
∣∣Xi(t j)

]
= φ

[
h(y, t j)+XT

i (t j)β (t j)
]
, (14.31)

a raw estimator h̃(y, t j) can be obtained by solving the estimating equation

V
[
h̃(y, t j)

]
=

1

n j
∑

i∈S j

{
1[Yi(t j)>y]−φ

[
h̃(y, t j)+XT

i (t j) β̃ (t j)
]}

= 0. (14.32)

The above estimating equation (14.32) is an extension of the estimating equa-
tion of Cheng, Wei and Ying (1997), where the data are from a cross-sectional
i.i.d. sample.

For the estimation in step (c), we substitute h(·, t j) and β (t j) in (14.28)

with h̃(·, t j) and β̃ (t j), and obtain the raw estimator F̃t j
(y|x) of Ft j

(y|x) at time
point t j given X(t) = x(t) by

F̃t j
(y|x) = 1− S̃t j

(y|x) = 1−φ
[
h̃(y, t j)+ xT (t j) β̃ (t j)

]
. (14.33)
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For a new subject with covariates x(t) at time t = t j, F̃t j
(y|x) is used to predict

the subject’s chance of Y (t)≤ y at time t = t j.
There are two issues which we need to consider for the estimators in (14.32)

and (14.33):

(a) Order-Preserving Property. Since both the baseline function h(y, t)
and the conditional CDF Ft(y|x) are nondecreasing functions in y for any t ∈
T , i.e., h(y1, t)≤ h(y2, t) and Ft(y1|x)≤Ft(y2|x) for any y1 ≤ y2 and t ∈T , we
prefer that the estimators of these two functions have the order-preserving
property in the sense that these estimators are also nondecreasing functions
in y for any t ∈T . Indeed, it has been shown by Cheng, Wei and Ying (1997)

that both h̃(y, t j) and F̃t j
(y|x) are nondecreasing in y for any given t j, hence,

h̃(y, t j) and F̃t j
(y|x) are order-preserving.

(b) Bin Sizes. The raw estimators of h(·, t j) and Ft j
(·|·) require the number

of observations n j at t j to be sufficiently large, so that (14.32) and (14.33)
can be solved numerically. When the sample size n j is not sufficiently large,
we can round off or group some of the adjacent time points into small bins,
and compute the raw estimates within each bin (Fan and Zhang, 2000; Wu,
Tian and Yu, 2010). In biomedical studies, the unit of time is often rounded
off with an acceptable precision. The effects of rounding off or binning on
the asymptotic properties of the smoothed estimators have not been studied
in the literature and are beyond the scope of this chapter. ✷

14.3.2 Smoothing Estimators for Conditional CDFs

Using the above raw estimators as pseudo-observations, our smoothing step
here is to construct local polynomial estimators for the baseline function h(y, t)
and the conditional CDF Ft(y|x) at any time point t ∈T . A basic assumption
for this smoothing step is that h(y, t) and Ft(y|x) are smooth functions of t ∈T .
Statistical properties of the smoothing estimators of h(y, t) and Ft(y|x) depend
on the smoothness assumptions for h(y, t) and Ft(y|x). This smoothing step is
used to

(a) provide estimators of h(y, t) and Ft(y|x) for any t in T including these

time points not included in the design time points t =
(
t1, . . . , tJ

)T
;

(b) reduce the variances of the estimators by borrowing the information from
the unsmoothed raw estimators at the design time points adjacent to t. ✷

1. General Expressions of Linear Smoothing Estimators

We consider here the same commonly used smoothness families as the ones
in Chapter 13. Suppose that h(y, t) and Ft(y|x) are (Q+1) times continuously
differentiable with respect to t ∈T for some Q≥ 0. Given the unsmoothed raw
estimators h̃(y, t j) and F̃t j

(y|x) for all t j ∈ t obtained from (14.32) and (14.33),
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we can construct the smoothing estimators of h(y, t) and Ft(y|x) for any t ∈T

through linear estimators of the form
{

ĥ(y, t) = ∑J
j=1 w(t j, t) h̃(y, t j),

F̂t(y|x) = ∑J
j=1 w(t j, t) F̃t j

(y|x),
(14.34)

where w(t j , t) is a known weight function. If w(t j , t) is a weight function de-
termined by a kernel function K(·) and bandwidth b > 0 of the form

w(t j, t) = K
( t j − t

b

)/ J

∑
j=1

K
( t j − t

b

)
,

the two-step kernel estimators of h(y, t) and Ft(y|x) obtained from (14.34) are
given by





ĥK(y, t) = ∑J
j=1

[
h̃(y, t j)K

(
t j−t

b

)]/
∑J

j=1 K
(

t j−t

b

)
,

F̂t,K(y|x) = ∑J
j=1

[
F̃t j

(y|x)K
(

t j−t

b

)]/
∑J

j=1 K
(

t j−t

b

)
.

(14.35)

To estimate the derivatives of h(y, t) and Ft(y|x), let h(q)(y, t) and F
(q)

t (y|x),
0 ≤ q ≤ Q, be the qth derivatives of h(y, t) and Ft(y|x) with respect to t. The

two-step smoothing estimators of the qth derivatives h(q)(y, t) and F
(q)

t (y|x) for
any t ∈ T can be constructed through linear estimators of the form

{
ĥ(q)(y, t) = ∑J

j=1 wq,Q+1(t j, t) h̃(y, t j),

F̂
(q)

t (y|x) = ∑J
j=1 wq,Q+1(t j, t) F̃t j

(y|x),
(14.36)

where wq,Q+1(·, ·) is a known weight function. It follows from (14.38) and
(14.39) that the estimators of h(y, t) and Ft(y|x) in (14.34) are given by

{
ĥ(y, t) = ĥ(0)(y, t) = ∑J

j=1 w0,Q+1(t j, t) h̃(y, t j),

F̂t(y|x) = F̂
(0)

t (y|x) = ∑J
j=1 w0,Q+1(t j, t) F̃t j

(y|x),
(14.37)

which are obtained by (14.36) with q = 0.

2. Local Polynomial Estimators

Different choices of wq,Q+1(t j, t) lead to different smoothing estimators of
(14.36). Let K(·) be a non-negative kernel function and b > 0 be a bandwidth.

It follows from (14.36) that the Qth order local polynomial estimators ĥ(q)(y, t)

and F̂
(q)

t (y|x) for h(q)(y, t) and F
(q)

t (y|x) are given by





ĥ(q)(y, t) = ∑J
j=1 wq,Q+1(t j, t; b) h̃(y, t j),

F̂
(q)

t (y|x) = ∑J
j=1 wq,Q+1(t j, t; b) F̃t j

(y|x),
wq,Q+1(t j , t; b) = q!eT

q+1,Q+1

(
CT WC

)−1
C j Wj, j = 1, . . . , J,

(14.38)
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where the weight function wq,Q+1(t j , t; b) is the same as (13.31), eq+1,Q+1 is
the (Q+1)th column vector with 1 at its (q+1)th row and 0 everywhere else,
C j, C, Wj and W are defined in (13.30).

For the special case of q = 0 and Q = 1, the weight function in (14.38) is
w0,2(t j, t; b) and the two-step local linear estimators of h(y, t) and Ft(y|x) are
given by





ĥL(y, t) = ∑J
j=1

[
eT

1,2

(
CT WC

)−1
C j Wj

]
h̃(y, t j),

F̂L
t (y|x) = ∑J

j=1

[
eT

1,2

(
CT WC

)−1
C j Wj

]
F̃t j

(y|x).
(14.39)

Because of their mathematical simplicity and numerical stability, the above
two-step local linear estimators of h(y, t) and Ft(y|x) are commonly used in
real applications.

The following two comments are about the order-preserving properties of
the kernel and local polynomial estimators:

(a) Order-Preserving of Kernel Estimators. Since, by the discussion of

Section 14.3.1, h̃(y, t j) and F̃t j
(y|x) are order-preserving in y for any t j, it

easily follows from (14.35) that, because K(u)≥ 0 for all u and K(u)> 0 for
some u,

ĥK(y1, t)≤ ĥK(y2, t) and F̂t,K(y1|x)≤ F̂t,K(y2|x) (14.40)

for all y1 ≤ y2 and all t ∈ T , so that the kernel estimators ĥK(y, t) and
F̂t,K(y|x) are order-preserving in y for any t.

(b) Asymptotic Order-Preserving of Local Polynomials. Because the
weight functions of the local polynomial estimators are possible to have
negative values, the local polynomial estimators ĥ(y, t) and F̂t(y|x) may not
have the order-preserving property for any finite sample size n. However,
as we will see later in the asymptotic properties of Section 14.5.2, we can
conclude that, for any y1 ≤ y2 and all t ∈ T ,

ĥ(0)(y1, t)≤ ĥ(0)(y2, t) and F̂
(0)

t (y1|x)≤ F̂
(0)

t (y2|x) in probability, (14.41)

when n and n j, j = 1, . . . , J, are sufficiently large, which we refer to herein
as the asymptotically order-preserving property in y. ✷

Other than the kernel estimators (14.35), further research is needed to
develop two-step local smoothing estimators with the order-preserving prop-
erty for finite sample sizes. Hall and Müller (2003) suggests a useful order-
preserving method for the estimation of conditional distributions and quan-
tiles. But, their method cannot be directly extended to the current models
with longitudinal data.
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14.3.3 Smoothing Estimators for Quantiles

Useful functionals of Ft(y|x) under the time-varying transformation models
(14.25), such as the conditional quantile

yα(t, x) = F−1
t (α|x) =

{
y : 1−φ

[
h(y, t)+XT (t)β (t)

]
= α

}
(14.42)

obtained (14.28), may be estimated from F̂t(y|x). In particular, a simple esti-
mator of yα(t, x) based on F̂t(y|x) can be given by

ŷα(t, x) =
1

2

{
inf

y

[
y : F̂t(y|x)≥ α

]
+ sup

y

[
y : F̂t(y|x)≤ α

]}
, (14.43)

where F̂t(y|x) can be constructed using the smoothing estimators of Section
14.3.2, such as (14.35), (14.37) and (14.39).

Since, for any fixed {t, x}, the conditional quantile yα(t, x) of (14.42) is
nondecreasing when α decreases, it is generally preferred to use an order-
preserving estimator F̂t(y|x) in (14.43). The two-step kernel estimator F̂t,K(y|x)
is a good choice for (14.43) because of its order-preserving property (14.40).
The two-step local linear estimator F̂L

t (y|x), on the other hand, is asymp-
totically order-preserving in the sense of (14.41), although not necessarily
order-preserving for a given finite sample size, which suggests that F̂L

t (y|x) is
a reasonable choice for (14.43) when n and n j are sufficiently large.

Nonparametric quantile regression methods using statistical models other
than (14.25) have been studied in the literature. For example, Wei et al. (2006)
studied a quantile regression method based on an unstructured nonparamet-
ric model, and Wang, Zhu and Zhou (2009) studied a quantile regression in
partially linear varying coefficient models. However, asymptotic properties of
nonparametric quantile estimators based on (14.25) have not been derived,
which, of course, is a worthwhile topic for future research.

14.3.4 Estimation of Rank-Tracking Probabilities

To estimate the rank-tracking probability RTPs1,s2

[(
y1, y2

)
, x
]

defined in
(14.29), we note that, by (14.25) and (14.29),

RTPs1,s2

[(
y1, y2

)
, x
]
=

Ss1,s2

[
y1, y2

∣∣x(s1)
]

Ss1

[
y1

∣∣x(s1)
] , (14.44)

with
{

Ss1,s2

[
y1, y2

∣∣x(s1)
]

= P
[
Y (s2)> y2, Y (s1)> y1

∣∣X(s1) = x(s1)
]
,

Ss1

[
y1

∣∣x(s1)
]

= P
[
Y (s1)> y1

∣∣X(s1) = x(s1)
]
.

(14.45)

If there exist consistent estimators

Ŝs1,s2

[
y1, y2|x(s1)

]
and Ŝs1

[
y1|x(s1)

]
(14.46)
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of (14.45), then a straightforward plugging type estimator of RT Ps1,s2

[
(y1, y2), x

]

is to substitute Ss1,s2

[
y1, y2

∣∣x(s1)
]
and Ss1

[
y1|x(s1)

]
of (14.44) with the corre-

sponding estimators in (14.46), so that, the RTP can be estimated by

R̂TPs1,s2

[
(y1, y2), x

]
=

Ŝs1,s2

[
y1, y2

∣∣x(s1)
]

Ŝs1

[
y1

∣∣x(s1)
] . (14.47)

The estimators given below can be used to estimate Ss1

[
y1

∣∣x(s1)
]
and

Ss1,s2

[
y1,y2

∣∣x(s1)
]
:

(a) Smoothing Estimators of Ss1

[
y1

∣∣x(s1)
]
: Using the time-varying trans-

formation model (14.28), the conditional CDF Fs1
(y1|x) can be estimated

by any of the special cases of the two-step linear smoothing estimators
F̂s1

(y1|x) given in (14.34). Thus, Ss1

[
y1

∣∣x(s1)
]
can be simply estimated by

Ŝs1

[
y1

∣∣x(s1)
]
= 1− F̂s1

(y1|x), (14.48)

where special choices of F̂s1
(y1|x) include the kernel estimator F̂s1,K(y1|x) of

(14.35) and the local linear estimator F̂L
s1
(y1|x) of (14.39).

(b) Kernel Estimators of Ss1,s2

[
y1, y2

∣∣x(s1)
]
: Given that we do not impose

any correlation assumptions on
{

Y (t), X(t)
}

between s1 and s2, unstruc-
tured smoothing estimators of Ss1,s2

[
y1, y2

∣∣x(s1)
]
should be used in (14.47).

Since the covariate vector X(t) may contain time-varying components, the
estimation of Ss1,s2

[
y1, y2

∣∣x(s1)
]
depends on the dimensionality P of X(t)

and whether Xp(t), p = 1, · · · , P, are discrete or continuous. In real appli-
cations, when the components of X(t) are continuous, useful unstructured

smoothing estimators Ŝs1,s2

[
y1, y2

∣∣x(s1)
]
may be obtained only when the

dimensionality P is small, such as P = 1 or 2. If P = 1, i.e., X(t) = X(t),
and X(t) is a continuous random variable at each t ∈ T , we can estimate
Ss1,s2

[
y1, y2

∣∣x(s1)
]
using the following kernel smoother. Let

a1, j1 =
t j1 − s1

b1

, a2, j2 =
t j2 − s2

b2

and a3, i, j1 =
Xi(t j1)− x(s1)

b3

, (14.49)

where
{

b1, b2, b3

}
are positive bandwidths, and let π(·, ·, ·) be a weight

function on R3 with bandwidths
{

b1, b2, b3

}
. A simple kernel estimator of

Ss1,s2

[
y1, y2

∣∣x(s1)
]
is

Ŝs1,s2

[
y1, y2

∣∣x(s1)
]
= ∑

j1, j2, i

π
(
a1, j1 , a2, j2 , a3, i, j1

)
1[

Yi(t j2
)>y2,Yi(t j1

)>y1

], (14.50)

where the summation is over the set
{

j1, j2, i
}
∈
{

j1 6= j2, 1 ≤ j1, j2 ≤ J, i ∈ S j1 ∩S j2

}
.

Useful choices of π(·, ·, ·) include kernel weights for multivariate kernel es-
timators or the weight function for multivariate local linear estimators. ✷
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14.3.5 Estimation of Rank-Tracking Probability Ratios

By the definition of RTPR given in (14.24) and (14.29), we note that

RT PRs1,s2

[(
y1, y2

)
, x
]
=

Ss1,s2

[
y1, y2

∣∣x(s1)
]

Ss1

(
y1

∣∣x
)

Ss2

[
y2

∣∣x(s1)
] . (14.51)

Following the plug-in approach for the RTP, we estimate RTPRs1,s2

[(
y1, y2

)
, x
]

by

R̂TPRs1,s2

[
(y1,y2),x

]
=

Ŝs1,s2

[
y1,y2

∣∣x(s1)
]

Ŝs1
(y1|x) Ŝs2

[
y2|x(s1)

] , (14.52)

where Ŝs1
(y1|x) and Ŝs1,s2

[
y1, y2

∣∣x(s1)
]
are given by (14.48) and (14.50), re-

spectively, and Ŝs2

[
y2

∣∣x(s1)
]
, which depends on the covariate vector at time s1

and the outcome variable at time s2, can be estimated by a kernel smoothing
method similar to Ŝs1,s2

[
y1, y2

∣∣x(s1)
]
.

