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Preface

Longitudinal studies, which commonly refer to studies with variables repeat-
edly observed over time, play an important role in biomedical studies, such
as long-term epidemiological studies and clinical trials, as well as other scien-
tific areas. A well-known example of longitudinal study in biomedicine is the
Framingham Heart Study (www.framinghamheartstudy.org), which began in
1948 and has led to the identification of major cardiovascular disease risk fac-
tors, including blood pressure, triglyceride and cholesterol levels. Given the
success of early longitudinal studies, most important biomedical studies today
contain at least some repeatedly measured variables over time. A partial list
of such high-impact biomedical studies includes the Multicenter AIDS Cohort
Study (MACS), the National Growth and Health Study (NGHS), the En-
hancing Recovery in Coronary Heart Disease Patients (ENRICHD) study, the
Coronary Artery Risk Development in Young Adults (CARDIA) study, and
the Multi-Ethnic Study of Atherosclerosis (MESA) study. These are all large
scale long-term longitudinal studies with thousands of subjects and multiple
observations over years of follow-up. Among them, the ENRICHD is a random-
ized clinical trial, while the rest are all epidemiological studies with at least
ten years of follow-up. Tremendous progress in statistical methodology has
been made in the past three decades for the development of computational
and statistical methods to analyze data from longitudinal studies. Building
on the early developments in longitudinal analysis, a major area of statisti-
cal methodology is based on parametric or semiparametric statistical models
that properly take the intra-subject correlations into account, such as the
popular linear and nonlinear mixed-effects models. These statistical methods
still dominate the applications and methodological research in longitudinal
analysis today.

However, the rapid advancement of computing capability and data storage
tools in recent years makes it possible for researchers to efficiently collect, store
and transfer a large amount of data in a relatively short period of time. As a re-
sult, researchers are able to extensively explore and analyze large longitudinal
studies using flexible nonparametric statistical analysis and data mining tools.
Although well-designed clinical trials are still believed to be the gold standard
for evaluating efficacy in biomedical studies, an extensive exploratory analysis
is often useful for guiding the appropriate study questions and hypotheses,
which may be tested through a clinical trial.

There has been remarkable development of nonparametric methods for the

XXV


www.framinghamheartstudy.org

xXxVvi PREFACE

analysis of longitudinal data for the past twenty-five years. In contrast to para-
metric or semiparametric methods, nonparametric methods are more flexible
and often used in situations where there are no established parametric or semi-
parametric models for the available data. In exploratory longitudinal analysis,
parametric or semiparametric forms of the data distributions are usually com-
pletely unknown. When there are a large amount of data available, subjectively
chosen parametric or semiparametric models may give inadequate fits to the
data and lead to potentially biased conclusions. Thus, an important aspect
of nonparametric methods is to provide some flexible tools to describe the
temporal trends of the patterns and correlation structures of the data. Since a
completely unstructured nonparametric approach may be too general to lead
to useful conclusions in practice, most research activities on nonparametric
longitudinal analysis are focused on flexible nonparametric models subject to
certain scientifically meaningful and practical structural restrictions. When
appropriately used, structured nonparametric methods have the advantage of
balancing model flexibility with practicability in real applications.

The aim in this book is to provide a summary of recent results of unstruc-
tured and structured nonparametric methods for the analysis of longitudinal
data. Given our own experience and research interests, our coverage is fo-
cused on the statistical methods and theories which are particularly useful
for biomedical studies, although in principle these methods may have appli-
cations in other scientific areas. We intend to strike a proper balance between
methodology, applications and theory. To do this, we include four longitudi-
nal studies, among them, two large epidemiology studies, one large clinical
trial and one small-sized study, as motivating examples to illustrate the real
applications and scientific interpretations of the statistical methods. Statis-
tical implementation based on R software packages is also presented for the
corresponding statistical results, including tables and figures, in each chapter.

For a more application-oriented reader, the methodology and computa-
tional part is sufficient for the applications of the statistical methods described
in this book. Since longitudinal analysis is still an active area of statistical re-
search, we allocate a sizable portion of the book to cover the theoretical aspects
of the methods. Although our coverage of the theoretical results does not in-
clude all the methods described in this book, nor does every method have its
theoretical property systematically investigated, we intend to cover the impor-
tant theoretical derivations as much as possible, so that a reader interested
in the theoretical aspects of nonparametric longitudinal analysis may gain
sufficient background knowledge to the recent developments in the literature.
To benefit the readers who are interested in doing some methodological re-
search in this area, such as graduate students and new researchers in statistics
and biostatistics, we include in each chapter some discussions of the poten-
tial questions and directions for future research. Since almost all the methods
presented in this book are grown out of real scientific questions in biomedical
studies, we also include in the discussions of each chapter the relevant papers
in the biomedical literature to help motivate the statistical procedures and
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their interpretations. Throughout the book, we hope to send a clear message
that most methodological and theoretical developments of nonparametric lon-
gitudinal analysis, certainly the ones described in this book, are motivated by
some real studies and intended to answer certain important scientific ques-
tions, which may not be properly answered by the mathematically simpler
parametric or semiparametric approaches.

It would be impossible to complete this book without the help and support
from our families, friends and colleagues. We are deeply in debt to many
colleagues who at various stages have provided many insightful comments and
suggestions to initial drafts of this book. In particular, we are grateful to Mr.
John Kimmel, Executive Editor of Statistics, who initiated this book project
to the first author during a snow storm in Washington, D.C., in 2011, and
encouraged us constantly during the preparation of this book. It is certainly
a long journey from its initiation in 2011 to this date — which has certainly
brought many ups and downs. Along the way, we have to constantly keep up
with the new publications in this area and update the materials accordingly.
We greatly appreciate the many excellent comments and suggestions provided
by Ms. Robin Lloyd-Starkes (Project Editor), Ms. Sherry Thomas (Editorial
Assistant), several anonymous reviewers and the proofreader, which led to
significant improvement on the presentation of this book.

We are grateful to many of our colleagues who have collaborated with ei-
ther one or both of us at various stages of research and publications. These
include statistical collaborators, such as John A. Rice, Grace L. Yang, Donald
R. Hoover, Chin-Tsang Chiang, Jianhua Z. Huang, Lan Zhou, Gang Zheng,
Heejung Bang, Wenhua Jiang, Tianqing Liu, Zhaohai Li, Yuanzhang Li, Mo-
hammed Chowdhury, Xiaoying Yang, Wei Zhang, Qizhai Li, Lixing Zhu, Mi-
Xia Wu, Hyunkeun Ryan Cho and Seonjin Kim, and biomedical collaborators,
such as Joao A.C. Lima, David A. Bluemke, Kiang Liu, Bharath Ambale-
Venkatesh, A. John Barrett, Neal S. Young, Richard W. Childs, Cynthia E.
Dunbar, Jan Joseph Melenhorst, Phillip Scheinberg, Danielle Townsley, Mi-
noo Battiwalla, Sawa Ito, Adrian Wiestner, Eva Obarzanek, Michael S. Lauer,
Narasimhan S. Danthi, Jared Reis, among many others. We are also grate-
ful to our statistical colleagues at the National Institutes of Health, including
Nancy L. Geller, Eric Leifer, Paul S. Albert, Dean Follmann, Jin Qin, Aiyi Liu,
and others who shared with us their suggestions and insights into statistical
methodology and applications. We apologize for not being able to mention all
of the wonderful friends and colleagues who have helped us throughout the
preparation of this book. Their comments and suggestions have broadened our
perspectives on the nature of longitudinal data and statistical methodology in
general.

Both of us have greatly benefited from the many teachers, advisors and
mentors throughout our lives and professional careers. Their wisdom and guid-
ance have played an enormously important role in shaping our statistical re-
search careers. Among them, Colin O. Wu particularly thanks his mathemat-
ics teacher at Yao-Hua High School (Tianjin, China), Mr. Zon-Hua Liu; his
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undergraduate and graduate school teachers and advisors at UCLA and UC
Berkeley, Professors Shua-Yuan Cheng, Erich L. Lehmann, Lucien Le Cam,
Chin Long Chiang, David H. Blackwell, Rudolph Beran, Kjell Doksum, Peter
Bickel, and P. Warwick Millar (dissertation advisor); and his senior faculty
mentor at Johns Hopkins, Professor Robert J. Serfling. Xin Tian also thanks
her dissertation advisors at Rutgers, The State University of New Jersey, Pro-
fessors Cun-Hui Zhang and Yehuda Vardi. Again, we apologize for not being
able to list all our great teachers, advisors and mentors, and we take the op-
portunity to thank them all. We thank our parents for their love and sacrifices
in our upbringings and educational opportunities.

Finally, we express our deepest gratitude and appreciation to our fami-
lies. Their love, understanding, and patience provided emotional support and
encouragement for us to work hard throughout many long days and sleep-
less nights. We understand this book would not be possible, and our profes-
sional careers would not be successful, without their love and support. For
Colin O. Wu, his sincere appreciation goes to his wife, Li-Ping Yang, and
daughter, Enpei Y. Wu; for Xin Tian, her sincere appreciation goes to her
husband, Lang Lin, and children, Allison and Frank. We would like to dedi-
cate this book to them.

Colin O. Wu and Xin Tian

Spring, 2018
Bethesda, Maryland
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Chapter 1

Introduction

In biomedical studies, interests are often focused on evaluating the effects of
treatments, medication dosage, risk factors or other biological and environ-
mental covariates on certain outcome variables, such as disease progression
and health status, over time. Because the changes of outcomes and covariates
and their temporal patterns within each subject usually provide important
information of scientific relevance, longitudinal samples that contain repeated
measurements within each subject over time are often more informative than
the classical cross-sectional samples, which contain the measurements of each
subject at one time point only. Since longitudinal samples combine the char-
acteristics of cross-sectional sampling and time series observations, their use-
fulness goes far beyond biomedical studies and is often found in economics,
psychology, sociology and many other scientific areas.

1.1 Scientific Objectives of Longitudinal Studies

In general, there are two main sampling approaches to obtain longitudinal
observations in biomedical studies: (a) a randomized clinical trial with pre-
specified treatment regimens and repeatedly measured observations (Friedman
et al., 2015), and (b) an epidemiological study, which is often referred to as an
observational cohort study (Rosenbaum, 2002). The major difference between
a randomized clinical trial, or simply a clinical trial, and an observational co-
hort study is their designs. In a clinical trial, the selection of the experimental
treatment regimens, length of the trial period, visiting times and methods of
the measurement process are determined by the study investigators, and the
treatment regimens are randomly assigned to the study subjects, although, in
some occasions, nonrandomized concomitant treatments, or concomitant inter-
ventions may also be given to some subjects due to ethical and logistical rea-
sons. An observational cohort study, on the other hand, is more complicated,
because the risk factors, treatments and the measurement process depend on
the participants of the study and are not controlled by the investigators.

In a longitudinal clinical trial, the main scientific objective is to evaluate
the efficacy of the pre-specified experimental treatment versus a placebo or
standard treatment on the primary outcomes, such as certain health status
indicators, over time during the trial period. In many situations, a follow-up
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period is added at the end of the treatment period, so that time-to-event vari-
ables, such as time to hospitalization or death, may be included as a primary
outcome in addition to the repeatedly measured health outcomes. In a partic-
ular analysis, the trial period may be defined based on the objectives of the
analysis. For example, if the objective is to evaluate the treatment effects on
the time-trend of a health indicator within the treatment period, it is appro-
priate to consider the treatment period as the trial period. On the other hand,
if it is also of interest to consider certain time-to-event variables beyond the
treatment period, it is then appropriate to include both the treatment period
and the follow-up period into the trial period. Effects of the study treatments
may be evaluated through the conditional means, conditional distributions or
conditional quantiles of the outcome variables. Although regression models
based on conditional means of the outcome variables are by far the most pop-
ular methods in the analysis of longitudinal clinical trials, regression methods
based on conditional distributions or conditional quantiles are often valuable
statistical tools in situations when the outcome variables have highly skewed or
distributions that are not easily approximated by normal distributions. In ad-
dition to the evaluation of randomized study treatments, important secondary
objectives include evaluating the effects of concomitant interventions or other
covariates on the time-varying trends of the outcome variables. Regression
analyses involving covariates other than the randomized study treatments are
often useful for evaluating treatment-covariate interactions or identifying sub-
groups of patient populations to whom the experimental treatments are ef-
ficacious. Because of the randomization, a properly designed clinical trial is
viewed as a gold standard to make causal inferences about the efficacy of the
study treatments.

In a longitudinal observational cohort study, there are no randomized ex-
perimental treatments to be tested, and the main objective is to evaluate the
potential associations of various covariates, such as demographic and environ-
mental factors, with the outcome variables of interest and their trends over
time. Observational cohort studies are often used for the purpose of data ex-
ploration, so that more specific scientific hypotheses may be generated and
tested in a future properly designed clinical trial. For this purpose, observa-
tional cohort studies often involve large sample sizes as well as large numbers
of scientifically relevant variables. Statistical inferences obtained from an ob-
servational cohort study are useful for understanding the associations between
the covariates and the outcome variables, but may not be sufficient to infer
the causal effects. Because the variables are repeatedly measured over time,
long-term longitudinal observational cohort studies are useful for understand-
ing the natural progression of certain diseases both on a population-wide level
and for certain sub-populations represented by the study subjects. In prac-
tice, an observational cohort study usually involves a large number of subjects
with sufficient numbers of repeated measurements over time, so that novel
findings with adequate statistical accuracy can be obtained from the study.
Similar to longitudinal clinical trials, the choices of statistical approaches for
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the analysis of data from observational cohort studies depend on the scien-
tific objectives, and may involve regression models for the conditional means,
conditional distributions and conditional quantiles.

1.2 Data Structures and Examples
1.2.1 Structures of Longitudinal Data

For a typical framework of longitudinal data, the variables are repeatedly
measured over time. We denote by 7 a real-valued variable of time, .7 the
range of time points such that t € .7, Y(r) a real-valued outcome variable and
X(t) = (XO),...,.x & (t))T7 K > 1, a RE*!valued covariate vector at time ¢.
Depending on the choice of origin, the time variable ¢ is not necessarily non-
negative. As part of the general methodology, interests of statistical analysis
with regression models are often focused on modeling and determining the
effects of {t, X(t)} on the population mean, subject-specific deviations from
the population mean, conditional distribution or conditional quantiles of ¥ ().
For n randomly selected subjects with each subject repeatedly measured over
time, the longitudinal sample of {Y(r),#, X(r)} is denoted by

{(Y,'jJ,‘j,X,’j) : l'=1,...7I’l;j=L...Jl,‘}7

where f;; is the jth measurement time of the ith subject, ¥;; and X;; =

(Xl-(jo), . 7Xi(jm)T are the observed outcome and covariate vector, respectively,
of the ith subject at time #;, and n; > 1 is the ith subject’s number of re-
peated measurements. Due to various reasons, such as schedule changes or
some missed visits, the numbers of repeated measurements n; are usually not
the same in practice, even though the study design ideally calls for the same
number of repeated measurements for all the study subjects. The total number
of measurements for the study is N =Y, n;. In contrast to the independent
identically distributed (i.i.d.) samples in classical cross-sectional studies, which
is equivalent to the situation with n; =1 for all i =1,...,n, the measurements
within each subject are possibly correlated, although the inter-subject mea-
surements are assumed to be independent.

A longitudinal sample is said to have a balanced design if all the subjects
have their measurements made at a common set of time points, i.e., n; =m
for some m > 1 and all i=1,...,n and t;; =--- =t for all j=1,...,m. An
unbalanced design arises if the design time points {t,-j; 1<j< n,-} are different
for different subjects. In practice, unbalanced designs may be caused by the
presence of missing observations in an otherwise balanced design or by the
random variations of the time design points. In long-term clinical trials or epi-
demiological studies, study subjects are often assigned to a set of pre-specified
“design visiting times,” but their actual visiting times could be different be-
cause of missing visits or changing visiting times due to various reasons. Under
an ideal situation, it is possible to observe balanced longitudinal data from a
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well-controlled longitudinal clinical trial, because the randomized study treat-
ments and clinical visiting times are determined by the study investigators.
However, for various reasons that are out of the investigator’s control, most
longitudinal clinical trials and nearly all the observational cohort studies have
unbalanced longitudinal designs.

1.2.2  Examples of Longitudinal Studies

In order to provide a practical sense of the scope for longitudinal studies, we
use four real-life examples, two epidemiological studies and two longitudinal
clinical trials, throughout this book to illustrate some typical designing fea-
tures, scientific objectives, and statistical models for longitudinal data analy-
sis. These examples have different sample sizes, data structures and objectives,
and require different statistical approaches.

Example 1. Baltimore Multicenter AIDS Cohort Study

This dataset is from the Baltimore site of the Multicenter AIDS Cohort
Study (BMACS), which included 400 homosexual men who were infected by
the human immunodeficiency virus (HIV) between 1984 and 1991. Because
CD4 cells (T-helper lymphocytes) are vital for immune function, an impor-
tant component of the study is to evaluate the effects of risk factors, such as
cigarette smoking, drug use, and health status evaluated by CD4 cell levels
before the infection, on the post-infection depletion of CD4 percent of lympho-
cytes. Although all the individuals were scheduled to have their measurements
made at semi-annual visits, the study has an unbalanced design because the
subjects’ actual visiting times did not exactly follow the schedule and the HIV
infections happened randomly during the study. The covariates of interest in
these data include both time-dependent and time-invariant variables. Details
of the statistical design and scientific importance of the BMACS data can
be found in Kaslow et al. (1987) and Wu, Chiang and Hoover (1998). The
BMACS data used in this book included 283 subjects with a total of 1817 ob-
servations. The number of repeated measurements ranged from 1 to 14 with a
median of 6 and a mean of 6.4. Figure 1.1 presents the longitudinal trajectories
for the BMACS data. O

Example 2. National Growth and Health Study

The National Heart, Lung, and Blood Institute Growth and Health Study
(NGHS, also known as the National Growth and Health Study in ClinicalTri-
als.gov) is a multicenter population-based cohort study aimed at evaluating
the racial differences and longitudinal changes in childhood cardiovascular risk
factors between 1166 Caucasian and 1213 African American girls during child-
hood and adolescence. Details of the study have been previously described in
NGHS Research Group (NGHSRG, 1992). Up to 10 annual measurements
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Figure 1.1 The longitudinal CD4 trajectories for all subjects in BMACS dataset.

were obtained from the girls followed longitudinally between 9 to 10 years
of age (visit 1) at study entry through 18 to 19 years (visit 10). The demo-
graphic information, physical measures and cardiovascular risk factors such
as blood pressure and lipids levels were obtained during the visits. The body
mass index (BMI) defined as weight in kg divided by height in m? was derived
from annual measurements of height and weight. The number of follow-up
visits for the Caucasian and African American girls in the study ranged from
1 to 10, with a median of 9 and a mean of 8.2. Figure 1.2(A) shows the BMI
and the systolic blood pressure (SBP) for a randomly chosen sample of 150
study participants. Figure 1.2(B)-(C) displays BMI and SBP measurements
for three girls from NGHS, from which we can see the individual variations in
their longitudinal trajectories. The NGHS data are available for request via
the NIH BioLINCC site (https://biolincc.nhlbi.nih.gov/). O

Example 3. Enhancing Recovery in Coronary Heart Disease Patients Study

The Enhancing Recovery in Coronary Heart Disease Patients (ENRICHD)
study is a randomized clinical trial to evaluate the efficacy of a cognitive
behavior therapy (CBT) versus usual cardiological care on survival and de-
pression severity in 2481 patients who had depression and/or low perceived
social support after acute myocardial infarction. The primary objective of the
study is to determine whether mortality and recurrent myocardial infarction
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Figure 1.2 (A) The body mass index and systolic blood pressure of 150 subjects in
the NGHS. (B)-(C) The longitudinal BMI and SBP measurements for three girls
from the NGHS.

are reduced by treatment of depression and low perceived social support with
cognitive behavior therapy, supplemented with the use of selective serotonin
reuptake inhibitor (SSRI) or other antidepressants as needed, in patients en-
rolled within 28 days after myocardial infarction (MI). The intervention of
the trial consists of cognitive behavior therapy initiated at a median of 17
days after the index MI for a median of 11 individual sessions throughout 6
months. Depression severity was measured by the Beck Depression Inventory
(BDI) with higher BDI scores indicating worsened depression severity. Group
therapy was conducted when feasible, with antidepressants, such as SSRIs,
as a pharmacotherapy for patients scoring higher than 24 on the Hamilton
Rating Scale for Depression (HRSD) or having a less than 50% reduction in
BDI scores after 5 weeks. Antidepressants were also prescribed at the request
of the patients or their primary-care physicians, therefore, could be treated
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Figure 1.3 The longitudinal BDI scores for patients in ENRICHD study with hori-
zontal azes as days on study since randomization (A) or days since medication (B).

as a concomitant treatment in addition to the randomized CBT psychosocial
treatment or usual cardiological care specified in the trial design. The main
outcome measures consist of a composite primary endpoint of death or recur-
rent MI, and secondary outcomes including change in BDI for depression or
the ENRICHD Social Support Instrument scores for low perceived social sup-
port at 6 months. Details of the study design, objectives, and major findings of
the trial have been described in ENRICHD (2001, 2003), Taylor et al. (2005)
and Bang and Robins (2005), among others.

In addition to the primary objective of the trial, an important question of
secondary objective is whether the use of antidepressants has added benefits
on the trends of depression (measured by BDI scores) for patients who re-
ceived pharmacotherapy during the six-month psychosocial treatment period.
Because pharmacotherapy was only designed as a concomitant intervention in
this trial, the starting time of pharmacotherapy was decided by the patients
or their physicians. Unfortunately, since patients in the usual care arm did
not have accurate pharmacotherapy starting time and repeated BDI scores
recorded within the first six-month period, patients in this arm are not in-
cluded in the dataset for our analysis. In our data, 92 patients (total 1445
observations) in the psychosocial treatment arm received pharmacotherapy as
a concomitant intervention during this period and had clear records of their
pharmacotherapy starting time. Among them, 45 started pharmacotherapy at
baseline and 47 started pharmacotherapy between 10 and 172 days. In addi-
tion, we also included 11 patients in the CBT arm who had record of starting
antidepressants before baseline and 454 patients who did not use antidepres-
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sants before and during the treatment period. Therefore, this data example
is based on 557 depressed patients (total 7117 observations) in the CBT arm.
The number of visits for these patients ranges from 5 to 36 and has a median
of 12. Figure 1.3 shows the BDI scores of 92 patients with antidepressant start-
ing time recorded in the ENRICHD data. The ENRICHD data are available
for request via the NTH BioLINCC site (https://biolincc.nhlbi.nih.gov/). O

Example 4. The HSCT Data

For patients with hematologic malignancies and life-threatening bone mar-
row diseases, allogeneic hematopoietic stem cell transplantation (HSCT) has
long been recognized as a curative treatment. HSCT is associated with pro-
found changes in levels of various leukocytes and cytokines around the time
before and immediately after the transplantation. The HSCT data consists
of 20 patients who were transplanted between 2006 and 2009 in a phase
IT clinical trial at the National Institutes of Health. Patients received a 7-
day conditioning preparative regimen including radiation and chemotherapy
agents (on days -7 and -1). On day 0, the patients received a CD34+ stem
cell-selected HSCT from a Human Leukocyte Antigen (HLA) identical sibling
donor. Plasma samples were collected twice weekly from day -8 until 100 days
post-transplantation. The database and study design have been described in
Melenhorst et al. (2012). Figure 1.4 shows the longitudinal changes in the
white blood cell counts of granulocytes, lymphocytes and monocytes and lev-
els of three cytokines, granulocyte colony-stimulating factor (G-CSF), IL-15
and monocyte chemotactic protein-1 (MCP-1) for patients during the pre- and
early post-transplantation period. The local polynomial smoothing estimate
is superimposed on each scatter plot to show the overall time-trend. O

1.2.8  Objectives of Longitudinal Analysis

Generally speaking, a proper longitudinal analysis should achieve at least three
objectives:

(1) The model under consideration must give an adequate description of the
scientific relevance of the data and be sufficiently simple and flexible to be
practically implemented. In biomedical studies, an appropriate regression
model should give a clear and meaningful biological interpretation and also
has a simple mathematical structure.

(2) The methodology must contain proper model diagnostic tools to evaluate
the validity of a statistical model for a given dataset. Two important diag-
nostic methods are confidence regions and tests of statistical hypotheses.

(3) The methodology must have appropriate theoretical and practical prop-
erties, and can adequately handle the possible intra-subject correlations of
the data. In practice, the intra-subject correlations are often completely
unknown and difficult to be adequately estimated, so that it is generally
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Figure 1.4 Dynamics of leukocytes and cytokines around the time of stem cell trans-
plantation. The local polynomial smoothing estimators are superimposed on the scat-
ter plots.

preferred to use estimation and inference procedures that do not depend
on modeling the specific correlation structures. ad

We briefly summarize here major classes of regression models for longitu-
dinal analysis, which form the main topics of this book. Detailed estimation
and inference procedures based on these models are discussed in the following
chapters.

1.3 Conditional-Mean Based Regression Models

This class of models is aimed at characterizing the covariate effects through
the conditional mean structures of the response variables given the covariates
of interest. These models are appropriate when the outcome variables, i.e.,
the error terms of the regression model, have nearly symmetric distributions
conditioning on the covariates. When the conditional distributions of the out-
come variables are skewed, some transformations, such as the logarithmic or
Box-Cox transformations, may be applied to the original outcome variables,
so that the transformed outcome variables have nearly symmetric conditional
distributions given the covariates.
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1.8.1 Parametric Models

Naturally, the most commonly used approach in longitudinal analysis is
through parametric regression models, such as the generalized linear and non-
linear mixed-effects models. By adopting a parsimonious parametric structure,
this class of models can summarize the relationships between the outcome
variables and covariates through some simple parameters, so that it has the
advantage of having mathematically trackable estimation and inference pro-
cedures. The simplest case of these models is the marginal linear model

K
!
Yij = ZﬁlXi(j>+8i(tij)7 (1.1)
=0
where fy, ..., Bx are constant linear coefficients describing the effects of the

corresponding covariates, () are realizations of a mean zero stochastic pro-
cess £(¢) at ¢, and X;; and &(#;;) are independent. Similar to all regression
models where a constant intercept term is desired, the choice of X(©) =1 pro-
duces a baseline coefficient By, which represents the mean value of Y (r) when
all the covariates X (”(t) are set to zero. A popular special case of the error
process is to take €(f) to be a mean zero Gaussian stationary process. Al-
though (1.1) appears to be overly simplified for many practical situations, its
generalizations lead to many useful models which form the bulk of longitudinal
analysis.

Estimation and inference methods based on parametric models, including
the weighted least squares, the quasi-likelihoods and the generalized estimat-
ing equations, have been extensively investigated in the literature. Details of
these methods can be found, for example, in Laird and Ware (1982), Pan-
tula and Pollock (1985), Ware (1985), Liang and Zeger (1986), Diggle (1988),
Zeger, Liang and Albert (1988), Jones and Ackerson (1990), Jones and Boadi-
Boteng (1991), Davidian and Giltinan (1995), Vonesh and Chinchilli (1997),
Verbeke and Molenberghs (2000) and Diggle et al. (2002). The main advantage
of parametric models is that they generally have simple and intuitive inter-
pretations. User-friendly computer programs are already available in popular
statistical software packages, such as SAS, STATA and R. However, these mod-
els suffer the potential shortfall of model misspecification, which may lead to
erroneous conclusions. At least in exploratory studies, it is often necessary to
relax some of the parametric restrictions.

1.3.2  Semiparametric Models

A useful semiparametric regression model, investigated by Zeger and Dig-
gle (1994) and Moyeed and Diggle (1994), is the partially linear model

K
Yij = Bolty) + Y. BiX) +&i(tiy), (1.2)
=1
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where Bo(¢) is an unknown smooth function of ¢, ff; are unknown constants
and &(r) and X;; are defined in (1.1). The objective in (1.2) is to estimate
the scalar covariate effects {4, ..., Bk} while leaving the unknown smooth
function By(r) as a nuisance baseline curve. This model is more general than
the marginal linear model (1.1), because By(¢) is allowed to change with ¢,
rather than setting to be a constant over time. But the covariate effects of
(1.2) are determined by the linear coefficients f;, { = 1,..., K, which form

the parametric components. By including the linear terms of Xi<jl)7 (1.2) is
more general than the unstructured nonparametric regression model given
below, which involves only (;;, Yij) and was studied in the literature by Hart
and Wehrly (1986), Altman (1990), Hart (1991), Rice and Silverman (1991),
among others.

However, because (1.2) describes the effects of Xl.(jl) on Y¥;; through constant
linear coefficients, this model is still based on mathematical convenience rather
than scientific relevance. For example, there is no reason to expect that the
influences of the effects of cigarette smoking and pre-infection CD4 level on
the post-infection CD4 cell percent in the BMACS data of Section 1.2.2 are
linear and constant throughout the study period. Thus, further generalization
of (1.2) is needed in many situations. We review the methods for parametric
and semiparametric longitudinal regression models in Chapter 2.

1.3.3  Unstructured Nonparametric Models

To relax the parametric assumptions on the effects of the covariates X;;, a
further generalization is to allow the effects of X;; to be described by nonpara-
metric functions. Although it is possible in principle to model {Yij, tij, Xij}
through a completely unstructured nonparametric function, such an approach
is often impractical due to the well-known problem of “curse of dimensional-
ity” in the sense that the resulting covariate effects are difficult to interpret
and the estimation and inference procedures are numerically unstable if the
dimensionality K of X;; is high (e.g., Fan and Gijbels, 1996). Thus, without
assuming any modeling structures, a completely unstructured nonparametric
model for {Yi i tijs X j} is often impractical even for the low-dimensional case
of K=2or 3.

For the unstructured nonparametric models, we only present in this book
the special case of estimating the conditional mean p(¢) = E[Y(¢)|¢] based on
the model

Yij = u(tij) + &(tij), (1.3)

with longitudinal sample {(Y,-j,tij) ci=1,...,mj=1, ...,ni}, where, as in
(1.1), &(r) are realizations of a mean zero stochastic process g(¢) at r. We
present three types of smoothing methods for the estimation of p():

(a) kernel and local polynomial estimators;

(b) basis approximation methods through B-splines;
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(c) penalized smoothing spline methods.

The estimation methods in (a) are based on the so-called local smoothing
methods in the sense that the estimators of u(¢) are constructed using the
weighted averages of the local observations around the time point 7. The es-
timation methods in (b) and (c¢), by contrast, are based on global smoothing
methods since the data points observed away from the time point ¢, i.e., global
observations, still contribute to the estimators of p(z).

We present the local and global smoothing estimation methods for (1.3) in
Chapters 3 to 5. The main difference between the smoothing methods of Chap-
ters 3 to 5 and their counterparts with the classical cross-sectional independent
and identically distributed (i.i.d.) data is that the statistical properties of the
methods of Chapters 3 to 5 are affected by the potential intra-subject correla-
tions of the longitudinal sample {(Yij, t,-j) i=1,...,nj=1, ...,n,-}. For the
special case that there is no intra-subject correlation, the smoothing meth-
ods presented in Chapters 3 to 5 are equivalent to their counterparts with
cross-sectional i.i.d. data. But, as shown by the examples of Section 1.2.2, this
uncorrelated assumption is usually unrealistic in real longitudinal applications.

1.8.4  Structured Nonparametric Models

The problems discussed in the above parametric, semiparametric and unstruc-
tured nonparametric modeling approaches motivate the consideration of non-
parametric regression models that have certain scientifically interpretable and
meaningful structures, which we refer to herein as the “structured nonparamet-
ric regression models” or “structural nonparametric regression models.” The
main idea is to impose some mathematically tractable structures to the model,
so that, in order to maintain model flexibility and interpretability, the main
parameters of interest are functions or curves, which we refer to as “functional
parameters” or “curve parameters.”

1. The Time-Varying Coefficient Model

An important class of structured nonparametric regression models is the
time-varying coeflicient model, which, under the linear structure for covariate
effects, has the form

Y =X B(tij) + &(ti)), (1.4)

where B(t) = (Bo(t), ..., ﬁK(t))T is a (K + 1)-vector of smooth functions (or
smooth curves) of 7, and &(¢) and X;; are defined as in (1.1). Because (1.4)
assumes a linear model between Y (z) and X(¢) at each fixed time point #, the
linear coefficient curve fB;(¢), I =0, ..., K, can be interpreted the same way as
n (1.2). In most applications, we assume that ¥;; has a baseline population
mean at time point f;;, so that Xi<j0> is set to Xi<j0> =1 and By(¢) represents the
intercept at time ¢. Because all the linear coefficients of (1.4) are functions of
t, different linear models may be obtained at different time points.
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The model (1.4) is a special case of the general varying-coefficient models
discussed in Hastie and Tibshirani (1993). Methods of estimation and infer-
ences based on this class of models have been subjected to intense investigation
in the literature. A number of different smoothing methods for the estimation
of B(r) have been proposed. These include the ordinary least squares kernel
and local polynomial methods, the roughness penalized splines, the two-step
smoothing methods and the basis approximation smoothing methods. Tar-
geted to specific types of longitudinal designs, each of these methods has its
own advantages and disadvantages in practice. We present these smoothing
estimation methods for the time-varying coefficient model (1.4) in Chapters 6
to 9.

2. The Shared-Parameter Change-Point Models

In addition to the time-varying linear structured modeling formulation as
(1.4), a number of nonparametric extensions and alternatives of (1.4) may be
considered in practice depending on the scientific objectives, biological inter-
pretations and data structures of the study. These alternative modeling ap-
proaches are needed because, in many studies, the regression models as shown
in (1.1) to (1.4) are misspecified, which may lead to biased and erroneous
conclusions.

A particularly interesting scenario in longitudinal studies is the presence of
a concomitant intervention in the sense that a particular intervention is intro-
duced to a subject because of the unsatisfactory health outcomes observed in
the past. In this case, a concomitant intervention cannot be treated as a usual
covariate in the regression models (1.1) to (1.4), because a necessary condi-
tion for these models to be valid in practice is that the values of the covariates
must not depend on the past values of the outcomes. Under the assumption
that there is only one concomitant intervention and a subject can switch from
“without concomitant intervention” to “with concomitant intervention” only
once, a viable way to model the effects of the concomitant intervention and
other covariates on the outcome variable is to incorporate the change-point
time into the model.

Let S; be the concomitant intervention change-point time of the ith subject.
It is then reasonable to assume that the outcome ¥;(¢) of this subject follows
different trajectories before and after the change-point time S;. To do this, we
denote by Uy (t, Xi; ai) the outcome trajectory at time ¢ before the concomitant
intervention, which is determined by the subject-specific parameter vector a;,
and by u; (t, X;; b,~) the change of the outcome trajectory after the concomitant
intervention, which depends on the subject-specific parameter vector b;. The
relationship between Y;; and {t,-j, Xi, S,-} is described by

{ Yij = po(t, Xis ;) + & (1, Xis bi) + &,

1.5
(aiT, biT7 S,~)T ~ Joint Distribution, (15)

where §;; = Ly>s 18 the indicator of whether the subject is taking concomitant
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intervention at time #;; and &; are the mean zero errors with some covariance
structure at time points #;;, and f;;, when j; # j». In (1.5), the outcome tra-
jectory before the concomitant intervention time S;, Uo (t, Xi; a,-)7 affects the
change-point time S; through the joint distribution of a; and S;. At time points
t;j after taking the concomitant intervention, i.e., §; = 1, the outcome trajec-
tory becomes ,uo(tij, Xi; a,~) + Uy (tij, Xi; b,~)7 in which the change-point time S;
affects the value of ¥;; through the joint distribution of b; and ;.

Although (1.5) shares the parameters a; and b; in the trajectory of ¥;; and
the joint distribution with S;, hence the name “shared-parameter change-point”
model, the terms ,uo(t, Xi; ai) and (tij, Xi; b,~) can be flexible nonparametric
curves of . By specifying the functional forms of g (t, Xi; ai) and L (tij, Xi; b,~)7
(1.5) fits into the framework of structured nonparametric models. We discuss
the details of model formulation and interpretations and the estimation meth-
ods of (1.5) in Chapter 10.

8. The Nonparametric Mized-Effects Models

Another useful class of structured nonparametric regression models for a
longitudinal sample {(Y,~j7 tij, Xij) ri=1,..,nj=1, ...,ni} is a more flexible
version of the classical mixed-effects models to be reviewed in Section 2.1.
To see why this flexible extension is potentially useful in real applications,
we consider the simple case of modeling ¥;; as a function of #; without the
covariates X;;. If we denote by Yi(r) the ith subject’s outcome value at time 7,
we can describe the relationship between Y;(¢) and ¢ by

Yi(t) = Bo(t) + Poi(t) + &(2), (1.6)

where By(t) = E[Y;(t)] is the population-mean curve of # and, for the ith sub-
ject, Boi(t) is the subject-specific curve and &(¢) is the measurement error at
time ¢. Since the parametric forms of By(z) and Py;(¢) are often unknown in
practice, a reasonable flexible model is to assume that By(z) and By;(¢) are un-
known smooth curves of 7, so that the population-mean time-trend of Y (¢) can
be evaluated by the curve estimates of By(¢), and the subject-specific outcome
trajectory of ¥;(t) can be predicted by the estimates of [By(f)+ Boi(r)]. Here,
we use the convention which refers an estimate of the population-mean curve
to a curve estimator and an estimate of the subject-specific curve to a curve
predictor.

The advantages of using (1.6) include two main aspects:

(a) By decomposing the trajectory of ¥;(z) as the sum of a population-mean
curve, a subject-specific deviation curve from the population and a mea-
surement error, (1.6) establishes a clearly interpretable mechanism that
can be used to construct a reasonable covariance structure for the repeated
measurements.

(b) The predictor of the subject-specific curve over ¢ can be used to track the
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outcomes of interest at different time points and evaluate the distributions
of the outcomes over time.

The above advantages have important applications in real applications
when the scientific questions can be better answered by evaluating the corre-
lation structures and tracking the individual subject’s outcome trajectories.
We describe the details of (1.6), its extensions with time-varying covariates,
and the corresponding estimation and inference procedures in Chapter 11. We
further describe the estimation methods for distribution functions and longi-
tudinal tracking based on (1.6) and its extensions with time-varying covariates
in Chapter 15.

4. Other Modeling Approaches

The structured nonparametric models described above only represent a
number of frequently used flexible structural approaches in longitudinal anal-
ysis. In real applications, these models are clearly not enough to cover all the
potentially important and scientifically interpretable structures. In some cir-
cumstances, the models described in this book can be directly extended to
meet the practical needs of real studies. In general, however, there are var-
ious modeling structures which are beyond the scope of this book and have
been developed for various scientific reasons and data structures. In order to
maintain focus, we limit the scope of this book to the most frequently used
modeling structures.

1.4 Conditional-Distribution Based Models

Beyond the above conditional-mean based models, regression models for condi-
tional distributions are often used in longitudinal analysis. This is particularly
true when the distributions of the response variables or their transformed vari-
ables are unknown, non-normal or asymmetric. In many longitudinal studies,
the scientific objectives cannot be achieved using the conditional-mean based
models, and answers to the relevant study questions require appropriate sta-
tistical inferences for the conditional distributions. Flexible regression models
for conditional distribution functions are then more appropriate tools than
the conditional-mean based regression models.

1.4.1 Conditional Distribution Functions and Functionals

We present a number of useful formulations of conditional distributions and
their functionals. These distribution functions and functionals are useful to
show the general patterns of the population. In many instances, they are
more informative than only evaluating the conditional means. For example,
conditional distributions and their functionals can be used to define a subject’s
health status and track the disease risks over time.
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1. Conditional Distribution Functions

When the outcome variables are discrete, a well-known parametric ap-
proach is to consider the generalized linear mixed-effects models (e.g., Molen-
berghs and Verbeke, 2005), which may also be applied to the discretized ver-
sions of continuous outcome variables defined by some prespecified threshold
values. When there are no appropriate threshold values or there are no existing
transformations for the outcome variables, a natural method for the analysis
of {¥(t),1,X(t)} is to directly model the conditional distribution functions

Py(x,1) =P[Y(t) € A(x, 1)|X(r) = x,1], (1.7)

where A(x, 1) is a subset on the real line chosen by the scientific objectives of
the analysis. In particular, if A(x,?) = (—oo, y] for some real valued y, (1.7) is
the conditional cumulative distribution function (CDF)

F(ylx) = P[Y (1) < y[X(0) = x.1]. (18)

The statistical objective of the analysis is to construct estimates and infer-
ences for Py(x, 1) or F;(y|x), when these quantities are considered as functions
of x and ¢. The relationship between x and P4(x,t) or F;(y|x) shows the co-
variate effects on the outcome distributions at a given time point . On the
other hand, the covariate effects are possibly time-varying, and the change of
Ps(x,t) or Fi(y|x) as a function of ¢ illustrates the time-trends of P4(x,t) or
F,(y|x), respectively.

The applications of Py(x,t) or F;(y|x) in biomedical studies are often orig-
inated from evaluating the health status or disease risk levels of an individual
or a group of subjects from a chosen population. The set A(x, r), which defines
health status or disease risk levels, is chosen based on the study objectives. In
some situations, A(x,?) is obtained from other studies and treated as known
for the current study. In general, A(x, t) is possibly unknown and may need to
be estimated from the same longitudinal sample.

2. Conditional Quantiles and Other Functionals

Various functionals of the conditional distribution functions may also be
of interest in longitudinal studies. Choices of these functionals depend on the
scientific objectives of the study. A useful functional of the conditional CDF
F,(y|x) is the conditional quantile function given by

va(t,%) = F'(alx), (1.9)

where F,!(ax) is the unique inverse of F(y|x) = e for any 0 < & < 1 and any
given ¢ and X(r) = x, and yq(7, x) is the (100 x o)th conditional quantile given
{t, x}. Other useful functionals include the conditional inter-quantile range

8yay vy (11, X15 12, X2) = Vg, (1, X1) — Vo, (12, X2) (1.10)
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for any choices of {a, 1, x1} and {ap, 1, x}. Conditional quantiles have been
used to develop the national guidelines for the diagnosis, evaluation and treat-
ment of high blood pressure in children and adolescents (NHBPEP, 2004).

3. Distribution-Based Tracking

Given the time-varying information provided by the longitudinal observa-
tions, an important objective is to evaluate the tracking ability among subjects
with certain health status. The scientific values of evaluating the tracking abil-
ities of cardiovascular risk factors in pediatric studies have been discussed by,
for example, Kavey et al. (2003), Thompson et al. (2007) and Obarzanek et
al. (2010). The concept of tracking ability can be quantified by evaluating
whether a subject’s health outcome at an earlier time point affects the distri-
bution of the health outcome at a later time point. We discuss a few statistical
tracking indices based on the concept of maintaining the relative ranks over
time within the population.

Rank-Tracking Probability:

Suppose that there is a pre-defined set of health outcomes A(r) at any
given time point ¢, so that a subject’s health outcome at a time point ¢ can be
determined by whether Y(¢) € A(f). A simple and direct way to measure the
tracking ability of Y (f) at two time points s; < 7 is to use the “rank-tracking
probability” (RTP) defined by

RTP;, 5, (A, B) = P[Y(s2) € A(s2)|Y (s1) € A(s1), X(s1) € B(s1)], (1.11)

where B(t) C RK*! is a pre-specified subset for the covariates at time point
t. Since RTP;, s,(A, B) is a conditional probability, its values are within [0, 1],
and a large value of RT Py, 4, (A, B) would suggest that, given Y (s;) € A(s1) and
X(s1) € B(s1), the probability of Y (s2) € A(sz) is large. 0

Interpretations of Rank-Tracking Probability:

The strength of tracking Y(¢) is actually measured by the value of
RTP;, s, (A, B) relative to the conditional probability of Y (s2) € A(s2) without
knowing Y (s1) € A(s1), that is, P[Y (s2) € A(s2)|X(s1) € B(s1)]. If

RTP,, 5, (A, B) = P[Y(s2) € A(s2)|X(s1) € B(s1)], (1.12)

then knowing Y (s1) € A(s;) does not increase the conditional probability of
Y(s2) € A(s2) given X(s1) € B(s1). The equation in (1.11) then suggests that
Y (s1) € A(s1) has no tracking ability for Y(s2) € A(s2) conditioning on X(s1) €
B(s1). On the other hand, Y(s;) € A(s;) can be defined to have positive or
negative tracking value for Y (s2) € A(s2) conditioning on X(s1) € B(sy), if

RTP, ,(A, B) > P[Y(s2) € A(s52)|X(s1) € B(s1)] (1.13)
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or

RTPy, ,(A, B) < P[Y(s2) € A(52)|X(s1) € B(s1)] (1.14)
respectively. It clearly follows that Y (s;) has no tracking ability for ¥ (sy) if
Y(s1) and Y (s2) are conditionally independent given X(s1) € B(s;). 0

Tracking is an extremely useful feature in long-term studies of popula-
tion changing patterns and can only be evaluated by longitudinal studies with
sufficient numbers of repeated measurements. This feature illustrates the ma-
jor advantage of long-term longitudinal studies over the simpler studies with
cross-sectional i.i.d. data or longitudinal studies with small numbers of re-
peated measurements.

1.4.2  Parametric Distribution Models

If Py(x,t) or F(y|x) can be determined by a finite dimensional parameter 6
within a parameter space ®, we obtain the parametric models Py ¢(x, ) and
F o(yx) for Ps(x,t) or F;(y|x), respectively, with 68 € ©. Here, ® is often taken
as an open subset in the Euclidean space. The linear mixed-effects model to be
reviewed in Chapter 2.1 is a special case of the parametric models with normal
distribution assumptions. Under the parametric modeling assumptions, the
conditional distribution functions Py g(x,7) and F g(y|x) can be in principle
estimated by first estimating the parameter 0 using a maximum likelihood
procedure and then substituting 6 in Py (X, ) and F; (y[x) with its maximum
likelihood estimator. Completely specified parametric models P4 o(x,¢) and
F; o (y|x) lack the much needed flexibility in practice, hence, may lead to biased
conclusions when the models are misspecified. These models are not the focus
of this book.

1.4.8 Semiparametric Distribution Models

Since the fully parametrized distributions for P4(x,7) and F;(y|x) may not be
always available in practice, a relatively more flexible approach is to consider
modeling P4(x,¢) and F(y|x) by a semiparametric family through a combi-
nation of nonparametric components and finite dimensional parameters. This
approach is similar to the semiparametric modeling of Section 1.3.2 for the
conditional means. In particular, when {Yi(t) =1, 7n} have normal dis-
tributions for any given ¢, similar semiparametric models for the conditional
means, such as the partially linear model (1.2), can also be used to evaluate
the conditional distributions of ¥;(z).

Semiparametric models specifically developed for evaluating the condi-
tional distribution functions have also been extensively studied in the litera-
ture. A well-known example of semiparametric models in survival analysis is
the transformation models, which have been studied, for example, by Cheng,
Wei and Ying (1995, 1997). Although the longitudinal data considered in this
book (Section 1.2.1) have different structures from the usual time-to-event
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outcome variables considered in survival analysis, the linear transformation
model can be adapted to the current longitudinal data with some modifica-
tions. A key feature under the current context is to model the conditional
distribution of Y (¢) given the covariates X(¢) at any given time point ?.
Assume that F;(y|x) of (1.8) is continuous in y for any given 7 and x. Let

Si(v[x) = 1= F(y[x), (1.15)

which is often referred to as the “survival function” in survival analysis when
the outcome is a time-to-event variable. Under the context of longitudinal
data, a semiparametric linear transformation model for F;(y|x) is

g8 yIX(0)]} = hy.0) +X" (1) B, (1.16)

where g(-) is a known decreasing link function, B = (o, ﬁl,...,ﬁK)T is the
parameter vector describing the covariate effects, and h(y, ) is an unknown
baseline function strictly increasing in y. By leaving Ai(y, ¢) to be a nonparamet-
ric function of (y, ), (1.16) incorporates both the nonparametric component
h(y,t) and the parameter vector 8, hence, it leads to a semiparametric model
for F(y|x). When 7 is fixed, (1.16) is just the semiparametric linear transfor-
mation model studied by Cheng, Wei and Ying (1995, 1997). When ¢ changes
across the time range, (1.16) has the added feature of time-trends described by
the baseline function A(y, r), while keeping 8 as a time-invariant multivariate
parameter.

Despite the popularity of the transformation models in survival analysis,
its extension (1.16) falls short of the model flexibility targeted by this book,
because the covariate effect characterized by f is assumed to stay constant for
all 7. In real biomedical applications, the covariate effects are likely to change
with ¢. This dynamic nature of the covariate effects leads to the consideration
of nonparametric regression models for conditional distributions.

1.4.4 Unstructured Nonparametric Distribution Models

Completely unstructured nonparametric models for P4(x,?) and F;(y|x) may
also be considered when there are no suitable parametric or semiparameter
models available for these functions. Such situations may arise when the po-
tential bias caused by the possible model misspecification is a major concern.
Unstructured nonparametric estimation of the conditional CDF with cross-
sectional i.i.d. data and certain time series samples has been studied by Hall,
Wolff and Yao (1999) based on two kernel smoothing methods, the local lo-
gistic estimation method and the adjusted Nadaraya-Watson method.
However, a completely unstructured nonparametric formulation of Ps(x, #)
or F;(y|x) is determined by both ¢ and the K+ 1 components of x, which can
be difficult to estimate if K is large because of the well-known problem of
“curse of dimensionality” (e.g., Fan and Gijbels, 1996). Even if the completely
unstructured nonparametric estimators of P4(x,?) or F(y|x) and their infer-
ences are available, the results for Py(x,7) or F(y|x) are usually difficult to
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interpret when K > 2. This drawback severely limits the use of unstructured
nonparametric models for Py(x,t) or F(y|x).

Despite the shortcomings of unstructured nonparametric models, we
present in Chapter 12 some useful smoothing methods for estimating the
conditional distribution functions and their functionals. These methods are
further modified in later chapters to estimate the distribution functions and
covariate effects under a number of structured nonparametric models.

1.4.5  Structured Nonparametric Distribution Models

By imposing a functional structure on F;(y|x), structured nonparametric mod-
els can be applied as a useful dimension reduction strategy to alleviate the
potential instability associated with the high dimensional nonparametric esti-
mation of F;(y[x). We describe here a few such structured modeling approaches.

1. The Time-Varying Transformation Models

This structured approach is a direct generalization of (1.16) by generalizing
the linear coefficients B to be nonparametric coefficient functions of time

B(1) = (Bo(t), ... Bx (1)), (1.17)

so that, by substituting 8 of (1.16) with B(r), the time-varying transformation
model for the conditional CDF F; [y|X(r)] = 1—S;[y|X(1)] is given by

18 [yIX(0)] } = h(y, 1) + X7 (1) B(r). (1.18)

Similar to the more restrictive semiparametric model (1.16), the link function
g(+) in (1.18) is known. The linear coefficients fB;(¢), I =0, ..., K, describe the
time-varying covariate effects on the conditional CDF E[y|X(t)]. Different
choices of g(-) also lead to different covariate effects on F; [y|X(r)].

Motivated by the NGHS example of Section 1.2.2, the time-varying trans-
formation model (1.18) was introduced by Wu, Tian and Yu (2010) to evaluate
the covariate effects on the time-varying distributions of various cardiovascular
risk factors for children and adolescents. The conditional-distribution based
regression models are appropriate for pediatric studies because health status
and disease risk levels for children and adolescents are often determined by the
distributions of risk variables conditioning on age, gender and other covari-
ates. The model (1.18) keeps a reasonable balance between model flexibility
and complexity. Details of the estimation methods and application of (1.18)
are presented in Chapters 13 and 14.

2. The Mized-Effects Varying-Coefficient Models

Another class of structured nonparametric models for F;(y|x), which can be
treated as a natural generalization of the parametric family F, (y|x), is to allow
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the parameters to be functions of time, i.e., substituting the 6 in F; o(y|x)
with 6(). The resulting distribution function F g (y[x) then belongs to a
parametric family at each fixed time point . When ¢ changes, the values of
the parameters may also change. This modeling approach leads to a class of
time-varying parametric models, which includes the time-varying coefficient
model as a special case. In particular, if the error term of (1.3) has a mean zero
normal distribution with time-varying variance ¢2(¢), then the time-varying
coefficient model (1.3) is equivalent to the time-varying Gaussian model with
the conditional mean X7 (¢) B(t) given X(t).

To include a subject-specific effect curve into the model formulation, we
may assume that the outcome distribution of the ith subject deviates from the
population and its subject-specific deviation from the population is charac-
terized by a parameter curve 6;(z) at time 7. This structured modeling scheme
leads to the class of “mixed-effects varying-coefficient models.” A simple special
case of the mixed-effects varying-coefficient model with a univariate covariate
X,'(l‘) is

Yit) = Bolt) + [B1 (1) + Buu(t)] Xi(t) + (1), (1.19)

where By(¢) and B () are the population-mean intercept and coefficient curves,
respectively, Bi;(¢) is the subject-specific deviance curve from the population,
and g(¢) is the mean zero error process. Although (1.19) is a conditional-mean
based regression model, it can be used to estimate the conditional distributions
and their functionals of ¥;(¢) at different time points when the distributions of
the error process &(t) are specified.

Various generalizations of (1.19) can be established by including different
population-mean and subject-specific coefficient curves. We present in Chap-
ter 15 the estimation methods, and applications and generalizations for eval-
uating the conditional distributions and their functionals.

1.5 Review of Smoothing Methods

Since this book mainly focuses on the estimation, inferences and applications
of nonparametric models (both unstructured and structured nonparametric
models), smoothing methods, which have been widely used in nonparametric
curve estimation with cross-sectional i.i.d. data, are used throughout the book
in conjunction with the modeling structures. In order to gain some useful
insights into the commonly used smoothing methods, we briefly review these
methods under the simple cross-sectional i.i.d. data

Y ={(Vr) ci=1,...,n} (1.20)

without the presence of X(¢). Suppose that, under the i.i.d. sample % for
(Y(t),t)", the statistical interest is to estimate the smooth conditional-mean
function u(r) = E[Y(t)|¢] under the regression model

Y(t)=put)+e(r), (1.21)
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where £() is a mean zero stochastic process with variance 6. We summarize
below a number of local and global smoothing methods for the estimation of
u(t), which is assumed to be a smooth function of ¢. A local smoothing method
for u(r) refers to the estimation methods using primarily the observations
within some neighborhoods of the time . A global smoothing method for p(r)
then relies on all the observations. Both local and global smoothing methods
have their advantages and disadvantages in real applications.

1.5.1 Local Smoothing Methods

Throughout this book, we consider two kernel-based local smoothing methods:
the kernel estimators and the local polynomial estimators. This is because the
majority of the local smoothing methods for structured nonparametric mod-
els with longitudinal data are developed using kernel-based methods. Other
local smoothing methods, such as the locally weighted scatter plot smoothing
(LOESS) method, are useful in nonparametric regression, but their theory and
applications in longitudinal studies have not been substantially investigated.

1. Kernel Smoothing Methods

The Nadaraya-Watson kernel estimator of u(z) can be obtained by mini-
mizing the “local least squares criterion”

)= Y o) () k(1) (1.22)

i=1

with respect to u(¢), where K(-) is a kernel function, which is usually taken to
be a non-negative probability density function, and 4 > 0 is a bandwidth. Set-
ting the partial derivative of £x(¢) with respect to u(r) to zero, the Nadaraya-
Watson kernel estimator Lk (¢) of u(z) is given by

(k[
i) = TKTa ]}

It follows from (1.22) and (1.23) that [ig(z) is a so-called local smoothing
estimator of p(t), because it is obtained by using the subjects whose t; are
within a neighborhood of t determined by the bandwidth 4. This can be seen by
considering the special case that K(-) is the density of a uniform distribution.
Suppose that Ky (s) is the uniform density on [—a/2, a/2], such that

Ku(s)=a 'jy<ap2y (1.24)

for some a > 0, where 1|4) is the indicator function such that 1j4)=1if A holds,
and 0 otherwise. Then, it follows from (1.24) that, for any & > 0, Ky(s) is a
uniform kernel function, which satisfies

Ky[(t—1t;)/h)=1/a, ift—(ha/2)<t;<t+ (ha/2);
Kyl(t—1t;)/h] =0, ift; <t—(ha/2)ort; >t+ (ha/2).

(1.23)
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Since any value of @ > 0 can be used for (1.24), simple choices include a =1
or 2.

The equations (1.22) and (1.24) imply that the local least squares score
function fk, (¢) under Ky (-) is

bru (1) ( )Z Y i 1 1—(h/2)<t;<t+(h/2)]- (1.25)

Consequently, (1.23) gives

Y1 Yl (ny2)<ti<it(n)2)]

1.26
Yit Li—(n/2)<ti<i+(n2)) | )

.uKU( )

Thus, for each given ¢, [ig, (r) is the local average of the ¥;’s obtained from the
subjects within the neighborhood of #’s centered at ¢ with radius //2, that is,
|ty —t| < h/2. The neighborhood shrinks to ¢ when /4 tends to zero.

When K(s) is not a uniform density but has a bounded support in the sense
that K(s) =0 if |s| > b for some constant b > 0, then [k () given in (1.23) is
a weighted local average of the ¥;’s within the neighborhood |t; —¢| < h/2
of #;’s. Some well-known kernel functions with bounded supports include the
Epanechnikov kernel

3
Ke(s) = § (1=5%) 1gj<1s (1.27)
the triangular kernel
Kr(s) = (1=1s]) 1<y (1.28)
the quartic kernel
15 2
Ko(s) = ¢ (1=57) 1<), (1.29)
and the tricube kernel
70
Kc(s) = 31 (1—]s] ) [Is|<1]- (1.30)

Kernel functions with unbounded supports may also be used in practice. A
well-known example of the kernel functions with unbounded supports is the

Gaussian kernel )

Ko(s) = \/%exp(—%). (1.31)

The Epanechnikov kernel has been shown to have the optimality property
that it minimizes the asymptotic mean squared errors of the kernel estima-
tors under certain mild asymptotic assumptions (Hérdle, 1990). Although dif-
ferent kernel functions lead to different local weights for kernel estimators,
the asymptotic derivations, simulation studies and practical applications have
shown that the theoretical and practical properties of kernel estimators are
mostly influenced by the bandwidth choices but not so much by the shapes of
the kernel functions (Hirdle, 1990; Fan and Gijbels, 1996). This fact is again
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Figure 1.5 Graphical depiction of the shapes of kernel functions: Uniform (a=2 in
(1.24)), Epanechnikov, Triangular, Quartic, Tricube and Gaussian.

observed for the smoothing estimators discussed in this book. Thus, in real
applications, all the kernel functions shown in this section can be used inter-
changeably. The main advantages of the Nadaraya-Watson kernel estimators
are their computational simplicity and straightforward interpretations. The
kernel estimators generally have appropriate theoretical properties, such as
consistency and small mean squared errors, when the sample size is large and
t is within the interior of its support.

2. Local Polynomial Estimators

A main drawback of the above kernel estimators, as demonstrated in Fan
and Gijbels (1996), is that these estimators have excessive biases when ¢ is close
to the boundary of its support. Intuitively, the boundary bias is caused by the
fact that, when ¢ is a boundary point, the observations are only obtained with
t; at one side of 7, which causes the local averages computed by the kernel
estimators to be either lower or higher than the true value u(¢). The local
polynomial estimators are a useful local smoothing approach to correct the
potential boundary bias associated with the kernel estimators. Suppose that,
when # is within a small neighborhood of ¢, u(#;) can be approximated by the
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Taylor’s expansion

wt) ~ f “U).(’) (ti—1) = zp:b, (ti—1)! (1.32)

for an integer p. Using the same approach as (1.22) with the approximation
of (1.32), the pth order local polynomial estimators can be obtained by mini-
mizing

4 i 21 r—1;
) =Y =Y onti-o'| () k(52 (1.33)
i=1 =0 nh h
with respect to by, I =1,..., p, where K(-) is the same kernel function as in
(1.22), which may be chosen as the ones given in (1.24), (1.27) through (1.30).
Comparing (1.32) with (1.33), the minimizer /b\l leads to the pth order local
polynomial estimator

i (1) =11by (1.34)

of the Ith derivative u(!) (t) at time point . The estimator of the entire curve
p®(.) can be obtained by minimizing (1.33) over all the time points within
()

its support. In practice, it is sufficient to compute ﬁL‘ p() over a finite number
of distinct time points. The pth order local polynomial estimator of p(r) is

AL p(t) = By (1), (1.35)

and, by selecting p = 1, the local linear estimator of p(z) is tz 1(¢). In all the
applications discussed in this book, the main focus is on the estimation of the
mean curve {(t), rather than its derivatives u")(¢) with [ > 1.

Similar to the kernel estimators, the choice of kernel functions does not
have significant influences on the theoretical and practical properties of liz, (7).
As discussed in Fan and Gijbels (1996), the main factors affecting the statis-
tical properties of the local polynomial estimators are the bandwidth choices
and the degree p of the polynomials. When p increases, the number of pa-
rameters used in the approximation (1.32) increases, which, on one hand, may
reduce the estimation bias, but, on the other hand, will increase the compu-
tational complexity. In practice, the results of minimizing (1.33) with a large
p may be numerically unstable, and the practical benefit of using a large p
is not significant. For this reason, the local linear estimators with p =1 are
often the more popular choices than higher order local polynomial estimators
in nonparametric smoothing. (Il

1.5.2  Global Smoothing Methods

Among a large number of global smoothing methods in the literature, we
focus in this book on the methods of basis splines (B-splines) and the pe-
nalized smoothing splines. These are the two most extensively studied global
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smoothing methods in nonparametric regression with longitudinal data. Be-
tween these two smoothing methods, the B-splines are more often used than
the penalized smoothing splines for various structured nonparametric regres-
sion models. By approximating the smooth curves through some basis expan-
sions, the B-splines can be viewed as “extended linear models,” which can be
readily adapted to many different regression structures. On the other hand,
the penalized smoothing spline estimators depend on maximizing some “rough-
ness penalized likelihood functions,” which can be computationally difficult for
many regression structures.

1. Basis Approximations and B-splines

These smoothing methods approximate the unknown function by expan-
sions of some basis functions and are referred to in the nonparametric statistics
literature as the “extended linear models” (Stone et al., 1997; Huang, 1998).
Suppose that {By(t), Bi(t), ...} is a set of basis functions, such as polynomial
bases, Fourier bases or B-splines, and p(¢) can be approximated by the ex-
pansion

p(t)~ ) uBit), (1.36)

M-

where 9 are the real-valued coefficients. The choices of basis functions depend
on the nature and smoothness assumptions of u(¢). A simple choice is the
global polynomial basis B;(t) =t'. Because the global polynomials can be nu-
merically unstable when the order L is large, we commonly use B-splines, also
referred to as polynomial splines, in real applications.

The B-splines are piece-wise polynomials with knots at the boundary and
within the interior of the support of . To give a brief description of the B-
splines, we consider g real-valued knots t; with #o <#; <--- <t,_1, where 7y and
t4—1 are the boundary knots and the rest are the interior knots. A B-spline
curve of degree r is a curve from [t,, ty—r— 1] to the real line composed of a linear
combination of B-spline basis By ,(t) of degree r, such that for r € [t,, 1,_,_1],

q—r—2

S(t) = Z ClBl,r(t)y

=0

where ¢; are the control points or de Boor points. The B-spline basis is defined
in such a way that, for [ =0,...,¢—2, B;o(t) =1if ; <t <14 and B; o(r) =0
otherwise, for [ =0,...,g—r—2,

r—1

1 1—1
Bl,r(t) = B[7,-,1(t)+ rt Bl+1,r71(t)7 (137)
fr—1 lpr1 — I

and [+r+1<g—1. The choices of r =1, 2 and 3 correspond to the linear,
quadratic and cubic B-splines, respectively. For example, if we use a natural
cubic spline with ¢ —2 interior knots {tl, N tq,z}, the natural cubic spline is
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represented by g — 2 basis functions {Boi(t), ..., By 4—2(t)} defined by

BOJ(I) = 17
80720) =1,
By, (142)(t) = di(t) — dg-3(1),

die)=[(t=0)} = (t=1t2)}] [ (g2 —n).

Here, fori=1,...,g—4,(t—t)+ =t—p ift >, and (t—1;)+ =0if t <1;. Each
of the above basis functions has zero second and third derivative outside the
boundary knots.

Substituting the approximation (1.36) into (1.21), the observed data
{(¥;,t)T - i=1,...,n} can be approximated by

Ly
i~ ) 1Bit)+ &, (1.38)
1=0
where g,i=1, ..., n, are independent error terms with mean zero and variance

o2 and L, may increase as n increases. By minimizing the square error

1 & L, 2
RN RTICIE (1.39)
nizilizo
. ~  a ~ T T .. . .
the least squares estimator ¥y = (yl, ety yLn) of y= (}/1, ce }/Ln) , if exists, is

the unique minimizer of (1.39). The smoothing estimator of u(¢) based on the
basis functions {By(r), Bi(t), ..., BL(t)} is

L
s(1) = Y Wi Bi(0). (1.40)
=0

For most biomedical applications, the linear, quadratic and cubic B-splines
are commonly used in practice. Depending on the nature of the specific appli-
cations, other basis choices have also been used in the literature.

2. Penalized Smoothing Splines

Another class of global smoothing estimators of 1 (z) is obtained by mini-
mizing a penalized squared error criterion. Let Q(u) be a penalty term defined
by the smoothness requirement of t(¢). A smoothing estimator iy (t) of w(t)
can be obtained by minimizing the penalized least squares criterion

=

Lo A) = =" [¥—(0)])” + AQ(w) (1.41)
i=1

where A is a smoothing parameter. The degree of smoothing of the estimator
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Uy (¢) depends on the value of A. A large A in (1.41) would lead to a smoother
Uy (¢), while a small A leads to a less smooth u, (7).