A simple special case of Ŝs2

[
y2

∣∣x(s1)
]
is described in the following. We

consider the special case that P = 1 and X(t) = X(t) is a continuous random
variable on the real line at each t ∈ T . Let π(·, ·, ·) be the same weight on R3

function as defined in (14.50) which depends on
{

a1, j1 , a2, j2 , a3, i, j1

}
of (14.49)

and the bandwidths
{

b1, b2, b3

}
. The kernel estimator of Ss2

[
y2|x(s1)

]
has the

expression

Ŝs2

[
y2

∣∣x(s1)
]
= ∑

j1, j2, i

π
(
a1, j1 , a2, j2 , a3, i, j1

)
1[

Yi(t j2
)>y2

] (14.53)

with the summation over the set

{
j1, j2, i

}
∈
{

j1 6= j2, 1 ≤ j1, j2 ≤ J, i ∈ S j1 ∩S j2

}
.

Similar to the estimation of Ss1,s2

[
y1, y2

∣∣x(s1)
]
, useful choices of π(·, ·, ·) may

include kernel weights for multivariate kernel estimators or the weight function
for multivariate local linear estimators. Note that, because we do not impose
any correlation assumptions on

{
Y (t), X(t)

}
in (14.53) between any two dif-

ferent time points s1 and s2, (14.53) is a completely unstructured smoothing
estimators of Ss2

[
y2|x(s1)

]
. Although (14.53) has the attractive feature of flex-

ibility, a potential drawback of using an unstructured smoothing estimator is
that it may only be applied to situations of low-dimensional covariate vectors,
such as P = 1 or 2.

14.3.6 Bandwidth Choices

Data-driven bandwidth choices for the smoothing estimators of conditional
distribution functions can be obtained using the similar cross-validation ap-
proaches in Chapter 12. Our data-driven bandwidth choices in this section
are focused on the smoothing estimators of h(y, t) and Ft

[
y
∣∣X(t)

]
of the model

(14.25). These include the leave-one-subject-out cross-validation (LSCV) and
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the leave-one-time-point-out cross-validation (LTCV). Since the RTPs and
RTPRs are estimated in Sections 14.3.4 and 14.3.5 by plugging in the smooth-
ing estimators of their corresponding components, some subjectively chosen
bandwidths may have to be used in the kernel estimators of Ss1,s2

[
y1, y2

∣∣x(s1)
]

and Ss2

[
y2

∣∣x(s1)
]
.

1. Subjective Bandwidth Choices

The smoothing estimators of Ss1,s2

[
y1, y2

∣∣x(s1)
]
and Ss2

[
y2

∣∣x(s1)
]
depend

on the dimensionality of X(t) and the bandwidths for Xi(t j). In the estimators

Ŝs1,s2

[
y1, y2

∣∣x(s1)
]
and Ŝs2

[
y2

∣∣x(s1)
]
given in (14.50) and (14.53), respectively,

X(t) = X(t) is a one-dimensional random variable for each given t ∈T , so that,
in addition to the bandwidths b1 and b2 used for the time points t j1 and t j2 , an
additional bandwidth b3 > 0 is used in (14.49) to restrict the estimators using
the values of Xi

(
t j1

)
within a neighborhood of x(s1). When the dimensional-

ity of X(t) is greater than one, a bandwidth vector should be used for Xi(t j).
Data-driven bandwidth choices for Xi(t j), such as b3 for the one-dimensional
case, have not been investigated in the literature. Thus, in practice, subjec-
tively chosen bandwidths are needed for the continuous components of Xi

(
t j

)
.

The appropriateness of these subjectively chosen bandwidths can be visually
inspected by evaluating the smoothness of the estimators Ss1,s2

[
y1, y2

∣∣x(s1)
]

and Ss2

[
y2

∣∣x(s1)
]
.

2. Leave-One-Subject-Out Cross-Validation

We demonstrate the bandwidth selection procedures using the two-step
local linear estimators ĥL(y, t) and F̂L

t (y|x) of (14.39). However, the cross-
validation procedures here apply to the general two-step smoothing estimators.

LSCV Bandwidths for ĥL(y, t) and F̂L
t (y|x):

(a) Let ĥL
b,−i(y, t) and F̂L

t,b,−i(y|x) be the smoothing estimators of h(y, t) and

Ft(y|x) computed from (14.37) using the remaining data with all the obser-
vations from the ith subject deleted.

(b) When the goal is to estimate h(y, t) and Ft

[
y
∣∣X(t)

]
at a single value y ∈ R,

the LSCV bandwidth bh,y,LSCV for ĥL(y, t) is the minimizer of

LSCVh,y(b) =
J

∑
j=1

∑
i∈S j

1

J n j

{
1[Yi j>y]−φ

[
ĥL

b,−i

(
y, t j

)
+XT

i

(
t j

)
β̃
(
t j

)]}2

, (14.54)

where β̃
(
t j

)
is the raw estimator of β (t j) used in (14.32), and the LSCV

bandwidth bF,y,LSCV for F̂L
t (y|x) is the minimizer of

LSCVF,y(b) =
J

∑
j=1

∑
i∈S j

1

J n j

{
1[Yi j≤y]− F̂L

t j ,b,−i

[
y
∣∣XT

i

(
t j

)]}2

. (14.55)
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(c) When the goal is to estimate h(y, t) and Ft

[
y
∣∣x(t)

]
over the entire range of

y ∈ R based on a known weight function π(y), the LSCV bandwidth bh,LSCV

for ĥL(·, t) is the minimizer of

LSCVh(b) =
J

∑
j=1

∑
i∈S j

1

J n j

∫ {
1[Yi j>y]−

φ
[
ĥL

b,−i

(
y, t j

)
+XT

i (t j) β̃
(
t j

)]}2

π(y)dy, (14.56)

where β̃
(
t j

)
is the raw estimator of β (t j) used in (14.32), and the LSCV

bandwidth bF,LSCV for F̂L
t (·|x) is the minimizer of

LSCVF(b) =
J

∑
j=1

∑
i∈S j

1

J n j

∫ {
1[Yi j≤y]− F̂L

t j,b,−i

[
y
∣∣XT

i (t j)
]}2

π(y)dy. (14.57)

The choice of π(y) = 1 for all y ∈ R corresponds to the situation of assigning
a uniform weight to all the values of y ∈ R for h(y, t) and Ft(y|x). ✷

The reason for using different data-driven bandwidth choices in steps (b)
and (c) above is the different estimation objectives. In step (b), the objective
is to find bandwidths which are best for the estimation of h(y, t) and Ft(y|x)
at the pre-specified value of y, so that the LSCV scores (14.54) and (14.55)
are only focused on the squared errors of the smoothing estimators at y, and
the cross-validated bandwidths are the ones that minimize the estimators’
squared errors at y only. In step (c), on the other hand, the objective is to find
bandwidths which are suitable for the estimation of h(y, t) and Ft(y|x) for the
entire range of y ∈ R. Consequently, the cross-validated bandwidth obtained in
step (c) minimizes the integrated squared errors of the smoothing estimators.

3. Leave-One-Time-Point-Out Cross-Validation

The second cross-validation procedure, as described in Section 12.3.5, de-
pends on deleting the raw estimates at the time points

{
t1, . . . , tJ

}
one at a

time. This leave-one-time-point-out cross-validation (LTCV) is computation-
ally simpler than the LSCV described above.

LTCV Bandwidths for ĥL(y, t) and F̂L
t (y|x):

(a) Let ĥL
b,−t j

(y, t) and F̂L
t,b,−t j

(y|x) be the local polynomial estimators of h(y, t)

and Ft(y|x) computed with the corresponding raw estimators at the time
point t j deleted.

(b) When the goal is to estimate h(y, t) and Ft

[
y
∣∣X(t)

]
at a single value r ∈ R,

the LTCV bandwidth bh,y,LTCV for ĤL(y, t) is the minimizer of

LTCVh,y(b) = (1/J)
J

∑
j=1

[
h̃(y, t j)− ĥL(y, t j)

]2

, (14.58)
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and the LTCV bandwidth bF,y,LTCV for F̂L
t (y|x) is the minimizer of

LTCVF,y(b) = (1/J)
J

∑
j=1

{
F̃t j

[
Xi(t j)

]
− F̂L

t j ,b,−t j

[
y
∣∣Xi(t j)

]}2

, (14.59)

where h̃(y, t j) and F̃t j

[
y
∣∣Xi(t j)

]
are the raw estimators of (13.32) and (13.33).

(c) When the goal is to estimate h(y, t) and Ft

[
y
∣∣x(t)

]
over the entire range of

y ∈ R based on a known weight function π(y), the LTCV bandwidth bh,LTCV

for ĥL(·, t) is the minimizer of

LTCV(h)(b) = (1/J)
J

∑
j=1

∫ [
h̃(y, t j)− ĥL

t j ,b,−t j
(y, t j)

}2

π(y)dy, (14.60)

and the minimizer of

LTCV(F)(b) = (1/J)
J

∑
j=1

∫ {
F̃t j

[
y
∣∣Xi(t j)

]
− F̂t j ,b,−t j

[
y
∣∣Xi(t j)

]}2

π(y)dy.

(14.61)
is the LTCV bandwidth bF,LTCV . ✷

The bandwidths bh,LTCV and bF,LTCV ignore the possible correlations of
the raw estimates, and are computationally simpler than bh,LSCV and bF,LSCV .
Asymptotic properties of these two cross-validation methods under the current
models have not been investigated in the literature. Practical appropriateness
of bh,LTCV and bF,LTCV have been investigated through a simulation study of
Wu and Tian (2013b).

14.4 R Implementation

14.4.1 Conditional CDF for the NGHS SBP Data

The NGHS data has been described in Section 1.2 and analyzed in several pre-
vious chapters. In particular, we have discussed in Chapter 13 the estimation
of the time-varying effects of covariates, such as race and height, on several
cardiovascular risk factors, without estimating the conditional distributions of
these outcomes. We illustrate here how to estimate the conditional distribu-
tions, the rank-tracking probability (RTP) and the rank-tracking probability
ratio (RTPR) based on the time-varying transformation models (14.25).

Using the same logistic model as in Section 13.4, the conditional distribu-
tion of SBP has the expression

− log

{
1−Ft

[
y
∣∣X (1), X (2)(t)

]

Ft

[
y
∣∣X (1), X (2)(t)

]
}
= h(y, t)+β1(t)X (1)+β2(t)X (2)(t), (14.62)

where Y (t) is the SBP at age t, Ft

[
y
∣∣X(t)

]
is the conditional CDF for Y (t)
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given X(t) =
(
X (1), X (2)(t)

)T
with X (1) and X (2)(t) denoting the race and height

percentile, respectively. Here X
(1)
i = 1 if the ith girl is African American,

and X
(1)
i = 0 if she is Caucasian. Using the two-step estimation procedure in

Section 14.3, we estimate St

[
y
∣∣x(t)

]
= 1−Ft

[
y
∣∣X(t)

]
, RT Ps1,s2

[(
y1, y2

)
, x
]
and

RTPRs1,s2

[(
y1, y2

)
, x
]
based on (14.62) over a set of

{
y, y1, y2, t, s1, s2

}
values

for x(1) = 0 or 1, and a range of x(2)(t) values.
For the estimation of St

[
y
∣∣x(t)

]
in (??), we first compute the raw estimates

h̃
(
y, t j

)
and S̃t j

[
y
∣∣x(t j)

]
at the 100 equally spaced time design points

{
t1 =

9.0, t2 = 9.1, . . . , t100 = 18.9
}
using (13.13), (14.32) and (14.33) with w(·) = 1,

and then calculate the local linear estimators Ŝt

[
y
∣∣x(t)

]
using (14.39) with

q = 0, Q = 1, the Epanechnikov kernel, and the LSCV and LTCV bandwidths.
We compute the 95% pointwise confidence intervals for the estimators using
the percentile bootstrap approach, described in Section 13.3.5.

We use the following R code to compute the two-step smoothing estimator
of the conditional probability of “SBP > 100 mmHg” for an African American
girl with median (50%) height:

# NGHS.sbp and Agebins are given in Sec 13.4

# Obtain raw estimate of probability given Race=1, HTPCT=50%,

> attach(NGHS.sbp)

> Agebins <- seq(90, 189, by= 1)

> Prob.Y100 <- Cond.Prob(Agebins, Y=SBP, X1= (RACE==2)*1,

X2=HTPCT, Y0=100, X10=1, X20=50)

# Local linear smoothing estimate

> Prob.Y100.lm <- LocalLm(Agebins, Agebins, Prob.Y100, bw=16)

The conditional probabilities for other SBP values given different covariates
can be computed similarly.

Figure 14.1 shows the Ŝt

[
100
∣∣x(t)

]
computed by the LTCV bandwidths

for the two races, x(1) = 0 or 1, at five height percentile values, x(2)(t) = 5,
25, 50, 75 and 95. These curves suggest that the conditional probabilities of
“SBP > 100 mmHg” increase with age, but the slopes of these curves taper
off after 13 to 15 years of age. The differences of Ŝt

[
100
∣∣x(t)

]
among different

height percentiles diminish when age t increases, thus the effect of height on
SBP gradually decreases with age. Comparing the predicted probabilities at
the same height percentiles between two races, African American girls tend to
have higher probabilities of“SBP> 100 mmHg”than Caucasian girls and these
differences become more evident when the girls are getting older, so that race
is a significant factor affecting the SBP during middle to late adolescence.
Similar conclusions are obtained from the results of the LSCV bandwidths
and SBP values other than 100 mmHg or results based on other smoothing
methods such as kernel estimators.
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Figure 14.1 The predicted curves Ŝt

[
100
∣∣x(1), x(2)(t)

]
= 1− F̂t

[
100
∣∣x(1), x(2)(t)

]
of “SBP

> 100 mmHg”, computed using the LTCV bandwidths, over age 9 ≤ t ≤ 19 years for
(A) African American (x(1) = 1) girls and (B) Caucasian (x(1) = 0) girls at height
percentile values, x(2)(t) = 5, 25, 50, 75 and 95.

14.4.2 RTP and RTPR for the NGHS SBP Data

To compute the estimators of RT Ps1,s2

[(
y1, y2

)
, x
]
and RT PRs1,s2

[(
y1, y2), x

]

in (14.47) and (14.52), we first compute the estimator Ŝs1

[
y2

∣∣x(s1)
]
as above,

and then compute Ŝs1,s2

[
y1, y2

∣∣x(s1)
]
and Ŝs2

[
y2

∣∣x(s1)
]
separately for the two

races, x(1) = 0 and 1, using (14.50) and (14.53) with the product Epanechnikov
kernel π(·, ·, ·).

Let yt(q, a) be the qth SBP percentile for girls with ath height per-
centile at age t given in NHBPEP (2004). We calculate the estimates for
RTPs1,s2

[(
y1, y2

)
, x
]
, RTPRs1,s2

[(
y1, y2

)
, x
]
and their bootstrap 95% point-

wise percentile confidence intervals over age 9 ≤ s1 ≤ 14 for s2 = s1 + 3,
y1 = ys1

(75, 50), y2 = ys2
(75, 50), and Caucasian and African American girls

with the 50th and 75th percentiles (x(2)(s1) = 50, 75) in height. Some of the R
code for these estimators is given below:

# For African American girls, with S1=10, height(S1)=75%

> NGHS.B <- subset(NGHS.sbp, RACE==2)

> S1 <- 10; S2 <- 10 + 3;

> attach(NGHS.B)

# BP75IND is the indicator of Y(t)> y(75,50) quantile at t

# agebin ranges from 90-189 to indicate age-bins at 9.0, 9.1 ..

> Pr.S12 <- Kernel3D(ID, Y=BP75IND, Time=agebin, X=HTPCT,

T1=S1*10, T2=S2*10, X0=75, Bndwdth1=15,

Bndwdth2=15, Bndwdth3=25)
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Figure 14.2 The solid lines are the estimators R̂T Ps1,s1+3

[(
y1, y2

)
,
(
x(1), x(2)(s1)

)]

(A)-(B) and R̂TPRs1,s1+3

[(
y1, y2

)
,
(
x(1), x(2)(s1)

)]
(C)-(D) at y1 = ys1

(75, 50) and y2 =

ys1+3(75, 50) for African American (x(1) = 1, A and C) girls and Caucasian (x(1) = 0,

B and D) girls with the median (x(2)(s1) = 50, gray lines) and the 75th percentile
(x(2)(s1) = 75, dark lines) height. The dashed lines are the corresponding bootstrap
95% pointwise percentile confidence intervals.

> Pr.S2 <- Kernel3D.S2(ID, Y=BP75IND, Time=agebin, X=HTPCT,

T1=S1*10, T2=S2*10, X0=75, Bndwdth1=15,

Bndwdth2=15, Bndwdth3=25)

Figure 14.2 shows these estimated 3-year rank-tracking quantities. These
RTPs and RTPRs describe the likelihood for those girls to have SBP values
greater than the age- and height-adjusted 75th SBP percentile, ys1+3(75, 50)
at age s1+3 given that, at age s1, their SBP values are greater than ys1

(75, 50)
and their height is at the median and the 75th percentile at s1, respectively.
The estimated RTPRs in Figures 14.2(C)-(D) are all greater than one, indicat-
ing that SBP has positive tracking abilities. This suggests that the girls with
high SBP values at age s1 are more likely to have high SBP values three years
later, compared to a randomly selected girl in this population with elevated
SBP value without the knowledge of her SBP status at a younger age. Since
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the estimated rank-tracking quantities in Figure 14.2 vary with different races
and height percentiles, the tracking abilities of SBP also appear to be affected
by these variables.

The smoothing estimators of Figures 14.1 and 14.2 provide useful insight
into the SBP distributions for adolescent girls, which have not been previously
investigated. The results of Figure 14.2 suggest that the multivariate smooth-
ing method in Section 14.3 gives appropriate RTP and RTPR estimators for a
typical longitudinal study when the dimensionality of the covariate vector X(t)
is low. These RTPs and RTPRs may be used as an exploratory analysis tool
for evaluating the correlation structures of the longitudinal variables. How-
ever, when the dimensionality of X(t) is high, the smoothing approach may
not be feasible for the estimation of RTPs and RTPRs, so that appropriate
longitudinal models across different time points and their goodness-of-fit tests
need to be developed.

14.5 Asymptotic Properties

We present the asymptotic properties of both the raw and smoothing estima-
tors of h(y, t) and Ft(y|x). For the raw estimators, we derive the asymptotic
expressions of their biases and variances at each of the design time points{

t1, . . . , tJ
}
and their covariances between two different design time points t j1

and t j2 . These asymptotic expressions are the key components for deriving the
asymptotic mean squared errors of the smoothing estimators.

14.5.1 Asymptotic Assumptions

Although the asymptotic derivations can be carried out for various types of
smoothing estimators based on the general expression of linear estimators in
(14.34), our derivations are specifically given for the local polynomial estima-
tors (14.38). Since the asymptotic derivations require some complex notation,
we first define, for any t j ∈

{
t1, . . . , tJ

}
,

{
V
[
h(y, t j)

]
=

(
1
/

n j

)
∑i∈S j

vi(y, t j),

vi(y, t j) = 1[Yi j≥y]−φ
[
h(y, t j)+XT

i (t j)β (t j)
]
,

(14.63)

where φ(u) is defined in (14.26). The derivatives of V
[
h(y, t j)

]
with respect to

h(y, t j) and the elements of β (t j) are defined by

V1

[
h(y, t j)

]
=

∂V
[
h(y, t j)

]

∂h(y, t j)
and V2

[
h(y, t j)

]
=

∂V
[
h(y, t j)

]

∂β (t j)
. (14.64)

Since, by (14.32), the raw estimator h̃(y, t j) satisfies

V
[
h̃(y, t j)

]
= 0 for any t j ∈

{
t1, . . . , tJ

}
,
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it follows from (14.63), (14.64) and the Taylor’s expansion that, when n is
sufficiently large,

V
[
h(y, t j)

]

= −V1

[
h(y, t j)

][
h̃(y, t j)− h(y, t j)

]
−V2

[
h(y, t j)

][
β̃(t j)−β (t j)

]

+op

[∣∣h̃(y, t j)− h(y, t j)
∣∣
]
+ op

{∣∣∣∣
P

∑
p=1

[
β̃p(t j)−βp(t j)

]∣∣∣∣
}
. (14.65)

In order to take the variation of
[
β̃(t j)− β (t j)

]
into account, we consider

Ui1i2

[
β (t j)

]
of (13.13) and define

Λ(t j) =−E

{
∂Ui1i2 [β (t j)]

∂β (t j)

∣∣∣∣D
}
. (14.66)

We make the following asymptotic assumptions throughout this chapter
for the local polynomial estimators (14.38).

Asymptotic Assumptions:

(a) For any q and Q, the bandwidth b and number of design time points J

satisfy b → 0, n1/2 bQ−q+1 → ∞, J b → ∞ and nJ b2q+1 → ∞ as n → ∞.

(b) The design time points
{

t j ∈ T : j = 1, . . . , J
}

are i.i.d. with density
function π(t) and support T . For all j, j1 and j2, there are known con-
stants 0 < c j ≤ 1 and 0 < c j1 j2 ≤ 1, such that limn→∞

(
n j/n

)
= c j and

limn→∞

(
n j1 j2/n

)
= c j1 j2 .

(c) For any 1 ≤ p ≤ P and y, βp(t) and h(y, t) of (14.25) are Q+ 1 times
continuously differentiable with respect to t. The inverse of the link function,
φ(s) = g−1(s), is Q+ 1 times continuously differentiable with respect to s.

(d) The matrices E
{

V1

[
h(y, t j)

]∣∣D
}
and Λ(t j) are nonsingular.

(e) The kernel K(·) is a bounded symmetric probability density function. ✷

14.5.2 Raw Baseline and Distribution Function Estimators

Since the asymptotic properties of the raw estimator β̃(t j) have already been
established in Section 12.5, our focus is on the asymptotic properties of the
raw baseline estimator h̃(t, t j). The asymptotic properties of the raw CDF

estimator F̃t j
(y|x) are derived from the asymptotic properties of β̃ (t j) and

h̃(y, t j) using the model (14.31).

1. Baseline Estimators

We now show that h̃(y, t j) of (14.32) is asymptotically unbiased for the base-
line function h(y, t j), and establish its asymptotic variance-covariance matrix.
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We define




W (y, t j) =
[
n j (n j − 1)

]−1
∑i1 6=i2∈S j

[
v∗i1(y, t j)+ u∗i1 i2

(y, t j)
]
,

B1(y, t j) =
{

E
[
V1

(
h(y, t j)

)∣∣D
]}−1

,

B2(y, t j) = B1(y, t j)E
{

V2

[
h(y, t j)

]∣∣∣D
}
,

v∗i (y, t j) = −B1(y, t j)vi(y, t j),

u∗i1 i2
(y, t j) = B1(y, t j)Λ−1(t j)Ui1 i2

[
β (t j)

]
.

(14.67)

In addition, with c j and c j1 j2 of Assumption (b), we define a j1 j2 and

ρ (k)(y, t j1 , t j2) for k = 0, 1, 2 by





a j1 j2 = c j1 j2

[
3(c j2 − c j1 j2)(2c j1 − c j1 j2)

+c j1 j2 (3c j1 − 2c j1 j2)
]/(

6c2
j1

c2
j2

)
,

ρ (0)(y, t j1 , t j2) = E
[
v∗i1(y, t j1)v∗i1(y, t j2)

∣∣D
]
,

ρ (1)(y, t j1 , t j2) = E
[
v∗i1(y, t j1)u∗i1i3

(y, t j2)
∣∣D
]
,

ρ (2)(y, t j1 , t j2) = E
[
u∗i1 i2

(y, t j1)u∗i1 i3
(y, t j2)

∣∣D
]

(14.68)

for any { j1, j2} and

{
(i1, i2, i3) : i1 6= i2 6= i3; i1 ∈ S j1 ∩S j2 ; i2 ∈ S j1 ; i3 ∈ S j2

}
. (14.69)

The following lemma shows the asymptotic approximation, asymptotic un-
biasedness and asymptotic variance-covariance matrix for h̃(y, t j).

Lemma 14.1. If Assumptions (b) and (d) are satisfied, the following con-
clusions hold when n is sufficiently large:

(a) The baseline error h̃(y, t j)− h(y, t j) has the approximation

[
h̃(y, t j)− h(y, t j)

][
1+ op(1)

]

= W (y, t j)+ op

{∣∣∣∣
P

∑
p=1

[
β̃p(t j)−βp(t j)

]∣∣∣∣
}
. (14.70)

(b) The baseline estimator h̃(y, t j) is asymptotically unbiased for h(y, t j) in the
sense that

E
[
W (y, t j)

∣∣D
]
= 0 for any t j ∈ T . (14.71)

(c) For any
(
t j1 , t j2

)
∈ T ×T , the asymptotic covariance of h̃(y, t j) is

Cov
[
W (y, t j1),W (y, t j2)

∣∣D
]

= n−1 a j1 j2

[
ρ (0)(y, t j1 , t j2)+ 2ρ (1)(y, t j1 , t j2)

+2ρ (1)(y, t j2 , t j1)+ 4ρ (2)(y, t j1 , t j2)
]
. (14.72)
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(d) For any t j ∈ T , the asymptotic variance of h̃(y, t j) is given by

Var
[
W (y, t j)

∣∣D
]

= Cov
[
W (y, t j),W (y, t j)

∣∣D
]

(14.73)

=
[
ρ (0)(y, t j)+ 4ρ (1)(y, t j)+ 4ρ (2)(y, t j)

]/(
6c j n

)
.

which is obtained by taking j1 = j2 = j in (14.72), ρ (k)(y, t j) = ρ (k)(y, t j, t j)
for k = 0, . . . , 3, c j1 = c j2 = c j1 j2 = c j, a j j = 1/(6c j). �

Proof of Lemma 14.1 is given in Section 14.5.4.
We clarify a number of implications of the above lemma. The asymptotic

approximation of (14.70) implies that, when n and n j are sufficiently large,[
h̃(y, t j)− h(y, t j)

]
is approximated by W (y, t j) plus a smaller order term of∣∣∑P

p=1

[
β̃p(t j)−βp(t j)

]∣∣. Because of (14.70), this implies that on average h̃(y, t j)
is close to h(y, t j), hence is asymptotically unbiased, although the conditional

expectation of h̃(y, t j) given D may not necessarily equal h(y, t j) for finite
sample size situations. The asymptotic covariance (14.72) and variance (14.73)
depend on the limits of c j, c j1 j2 and a j1 j2 as n → ∞. Consequently, various
special cases can be derived depending on the choices of c j, c j1 j2 and other
quantities in (14.72) and (14.73). For example, if we consider the special case
of an “ideal” longitudinal design with c j = c j1 j2 = 1, i.e., all the subjects have

observations at all the time design points, the asymptotic covariance of h̃(y, t j1)

and h̃(y, t j2) is given by (14.72) with a j1 j2 = 1/6.
Comparing (14.72) with (14.73), if c j1 j2 is ignorable relative to c j1 and c j2 ,

the asymptotic covariance Cov
[
W (y, t j1),W (y, t j2)

∣∣D
]
can be ignored relative

to Var
[
W (y, t j)|D

]
. This comparison suggests that the correlation structures

of the data only affect the asymptotic properties of h̃(y, t j) under the dense
longitudinal data in the sense that c j1 j2 cannot be ignored relative to c j1

and c j2 . Because of various practical concerns, such as cost and logistical is-
sues, dense longitudinal data are rarely used in real clinical studies. Thus, it
is often reasonable to ignore the contributions of the asymptotic covariance
Cov

[
W (y, t j1),W (y, t j2)

∣∣D
]
when we evaluate the asymptotic mean squared er-

rors of a local polynomial smoothing estimator in a real application.

2. Distribution Function Estimators

We assume that φ(s) is a continuously differentiable function with deriva-

tive φ ′(s). Based on (14.33), the asymptotic approximations of S̃t j
(y|x) =

1− F̃t j
(y|x) can be expressed as

S̃t j
(y|x)− St j

(y|x)
= φ ′[h(y, t j)+ xT (t j)β (t j)

]{
h̃(y, t j)− h(y, t j)+ xT (t j)

[
β̃ (t j)−β (t j)

]}

+op

[∣∣h̃(y, t j)− h(y, t j)
∣∣]+ op

[
P

∑
p=1

∣∣∣β̃p(t j)−βp(t j)
∣∣∣
]
. (14.74)
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Following the functions defined in (14.65) and (14.66), we define that, for any{
j1, j2

}
and (i1, i2, i3) satisfying (14.69),





u∗∗i1i2
(y, x, t j) =

[
B1(y, t j)+ xT (t j)

]
Λ−1(t j)Ui1i2

[
β (t j)

]
,

ρ (1∗)(y, x, t j1 , t j2) = E
[
v∗i1(y, t j1)u∗i1i3

(y, x, t j2)
∣∣D
]
,

ρ (2∗)(y, x, t j1 , t j2) = E
[
u∗i1i2

(y, x, t j1)u∗i1i3
(y, x, t j2)

∣∣D
]
,

Ai1i2(y, x, t j) = φ ′[h(y, t j)+ xT (t j)β (t j)
]

×
[
v∗i1(y, t j)+ u∗∗i1i2

(y, x, t j)
]
.

(14.75)

The next lemma summarizes the asymptotic expressions of the bias, covariance
and variance for S̃t j

(y|x).

Lemma 14.2. If Assumptions (b) and (d) are satisfied, then, as n → ∞,

[
S̃t j

(y|x)− St j
(y|x)

][
1+ op(1)

]
= A (y, x, t j) (14.76)

=
[
n j (n j − 1)

]−1
∑

i1 6=i2∈S j

Ai1i2(y, x, t j),

and the following conclusions hold:

(a) S̃t j
(y|x) is asymptotically unbiased for St j

(y|x) in the sense that

E
[
A (y, x, t j)

∣∣D
]
= 0 for any t j ∈ T . (14.77)

(b) For any
(
t j1 , t j2

)
∈ T ×T , the asymptotic covariance of S̃t j

(y|x) is

Cov
[
A (y, x, t j1), A (y, x, t j2)

∣∣D
]

= n−1 a j1 j2 φ ′[h(y, t j1)+ xT (t j1)β (t j1)
]

φ ′[h(y, t j2)+ xT (t j2)β (t j2)
]

×
[
ρ (0)(y, t j1 , t j2)+ 2ρ (1∗)(y, x, t j1 , t j2)+ 2ρ (1∗)(y, x, t j2 , t j1)

+4ρ (2∗)(y, x, t j1 , t j2)
]
, (14.78)

where a j1 j2 and ρ (0)(·) are defined in (14.68), and ρ (1∗)(·) and ρ (2∗)(·) de-
fined in (14.75).

(c) For any t j ∈ T , the asymptotic variance of S̃t j
(y|x) is given by (14.78)

with j1 = j2 = j, that is,

Var
[
A (y, x, t j)|D

]
=

1

6c j n

{
φ ′[h(y, t j)+ xT (t j)β (t j)

]}2
(14.79)

×
[
ρ (0)(y, t j)+ 4ρ (1∗)(y, x, t j)+ 4ρ (2∗)(y, x, t j)

]
,

where ρ (0)(y, t j) = ρ (0)(y, t j, t j) and ρ (k∗)(y, x, t j) = ρ (k∗)(y, x, t j, t j) for k = 1

and 2. �
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Proof of Lemma 14.2 is given in Section 14.5.4.
Since E

[
A (y, x, t j)|D

]
= 0, Lemma 14.2 suggests that S̃t j

(y|x) is on average
close to St j

(y|x). The asymptotic covariance (14.78) depends on c j, c j1 j2 and
a j1 j2 . If c j1 j2 can be ignored relative to c j1 and c j2 , then it follows from (14.68),
(14.78) and (14.79) that Cov

[
A (y, x, t j1), A (y, x, t j2)

∣∣D
]
can be ignored rela-

tive to Var
[
A (y, x, t j)

∣∣D
]
.

14.5.3 Local Polynomial Smoothing Estimators

We establish the asymptotic biases, variances and mean-squared errors of the

local polynomial estimators ĥ(q)(y, t) and F̂
(q)

t

(
y|x
)
of (14.38). Let ψ̂t(y, x) be

a local polynomial estimator of ψt(y, x), which may be either h(q)(y, t) or

F
(q)

t (y|x). We define the conditional bias, variance and mean squared error
(MSE) for ψ̂t(y, x) given D by





Bias
[
ψ̂t(y, x)

∣∣D
]

= E
[
ψ̂t(y, x)−ψt(y, x)

∣∣D
]
,

Var
[
ψ̂t(y, x)

∣∣D
]

= E
{[

ψ̂t(y, x)−E
[
ψ̂t(y, x)

∣∣D
]]2∣∣D

}
,

MSE
[
ψ̂t(y, x)

∣∣D
]

= Bias
[
ψ̂t(y, x)

∣∣D
]2
+Var

[
ψ̂t(y, x)

∣∣D
]
.

(14.80)

These biases, variances and MSEs are all pointwise in the sense that they
are specific for the pair (y, t). When the adequacy of ψ̂t(y, x) is considered
over a range R of (y, t), we can generalize MSE

[
ψ̂t(y, x)

∣∣D
]
to the following

integrated MSEs

IMSEw

[
ψ̂·(·, x)

∣∣D
]
=
∫

R

MSE
[
ψ̂t(y, x)

∣∣D
]

w(y, t)dydt,

where w(y, t) is some pre-specified non-negative weight function on R.

We present here the cases for ψ̂t(y, x) = ĥ(q)(y, t) and ψ̂t(y, x) = F̂
(q)

t (y, t).
The asymptotic expressions for IMSEw

[
ψ̂·(·, x)

∣∣D
]
can be directly expressed

using MSE
[
ψ̂t(y, x)

∣∣D
]
and w(y, t), hence, are omitted.