In addition to A, the smoothing estimator is also determined by the
smoothness penalty term Q( ). Let p”(¢) be the second derivative of p(r)
with respect to 7. If Q(u f ’u” )’ds is chosen to be the Li-norm on the in-
terval [a, b], a Li- penahzed smoothing estimator o(r) of 1(¢) can be obtained
by minimizing

1 n
==Y [Yi—u@) +7L/ 1" (s)| ds. (1.42)

i=1

:

Alternatively, using the L, penalized criterion Q(u) = [? (1" (s)] * ds for [a, D], a
Ly-penalized smoothing estimator fig(r) of i() can be obtained by minimizing

Lo,(1;1) = lZ[Y 1 (t7)] +/1/ "( (1.43)

i=1

E

Intuitively, (1.42) has a large penalizing term when the absolute values of the
second derivatives of u(¢) are large, and (1.43) has a large penalizing term
when the squares of the second derivatives of u(r) are large. The minimizers
of (1.42) and (1.43) are natural cubic splines, as shown, for example, in Green
and Silverman (1994) and Eubank (1999).

Other penalized least squares criteria may be constructed by replacing
w1’ (t) of (1.42) and (1.43) with p’(¢) or other roughness penalizing terms.
Although the choice of roughness penalizing terms may be ideally selected by
the scientific nature of the problem, such a choice is not always available in
practice. In real applications, the roughness penalizing terms are often chosen
subjectively or by comparing the resulting smoothing estimators. The choice
of the smoothing parameter A is more important than the penalty function
O(u) in determining the smoothness and appropriateness of the estimators.

1.6 Introduction to R

The main statistical computing tools we use in this book are the R language
and several R packages (R Core Team, 2017). R is a popular language with
various statistical applications, including data import, manipulation, graphics
and model fitting. We provide examples of R code and outputs to implement
the statistical methods discussed in each of the following chapters so that
readers with minimal background knowledge can easily try out the models
and sample code to fit their own data. We note that these statistical methods
are also available or can be implemented in SAS, MATLAB, Python, or other
statistical software and languages.

Both R and R packages are free and open-source software, available on the
Comprehensive R Archive Network, or CRAN, via the website https://www.r-
project.org. It is straightforward to download from CRAN and install a current
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version of the pre-compiled binary distribution of the R base system and con-
tributed packages. For a comprehensive introduction to R and its applications,
we refer to the R manuals that come as part of the R installation, and several
comprehensive textbooks, e.g., Venables and Ripley (2002), Dalgaard (2008)
and James et al. (2013).

A major advantage of R is that a large number of add-on packages de-
veloped by the R Core Team and users are also freely available from CRAN.
As of January 2018, CRAN package repository has over 12,000 packages. An
R package can be a collection of datasets, functions and documentation, and
many R packages provide statistical tools that are widely used among R users.
We can benefit and make use of a certain package by installing it from CRAN
and then loading it into R with library() or require():

> install.packages ("pkgname")
> library(pkgname)

We have implemented the statistical analyses discussed in this book with
R version 3.4.3 and compiled the datasets and relevant functions into a R
package npmlda, which can be obtained from CRAN and GitHub. To install
our package from the GitHub repository, we can use install_github function
in the devtools package (Wickham, 2015):

> library(devtools)
> install_github("npmldabook/npmlda")

The R code for the examples used in this book is available online from the
supporting website (https://github.com/npmldabook/rcodes). The authors
would appreciate to be informed of any issues, suggestions and improvements
on this book.

1.7 Organization of the Book

This book contains two major topics of nonparametric regression models:
the conditional-mean based regression models and the conditional-distribution
based regression models. To give a clear picture of the model structures, we
organize this book into five main parts:

I: Introduction and Review (Chapters 1 and 2);

II: Unstructured Nonparametric Models (Chapters 3, 4 and 5);

III: Time-Varying Coefficient Models (Chapters 6, 7, 8 and 9);

IV: Shared-Parameter and Mized-Effects Models (Chapters 10 and 11);
V: Nonparametric Models for Distributions (Chapters 12, 13, 14 and 15).
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As an initial building block of the models, Chapter 2 briefly summarizes
the main results of the methodology used for longitudinal analysis with para-
metric and semiparametric regression models, and Chapters 3, 4 and 5 in Part
IT present the local and global smoothing methods for unstructured nonpara-
metric models.

The main results of the conditional mean based structured nonparametric
models are presented in Parts III and IV, where Part III summarizes the
smoothing estimation methods for the time-varying coefficient models under
a number of different data structures and Part IV presents some extensions
of the models in Part III.

Part V summarizes some recent developments in the modeling, estima-
tion and applications of the conditional distribution based structured non-
parametric regression models. Two important concepts of these chapters are
(a) modeling the changing patterns of conditional distribution functions and
their functionals over time, and (b) quantifying and estimating the tracking
indices of outcome variables over time based on the conditional distributions.
These two concepts demonstrate the advantages of the conditional distribution
based models over the conditional mean based modeling schemes for certain
objectives of longitudinal analysis.

We attempt to maintain a reasonable balance among methods, theory, ap-
plications and implementations. In addition to the methodology and theoreti-
cal derivations presented in each chapter, the R packages are used throughout
the book to illustrate the applications of the statistical methods. The graphs
and tables of each application are accompanied by the corresponding R code.



Chapter 2

Parametric and Semiparametric

Methods

We briefly review in this chapter a number of popular parametric and semi-
parametric models in longitudinal analysis. Because of their simple mathe-
matical structures and interpretations, these models are often the first set of
analytical tools to be used in a real study. The estimation and inference meth-
ods developed for these models form the foundation of longitudinal analysis.
Since the nonparametric models to be presented in this book are flexible exten-
sions of these parametric and semiparametric models, their local and global
smoothing estimation methods with different modeling structures are moti-
vated and generalized from the estimation methods in this chapter. We note
that, because the topics of parametric and semiparametric longitudinal analy-
sis have been extensively studied in the literature, the models and estimation
methods reviewed here only represent a fraction of the available approaches.
A more complete account of the most commonly used parametric and semi-

parametric methods in longitudinal analysis can be found in Fitzmaurice et
al. (2009).

2.1 Linear Marginal and Mixed-Effects Models

As a popular approach for modeling the covariate effects on the longitudinal
outcome variables, the mixed-effects models generally serve two purposes:

(1) Describe the covariate effects on the mean response profiles.

(2) Describe the subject-specific response profiles.

A regression model serving the first purpose is generally classified as a
marginal model or a population-mean model. A regression model serving the
second purpose is a random-effects model or a subject-specific model (e.g.,
Zeger, Liang and Albert, 1988). A mixed-effects model then incorporates both
the marginal and random effects. In particular, a linear mixed-effects model
is obtained when the marginal and random effects are additive and follow a
linear relationship.

33
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2.1.1 Marginal Linear Models

It is convenient to describe the models through a matrix representation. Let
the ith subject’s responses, time design points, and covariate matrix be

T
Yi = (Yila"'7Yini)7
T
ti = (ti17---7tiﬂ,')7
1 K
1 Xi(l) Xi(1> (2.1)
Xi = N
(1) (K)
1 Xin,- Xin,-

Note that, in order to allow for an intercept term in the models described

(0)

below, we set X;;” =1 in X;. The marginal linear model (1.1) for (2.1) is

Y; :Xiﬁ+8i(ti), (2.2)

where = (ﬁo,...,ﬁK)T is the vector of linear coefficients with By being the
unknown intercept and B, 1 <k < K, describing the effect of the kth covari-

ate Xl.(jk>7 and &(t;) = (&(ti), ... 7ei(z‘,-ni))T with &(#;;) being the realization of a
mean zero random error process &(t) at time point ¢ =¢;;. The within-subject
correlation structures of &(#1) and &(#;) at any two time points #; #t are in
general unknown, but may assume to have certain parametric or nonparamet-
ric forms.

The model (2.2) is referred to as a marginal model because the conditional
mean of Y; at X; is X; 3, so that the By represents the population-mean inter-
cept and the linear coefficients B, ..., Bx represent the covariate effects. Un-
der the special case that the error term &(t;) of (2.2) is a mean zero Gaussian
process with covariate matrix V;(t;), the responses Y; are then independent
Gaussian random vectors such that

Y~ N(Xiﬁvvi(ti)>a (2.3)

where N(a,b) denotes a multivariate normal distribution with mean vector
a and covariance matrix b. A drawback of (2.2) is that the subject-specific
relationship between Y; and X; for the subjects i=1, ..., n is not specified by
the model.

The covariance structures of (2.2) or its Gaussian model (2.3) are usually
influenced by three factors: random effects, serial correlations, and measure-
ment errors. The random effects characterize the stochastic variations between
subjects within the population. In particular, we may view that, when the co-
variates affect the response linearly, some of the linear coefficients may vary
from subject to subject. The serial correlations are the results of time-varying
associations between different measurements of the same subject. Such corre-
lations are typically positive in biomedical studies, and become weaker as the
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time interval between the measurements increases. The measurement errors,
which are normally assumed to be independent both between and within the
subjects, are induced by the measurement process or random variations within
the subjects.

2.1.2  The Linear Mized-Effects Models

This modeling strategy establishes a practical intra-subject correlation struc-
ture for the repeated measurements. The subsequent models are capable of
predicting the subject-specific outcome trajectories.

Suppose that, for the ith subject, 1 <i < n, there is a [r X 1] vector of
explanatory variables U;; measured at time #;;, which may or may not over-
lap with the original covariate vector X;;. Using the additive decomposition
of random-effects, serial correlations and measurement errors, &(t;;) can be
expressed as

Ei(t,'j) :Uiiji+Vi/i(tij)+Zij, (2.4)
where b; is the [rx 1] random vector with multivariate normal distribution
N(0,D), D is a [r x r] covariate matrix with (p, ¢)th element d,, = d,,, Wi(t;;)

fori=1,...,n are independent copies of a mean zero Gaussian process whose
covariance at time points #;;, and t;;, is pw(ij,, tij,), and Z;; for i=1, ..., n and
j=1,...,n; are i.i.d. random variables with N(0, T2) distribution. In general,

Z;; does not have to be a normal random variable.
The specification of (2.2) and (2.4) gives the linear mixed-effects model,
which was first studied by Laird and Ware (1982),

Yi = XiB+Uibi+6;,

6i(ty) = Wiltyj) +Zij, 25)
& = (8lt) - 8itm) " '
Ui = the [m xr] matrix whose jth row is UJ,,

where the population-mean parameter  represents the influence of X; on the
population means of the response profile, the subject-specific parameter b; de-
scribes the variation of the ith subject from the population conditioning on the
given explanatory variable U;, and §; represents the error term. Conditioning
on X; and Uj;, (2.5) implies that Y; for i =1, ..., n are independent Gaussian
vectors such that

Y,-NN(Xiﬁ,UiDU,-T+P,-+TZIi>, (2.6)

where P; is the [n; X n;j] covariance matrix whose (ji,j2)th element is
Pw (tijl , tijz) and I; is the [I’l,‘ X l’l,‘] identity matrix.

Useful special cases of (2.5) can be derived from the variance-covariance
structure of (2.4). A number of the commonly seen special cases include:

(a) The classical linear models with cross-sectional i.i.d. data is a special
case of (2.4) where g(t;;) are only affected by the measurement errors Z;;.



36 PARAMETRIC AND SEMIPARAMETRIC METHODS

(b) When neither the random effects nor the measurement errors are present,
the error term is of pure serial correlation &(t;;) = W;(t;;). Moreover, if W;(z;;)
are from a mean zero stationary Gaussian process, the covariance of &(fi;, )
and &(t;;,) can be specified by

Cov [gi(fijl )7 Ei(l‘,'jz)] = 0'2P (|fij1 —lij, |>7 (2~7)

where o is a positive constant and p(-) is a continuous function. Useful
choices of p(-) include the exponential correlation p(s) = exp(—as) for some
constant a > 0 and the Gaussian correlation p(s) = exp(—as?), among oth-
ers.

(c) When g(t;;) are affected by a mean zero stationary Gaussian process and
a mean zero Gaussian measurement error, the variance of ¥;; is 62 p(0) + 2,
while the covariance of ¥, and Y;},, for ji # ja, is 62 p(|t;j, —tij,|), for some
o >0, 7> 0 and continuous correlation function p(-).

(d) When there is no serial correlation, the intra-subject correlations are only
induced by the random effects, so that P; is not present in (2.6). a

2.1.3 Conditional Maximum Likelihood Estimation

In the literature, estimation and inference procedures for linear models with
longitudinal data are primarily developed based on the mixed-effects model
(2.5) with the Gaussian distribution assumption for (2.4). The Gaussian as-
sumption simplifies the computation of likelihood-based estimation and in-
ference procedures. Further details of the estimation and inference methods
summarized here can be found in Verbeke and Molenberghs (2000).

Suppose that the variance-covariance matrix V;(t;) of (2.4) is determined
by a R?-valued parameter vector a. Let V;(t; &) be the variance-covariance
matrix parametrized by o. The log-likelihood function for (2.3) under the
Gaussian distribution assumption is

L(B.a) = c+Xi;|—(1/2)log|Vi(ti o)
~(1/2) (Y; = X:B)" Vi (1 ) (Yi_Xiﬁ)]7 (2.8)
¢ = ¥ [-(m/2) log2m)].

For a given a, (2.8) can be maximized by

:{; [X?V;l( ]} {i[xTV )Y,.]} (2.9)

which is referred to as the conditional maximum likelihood estimator (CMLE).
It can be verified by direct calculation that, under (2.5), B(a) is an unbiased
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estimator of B. Direct calculation also shows that the covariance matrix of
Bla) is

Cov [ﬁ(a)]

- {Z[ XTIV, (b o ]} {Z[XT &) Cov(Y )V1<ti;a)Xi]}

i=1

{5
{Z [XTV )Xi] }l. (2.10)

fwan)

i=1

Note that the second equality sign of (2.10) does not hold when the structure
of the variance-covariance matrix is not correctly specified. Further deriva-
tion using (2.5), (2.9) and (2.10) shows that B (o) has a multivariate Normal
distribution,

~ n -1

ﬁ(a)NN{ﬁ, {Z (x,.TV,.I(ti;a)x,-)] } (2.11)

i=1

When « is known, this result can be used to develop inference procedures,
such as confidence regions and test statistics, for B.

2.1.4 Mazximum Likelihood Estimation

When « is unknown, as in most practical situations, a consistent estimate of a
has to be used. An intuitive approach is to estimate f and o by maximizing
(2.8) with respect to B and o simultaneously. Maximum likelihood estima-
tors (MLE) of this type can be computed by substituting (2.9) into (2.8) and
then maximizing (2.8) with respect to o. We denote the resulting MLE by
ﬁML and 0. The asymptotic distributions of { [3ML7 OCML} can be developed
using the standAard approaches in large sample theory.

Although {ﬁML, &ML} has some justifiable statistical properties, as for most
likelihood-based methods, it may not be desirable in practice. To see why
an alternative estimation method might be warranted in some situations, we
consider the simple linear regression with i.i.d. errors and ny =--- =n, =m,

Y, ~N(X,~[3, Gzlm)7 (2.12)

where I,, is the (m x m) identity matrix. The parameters involved in the model

are 8 and o. Let By and Gy be the MLEs of 8 and o, respectively, and
RSS be the residual sum of squares defined by

RSS=Y (Yi—XiBw) ! (Yi—XiBu ).

i=1
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The MLE of 62 is
Gy = RSS/(nm). (2.13)

However, it is well-known that, for any finite n and m, (2.13) is a biased
estimator of 6. On the other hand, a slightly modified estimator

Gapyr = RSS/[nm — (k+1)] (2.14)

is unbiased for o2. Here, GI%EML is the restricted maximum likelihood estima-
tor (REMLE) for the model (2.12).

2.1.5 Restricted Maximum Likelihood Estimation

This class of estimators was introduced by Patterson and Thompson (1971)
for the purpose of estimating variance components in the linear models. The
main idea is to consider a linear transformation of the original response vari-
able, so that the distribution of the transformed variable does not depend on
B. Let Y= (Y/,....,YD)" X = (XI',...,X)" and V be the block-diagonal
matrix with V;(#) on the ith main diagonal and zeros elsewhere. Then, with
V parameterized by @, the model (2.3) is equivalent to

Y NN(XB, V(a)). (2.15)

The REMLE of o, the parameter for the variance-covariance matrix in
(2.15), is obtained by maximizing the likelihood function of Y* = ATY, where
A is a [N x (N —k—1)] full rank matrix with ATX =0 and N =YY" n;. A
specific construction of A can be found in Diggle et al. (2002, Section 4.5). It
follows from (2.15) that Y* has a mean zero multivariate Gaussian distribution
with covariance matrix AT V(o) A. Harville (1974) showed that the likelihood
function of Y* is proportional to

I1

Zn:XTX Z 7t o) X
i=1 i=1 i=1

X exp{—% _il {Yi _Xiﬁ(oc)} TVlfl(ti; a) {Yi —X,ﬁ(a)} }

1/2 -1/2 n -1/2

Vi(ti; o) (2.16)

The REMLE 0Oggmr of @ maximizes (2.16). The REMLE BREML of B is ob-
tained by substituting o of (2.9) with Qrgyr. Because (2.16) does not depend

on the choice of A, the resulting estimators Breyr and Qreuyr are free of the
specific linear transformations. ~

The log-likelihood of Y*, log[L* ()], differs from the log-likelihood L(f, o)
only through a constant, which does not depend on @, and

n
—% log| Y X Vi (ti; &) X4,
i=1
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which does not depend on 8. Because both REMLE and MLE are based on
the likelihood principle, they all have appropriate theoretical properties such
as consistency, asymptotic normality and asymptotic efficiency. In practice,
neither one is uniformly superior to the other for all the situations. Their
numerical values are also computed from different algorithms. For the MLEs,
the fixed effects and the variance components are estimated simultaneously.
For the REMLES, only the variance components are estimated.

2.1.6 Likelihood-Based Inferences

The results established in the previous sections are useful to construct infer-
ence procedures for B. For the purpose of illustration, only a few special cases
are presented here. A more complete account of inferential and diagnostic tools
can be found in Zeger, Liang and Albert (1988), Vonesh and Chinchilli (1997),
Verbeke and Molenberghs (2000), Diggle et al. (2002), among others.
Suppose that there is a consistent estimator & of o, which may be either
the MLE 04y or the REMLE Oggpyyr. Substituting o of (2.11) with @, the

distribution of B (&) can be approximated, when n is large, by

B(@) ~N(B.V),

. N —1 (2.17)
V={xn XV a)x) b

Suppose that C is a known [r X (k+ 1)] matrix with full rank. It follows imme-

diately from (2.17) that, when n is sufficiently large, the distribution of CB(&)
can be approximated by

CB(@) ~n(cB,cvcT). (2.18)

Consequently, an approximate [100 x (1 —a)]%, 0 < a < 1, confidence interval
for CB can be given by

CB()+£7,_,n(CVCT)'2.

(2.19)
Taking C to be the (k+ 1) row vector with 1 at its /th place and zero elsewhere,
the approximate [100 X (1 —a)]% confidence interval for ; obtained from (2.19)
is given by

Bl(a) :tZlfa/ZV[l/a (220)

where \71 is the Ith diagonal element of V.

The normal approximation in (2.17) can also be used to construct test
statistics for linear statistical hypotheses. Suppose that we would like to test
the null hypothesis of C = 6y for a known vector ) against the general
alternative that C 8 # 6y. A natural test statistic would be

7~ |cB(@) —eo]T(CVCT)*I[CB(a)—e)O} (2.21)
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which has approximately a y2-distribution with r degrees of freedom, denoted
by %2, under the null hypothesis. A level (100 x @)% test based on (2.21) then
rejects the null hypothesis when 7 > ¥2(a) with x2(a) being the [100 x (1 —
a)]th percentile of y2. For the special case of testing f§; =0 versus f; # 0, a
simple procedure equivalent to (2.21) is to reject the null hypothesis when

ﬁl(a)‘ >Zlfa/2‘7[1/27 (222)

where Z;_, /> and V, are defined in (2.20).

2.2 Nonlinear Marginal and Mixed-Effects Models

We outline in this section a few key features of the nonlinear marginal and
mixed-effects models that have already been described in Fitzmaurice et
al. (2009, Chapter 5). Because the methods of this book are mainly non-
parametric generalizations of the linear regression methods, our aim is to
illustrate the differences between the linear and nonlinear approaches. Details
of the model formulations, estimation and inference procedures and their ap-
plications are referred to Fitzmaurice et al. (2009) and the references therein.

2.2.1 Model Formulation and Interpretation

Nonlinear models generally refer to parametric regression models which cannot
be formulated into the framework of (2.2) or (2.5). Thus, by nature, this
class of models include a large number of possible functional relationships
between Y (z) and {r, X(#)}. But, because these are still parametric models, a
key feature is that the functional relationships between Y (r) and {z, X(z)} are
determined by a set of parameters in a Euclidean space, although the linear
relationship between Y (¢) and X(¢) are not satisfied. Applications of nonlinear
models in biomedical studies can be found, for example, in pharmacokinetics
and infectious diseases.

When the objective of the analysis is on the overall population effects of the
covariates without considering the effects at the individual level, a nonlinear
marginal regression model for {¥(¢),7,X(¢)} can be written as

Y(t) =mlt,X(1); B] +&(t), (2.23)

where B is an unknown vector of parameters, m[z‘7 X(1); B] is a nonlinear func-
tion of  and X(¢) determined by the parameter vector 8, and, as in (2.2), &(z)
is a mean zero random error process. An example of the nonlinear function is
the logistic model 8

1

 Lexp[=Bs(t =)
where = (Bl,ﬁg,ﬁ3)T, B1 > 0 and B3 > 0. Using the matrix notation

m(t; B) (2.24)
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{Yi, t;,X;} in (2.1), the model (2.24) can be written as

Y, = m(t, Xi; B) +&(ti),
m(t,-,X,-;B) = (m(til,X,‘;ﬁ),...,m(tini,X,';B)>
&(t) = (&), ~~~78i(tm,~))T7

where &(t;;) is the realization of a mean zero random error process &(r) at
time point ¢ = #;;. This model is referred to as a marginal model because the
parameter vector B describes the relationship between Y (¢) and X(z) for the
entire population of interest.

Nonlinear mixed-effects models are formulated by decomposing the effects
of {r,X(t)} on Y(r) through two stages, the individual-level (or subject-specific)
modeling and the population-level modeling. The first stage, i.e., individual-
level modeling, is aimed at describing the trajectory of ¥;(¢) through a non-
linear function of {t,X,-(t)} specific to each subject i. The second stage,
i.e., population-level modeling, characterizes the differences among individ-
uals across the population. Suppose that, for each subject i, the covariate
X; is formed by two components: the “within-subject” covariates U;, and the
“between-subject” covariates A;. Intuitively, the components of U; describe the
time-response relationship at the level of the ith individual, and the compo-
nents of A;, which do not change over the observation period, characterize the
differences between individuals.

The basic nonlinear mixed-effects model can be expressed as

T
, (2.25)

Individual-Level Model:  Y; = m(t,~7 U;; 65) +&(t;),
COV(Y,"X,‘, b,’) = V,'(X,'7 ﬁ, b,‘, OC)7 (2.26)
Population-Level Model: 6; = d(Ai; B, bi),

where m(ti, U;; 9;) is defined as in (2.25), 6; is a r-dimensional vector of pa-
rameters for some r > 1 specific to the individual i, m(ti,Ui; 9;) and &(t;)
are a nonlinear function of time and the vector of errors as in (2.25), re-
spectively, o and B are vectors of fixed-effects parameters, b; is a vector of
random-effects parameters, V,-(X,-, B, b, a) is the conditional covariance ma-
trix, and d (A,-; B, b,-) is a r-dimensional function of the “between-subject” co-
variates A;. At the individual-level model of (2.26), Y; depends on Uj;, hence
X;, through the nonlinear function m(ti, U;; 9;), which has a known parametric
structure determined by the individual-level parameter 6;. At the population-
level, the subject-specific characteristics described by 6; depend on A;, hence
X;, through the known function d (A,-; B, b,-)7 which is determined by the vector
of population-level parameters 8 and a random variation vector b;. A com-
mon assumption is that b; has mean zero conditioning on A; and its variance-
covariance matrix does not depend on A;, that is,

E(b,'|A,') = E(b,’) = 0 and COV(b,'|A,') = COV(b,') = Z (2.27)
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for an unstructured covariance matrix X. A common choice is to take b; to be a
mean zero multivariate normal random variable, i.e., b; ~ N(0, X). The fixed-
effects parameters to be estimated from (2.26) are {ﬁ, a, E}. The random-
effects parameter to be estimated from (2.26) and (2.27) is 6;. These estimated
fixed-effects and random-effects parameters are used to predict the subject-
specific trajectories of Y (t).

The nonlinear marginal and mixed-effects models (2.25) and (2.26) share
three common features with their linear counterparts in (2.2) and (2.5). First,
both modeling schemes assume that there are population-mean parameters,
i.e., B in these models, which characterizes the fixed covariate effects of the
population. Second, both modeling schemes characterize the individual-level
(or subject-specific) covariate effects through a vector of random-effects pa-
rameters, i.e., b; in these models. Third, in most practical situations, the dis-
tributions of the random-effects parameter vectors {bl,...,bn} are assumed
to be multivariate normal with mean zero. The variance-covariance matri-
ces may be either structured or unstructured. These common features allow
the likelihood-based estimation and inference procedures to be used for both
the linear and nonlinear models. However, because the individual-level and
population-level functions m(ti, U;; Oi) and d(Ai; B, bi) in (2.26) do not have
the simple linear structure, computation of the likelihood-based estimation
and inferences for the nonlinear models requires more complex algorithms
compared to the linear models.

2.2.2  Likelihood-Based Estimation and Inferences

We only outline the methods for the nonlinear mixed-effects model (2.26),
since the marginal model (2.25) can be treated as a special case of (2.26).
Under the assumption that the distribution function of Y; conditioning on
X; is known, for example, &(t;) and b; of (2.26) have multivariate normal

distributions, we can write Y= (ﬁT, OCT)T and the log-likelihood function for
{r. 2} as

((y,x) = log {f[f,-(Y,-|Xi; 7, z)]

log H/ﬁ (Y:i|Xi, b3 y) f(bis Z) db } (2.28)

where f,(Y |X,, Y, ) is the ith subject’s density function of Y; given X,
f,(Y |X,, bi; y) is the ith subject’s density function of Y; conditioning on X;
and the subject-specific parameters b;, and f (b,, Z) is the marginal density
function of b;.

A major obstacle of obtaining the likelihood-based estimation and infer-
ences for the parameters of interest {8, a} is computation. Maximizing (2.28)
with respect to y and X is generally intractable, because the right side in-
tegral involves complex nonlinear functions and numerical evaluation of the
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integral can be computationally intensive. Thus, a number of analytical ap-
proximation methods have been proposed in the literature to approximate
the log-likelihood function in (2.28), so that the optimization algorithms for
computing the approximate maximum likelihood estimators of y and ¥ can
be simplified. Because these approximation methods are not used in our non-
parametric estimation procedures, we refer to Davidian and Giltinan (1995)
for details.

2.2.3 Estimation of Subject-Specific Parameters

An appropriate estimator 5, of the subject-specific parameter 6; can be used to
predict the subject’s trajectory of Y;(¢) by substituting 6; in m(z, -; 6;) with 6;.
When sufficient data are available for each individual, a simple method to esti-
mate 6; is to fit the available data from the ith individual to its individual-level
model in (2.26). The advantage of estimating 6; using only the ith subject’s
individual data is that the estimation does not depend on the model struc-
tures. However, this “fitting individual model” approach is often not practical
because the numbers of repeated measurements n; may not be sufficiently large
for all i=1,...,n. In situations where not all the subjects have large numbers
of repeated measurements, a more practical approach is to pool the informa-
tion from all n subjects, so that the parameters for the individual-level and
population-level models in (2.26) can be estimated simultaneously.

The estimation of { B, «a, 6,-} using “pooled information” from all n subjects
depends on the covariance structures V,-(Xi, B, b, OC). For simple structures of
Vi(+), such as V;(+) is diagonal or certain nondiagonal with intra-individual vari-
ance and covariance parameters, Y = (BT, OCT)T and 6; can be estimated using
the weighted regression method described in Davidian and Giltinan (1995,
Chapter 2 and Section 5.2). Other approaches for the estimation and infer-
ence of 6; include “approximate linear mixed-effects model.” the Fxpectation-
Mazimization (EM) algorithm, and the methods based on analytic and nu-
merical approximations to the likelihood. Details on these methods and their
implementations have been described in Davidian and Giltinan (1995, Chap-
ters 6 and 7) and Davidian and Giltinan (2003), among others.

2.3 Semiparametric Partially Linear Models

Estimation and inference methods for semiparametric models with longitu-
dinal data have been mostly focused on the partially linear models. Existing
results in the literature can be found, for example, in Zeger and Diggle (1994),
Moyeed and Diggle (1994), Lin and Ying (2001), Lin and Carroll (2001, 2006),
Wang, Carroll and Lin (2005), among others. As discussed in Section 1.3.2,
this class of models has been developed to generalize the marginal and mixed-
effects linear models. The main objective for these models is on the estimation
and inferences of the real-valued parameters while allowing some nonparamet-
ric curves as a nuisance component. We summarize here the main approaches
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described in Zeger and Diggle (1994), Lin and Carroll (2001, 2006) and Wang,
Carroll and Lin (2005).

2.3.1 Marginal Partially Linear Models

As discussed in Section 1.3.2, the semiparametric marginal partially linear
model (1.2), which has been first investigated by Zeger and Diggle (1994) and
Moyeed and Diggle (1994), for the stochastic processes {Y(r),,X(r)} can be

written as
Y(t) = Bo()+X BXD()+el)
= Po()+X"(t) B+e(r), (2:29)
ﬁ = (Bla"'7ﬁK)Ta

where fBy(7) is an unknown smooth function of 7, £(¢) is a mean zero stochastic
process with variance 6(¢) and correlation function

)7 8(t2)]
o(t2)

Cov|e(1y
1

o ()

and X (¢), I=1,...,K, and &(t) are independent. The correlation structures
p(t1, o) of €(¢) distinguish (2.29) with repeatedly measured longitudinal data
from its counterpart with cross-sectional i.i.d. data. With a longitudinal sam-
ple {(Yij, tij, X,‘j) ri=1,...,mj=1, ...,l’l,‘}7 the errors Ei(tij) in (229) are
independent copies of €(¢) across the n subjects but with intra-subject corre-
lations specified by (2.30).

A useful special case of &(f;;) is the decomposition

pti, )= for any 1 #1, (2.30)

&(tij) = Wiltij) + Zij, (2.31)

where W;(¢) are independent copies of a mean zero stationary process W (z)
with covariance function at any time points ¢; and ,

Cov[W(t1), W(t2)] = oy pw (t1, 1)

for some ow and correlation function pw(-,-) >0, and Z;; are independent
and identically distributed measurement errors with mean zero and variance

G%. The covariance structure of the measurements Y;; for i=1,...,n and j=
1,...,n; are
o5+ o} if iy =iy and jj = j
7 W 1 =1 and j1 = J2,
Cov(Yiyji, Yoj) =8 OwPw(tiji>tinjp), if iy =iz and ji # ja, (2.32)
0, otherwise.

Although the partially linear model (2.29) can be classified as a special case
of the time-varying coefficient model (1.4), which is a class of the structured
nonparametric models to be discussed in Chapters 6 to 9, the estimation
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methods of these two types of models are quite different. This is a fact owing
to the differences between these two classes of modeling assumptions. In (2.29),
the covariate effects are described through the linear coefficients which do not
change with time. On the other hand, the covariate effects of (1.4) are unknown
curves of 7, hence (1.4) is entirely nonparametric, although a linear structure
is used at each time z.

When Y (¢) is not necessarily a continuous random variable, a generalized
marginal partially linear model is to model the conditional distribution of ¥ (z)

through
g{mft, X(1)]}

Bo(t) + X5 BixD(r)
= Bo(t) +X"(1) B,
e, X(1)] EY(1)|X(1)],
B = (B, ---7ﬁK)T7

where g(+) is a known link function, and By(z), B, ..., Bk are defined in (2.2).
With the observations {(Yij, tij, Xij) ci=1,...,mj=1, ...7n,~}7 (2.33) can be
written as

(2.33)

glu(, Xi))] = Poli)) +ZE Brx)
= Po(tj) +X[;B, (2.34)
w(tj, X)) = E(Yij‘Xij)v .
B = (Bo,-- Bx)".

If g(-) is the identity function, then (2.33) reduces to (2.29), and (2.34) is the
expression given in (1.2). Both the models (2.29) and (2.33) describe the con-
ditional expectations of ¥ (¢) through the sum of an unspecified baseline curve
Bo(t) of ¢t and the linear effects of {X(l)(z‘)7 o, X®) (t)} characterized by the
coefficients {fi, ..., Bx }. When the study objective is to evaluate the effects
of the covariates, By(z) is treated as a nuisance nonparametric component, and
the statistical inference is focused on the linear coefficients {[31, e ﬁK}

2.3.2 Mixed-Effects Partially Linear Models

When the subject-specific deviation from the population is also of interest
for the analysis, random-effects at the individual level can be built into the
model. In this case, we consider that, for the observations {(Y,~j7 tij, Xij) =

1,...,mj=1, ...,ni}, there is a subset U;; = (Ui(jl)7 ce U.<.K°))T of the original

1
covariates X;j, so that U;; has individual-level effects on Y;; which are spe-

cific to the ith subject. Incorporating the subject-specific deviation to (1.2), a
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semiparametric mixed-effects partially linear model is given by

i = Poltij) +):{(:1 Biny) +):ﬁlbir Ui(jr) +eij,
= ﬁo(tij)—kXiTjﬁ +Uiiji+€ij7
(Br.....Be) (2.35)
bi = (bit,-- bixy) "> bi ~N(0,D(11)),
ei = (e, ..., em,-)T7 ei~N(0,R(1)),

where By(fij) and B are the population-level baseline smooth curve and lin-
ear coefficients defined in (2.29), b; is the vector of the mean zero normally
distributed subject-specific deviations from the population-level linear coef-
ficients, e¢; is the vector of mean zero normally distributed error terms, and
D(71) and R(}») are the variance-covariance matrices of b; and e; specified by
the parameters y; and 7, respectively.

The generalized mixed-effects partially linear model can be similarly estab-
lished by adding the subject-specific parameters into (2.34). Following (2.34)
and (2.35), this model can be written as

gl X)) = Bolt)+ XK BXY + X, b, U
= PBo(tij) +X];B+U]bi,
u(ny, X)) = E(Y;[Xy), (2.36)
= (Bo.---. Bx)",
bi = (bir,...,biky) > bi ~N(0,D(n)),

where fBo(t) and B are the same as (2.34) and ¥ is defined in (2.35). By in-
corporating the subject-specific coefficients b;, the mixed-effects models (2.35)
and (2.36) can be used to predict the subject-specific outcome trajectory for
a given individual.

The rest of this section focuses on some of the well-established procedures
for the estimation of {Bo(¢), Bi, -+, Bk} as well as the random-effect coeffi-
cients b;. An excellent summary of these estimation methods can be found in
Fitzmaurice et al. (2009, Chapter 9).

2.83.8 Iterative Estimation Procedure

We briefly review here an iterative procedure described by Zeger and Dig-
gle (1994) for the estimation of By(¢), Bi, ..., Bx with the marginal partially
linear model (2.29). This procedure repeatedly uses a nonparametric smooth-
ing method as described in Section 1.5 and a longitudinal parametric estima-
tion method as described in Section 2.1. This iterative algorithm is a special
case of the backfitting algorithm described in Hastie and Tibshirani (1993).
To start, we consider the partially linear model (2.29) whose error term



SEMIPARAMETRIC PARTIALLY LINEAR MODELS 47

(1) is obtained from a mean zero Gaussian process with a known correlation
function Cov|[g(11), &(12); @] at any two time points #; and ,, which is defined
in (2.30) and determined by a Euclidean space parameter o. Then, by the def-
inition of (2.1), the ith subject’s covariance matrix of the repeatedly measured

outcome Y; = (Y,-l, ...,Ymi)T at the time points t; = (ti1, ..., tin;)T is Vi (ti; Oc)7
where the (ji, j»)th element of V;(t;; o) is Cov[e(tij,), €(tij,); a].

Iterative Estimation Procedure:

(a) Set Bo(t) to be an unknown constant, i.e., Bo(t) = Po, so that the partially
linear model (2.29) reduces to the marginal linear model (2.3) with linear
coefficients Bo, B, ..., Bk and covariance matriz V; (ti; Oc). The initial esti-
mators of Po, Bi, ..., Bk can be computed by mazximizing the log-likelihood
function (2.8).

(b) Based on the current estimator El, ey EK; calculate the ith subject’s resid-
ual at time point t;; by

. l
r<<» :Yij_z lXi<j)' (237)

(c) Treat the residuals {rij : i =1,...,n;j = 1,...,n;} as the pseudo-
observations and compute the kernel estimator BEK(t) of Bo(t) using (1.23)
with Y;; replaced by its residual rij in (2.87), i.e.,

55 () = Z?QZ?’;; rij K [(r 1) /h]
Y X K[(r =) /h]
where K(-) and h > 0 are the kernel function and bandwidth.

(d) Based on the current kernel estimator B\é((t) computed from (2.38), cal-
culate the residuals

(2.38)

= Yij — B (1y). (2.39)

(e) Update the estimators of [31, ..., Bk by applying the mazimum likelihood
procedure of (a) to the linear model

>

rY =Y Bix +ey, (2.40)
=1

where g;; has the mean zero Gaussian distribution with intra-subject covari-
ance Vi(ti; o).

(f) Repeat the steps (b) to (e) until the estimators converge. O

The likelihood and kernel estimators in the steps (a) and (c) of the above
iterative estimation procedure are used for the purpose of illustration. Clearly,
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other parametric and nonparametric estimation methods can also be used
in these steps. A number of the commonly used local and global smoothing
methods for estimating the nonparametric curves are described in Chapters 3
to 5. A crucial step in obtaining an adequate kernel estimator for fy(¢) is to
select an appropriate bandwidth 4, while the choice of kernel functions is less
important. For smoothing methods other than the kernel estimators, such as
splines, this amounts to selecting an appropriate smoothing parameter. We
present some of the commonly used smoothing parameter choices in Chapters
3 to d.

The above iterative estimation procedure has the advantage of being con-
ceptually simple and computationally feasible, since each estimation step is
based on well-known estimation methods in the literature. As shown in the
next section, it can also be directly generalized to the case with the general-
ized marginal partially linear model (2.33). However, this iterative estimation
procedure ignores the intra-subject correlations in the estimation of By(¢) in
step (c). As a result, its estimators of By, ..., Bk are not “semiparametric ef-
ficient” in the sense their asymptotic mean squared errors do not reach the
lower bound established in Lin and Carroll (2001). Thus, we briefly mention in
the next section some alternative approaches which attempt to take the intra-
subject correlations of the data into account. These alternative approaches
have their own advantages and disadvantages compared with the above iter-
ative estimation procedure.

2.3.4 Profile Kernel Estimators

Since the methods described here are based on the approach of solving some
kernel generalized estimating equations, the estimators are referred to in the
literature as the profile kernel generalized estimating equations (profile kernel
GEE) estimators. We briefly review these methods here, which are summa-
rized in Fitzmaurice et al. (2009, Section 9.6). Details of these methods are
described in Lin and Carroll (2001), Wang, Carroll and Lin (2005) and Lin
and Carroll (2006).

1. Profile Kernel GEE FEstimation Method

This method is a generalization of the above iterative estimation proce-
dure to the generalized marginal partially linear model (2.33). The iteration
algorithm contains the following steps:

(a) Replace B of (2.33) by some preliminary estimators, and then estimate
the nonparametric component Bo(t) of (2.33) by solving the local polyno-
mial kernel GEE as shown in equation (9.22) of Fitzmaurice et al. (2009,
Chapter 9).

(b) Substitute By(t) by its kernel GEE estimator, the parameters B of (2.33)
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are estimated by the profile estimating equation as shown in equation (9.23)

of Fitzmaurice et al. (2009, Chapter 9).

(c) Both the kernel GEEs and the profile estimating equations are used iter-
atively until the estimators converge, which lead to the final profile kernel
estimators of Bo(t) and B. O

The asymptotic properties of the profile kernel estimators depend on the
working correlation matriz used in the kernel GEE estimating equation step
(a) and the profile estimating equation step (b). A striking result shown by Lin
and Carroll (2001) is that, if one accounts for the intra-subject correlation, the
profile kernel estimator of By(r) and B is not “semiparametric efficient” in the
sense that its asymptotic mean squared error does not reach an established
lower bound. A main reason for this lack of efficiency is because the kernel
GEE estimator of By(z) only uses the local observations obtained within the
small neighborhood of ¢ specified by the bandwidth. Consequently, the use of
an appropriate working correlation matrix choice does not ultimately lead to
semiparametric efficient estimators at the profile estimating equation step.

2. Profile SUR Kernel Estimation Method

In order to improve the asymptotic properties of the profile kernel esti-
mators, this method, as described in Wang, Carroll and Lin (2005), intends
to construct “semiparametric efficient” estimators for the Euclidean space pa-
rameters in (2.29) and (2.33). The crucial part of this estimation method is
to replace the kernel GEE estimator of By(¢r) by the “seemingly unrelated ker-
nel estimator” referred to as the SUR kernel estimator in Wang (2003). The
SUR kernel estimator is obtained by solving a kernel estimating equation, i.e.,
equation (9.3) of Fitzmaurice et al. (2009, Chapter 9), through an iterative
algorithm. The SUR kernel estimator, which does not only rely on local obser-
vations around the time point ¢, places weights on all the observations. Under
the identity link function for (2.33), the SUR kernel estimator of fy(¢) has
a closed-form expression as shown in Lin et al. (2004) and equation (9.7) of
Fitzmaurice et al. (2009, Chapter 9). The profile SUR kernel estimators of
Bo(t) and B are computed by the following steps:

(a) Substitute Bo(r) with its SUR kernel estimator, and estimate B through
the profile estimating equation step.

(b) Substitute B with its profile estimators, and compute the SUR kernel es-
timator of Bo(t).

(c) The above two steps are repeated iteratively until convergence. (I

Compared with the profile kernel GEE estimators, the asymptotic results
of Wang, Carroll and Lin (2005) demonstrate that, when Y; is normally dis-
tributed, the profile SUR kernel estimator of f is asymptotically consistent for
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any working correlation matrix choice of V;(t;; o). When the working correla-
tion matrix is the true correlation matrix of the data, the profile SUR kernel
estimator of B is semiparametric efficient and reaches the semiparametric ef-
ficiency lower bound described in Lin and Carroll (2001). Although the true
correlation matrix is unknown in practice, hence, a practical profile SUR kernel
estimator of B may not be truly semiparametric efficient for a given longitudi-
nal data, the numerical results of Wang, Carroll and Lin (2005) demonstrate
that this estimator, when available, may still be a desirable choice because of
its appropriate finite sample statistical properties.

Despite the potentially attractive theoretical advantage of the profile SUR
kernel estimator, its implementation in practice is somewhat challenging, be-
cause the computation of a profile SUR kernel estimator requires an iterative
procedure, except for the Gaussian case, and the properties of the iterative
procedure in general settings are still not well understood. Further research is
still needed to develop practical algorithms to ensure the implementation of
the profile SUR kernel estimators.

3. Likelihood-Based Profile SUR Kernel Estimation Method

This method, which is described in Lin and Carroll (2006), is an extension
of the profile SUR kernel estimation method to the semiparametric mixed-
effects partially linear models (2.35) and (2.36). Based on the distribution as-
sumptions given in (2.35) and (2.36), we can write the log-likelihood function
([Yi; B,7, Bo(tir), -, ﬁo(l[ni)], which is an integral involving the conditional
likelihood function ¢ (Y;‘bi), where y = (le , }/ZT )T is the parameter vector de-
termining the covariance matrices in (2.35) and (2.36). The estimation pro-
cedure is similar to the profile SUR kernel estimation described above. The
specific iteration steps include:

(a) Given B and vy, estimate Bo(t) using the SUR kernel estimator BO (t:B.7).
(b) Substitute Bo(ti;) in £[Yi; B, ¥, Bo(tir)s - -, Boltin;)] with the SUR kernel es-

timators, and estimate B by mazximizing the profile log-likelihood

™=

E[Yi;ﬁﬂﬂ Bo(hﬁ[i '}/)7~~~>E0(tini;ﬁ7 }’)}

i=1

with respect to B and 7.

(c) The final log-likelihood profile SUR kernel estimators BLK and Yx are
obtained by repeating the above two steps iteratively until convergence. [

Similar to the profile SUR kernel estimators for marginal partially linear
models, the results of Lin and Carroll (2006) show that the likelihood-based

profile SUR kernel estimators BLK and Y.k have the desired asymptotic prop-
erties of consistency and semiparametric efficiency.
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2.3.5 Semiparametric Estimation by Splines

The nonparametric baseline curve and the Euclidean space parameters of the
marginal and mixed-effects partially linear models (2.29), and (2.33) through
(2.36) can also be estimated using some modified spline estimation methods as
described in Section 1.5. In the following, we briefly summarize the estimation
for the marginal partially linear model (2.29) using B-splines and the rough-
ness penalized smoothing splines. We omit the estimators for the partially
linear models (2.33) through (2.36), because they can be similarly computed
using these spline approaches. In later chapters, we further generalize these
spline methods to the structured nonparametric models.

1. Estimation by B-Splines

The main idea of the B-spline estimation method is to approximate the
nonparametric baseline curve fBy(¢) by some linear expansions of the spline ba-
sis functions, so that By(r) and as well as B can be estimated by the “extended
linear models” approach of Stone et al. (1997) and Huang (1998). Approximat-
ing PBo(r) by the B-spline expansion with a pre-specified integer L > 0, which
may increase as the number of subject n increases,

L
ZnBz (2.41)

where {By(t), Bi(t), ...} is a set of B-spline basis functions defined in (1.37),
the B-spline approximated model for (2.29) is

%

Yij Z‘-l OnBl(tl])+Z 1ﬁl +8lj
B (1;)) V"‘X,‘jﬁ + &ij,
Y = o)’ (2.42)

(70,

B(tj) = (Bo(ti).....Bu(t))",
(Br,
(t

B = )7

where &; is the error process €(r) defined in (2.29) at time point ;.

Assuming that g = (8,-1, e gmi) has the mean zero Gaussian distribution
with covariance matrix satisfying a parametric model denoted by V; (ti; Oc)7
the B-spline estimators of B, ¥ and o are obtained by minimizing

L(B. 7. ) i{[Y B7(t;)y— X' B]"
<V (b ) [Y,-—BT(t,-)y—X,.Tﬁ]} (2.43)

with respect to 8, v and a. If (2.43) can be uniquely minimized, the B-spline
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estimators E , 7 and O satisfy

L(B,7 @) = min L(B, 7, ). (2.44)

B.v,a

Based on 7= (10, - .-, ?L)T and the B-spline basis functions {B(¢), ..., BL(t)},
the B-spline estimator of the baseline coefficient curve By(z) is given by

L
Bo(t) =Y % Biz). (2.45)

Because (2.42) is the special case of the time-varying coefficient models,
we discuss in Chapter 9 the statistical properties of the B-spline estimators
for these more general models. Asymptotic properties, such as the asymptotic
distributions and semiparametric efficiency, of the B-spline estimators in (2.44)
and (2.45) are still not well-understood and require further development.

2. Estimation by Penalized Smoothing Splines

When smoothing splines are used, the estimators are obtained by maxi-
mizing some “roughness penalized likelihood functions.” For the case of (2.29)
with Gaussian errors, i.e., § = (8,'1, oy Eip " has the mean zero Gaussian dis-
tribution with covariance matrix V,-(t,-; a;, and Py(r) is twice differentiable
with respect to t, the penalized log-likelihood function based on the second
derivatives of By(r) is given by

M=

G[Bo(), Boa] = {[Yi_ﬁo(ti) —X! B8] Vi(t;; @) (2.46)

i=1

X [Yi— Polt) = XT B] } =2 [ (B (0))

where Y,‘, t; and X; are defined in (21), ﬁo(ti) = (ﬁO(til)7 ...,ﬁo(t,'ni))T, 6’(1‘)
is the second derivative of By(t) with respect to t, and A > 0 is a positive
smoothing parameter. The minimizers of (2.46) are the penalized smoothing
splines estimators of By(-), B and a, such that

03 [Bo(), B, @] = Bﬁﬂig’a& [Bo(:), B, a]. (2.47)

Details of the statistical properties of the penalized smoothing splines esti-
mators in (2.47) and their generalizations to the mixed-effects partially linear
models can be found in Zhang et al. (1998) and Fitzmaurice et al. (2009, Sec-
tion 9.6). Similar to the B-splines estimators of (2.44) and (2.45), asymptotic
properties, such as the asymptotic distributions and semiparametric efficiency,
of the penalized smoothing splines estimators in (2.47) have not been system-
atically derived and require further development.
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2.4 R Implementation

We present a few R functions for fitting the linear mixed-effects models using
the BMACS and the ENRICHD examples of Section 1.2. These results can be
used to compare with the findings obtained from the more flexible structured
nonparametric models to be discussed in Chapters 6 to 11. Although the
nonlinear mixed-effects models and the semiparametric partially linear models
also have important applications in practice, we omit their implementations
here because our focus is on the comparisons of the linear models with the
structured nonparametric models.

Several R packages are available to fit the linear mixed-effects models.
Among them, the nlme (Pinheiro and Bates, 2000; Pinheiro et al., 2018) and
1med (Bates et al., 2015) are two widely used and well-documented packages.
Both nlme and 1me4 can model the intra-subject correlations among repeated
measurements using random effects. The nlme package also allows the user
to specify complex serial correlation structures. The 1me4 package uses more
flexible and efficient optimizers to allow for the fitting of singular models,
which sometimes happen in the analysis of small to medium sized datasets.
We illustrate how to fit the models using functions from these R packages in
two examples.

2.4.1 The BMACS CD/4 Data

The BMACS CD4 data has been described in Section 1.2. For each obser-
vation, the subject’s study visit time, cigarette smoking status, age at study
enrollment, pre-infection CD4 percentage, and CD4 percentage at the time of
visit were recorded. The following R code is used to inspect the data:

> data (BMACS)
> str(BMACS)

’data.frame’: 1817 obs. of 6 variables:

$ ID : int 1022 1022 1022 1022 1022 1022 1022 1049 1049 ...
$ Time : num 0.2 0.8 1.2 1.6 2.5 3 4.1 0.3 0.6 1

$ Smoke : int 0000000000 ...

$ age :num 26.2 26.2 26.2 26.2 26.2 ...

$ preCD4: num 38 38 38 38 38 38 38 44.5 44.5 44.5 ...

$ CD4 :num 17 30 23 15 21 12 5 37 44 37 ...

> head (BMACS)
ID Time Smoke age preCD4 CD4

1 1022 0.2 0 26.25 38 17
2 1022 0.8 0 26.25 38 30
3 1022 1.2 0 26.25 38 23
4 1022 1.6 0 26.25 38 156
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51022 2.5 0 26.25 38 21
6 1022 3.0 0 26.25 38 12

The BMACS data is already in the long format (repeated measurements
per subject are listed in separate records or rows). For some datasets, if the
data available are stored in the wide format (repeated measurements per sub-
ject are listed in multiple columns of the same records), they can be easily
restructured from wide to long format using some simple functions such as
stack() in the utils package and reshape () in the stats package in the base
R distribution or using a flexible data restructuring package tidyr (Wickham
and Grolemund, 2017).

For the BMACS data, we are interested in modeling the attenuation in
CD4 percentage over time following HIV infection because it is known that
the loss of CD4 cells due to HIV leads to AIDS and HIV-related mortality
(Kaslow et al.,1987). We first fit a simple linear mixed model that includes a
linear trend in time and a random intercept term for each subject,

Yij = Bo+boi+ Bitij + &, (2.48)

where Y;; are the CD4 percentages and &; are the i.i.d. measurement errors
at time #; with &; ~ N(0, 62), Bo and B; are the fixed intercept and slope
terms, respectively, and bg; ~ N(0, 0'3) is a normal random intercept term that
describes the individual shifts from the common intercept By.

The following R commands are used to fit the random intercept
model (2.48) and produce the REML estimates for the model parameters.
The model formula of the 1me function includes both fixed and random ef-
fects, where the random argument specifies the random-effect terms followed
by |grouping variable to indicate the correlated observations within the
same group or subject:

> library(nlme)
> CD4fitl <- 1lme(CD4~ Time, random="1|ID, data=BMACS)
> summary (CD4fit1)

Linear mixed-effects model fit by REML
Data: BMACS
AIC BIC loglik
12561.91 12583.92 -6276.954

Random effects:

Formula: ~1 | ID
(Intercept) Residual

StdDev: 8.824904 6.345293

Fixed effects: CD4 ~ Time
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Value Std.Error DF  t-value p-value

(Intercept) 35.37234 0.5966519 1533 59.28471 0
Time -2.67484 0.1076277 1533 -24.85274 0
Correlation:

(Intr)
Time -0.357

Standardized Within-Group Residuals:
Min Q1 Med Q3 Max
-3.73917541 -0.57204793 -0.04429796 0.56658314 4.54644250

Number of Observations: 1817
Number of Groups: 283

The “random intercept only” model (2.48) implies a compound symmetry
covariance structure, that is, a constant variance over time and equal positive
correlation between any two measurements from the same subject. In the
model (2.48), Cov(Yij17 Yijz) = op for ji # jo, and Var(Yij) = 02 +02. Thus, the
correlation is p = 63 /(0§ + 6?). For CD4 percentage, p = (8.824)?/[(8.824)%+
(6.345)2] =0.659.

We can also introduce a random slope term by; into the model (2.48), so
that

Yij:B0+b0i+(ﬁl+bli) tij + &j, (2.49)

where (bo;, bi;)| ~N(0,%) with

2
Og 001
Y= )
001 (oh

represents the individual random deviations from the population-mean inter-
cept and slope. We fit (2.49) using the R commands (the random intercept is
included by default):

> CD4fit2 <- 1lme(CD4~ Time, random="Time |ID, data=BMACS)
> summary (CD4fit2)

Linear mixed-effects model fit by REML
Data: BMACS
AIC BIC logLik
12166.3 12199.32 -6077.148

Random effects:
Formula: “Time | ID
Structure: General positive-definite,
Log-Cholesky parametrization
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StdDev  Corr
(Intercept) 8.845541 (Intr)
Time 3.062241 -0.324
Residual 5.003937

Fixed effects: CD4 ~ Time
Value Std.Error DF  t-value p-value

(Intercept) 35.74864 0.5885714 1533 60.73799 0
Time -3.08116 0.2353750 1533 -13.09042 0
Correlation:

(Intr)
Time -0.435

Standardized Within-Group Residuals:
Min Q1 Med Q3 Max
-4.20189953 -0.55165113 -0.02258232 0.52023712 4.25186946

Number of Observations: 1817
Number of Groups: 283

Unlike (2.48), which assumes that the subjects have different intercepts at
time 0 but the same slope for CD4 percentages, the model (2.49) assumes that
the subjects have different intercepts and different slopes. The model (2.49)
also implies that the covariance and correlation structures between any two
measurements of the same subject depend on their time points f;;, such that,

Cov(Yijy, Yij) = 05+ 0on (tij, +1ij,) + O tijy tij, for ji # ja,
Var(Y,j) = Gg+2601tij+612ti2j+(72.

Figure 2.1 shows the longitudinal CD4 measurements of two randomly
selected subjects, the population-mean CD4 percentage trajectories and the
subject-specific CD4 percentage trajectories of these two subjects, which are
computed based on the above models (2.48) and (2.49). Comparing the results
from these two models, the population-mean (fixed-effects) intercept and slope
estimates are similar and both effects are statistically significant.

To examine if the additional random slope term improves the model fitting,
we can use anova function that produces a likelihood ratio test to compare
the models. The following output shows that the likelihood ratio test is highly
significant, which suggests that the model (2.49) is preferable:

> anova(CD4fitl, CD4fit2)

Model df AIC BIC loglik Test L.Ratio p-value
CD4fitl 1 4 12561.91 12583.92 -6276.954
CD4fit2 2 6 12166.30 12199.32 -6077.148 1 vs 2 399.6122 <.0001
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Figure 2.1 The longitudinal CD/4 measurements for all subjects and two randomly se-
lected subjects with the population-averaged and subject-specific regression estimates
plotted in solid lines and dashed lines, respectively, based on model (2.48) (random
intercept only) and model (2.49) (random intercept and random slope).

We can also obtain the same fitting results of the model (2.49) using the
lmer function from the 1lme4 package with the following slightly different model
formulation:

> library(1lme4)
> CD4fit2b <- lmer(CD4~ Time + (Time|ID), data= BMACS)
> summary (CD4fit2b )

Linear mixed model fit by REML [’1lmerMod’]
Formula: CD4 ~ Time + (Time | ID)
Data: BMACS

REML criterion at convergence: 12154.3
Scaled residuals:

Min 1Q Median 3Q Max
-4.2019 -0.5517 -0.0226 0.5202 4.2519
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Random effects:

Groups  Name Variance Std.Dev. Corr
ID (Intercept) 78.243 8.846

Time 9.316 3.052 -0.32
Residual 25.039 5.004

Number of obs: 1817, groups: ID, 283

Fixed effects:

Estimate Std. Error t value
(Intercept) 35.7486 0.5886 60.74
Time -3.0812 0.2354 -13.09

Correlation of Fixed Effects:
(Intr)
Time -0.435

In addition to the linear trend with time, it may be interested in examining
the effects of other covariates on CD4 percentages. The covariates can be
added to the linear mixed-effects model. The preCD4 variable is centered first
by subtracting the sample mean, which is shown to be a significant factor.
Smoking history and age are not significant. These results are obtained using
the following R code:

> BMACS$preCD4c <- BMACS$preCD4 - mean (BMACS$preCD4)

> CD4fit3<- 1me(CD4~ Time + preCD4c + Smoke + age,
random="Time|ID, data=BMACS)

> summary (CD4£fit3)

Linear mixed-effects model fit by REML

Fixed effects: CD4 ~ Time + preCD4 + Smoke + age
Value Std.Error DF t-value p-value
(Intercept) 34.94593 2.3259116 1532 15.024615 0.0000

Time -3.103432 0.2365191 15632 -13.121275 0.0000
preCD4 0.453743 0.0611912 280 7.415169 0.0000
Smoke 0.687434 1.0333168 280 0.665270 0.5064
age 0.014169 0.0638670 1632 0.221853 0.8245

2.4.2 The ENRICHD BDI Data

The ENRICHD dataset has been described in Section 1.2. For each observa-
tion, the subject’s ID number, study visit time (in days), BDI score, antide-
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pressant medication use, and the starting time of medication were recorded,
and can be seen using the following R commands:

> data(BDIdata)
> str(BDIdata)

’data.frame’: 7117 obs. of b variables:

$ ID tint 1111111111 ...

$ time : int 0 29 42 47 56 77 83 90 118 125 ...
$ BDI : int 25 34 28 29 18 5 19 12 14 18 ...

$ med :num 0011111111 ...

$ med.time: int 30 30 30 30 30 30 30 30 30 30 ...

> BDIdata[BDIdata$ID==1,]

ID time BDI med med.time

1 1 0 25 O 30
2 1 290 34 O 30
3 1 42 28 1 30
4 1 47 29 1 30
5 1 56 18 1 30
6 1 77 5 1 30
7 1 83 19 1 30
8 1 90 12 1 30
9 1 118 14 1 30
10 1 125 18 1 30

The ENRICHD BDI dataset consists of a subset of patients from the psy-
chosocial treatment arm of the randomized ENRICHD trial. The ENRICHD
study was designed to evaluate the efficacy of the psychosocial treatment in
patients with depression and/or low perceived social support after acute my-
ocardial infarction. Depression severity was measured by Beck Depression In-
ventory (BDI) score, where higher BDI scores indicate worsened depression.
In our analysis, we use the subgroup of 92 patients (1465 observations) with
clear records of the pharmacotherapy starting time. We first fit the follow-
ing linear mixed-effects model involving only time with random intercept and
slope

Y}j:ﬁol'-l-ﬁ]il‘,'j-l-&‘ij, (2.50)

where Bo; = Bo+ bo; and B1; = B1 + b1, Po and B are the population-mean
intercept and slope, by; and by; are the random intercept and slope, and Y;;
is BDI score for the ith patient at study visit time #;. The model can be
fit by the following R commands, which show a negative slope and suggest a
significant effect of the psychosocial treatment that lowered the patients’ BDI
scores during the clinical trial:
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# recode time in months

> BDIdata$Tijm <- BDIdata$timex*12/365.25

> BDIsub <- subset(BDIdata, med.time >=0 & med.time < 200)

> BDI.Model3 <- 1lme(BDI ~ Tijm, data=BDIsub, random="Tijm|ID)
> summary (BDI.Model3)

Linear mixed-effects model fit by REML
Data: BDIsub
AIC BIC logLik
9587.344 9619.073 -4787.672

Random effects:

Formula: “Tijm | ID

Structure: General positive-definite,
Log-Cholesky parametrization
StdDev  Corr

(Intercept) 8.206250 (Intr)

Tijm 1.819110 -0.597

Residual 5.466927

Fixed effects: BDI ~ Tijm
Value Std.Error DF t-value p-value

(Intercept) 21.630395 0.9030760 1372 23.951910 0
Tijm -2.084839 0.2130814 1372 -9.784236 0
Correlation:

(Intr)
Tijm -0.621

Standardized Within-Group Residuals:

Min Q1 Med Q3
-4.52027744 -0.49237793 -0.02382951 0.46209759
Max
5.02331404

Number of Observations: 1465
Number of Groups: 92

However, the model (2.50) does not consider the use of concomitant an-
tidepressant medication. By the trial protocol, in addition to the randomized
psychosocial treatments, patients with high baseline depression scores and/or
nondecreasing BDI trends were eligible for pharmacotherapy with antidepres-
sants. If the scientific question is whether the antidepressants have added
benefits for lowering the BDI scores of the patients undergone this concomi-
tant intervention during the trial, we may incorporate the medication use in
thabﬂmmngnmdd.Enimeﬁhlmﬁmn,bt&,nj:tu—simxl&jlegﬂ
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be the ith patient’s starting time of pharmacotherapy, time from initiation
of pharmacotherapy, and pharmacotherapy indicator, respectively, at the jth
visit. An intuitive model is

Y;j = Boi+ Buitij + i 0ij + %1i ij rij + €5, (2.51)

where Bo;, Bii, i and y1; are all random coefficients with

E (Boi, Bris Wi Yli)T = (Bos B, 0, Yl)T-

Wmm&lemdm:m,m+nm)®w%%ﬂwmwnﬁmmmmMMm
effect at m months since the start of pharmacotherapy. The results of fitting
(2.51) can be seen from the following R commands:

> BDIsub$Sim <- BDIsub$med.time*12/365.25

> BDIsub$Rijm <- with(BDIsub, med*(Tijm -Sim))

> BDI.model4 <- 1lme(BDI ~ Tijm+ med + Rijm , data=BDIsub,
random="Tijm+ med + Rijm|ID)

> summary (BDI.model4)

Linear mixed-effects model fit by REML
Data: BDIsub
AIC BIC logLik
9482.313 9561.616 -4726.156

Random effects:
Formula: “Tijm + med + Rijm | ID
Structure: General positive-definite,
Log-Cholesky parametrization
StdDev Corr

(Intercept) 8.440818 (Intr) Tijm med
Tijm 2.641688 -0.469

med 5.811350 -0.361 0.217

Rijm 3.259511 0.118 -0.868 -0.231
Residual 5.118352

Fixed effects: BDI ~ Tijm + med + Rijm

Value Std.Error DF  t-value p-value
(Intercept) 23.360014 1.1154194 1370 20.942808 0.0000
Tijm -0.610008 0.4783029 1370 -1.275360 0.2024
med -3.582001 1.0000283 1370 -3.581900 0.0004
Rijm -1.546813 0.5161834 1370 -2.996634 0.0028
Correlation:

(Intr) Tijm med

Tijm -0.356
med -0.573 0.035
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Figure 2.2 The longitudinal BDI measurements for two randomly selected subjects
with the population-averaged and subject-specific regression estimates plotted in solid
lines and dashed lines, respectively, based on the models (2.50) and (2.51). For each
subject, the starting time of the pharmacotherapy is indicated by a vertical dashed
line.

Rijm 0.201 -0.908 -0.132

Standardized Within-Group Residuals:

Min Q1 Med Q3
-4.72295735 -0.49429621 -0.01038197 0.47258323
Max
5.24099392

Number of Observations: 1465
Number of Groups: 92

In contrast to the model (2.50), the results from (2.51) suggest that the
time effect B is no longer significant (P=0.20) and the psychosocial treatment
is not effective for these patients. However, both % and 7y, are statistically
significant, indicating a significant decrease in BDI score after the start of the



REMARKS AND LITERATURE NOTES 63

pharmacotherapy. Figure 2.2 shows the fitted population-mean and subject-
specific trajectories from the models (2.50) and (2.51).

It is worth noting that (2.51) ignores the correlation between the starting
time of pharmacotherapy s; and the pre-pharmacotherapy depression trends.
We revisit this example in Chapter 10, which shows that, through a varying-
coefficient modeling approach, (2.51) may lead to potential bias because it
ignores the potential effects of the starting time of pharmacotherapy s;.

2.5 Remarks and Literature Notes

This chapter briefly summarizes a number of parametric and semiparamet-
ric regression methods for the analysis of longitudinal data. The paramet-
ric models include the linear, generalized linear and nonlinear marginal and
mixed-effects models. The semiparametric models are primarily focused on
the partially linear marginal and mixed-effects models. The estimation and
inference methods for these models include the maximum likelihood and re-
stricted maximum likelihood procedures, and the iteration procedures which
combine parameter estimation and nonparametric smoothing methods. Be-
cause the linear marginal and mixed-effects models are often the first attempts
for longitudinal analysis in a real application, we outline a few details of their
estimation and inference methods, including the implementation of the R pack-
ages nlme and lme4. These estimation and inference methods provide some
useful insights into the more flexible nonparametric estimation methods to be
introduced in detail throughout this book.