1. Smoothing Baseline Estimators

For a given kernel function K(·), we define





S =
(
s j1 j2

)
j1, j2=0,...,Q

, matrix with elements s j1 j2 ,

s j1 j2 =
∫

K(u)u j1+ j2 du,

Kq,Q+1(u) = eT
q+1,Q+1S−1

(
1, u, · · · , uQ

)T
K(u),

BQ+1(K) =
∫

K(u)uQ+1 du,

V (K) =
∫

K2(u)du.

(14.81)

The asymptotic expressions for ĥ(q)(y, t) are given in the following theorem.
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Theorem 14.1. If Assumptions (a) to (e) are satisfied with c j = c for
all j = 1, . . . ,J and some 0 < c ≤ 1, the following conclusions hold when n is
sufficiently large:

(a) The asymptotic bias for ĥ(q)(y, t) satisfies

Bias
[

ĥ(q)(y, t)
∣∣D
]
= b(Q−q+1)

Bh(y, t)
[
1+ op(1)

]
, (14.82)

where b > 0 is the bandwidth and

Bh(y, t) =
[
q!/(Q+ 1)!

]
h(Q+1)(y, t)BQ+1

(
Kq,Q+1

)
. (14.83)

(b) The asymptotic variance for ĥ(q)(y, t) satisfies

Var
[

ĥ(q)(y, t)
∣∣D
]
= (nJ)−1 b−2q−1

Vh(y, t)
[
1+ op(1)

]
, (14.84)

where, with π(t) being the density of design time points defined in Assump-
tion (b),

{
Vh(y, t) =

{
(q!)2

/[
6cπ(t)

]}
V
(
Kq,Q+1

)
σ2

h (y, t),

σ2
h (y, t) = ρ (0)(y, t)+ 4ρ (1)(y, t)+ 2ρ (2)(y, t).

(14.85)

(c) It follows from (a) and (b) above that, for sufficiently large n,

MSE
[

ĥ(q)(y, t)
∣∣D
]

=
[
b2(Q−q+1)

B
2
h(y, t)+ (nJ)−1 b−2q−1

Vh(y, t)
]

×
[
1+ op(1)

]
. (14.86)

where the bias and variance components B2
h(y, t) and Vh(y, t) have the ex-

pressions in (14.83) and (14.85), respectively. �

Proof of Theorem 14.1 is given in Section 14.5.4.
It is clear from Theorem 14.1(a) that a small bandwidth b leads to a small

absolute value of the asymptotic bias of ĥ(q)(y, t), while, on the other hand,
it is seen from (14.84) that a small bandwidth b leads to a large asymptotic

variance of ĥ(q)(y, t). Thus, the mean squared error of ĥ(q)(y, t) converges to
zero if and only if both b2(Q−q+1) and (nJ)−1 b−2q−1 converge to zero. For the

special case of estimating h(y, t) using the local linear estimator ĥL(y, t) defined
in (14.39), Theorem 14.1 leads to the following corollary by setting Q = 1 and
q = 0 in (14.82) through (14.86).

Corollary 14.1. If the assumptions of Theorem 14.1 are satisfied and
Assumption (c) holds for Q = 1, the following conclusions hold for the local

linear estimator ĥL(y, t) of h(y, t) when n is sufficiently large:

(a) The asymptotic bias for ĥL(y, t) satisfies

Bias
[

ĥL(y, t)
∣∣D
]
= b2

B
∗
h(y, t)

[
1+ op(1)

]
, (14.87)



ASYMPTOTIC PROPERTIES 499

where b > 0 is the bandwidth,

B
∗
h(y, t) = (1/2)h′′(y, t)B2

(
K0,2

)
(14.88)

and h′′(y, t) is the second derivative of h(y, t) with respect to t.

(b) The asymptotic variance for ĥL(y, t) satisfies

Var
[

ĥL(y, t)
∣∣D
]
= (nJ b)−1

V
∗

h (y, t)
[
1+ op(1)

]
, (14.89)

where, with π(t) being the density of design time points defined in Assump-
tion (b),

{
Vh(y, t) = {1

/
[6cπ(t)]}V

(
K0,2

)
σ2

h (y, t),

σ2
h (y, t) = ρ (0)(y, t)+ 4ρ (1)(y, t)+ 2ρ (2)(y, t).

(14.90)

(c) It follows from (a) and (b) above that, for sufficiently large n,

MSE
[

ĥL(y, t)
∣∣D
]

=
{

b4
[
B

∗
h(y, t)

]2
+(nJ b)−1

V
∗

h (y, t)
}

×
[
1+ op(1)

]
, (14.91)

where the bias and variance components
[
B∗

h(y, t)
]2

and V ∗
h (y, t) have the

expressions in (14.88) and (14.90), respectively. �

We can derive a number of theoretical conclusions based on the asymptotic
expressions of the mean squared errors in (14.86) and (14.91). First, by setting
the derivative of the dominating part of (14.86) with respect to t to zero, the
asymptotically optimal bandwidth b

opt,h(q) , which minimizes the dominating

part of the right side of (14.86), is given by

bopt,h(q) =

[
(2q+ 1)Vh(y, t)

2nJ (Q− q+ 1)B2
h(y, t)

]1/(2Q+3)

. (14.92)

Substituting b of (14.86) with the above b
opt,h(q) , we can show that, under the

assumptions of Theorem 14.1, the asymptotically optimal mean squared error
of ĥ(q)(y, t) is

MSEopt

[
ĥ(q)(y, t)

∣∣D
]

= (nJ)−
2 (Q−q+1)

2Q+3
[
Bh(y, t)

] 2 (2q+1)
2Q+3

[
Vh(y, t)

] 2 (Q−q+1)
2Q+3

×
{[

2q+ 1

2(Q− q+ 1)

] 2 (Q−q+1)
2Q+3

+

[
2q+ 1

2(Q− q+ 1)

]− q+1
2Q+3

}

×
[
1+ op(1)

]
. (14.93)

The right side of (14.93) suggests that, when the ideal bandwidth bopt,h(q) is
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used, the optimal convergence rate for the mean squared error of ĥ(q)(y, t)
under the assumptions of Theorem 14.1 is (nJ)[−2 (Q−q+1)]/(2Q+3). However,
because the ideal bandwidth of (14.92) depends on the unknown quantities
Bh(y, t) and Vh(y, t), the expression at the right side of (14.93) only gives some

theoretical insight into the appropriateness of the estimator ĥ(q)(y, t), which
may not be actually used in practice.

The asymptotically optimal bandwidth and mean squared error of the local
linear estimator ĥL(y, t) under the assumptions of Corollary 14.1 are given by
(14.92) and (14.93), respectively, with Q= 1 and q= 0. As a result, the optimal

convergence rate for the mean squared error of ĥL(y, t) is (nJ)−4/5.

2. Smoothing Distribution Function Estimators

Building on the asymptotic representations of ĥ(q(y, t), the next theorem
summarizes the asymptotic biases, variances and mean squared errors of the

conditional CDF estimator F̂
(q)

t (y|x).

Theorem 14.2. If Assumptions (a) through (e) are satisfied with c j = c

for all j = 1, . . . , J and some 0 < c ≤ 1, the following conclusions hold when n

is sufficiently large:

(a) The asymptotic bias of F̂
(q)

t (y|x) satisfies

Bias
[

F̂
(q)

t (y|x)
∣∣D
]
= b(Q−q+1)

BF (y, x, t)
[
1+ op(1)

]
, (14.94)

where b > 0 is the bandwidth and

BF(y, t) =
[
q!/(Q+ 1)!

]
F
(Q+1)

t (y|x)BQ+1

(
Kq,Q+1

)
. (14.95)

(b) The asymptotic variance of F̂
(q)

t (y|x) satisfies

Var
[

F̂
(q)

t (y|x)
∣∣D
]
= (nJ)−1 b−2q−1

VF(y, x, t)
[
1+ op(1)

]
, (14.96)

where, with π(t) being the density of time design points defined in Assump-
tion (b),





VF(y, x, t) =
{
(q!)2

/[
6cπ(t)

]}
V
(
Kq,Q+1

)
σ2

F(y, x, t),

σ2
F(y, x, t) =

{
φ ′[h(y, t)+ xT β (t)

]}2

×
[
ρ (0)(y, t)+ 4ρ (1∗)(y, x, t)+ 4ρ (2∗)(y, x, t)

]
.

(14.97)

(c) It follows from (a) and (b) above that, for sufficiently large n,

MSE
[
F̂
(q)

t (y, x)
∣∣∣D
]

=
{

b2(Q−q+1)
[
BF(y, x, t)

]2
(14.98)

+(nJ)−1 b−2q−1
VF(y, x, t)

}[
1+ op(1)

]
,

where the bias and variance components BF(y, x, t) and VF(y, x, t) have the
expressions in (14.95) and (14.97), respectively. �
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Proof of Theorem 14.2 is given in Section 14.5.4.
Comparing Theorem 14.2(c) with Theorem 14.1(c), we can see that the

mean squared errors of ĥ(q)(y, t) and F̂
(q)

t (y, x) converge to zero in the same
rate as b2 (Q−q+1) and (nJ)−1 b−2q−1 converging to zero. For the special case of
estimating Ft(y|x) with the local linear estimator F̂L

t (y|x) of (14.39), Theorem
14.2 reduces to the following corollary with Q = 1 and q = 0.

Corollary 14.2. If the assumptions of Theorem 13.2 are satisfied and
Assumption (c) holds for Q = 1, the following conclusions hold when n is
sufficiently large:

(a) The asymptotic bias of F̂L
t (y|x) satisfies

Bias
[

F̂L
t (y|x)

∣∣D
]
= b2

B
∗
F(y, x, t)

[
1+ op(1)

]
, (14.99)

where b > 0 is the bandwidth,

B
∗
F(y, t) = (1/2)F ′′

t (y|x)B2

(
K0,2

)
. (14.100)

and F ′′
t (y|x) is the second derivative with respect to t.

(b) The asymptotic variance of F̂L
t (y|x) satisfies

Var
[

F̂L
t (y|x)

∣∣D
]
= (nJ b)−1

V
∗

F (y, x, t)
[
1+ op(1)

]
, (14.101)

where, with π(t) being the density of design time points defined in Assump-
tion (b),





V ∗
F (y, x, t) =

{
1
/[

6cπ(t)
]}

V
(
K0,2

)
σ2

F(y, x, t),

σ2
F(y, x, t) =

[
ρ (0)(y, t)+ 4ρ (1∗)(y, x, t)+ 4ρ (2∗)(y, x, t)

]

×
{

φ ′[h(y, t)+ xT β (t)
]}2

.

(14.102)

(c) It follows from (a) and (b) above that, for sufficiently large n,

MSE
[

F̂L
t (y, x)

∣∣D
]

(14.103)

=
{

b4
[
B

∗
F(y, x, t)

]2
+(nJ b)−1

V
∗

F (y, x, t)
}[

1+ op(1)
]
,

where the bias and variance components B∗
F(y, x, t) and V ∗

F (y, x, t) have the
expressions in (14.100) and (14.102), respectively. �

Similar to the comments following Theorem 14.1 and Corollary 14.1, we can
derive the same theoretical conclusions based on the asymptotic expressions
of the mean squared errors in (14.98) and (14.103). Setting the derivative of
the dominating part of (14.98) with respect to t to zero, the asymptotically
optimal bandwidth b

opt,F(q) is

b
opt,F(q) =

[
(2q+ 1)VF(y, t)

2nJ (Q− q+ 1)B2
F(y, t)

]1/(2Q+3)

. (14.104)
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Substituting b of (14.98) with the above b
opt,F(q) , the asymptotically optimal

mean squared error of F̂ (q)(y, t) under the assumptions of Theorem 14.2 is

MSEopt

[
F̂(q)(y, t)

∣∣∣D
]

= (nJ)−
2 (Q−q+1)

2Q+3

[
BF(y, t)

] 2 (2q+1)
2Q+3

[
VF(y, t)

] 2 (Q−q+1)
2Q+3

×
{[

2q+ 1

2(Q− q+ 1)

] 2 (Q−q+1)
2Q+3

+

[
2q+ 1

2(Q− q+ 1)

]− q+1
2Q+3

}

×
[
1+ op(1)

]
, (14.105)

which has the optimal convergence rate (nJ)[−2 (Q−q+1)]/(2Q+3) under the as-
sumptions of Theorem 14.2. Since (14.104) depends on the unknown quantities
BF(y, t) and VF(y, t), b

opt,F(q) , (14.105) only gives some theoretical insights into

the appropriateness of F̂ (q)(y, t). Under the assumptions of Corollary 14.2, the
asymptotically optimal bandwidth and mean squared errors of the local linear
estimator F̂L(y, t) are given by (14.104) and (14.105), respectively, with Q = 1

and q = 0, and the optimal convergence rate for the mean squared error of
F̂L(y, t) is (nJ)−4/5.

3. Justifications of Smoothing Step

Justifications of the smoothing step can be seen from the asymptotic vari-
ances and MSEs between the raw estimators h̃(y, t j) and F̃t j

(y|x) and the

smoothing estimators ĥ(y, t) and F̂t(y|x). We illustrate this justification here
using a simple special case. Other scenarios can be similarly evaluated.

Suppose that t = t j for some 1 ≤ j ≤ J. Lemmas 14.1 and 14.2 imply that

h̃(y, t j) and F̃t j
(y|x) are asymptotically unbiased and the asymptotic variances

of h̃(y, t j) and F̃t j
(y|x) are O

(
n−1
)
. Suppose that q = 0, Q = 1, and ĥ(y, t j) and

F̂t j
(y|x) are the local linear estimators. Theorems 14.1 and 14.2 imply that

the asymptotic variances of ĥ(y, t j) and F̂t j
(y|x) are O

[
(nJ b)−1

]
, which, by

Assumption (a), is of smaller order than O
(
n−1
)
. The asymptotic unbiasedness

of h̃(y, t j) and F̃t j
(y|x) implies that the asymptotic MSEs of h̃(y, t j) and F̃t j

(y|x)
are also O

(
n−1
)
. When the asymptotic bias terms are included, the asymptotic

MSEs of ĥ(y, t j) and F̂t j
(y|x) are O

[
b4 +(nJ b)−1

]
, whose minimum is attained

at O
[
(nJ)−4/5

]
by taking b = O

[
(nJ)−1/5

]
.

Comparing O
[
(nJ)−4/5

]
with O

(
n−1
)
, we observe that the asymptotic

MSEs of ĥ(y, t j) and F̂t j
(y|x) converge to zero in a faster rate than that of

h̃(y, t j) and F̃t j
(y|x) if limn→∞ J n−1/4 = ∞. This suggests that the smoothing

step reduces the MSEs if J is large relative to n1/4. However, the smoothing
step may not lead to better estimators if J is small relative to n1/4.
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14.5.4 Theoretical Derivations

We provide in this section the proofs of Lemmas 14.1 and 14.2, and Theo-
rems 14.1 and 14.2.

1. Proofs for Raw Estimators

Proof of Lemma 14.1:

Following (14.32), (14.64), (14.65) and the law of large numbers, we first
observe the approximation

E
{

V1

[
h(y, t j)

]∣∣D
}[

h̃(y, t j)− h(y, t j)
][

1+ op(1)
]

= −V
[
h(y, t j)

]
−E

[
V2(y, t j)

∣∣D
][

β̃ (t j)−β (t j)
]
. (14.106)

If Λ(t j) is nonsingular, we also know from Lemma 12.1 and (13.14) that

A(t j) =
[
I+ op(I)

][
β̃ (t j)−β (t j)

]

=
[
n j (n j − 1)

]−1
Λ−1

(
t j

)
∑

i1 6=i2∈S j

Ui1i2

[
β
(
t j

)]
. (14.107)

Since E
{

V1

[
h(y, t j)

]∣∣D
}

is assumed to be nonsingular, we have, by (14.32),
(14.106), (14.107) and the definitions of v∗i (y, t j), u∗i1 i2

(y, t j) and W (y, t j) in
(14.67), that

[
h̃(y, t j)− h(y, t j)

][
1+ op(1)

]
= W (y, t j)

+op

{∣∣∣∣
P

∑
p=1

[
β̃p(t j)−βp(t j)

]∣∣∣∣
}
,

which gives the conclusion (14.70) of the lemma.
Next, using the definitions given in (14.63) and (14.67), we observe that

{
E
[
vi(y, t j)

∣∣D
]

= E
{

Ui1 i2

[
β (t j)

]∣∣D
}

= 0,

E
[
v∗i1(y, t j)

∣∣D
]

= E
{

u∗i1 i2

[
β (t j)

]∣∣D
}

= 0.
(14.108)

Substituting (14.108) into the definition of W (y, t j) given in (14.67), we observe
that

E
[
W (y, t j)

∣∣D
]

=
1

n j (n j − 1) ∑
i1 6=i2∈S j

{
E
[
v∗i1(y, t j)

∣∣D
]
+E

[
u∗i1 i2

(
β (t j)

)∣∣D
]}

= 0.

which gives the assertion (14.71) of the lemma.
The next task is to show Lemma 14.1(c). To do this, we first observe
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from (14.67) and (14.108) that the covariance of W (y, t j1) and W (y, t j2) has the
following expression

Cov
[
W (y, t j1),W (y, t j2)

∣∣D
]

=

[
1

n j1 (n j1 − 1)

][
1

n j2 (n j2 − 1)

]
(14.109)

× ∑
i1 6=i2∈S j1

∑
i3 6=i4∈S j2

E
[
w∗

i1 i2
(y, t j1)w∗

i3 i4
(y, t j2)

∣∣D
]
,

where
w∗

i1 i2
(y, t j) = v∗i1(y, t j)+ u∗i1i2

(y, t j). (14.110)

Writing out the expansion of (14.109) from (14.110), we need to evaluate the
summation of

E
[
w∗

i1 i2
(y, t j1)w∗

i3 i4
(y, t j2)

∣∣D
]

= E
[
v∗i1(y, t j1)v∗i3(y, t j2)

∣∣D
]
+E

[
v∗i1(y, t j1)u∗i3 i4

(y, t j2)
∣∣D
]

+E
[
v∗i3(y, t j2)u∗i1 i2

(y, t j1)
∣∣D
]
+E

[
u∗i1 i2

(y, t j1)u∗i3 i4
(y, t j2)

∣∣D
]

over
{
(i1, i2) : i1 6= i2

}
and

{
(i3, i4) : i3 6= i4

}
.