The analytical approach with repeated measurements data using paramet-
ric and semiparametric regression models has a long history in the statisti-
cal literature. As noted in Fitzmaurice et al. (2009, Section 1.3), the linear
marginal and mixed-effects models are probably the most widely used meth-
ods for analyzing longitudinal data, and this approach was popularized by
researchers at the U.S. National Institutes of Health (NIH). Given the exten-
sive publications of this subject in the literature, it is difficult to list all or
even most of the important publications. Early work of the linear marginal
and mixed-effects models, their estimation and inference procedures, and their
applications include Patterson and Thompson (1971), Harville (1974), Laird
and Ware (1982), Liang and Zeger (1986), Diggle (1988), Zeger, Liang and
Albert (1988), among many others. Most of these results are summarized in a
number of well-written books, for example, Vonesh and Chinchilli (1997), Ver-
beke and Molenberghs (2000), Diggle et al. (2002), Molenberghs and Verbeke
(2005) and Jiang (2007). The R packages nlme and 1me4 for the estimation and
inferences with the linear marginal and mixed-effects models are also well de-
veloped and well documented in Pinheiro and Bates (2000), Wickham (2014),
Bates et al. (2015) and Pinheiro et al. (2017).

Beyong the linear and generalized linear models, theory, methods and ap-
plications for the nonlinear marginal and mixed-effects models are nicely sum-
marized in Davidian and Giltinan (1995, 2003). The flexible semiparametric
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partially linear models summarized in this chapter are described in detail in
Zeger and Diggle (1994), Moyeed and Diggle (1994), Lin and Ying (2001), Lin
and Carroll (2001, 2006) and Wang, Carroll and Lin (2005). A comprehensive
account of the recent developments of longitudinal analysis can be found in
Fitzmaurice et al. (2009). But, most of the structured nonparametric models
and their estimation and inference methods presented in Part III to Part V,
i.e., Chapters 6 to 15, of this book are more recent results that are not included
in Fitzmaurice et al. (2009).
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Chapter 3

Kernel and Local Polynomial Methods

We present in this chapter the class of kernel-based local smoothing methods
for nonparametric curve estimation with unstructured nonparametric regres-
sion models. These smoothing methods form a series of building blocks for
constructing smoothing estimators when the nonparametric models are sub-
ject to structural constraints. In addition, as discussed in Section 2.3, these
smoothing estimators can also be used in conjunction with parametric esti-
mation procedures in semiparametric partially linear regression models.

3.1 Least Squares Kernel Estimators

Our statistical objective is to estimate the conditional mean u(r) = E[Y (t)’t]
of Y () from the model

Y () = u(t) +£(0), (3.1)

based on the sample {(Yijvtij) i=1,...,mj= L...,ni}, where p(r) is a
smooth function of time 7 and €() is a mean zero error term with variance
and covariance curves,

Var[Y(t)lt] = o%(1) atte 7,
Cov[Y(1),Y ()|n,12] = E{ Y () —p()] [Y (1) —ﬂ(fz)]}

= p(,) atanyn#ne€J,
p(t,t) # o2(t) foranyte 7.

(3.2)

Although there are no parametric conditions assumed for (¢), the smooth-
ness assumptions of u(z) determine the theoretical and practical properties of
its estimators and statistical inferences. We discuss the specific smoothness
assumptions of p(¢) under the asymptotic derivations of Section 3.6.

A natural approach for the nonparametric estimation of (¢) is to borrow
the smoothing techniques from the cross-sectional i.i.d. data setting, while
evaluating the statistical performance of the resulting estimators by taking
the potential intra-subject correlations into consideration. A simple method
is to use the kernel smoothing method similar to the Nadaraya-Watson type
local least squares criterion (1.22) and (1.23), which amounts to estimate

67
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W (z) through a weighted average using the measurements obtained within a
neighborhood of ¢ defined by a bandwidth.

Let K(u) be a kernel function, which is usually a probability density func-
tion as in (1.24) and (1.25) through (1.31), defined on the real line, and let
h >0 be a positive bandwidth. A kernel estimator of u(¢) similar to (1.23) can
be obtained by minimizing the local score function

(0N ) = %lel -]k (1)), (33)

where N =Y" | n; is the total number of observations for all subJects The score
function (3.3) uses the measurement uniform weight 1/N = 1/( N ) on all
the observations, and the minimizer of (3.3) leads to the kernel estimator

?:12 VYK (1 1) /h]
LXK [(t —1;j) /]

Because of the measurement uniform weight on each measurement, (3.4) makes
no distinction between the subjects that have unequal numbers of repeated
measurements. Consequently, subjects with more repeated measurements are
used more often than those with fewer repeated measurements.

More generally, given that the measurements of each subject are poten-
tially correlated and the subjects may have different numbers of repeated
measurements, a modification of (3.2) may use a subject-specific weight w; for
the ith subject. The local score function then becomes

ket 1y w) = ZZW, i ZK(%) (3.5)

i=1j=

Lig(t;h, N) = (3.4)

where the weights, w = (wy, ..., w,)T, satisfy w; >0 for all i = 1,..., n with
strict inequality for all or some subjects 1 <i < n. The minimizer of the
Lk (t;h,w) of (3.4) leads to the kernel estimator

L il Yy wiK [ (t—1;;) /]
i L wiK [(t— 1) /h]

An intuitive weight choice other than 1/N of (3.3) is to assign the subject

uniform weight to each subject, rather than the measurement uniform weight.

The resulting kernel estimator then uses w; = 1/(nn;), and minimizes the local
score function

Oty w iiz{ — ¥ - ]QK(t_ht“)}. (3.7)

i=1j=1

Lk (t: h,w) = (3.6)

The kernel estimator based on w* = (1/(nny), ..., 1/(nn,1))T is

Ly VXL YK (e — 1) /h] }
Ly {n VL K () /h]

Lk (t: b, w') = (3.8)
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n (3.8), the subjects with fewer repeated measurements are assigned more
weight than those with more repeated measurements.

The effects of weight choices depend on the longitudinal designs and the
numbers of repeated measurements. The two most commonly used weight
choices, which will be used throughout this book, are

(a) the subject uniform weight wi =1/(nn;);

(b) the measurement uniform weight wi* =1/N.

We present the theoretical and practical properties of the weight choices in
Section 3.6. Other kernel approaches for the estimation of u(¢) in (3.1) have
also been studied by Hart and Wehrly (1986), Miiller (1988), Altman (1990)
and Hart (1991). Because these methods are based on fixed time design points,
we omit the discussion of their details. In practice, however, all these kernel
methods are based on the fundamental concept of local least squares with
weights determined by a bandwidth and a kernel function, and they generally
lead to similar numerical results. This is in contrast to the local and global
smoothing methods with structured nonparametric models, i.e., Chapters 6 to
15, where different local and global smoothing methods may produce different
smoothing estimators.

3.2 Least Squares Local Polynomial Estimators

The local polynomial estimators of u(¢) based on the model (3.1) and longitu-
dinal sample {( i tij)ti=1,... nj=1, ...,ni} can be derived by extending
the approach of (1.32) through (1.35). Similar to the local polynomial methods
with cross-sectional i.i.d. data, the local polynomial estimators are motivated
by the need to reduce the potential boundary bias associated with the kernel
estimators (Fan and Gijbels, 1996), when #;; is close to the boundary of 7.
Similar to the approximation of (1.32), when #;; is within a small neighbor-
hood of t and u(s) is p-times continuously differentiable at # for some p > 1,
the Taylor’s expansion of u(t;) at t gives

w(ti;) ~ “ t,/—t Zb, t,j—t (3.9)

The pth order local polynomial estimator based on (3.9), with the w; weight
for the ith subject, the kernel function K(-) and the bandwidth £, is obtained
by minimizing the local score function

Lty w) = X;Zw 7 Zb;(t,/—t)} k(=) (3.10)

with respect to b, [=1,..., p, where w = (wl, ...7wn)T.
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Choices of the kernel function K(-) include the probability density func-
tions given in (1.24) and (1.27) through (1.31). The minimizer b;(¢; h, w) of
Lp,1(t; h,w) in (3.10) gives the pth order local polynomial estimator

A (6 hyw) = Dby (15 h, w) (3.11)

of the Ith derivative u)(¢) at time point 7. The entire curve u!)() is obtained
by varying ¢ over the range of .7. The pth order local polynomial estimator
of u(r) is

~ ~(0

Arp(t: hyw) = B (83 by w). (3.12)

In particular, the local linear estimator of u(t) is t 1 (¢; h, w), which is the
most commonly used local polynomial estimators in real applications. Similar
to the kernel estimators, the main factors affecting the statistical properties
of the local polynomial estimators are the bandwidth choices, the degree p
of the polynomials and the weight choices w;, while the shape of the kernel
function K(-) is less important.

3.3 Cross-Validation Bandwidths

A crucial step in obtaining an adequate kernel or local polynomial estimator
of pu(r) is to select an appropriate bandwidth . For the smoothing estima-
tion methods other than kernel or local polynomial estimators, such as the
B-splines and penalized smoothing splines to be discussed in the next two
chapters, this amounts to selecting an appropriate smoothing parameter. Since
the repeated measurements within a subject are potentially correlated and the
correlation structure is usually completely unknown in practice, a simple pro-
cedure for the selection of a data-driven smoothing parameter is to use the
“leave-one-subject-out” cross-validation (LSCV), which does not depend on the
intra-subject correlation structure of the data and can potentially preserve the
unknown correlation structure.

3.8.1 The Leave-One-Subject-Out Cross-Validation

Let [z (¢; h, w) be a local smoothing estimator of p(¢), which can be either the
kernel estimator [k (t; i, w) of (3.6) or the pth order local polynomial estimator
Hr,p(t; h,w) of (3.12), ie.,

He(t; h,w) = Uk (t; h,w)  or U p(t; h,w). (3.13)

The LSCV bandwidth selection for L (¢; h, w) is carried out with the following
three main steps. These steps can be adapted to other estimation methods
to compute the corresponding LSCV smoothing parameters in other settings
discussed in this book.
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Leave-One-Subject-Out Cross-Validation Procedure:

(a) Compute the “leave-one-subject-out” estimator ﬁéﬁi) (t; h,w) based on the
remaining data after deleting the entire set of repeated measurements for
the ith subject.

(b) Predict the ith subject’s outcome at time t;j by ﬁéﬂ.) (tijs hyw).
(c) Define the LSCV score of Ur(t; h, w) by

LSCV (h, w) ZZW, { o — 1 (62 W)r' (3.14)
i=1j=

If (3.14) can be uniquely minimized by hpscy over all positive values of
h>0, te.,
LSCV (hpscy, w) =min CV (h, w). (3.15)

h>0

then hrscy is defined to be the leave-one-subject-out cross-validated band-
width of UL (t; h, w) of (3.13). O

The use of hrgcy can be heuristically justified because, by minimizing the
cross-validation score LSCV (h,w) of (3.14), it approximately minimizes an
average prediction error of [ (¢; , w). In real applications, it is often easy to
find out a suitable range of the bandwidths by examining the plots of the
fitted curves and then approximate the value of hygcy through a series of
bandwidth choices. This searching method, although somewhat ad hoc, may
actually speed up the computation and give a satisfactory bandwidth.

3.8.2 A Computation Procedure for Kernel Estimators

Direct minimization of the cross-validation score (3.14) can be computation-
ally intensive, as the algorithm repeats itself each time a new subject is deleted.
For the kernel estimator [ig (t; h, w), it is possible to use a computationally sim-
pler approach without relying on deleting the subjects one at a time. In this

approach, we first define, for i=1,...,n,
t—t;; wiK|(t—tij)/h
Kij:K( J>7 K== L= j)/h] and K = Z s
h X wiK [(t—1;)/h]

and, then compute [ 3 ‘LLI<( )(t,j,h w)] using the following decomposition,
Y=g (1 b w)
n; *

= e [Actsno) - 3 )] (415

j=1 i

- [ i — Tk (13 1, w)] +Z (¥, K?)

Jj=
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- [ﬁK(tij; hyw) = i (Yinfj)] (1le> (3.16)

j=1

= {Yij — b (tij h, W)] + (15*1(;)

Y (YK)
Ki*

— g (tijs b, w)

The above expression, which was suggested by Rice and Silverman (1991),
is specifically targeted to the kernel estimator [k (¢;h,w), although different
weight choices may be used. When other smoothing methods, such as the
local polynomial estimators, are used, the explicit expression at the right side
of (3.16) does not generally hold. Thus, for general estimators other than the
kernel estimators [ (t;h,w), direct minimization of the cross-validation score
(3.14) has to be computed with subjects deleted one at a time.

3.8.8  Heuristic Justification of Cross-Validation

The use of LSCV (h,w) in (3.14) as a risk criterion for ﬁ£7i> (tij: h,w) can be
justified by evaluating the following decomposition of LSCV (h, w),

n

LSCV (h,w) = ZZW, i — ()]
i=1j=1
n

+ZZWI w () = iy i><tij§h, W)]2 (3.17)

i=1j=1

+2 Z Z wi Yy — (1)) [ g) = B (1 iy w)]
i=1j=

The first term of the right side of (3.17) does not depend on the bandwidths.
Since the observations of the ith subject have been deleted for the compu-

tation of ﬁL(fi) (t; h,w) and the subjects are assumed to be independent, the

expectation of the third term is zero.
Let ASE [fiL(+; h, w)] be the average squared error of fiz (;j; h, w) defined by

ASE [fir (5 ]*ZZW,[ (1)) — e (53 b, w)] (3.18)

i=1j=

Direct calculation using the definition (3.18) shows that the expectation of
the second term of the right side of (3.17) is actually the expectation of
ASE [ﬁL(ﬂ)(-;h7 w)], which approximates the expectation of ASE [[iL(-;h, w)]
when n is large. Thus, the LSCV bandwidth h;scy approximately minimizes
the average squared error ASE [ﬁL(~; h, w)] Consistency of a similar LSCV
procedure in a different nonparametric regression setting has been shown by
Hart and Wehrly (1993). But, under the current setting, the asymptotic prop-
erties of hygcy are still not well understood. Statistical properties of h;gcy are
investigated through simulation studies.
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3.4 Bootstrap Pointwise Confidence Intervals

Statistical inferences, such as confidence intervals, are usually developed based
on either asymptotic distributions of the estimators or bootstrap methods
(e.g., Efron and Tibshirani, 1993). Under the context of cross-sectional i.i.d.
data, asymptotic distributions are derived by letting the number of subjects
n go to infinity. The resulting inferences are reliable at least when the sample
size n is large. However, the longitudinal data structure is more complicated
because of two reasons. First, since the numbers of repeated measurements n;,
i=1,...,n, are possibly different, the corresponding asymptotic distributions
of the estimators may also be different depending on how fast n;, i=1, ..., n,
converge to infinity relative to n. It can be seen from the asymptotic properties
of Section 3.6 that, in order to get a meaningful asymptotic result, » must con-
verge to infinity, but n; may be either bounded or converging to infinity along
with n. Second, because of the possible intra-correlation structure of the data,
which is assumed to be completely unknown, the asymptotic distributions of
Uz (t; b, w) may be difficult to estimate. Thus, longitudinal inferences that are
purely based on the asymptotic distributions of fiy (¢; h, w) may be difficult to
implement in practice. On the other hand, a bootstrap inference can always
be constructed based on the available data.

8.4.1 Resampling-Subject Bootstrap Samples

Since the subjects are assumed to be independent, a natural bootstrap sam-
pling scheme is to resample the entire repeated measurements of each subject
with replacement from the original dataset. This approach is referred to in
the literature (e.g., Hoover et al., 1998) as the “resampling-subject bootstrap.”
This bootstrap scheme can be generally applied to construct confidence inter-
vals for estimators of other nonparametric models in this book. The bootstrap
samples are generated using the following steps.

Resampling-Subject Bootstrap:

(a) Randomly select n bootstmp subjects with replacement from the original
dataset, and denote by {( it U) i=1,....,n;j=1, ...,ni} the longitudinal
bootstrap sample. The entire repeated measurements of some subjects in the
original sample may appear multiple times in the new bootstrap sample.

(b) Compute the curve estimators, such as the kernel or local polynomial
estimator @P°%(t; h, w) of /.L() in (3.8) or (3.12), based on the bootstrap
sample {(Yl’j‘, :}): =1,...,m;j=1,...,n

(c) Repeat the above two steps B times. Denote the bth, b=1, ..., B, bootstrap

estimator by ,ub"m b(t; h,w), so that B bootstrap estimators
BB (1; h, w) = {ﬁf’”’f Yeshow), ., BB (e, w)} (3.19)

of u(t) are obtained. O
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3.4.2 Two Bootstrap Confidence Intervals

The bootstrap samples generated in (3.19) can be used to construct two types
of approximate pointwise confidence intervals for p(¢), namely the intervals
based on percentiles of bootstrap samples and the intervals based on normal
approximation.

Approximate Bootstrap Pointwise Confidence Intervals:

(a) Percentile Bootstrap Intervals. Compute the percentiles of the B boot-
strap estimators 2By (t: h,w) of (3.19). The approzimate [100 x (1 — o)]th
percentile bootstrap pointwise confidence interval for W(t) is given by

(Liaj2)(t); Utay2) (1)), (3.20)

where Lig)(t) and Uigyy)(t) are the (a/2)th and (1 — a/2)th, i.e., lower
and upper (t/2)th, percentiles of %’ﬁ(r; h, w), respectively.

(b) Normal Approximated Bootstrap Intervals. Compute the estimated
standard error EEB(I; ﬁL) of UL(t; h,w) from the B bootstrap estimators
@ﬁ(z‘;h, w). The normal approzimated bootstrap pointwise confidence in-
terval for u(t) is

‘ZL\L(I;h, W):‘:Z(l,a/z)s/ég(t;ﬁl‘), (321)

where z(1_q 2y s the [100 x (1 — a/2)]th percentile of the standard normal
distribution and Uy (t; h, w) is the smoothing curve estimator computed from
the original sample. ]

The percentile bootstrap interval given in (3.20) is a naive procedure, which
has the main advantage of not relying on the asymptotic distributions of the
curve estimator [ (¢; h, w). However, a visual drawback of the percentile in-
terval (3.20) is that Ur(s;h,w) is not necessary at the center of the inter-
val (3.20). On the other hand, the normal approximated interval (3.21) is
symmetric about Uy (t; h, w), which is visually appealing. But, because (3.21)
uses normal approximation of the critical values, its accuracy depends on the
appropriateness of the normal approximation.

Technically, both (3.20) and (3.21) may lead to reasonable approximations
of the actual [100 x (1 — &)]% pointwise confidence intervals of p(r) if the
biases of [y (t; h,w) are small. Ideally, the biases of the estimators need to
be adjusted if they are not negligible. Theoretical properties of these boot-
strap procedures have not been systematically investigated. But, the practical
properties, such as the empirical coverage probabilities and computational fea-
sibility, of these bootstrap procedures have been investigated through a series
of simulation studies in the literature, such as Hoover et al. (1998) and Wu
and Chiang (2000), among others.
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3.4.8  Simultaneous Confidence Bands

We note that the above bootstrap pointwise confidence intervals are only for
the inferences of p(¢) at the given time point ¢. In most practical situations,
such pointwise inferences are sufficient. But, in some studies, the study ob-
jectives require the knowledge that there is a high probability that the true
regression curve U(t) stays within a given band simultaneously for a range
of the time values. In such situations, we need to construct a simultaneous
confidence band of u(t) for + within a closed interval [a, b] with some known
positive constants b > a > 0.

1. Construction of Simultaneous Confidence Bands

We introduce here a straightforward procedure that extends the above
pointwise confidence intervals to simultaneous confidence bands for p(r) over
a given interval [a,b]. This procedure is described in Hall and Tittering-
ton (1988) for nonparametric regression models with cross-sectional i.i.d. data.
Because this is a general approach, it is not limited to the estimators fi (t; h, w)
and is repeatedly used for other smoothing curve estimators in this book. This
simultaneous confidence band procedure requires the following two steps.

Simultaneous Confidence Band Procedure:

(a) Simultaneous Confidence Intervals at Grid Points. In this step,
we partition [a, b] into M+ 1 equally spaced grid points

a=& < <&y =b

for some integer M > 1, and construct a set of approximate [100 x (1= Oc)] %
simultaneous confidence intervals (lo (&), ua(&:)) for w(&), such that

ngch{la(ér) <W(E) <ua(E), forallr=1,..., M+ 1} >1—a. (3.22)

If we apply the Bonferroni adjustment to (3.20) or (3.21), (la(&r), ua(&))
are given by

(Loc/[2(M+l)] (1877 (&3 hy W), Uy B2 (&3 b, W)]) (3.23)

or

Bz (&b w) 20 g par 1) 5277 (& by w), (3.24)

respectively. For any & <t <&, we define ﬁL)(z‘;h7 w) to be the linear
interpolation of Ur (& h,w) and fp(&11; h, w), such that

Ay (15 h,w) = (5’“ D) B (&) 1 (S é)m(am,hw) (3.25)

Similarly, we define /.LU)(I) to be the linear interpolation of ,u(ér) and
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w(&q1) for any & <1t < &.y. Then (lg>(t),ug)(t)) is an approzimate
[100 x (1 — &)]% confidence band for u!(t), such that

lim P{zg’) ) <u) <ull (1), for allt € [a, b]} >1—a,  (3.26)

n—oo

where

W0 = (Z) @) +m () () 320

and

WDy = m (i{;t Jua(&) +M (’b__i) o (Eri1) (3.28)
are the linear interpolations of (la (é,), Iy (érﬂ)) and (ua (é,), Ug (érﬂ)),

respectively.

(b) Confidence Bands Linking Grid Points. To construct the simultane-
ous confidence bands for u(t) for allt € [a, b], some smoothness conditions
have to be assumed. For two commonly used smoothness conditions, we
assume that either

sup ‘,Ltl(t)‘ <cy, for a known constant c; >0, (3.29)
t€la,b)
or
sup |1"(t)| <z,  for a known constant c; > 0. (3.30)
t€la,b)

Then, it can be verified by direct calculation that, for & <t <&y,

2eiM [(&ri1 —1) (t1=&) /(b—a)], if (3.29) holds;

—u®
|u(r) = (r)|§{ (c2/2) (Eper —1) (1 — &), if (5.30) holds.
), the approximate

To adjust the simultaneous confidence bands for p® (¢
t) are given by

[100 X (1 — @)]% simultaneous confidence bands for p(

(100 20w G EE) g [ B2 DUE0T)

b—a b—a
(3.31)
(167 0) = (c2/2) (B =1) (1= &), () (e2/2) (61 —1) (1= &) ) (3:32)
when (3.29) or (3.30) holds, respectively. O

2. Constructing Simultaneous Confidence Bands in Practice

There are two practical issues for the applications of the confidence bands
of (3.31) and (3.32). The first is the Bonferroni adjustment in construct-
ing the simultaneous confidence intervals at the grid points {&;, ..., &y}
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given in (3.23) and (3.24). Since the Bonferroni adjustment usually gives con-
servative intervals with coverage probability higher than the nominal level
of [100 x (1 — a)]%, the Bonferroni adjusted simultaneous confidence inter-
vals (3.23) and (3.24) are conservative at the equally spaced grid points
{él, vy Eppat } As a result, the simultaneous confidence band given in (3.31)
and (3.32) for ¢ € [a, b] are also conservative with coverage probabilities higher
than the nominal level of [100 % (1 — @)]%, and their actual coverage prob-
abilities will increase as the number of grid time points M + 1 increases. In
real applications, we prefer to have a large number for M + 1, because the
gaps between two adjacent grid points &, < &,41, 1 <r <M, are bridged with
the inequalities (3.29) and (3.30). Thus, some refinement is often preferred to
construct simultaneous confidence intervals at ¢ € {&, ..., &4}, which are
less conservative than (3.23) and (3.24). Examples of refined intervals may
include adjustments using the inclusion-exclusion identities with more accu-
rate coverage probabilities or other multiple comparison techniques, such as
Bretz, Hothorn and Westfall (2011). These refinements, which often involve
more intensive computation than the Bonferroni adjustment, can be used in
place of the intervals (3.23) and (3.24) when the computation complexity is
not an issue.

The second issue is the number and location of the grid points. For sim-
plicity, we assume that the grid points a = & < --- < &y = b are equally
spaced. But, in real applications, these grid points are not necessarily equally
spaced, and their location may be chosen based on the study design and the
scientific questions being investigated. The equally spaced grid points can be
treated as a default choice when there is no clear indication from the study
design where these grid points should be located. The number of grid points
M + 1 can be selected subjectively by examining the widths of the confidence
bands. Theoretical results on the “optimal” choices of location and number
of grid points are still not available. Although some heuristic suggestions for
choosing M for the simple case of kernel regression with cross-sectional i.i.d.
data have been provided by Hall and Titterington (1988), optimal choices of
M under the current situation with longitudinal data are not available.

3.5 R Implementation
3.5.1 The HSCT Data

The HSCT data has been described in Section 1.2. For each observational
time, the measurements include the patient’s study visit time relative to the
date of hematopoietic stem cell transplant, three white blood cells or leukocyte
counts (granulocytes, lymphocytes and monocytes, in 10% cells/uL or K/uL)
and multiple cytokines (pg/mL). The R code for examining the data is

> library(npmlda)
> str(HSCT)
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’data.frame’: 271 obs. of 8 variables:

$ID :int 1111 111

Days : int -5 -3 0 10 14 17 21 ...
Granu: num 6.962 4.40 .566 0.253 0.007 ...
LYM : num 1.705 0.498 0.061 0.097 0.243 ...
MON : num 0.151 0.025 0.01 NA 0.002 ...
G-CSF: num 30.2 14.3 101 69.5 625.6 ...
IL-15: num 27.6 33.9 60.9 40 74.2 ...

MCP-1: num 35.2 59.4 317.8 230.8 1235.6 ...

> HSCT[HSCT$ID==1,]

1
1

~N D e
O N~

P PH P P P PP

ID Days Granu LYM MON G-CSF IL-15 MCP-1
1 1 -5 6.962 1.705 0.151 30.19 27.60 35.25
2 1 -3 4.407 0.498 0.025 14.33 33.88 59.36
3 1 0 0.566 0.061 0.010 101.04 60.93 317.81
4 1 1 0.253 0.097 NA 69.54 39.96 230.77
5 1 0.007 0.243 0.002 625.56 74.17 1235.62
6 1 7 0.004 0.358 0.004 112.60 82.81 1247.30
7 1 10 0.118 0.401 0.076 643.62 73.33 597.63
8 1 14 3.809 0.478 1.636 48.58 77.25 106.91
9 1 17 2.260 0.377 0.323 30.87 36.94 53.54
10 1 21 7.142 1.283 0.354 20.32 36.33 72.35
11 1 24 10.508 0.710 0.852 11.18 44.43 96.04
12 1 28 8.190 0.525 1.155 10.38 29.19 130.88
13 1 31 7.992 1.621 1.088 8.73 26.96 166.97
14 1 35 3.587 1.087 0.349 9.56 29.51 290.87

The summary statistics below show that the three leukocytes have very
skewed distributions with some extremely large values, in which we apply log
transformations to these three nonzero variables to reduce the skewness of
their distributions:

> summary (HSCT$Granu)

Min. 1st Qu. Median Mean 3rd Qu. Max. NA’s
0.0020 0.0515 1.0880 2.2290 3.3680 20.1800 36

> summary (HSCT$LYM)

Min. 1st Qu. Median Mean 3rd Qu. Max. NA’s
0.0020 0.0250 0.0945 0.3315 0.5002 2.3070 43

> summary (HSCT$MON)

Min. 1st Qu. Median Mean 3rd Qu. Max. NA’s
0.0010 0.0260 0.3770 0.5909 1.0880 2.1780 78
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> HSCT$Granu.log <- logl0(HSCT$Granu)
> HSCT$LYM.log <- logl0(HSCT$LYM)
> HSCT$MON.log <- log10(HSCT$MON)

For a visual representation of the change of leukocytes over time, we gen-
erate the scatterplots of the leukocytes against days after transplant in log-
scale, shown in Figure 3.1. To better visualize the overall time-trends of the
leukocytes during the week before stem cell transplant (this is known as the
“conditioning” period) and within 4 weeks after the transplant (known as the
“recovery” period), we compute the local means of the log-transformed leuko-
cytes using the kernel smoothing methods in Section 3.1. To demonstration
the effects of kernel choices, we use three different kernel functions, namely
the Epanechnikov kernel (1.27), the Gaussian kernel (1.31) and the Biweight
kernel (1.29). The smoothing estimates of Figure 3.1 show the results based
on the Epanechnikov kernel for granulocytes, the Gaussian kernel for lym-
phocytes, and the Biweight kernel for monocytes. Individual subjects have a
median of 15 repeated measurements with a range of 6 to 25.

The solid and dashed lines represent the kernel estimates using the mea-
surement uniform weight (3.4) and the subject uniform weight (3.8). The
following kernel.fit () function can be used to generate the fitted y values
using the Epanechnikov kernel and the subject uniform weight with a given
bandwidth bw:

> Fit.Granu <- with(HSCT[!is.na(HSCT$Granu.log),],
kernel.fit (sort(unique (Days)),Days, Granu.log,
bw=4, Kernel="Ep", Wt=1/ni))

Similarly, we can specify different values for the arguments if other choices of
kernel function, weights and bandwidth are used.

As shown in Figure 3.1, the kernel estimates with two kinds of weights
are very similar, except that there are small differences near the boundary
when the number of observations per subject and the related weight may be
more influential. Both sets of fitted curves suggest a typical pattern for the
changes of leukocytes around the pre- and early post-transplantation period.
The leukocyte counts first drop to their lowest levels following the conditioning
regimen. Then, the donor cell engraftment and hematopoietic reconstitution
occur. The leukocyte counts gradually recover during the first month after the
transplantation.

8.5.2 The BMACS CD/4 Data

The BMACS CD4 data has been described in Section 1.2 and Section 2.4. We
use this dataset to illustrate the local polynomial estimate, bandwidth selec-
tion with cross-validation and bootstrap inference. Figure 3.2 depicts the CD4
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A. Granulocyte (Epanechnikov) B. Lymphocyte (Normal) C. Monocyte (Biweight)

1000  =* 1000 °

1004 X 100 1 %°

7 0 7 14 21 28 7 0 7 14 21 28 7 0 7 14 21 28
Days post-transplantation Days post-transplantation Days post-transplantation

Figure 3.1 The dynamics of the main leukocyte counts around the time of transplant:
(A) Granulocytes, (B) Lymphocytes, and (C) Monocytes. The solid and dashed lines
represent the kernel estimates using the measurement uniform weights and the subject
uniform weights, with the Epanechnikov, Gaussian and Biweight kernel functions for
the three leukocytes, respectively.

cell percentages at the study visits since seroconversion for the HIV infected
men. In R, the local polynomial estimators are implemented through the local
(weighted) regression function loess() or lowess() (Fan and Gijbels, 1996,
Section 2.4). Tt is easy to use loess() by specifying the weights, degree of
polynomials (commonly 1 or 2) and a smoothing span, which is similar to the
bandwidth and is expressed as a proportion of local data points around each
value to control the degree of smoothing. Only the tricube kernel function
(1.30) is implemented in loess. For example, we can use the following com-
mands to produce a local linear fit with span of 0.5 and measurement uniform
weights:

> fit.linear.5 <- loess(CD4 ~ Time, span=0.5, degree=1,
data=BMACS)

> Time.int<- seq(0.1,5.9, by=0.1)

> plot(CD4 ~ Time, data = BMACS, xlab="Yeas since infection",
ylab="CD4 percentage", ylim=c(0,65),cex=0.7,col="gray50",
main="Local linear: span=0.5")

> lines(Time.int,
predict(fit.linear.5,data.frame(Time=Time. int)))

Local smoothing estimates of the CD4 percentage over time are shown in
Figure 3.2 using the local linear and local quadratic estimators with spans of
0.1 an 0.5. We can see that, for the small value of bandwidth or span=0.1,
both local smoothed curves in Figures 3.2(A) and (C) are wiggly because only
a small proportion of the points have contributed to the fit. In contrast, the
local estimators using the larger span=0.5 yield much smoother curves shown
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Figure 3.2 Scatter plots and local smoothing estimates of the CDj percentage over
time since seroconversion for the HIV infected men in BMACS.

in Figures 3.2(B) and (D). In this case, with relatively larger bandwidth and
lower curvature, the local linear and local quadratic fits are very close to each
other, and both have captured the declining trend of CD4 percentage over

time after HIV infection.

As described in Section 3.3, the bandwidth 4 may be chosen by the
leave-one-subject-out cross-validation (LSCV). Figure 3.3(A) shows the LSCV
scores defined in (3.14) against a range of & values from 0.3 to 4.5 years for a lo-
cal linear fit with the subject uniform weight 1/(nn;), which indicates hy = 0.9
is the approximate minimizer of the LSCV score. Figure 3.3(B) shows the
local linear estimated curve computed using this selected bandwidth with the
subject uniform weight 1/(nn;).

The following R functions are used to compute the estimated curve in

Figure 3.3(B):

# Obtain the number of observations per subject
> Ct <- data.frame(table(BMACS$ID))

> names (Ct)<- c("ID",

> BMACS<- merge (BMACS, Ct, by= "ID")

Hni H)
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Figure 3.3 (A) Use of cross-validation to select bandwidth for the local linear fit.
(B) The local linear fit using cross-validated bandwidth. The gray band represents
the bootstrap 95% pointwise confidence interval computed using percentiles.