Since, for any
{

i1, i2, i3, i4
}
, we can derive from (14.67) that





E
[
v∗i1(y, t j1)v∗i3(y, t j2)|D

]
= 0, if i1 6= i3,

E
[
v∗i1(y, t j1)u∗i3 i4

(y, t j2)|D
]

= 0, if i1 6= i3 and i1 6= i4,

E
[
u∗i1 i2

(y, t j1)u∗i3 i4
(y, t j2)|D

]
= 0, if i1 6= i2 6= i3 6= i4,

(14.111)

and u∗i1 i2
(y, t j1) is symmetric in (i1, i2), it suffices to evaluate the non-zero terms

defined in (14.109). To do this, we consider the different situations where the
two pairs of integers

{
(i1, i2) : i1 6= i2

}
and

{
(i3, i4) : i3 6= i4

}
contain different

numbers of integers in common.
Let C = 0, 1, 2 be the numbers of integers in common in

{
(i1, i2) : i1 6= i2

}

and
{
(i3, i4) : i3 6= i4

}
. If C = 0, then

{
(i1, i2) : i1 6= i2

}
and

{
(i3, i4) : i3 6= i4

}

do not contain any common integers, i.e., i1 6= i2 6= i3 6= i4, and it easily follows
from (14.110) that

E
[
w∗

i1 i2
(y, t j1)w∗

i3 i4
(y, t j2)

∣∣D
]

= E
[
w∗

i1 i2
(y, t j1)

∣∣D
]
×E

[
w∗

i3 i4
(y, t j2)

∣∣D
]

= 0. (14.112)

If C = 1, C1 =
{
(i1, i2, i3, i4) : i1 6= i2; i3 6= i4; C = 1

}
is the union of the

disjoint subsets




C1a =
{
(i1, i2, i3, i4) : i1 = i3; i1 6= i2 6= i4

}
,

C1b =
{
(i1, i2, i3, i4) : i1 = i4; i1 6= i2 6= i3

}
,

C1c =
{
(i1, i2, i3, i4) : i2 = i3; i1 6= i2 6= i4

}
,

C1d =
{
(i1, i2, i3, i4) : i2 = i4; i1 6= i2 6= i3

}
.

(14.113)
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Then, using the definitions given in (14.67) and (14.68), we can directly com-
pute from (14.110) and (14.113) that

E
[
w∗

i1 i2
(y, t j1)w∗

i3 i4
(y, t j2)

∣∣D
]

(14.114)

=





ρ (0)(y, t j1 , t j2)+ρ (1)(y, t j1 , t j2)

+ρ (1)(y, t j2 , t j1)+ρ (2)(y, t j1 , t j2), if (i1, i2, i3, i4) ∈ C1a,

ρ (1)(y, t j1 , t j2)+ρ (2)(y, t j1 , t j2), if (i1, i2, i3, i4) ∈ C1b,

ρ (1)(y, t j2 , t j1)+ρ (2)(y, t j1 , t j2), if (i1, i2, i3, i4) ∈ C1c,

ρ (2)(y, t j1 , t j2), if (i1, i2, i3, i4) ∈ C1d .

Next we need to compute the numbers of terms in C1a through C1d . We
first recognize that C1a is the union of four disjoint subsets, i.e.,

C1a = C1a1 ∪C1a2 ∪C1a3 ∪C1a4, (14.115)

where

C1a1 =
{
(i1, i2, i3, i4) ∈ C1a : i1 = i3 ∈ S j1 ∩S j2 ,

i2 ∈ S j1\S j2 , i4 ∈ S j2\S j1

}
,

C1a2 =
{
(i1, i2, i3, i4) ∈ C1a : i1 = i3 ∈ S j1 ∩S j2 ,

i2 ∈ S j1 ∩S j2 , i4 ∈ S j2\S j1

}
,

C1a3 =
{
(i1, i2, i3, i4) ∈ C1a : i1 = i3 ∈ S j1 ∩S j2 ,

i2 ∈ S j1\S j2 , i4 ∈ S j2 ∩S j1

}
,

C1a4 =
{
(i1, i2, i3, i4) ∈ C1a : i1 = i3 ∈ S j1 ∩S j2 ,

i2 ∈ S j1 ∩S j2 , i4 ∈ S j1 ∩S j2

}
,

where S j1\S j2 = S j1 ∩S c
j2
denotes the set of subjects in S j1 but not in S j2 .

The numbers of terms in C1ak, k = 1, 2, 3, 4, are





m1a1 = n j1 j2 (n j1 − n j1 j2)(n j2 − n j1 j2),

m1a2 = n j1 j2 (n j1 j2 − 1)(n j2 − n j1 j2)/2,

m1a3 = n j1 j2 (n j1 j2 − 1)(n j1 − n j1 j2)/2,

m1a4 = n j1 j2 (n j1 j2 − 1)(n j1 j2 − 2)/6.

(14.116)

Collecting all the terms from above, we obtain the number of terms in C1a,
such that

m1a = m1a1 +m1a2 +m1a3+m1a4 (14.117)

= n j1 j2

[
(n j2 − n j1 j2)

(
n j1 −

n j1 j2

2
− 1

2

)
+(n j1 j2 − 1)

(n j1

2
− n j1 j2

3
− 1

3

)]
.

Applying the same approach to C1b, C1c and C1d , we can divide C1b, C1c
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and C1d into similar disjoint subsets as for C1a in (14.115), and compute the
corresponding numbers of terms m1b, m1c and m1d using the calculations in
(14.116) and (14.117). We omit these calculations here because they follow
the same approach as for m1a. These calculations show that the numbers of
terms m1b, m1c and m1d for C1b, C1c and C1d , respectively, are also given by
(14.117). The summation of (14.114) for terms in C1 is then given by

∑
(i1, i2, i3, i4)∈C1

E
[
w∗

i1 i2
(y, t j1)w∗

i3 i4
(y, t j2)

∣∣D
]

(14.118)

= m1a

[
ρ (0)(y, t j1 , t j2)+ 2ρ (1)(y, t j1 , t j2)+ 2ρ (1)(y, t j2 , t j1)+ 4ρ (2)(y, t j1 , t j2)

]
,

where m1a is given by (14.117).
For C = 2, we recognize that C2 =

{
(i1, i2, i3, i4) : i1 6= i2, i3 6= i4,C = 2

}
is

the union of two disjoint subsets, i.e.,

C2 = C2a ∪C2b, (14.119)

where

C2a =
{
(i1, i2, i3, i4) : i1 6= i2, i3 6= i4,

i1 = i3 ∈ S j1 ∩S j2 , i2 = i4 ∈ S j1 ∩S j2

}
,

C2b =
{
(i1, i2, i3, i4) : i1 6= i2, i3 6= i4,

i1 = i4 ∈ S j1 ∩S j2 , i2 = i3 ∈ S j1 ∩S j2

}
.

Direct calculation shows that the numbers of terms in C2a and C2b are

m2a = m2b = n j1 j2 (n j1 j2 − 1)/2. (14.120)

Furthermore, using (14.68), (14.110) and the definitions of C2a and C2b, we
can compute that

E
[
w∗

i1i2
(y, t j1)w∗

i3i4
(y, t j2)

∣∣D
]

(14.121)

=





ρ (0)(y, t j1 , t j2)+ρ (1)(y, t j1 , t j2)

+ρ (1)(y, t j2 , t j1)+ρ (3)(y, t j1 , t j2), if (i1, i2, i3, i4) ∈ C2a,

ρ (1)(y, t j1 , t j2)+ρ (1)(y, t j2 , t j1)

+ρ (3)(y, t j1 , t j2), if (i1, i2, i3, i4) ∈ C2b,

where

ρ (3)(y, t j1 , t j2) = E
[
u∗i1i2

(y, t j1)u∗i1i2
(y, t j2)

∣∣D
]

with i2 ∈ S j1 ∩S j2 . (14.122)

Combining (14.120), (14.121) and (14.122), the summation of (14.121)
terms in C2 is

∑
(i1, i2, i3, i4)∈C2

E
[
w∗

i1i2
(y, t j1)w∗

i3i4
(y, t j2)

∣∣D
]

=
n j1 j2 (n j1 j2 − 1)

2

{
ρ (0)(y, t j1 , t j2)+ 2ρ (1)(y, t j1 , t j2)

+2ρ (1)(y, t j2 , t j1)+ 2ρ (3)(y, t j1 , t j2)
}
. (14.123)
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The summation of (14.118) and (14.123) then gives

∑
i1 6=i2∈S j1

∑
i3 6=i4∈S j2

E
[
w∗

i1i2
(y, t j1)w∗

i3i4
(y, t j2)

∣∣D
]

=

[
m1a +

n j1 j2 (n j1 j2 − 1)

2

][
ρ (0)(y, t j1 , t j2) (14.124)

+2ρ (1)(y, t j1 , t j2)+ 2ρ (1)(y, t j2 , t j1)
]

+4m1a ρ (2)(y, t j1 , t j2)+ n j1 j2

(
n j1 j2 − 1

)
ρ (3)(y, t j1 , t j2),

which, by (14.117) and ignoring the smaller order term n j1 j2 (n j1 j2 − 1), gives
(14.69). The conclusion in (14.73) directly follows from (14.69) through (14.72)
by setting j1 = j2 = j. �

Proof of Lemma 14.2:

The proof is analogous to proof of Lemma 14.1, so we only outline the
main steps. First, by (13.14) in Lemma 13.1 and (14.70) in Lemma 14.1,

the dominating term for h̃(y, t j)−h(y, t j) is W (y, t j), and the dominating term

for β̃ (t j)− β (t j) is A(t j). Substituting h̃(y, t j)− h(y, t j) and β̃ (t j)− β (t j) with
W (y, t j) and A(t j), respectively, we can directly verify from (14.74) and (14.75)
that

A (y, x, t j) = φ ′[h(y, t j)+ xT (t j)β (t j)
][

W (y, t j)+ xT (t j)A(t j)
]
, (14.125)

which implies (14.76). By E
[
W (y, t j)

∣∣D
]
= E

[
A(t j)

∣∣D
]
= 0, it then follows from

(14.125) that
E
[
A (y, x, t j)

∣∣D
]
= 0.

To compute the covariance, we use the same approach as (14.109) and consider

Cov
[
A (y, x, t j1), A (y, x, t j2)|D

]

=

[
1

n j1 (n j1 − 1)

][
1

n j2 (n j2 − 1)

]
(14.126)

× ∑
i1 6=i2∈S j1

∑
i3 6=i4∈S j2

E
[
Ai1i2(y, x, t j1)Ai3i4(y, x, t j2)

∣∣∣D
]
,

where, with i1 6= i2 and i3 6= i4,

E
[
Ai1i2(y, x, t j1)Ai3i4(y, x, t j2)

∣∣∣D
]

= φ ′[h(y, t j1)+ xT (t j1)β (t j1)
]

φ ′[h(y, t j2)+ xT (t j2)β (t j2)
]

×
{

E
[
v∗i1(y, t j1)v∗i3(y, t j2)

∣∣D
]
+E

[
v∗i1(y, t j1)u∗i3i4

(y, t j2)
∣∣D
]

+E
[
v∗i3(y, t j2)u∗i1i2

(y, t j1)
∣∣D
]
+E

[
u∗i1i2

(y, t j1)u∗i3i4
(y, t j2)

∣∣D
]}

.
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Using the same derivations as in (14.111) through (14.123) with w∗
i1i2

(·) and
w∗

i3i4
(·) replaced by Ai1i2(·) and Ai3i4(·), respectively, we get

∑
i1 6=i2∈S j1

∑
i3 6=i4∈S j2

E
[
Ai1i2(y, x, t j1)Ai3i4(y, x, t j2)

∣∣∣D
]

= φ ′[h(y, t j1)+ xT (t j1)β (t j1)
]

φ ′[h(y, t j2)+ xT (t j2)β (t j2)
]

×
{[

m1a +
n j1 j2 (n j1 j2 − 1)

2

][
ρ (0)(y, t j1 , t j2)

+2ρ (1∗)(y, x, t j1 , t j2)+ 2ρ (1∗)(y, x, t j2 , t j1)
]

+4m1a ρ (2∗)(y, x, t j1 , t j2)+ n j1 j2 (n j1 j2 − 1)ρ (3∗)(y, x, t j1 , t j2)
}
,

where, for i2 ∈ S j1 ∩S j2 ,

ρ (3∗)(y, x, t j1 , t j2) = E
[
u∗i1i2

(y, x, t j1)u∗i1i2
(y, x, t j2)

∣∣D
]
.

By (14.117), (14.126) and ignoring the smaller order term n j1 j2 (n j1 j2 −1), the
above summation gives (14.78). The conclusion of (14.79) is a direct conse-
quence of (14.78) with j1 = j2 = j. �

2. Proofs for Smoothing Estimators

Proof of Theorem 14.1:

We first note that, under Assumption (a), the weight function
wq,Q+1(t j, t; b) in (14.38) satisfies equations (13.68) through (13.71). Since the

bias of ĥ(q)(y, t) has the decomposition





Bias
[

ĥ(q)(y, t)
∣∣D
]
= E

[
ĥ(q)(y, t)

∣∣∣D
}
− h(q)(y, t) = W1 +W2,

W1 = ∑J
j=1 wq,Q+1(t j, t; b)

{
E
[
h̃(y, t j)

∣∣D
]
− h(y, t j)

}

W2 = ∑J
j=1 wq,Q+1(t j, t; b)h(y, t j)− h(q)(y, t),

(14.127)

it suffices to evaluate the asymptotic expressions of W1 and W2. By Assumption
(a), equation (13.69) and Lemma 13.1, we observe that

W1 =
J

∑
j=1

q!

J bq+1 π(t)
Kq,Q+1

( t j − t

b

)[
1+ op(1)

]
Op

(
n−1/2

)

= Op

(
n−1/2

)
, (14.128)

where the second equality sign holds because

J

∑
j=1

∣∣∣q!
[
J bq+1 π(t)

]−1
Kq,Q+1

[
(t j − t)/b

]∣∣∣
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is bounded. By Assumption (c), equations (13.69) and (13.70), and the Taylor
expansions for h(y, t j), we have

W2 =
J

∑
j=1

wq,Q+1(t j, t; b)

{Q+1

∑
k=0

[
h(k)(y, t)

(t j − t)k

k!

]
+ op

[
(t j − t)Q+1

]}

−h(q)(y, t)

=
(q!)bQ−q+1

(Q+ 1)!
h(Q+1)(y, t)BQ+1

(
Kq,Q+1

)[
1+ op(1)

]
. (14.129)

It follows from Assumption (a) and (14.128) that (14.129) is the dominating
term, so that the conclusion of (14.82) holds.

To compute the variance of ĥ(q)(y, t), we observe that, by the definition of

ĥ(q)(y, t) in (14.38),

Var
[
ĥ(q)(y, t)

∣∣D
]
= E

{[
J

∑
j=1

wq,Q+1(t j, t; b)
[
h̃(y, t j)− h∗(y, t j)

]]2∣∣∣D
}
, (14.130)

where h∗(y, t j) = E
[
h̃(y, t j)|D

]
.

By Assumption (a), equations (13.68) and (13.71), Lemma 13.1, c j = c and
limt j→t σ2(y, t j) = σ2(y, t), the right side of (14.130) is the sum of W3 and W4,
where

W3 =
J

∑
j=1

w2
q,Q+1(t j, t; b)E

{[
h̃(y, t j)− h∗(y, t j)

]2∣∣D
}

=
(q!)2

6cnJ b2q+1 π(t)
V (Kq,Q+1)σ2(y, t)

[
1+ op(1)

]
(14.131)

W4 = ∑
j1 6= j2

{
wq,Q+1(t j1 , t; b)wq,Q+1(t j2 , t; b)

×E
[[

h̃(y, t j1)− h∗(y, t j1)
][

h̃(y, t j2)− h∗(y, t j2)
]∣∣D

]}

= ∑
j1 6= j2

{
wq,Q+1(t j1 , t; b)wq,Q+1(t j2 , t; b)Cov

[
W (y, t j1),W (y, t j2)

∣∣D
]}

×
[
1+ op(1)

]

= op

[(
nJ b2q+1

)−1
]
. (14.132)

It follows from (14.131) and (14.132) that Var
[
ĥ(q)(y, t)

∣∣D
]
= W3

[
1+ op(1)

]
,

so that (14.84) holds. The conclusion of (14.86) is a simple consequence of
(14.82) and (14.84). �

Proof of Theorem 14.2:

The derivations follow the same arguments in the proof of Theorem 14.1 by
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substituting h̃(y, t), h(y, t) and W (y, t j) with F̃t(y|x), Ft(y|x) and A (y, x, t), re-
spectively. Thus, the expressions of (14.94) and (14.96) are the same as (14.82)

and (14.84) with h(Q+1)(y, t) and Var
[
W (y, t)

∣∣D
]
replaced by F

(Q+1)
t (y|x) and

Var
[
A (y, x, t)

∣∣D
]
. We omit the details to avoid repetition. �

14.6 Remarks and Literature Notes

The models and estimation methods presented in this chapter are mostly
adapted from the results of Wu and Tian (2013b). These models and estima-
tion methods provide a useful tool for evaluating the conditional distribution
functions and rank-tracking abilities measured by the Rank-Tracking Prob-
ability (RTP) and the Rank-Tracking Probability Ratio (RTPR). Since the
time-varying transformation models considered in this chapter do not incorpo-
rate any correlation or dependence structures between distribution functions
at different time points, the estimation methods for the RTPs and the RTPRs
depend on smoothing over bivariate time scales. These estimation methods
are flexible but generally require a large sample size and reasonable numbers
of repeated measurements. The application to the NGHS Blood Pressure data
demonstrates that the RTPs and the RTPRs are useful quantitative tools for
tracking the temporal trends of health outcomes in long-term longitudinal
studies. Although our asymptotic results are limited to the conditional dis-
tribution functions, they provide insight into the accuracy of the smoothing
estimators under typical longitudinal settings.

There are a number of theoretical and methodological issues that warrant
further investigation. First, systematic investigations are warranted to derive
the asymptotic properties of the smoothing RTP and RTPR estimators, and
suitable models should be developed to describe the correlation structures
across different time points. Second, theoretical and simulation studies are
needed to investigate the properties of smoothing methods other than the two-
step local polynomial estimators in Section 14.3. Third, we need to develop
some goodness-of-fit tests and variable selection methods for evaluating the
time-varying transformation models of Section 14.2.6. Finally, in studies with
moderate sample sizes, reliable raw estimates may be difficult to obtain, so
that, as a potentially useful alternative, it may be necessary to develop some
one-step estimation methods without relying on the initial raw estimators of
Section 14.3.1.



Chapter 15

Tracking with Mixed-Effects Models

We present in this chapter an alternative method for estimating the condi-
tional distributions, the Rank-Tracking Probabilities (RTP) and the Rank-
Tracking Probability Ratios (RTPR). This method is motivated by the recog-
nition that the estimation method of Chapter 13 has two limitations in prac-
tice. First, when constructing the raw estimators at any two time points s1 < s2,
we need a sufficiently large number of subjects with observations at time
points around (s1, s2). Second, the smoothing step requires bivariate smooth-
ing, which again requires a large sample. These limitations are caused by the
fact that the time-varying transformation models (14.25) do not take into
account the dependence structure between any two time points s1 < s2. To al-
leviate these drawbacks, the alternative approach here relies on estimating the
conditional distributions using two simple steps: (a) predicting the subjects’
trajectory curves from the nonparametric mixed-effects models of Chapter
11; (b) constructing the conditional distribution estimators based on the pre-
dicted outcome trajectories. The trajectory prediction step in (a) is crucial
for the accuracy of the estimators in (b). Unlike the modeling approaches of
Chapters 13 and 14, the trajectory prediction gives a natural link between the
conditional-mean based mixed-effects models and the conditional-distribution
based estimation methods. The estimation method of this chapter has the
advantage of evaluating the conditional means, conditional distributions and
tracking abilities of an outcome variable under a unified regression framework.

15.1 Data Structure and Models

15.1.1 Data Structure

The data structure is the same as in Chapter 11. In summary, we assume that
our longitudinal sample contains n independent subjects and the ith subject
has ni number of visits at time points

{
ti j ∈ T : j = 1, . . . , ni

}
, where T is the

time interval of the study. At any time t ∈ T , Y (t) is the real-valued outcome

variable and X(t) =
(
X (1)(t), . . . , X (k)(t)

)T
is the Rk-valued covariate vector,

which may include both time-invariant and time-dependent covariates. The

ith subject’s outcome and covariate curves over t ∈ T are
{(

Yi(t), t, XT
i (t)

)T
:
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t ∈ T
}
. The observed longitudinal sample is

{(
Yi j, ti j, XT

i j

)
: i = 1, . . . , n; j = 1, . . . , ni

}
,

where Yi j = Yi

(
ti j

)
and Xi j = Xi

(
ti j

)
=
(
X
(1)
i

(
ti j

)
, . . . , X

(k)
i

(
ti j

))T
.

15.1.2 The Nonparametric Mixed-Effects Models

Using the modeling framework of Chapter 11, we consider here that the
stochastic processes Y (t) and X(t) satisfy the mixed-effects varying-coefficient
models (11.11) or (11.37), so that a series of global smoothing methods through
basis approximations can be used to estimate the coefficient curves and predict
the outcome trajectories. For the simple case of evaluating

{
(Y (t), t)T : t ∈T

}

without covariates, Yi(t) at time t ∈ T satisfies nonparametric mixed-effects
model (11.1), which, with a slight change of notation for the clarity of presen-
tation, we rewrite as follows

Yi(t) = µ(t)+ ζi(t)+ εi(t), (15.1)

where µ(t) is the population mean curve of Y (t), ζi(t) is the ith subject’s
random departure from µ(t) which satisfies E

[
ζi(t)

]
= 0, and εi(t) is the mean

zero measurement error satisfying

E
[
εi(t)

]
= 0, Var

[
εi(t)

]
= σ2 and Cov

[
εi(s), εi(t)

]
= 0 if s 6= t.

When the covariate X(t) is incorporated, we also consider the following

varying-coefficient mixed-effects model for
{(

Yi(t), t, Xi(t)
)T

: t ∈T
}
, which is

a special case of the model (11.37),




Yi(t) = β0i(t)+XT
i (t)β1i(t)+ εi(t),

β0i(t) = β0(t)+ γ0i(t),

β1i(t) = β1(t)+ γ1i(t),

β1(t) =
(
β11(t), . . . , β1k(t)

)T
,

γ1i(t) =
(
γ1i1(t), . . . , γ1ik(t)

)T
,

εi(t) ∼ N
(
0,σ2

)
and Cov

[
εi(s), εi(t)

]
= 0 if s 6= t,

(15.2)

where
{

β0(t), β1(t)
}

are smooth functions of t,
{

γ0i(t), γ1i(t)
}

are the mean
zero stochastic processes that represent the ith subject’s random deviations
from the population,

{
εi(t), γ0i(t), γ1i(t)

}
are mutually independent for any

given i and
{

εi1(t), γ0i1(t), γ1i1(t)
}
and

{
εi2(t), γ0i2(t), γ1i2(t)

}
are independent

for all i1 6= i2.

15.1.3 Conditional Distributions and Tracking Indices

The objective here is to estimate the conditional distributions, the RTPs and
the RTPRs defined in Section 14.2 based on

{
Y (t), t, X(t)

}
satisfying the mod-

els (15.1) or (15.2). This means that, for a given set A[X(t), t] of the outcome
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values and a given set B(s1) of the covariate vectors, we are interested in
estimating the conditional distribution function,

Ps1,s2
(A, B) = P

{
Y (s2) ∈ A[X(s2), s2]

∣∣X(s1) ∈ B(s1)
}
, (15.3)

the rank-tracking probability,

RT Ps1,s2
(A, B) = P

{
Y (s2) ∈ A

[
X(s2), s2

]∣∣
Y (s1) ∈ A

[
X(s1), s1

]
, X(s1) ∈ B(s1)

}
, (15.4)

and the rank-tracking probability ratio

RT PRs1,s2
(A, B) =

RTPs1,s2
(A, B)

Ps1,s2
(A, B)

(15.5)

at any two time points s1 ≤ s2. Interpretations of (15.3), (15.4) and (15.5) as
measures of the tracking abilities of the outcome variable Y (t) have already
been discussed in Section 14.2. By assuming the varying-coefficient mixed-
effects model (15.2) to the variables

{
Y (t), t, X(t)

}
, we can estimate the effects

of X(t) on the conditional means of Y (t) as well as the tracking indices (15.3),
(15.4) and (15.5) under one modeling framework. In contrast, the time-varying
transformation models of Chapters 13 and 14, which are based on modeling
the conditional distributions, are very different from the mixed-effects models
(15.1) and (15.2), which are mainly used to evaluate the conditional means of
the outcome variable.

Special cases of (15.4) and (15.5) may also be considered in some applica-
tions. When the covariates are not considered in (15.4) and (15.5), i.e., B(s1)
is chosen to be the entire space of the covariates at time s1, the statistical
objective is to estimate the RTP,

RT Ps1,s2
(A) = P

{
Y (s2) ∈ A

[
X(s2), s2

]∣∣Y (s1) ∈ A
[
X(s1), s1

]}
, (15.6)

and the RTPR,

RTPRs1,s2
(A) =

RT Ps1,s2
(A)

Ps2
(A)

, (15.7)

where
Ps2

(A) = P
{

Y (s2) ∈ A[X(s2), s2]
}
. (15.8)

Other special cases of (15.4) and (15.5) may be considered by choosing specific
forms of A(·, ·), such as A[X(t), t] = A(t). Although the choices of A(·, ·) depend
on the specific scientific objectives, it is common in biomedical studies to define
the health status at time t based on the conditional quantiles of Y (t) given
X(t), so that a useful choice of A[X(t), t] is

Aα

[
X(t), t

]
=
{

Y (t) : Y (t)> qα

[
t, X(t)

]}
, (15.9)

where qα

[
t, X(t)

]
is the (100×α)th quantile of Y (t) given X(t).



514 TRACKING WITH MIXED-EFFECTS MODELS

15.2 Prediction and Estimation Methods

We present a class of smoothing methods based on B-spline approximations
for the estimation and inferences of the statistical indices defined in (15.3),
(15.4) and (15.5). Although other basis functions, such as Fourier bases and
Wavelet bases, may also be considered, we focus on B-splines because of their
good numerical properties and simplicity in practical implementation.

15.2.1 B-spline Prediction of Trajectories

We first present a B-spline approximation method to estimate the coefficient
curves and predict the outcome trajectories based on the varying-coefficient
mixed-effects model (15.2), which includes (15.1) as a special case.

1. B-spline Approximations, Estimation and Prediction

For simplicity, we illustrate the case of a single covariate X(t) = X(t) with
P = 1. The case of multivariate covariates can be extended analogously. When
B-splines are used for (15.2), we have the following approximations

{
β0(t) ≈ bT

0 (t)ξ0, β1(t) ≈ bT
1 (t)ξ1,

γ0i(t) ≈ bT
0 (t)ηi, γ1i(t) ≈ bT

1 (t)φi

(15.10)

based on the B-spline basis functions

b0(t) =
(
b01(t), . . . , b0m(t)

)T
and b1(t) =

(
b11(t), . . . , b1q(t)

)T
(15.11)

for some integers m, q > 0, where

ξ0 =
(
ξ01, . . . , ξ0m

)T
and ξ1 =

(
ξ11, . . . , ξ1q

)T
(15.12)

are the vectors of coefficients for the fixed-effects components,

ηi =
(
ηi1, . . . , ηim

)T
and φi =

(
φi1, . . . , φip

)T
(15.13)

are the vectors of coefficients for the subject-specific normal random compo-
nents with mean zero and covariance matrices

Γ =Cov
(
ηi

)
and Φ =Cov

(
φi

)
. (15.14)

If we denote the observed outcome, covariates and spline bases functions
at time points

{
ti1, . . . , tini

}
by





Yi =
(
Yi1, . . . , Yini

)T
, Xi =

(
Xi1, . . . , Xini

)T
,

B0i =
(
b0(t1), . . . , b0(tni

)
)T

, B1i =
(
b1(t1), . . . , b1(tni

)
)T

,

εi =
(
εi1, . . . , εini

)T
, εi j = εi(ti j),

E
(
εi j

)
= 0, Cov

(
εi

)
= Σ = σ2 Ini×ni

(15.15)
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where B0i and B1i are ni ×m and ni ×q matrices, respectively, and Ini×ni
is the

ni × ni identity matrix, the B-spline approximation for (15.2) is

Yi ≈ B0i

(
ξ0 +ηi

)
+B1i

(
ξ1 +φi

)
Xi + εi. (15.16)

When the covariate is not included, the B-spline approximation for (15.1) is

Yi ≈ B0i

(
ξ0 +ηi

)
+ εi, (15.17)

which is a special case of (15.16). Since εi has a mean zero Gaussian distri-
bution, we have shown in Chapter 11 that the parameters

{
ξ0, ξ1, Σ, Γ, Φ

}
of

(15.2), (15.12), (15.14) and (15.15) can be estimated by the maximum likeli-

hood estimators (MLE) or the restricted MLEs. We denote by
{

ξ̂0, ξ̂1, Σ̂, Γ̂, Φ̂
}

either the MLE or restricted MLE of
{

ξ0, ξ1, Σ, Γ, Φ
}

for (15.16), where

Σ̂ = σ̂2 Ini×ni
.

The best linear unbiased predictors (BLUPs) of the random effects η̂i and

φ̂i can be computed by the EM algorithm as in Chapter 11. By plugging in

the coefficient estimates
{

ξ̂0, ξ̂1, η̂i, φ̂i

}
into (15.16), the B-spline predicted

outcome trajectory curve, or BLUP trajectory, for the ith subject with co-
variate Xi(t) at any time point t is

Ŷi(t) = bT
0 (t)

(
ξ̂0 + η̂i

)
+ bT

1 (t)
(
ξ̂1 + φ̂i

)
Xi(t). (15.18)

We note that (15.18) is only useful when Xi(t) is observed and measured with-
out error. For example, Xi(t) = Xi is a time-invariant categorical variable, such
as race and gender. For situations where Xi(t) is measured with error and
needs to be predicted from the data, the predicted subject-specific outcome in
(15.18) has to be modified by substituting the unknown Xi(t) with its predicted
value. For the special case (15.17), the predicted subject-specific outcome tra-
jectory curve is

Ŷi(t) = bT
0 (t)

(
ξ̂0 + η̂i

)
. (15.19)

In this case, only ξ0 and ηi need to be estimated.

2. Best Linear Unbiased Prediction for Covariate and Outcome

When Xi(t) is not directly observed or measured with error, we have to
predict Xi(t) from the observations

{
Xi j : j = 1, . . . , ni

}
. To do this, we assume

that the time-varying covariate Xi(t) is measured with errors and satisfies the
following nonparametric mixed-effects model, which has the same structure as
(15.1),

Xi(t) = µx(t)+ ζi(t)+ ui(t), (15.20)

where µx(t) is the population mean curve of X(t), ζi(t) is the ith subject’s
random departure from µx(t) which satisfies E

[
ζi(t)

]
= 0, and ui(t) is the mean

zero measurement error which satisfies

E
[
ui(t)

]
= 0, Var

[
ui(t)

]
= σ2

x and Cov
[
ui(s), ui(t)

]
= 0 if s 6= t.
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Applying the similar B-spline basis approximations as (15.17) to (15.20),
we can obtain the B-spline estimator µ̂x(t) of the mean curve µx(t) and the

BLUP predicted subject-specific curve ζ̂i(t) of ζi(t). The BLUP predictor of
the subject-specific trajectory curve, or BLUP trajectory, X̂i(t) for Xi(t) is

X̂i(t) = bT
∗ (t)

(
µ̂x + ζ̂i

)
, (15.21)

where b∗(t) is the spline basis function used in the approximation of (15.20).
Instead of using (15.18), the predicted subject-specific trajectory curves X̂i(t)
should be used in the prediction of Ŷi(t) when Xi(t) is not directly observed
and/or measured with error. Substituting Xi(t) of (15.18) with X̂i(t), the pre-
dicted trajectory curve of Yi(t) is

Ŷi(t) = bT
0 (t)

(
ξ̂0 + η̂i

)
+ bT

1 (t)
(
ξ̂1 + φ̂i

)
X̂i(t). (15.22)

For the general case of multivariate covariates X(t), we can construct the
predicted value X̂i(t) of the ith subject using a multivariate linear mixed-
effects model, i.e., a multivariate generalization of (15.20). For simplicity, we
omit the details of the multivariate X(t) case here, as this generalization is
straightforward and requires more complex notation.