# LocalLlm() is a local linear function with Epanechnikov kernel
> LocalFit.Y <- with(BMACS, Locallm(Time.int, Time, CD4,
bw=0.9, Wt=1/ni))

Next, we use the resampling-subject bootstrap procedure in Sections 3.4.1
and 3.4.2 to compute the pointwise confidence interval of the local linear fit
in Figure 3.3(B). The resulting 95% pointwise confidence interval based on
B = 1000 resampling-subject bootstrap samples is computed and shown in
Figure 3.3(B). These results are computed using the following R code:

# Generate a resampling-subject bootstrap sample
> IDlist <- unique (BMACS$ID)
> nID <- length(IDlist)
> Bootsample <- function(D{

resample.ID <- sample(IDlist ,nID ,replace=T)
do.call("rbind", lapply(1:nID,

function(i) subset (BMACS, ID==resample.ID[i])))}

# Obtain fitted value at a time grid
> Locallm.Fit<- function(Data, Time.int){
with(Data, Locallm(Time.int, Time,CD4,bw=0.9, Wt=1/ni))}

# Compute the 95J, CI based on B=1000 bootstrap replicates

> Boot.Fit <-replicate(1000, LocalLm.Fit (Bootsample(),
Time.int))

> UpperCI <- apply(Boot.Fit, 1, quantile,.975)

> LowerCI <- apply(Boot.Fit, 1, quantile,.025)
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# plot with local linear fit and 957 CI
> plot(CD4 ~ Time, data = BMACS,
xlab = "Time since infection(years)",
ylab = "CD4 percentage", cex=0.3, col="gray70", main="")
> polygon(c(Time.int[1], Time.int, rev(Time.int)),
c(LowerCI[1], UpperCI, rev(LowerCI)), col="gray60", border=NA)
> lines(Time.int, LocalFit.Y, 1lwd=2.5, col=1)

Although the confidence limits indicate a clear decreasing trend of CD4
percentage over time, their widths become wider near the end of five years
since HIV infection. This result reflects more uncertainty and variability of
the local linear estimate at the boundary compared to the central area of
“time since infection.”

3.6 Asymptotic Properties of Kernel Estimators

To provide some insight into the statistical properties of the smoothing es-
timators in this chapter, we derive in this section the asymptotic properties
of the least squares kernel estimators. We focus on the kernel estimators of
Section 3.1 because their derivations rely on some basic approaches which
can be generalized to the local smoothing estimators in later chapters. The
derivations here are focused on the asymptotic expressions of the biases, vari-
ances and mean squared errors of [g(t; h, w). Large sample inferences based
on Uk (t; h, w) can be derived using asymptotic normality with the explicit ex-
pressions of its asymptotic means and variances. Because Lk (¢; h, w) is a linear
statistic of Y;;, its asymptotic distributions can be established by checking the
triangular array central limit theorem using the expressions of the asymptotic
biases and variances.

For mathematical convenience, we assume that the time design points #;
are randomly selected from a distribution function F(-) with density f(-), but
n;, i=1,...,n, are assumed to be nonrandom. Although this design assump-
tion corresponds to a special version of the random designs, it is generally an
acceptable assumption for many real settings in longitudinal studies. However,
by modifying the notation and several key steps in the derivations, the main
theoretical results of this section can be extended to fixed designs or the case
that n; are also random. Since the main purpose of asymptotic derivations is to
give some insight into the reliability of the estimation procedures, the asymp-
totic results established here are useful to guide the practical applications of
the kernel estimation procedures in this chapter.

We first derive the asymptotic representations of the mean squared errors
and the mean integrated squared errors of f(¢; h, w) for a general weight
choice w = (wy, ..., w,)T. The asymptotic risks for the special cases of wi* =

N~ lin (3.4) and w; = (nn,)i1 in (3.8) are further elaborated at the end of this
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section. These asymptotic results demonstrate that different weight choices
may lead to kernel estimators with different asymptotic properties.

8.6.1 Mean Squared Errors

The closeness of [ig(-; h, w) to the true curve (-) can be measured in different
ways. Suppose that the interest is the adequacy of [ix(t; h, w) as an estimator
of u(r) at a given time point 7. A natural measure of the risk of Ug(¢; h, w) at
point ¢ is the mean squared error (MSE) defined by

MSE [fix (t; h, w)] = E{ [fi (£, w) — u(;)]z}. (3.33)

However, a minor technical difficulty for kernel estimators is that their mo-
ments, hence MSE [[ik (t; h, w)] as defined in (3.33), may not exist (e.g., Rosen-
blatt, 1969), so that modifications of the above mean squared error definitions
have to be used.

By a simple reformulation, the kernel estimator fg(-; h, w) of (3.6) can be
written as

. ik (t; h,
At b, w) = MK R W) (3.34)
Sx(t; hyw)
where
N . B n . nj l - t_tlj
mK(t,h,w)—i_Zi{w,j;[hYuK( . )]} (3.35)
and

Fr(ts hyw) = i{wi 3 HK(%)] } (3.36)

i=1 j=1

It can be shown by applying straightforward algebra to (3.34), (3.35) and
(3.36) that

[1—dk(t; h, w)] [l (t; by w) — u(1)]
= [fk(ts by w) = i (0) Fc (1, )] /£, (3.37)

where dg (t; h,w) =1— []?K(t; h,w)/f(t)]. For any interior point 7 of the support
of f(-), it can be shown by the same method used in kernel density estimation
with cross-sectional i.i.d. data (e.g., Silverman, 1986), that dk(¢; h, w) — 0 in
probability as n — eo and h — 0. Then, by (3.34) and (3.37), we have the
following approximation,

[14+0,(1)] [Ex(t; b, w) — u(6)] = £ (1) Ric (t5 h, w), (3.38)

where Ry (t; h, w) = g (t; h, w) — 1 (t) fi(t; h, w).

The advantage of using the approximation (3.38) is that, although the
MSE [fig(t; h, w)] as defined in (3.33) may not exist, we can always evaluate
the appropriateness of g (¢; h, w) by evaluating the mean squared errors of the
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approximated term given at the right side of (3.37). Thus, through (3.38), we
can define the local risk of Lk (¢;h,w) at time point ¢ by the following modified
MSE

MSE [fix (t; h, w)] = E{ [f () Rt 1, w)) 2}, (3.39)

and the global risk of [ig(-; h, w) over a time range by the modified mean
integrated squared error (MISE)

MISE[fix (- h, w)) = / MSE [fi (s: h, w)] 7(s)ds, (3.40)

where 7(s) is a known non-negative weight function whose support is a com-
pact subset in the interior of the support of f(-). It is known in nonparametric
regression that, as a “weighted local average,” the kernel estimators of p(r)
have large biases when t is near the boundary of its support. An important
reason of using 7(¢) is to reduce the effect of boundary bias.

3.6.2  Assumptions for Asymptotic Derivations

Asymptotic properties for nonparametric estimators with cross-sectional i.i.d.
data are generally developed under a set of smoothing assumptions for the
unknown curves and the assumption that the sample sizes tend to infinity.
Under the context of longitudinal data, the same smoothing assumptions for
the unknown curves can still be used, but the asymptotic results may depend
on whether the numbers of repeated measurements n;, i =1, ..., n, also tend
to infinity in addition to the usual assumption that the number of subjects
n tends to infinity. When the numbers of subjects are much larger than the
numbers of repeated measurements, one may expect that the asymptotic risks
derived under the assumption that n tends to infinity and {ny,...,n,} are
bounded can reasonably approximate the actual risks of the estimators. In
such situations, i.e., n tending to infinity while {n,...,n,} being bounded,
the asymptotic results are simple and can be similarly derived as the classical
case with cross-sectional i.i.d. data. In many longitudinal studies, however,
the numbers of repeated measurements may not be ignorable relative to the
number of subjects, so that a more useful asymptotic assumption should relax
the boundedness condition on {ny, ..., n,} and allow n; to also tend to infinity
for some i=1,...,n as n tends to infinity.

As a result, the asymptotic representations for the mean squared errors,
MSE [fig(t; h, w)] and MISE [fig (-; h, w)], are derived under the following tech-
nical assumptions.

Asymptotic Assumptions:

(a) For allt, f(t) is continuously differentiable and there is a non-negative
constant p, so that u(t) is (p+2) times continuously differentiable with
respect to t.
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(b) The variance and covariance of the error process €(t) satisfy

o(t) =E[e*(t)] <o and  pe(t) =UmE[e(t)e(t')] <.  (3.41)
t'—t
Furthermore, 62(t) and pe(t) are continuous for all t.

(c) The kernel function K(-) has a compact support, and it is a (p+2)th order
kernel in the sense that it satisfies

JwKu)du = 0 forall1<j<p+2,
Mo (K) = [uPP?K(u)du < oo, (3.42)
R(K) = [K*(u)du<oo and [K(u)du = 1.

(d) The weight vector w= (w1, ..., w,)" with w; >0 for all 1 <i < n, satisfies

-

n
(wini) =1 and Z (wl2 nlz) —0 asn— oo. (3.43)
i=1

i=1

(e) The bandwidth h >0 satisfies

n
h—0, nh— e, and Y (win)/h—0 (3.44)
i=1

as n— oo, O

These assumptions are comparable to the ones used for kernel estimation
with cross-sectional i.i.d. data. For Assumption (b), we note that in general
02 (t) # pe(t). The strict inequality between 6 (¢) and pe(¢) holds, for example,
when &; = s(t;j) + W; where s(r) is a mean zero Gaussian stationary process
and W; is an independent white noise (e.g., Zeger and Diggle, 1994). Some of
the above assumptions, such as the compactness of the support of K(-) and the
smoothness conditions of f(¢), t(t), 62(t) and pe(t), are made for the simplicity
of the derivations. We note that, under Assumption (c) with p > 1, the kernels
satisfying (3.42) belong to the so-called “higher order kernels,” which may
allow for some parts of the kernel function to take negative values. Although
the use of higher order kernels may not seem “natural” as a local smoothing
method, they have been shown in the nonparametric regression literature to
have bias correction properties (e.g., Jones, 1995). In practice, some non-
compactly supported kernels, such as the standard Gaussian kernel (1.31),
can provide equally good estimators as well. Asymptotic results analogous to
the ones of this section may also be derived when Assumptions (a) to (e) are
modified or even weakened.

3.6.8  Asymptotic Risk Representations

Using the right side approximation in (3.38) and the modified MSE (3.39),
we define the modified bias and variance (or simply bias and variance) of
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Uk (t; h, w) by ~ R
Bk (t; h,w)] = £~ (t) E [Rk (15 h, w)] (3.45)

and
V[t (t; h,w)] = f72(¢) Var [Ri (t; h, w)], (3.46)

respectively. Then, by (3.39), MSE [fix(; h, w)| has the decomposition

MSE [[ik(t; h, w)| = B*[Lix (t; h, w)] +V [k (t: h, w)] . (3.47)

1. Asymptotic Biases, Variances and Mean Squared Errors

The following theorem gives the asymptotic expressions of B[ﬁK(t; h, w)]7
V [Hk (t; h, w)|, MSE [fig (t; h, w)| and MISE[fix(-; b, w)].

Theorem 3.1 Suppose that t is in the interior of the support of f(-) and
Assumptions (a) to (e) are satisfied. The following asymptotic expressions
hold.

(a) When n is sufficiently large,

B[k (t; h,w)]| = P2 B.(t: K, p, 11, f) [L +0(1)], (3.48)
where
(p+2) (p+1) !
Bi(t; K, p, 1, ) =M 12)(K) Hp+2()t!) + “(p+ 1()[!)]{(:;)]7
and

i (wing) f~'(t) o> () R(K) (3.49)
(wPrd) - (w,zn,.)} pg(t)} [1+0(1)].
(b) The asymptotic representations of MSE[fix(t; h,w)] and
MISE [fik (- h, w)| = /MSE 1k (s; b, w)] 7(s)ds,
when n— oo, are giving by substituting the expressions of B [,LALK(t; h, w)] and

V[ﬁ]((t;h, w)] in (3.48) and (3.49), respectively, into (3.47).
(c) If, in addition to Assumption (e), the bandwidth h also satisfies,

hYiy (win})

—0 asn— oo, (3.50)
i (wini)
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then the asymptotic variance (3.49) reduces to

n

Vit h,w)| = {hl {Z (w,?ni)} ) Gz(t)R(K)} [1+0(1)], (3.51)
i=1

Consequently, the asymptotic representations of MSE [ﬁK(t; h, w)] and

MISE [ﬁK(~; h, W)] are not affected by the intra-subject correlations. ]

The results of (3.48), (3.49) and (3.51) imply that, in general, the conver-
gence rates of MSE ik (1; h, w)| and MISE [fig(-; h, w)| depend on whether and
how n;, i =0, ..., n, converge to infinity relative to n, and the choice of weight

w= (wl, e wn)T also affects the convergence rates of MSE [ﬁK(t; h, w)] and
MISE [ig (s h, w)].

Proof of Theorem 3.1: ~
By the definition of B[fix(; h, w)] in (3.45) and the definition of Rk (; i, )
n (3.38), it follows from (3.35), (3.36), (3.38), Assumptions (a) and (c), and
the change of variables that, when n is sufficiently large,
l‘,‘j:| }

K(TS> f(s)ds

3

i

ol -

w(t = hu) = p(0)] f(t = hew) K () du.

‘ -

B[ﬁK(t; h, w)] =

-

=
~
—
N
=
1
~
I

3

—

I
=

3|
~-
g

Il
-

— .

= /'
Then the expression in (3.48) follows from Assumptions (a), (¢) and (d), and

the Taylor expansions of u(t —hu) and f(r —hu) at u(¢) and f(z), respectively.
For the asymptotic expression of V [fix (1; h, w)|, let Z;;(t) = Y;j — u(z) and

[0 Rt w)}2 — AN () + AD () + 4B 1),

where
o ;
0 o BRI
A(2)(t) = [f(t)h] -2 ;j;:jz {W%Zm ()2, (t)K(t —hfijl ) K(t —htijz >] 7

AP = [f(t)h]fzi {wnWizzim(t)Zizjz(t)K(t_,iim)K(t_lzizjz)].

i1#iz J1,J2
It remains to evaluate the expectations of AW (r) for k=1, 2, 3. Note that,

Z35() = [u(ty) — ()] +2 [ () — ()] &5+ €5,
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and by E{[ t,] [.L(t)] Sij’t,‘j = S} = 07 E(Sizj’t,'j = S) = Gz(s) and

E{[H(h’j)—ﬂ(f)]z

it follows that

lij = S} = p?(s) = 2(1) p(s) + B2 (1),

B[40
- [hf<r>]2§jf1{w% JEz O =58 (50) r6)as)
= o] LR [ [0 -2umue w0+ o)
xK2(t_Ts> f(s)ds}
= 20 LY (R 0RE) ) [1+0(1)])
i=1j=1
= h! [; (w,?ni)] 1) o) R(K) [1+0(1)]. (3.52)

Using similar derivations as those in (3.52), we can show that, by (3.42) and
(3.44),

= [hf(t)]zzn: i { //E i (1) Zijy ( ’tlfl_slvtljz_”]

xK(t_sl)K(t_sz>f(sl)f(sz)dsldsz}

h h
- 2‘1 (win?) — Xi (w? m)] pe(t) [1+0(1)] (3.53)

and
E[AD(1)] = B*[f(t; b, w)]. (3.54)

Then, when n is sufficiently large, the asymptotic variance expression (3.49)
follows from (3.46), (3.52) to (3.54), and

V[ hw)] i[ ()] = B[l b, w)] = E[AV )] + E[AD ()],

The above results give the conclusions in Theorem 3.1(a). Theorem 3.1(b)
directly follows from (3.39), (3.40) and (3.47) to (3.49).
To prove Theorem 3.1(c), we first note that Y7, (w?n?) > Y7, (w?n;).
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By Assumptions (c¢) and (d), the asymptotic expressions of E [A(l)(t)] and
E[A<2>(t)] in (3.52) and (3.53) suggest that

n

E[A(z)(t)] = O{Z (wlznlz)} and E[A AW { - Z w? ]
i=1

By Assumption (e) and (3.50), we have E[A@)(t)] = o{E[A(l)(t)]} as n — oo,

so that (3.51) holds. This completes the proof of the theorem. [ |

2. Theoretical Optimal Bandwidths

The theoretically optimal bandwidths can be derived by minimizing the
asymptotic expressions of the MSE or MISE of [k (¢;h,w) with respect to the
choices of h. This result is shown in the next theorem.

Theorem 3.2 Suppose that t is in the interior of the support of f(-),
Assumptions (a) to (e) and (3.50) are satisfied, and B.(t; K, p, U, f) is defined
in (3.48). The following conclusions hold:

(a) The optimal pointwise bandwidth hop(t; w), which minimizes the asymp-
totic expression of MSE [k (t; h,w)] for all h >0, is given by

; 1/(2p+5)
o) = { (X, (WP )] R(K) 0 (1) )} . (3.55)

2(p+2) f()Bi(t: K, p, b, f

(b) The optimal global bandwidth hop(w) for the weight w, which minimizes
the asymptotic expression of MISE [ﬁK(g h, w)] for all h >0, is given by

_ [ [EL win)] [ £ (s)R(K) 03 (s) m(s) S}I/Q’HS)
fon) = { S TR K T - (859)
(c) The optimal MSE and MISE for [ix(-; h,w) are given by
MSE [fig (t; hope, w)|
n (2p+4)/(2p+5)
= [Z (w%n,-)] (3.57)
. (2p+4)/(2p+5)

< [B.(t: K p ) [0 RK) 07 (0)]

x [ (2p+4)CrH/@r+S) L (2p 4 4)1/<2P+5)} [1+0(1)]

—

and
MISE [[ik (3 hopr, w) |

n (2p+4)/(2p+5)
&~

1
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1/(2p+5)
X{/fﬂprdhﬂﬂwd% (3.58)

] (2p+4)/(2p+5)

X [./.fl(s)R(K) o’ (s)m(s)ds
X [(2p+4)7(2”+4>/<2”+5)+ (2p+4)1/(2”+5>] [1+0(1)],

which are the MSE and MISE corresponding to theoretically optimal band-
widths hop (t; w) and hop(w), respectively. |

Proof of Theorem 3.2:
By (3.48), (3.49) and (3.50), the dominating term of the pointwise mean
squared error MSE [[ix (t; h, w)] is

h2<p+2>Bz(l‘;K7p7 ‘LL7f) _;'_h*l i (wl-zni) ffl(t) GZ(I)R(K)7
i=1

so that the optimal pointwise bandwidth 7, (f; w) which minimizes this dom-
inating term satisfies the equation

aflh{hz(PH)BZ(t K,p,u, f)+h [,i‘i (len,)] fl(t)R(K)GZ(t)}
= 2(p+2)R*P Bt K, p, 1, f)
—h~ [Zn: w; n)]f Y)R(K) 6% (1)
i=1
— 0. (3.59)

The solution of (3.59) shows that
(X, (wni)| R(K) o2 (1)
20p+2) f(O) BX(t: K, p, 1, f)'

which gives the desired result in (3.55).
Substituting the expression of (3.55) into (3.48) and (3.49), the bias and
variance of L (t; h, w) based on hyy(1; w) are

B2 (1 w) =

opt (3.60)

(p+2)/(2p+5)
] (3.61)

Blan(ihw] = [L ()

i=1

(p+2)/(2p+5)
x(2p-+4) e 1 R(K) 2()] T

< [B.(: K. p,, f)] P [140(1))

and

Y (wim)

[ n ] (2p+4)/(2p+5)
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X(2p+4)1/2p+5 [fil(l‘)R(K) 62(1‘)] (2p+4)/(2p+5)
2/(2p+5
x [B.(t: K, p, 11, )] [140(1)). (3.62)

The mean squared error in (3.57) then follows from (3.61) and (3.62).

For the derivation of (3.58), we first note that, by Theorem 3.1, and the
expressions of (3.48) and (3.49), the dominating term of the mean integrated
squared error MISE [ﬁK(-; h, w)] is

R2P+2) [B2(s; K, p, u, f) 7t(s)ds
i [ n (W,Zni)} [ 1(s) 62(s) R(K) 7(s) ds.

Setting the derivative of the above term with respect to & to zero, the optimal
global bandwidth satisfies the equation

2(p+ 217 [ Bsi Ko po i, f)m(s)ds
= n? {i (w,zn,)} /ffl(s) o (s)R(K) mt(s) ds. (3.63)
i=1 '
The solution of (3.63) gives the expression (3.56).

Substituting the expression of A,y (w) (3.56) into (3.48), (3.49) and the
mean integrated squared error MISE [ﬁK(g hopt, w)]7 we have

/{B 1k (s b, w)] }2 nn(s)ds

o 0) [ B Ko f)a()ds [1+0(1)]
[ n } (2p+4)/(2p+5)

Y (wini)

i=1

(3.64)
(2p+4)/(2p+5)

X (2p+4)~Cr+4)/2pt3) { / £ Ys)R(K) > (s) m(s)ds

1/(2p+5)
} [1+0(1)]

<| [B K A
and

/V[ﬁ(s; h, w)] 7t(s)ds

] (2p+4)/(2p+5)
} (2p+4)/(2p+5)

=
x { / 7Y (s)R(K) 62 (s) 7(s) ds

. 1/(2p+5)
X (2p 4 4)1/20+5 [/ Bi(s:K,p, u, f) ﬂ(s)ds]

x [1+o(1)]. (3.65)
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The mean integrated squared error MISE [[ik (+; hopr, w)] in (3.58) is obtained
by summing up the right sides of (3.64) and (3.65). This completes the proof
for the assertions (a), (b) and (c) of the theorem. ]

8.6.4 Useful Special Cases

The asymptotic properties demonstrated in Theorems 3.1 and 3.2 are suitable
for longitudinal data with general repeated measurements {n,- =1, ,n}
and weights w = (wi, ..., wn)T as long as Assumptions (a) to (e) are satisfied.
For useful special cases with further conditions imposed on {n,- ti=1, ,n}
and w = (wl7 ...,wn)T7 interesting special cases can be deduced from Theo-
rems 3.1 and 3.2. We discuss here the two most commonly used special cases:
(a) the subject uniform weight w* = (1/(nny),..., 1/(nnn))T7 and (b) the mea-

surement uniform weight w** = (1/N7 ey I/N)T.

1. Kernel Estimators with Subject Uniform Weight
When w; =1/(nn;) is used, we have that Y7, (wl2 n,-) =y, [1/(n2 n,)] and
? o (w? nlz) = 1/n, and (3.44) and (3.50) imply the following condition for &

1

(1/m) =0 and — " 40 asnse. (3.6

n*h /o ?:1(1/”1')

The following two corollaries, which are direct consequences of Theorems
3.1 and 3.2, summarize the asymptotic expressions for the kernel estimators
L (t; by w*) of (3.8).

(ngE

Corollary 3.1 Suppose that t is in the interior of the support of f(-),
wh=(wi,..., w:‘,)T with wi =1/(nn;) is used, and Assumptions (a)-(c) and (d)
are satisfied. When n — oo, B[ﬁK (t; h, w*)] s V[ﬁ (t; h, w*)] , MSE [,LAL (t; h, w*)]
and MISE [,LAL (t; h, w*)] are given as the corresponding terms in Theorem 3.1,
such as (3.48) and (3.49), by substituting Y1, (w?n?) =1/n and Y, (w?n;)
with Y1y [1/(n*n;)]. |

The next corollary shows the optimal convergence rate for the MSE and
MISE of pig (t; h, w*) to converge to zero under the optimal bandwidth choices.

Corollary 3.2 Under the assumptions of Corollary 3.1 and (3.66), the
optimal pointwise bandwidth hop(t; w*) and the optimal global bandwidth
hopt (W) for the weight wi =1/(nn;), which minimize MSE [fig (t; h, w*)] and
MISE [ﬁK(-;h, w*)], are given by (3.55) and (3.56), respectively, by substi-
tuting Y2, (wn;) with Y, [1/(n*n;)]. The optimal mean squared errors
MSE [fig (t; hope, w*)| and MISE [fig (- hopr, w*)] corresponding to the optimal
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bandwidths hop(t; w*) and hop(w*), are given by (3.57) and (8.58), respec-
tively, by substituting Y, (le ni) with ¥, [1/(112 n,)] |

The above two corollaries may be simplified under further asymptotic as-
sumptions. A common longitudinal setting is to assume that the number of
repeated measurements are bounded while the number of subjects may tend
to infinity. In such situations, n; < ¢ for some constant ¢ >0 as n — oo, (3.66)
reduces to lim,—e /s =0 and lim,enh = oo, and the Y7, [1/(n2n,-)] used in
Corollary 3.2 is then replaced by n~!, so that the optimal convergence rate for
MSE [k (£ hopr, w*) ] and MISE [k (+; hopr, w*)] is n(2P+4/2p+3),

2. Kernel Estimators with Measurement Uniform Weight

For the weight choice w* = 1/N, we have Y ; [(w’f*)zni] = 1/N and

1

o [(w*f*)zniz] = (X% n?)/N? and (3.44) and (3.50) imply the following con-

1

dition for h 5

noon
El 50 asn— oo, (3.67)

Nh—0 and h

The following two corollaries follow from Theorem 3.1 and Theorem 3.2.

Corollary 3.3 Suppose that t is in the interior of the support of f(-),
w = (Wi, WZ*)T, wi* =1/N, is used, and Assumptions (a)-(c) and (d)
are satisfied. When n — oo, B[fig(t; h, w™)], VI (t; h, w™)], MSE [[i(t; h, w**)]
and MISE [ﬁ(, h, w**)] are given by the corresponding terms in Theorem 3.1,
such as (3.48) and (3.49), by substituting Y-, (w?n;) with 1/N. ]

As a consequence of the above corollary, the optimal convergence rate for
the MSE and MISE of [ig(z; h, w**) to converge to zero is N~ (2r+4)/(2p+3),

Corollary 3.4 Under the assumptions of Corollary 3.3 and (3.67),
the pointwise optimal bandwidth hop(t; W) and the global optimal band-
width hop (W) for wi* = 1/N, which minimize MSE[[ig(t; h,w™*)] and
MISE[fik (s h, w™*)], are given by (3.55) and (3.56), respectively, by
substituting Y, (wizni) with 1/N. The optimal mean squared errors
MSE|fig (t; hope, w™*) | and MISE|[fig (+; hopt, w**)] corresponding to hop (t; w**)
and hop (W), are given by (3.57) and (3.58), respectively, by substituting

* (win;) with 1/N. |

When the numbers of repeated measurements are bounded, n; < ¢ for some
constant ¢ > 0, we have that N/n is bounded, and, by Corollary 3.2, the opti-
mal convergence rate for MSE [ﬁK (t; hopt w**)] and MISE [,LALK(~; hopt w**)] is
n(2p+4)/(2p+5).
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3.7 Remarks and Literature Notes

The estimators described in this chapter are some of the most basic local
smoothing methods. These methods are direct extensions of the local smooth-
ing methods from cross-sectional i.i.d. data to longitudinal data. The main
advantage of these methods is that they are conceptually simple. As seen
from the theoretical derivations of Section 3.6, the asymptotic biases, vari-
ances and mean squared errors, including both the MSE and MISE, of these
estimators may depend on the number of subjects n as well as the number of
repeated measurements n;. A direct consequence of the local nature of these es-
timators is that their asymptotic properties are not affected by the correlation
structures of the data in most practical situations.

The estimation methods of Sections 3.1 to 3.5 are adapted from Hoover et
al. (1998) and Wu and Chiang (2000). The asymptotic results of Section 3.6
are special cases of the results of Wu and Chiang (2000). A noteworthy ker-
nel method for longitudinal data is the SUR kernel method of Wang (2003)
described in Section 2.3, which has the advantage of taking the correlation
structures of the data into consideration. However, because the SUR kernel
method is not easily generalized under the structured nonparametric models
to be discussed in the later chapters of this book, we omit its presentation
in this chapter and refer its details to Wang (2003). Other omitted topics in-
clude the asymptotic properties for the local polynomial estimators, several
inference procedures (e.g., Knafl, Sacks and Ylvisaker, 1985; Hirdle and Mar-
ron, 1991; Eubank and Speckman, 1993) and fast algorithms for computation
(e.g., Fan and Marron, 1994). Since the asymptotic results of Section 3.6 are
intended to provide some initial insights into local smoothing with repeated
measurements data, we choose to present only the simpler case of least squares
kernel estimators in this chapter.
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Chapter 4

Basis Approximation Smoothing
Methods

The estimation of u(t) = E[Y(¢)|t] in the simple nonparametric regression
model (3.1) can also be carried out by an approximation approach using basis
expansions for p(¢) based on the sample {(YU7 tj)ri=1,...,nj=1, ...,n,~}7
where the time points f;; can be either regularly or irregularly spaced. In
contrast to the kernel-based local smoothing methods in Chapter 3, the basis
approximation methods belong to the class of “global smoothing methods” be-
cause the entire curve p(¢) within the time range is approximated by a linear
combination of a set of chosen basis functions. The coefficients of the linear
expansions, which determine the shape of the approximation of 1(z), are then
estimated from the data by finding the “best” fit between the basis approxi-
mation of p(¢) and the data. As an important part of the “global smoothing
methods,” the basis approximation approach described in this chapter is an
extension of the “extended linear models” (Stone et al., 1997; Huang, 1998,
2001 and 2003) to data with intra-subject correlations over time. The meth-
ods and theory in this chapter provide useful insights into the mechanism and
effects of correlation structures in practical situations. Extensions of the basis
approximation methods to more complicated structured nonparametric mod-
els with longitudinal data have been extensively studied in the literature, for
example, Huang, Wu and Zhou (2002, 2004), Yao, Miiller and Wang (2005a,
2005b), among others. We discuss these extensions later in Chapter 9.

4.1 Estimation Method
4.1.1 Basis Approximations and Least Squares

Suppose that there is a set of basis functions {Bk(t) k=1, ...,K} and con-
stants {}/k k=1, ...,K}, such that, for any t € 7, u(t) can be approximated
by the expansion

K
p(r) = Y nB(1). (4.1)
i=1

In order to ensure that ((¢) can be a constant, we assume that, unless specifi-
cally mentioned otherwise, By (¢) = 1. Substituting p(¢) of (3.1) with the right
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side of (4.1), we approximate (3.1) by

K
Yii~ Y %Bi(tij) + €, (4.2)
=1

where g; = £,~(t,~j) is the error term of the ith subject at jth visit time #;
for the €(r) defined in (3.1). Using the approximation (4.2), the coefficients

Y= (", ..., %)T can be estimated by minimizing the squared error
-y z i |1~ z WBili ] , (43)
i=1j=

where w = (wl, U w,,)T and w; is a known nonnegative weight for the ith

subject, which satisfies Y}, (ni w,-) = 1. Similar to the kernel estimation cases
of Chapter 3, useful choices of w; include the “subject uniform weight” w* =
(Wi, ..., wi)T with wf = 1/(nn;) and the “measurement uniform weight” w
(wi*, ., wi)T with wi* = 1/N.

If 4,,(7) can be uniquely minimized, we denote by 7= (7, ...,?K)T the
least squares estimator of y= (7, ..., yK)T based on (4.3) with weight w.
Substituting y of (4.1) with 7, the least squares basis approximation estimator
of 11(t) based on the basis functions {By(t): k=1,...,K} is

-t

Explicit expressions for ¥ and Hg(t) can be derived from the following matrix
derivations. Let B(t) = (B (1), ...7BK(t))T be the (K x 1) vector of basis func-
tions. Then, for the ith subject, we denote by Y; = (Y,-l7 m,) the (ni X 1)
vector of n; outcome observations, #; = (til, e tml.)T the (n, X 1) vector of time
points, B(t;) = (B(ti), ...,B(tml.))T the (K x n;) matrix of basis functions, and
W, = diag(wi, ...,wi) the (ni X ni) diagonal weight matrix with diagonal ele-
ments w; and 0 elsewhere. The matrix representation of (4.3) can be written
as

(4.4)

‘<)

an[Y B(t)y]" W; [Yi — B(1)7]. (4.5)
i=1

Suppose that the inverse of Y%, [B (t,-)TW,-B(t,-)] exists and is unique. Then
there is a unique ¥ which minimizes the right side of (4.5). The least squares
basis approximation estimators ¥, which minimizes ¢,,(y) of (4.5), and Hg(t),
which is obtained from (4.4), are given by

7 = {xeiBe) wae) ) {x BeTw]). o)
B(t)"7.

~

Ba(t)
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The linear function space spanned by the basis functions {By(r) : k =
1,....K } uniquely determines the basis approximation estimator fig(t). Dif-
ferent sets of basis functions can be used to span the same space and thus
give the same estimator [g(¢). When different basis functions are used, the
corresponding coefficients ¥, k=1, ..., K, and their estimators %, are also dif-
ferent. For example, both the B-spline basis (also known as polynomial spline
basis) and the truncated power basis can be used to span a space of spline
functions for u(¢). But, for the same function p(z), the coefficients y for the
two different bases are different; hence, their estimates are also different.

The choice of w; in (4.3) may influence the theoretical and practical prop-
erties of 7, hence, lg(t). For the “subject uniform weight” wf =1/(nn;), each
subject is inversely weighted by its number of repeated measurements n;, so
that the subjects with fewer repeated measurements receive more weight than
the subjects with more repeated measurements at the corresponding visiting
times. For the “measurement uniform weight” w* = 1/N, all the subjects at
all the visiting times receive the same weight, so that the subjects with more
repeated measurements are weighted the same as the subjects with fewer re-
peated measurements. It is conceivable that an ideal choice of w; may also
depend on the intra-subject correlation structures of the data. However, be-
cause the actual correlation structures are usually completely unknown in
practice, wi* = 1/N appears to be a practical choice if n; foralli=1, ..., n are
similar, while wf = 1/(nn;) may be appropriate when »; are significantly dif-
ferent between different subjects. Some theoretical implications of the choices
of w; are discussed in Section 4.4.

Although any common basis system can be used for function approxi-
mation, some basis systems may be more appropriate than others depend-
ing on the nature of the data and the scientific questions being investigated.
For example, the Fourier basis may be desirable when the underlying func-
tions exhibit periodicity, and global polynomials are familiar choices which
can provide good approximations to smooth functions. However, these bases
may not be sensitive enough to exhibit certain local features without using
a large number K of basis functions. In this respect, B-splines (i.e., polyno-
mial splines) are often desirable. Ideally, a basis should be chosen to achieve
an excellent approximation using a relatively small value of K. Some general
guidance for choosing basis functions can be found in Chapter 3 of Ramsay
and Silverman (2005). All the numerical examples in the R implementation of
Section 4.3 are computed using B-spline bases, because they can exhibit local
features and provide stable numerical solutions (de Boor, 1978, Ch. II).

4.1.2  Selecting Smoothing Parameters

Once a basis system is chosen, the number of basis functions K in (4.1) is the
smoothing parameter for a basis approximation estimator. Similar to the least
squares kernel and local polynomial estimators discussed in Chapter 3, the
choice of the smoothing parameter K determines the appropriate smoothness
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of the estimators. When a large number of basis functions is used in (4.1) to
approximate (), the bias of the estimator [ip(r) in (4.4) is expected to be
small, but the variance of the estimator is expected to be large. On the other
hand, a small K leads to smaller variance but larger bias for lp(t).

1. Leave-One-Subject-Out Cross-Validation

For the local smoothing methods, such as the kernel and local polynomial
estimators, data-driven smoothing parameters, i.e., bandwidths, can be se-
lected through the “leave-one-subject-out’ cross-validation (LSCV) procedures
described in Section 3.3. The objective of the LSCV is to find a smoothing
parameter to balance the estimated biases and variances, so that the aver-
age squared errors of the smoothing estimators can be minimized. Extending
the same argument to global smoothing estimation method, Huang, Wu and
Zhou (2002) suggests that the same LSCV procedure can be modified as fol-
lows to select the smoothing parameter K for [ip(t).

Leave-One-Subject-Out Cross-Validation:

(a) Let ¥ be the estimator of y obtained by minimizing £, (Y) of (4.3) using
the data with the measurements of the ith subject deleted, and let /.Atlgfw(t)
be the estimator defined in (4.4) with ¥ replaced by )7<’i)

(b) The LSCV score for K is defined by

LSCV, (K ZZ{W, { Iy )(tij)}z}. (4.7)

i=1j=1

The cross-validated smoothing parameter Kiscy is the minimizer of
LSCV,(K), provided that (4.7) can be uniquely minimized. O

2. Heuristic Justification of Cross-Validation

The above LSCV procedure for the selection of K can be justified as in
Section 3.3 for the LSCV bandwidth choices of the kernel and local polyno-
mial estimators. Specifically, there are two main reasons for using this LSCV
procedure. First, deletion of the entire measurements of the subject one at
a time preserves the correlation in the data. Second, this approach does not
require us to model the intra-subject correlation structures of the data.

For an intuitive justification of Kygcy, we consider the following average
squared error

2

ASEW(K) = Y 3. do 0) ~ )| | (49
i=1j=1

and the decomposition

LSCV, (K ZZ{ ,[,] t,])]z}

i=1j=1
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%) {Wi (¥ = ey) | [ ) = 5" (1) }

i=1j=1

+ZZ{w1[ (i) — My ><n,)]2}~ (4.9)

i=1j=1
The first term at the right side of (4.9) does not depend on the smoothing

parameter K. Because of the definition of ﬁl(;')(t) and the fact that the sub-
jects are independent, the expectation of the second term is zero. Thus, by
minimizing LSCV,(K), Kiscv approximately minimizes the third term at the
right side of (4.9), which is an approximation of ASE,(K) in (4.8).

4.2 Bootstrap Inference Procedures

Statistical inferences for p(¢) based on fg(t) of (4.4), including pointwise con-
fidence intervals, simultaneous confidence bands and hypothesis testing, are
usually constructed through a resampling-subject bootstrap procedure similar
to the ones discussed in Section 3.4. Although in principle the asymptotic dis-
tributions of the basis approximation estimator Ug(f) can be used to construct
approximate inference procedures for u(z), such approximate inference proce-
dures depend on the particular asymptotic assumptions and the unknown
correlation structures, and may not be appropriate for a given longitudinal
sample. The resampling-subject bootstrap procedure, on the other hand, rely
on estimating the variability of the estimators based on the intra-subject cor-
relation structures of the subjects, hence, are more appropriate to the specific
longitudinal design of the given sample.

4.2.1 Pointwise Confidence Intervals

The bootstrap pointwise confidence intervals can be constructed by substitut-
ing the kernel or local polynomial estimators of Chapter 3.4 with the basis
approximation estimator Up(¢) of (4.4). The specific steps can be briefly de-
scribed in the following.

Approximate Bootstrap Pointwise Confidence Intervals:

Gati) i 1<i<m1<j<
n,} be a bootstrap sample obtained as in Step (a) of Section 3.4.1. Compute
the estimators Y7°" = (¥, ..., )71?”"’) and [1£°% (t) based on (4.6) with the
basis functions {Bk(t) k=1, ...,K} and the available bootstrap sample.
With B > 1 independent replications, we obtain B bootstrap samples with
their corresponding estimators Y*° and @ (t).

(a) Bootstrap Samples and Estimators. Let { (Y

(b) Percentile Bootstrap Intervals. A pointwise [100 x (1 —a)]% con-
fidence interval for w(r) based on the percentiles of the bootstrap samples

(L[5 ()], Uayo [ 1)), (4.10)
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where Ly [I15°7(1)] and Uy o [115°7(¢)] are the [100 x (o/2)]th and [100 x
(1—o/2)|th percentiles of the bootstrap estimators of Ji(t).

(c) Normal Approximated Bootstrap Intervals. If the distribution of
ﬁl’;’”‘” () can be approzimated by a normal distribution, a pointwise [100 X
(1—a)]% confidence interval for E[[i(t)] based on normal approximation
18

ﬁB(t):I:zl,a/zi\zom(t), (4.11)

where z)_g/ is the [100 x (1 — &/2)|th percentile of the standard normal

distribution and § Ab””’ (t) is the sample standard deviation of [LE°%(t)

73 boot ( )

com-

puted from the B bootstmp estimators Lg at time point t. O

Strictly speaking, because the bias of Lig(t) has not been adjusted, the
above approximate confidence intervals (4.10) and (4.11) are not precisely the
confidence intervals for u(z), because they may not have the nominal coverage
probability of [100 x (1— oc)]% unless it is appropriate to ignore the bias of
Hp(t). In theory, one may either estimate the bias or make it negligible by se-
lecting a relatively larger K in the computation of fig(t). However, in practice,
it is difficult to estimate the bias of a basis approximation estimator. Conse-
quently, we treat E [ﬁB(I)] as the function of interest and the estimable part of
w(z). This is a reasonable approach since E [ﬁg([)], as a good approximation
of u(t), is expected to capture the main feature of p(z). A similar argument
in the context of kernel smoothing can be found in Hart (1997, Section 3.5).
Thus, for practical purposes, the intervals given in (4.10) and (4.11) are viewed
as appropriate approximate confidence intervals for p(z).

4.2.2  Simultaneous Confidence Bands

The above pointwise confidence intervals can be extended through the same
approach described in Section 3.4 to construct simultaneous confidence bands
for p(¢) over a given interval [a, b]. Using the Bonferroni adjustment to (4.10)
r (4.11), we partition [a, b] into M 4+ 1 equally spaced grid points a = &; <
-+ < &1 = b for some integer M > 1, and construct the approximate [100 X
(1— )] % simultaneous confidence intervals

(Lasemren (B3 (&) Uayaors (85 (&)]) (412)

(B (&) +21-a/pons)55(&)). (4.13)

respectively. Using (4.12) or (4.13), the comparable approximate [100 x (1 —
)| % for the linear interpolation u(r) as defined in (3.25) is (lf{) (2), ug> (1)),
which satisfies (3.26),

800w (S &)+ (=2 i) (419
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and

0= (@) v (55 )ua@ar). @)

where /o (&) and uq (&) are the lower and upper bounds, respectively, given
in (4.12) or (4.13).

Taking the view that E[fi(t)] is the estimable part of p(r), we assume that
the smoothness conditions of (3.29) or (3.30) are equivalent to

!
sup {E [ﬁg(i)] } <c¢y, for a known constant ¢; > 0, (4.16)
t€la,b)
or
!
sup {E {ﬁg(t)] } <cy, for a known constant c; > 0, (4.17)
t€la,b)

respectively. Then, adjusting the simultaneous confidence bands for the lin-
ear interpolation of E [[iz(t)], the approximate [100 x (1 — a)]% simultaneous
confidence bands for E [fig(t)], hence (t), can be given by

<lf{>(t) _ZCIM{(€r+1 ;t_c(; - ér)} L ul (1) +2c1M[ — ;t_)c(zt = 1218)

(10 = (2/2) (G =0) (1= 8). i) O+ (2/2) (B =1)(1=6) ). (119)

when (4.16) or (4.17) holds, where lfo)(t) and ug)(t) are given in (4.14) and
(4.15), respectively.

The practical issues of improving the simultaneous confidence intervals
(4.12) and (4.13) and selecting the number and location of the grid points
have been discussed in Section 3.4. We omit this discussion here to avoid
redundancy.

4.2.3 Hypothesis Testing

Some practical questions for the evaluation of pu(r) = E[Y(¢)|t)] are whether
E[Y(f)|f] is time-varying or belongs to a pre-specified sub-model. These ques-
tions can be evaluated under the current framework of exztended linear models
by a class of goodness-of-fit tests.

1. Testing Time-Varying based on Residual Sum of Squares

This test is constructed by comparing the weighted residual sum of squares
from weighted least squares fits under the following null and alternative hy-
potheses,

(4.20)

Hy: u(t)=m for allt € 7 and some unknown constant 7;;
Hy: u(z) is time-varying.



104 BASIS APPROXIMATION SMOOTHING METHODS

Under the null hypothesis Hy, we can estimate w(t) by 7 which minimizes
Ly(y) of (4.3) with By(r) =1 and B(t) =--- = Bg(t) = 0. Then, the weighted
residual sum of squares under Hy is

RSSo(7) ZZW,(U 7)™ (4.21)

i=1j=

Under the alternative Hy, u(t) is estimated by the basis approximation esti-
mator Up(t) given in (4.4), so that the corresponding weighted residual sum
of squares is

RSS; (fip) ZZML/ZW&MH- (4.22)
i=1j=
The difference between RSSy (}/1) and RSS; (ﬁB) can be used to test whether
there is sufficient evidence to accept or reject the null hypothesis Hy in (4.20).
If the null hypothesis Hy holds, we expect that RSSo(7) and RSS;(ig) are
close to each other. On the other hand, if H; holds, we expect that RSSy (?1)
and RSS (lip) are apart from each other. A natural goodness-of-fit test statistic
for (4.20) is
RSSy(71) —RSS: (i)
RSSi(s)

The null hypothesis Hy is rejected if the value of T, (571, ﬁB) is larger than an
appropriate critical value.

Theoretical justification of using T, (%, fiz) is provided in Theorem 4.3 of
Section 4.4. This theorem indicates that, under some mild regularity condi-
tions which are satisfied in most practical situations, if the null hypothesis Hy
of (4.20) holds, 7, (571, ﬁB) converges to zero in probability as n tends to infin-
ity. On the other hand, if the alternative H, of (4.20) holds, then T, (%, [is) is
larger than a constant for sufficiently large n.

T,(%, fig) = (4.23)

2. Resampling-Subject Bootstrap Critical Values

The theoretical justification of the test statistic in (4.23) motivates the
use of a resampling-subject bootstrap test procedure that rejects Hy when
T, ()71, ﬁB) is larger than an appropriate critical value. This critical value can
be computed based on the following resampling-subject bootstrap procedure
under the null hypothesis Hy of (4.20). Let

K
& =Yij— Y %Bi(ti)) (4.24)
k=1
be the residuals of (4.4). Based on {a] ti=1,...nj= 1,...,ni}7 we define
{(¥r=m+e&i=1,... mj=1,..m}, (4.25)

to be a set of pseudo-responses under the null hypothesis Hy of (4.20).
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The following resampling-subject bootstrap procedure can be used to eval-
uate the distribution of 7, (yl, ﬁB) under the null hypothesis Hy and compute
the level-ot rejection region and the p-values of the test statistic 7, (%, [ig)
for (4.20).

Resampling-Subject Bootstrap Testing Procedure:

(a) Resample n subjects with replacement from {(Yi?,t,-j) i=1,...,nj=
1, ...,ni} to obtain the bootstrap sample {(Yi?*,t;}) ri=1,...,nj =
1, ,nf}

(b) Repeat the above sampling procedure B times, so that B independent
resampling-subject bootstrap samples are obtained.

(c) From each bootstrap sample, calculate the test statistic T (Y°, 15°")
using the method (4.23) and compute the empirical distribution of
T (Alb’”’t, ﬁé’"’”) based on the B independent bootstrap samples.

(d) Reject the null hypothesis Hy at the significance level a when the observed
test statistic T,(%1, ) is greater than or equal to the [100 x (1 — a)]th
percentile of the empirical distribution of T, (}71}’”‘”, ﬁé’”"t). The p-value of
the test is the empirical probability of “T; (}/1}’”‘”, /,llé’"’”) >T, (yl, [JB) oo O

3. Testing Sub-models based on Residual Sum of Squares

The above residual sum of squares testing procedure can be modified in a
straightforward way to test other null hypotheses and alternatives. For exam-
ple, a set of hypotheses, which are more general than the ones given in (4.20)
and may include testing a linear model for p(z), is

K
Ho: () =X2 nB(t),
for a given 1 < Ky < K and 9 # 0 for some 1 <k < Kp;

Hi: p(r) =Y %Bilo),
with 9 # 0 for some Ky <k < K.

(4.26)

A simple special case of (4.26) is K >3, Ko =2 and Bi(t) = t*! being a
polynomial basis, so that the null hypothesis Hy is that p(¢) is a simple linear
function of ¢, ie., p(t) = 71 + %t, and the alternative H; is that pu(r) is a
polynomial of ¢ with degree 2 or higher. By extending the residual sum of
squares in (4.21) and (4.22) to RSSy and RSS| under Hy and Hj, respectively,
of (4.26), Theorem 4.3 of Section 4.4 can be adapted easily to the general
situation of (4.26). The residual sum of squares test procedure given in (4.23),
(4.24), (4.25) and the resampling-subject bootstrap steps (a) to (d) can be
analogously adapted to compute test statistic T,(-,-) and its level-a rejection
regions and p-values under (4.26).

We note that, in principle, similar goodness-of-fit test procedures, includ-
ing the test statistic T,(-,-) of (4.23) and the resampling-subject bootstrap
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procedure, can also be developed using other estimation methods, such as the
least squares kernel and local polynomial estimators. But, asymptotic prop-
erties of the test statistics 7,(-,-) with other smoothing methods have not
been systematically investigated in the literature. Given that the focus of this
book is mainly on the nonparametric estimation methods, our coverage of hy-
pothesis testing for nonparametric models is limited to basis approximation
methods only.

4.3 R Implementation
4.8.1 The HSCT Data

The HSCT data has been described in Sections 1.2 and 3.5. As an alter-
native to the least squares kernel and local polynomial smoothing methods
described in Chapter 3, we illustrate here how to apply the basis approxi-
mation method to estimate the nonparametric time-trend of the granulocyte
recovery in patients undergone hematopoietic stem cell transplantation. To
obtain a smoothing estimate of the time-trend, different basis systems may be
used. We use B-splines (i.e., polynomial splines) here as an example to show
that the smoothness of the fitted curve depends on the choices of the degree
of the polynomial and the number of knots for the splines.

In R, the function bs(x, knots = , degree = ) generates the B-spline
basis matrix for a polynomial spline. The B-splines are computationally more
efficient compared to the truncated polynomial splines. Different degrees for
the polynomial splines may be used, such as the linear (degree = 1), quadratic
(degree = 2) or cubic B-splines (degree = 3). The cubic B-spline basis is the
default choice in bs (). Since the cubic B-splines are continuous and have con-
tinuous first and second derivatives at the knots, we usually do not need to
use a spline with degrees higher than three to obtain a continuous smoothing
estimator. With sufficient numbers of knots, the cubic B-splines can approxi-
mate most functions arbitrarily well. Typical choices of knots within the data
range (or the internal breakpoints) are to use mean/median for one knot, and
quantiles for multiple knots. As discussed in Section 4.1.2, LSCV is used to
select the number of equally spaced knots. Moreover, if linear constraints at
the boundaries are required, the natural cubic splines may be used, for which
ns(x, knots= ) in R generates its B-spline basis matrix.

We use the following commands to fit a cubic spline with two fixed knots
by the least squares method described in Section 4.1. The spline fits with
different degrees or knots may be specified similarly. By default the bs()
function does not include the intercept in the basis matrix because an intercept
term is automatically included in the model formula for most of the regression
functions in R. The R functions are

> library(splines)
> data(HSCT)
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A. Granulocyte (1 knot, linear) B. Granulocyte (1 knot, cubic)
10000 A
1000 4
100
10 4

1 L T T T T T T T
-7 0 7 14 21 28 35
Days post-transplantation Days post-transplantation

C. Granulocyte (2 knots, linear) D. Granulocyte (2 knots, cubic)
10000 A
1000 4
100 A
10 1
14

7 0 7 14 21 28 35
Days post-transplantation Days post-transplantation

Figure 4.1 The scatter plots and smoothing estimates of the granulocyte counts vs.
time since stem cell transplantation. (A) 1 interior knot, linear; (B) 1 interior knot,
cubic; (C) 2 interior knots, linear; and (D) 2 interior knots, cubic polynomial splines
are used. Knots are chosen at median (day 8) for 1 knot and 33% and 67% percentiles
(days 8 and 15) for 2 knots. The solid and dashed lines represent the spline estimates
using the measurement uniform weight and the subject uniform weight, respectively.

attach (HSCT)

Granu.log <- logl0(Granu)

KN2 <- quantile(Days, c(.33, .66))
bs.Days <- bs(Days, knots=KN2, degree=3)

vV V. VvV

# Obtain coefficients for the spline basis, subject uniform
weight
> Spline.fit <- 1lm(Granu.log ~ bs.Days, weights=1/ni)

# Obtain fitted estimates for a given x
New.Days <- bs(-7:35, knots=KN2, degree=3)
> Spline.Est <- cbind(1, New.Days) J}*J}, coef(Spline.fit)

v

Figure 4.1 displays the estimated smoothing curves using the linear or cubic
B-splines (polynomial splines) with one knot (at median, day 8) or two knots
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(at 33% and 67% percentiles, days 3 and 15), respectively. In each plot, the
smoothing curves based on the measurement uniform weight and the subject
uniform weight are very similar. It is easy to visualize that the cubic B-spline
fit with 2 knots in Figure 4.1(D) captures the entire nonlinear time-trend more
adequately, compared to the linear spline fit and the smoothing estimates with
only one knot in Figure 4.1(A)-(C). The granulocytes of patients are shown to
decrease to the lowest levels following the conditioning regimen and gradually
recover back to the pre-transplant level because of the engraftment of the
donor stem cells and hematopoietic reconstitution post-transplantation.

4.8.2 The BMACS CDJ Data

The BMACS CD4 data has been described in Sections 1.2, 2.4 and 3.5. Using
this dataset, we illustrate here how to select the number of knots with the
LSCYV procedure of Section 4.1.2 and obtain the pointwise and simultaneous
confidence intervals based on the resampling-subject bootstrap procedure of
Section 4.2.

Figure 4.2 shows the CD4 cell percentages at the study visits since HIV-
infection for the 283 HIV infected men in the dataset. We apply spline fit to
the CD4 data using the cubic B-splines with 1 interior knot (at 3 years) and
5 interior knots (at 1, 2, 3, 4 and 5 years), respectively. Both fits are based on
equally spaced knots.

A. Spline fit: 1 knot B. Spline fit: 5 knots
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Figure 4.2 Scatter plots and B-spline fitted curves of CD4 percentage vs. time since
infection. The equally spaced knots for the cubic spline estimates are used with (A)
1 knot (at 8 years) and (B) 5 knots (at 1, 2, 8, 4 and 5 years). The solid and dashed
lines represent the spline estimates using the measurement uniform weight and the
subject uniform weight, respectively.

The following spline.fit () functions are used to generate the fitted val-
ues with a given number of equally spaced knots, degree, and weight:

> library(npmlda)
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> attach (BMACS)

> newX <- seq(min(Time), max(Time), by=0.1)

> fits <- spline.fit(newX, Time, CD4, nKnots=5, Degree=3)

> fitbW <- spline.fit(newX, Time, CD4, nKnots=5, Degree=3,
Wt=1/ni)

Figure 4.3(A) shows the fitted cubic spline curves with different numbers
of knots ranging from 1 to 20 with measurement uniform weight. By the LSCV
method in Section 4.1.2, the spline fit with 5 interior knots has the smallest
LSCV score as shown in Figure 4.3(B). It also suggests that the complexity
and curvature of fits are considerably increased with large numbers of knots,
compared to much smoother estimates with few numbers of knots. We will
discuss how to use “smoothing splines” in the next chapter to avoid knot
selection and to penalize the roughness and curvature of the fitted curves.
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Figure 4.3 B-spline smoothing fits and LSCV score of the CD/4 percentage data. (A)
Cubic spline fits of CD4 percentage vs. time since infection in years with various
number of equally spaced knots. (B) LSCV scores vs. number of interior knots for
selecting the number of knots.

Figure 4.4 displays the bootstrap inference described in Section 4.2. Sim-
ilar R code in Section 3.5 can be applied to generate the resampling-subject
bootstrap samples with the smoothing method replaced by the cubic B-spline
fit with five equally spaced knots as suggested by the LSCV procedure in each
of the 1000 bootstrap samples. Both the 95% pointwise confidence intervals
in (4.11) and the 95% simultaneous confidence band in (4.14) and (4.15) for
the linear interpolation u)(¢) with the Bonferroni adjustment are shown. The
results based on (4.18) and (4.19) are similar (data not shown). For the linear
interpolation simultaneous confidence band, M =59 is used to cover all the
distinct design time points from 0.1 to 5.9. Despite the conservativeness of the
Bonferroni adjustment, Figure 4.4(B) still shows a clear indication that the
mean CD4 percentage generally declines over time since HIV infection.
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Figure 4.4 CDj percentage data and the cubic spline fit with 5 equally spaced knots,
with (A) 95% pointwise confidence interval and (B) 95% simultaneous confidence
band for the linear interpolation at 59 equally spaced time points.

4.4 Asymptotic Properties

We derive in this section the asymptotic properties, including consistency
and convergence rates, for the general basis approximation estimators ti(t)
of (4.4) as well as the special case of B-spline estimators. Unlike the least
squares kernel and local polynomial estimators of Chapter 3, we do not have
the explicit expressions for the asymptotic biases of the basis approximation
estimators [ip(¢), because the biases depend on the specific assumptions of the
functional spaces containing p(r). However, for the special case of B-splines,
the upper bounds of the asymptotic biases and the explicit expressions for the
asymptotic variances of [ig(¢) can be established. These asymptotic properties
are used to establish the consistency of the test statistics in Section 4.4.5.

4.4.1  Conditional Biases and Variances

Let t = (tlT, Iz ...,tnT)T be the (N x 1) vector of all the observed time points.
Conditioning on t, it directly follows from the expression of ¥ in (4.6) that the
expectation of ¥, denoted by ¥ is

n -1 ¢n
Y= E(7]t) = {Z [B(n)TvviB(r,-)]} {Z [B(s) WiE(x]0)] } (1.27)
i=1 i=1
where E(Yi’t) = (u(r1), ...,,u(t,-nl.))T. Using the expression of lg(r) in (4.4),
the bias of Up(t) given t is
Bfs(1)|t] = E [fip(1) — p(0)[t] = B(1)" E(7]t) — u (o). (4.28)

If p(r) belongs to the linear space spanned by {Bj(t), ..., Bk(t)} for a given K,
we have that u(t) belongs to the linear model p(¢) = B(¢)” y for some unknown
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parameter vector ¥, so that E(ﬂt) = v and the conditional bias is zero, i.e.,
E[fig(r) — u(r)[t] = 0. In general, when u(z) does not necessarily belong to a
linear model, the conditional bias E [fiz(t) — p1(t)|t] does not have to be zero.
But, by choosing a sufficiently large K when n is sufficiently large, the right
side of (4.1) can be a good approximation of (¢), so that asymptotically the
conditional bias B|[fiz(t)|t] tends to zero as n tends to infinity.

Let C¢ (ti it j/) = Cov [ei (ti j), & (ti j/)] be the covariance between ¢ (ti j) and
& (tij/) for the ith subject at time points (t,-j,t
matrix of ¥; given t is

;). The variance-covariance

Ce(ti, tqa) -+ Celtin, tin,)
V; = Cov(Yi|t) = : : : . (4.29)
CS (tin,v til) ot CS (tin,'a tin,-)

Direct calculation from the expression of 7 in (4.6) then shows that the
variance-covariance matrix of ¥ given t is

n

Cov(tlt) = {Z[B(n)TWiBm)]} {;[Bmﬂvviviwm(n)]}

i=1

X {i [B(1:))" W;B(1;)] } . (4.30)

i=1

Substituting Cov(7|t) into (4.4), the variance of [ip(f) is
V [1s(1)|t] = B(t)" Cov(7]t) B(2). (4.31)

When p(r) belongs to the linear model spanned by {B(r), ..., Bx(t)} and
the & (t,-j) are from mean zero Gaussian process, the conditional bias of the
estimator [p(r) is zero and the conditional variance (4.31) can be used to
construct statistical inferences, such as confidence intervals and hypothesis
tests, based on [g(t). In such cases, the intra-subject covariances Cg (tij, t,-j/)
are unknown and have to be estimated in practice. When u(r) belongs to a
linear model but the distribution of &) is unknown, statistical inferences for
1 (7) can be constructed based on asymptotically approximate distributions of
Hp(t), provided that the intra-subject covariances Cg (t,- N j/) can be estimated.
For the general case that u(r) does not necessarily belong to a known linear
model, statistical properties and inferences can be investigated through the
asymptotic properties of lip(t) when n is sufficiently large.

4.4.2  Consistency of Basis Approzimation Estimators

We establish here the consistency and convergence rates of lp(t) for any basis
systems which may be used to approximate p(¢). More specific asymptotic
representations, such as asymptotic expressions of biases, variances and mean



112 BASIS APPROXIMATION SMOOTHING METHODS

squared errors, may be established when specific basis systems are given. In
particular, the asymptotic properties for the B-spline, i.e., polynomial splines,
estimators are discussed in Section 4.4.3. But, asymptotic properties similar
to the ones developed for B-spline have not been systematically investigated
in the literature, which warrants further research.

1. Asymptotic Assumptions

The following technical assumptions are made throughout this section.

(a) The observation time points follow a random design in the sense that
{t,-j cj=1,...,n5i=1, ,n} are chosen independently from an unknown
distribution function F(-) with a density function f(-) on the finite interval
. The density function f(t) is uniformly bounded away from 0 and infinity,
i.e., there are constants My > 0 and My > 0 such that My < f(t) < M, for
allt € 7.

(b) There is a positive constant Mz such that E [e(t)*| <M for allt € 7. O

These assumptions correspond to the conditions given in Huang, Wu and
Zhou (2002, Section 3.2, Assumptions 1 and 2), in which the basis approx-
imation method is established for the more general time-varying coefficient
models to be discussed in Chapters 6 to 9. It is reasonable to expect that
Assumptions (a) and (b) are easily satisfied in most real applications.

2. Distance Measure and Definition of Consistency

We first introduce a distance measure to assess the performance of a

smoothing estimator. Let
1/2
Jal, ={ [, @ )ar}

be the Ly-norm of any square integrable real-valued function a(t) on .7. We
can then define the integrated squared error (ISE) of Ug(r) onr € J by

~ ~ 2 o~ 2
ISE (fis) = |5 () — 1 ()|, = /7 [fp(1) — ()] ar. (4.32)
A basis approximation estimator tig(-) is defined to be a consistent smoothing
estimator for p(-) if, as n — oo,
ISE (lg) — 0 in probability.

Since u(r) is approximated by functions in a linear space spanned by
{Bl(t), By (1), ... }, the asymptotic derivations of ISE (ﬁB) depend on the Le-
norm between u(f) and the chosen linear space. Let & be the linear space
spanned by {B (1), ..., Bk(t)}, i.e.,

&4 = Span{B(t),...,Bk(t)}.
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We define the Lo-norm between p(-) and ¢ to be

D(u,¥) = inf sup |u(r) — g(1)|. (4.33)

8€Y e

The asymptotic properties of ISE (ﬁB) depend on the quantity

Ay=  sup [w]. (4.34)
¢, lgOl, 20l 180) L

Examples of A, for some commonly used basis systems, such as polynomials,
splines and trigonometric bases, can be found in Huang (1998).

8. Consistency and Convergence Rates

Using the above distance measures and the quantity A, in (4.34), the next
theorem shows the consistency and the convergence rates of Lg(-), which is
approximated by the basis functions {Bj(t), ..., Bx(t)} where K may or may
not tend to infinity as n tends to infinity.

Theorem 4.1. If Assumptions (a) and (b) are satisfied, lim,_,. D(U,9) =
0 and
lim {A%Kmax [ max (n,- wi),

n
n—yoo 1<i<n ~

n? wﬂ } —0, (4.35)

i=1

then Up(-) uniquely exists with probability tending to one and is a consistent
estimator of u(-). In addition, with a, = Op(b,) denoting the fact that a,/by
converging to a non-zero constant in probability as b, — o, the following con-
vergence conclusions hold:

(a) HﬁB() —E[ﬁB(')M ||i2 - OP(KZ;Z:IniZWiz);
(b) [|E[As()]t] = ()], = 0p[D(1,9)];
(c) ISE(Hip) = O0p[K XLy (nfw}) +D*(u,9)]. u

Since the above theorem gives the consistency of fig(-) for general basis
systems, including polynomials, splines and trigonometric bases, the conver-
gence rates established in Theorem 4.1(a) to (¢) may be improved when a
particular type of basis is used.

Proof of Theorem 4.1:

We assume, without loss of generality, that {Bk(t) k=1, ...,K} is an
orthonormal basis for the linear space 4 with inner product (fi(-), f2(-)) =
J7 f1(t) f2(t)dt. Then, for any g € ¢, there is an unique representation g(r) =
Yo %Bk(t), so that the L-norm of g(¢) is [lg(-)|lz, = (La, y,f)l/z. Following
the notation of Huang (1998, p. 246), we write a, =< b, if both a, and b, are
positive and a, /b, and b,/a, are bounded for all n.
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Let T be the random variable of time with distribution F(-) and density
f(-). The proof is then derived from the following three technical lemmas.