3. Predicted Observations

The predicted outcome trajectories obtained above are not suitable for the
estimation of the conditional distribution functions, the RTPs and the RTPRs.
This is because Ŷi(t) given in (15.18), (15.19) and (15.22) are the subject-
specific mean curves for the ith subject at time t, which is not necessarily
its potential observations at time t. The distributions of the subject-specific
mean curves have smaller variations than the distributions of the subject-
specific random processes

{
Yi(t) : i = 1, . . . , n; t ∈T

}
. Thus, using Ŷi(t) instead

of the observations of Yi(t) could lead to biased estimators of the conditional
distribution functions.

In order to obtain unbiased distribution estimators, we need to add the
subject-specific random errors or measurement errors back to the predicted
subject-specific trajectories. Following (15.2), (15.18), (15.19) and (15.20), a
pseudo-estimator of the ith subject’s random error εi(t) is

ε̂i(t) = Yi(t)− Ŷi(t). (15.23)

Note that, because Yi(t) is not observed if t is not one of the time points in{
ti j : j = 1, . . . , ni

}
, ε̂i(t) of (15.23) may not be computed directly, hence a

pseudo-estimator. The observed residuals of (15.18), (15.19) and (15.22) are

ε̂i j = ε̂i(ti j) = Yi j − Ŷi(ti j) for i = 1, . . . , n, j = 1, . . . , ni. (15.24)

Because (15.2) assumes that εi(t) does not depend on t and has the mean
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zero normal distribution with variance σ2, the observed residuals ε̂i j of (15.24)
are assumed to satisfy the assumption that

{
ε̂i j : i = 1, . . . , n; j = 1, . . . , ni

}
are independent and ε̂i j ∼ N

(
0, σ2

)
. (15.25)

Under (15.25), the subject-specific random error ε̃i(t) of Ŷi(t) can be generated
by one of the two following approaches:

Estimated Random Error for Ŷi(t):

(a) ε̃i(t) is a randomly selected value from the residuals
{

ε̂i j : i = 1, . . . , n; j =
1, . . . , ni

}
.

(b) ε̃i(t) is a randomly selected value from the distribution N
(
0, σ̂2

)
, where

σ̂2 is the MLE or restricted MLE of σ2. ✷

Using an estimated random error ε̃i(t) obtained from either one of the two
approaches above, we can compute an estimated observation Ỹi(t) of Yi(t) based
on any one of the models (15.18), (15.19) and (15.22). Applying the same ap-
proach as (a) or (b) above to the covariate Xi(t) under the model (15.20),
we can compute an estimated random error ũi(t) and then an estimated ob-
servation X̃i(t). If multivariate covariates Xi(t) are involved, the multivariate
generalization of (15.20) and (15.21) are used to compute the multivariate ran-

dom error ũi(t) and the predicted observation X̃i(t). The resulting predicted
observations of

{
Yi(t), Xi(t)

}
are then denoted by

{
Ỹi(t) = Ŷi(t)+ ε̃i(t),

X̃i(t) = X̂i(t)+ ũi(t).
(15.26)

We note that X̃i(t) is used in the next section for the estimation of the con-
ditional distributions, the RTPs and the RTPRs, only if it is subject to mea-
surement errors. In case that the measurement errors of Xi(t) can be ignored,

we would prefer to use X̂i(t) instead of X̃i(t).

15.2.2 Estimation with Predicted Outcome Trajectories

We construct the estimators of the conditional distribution functions, the
RTPs and the RTPRs under three scenarios: the nonparametric mixed-effects
model (15.1) without covariates; the mixed-effects varying-coefficients model
(15.2); the combined unstructured mixed-effect models of (15.1) and (15.20).
Because different predicted trajectory curves are used under each of these
scenarios, the estimation methods are different.

1. Estimation without Covariates

We first consider the estimation of the RTPs and the RTPRs based on the
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observations
{

Yi j = Yi(ti j) : j = 1, . . . , ni; i = 1, . . . , n
}
which satisfy the model

(15.19). By (15.6), the RTP for Y (t) ∈ A(t) at time points s1 < s2 is

RTPs1,s2
(A) =

E
{

1[Y (s2)∈A(s2),Y(s1)∈A(s1)]

}

E
{

1[Y (s1)∈A(s1)]

} , (15.27)

where 1[·] is the indicator function and A(t) is a pre-specified and known risk
set at time t. If we use the set of quantiles

A(t) = Aα(t) =
{

Y (t) : Y (t)> qα(t), 0 < α < 1
}

(15.28)

which is a special case of (15.9) with qα(t) being the known (100×α)th quan-
tile of Y (t), the RTP defined in (15.27) then measures the tracking probability
of Y (t) greater than its (100×α)th quantile, such that

RT Ps1,s2

(
Aα

)
=

E
{

1[Y (s2)>qα (s2),Y (s1)>qα (s1)]

}

E
{

1[Y (s1)>qα (s1)]

} . (15.29)

The RTP defined in (15.6) can be estimated using the predicted observa-

tions of Yi(t) of (15.26). By (15.27), an estimator R̂TPs1,s2
(A) of RTPs1,s2

(A)
can be obtained by substituting the expectations

E
{

1[Y(s2)∈A(s2),Y(s1)∈A(s1)]

}
and E

{
1[Y (s1)∈A(s1)]

}

of (15.27) by their corresponding empirical estimators

{
Ê
{

1[Y(s2)∈A(s2),Y (s1)∈A(s1)]

}
= (1/n) ∑n

i=1 1[Ỹi(s2)∈A(s2),Ỹi(s1)∈A(s1)]
,

Ê
{

1[Y (s1)∈A(s1)]

}
= (1/n) ∑n

i=1 1[Ỹi(s1)∈A(s1)]
,

(15.30)

where Ỹ (t) is the estimated observation of Yi(t) in (15.26). The estimator of
RTPs1,s2

(A) is

R̂T Ps1,s2
(A) =

∑n
i=1 1[Ỹi(s2)∈A(s2),Ỹi(s1)∈A(s1)]

∑n
i=1 1[Ỹi(s1)∈A(s1)]

. (15.31)

In particular, by (15.28) and (15.29), the estimator of RTPs1,s2

(
Aα

)
is

R̂TPs1,s2

(
Aα

)
=

∑n
i=1 1[Ỹi(s2)>qα (s2),Ỹi(s1)>qα (s1)]

∑n
i=1 1[Ỹi(s1)>qα (s1)]

. (15.32)

To estimate the RTPR of (15.7), we first recognize that, by (15.7), (15.8)
and (15.27),

RTPRs1,s2
(A) =

E
{

1[Y(s2)∈A(s2),Y (s1)∈A(s1)]

}

E
{

1[Y (s1)∈A(s1)]

}
E
{

1[Y(s2)∈A(s2)]

} , (15.33)
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and, when Aα(t) of (15.28) is used,

RTPRs1,s2

(
Aα

)
=

E
{

1[Y (s2)>qα (s2),Y (s1)>qα (s1)]

}

E
{

1[Y(s1)>qα (s1)]

}
E
{

1[Y(s2)>qα (s2)]

} . (15.34)

Similar to (15.30), we can estimate E
{

1[Y(s2)∈A(s2)]

}
by

E
{

1[Y(s2)∈A(s2)]

}
= (1/n)

n

∑
i=1

1[Ỹi(s2)∈A(s2)]
. (15.35)

Using (15.31), (15.34) and (15.35), the estimator of RT PRs1,s2
(A) is

R̂TPRs1,s2
(A) =

n ∑n
i=1 1[Ỹi(s2)∈A(s2),Ỹi(s1)∈A(s1)]{

∑n
i=1 1[Ỹi(s1)∈A(s1)]

}{
∑n

i=1 1[Ỹi(s2)∈A(s2)]

} , (15.36)

and the estimator of RTPRs1,s2

(
Aα

)
is

R̂T PRs1,s2
(A) =

n ∑n
i=1 1[Ỹi(s2)>qα (s2),Ỹi(s1)>qα (s2)]{

∑n
i=1 1[Ỹi(s1)>qα (s2)]

}{
∑n

i=1 1[Ỹi(s2)>qα (s2)]

} . (15.37)

When A(t) is unknown, we can estimate it from the same sample that is
used to estimate the RTPs and the RTPRs. For example, the (100×α)th
quantile qα(t) used in Aα(t) may not be known for a given study population
and has to be estimated from the predicted trajectories. We describe in Sec-
tion 15.3.2 a split sample approach for dealing with the situation that A(t) is
unknown and has to be estimated from the sample.

2. Estimation with the Varying-Coefficient Mixed-Effects Models

We now consider the estimation of conditional distribution function (15.3),
the RTP (15.4) and the RTPR (15.5) under the varying-coefficient mixed-
effects model (15.2). We assume the general case that the covariates Xi(t) are
measured with error, so that the predicted observations of

{
Yi(t), Xi(t)

}
in

(15.26) are used for the estimation.
For any given sets

{
A[X(t), t], B(t) : t ∈ T

}
and any s1, s2 ∈ T , let





E1(s1) = E
{

1[X(s1)∈B(s1)]

}
,

E2(s1, s2) = E
{

1[Y (ts2
)∈A[X(s2),s2],X(s1)∈B(s1)]

}
,

E3(s1, s2) = E
{

1[Y (ts2
)∈A[X(s2),s2],Y(ts1

)∈A[X(s1),s1],X(s1)∈B(s1)]

}
,

(15.38)

and denote the quantities in (15.3), (15.4) and (15.5) by

Ps1,s2
(A,B) =

E2(s1, s2)

E1(s1)
, (15.39)
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RTPs1,s2
(A, B) =

E3(s1, s2)

E2(s1, s1)
, (15.40)

and

RTPRs1,s2
(A, B) =

E3(s1, s2)×E1(s1)

E2(s1, s1)×E2(s1, s2)
. (15.41)

Using the predicted observations
{

Ỹi(t), X̃i(t) : t ∈ T
}

computed from
(15.20), (15.22) and (15.26), we can estimate the expectations in (15.38) by





Ê1(s1) = (1/n) ∑n
i=1 1

[X̃i(s1)∈B(s1)]
,

Ê2(s1, s2) = (1/n) ∑n
i=1 1

[Ỹi(ts2
)∈A[X̃i(s2),s2], X̃i(s1)∈B(s1)]

,

Ẽ3(s1, s2) = (1/n)×
∑n

i=1 1
[Ỹi(ts2

)∈A[X̃i(s2),s2],Ỹi(ts1
)∈A[X̃i(s1),s1], X̃i(s1)∈B(s1)]

(15.42)

and, consequently, estimate the conditional probability (15.39), the RTP
(15.40) and the RTPR (15.41) by

P̂s1,s2
(A, B) =

Ê2(s1, s2)

Ê1(s1)
, (15.43)

R̂TPs1,s2
(A, B) =

Ê3(s1, s2)

Ê2(s1, s1)
, (15.44)

and

R̂TPRs1,s2
(A, B) =

Ê3(s1, s2)× Ê1(s1)

Ê2(s1, s1)× Ê2(s1, s2)
, (15.45)

respectively.

3. Estimation Based on Unstructured Mixed-Effects Models

The estimators presented above, i.e., (15.42) through (15.45), depend
strongly on the varying-coefficient mixed-effects model (15.2), and utilize the

predicted observations
{

Ỹi(t), X̃i(t) : i = 1, . . . , n
}
computed based on the pre-

dicted subject-specific mean curves (15.22). When the outcome and covariates{
Yi(t), Xi(t) : t ∈T , i = 1, . . . , n

}
do not satisfy the model (15.2), the predicted

observations computed based on (15.22) could be inadequate for the esti-
mation of (15.39), (15.40) and (15.41). In case that (15.2) is not necessarily
satisfied, an alternative approach is to use predicted subject-specific observa-
tions of Yi(t) computed from the observations

{
Yi j : i = 1, . . . , n; j = 1, . . . , ni

}

alone. We refer to this approach as the estimation based on unstructured
mixed-effects models, which is computed using the following two steps.
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Estimation with Unstructured Mixed-Effects Models:

(a) Compute the predicted observations
{

Ỹi(t), X̃i(t) : t ∈T , i= 1, . . . , n
}
based

on (15.19), (15.20) and (15.26).

(b) Compute the estimators of Ps1,s2
(A, B), RTPs1,s2

(A, B) and RT PRs1,s2
(A, B)

of (15.39), (15.40) and (15.41), respectively, using (15.43), (15.44) and

(15.45) with Ỹi(t) and X̃i(t) computed from (a). ✷

Notice that, since the predicted subject-specific observations Ỹi(t) in (a)
above are computed without using any regression models for Y (t) and X(t),
the estimators given in (b) depend on the unstructured mixed-effects model
of Yi(t), as opposed to the structured mixed-effects model for Yi(t) and Xi(t) in
(15.2). It is then reasonable to expect that the unstructured estimation method
in (a) and (b) above can be more generally applied than the structured method
of the previous section. But, on the other hand, when (15.2) is a reasonable
model for

{
Yi(t), Xi(t) : t ∈ T ; i = 1, . . . , n

}
, the unstructured approach may

lead to estimators with larger variances than the estimators obtained from the
structured approach based on (15.2).

15.2.3 Estimation Based on Split Samples

An important assumption for the estimation methods of Section 15.3.2 is
that the outcome and covariate status sets A[X(t), t] and B(t) used in (15.3),
(15.4) and (15.5) are known. For example, in (15.9) the conditional quantiles
qα [t,X(t)] are assumed to be a known function of {t, X(t)}. In practice, B(t)
is usually known, but A[X(t), t] is possibly unknown, which can be estimated
from the sample. In such situations, a practical approach is to randomly split
the subjects into two sub-samples, so that one sub-sample is used to estimate
A[X(t), t], while the other is used to estimate the conditional distributions. We
proceed with this approach through the following three steps:

Estimation with Sample Splitting:

(a) Randomly split the sample
{

Yi j, Xi j : j = 1, . . . , ni; i = 1, . . . , n
}
into sub-

samples I1 and I2 with sample sizes nI1 and nI2 , such that nI1 + nI2 = n.

(b) The first sub-sample I1 is used to estimate A[X(t), t]. Let Â[X(t), t] be the
estimated set of A[X(t), t] obtained based on the sample I1.

(c) Compute the estimators of Ps1,s2
(A, B), RTPs1,s2

(A, B) and RT PRs1,s2
(A, B)

in (15.3), (15.4) and (15.5) by applying the estimation methods of Section

15.3.2 to the sub-sample I2 with Â
[
X̃i(t), t

]
in place of A

[
X̃i(t), t

]
. ✷

The estimated set Â[X(t), t] depends on the specific choice of A[X(t), t] and
has to be constructed on a case-by-case basis. For the conditional quantile
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based set Aα [X(t), t] of (15.9), we can use the estimated set given by

Âα

[
X(t), t

]
=
{

Y (t) : Y (t)> q̂α

[
t,X(t)

]}
, (15.46)

where q̂α [t, X(t)] is the estimated (100×α)th conditional quantile of Y (t) given
X(t) based on the sub-sample I1.

15.2.4 Bootstrap Pointwise Confidence Intervals

Similar to the inference procedures of previous chapters, such as Chapters 13
and 14, we use the following resampling-subject bootstrap method to construct
the pointwise confidence intervals for the conditional distribution functions,
RTPs and RTPRs.

Approximate Bootstrap Pointwise Confidence Intervals:

(a) Bootstrap Estimators: Generate B bootstrap samples from the origi-
nal dataset

{
Yi j, Xi j : j = 1, . . . , ni; i = 1, . . . , n

}
and denote the resulting

bootstrap samples by
{

Z (b) =
{

Y
(b)
i j , X

(b)
i j , t

(b)
i j : i = 1, . . . , n; j = 1, . . . , ni j

}

Z boot =
{
Z (b) : b = 1, . . . , B

}
.

(15.47)

Compute the estimators P̂
(b)
s1,s2

(A, B), R̂T P
(b)

s1,s2
(A, B) and R̂TPR

(b)

s1,s2
(A, B) us-

ing the bth bootstrap sample Z (b) and methods of Section 15.3.2, such as
(15.43), (15.44) and (15.45), and obtain





{
P̂
(b)
s1,s2

(A, B) : b = 1, . . . , B
}
,

{
R̂TP

(b)

s1,s2
(A, B) : b = 1, . . . , B

}
,

{
R̂TPR

(b)

s1,s2
(A, B) : b = 1, . . . , B

}
.

(15.48)

(b) Bootstrap Percentile Confidence Intervals: Let l
p

α/2
(s1, s2) and

u
p

α/2
(s1, s2) be the lower and upper [100× (α/2)]th percentiles of the cor-

responding B bootstrap estimators given in (15.48). The [100× (α/2)]%
bootstrap percentile pointwise confidence interval for the corresponding es-
timator in (15.48) is

(
l

p

α/2
(s1, s2), u

p

α/2
(s1, s2)

)
. (15.49)

(c) Bootstrap Normal Approximated Confidence Interval: Let

ξ̂
(b)
s1,s2

(A,B) be any of the estimators given in (15.48) computed using the

bootstrap sample Z (b), and ŝeboot
s1,s2

(A,B) be the corresponding sample stan-
dard deviations of these B bootstrap estimators, i.e.,

ŝeboot
s1,s2

(A, B) =

{
1

B− 1

B

∑
b=1

[
ξ̂
(b)
s1,s2

(A, B)− 1

B

B

∑
b=1

ξ̂
(b)
s1,s2

(A, B)

]2}1/2

. (15.50)
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The [100× (α/2)]% normal approximated pointwise confidence interval for
the corresponding estimator in (15.48) is

ξ̂
(b)
s1,s2

(A, B)± z1−α/2ŝeboot
s1,s2

(A, B), (15.51)

where z1−α/2 is the [100× (α/2)]th quantile of the standard normal distri-
bution. ✷

We note that, because the potential biases of the estimators of (15.48)
have been ignored, (15.49) and (15.51) are in fact only some error bands.
These error bands will have approximately adequate coverage probabilities
for the quantities being estimated if the bias of the estimator is small. In
practice, we can reduce the bias of the estimator by increasing the number of
basis functions used in the B-spline approximations.

15.3 R Implementation with the NGHS Data

The NGHS data has been described in Section 1.2. We have discussed in
Chapters 13 and 14 the estimation of the time-varying effects of covariates,
the conditional distributions and the rank-tracking probabilities of several car-
diovascular risk factors using the time-varying transformation models. Here
we illustrate how to model and estimate these quantities based on the non-
parametric mixed-effects models to track body mass index (BMI) and systolic
blood pressure (SBP) with the NGHS data.

15.3.1 Rank-Tracking for BMI

Based on Obarzanek et al. (2010), a lower bound of the age- and sex-adjusted
85th percentile, q0.85(t), from the Centers for Disease Control and Preven-
tion (CDC) BMI growth chart is used to define overweight and obese status
for girls at a given age t. We fit separately the nonparametric mixed-effects
models (15.1) to the NGHS BMI data by the two racial groups, each model
with cubic B-spline approximation and four equally spaced knots. We then
compute the subject-specific BMI trajectory curves over 9 to 19 years of age,
and estimate RTPA

(
x, s1, s1+δ

)
and RTPRA

(
x, s1, s1+δ

)
of BMI for Caucasian

(x = 0) and African American (x = 1) girls over the age range 9 ≤ s1 ≤ 16 and
δ = 3, where A0.85(t) is the set of subjects whose BMI values at age t are greater
than q0.85(t). Some example R code for fitting the model and estimating the
tracking indices is given below:

> library(npmlda)

> NGHS.B <- NGHS[NGHS$RACE==2,]

> nID <- length(unique(NGHS.B$ID)) #1213

# fit the linear mixed model with cubic B-splines
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> KN1 <- seq(from=9, to=18.9, length=4)[-c(1,4)]

> Bs.age <- bs(NGHS.B$AGE, knots=KN1)

> fm1 <- lmer(BMI ~ 1+ Bs.age +(1+ Bs.age|ID), data=NGHS.B)

# generate the BLUP predictions on a grid

> T2<- seq(from=9, to=18.8, by=0.2)

> S.BS <- bs(T2, knots=KN1 )

> IDlevel<- rownames(coef(fm1)[[1]])

> NGHSped<- data.frame(ID= NA, AGE=rep(T2, nID), BMI=NA)

> nT2<- 50

> for (i in 1:nID)

{

KK <- i-1

Datai <- NGHS.B[NGHS.B$ID==IDlevel[i],]

mean.pred <- cbind(1,S.BS) %*% t(as.vector(coef(fm1)[[1]][i,]))

NGHSped[(KK*nT2+1):(KK*nT2+nT2),]$ID <- IDlevel[i]

NGHSped[(KK*nT2+1):(KK*nT2+nT2),]$BMI <- mean.pred

}

> NGHSped$BMIp <- NGHSped$BMI + rnorm(nrow(NGHSped) ,

mean = 0, sd = sigma(fm1) )

## Compute the PA(x,s1)##

> NN <- nrow(NGHSped)

> S1cat <- seq(9.0, 18.8, by=0.2)

> S12cat <- seq(9.0, 15.8, by=0.2)

> KK1 <- length(S1cat)

> KK2 <- length(S12cat)

> Prob.S1 <- numeric(KK1 )

> for (i in 1:KK1)

{

SeqKK1 <- seq(from=i, to =NN-nT2+i, by=nT2)

Datai <- NGHSped[SeqKK1,]

Prob.S1.f1[i] <- mean(Datai$BMIp>=BMIq85[i])

# BMIq85 is the CDC percentile curve

}

## Compute the PA(x,s1,s2)##

> Prob.S1S2 <- numeric( KK2 )

> for (i in 1:KK2)

{

SeqKK1 <- seq(from=i, to =NN-nT2+i, by=nT2)

Datai <- cbind(NGHSped[SeqKK1,]$BMIp,

NGHSped[SeqKK1+15,]$BMIp)

Prob.S1S2[i]<- mean((Datai[,1]>=BMIq85[i])&

(Datai[,2]>=BMIq85[i+15]))

}

# Then follow the same code in Chapter 12 to calculate RTP, RTPR
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Figure 15.1 The estimated BMI RT PA

(
x, s1, s1 + 3

)
, RT PRA

(
x, s1, s1 + 3

)
and their

95% bootstrap percentile confidence intervals for Caucasian (x = 0) and African
American (x = 1) girls.

Figure 15.1 shows the estimated 3-year RTP and RTPR curves for both
African American and Caucasian girls with their bootstrap 95% pointwise
percentile confidence intervals based on B = 500 bootstrap replications. Fig-
ures 15.1 (A)-(B) show that the conditional probabilities of being overweight or
obese are 84%-94% and 74%-90% for those girls who were already overweight
or obese 3 years earlier, respectively. This suggests that the African American
girls are more likely to remain in the undesirable overweight status compared
to the Caucasian girls. Since the NGHS participants are slightly more over-
weight than the general population, we examine the relative strength of the
BMI tracking ability through the RTPR curves displayed in Figures 15.1 (C)-
(D). For both racial groups, RTPR curves are significantly greater than 1,
which indicates that knowing a girl’s overweight status at an earlier age in-
creases the chance of being overweight at a later age about two to three times
compared to the probability of her being overweight without knowing her
previous weight status. Our spline-based estimation results are similar to the
results based on the kernel estimation in Section 12.4, which suggests that
BMI has high rank-tracking ability for adolescent girls.
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15.3.2 Rank-Tracking for SBP

Based on NHBPEP (2004), the age, sex, and height specific conditional per-
centiles for the blood pressure are used to define pre-hypertension and hyper-
tension in children. With the NGHS SBP data, we can estimate the RTPs and
RTPRs of SBP based on the predicted SBP trajectory curves obtained either
from the model (15.2) or the separate univariate mixed-effects models (15.1)
and (15.20).

Using the framework of (15.2), the mixed-effects varying-coefficient model
for the data is

Yi

(
ti j

)
= β0i(ti j)+X1i β1i(ti j)+X2i(ti j)β2i(ti j)+ εi(ti j), (15.52)

where Yi(t), X1i and X2i(t) are ith girl’s SBP, race and height percentile at t

years of age, with X1i = 0 if the girl is Caucasian and X1i = 1 if she is African
American. We have described the R implementation of the similar model fitting
and prediction in Section 11.6 for this data.

Since the conditional 90th percentile q0.9[t, X1, X2(t)] is not known, we ran-
domly split the subjects into two sub-samples with approximately equal sam-
ple sizes, and compute the estimates of q0.9[t,X1,X2(t)] using the first sub-
sample. We then use the cubic B-spline predicted SBP trajectories values from
the second sub-sample to estimate RTPA(x1,s1,s1+2) and RT PRA(x1, s1, s1+2),
the 2-year rank-tracking probabilities of SBP at ages s1 and s1 + 2 for both
racial groups.

Figure 15.2 shows the estimated tracking indices and their 95% point-
wise bootstrap percentile confidence intervals obtained with B= 500 bootstrap
samples. The RTPs in Figures 15.2 (A)-(B) are 30%-40% for both African-
American and Caucasian girls with s1 ∈ [9, 17] years. These values are sig-
nificantly larger than 10%, which is roughly the probability of SBP greater
than 90th percentiles at t = s1 + 2. To evaluate the relative strength of the
“rank-tracking ability” of SBP for these girls, we examine the estimates of
RTPRA(x1, s1, s1 + 2) in Figures 15.2 (C)-(D) for those girls. The estimated
RTPRs are approximately 2.9 to 3.1 for African American girls and 2.6 to
3.6 for Caucasian girls. That is, compared to the probability of a girl having
elevated SBP without knowing the SBP status at an earlier age, knowing that
a girl already had elevated SBP two years earlier increases the likelihood of
her having elevated SBP at a later age more than two times. The estimates
of these tracking indices suggest that SBP has high degree of risk tracking for
both African American and Caucasian girls within this age range. We have
also estimated RTPs and RTPRs based on the separate univariate mixed-
effects models (15.1) and (15.20), and the estimate curves are very similar to
the results presented in Figure 15.2.

15.4 Remarks and Literature Notes

This chapter summarizes a class of global smoothing methods for estimat-
ing the conditional distribution functions, the RTPs and the RTPRs, which
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Figure 15.2 The estimated SBP RTPA

(
x1, s1, s1+2

)
, RTPRA

(
x1, s1, s1+2

)
and their

95% bootstrap percentile confidence intervals for Caucasian (x = 0) and African
American (x = 1) girls.

are quantitative indices of the tracking abilities for a time-dependent outcome
variable. These estimators incorporate the subject’s covariates through a class
of flexible varying-coefficient mixed-effects models. The inherent model flexi-
bility and straightforward interpretations enable these estimators to serve as a
convenient statistical tool to identify disease risk factors that track over time.
The estimation methods of this chapter are based on the B-spline approxi-
mations. Depending on the scientific questions and the nature of the data, a
number of other estimation methods, such as approximations through other
basis functions, may be considered in given situations.

The modeling and estimation methods of this chapter are developed by Shi,
Weiss and Taylor (1996), Rice and Wu (2001), Liang, Wu and Carroll (2003)
and Wu and Tian (2013b). Specifically, Shi, Weiss and Taylor (1996) and
Rice and Wu (2001) established the basis approximation estimation and pre-
diction methods for nonparametric mixed-effects models with time-invariant
covariates, Liang, Wu and Carroll (2003) suggested the mixed-effects varying-
coefficient models with measurement errors to incorporate time-dependent
covariates, and Wu and Tian (2013b) developed the conditional distribution,
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the RTP and the RTPR estimators based on the predicted subject-specific
outcome and covariate values.
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smoothing estimator, 483

quasi-likelihood, 12

random-effects, 35
model, 33
parameter, 41, 42

rank-tracking
probability ratio, RTPR, 414,

476, 485, 490, 513, 519
probability, RTP, 19, 413, 475,

483, 484, 490, 513, 519
raw estimator, 242, 244, 447, 479

baseline, 479, 493
distribution function, 493

reduced rank model, 385, 386, 388
repeated

measurement, 4, 5, 16, 222
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residual sum of squares, 37, 103–105,
279, 280

restricted maximum likelihood esti-
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pseudo, 153, 156
resampling-subject bootstrap, 73,

101, 125, 161, 207, 252, 275,
342, 427, 456, 522

semiparametric
distribution model, 20
efficient, 49
linear transformation model, 21
model, 12

serial correlation, 34–36

shared-parameter
change-point model, 15, 306, 319,

330, 333, 347, 348
change-point model, additive, 332,

335
change-point model, Gaussian,

336
change-point model, linear, 331
model, 15, 319
model, additive, 332, 355

simultaneous confidence band, 75,
209, 251, 253, 276

smooth
curve, 14, 150
function, 13, 14, 445

smoothing
estimator, 242, 248, 451, 481
estimator, distribution function,

500
estimator, quantile, 483
parameter, 29, 99, 127, 131, 157–

159
splines, 29, 123, 127, 130, 157,

180
smoothing method

kernel, 15
local polynomial, 15
basis approximation, 15
global, 14, 24, 27
local, 14, 24, 193
locally weighted scatter plot,

LOESS, 24
roughness penalized splines, 15
two-step, 15, 242

smoothness penalty, 30, 157
splines

B-splines, 28
natural cubic, 30, 123
penalized smoothing, 29, 51, 52,

123, 157
polynomial, 28
roughness penalized, 15
smoothing, 51, 52, 180
tensor product, 272, 273

structure
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structured
nonparametric conditional distri-
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nonparametric model, 14, 16, 22–
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study

epidemiological, 3
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108, 118, 121, 124, 135, 153,
174, 199, 263, 416, 434

subject-specific
coefficient curve, 23
covariate trajectory, 516
curve, 16, 319
deviance curve, 23
deviation, 5, 23, 365, 369
effect curve, 23
model, 33, 41, 314
outcome trajectory, 16, 365, 381,

515
parameter, 15, 35, 43, 46
process, 364
response curve, 319

survival
analysis, 20, 21
function, 21, 445

test
consistency, 111, 280, 296
goodness-of-fit, 104, 279, 280
hypothesis, 103, 279
rejection region, 297
statistic, 104, 105, 280, 281, 297

time-dependent
outcome, 149
variable, 6, 149

time-invariant
covariates, 149
variable, 6, 149

time-point binning, 242
time-to-event

outcome, 21

variable, 21
time-trend, 4, 18, 108, 126, 129, 195,

211, 316, 365
population-mean, 16

time-varying
coefficient model, 14, 15, 23, 150,

163, 194, 195, 203, 260
coefficient model, approximate,

261, 264
coefficient model, covariate cen-

tered, 203
covariate effect, 22
covariates, 17, 364, 368, 415, 445
distribution, 22
Gaussian model, 23
outcome, 149
parametric model, 23
proportional hazards model, 446
proportional odds model, 446
transformation model, 22, 443,

445, 477
total number of measurements, 5
tracking, 20, 406, 408

distribution-based, 19
longitudinal, 17
negative, 19, 414
positive, 19, 414
rank-tracking probability ratio,

RTPR, 414, 476
rank-tracking probability, RTP,

19, 408, 413, 475
trajectory, 514

BLUP, 381, 382, 515, 516
derivative, 382
longitudinal, 6, 7
outcome, 15, 311, 378, 381, 517
subject-specific covariate, 516
subject-specific outcome, 16, 311,

365, 381, 515
transformation

model, 20, 21
model, time-varying, 443, 445,

477
two-stage

estimation procedure, 340



INDEX 551

maximum likelihood estimation,
340

two-step
covariate-centered kernel estima-

tor, 204
estimation procedure, 242, 446,

479
kernel estimator, 250
local polynomial estimator, 249
smoothing method, 15, 242

unbounded support, 25
unstructured

nonparametric conditional distri-
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nonparametric estimator, 21
nonparametric model, 13, 67

variable
time-dependent, 6, 149, 308
time-invariant, 6, 149, 308

variance, 35, 67, 87, 450
asymptotic, 171, 435, 437, 450,

451, 462, 463, 498, 500
conditional, 67, 194, 271, 450
estimator, 38, 246, 273, 380

varying-coefficient
mixed-effects model, 320, 345,

351, 372, 375, 512, 519
model, 15, 150, 194, 320

weight
measurement uniform, 69, 94, 98,

108, 109, 121, 124, 135, 153,
175, 199, 263

subject uniform, 69, 93, 98, 108,
121, 135, 153, 174, 199

weighted
least squares, 12, 68, 69, 98, 103,

153, 261
least squares estimator, 68, 69,

98, 153, 262, 326, 327
within-subject

correlation, 34
covariate, 41
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