Lemma 4.1. If the assumption (4.35) is satisfied, then

L wile ()]

sup —1|=0,(1), (4.36)
¢c E[g(T)]? g
where 0,(1) denotes converging to zero in probability. |

Proof of Lemma 4.1:
The lemma can be proved using arguments similar to those in the proof of
Lemma 10 of Huang (1998). Details are omitted. ]

Lemma 4.2. Suppose that the assumption (4.35) holds and B(t) =
(BT (tl), ---,BT (tn))T is the (N xK), N=Y" | n;, matriz with its (ni X K) com-
ponent matrixB(t,-) = (B(til), ...,B(tni))T defined in (4.5). There is an interval
[Mi‘, Mi‘] with 0 < M} < M3 such that, as n — oo,

P{all the eigenvalues of [BT ({)W B(t)] are in [MiﬂM;]} =1, (4.37)

where W is the block diagonal matrixz with diagonal blocks Wy, ..., W, and W; =
diag(wi, ...,wi). Then, with probability tending to 1,

BT ()W B(t) =} [B" (1) Wi B(1)]

-

i=1

is invertible and Up(-) exists uniquely. |

Proof of Lemma 4.2:
By Lemma 4.1, the following equations hold with probability tending to
one as n — oo:

n n

Y B OWB) Y=Y Y [we))’ <E[¢(T)].

i=1j=1

where g(t) = Zszl Y Bi(t) and y= (}/1, ey }/K)T. Using conditional expectations
and Assumptions (a) and (b), we observe that

E@M)] = [ @0 srwa= [ fwa= )],

holds uniformly for all g(-) € 4. Thus, with probability tending to one as
n — oo, we have

Y BT ()WB(t)y=<y'y
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holds uniformly for all ¥, so that the conclusion (4.37) follows. Consequently,
BT (t)WB(t) = Y7, [B" (t;) W; B(1;)] is invertible and [ip(-) uniquely exists. W

Lemma 4.3. If the assumption (4.35) holds, then

Jfwt) - Elanc1)[} =0, (k X [n392)) (4.35)
i=1
and
(@)1~ n0)|, = 0500, 2)]. (4.39)
which give the convergence rates of the above two terms. |

Proof of Lemma 4.3:
Since {Bk(t) k=1,2,..., } are assumed to be orthonormal, it follows from
direct calculations that

R R 2 K o2
|~ @Ol || = Y [h—E[R]] (4.40)
2 =1
and
n —1rn
B[ = (L5 @we6)| L 6 we
i=1 i=1
— [B")WB(t)] B (t)We. (4.41)

By Lemma 4.2, we have that, with sufficiently large n and probability tending
to 1,

‘ (B ()W B(1)] " BT(t)Ws‘z =~ eTWB(t) B (t)We. (4.42)

Using the Cauchy—Schwarz inequality and Assumptions (a) and (b), we have
that

E[|BT<ti)W/igi|2] _E{kiw,? Li_"ilBk(t,-j) s,-jr} = 0(Knjw}). (4.43)

Consequently, it follows from (4.42) and (4.43) that
n
E[e"WBt)B" (t)We| = Y E[¢f WiB(1;)B" (1)) Wig]
1
n
- O(KZ [n2 w%]). (4.44)
The Markov inequality then implies that

‘ (BT ()W B(t)] "B (t) Ws‘z —0p (Kzn: (2 w,?]). (4.45)
i=1
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The conclusion of (4.38) then follows (4.40) to (4.45).
To prove (4.39), we consider g*(-) € ¢ with sup,c 5 |g*(t) —u(1)| =D(1,¥).
Since

E[Bs(0)]t] — )| < |E[As()]€] - " (0)] +]g"(0) w1,
it suffices to show that
|E(@s )]0 50|, = 0p[D.2)].

Since g*(-) €%, there is a y* such that g*(t) = BY (1) y*. Note that E[fig()|t] =
BT (t M ] It follows from Lemma 4.2 that

2 2

K
= ;\ (3]t - %] (4.46)

= {E [7]t] - } {i (1 WB;,]{E[ﬂt]—y*}.

|E(@s0)10 50|,

Since Y7L, BT (ti) Wi{E(Yi’t) —BT (ti) E mt] } =0, we have that

¥

and, by (4.43),

2
E[¥| ~B" () 7| (4.47)

"W EF 570 7| < L

) =B (1)) v'| = 0[D(1.9)]. (4.48)
Thus, it follows from (4.47) and (4.48) that

{ [V|t] } {ZBT t WB(t,)] {Emt]—}/*} < ZZW’DZ ’J {4

i=1j=
= D*(u,9).  (4.49)

The assertion of (4.39) then follows from the computations in (4.46) to (4.49).
This completes the proof of Lemma 4.3. |

The conclusions in Theorem 4.1 are then a direct consequence of
Lemma 4.3 and the triangle inequality. |

4.4.8 Consistency of B-Spline Estimators

As a direct extension of the polynomial approaches in linear models, the B-
spline estimators are a popular choice of basis approximations in biomedical
studies. Theoretical justifications for the B-spline estimators deserve special
attention in practice. Most applications of the global smoothing methods pre-
sented in this book are also based on the B-spline estimators.

The next theorem gives the convergence rates for the B-spline estimators.
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In this theorem, we assume that the ¢ is a space spanned by a set of B-
spline basis functions on 7 with a fixed degree and the knots have bounded
mesh ratio, that is, the ratios of the differences between consecutive knots are
bounded away from zero and infinity uniformly in n.

Theorem 4.2. Suppose that Up(t) is defined in (4.4) with a B-spline basis.
If the assumptions of Theorem 4.1 are satisfied, then, the following equalities
hold when n tends to infinity:

(a) [|As() —E [@s()[t]]|7, = 0p{ By ndw} [(K/ni) +1]};
(b) ||E[As()|t] - 1()]],, = 0, [D(.9)];
(c) ISE (i) = Op{ X1 n?w? [(K/ni) + 1] +D*(u,9)}. |

Proof of Theorem 4.2:
This theorem can be proved along the same lines as Theorem 4.1, but we
need to use the special properties of the B-spline functions. Let

Bu(t) =K'"?N(r), k=1,...,K,

where {Nk(t) k=1, ,K} are the B-splines as defined in de Boor (1978,
Chapter IX). These B-splines Ni(t), k=1, ..., K, are non-negative functions
satisfying

Yo N(t) =1, forte T,
J#Ni(t)dt <c/K, for some constant c,
2
(/K TR < [7 | Dm0 ar < (efK)EE 7.
foryy€eRand k=1,... K,

(4.50)

where ¢; and ¢, are positive constants. When the properties of B-splines in
(4.50) are used, we get

2] :E{ kil W2 {Zl B (i) s,-jr} <w? [ni+”’2;”’] K. (451)

Using (4.51), the rest of the proof is similar to that of Theorem 4.1 and thus
is omitted. u

E UB(ti)TWisi

4.4.4  Convergence Rates

We observe a few useful implications from Theorems 4.1 and 4.2.

1. Effects of Weight Choices

Different choices of the weight function w; lead to different convergence
rates of the estimators. For the general situation in Theorem 4.1, we have
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(a) Yo, (Kn?w?) =K/n, when wi=1/(nn;);
(b) Y| (Knfw?) =K YL, (n?/N*), when w; =1/N.

As shown in Hoover et al. (1998), lim, Y7 (n7/N?) =0 if and only if
limy—eo Max<j<y (ni /N) = 0. Thus, as with the kernel and local polynomial
smoothing methods of Chapter 3, the w; = 1 /N weight may lead to incon-
sistent estimators fiz(-). On the other hand, w; = 1/(nn;) leads to consistent
() for all choices of n;.

2. Effects of Smoothness Conditions

When the specific smoothness conditions are given, more precise conver-
gence rates can be derived by determining the size of D(u,¥), which gives
the discrepancy between u(-) and the linear space ¢. For example, when p(t)
has bounded second derivatives and ¢ is a space of cubic splines with K in-
terior knots on 7, we have D(u,¥) = O(K’Z) (Schumaker, 1981, Theorem
6.27) and, by Theorem 4.1, ISE (ﬁg) =0, (K/n—|—K’4). For the special choice
of K = 0(111/5)7 this reduces to ISE () = O, (n’4/5), which is the optimal
convergence rate for nonparametric regression with the cross-sectional i.i.d.
data under the same smoothness conditions (e.g., Stone, 1982).

4.4.5 Consistency of Goodness-of-Fit Test

We now show the asymptotic properties of the test statistic T}, (571, ﬁB). These
asymptotic properties demonstrate that, when n is sufficiently large, the value
of T, (71, lg) tends to zero when the null hypothesis Hy of (4.20) holds, and
the value of 7, (?1, ﬁB) tends to some constant larger than zero when a specific
alternative holds. Thus, at least theoretically, T, (7, fiz) is an appropriate
statistic for testing the null and alternative hypotheses in (4.20).

Theorem 4.3. Suppose that the conditions of Theorem 4.1 are satisfied,
inf,c 7 6%(t) > 0, sup,c 7 E [€*(1)] < oo, and

_ RSSo (1) — RSS) (i)
RSS: (i)

Tﬂ (’?17 ﬁB) .

The following conclusions hold:

(a) Under Hy of (4.20), To(T, lig) — O in probability as n — .

(b) If, as stated in Hy of (4.20), infecr || — ||z, > 0 for some k=2,...,K,
so that W(t) is not a constant ont € T, then there exists a constant 6 >0
such that, with probability tending to one, T,(%i, z) > 6. [ |
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Proof of Theorem 4.3:
Using direct calculation and the conclusions of Lemma 4.1, it can be shown
that, with probability tending to one as n — oo,

RSSo(71) ~RSSi(fw) = Y2 Yowi{ [y = 1) = [~ ]}

I
gl
gl
=
;S\)
<
t/

|
=
=

—~,

LS}

185() =77, (4.52)

X

where the second equality holds because the basis functions
{Bi(t) =1,By(t), ..., Bx(t)}
are assumed to be orthonormal. Under Hy, i(f) =7 is a constant, so that
1) =Tl < (B —nll, +[7-nl,—0. @5

in probability as n — . So that, by (4.52) and (4.53), we have that, under
the null hypothesis Hy,

RSSo(71) —RSS: (Hig) — 0, (4.54)

in probability as n — oe.
On the other hand, because

() =%l = 17 = 1O, = [AsC) = 1O,

we have that, when infeeg || —c||z, > 0 for some k=2, ..., K, there is a 6* >
so that YX | inf.cr |7 — ¢z, > 8%, and consequently, as n — oo,

K
1) =%l = A =will, + X I, =)
) =
Z ]gig,g\\%—C\\Lz—op(l)
> 8" —op(1). (4.55)

It then follows from (4.52) and (4.55) that, when inf.cg || % —¢||z, > O for some
k=2,..., K, with probability tending to one as n — oo,

RSSo (%) —RSS1(Hs) > 6*. (4.56)

It remains to show that, with probability tending to one as n — oo, RSS} (ﬁB)
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is bounded away from zero and infinity. By the definition of RSS; (ﬁB), we have
that

RSS (fis) i i { w(tij) + [u(h‘/) —E[ﬁB(fij)|t]]

+ {E (A (tij)|t] — ﬁB(tij)] }27 (4.57)

and, it follows from the proof of Theorem 4.1 that
?:12?’:1%{#(%/) — E [fp(t;j)[t] }2

L 1Wt{ [ (1) |t] —ﬁifz(fij)}2 = op(1).

Q
<
—

—

(4.58)

Thus, it suffices to show that, with probability tending to one as n — oo,

ZZW:[U tu] —ZZWz (ij)

i=1j= i=1j=

is bounded away from zero and infinity. By sup,. 5 E[€*(r)] < oo, there is a
constant ¢ > 0 such that, as n — oo,

n

Var[ZZw, t,/}<2{w n,ZE (tij) }gZ[nizw%c]%O. (4.59)

i=1j i=1

The Chebyshev inequality then implies that, by (4.59), as n — oo,

Z Z Wi € t,j) [Z Z Wi € t,j ] 0, in probability. (4.60)

i=1j= i=1j=

Since Y1, (ni w,-) =land E [8,2 ( ])] is bounded away from zero and infinity,
the result of Theorem 4.3(a) follows from (4.54) and (4.57) to (4.60), and the
result of Theorem 4.3(b), i.e., T,(%, fig) > & for some & >0 with probability
tending to one as n — oo, follows from (4.56) to (4.60). |

4.5 Remarks and Literature Notes

The methods presented in this chapter are direct extensions of the basis ap-
proximation estimation and inference methods to the longitudinal data. In
principle, the effects of the intra-subject correlations should be captured by
the weight choices of w; of (4.3). In practice, however, the optimal choices of
w; are unknown because the structures of the intra-subject correlations are
unknown, so that w; are often chosen subjectively. Consequently, for the lon-
gitudinal data, the statistical properties of the basis approximation estimator
Hp(t) of (4.4) depend on the choices of the basis functions as well as the choices
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of w;. Although both the measurement uniform weight w; = 1/N and the sub-
ject uniform weight w; = 1/(nn;) are common subjective weight choices in
practice, the subject uniform weight has the attractive property that it leads
to consistent estimator fig(¢) under all choices of n; when n tends to infinity.

Compared with the asymptotic properties of the local smoothing estima-
tors of Chapter 3, we see from Theorems 4.1 and 4.2 that the asymptotic bias
of a basis approximation estimator does not have an explicit expression in
general, because it depends on how well the unknown function p(¢) is approx-
imated using the extended linear model formed by the linear space spanned by
the chosen basis functions. By adopting an intuitive connection with the well-
known linear models, the basis approximation approach has the advantage
of having simple interpretations similar to that of the linear models. Thus,
hypothesis testing of a linear model can be naturally interpreted by testing a
sub-family within the chosen family of extended linear models.

The methods of Sections 4.1 and 4.2 and the asymptotic derivations of
Section 4.4 are adopted from the special case of Huang, Wu and Zhou (2002,
2004) without the inclusion of covariates other than time. These methods are
extensions of the results in Stone et al. (1997), Huang (1998, 2001, 2003) to
the longitudinal data.
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Chapter 5

Penalized Smoothing Spline Methods

We introduce in this chapter the computational aspects and theoretical deriva-
tions of the penalized smoothing spline estimators for the mean function u () =
E[Y(1)|t] of (3.1) based on the sample {(Y;;,t;j):i=1,....n;j=1,...,n;}. Ex-
tensions of the methods of this chapter to the time-varying coefficient models
are presented in Chapter 9. The penalized smoothing spline methods have nat-
ural connections with both the local smoothing methods of Chapter 3 and the
global basis approximation smoothing methods of Chapter 4. On one hand,
through an approximation via the Green’s function, the penalized smoothing
spline estimators can be approximated by some equivalent kernel estimators.
On the other hand, since a penalized smoothing spline estimator is obtained
through a penalized least squares criterion, it is in fact an estimator based on
the natural cubic splines with knots at the observed time points.

5.1 Estimation Procedures

Theory and methods of the penalized smoothing splines with cross-sectional
i.i.d. data have been extensively studied in the literature. Summaries of the
results with cross-sectional i.i.d. data can be found in Wahba (1975, 1990),
Green and Silverman (1994) and Eubank (1999). Extensions of the penalized
smoothing splines to the longitudinal data have been investigated by Rice and
Silverman (1991), Hoover et al. (1998), Lin and Zhang (1999), and Chiang,
Rice and Wu (2001), among others. The theory and methods presented in
this chapter are a special case of the longitudinal data extension developed in
Hoover et al. (1998) and Chiang, Rice and Wu (2001).

5.1.1 Penalized Least Squares Criteria

Suppose that the support of the design time points is contained in a compact
set [a,b] and u(z) is twice differentiable for all # € [a, b]. We can obtain a
penalized least squares estimator Uy (t; w) of p(¢) by minimizing

i

T A) =y

i=li=1

Dol -} 2 [ ol 61
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where A is a non-negative smoothing parameter, {wi i=1, ,n} are non-

negative weights, and w = (w, ...7wn)T is the (nx 1) vector of the weights.
We refer to (5.1) as the score function of the penalized least squares criterion.

5.1.2 Penalized Smoothing Spline Estimator

The minimizer [y (1; w) of (5.1) is a cubic spline and a linear statistic of {Y;;
i=1,....,n;j=1,....n;}. To see the linearity of I (t;w), we define Ha,p) 0
be the set of compactly supported functions such that

b
Aoy = {g() : g and g’ absolutely continuous on [a, b], / [g”(s)]zds < oo}.

a

Setting the Gateaux derivative of J,,(i; ) to zero, l(¢; w) uniquely minimizes
(5.1) if and only if it satisfies the normal equation

ZZ{W, Yij — a (tij: w) t,/ l/ i’ (s;w)g" (s)ds, (5.2)
i=1j=

for all g in a dense subset of ], ;. The same argument as in Wahba (1975)
shows that there exists a symmetric function Sy (7, s), such that

Sy.(t,5) € H, ), when either ¢ or s is fixed,

and Uy (t; w) is a natural cubic spline estimator with knots at the observed
time points given by

HM:

"Z (iS5 (12 137) ], (5.3)

which is referred to as the penalized smoothing spline estimator. The right
side of (5.3) suggests that [, (; w) is a linear statistic of {¥;;:i=1,...,n; j=
1,..., ni} with weight functions w; ), (t, tij). The explicit expression of S (z, s)
is unknown. For the theoretical development of [, (¢;w), we approximate
Sy (¢, s) by an equivalent kernel function whose explicit expression can be de-
rived or approximated.

As in the local and global smoothing estimators of Chapters 3 and 4,
usual choices of w; may include the measurement uniform weight wi* = 1/N
and the subject uniform weight wi = 1/(nn;). Different choices of w generally
lead to different finite sample and asymptotic properties for [ (¢; w). Ideally
the optimal choice of w may depend on the correlation structures of the data.
But, because the correlation structures are often unknown and may be difficult
to estimate, we do not have a uniformly optimal choice of w. In practice,
wi* =1/N and wi = 1/(nn;) generally give satisfactory estimators.
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5.1.3  Cross-Validation Smoothing Parameters

The smoothing parameter A in (5.1) and (5.2), which determines the amount of
roughness penalty, is the crucial term affecting the appropriateness of [y (¢; w).
Adequate smoothing parameters for [ (t; w) may depend on the structures of
the possible intra-correlations. However, because the correlation structures
are unknown as is often the case in practice, we naturally return to the use-
ful approach of leave-one-subject-out cross-validation (LSCV) established in
Chapters 3 and 4. This approach is carried out with the following steps.

Leave-One-Subject-Out Cross-Validation:
(

(a) Compute the leave-one-subject-out smoothing spline estimator ﬁ{") (t;w)
from (5.3) using the remaining data with all the observations of the ith

subject deleted. The ith subject’s predicted outcome at timet;; is ﬁ}(:i) (tij; w).
(b) Define the LSCV score of fy (t; w) by

LSCV (A; w) = ZZW,[” i (1 )]2. (5.4)

i=1j=

If (5.4) can be uniquely minimized by Arscy over all the positive values of
A >0, the cross-validated smoothing parameter Arscy is then the minimizer

of LSCV (A;w). O

Theoretical properties of Azscy have not been systematically established.
For a heuristic justification, it can be shown by the same arguments as Sec-
tions 3.3 and 4.1 that Azgcy approximately minimizes an average prediction
error of [ (; w).

5.1.4 Bootstrap Pointwise Confidence Intervals

Similar to the local and global smoothing estimators of Chapters 3 and 4, sta-
tistical inferences based on [ (¢; w) are possibly influenced by the correlation
structures of the data. In the absence of a known correlation structure, we
return to the resampling-subject bootstrap procedure used in Chapters 3 and
4. The approximate bootstrap pointwise confidence intervals for u(r) based on
I, (t; w) can then be computed using the following procedure.

Approximate Bootstrap Pointwise Confidence Intervals:

(a) Computing Bootstrap Estimators. Generate B independent bootstrap
samples using the resampling-subject bootstrap procedure of Section 3.4, and
compute the penalized smoothing spline estimators

%ﬁ([, ?L7 W) _ {ui(){)t 1( ) 7ﬁ;()()t B(l, W)} (55)

based on (5.3) and the corresponding bootstrap samples.
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(b) Approximate Bootstrap Intervals. Compute the percentiles and the
estimated standard errors as in Section 3.4 based on the B bootstrap es-
timators in (5.5). The approzimate [100 x (1 — a)]th percentile bootstrap
pointwise confidence interval for W(t) is given by

(Liay2)(1), Uy (1)), (5.6)

where L 2)(t) and Uiy )(t) are the [100x (a/2)]th and [100 x (1—ot/2)]th
percentiles of %’ﬁ (t; A, w), respectively. The normal approximated bootstrap
pointwise confidence interval for w(t) is

[ (13 w) £ 201 _q/2) x Sep (13 Ba), (5.7)

where [y (t; w) is the penalized smoothing estimator computed from the orig-
inal data, z(1_q/2) 15 the [100 x (1— a/Z)]th percentile of the standard nor-
mal distribution and Sep(t; [iy) is the estimated standard error of [y (t; w)
from the B bootstrap estimators %’ﬁ (t; A, w). O

As discussed in Sections 3.4 and 4.2, (5.6) and (5.7) are only approximate
confidence intervals because they ignore the biases of the estimator [ (¢; w).
Bias adjustment for (5.6) and (5.7) generally do not work well in practice,
because it is difficult to estimate the bias of 1 (; w). The simulation results
in the literature, e.g., Chiang, Rice and Wu (2001), suggest that both (5.6)
and (5.7) have acceptable empirical coverage probabilities, and can be used
as good approximate pointwise confidence intervals, although the theoretical
properties of these intervals have not been systematically developed.

The approximate simultaneous confidence bands for u(t) over an interval
t € [a, b] can be established by applying the same procedure as in Sections 3.4
and 4.2 to the approximate pointwise intervals (5.6) or (5.7). Since this pro-
cedure is self-evident and can be straightforwardly adapted to the current
situation, we omit its details in this chapter.

5.2 R Implementation
5.2.1 The HSCT Data

Following the examples of Sections 3.5 and 4.3, we illustrate here how to use
the penalized smoothing spline estimator to estimate the mean time-trend of
the HSCT data. In comparison to the local smoothing methods in Chapter 3
or the basis approximation smoothing methods in Chapter 4, there is no need
to select the bandwidth or the number and location of the knots to control
the smoothness of the estimated curve. For a smoothing spline estimator, a
roughness penalty term is used to control the excess curvature of the smooth-
ing estimate as described in Section 5.1. The minimizer of (5.1) is a natural
cubic spline with knots located at the distinct design time points. However,
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Figure 5.1 The fluctuations and smoothing spline estimates of the lymphocyte counts
relative to the time of stem cell transplantation. The solid and dashed lines represent
the estimates using the measurement uniform weight and the subject uniform weight,
respectively. (A)-(D) The smoothing parameter spar=0.2, 0.5, 0.7 and 1.5, and the
corresponding A for measurement uniform weight are shown, respectively.

the selection of the smoothing parameter A is important to determine the
goodness-of-fit and curvature of penalized smoothing splines.

In R, the function smooth.spline() can be used to fit a cubic smooth-
ing spline, which uses a smoothing parameter argument spar to control the
smoothness, instead of A. The usual smoothing parameter A in the penal-
ized criterion is a monotone function of spar, and the value of A is given
in the output of the smooth.spline fit for a specified or estimated spar.
See help(smooth.spline) for details of the arguments for this function and
the relationship between spar and A. The following R code is used to fit the
lymphocytes count in the HSCT data:

> attach (HSCT)

> plot(Days, LYM.log, xlab="Days post-transplantation", ylab="")
> smfit<-smooth.spline(Days, LYM.log,spar=0.7,cv=NA)

> smfit.w<-smooth.spline(Days, LYM.log, spar=0.7, cv=NA, w=1/ni)
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A. B.
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Figure 5.2 Lymphocyte counts data. (A) Use of cross-validation to select smoothing
parameters. (B) Smoothing spline fits with cross-validated smoothing parameters.
The solid and dashed lines represent the estimates using the measurement uniform
weight and the subject uniform weight, respectively.

> lines(predict(smfit, -8:35), col ="gray40", lwd=1.5)
> lines(predict(smfit.w, -8:35), lwd=1.5, 1ty=2)

Figure 5.1 shows the lymphocyte measurements following the conditioning
regimen and the allogeneic hematopoietic stem cell transplantation. We can
see the different amount of smoothing for the estimated curves associated with
the values of smoothing parameter A. A very small A as in Figure 5.1(A) gives
little roughness penalty and may result in an undersmoothed fit. On the other
hand, too large a A as in Figure 5.1(D) gives excess roughness penalty and
results in a linear regression fit, without allowing for any curvature. The plots
in Figure 5.1(B)-(C) give the visually appealing trade-off between fitness and
smoothness of the estimated curves, which adequately capture the nonlinear
time-trend of the lymphocyte counts.

In practice, we can choose the smoothing parameter spar (or A) subjec-
tively by visually examining the fitted mean curve to the scatter plots of the
data. Alternatively, the smoothing parameter may be selected automatically
by the LSCV procedure discussed in Section 5.1.3. Figure 5.2(A) shows the
LSCV scores of (5.4) plotted against a range of spar values with the two
choices of weights wi = 1/(nn;) and w!* = 1/N. The smoothing spline esti-
mators shown in Figure 5.2(B) with spar=0.56 and spar=0.57 minimize the
corresponding LSCV score functions, respectively. Note that the smoothing
splines estimators in Figures 5.1 and 5.2 based on the measurement and sub-
ject uniform weights are similar, except in the region with some unusually low
lymphocyte counts. Importantly, they both show that the HSCT is associated
with two phases of change, lymphocytopenia and lymphocyte recovery, in the
transplant recipients. First, lymphocytes reach the lowest concentration af-
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Figure 5.3 The NGHS body mass index (BMI) data. (A) Smoothing spline estimate
of mean curves for African American girls. (B) Smoothing spline estimate of mean
curves for Caucasian girls. The BMI values for a sample of 50 girls are plotted for
both (A) and (B). (C) The smoothing spline estimates with 95% bootstrap pointwise
confidence interval.

ter conditioning, then followed by a gradual recovery during the first month
post-transplant with the achievement of the donor lymphocyte engraftment.

5.2.2 The NGHS BMI Data

The NGHS data has been described in Section 1.2. One aim of this multi-center
longitudinal study is to examine the differences in childhood cardiovascular
risk factors, such as overweight and obesity, between African American and
Caucasian girls during adolescence. The study enrolled 1213 African American
girls and 1166 Caucasian girls, who were followed up from ages 9 or 10 years to
18 or 19 years. The body mass index (BMI, weight in kg divided by height in
m?) is calculated from the ten annual measurements of height and weight. With
very high retention rate throughout the study, the median number of follow-
up visits for the individual girls is 9 with an interquartile range of 8 to 10. As
adults who were overweight during childhood are more likely to have greater
risk of cardiovascular disease, it is important to track the longitudinal change
of BMI from childhood into adulthood. We illustrate here that smoothing
splines can be used to provide flexible nonparametric estimates of the mean
growth curves of BMI and to examine the racial difference in the NGHS girls.

Figures 5.3(A)-(B) show the estimated mean curves of BMI over time, i.e.,
age, for the study participants stratified by the two racial groups. To illus-
trate that the estimated curves adequately capture the overall time-trend of
the mean BMI values, the BMI values for a randomly selected subset of 50
girls from each race group are plotted along with the estimated mean curves.
The penalized smoothing splines are fitted to the BMI data separately for
the African American girls and the Caucasian girls using the measurement
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uniform weight and the cross-validated A scy = 2.32 and Agscy = 1.76, re-
spectively. The curve estimates based on the subject uniform weight yield
almost identical results since most of subjects have similar numbers of mea-
surements. The approximate 95% percentile bootstrap pointwise confidence
intervals (CIs) for the estimated curves are displayed in Figure 5.3(C), which
are obtained from 1000 resampling-subject bootstrap samples as described in
Section 5.1.4. These smoothing estimates and 95% CIs suggest that the mean
BMI levels increase over time from 9 to 19 years of age for both racial groups
and the rate of increase in BMI is greater in African American girls than that
in Caucasian girls. Notably, there is already a significant racial difference in
the mean BMI since early adolescence (age 9 to 10 years) and this difference
increases significantly at late adolescence and young adulthood. These find-
ings have important implications in the design of long-term pediatric studies
and in developing guidelines for the primary prevention of atherosclerosis car-
diovascular disease beginning in childhood.

5.3 Asymptotic Properties

We present in this section the asymptotic properties of the penalized smooth-
ing spline estimator [ (t; w) of (5.3) with the measurement uniform weight
w** = (1/N, ..., 1/N)T. Without loss of generality, we assume that a = 0 and
b =1. Extension to general [a, b] can be obtained using the affine transforma-
tion u= (t —a)/(b—a) for t € [a, b]. Asymptotic properties for the estimators
with other weight functions, e.g., the subject uniform weight wf =1/(nn;), can
be established analogously, so they are omitted from the presentation.

5.8.1 Assumptions and Equivalent Kernel Function

1. Asymptotic Assumptions

We assume the following technical conditions, which are mainly imposed
for mathematical simplicity and may be modified if necessary, for iy (t; w**)
throughout this chapter:

(a) The design time points {t,-j i=1, .., j=1, ...,ni} are nonrandom and

satisfy
Dy = sup |Fy(1)=F(1)| =0,  asn— oo,
t€(0,1]

for some distribution function F(-) with strictly positive density f(-) on
[0, 1], where Ey(t) =N"1Y", Z?izl Ly <) and 1< is the indicator function
such that lp<n=1 if t;; <t, and ly<n = 0 ift;; >t. The density f(-) is three
times differentiable and uniformly continuous on [0, 1]. The rth derivative
FOt) of f(t) satisfies f)(0) = f(1)=0 for r=1,2.

(b) The mean curve u(t) is four times differentiable and satisfies the boundary
conditions u")(0) = u(1) =0 for r=2,3. The fourth derivatives u* (r)
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1s Lipschitz continuous in the sense that ‘/,1(4)(s1) —u® (sz)’ < ‘sl — szlcz
for all s1,s2 €[0,1] and some positive constants ¢; and c;.

(c) There exists a positive constant § >0 such that E(|e(t)|*T9) < co.

(d) The smoothing parameter A is nonrandom and satisfy A — 0, NA/* = oo
and A5/*Dy — 0 as n — oo.

(e) Define 62(t) = E[€*(t)| and pe(r) =limy_, E[e(t)e(t')]. Both 6*(t) and
pe(t) are continuous at t. O

These assumptions are sufficiently general and should be satisfied in most
applications. A major distinction between the current longitudinal data and
the classical cross-sectional i.i.d. data is the additional term pg(f). As in Chap-
ters 3 and 4, 62(t) may not equal pe(¢) in general, and strict inequality be-
tween 62(t) and pe(f) appears, when &(¢) is the sum of a stationary process
of t and an independent measurement error. Because in most applications
02(t) and pe(t) are unknown, we do not require further specific structures
for 62(t) and pe(t), except for their continuity in Assumption (e). When
{tij i=1,...,nj=1, ...,ni} are from random designs, we would need to
require almost sure convergence of Dy to 0, as suggested in Nychka (1995,
Section 2).

2. Equivalent Kernel Function

Because the S (¢, s) of (5.3) does not have an explicit expression, we would
like to approximate it by an explicit equivalent kernel function. Substituting
S, (¢, s) with the equivalent kernel, the asymptotic properties of fi(t;w**) can
be established through the equivalent kernel function (e.g., Brauer and No-
hel, 1973). For smoothing spline estimators with cross-sectional i.i.d. data, an
equivalent kernel is usually obtained by approximating the Green’s function
of a differential equation. Motivations and heuristic justifications of consider-
ing an equivalent kernel through a differential equation have been discussed
extensively in the literature, for example, Silverman (1986), Messer (1991),
Messer and Goldstein (1993) and Nychka (1995).

Under the current context, we apply the same rationale established for the
smoothing spline estimators with cross-sectional i.i.d. data to the estimator
(5.3) and consider the following fourth-order differential equation

Ag(4)(t)+f(t)g(t):f(t)“(t)v t€[07 1]7 (5.8)

with g")(0) = g™ (1) =0 for v =2,3. Let G, (t,s) be the Green’s function
associated with (5.8). Then, any solution g(¢) of (5.8) satisfies

)= [ G1l0.5)1(6)15) .
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Let y= [y f1/4(s)ds and ©(¢) =y~ [} f1/*(s)ds. We define
Hy(t,5) = Hy . [2(0), 2(s)] 7 (5) £ (s) (5.9)

to be the equivalent kernel of Sy (¢, s), where

~1/4 ~1/4 ~1/4
HY (t,s) = 12\/5 {sin(l\/E |t—s|)—|—cos<k\/E |t—s|>}
171/4
xexp(——|t—s|). (5.10)

It is straightforward to verify from (5.9) that H,(r,s) reduces to HY(z,s)
when f(-) is the uniform density. Substituting S3 (2, #;) in (5.3) with Hy (¢, #;;),
the equivalent kernel estimator of u(7) with the measurement uniform weight
w* = (1/N,...,1/N)T

i ( ZZ H; (1, 15) Y. (5.11)

The next lemma shows that Hj (¢, s) is the dominating term of the Green’s
function Gy (¢, s), which in turn approximates S, (7, s).

Lemma 5.1. Assume that Assumptions (a) and (d) are satisfied. When n
is sufficiently large, there are positive constants Q, 0, K| and Ky so that

|Ga(t,s)—Hy(t,s)] < wiexp(—ar A *|t—s|), (5.12)
3VG, (1, s)
—av < kA vED/ exp(— A 1/4|t s[),  (5.13)
|S5(t,5) = Ga(t,5)] < AV 2Dyexp(—ai A" V*e—s]),  (5.14)
VS, (t,s) 4 -(v+1)/4 4-1/4
— | < R Dyexp(— t—s]) (5.15)
hold uniformly fort €[0,1], s€[0,1] and 0 <v < 3. ]

Proof of Lemma 5.1 is given in Section 5.3.4.

It is worthwhile to note that Hj (¢, s) of (5.9) is not the only equivalent
kernel that could be considered, and there are other possible choices, such as
the equivalent kernels suggested by Messer (1991) and Messer and Goldstein
(1993). However, the theoretical derivation of this chapter is based on Chiang,
Rice and Wu (2001), which relies on Hy (¢, s) to approximate Sy (z, ).

5.8.2  Asymptotic Distributions, Risk and Inferences

We now summarize the main theoretical results of this chapter. Derivations
of these results are deferred to Section 5.3.4.
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1. Asymptotic Distributions

Recall by Assumption (e) that the variance of Y (¢) is 6%(¢) and the covari-
ance of Y (f1) and Y (¢) at two time points t; £t is pe(t1, 12). When 1 — ¢ for
k=1,2, we note that

Pe(ti 12) — pe(t) # o2(1).

The next theorem shows that asymptotically i (; w**) of (5.3) has a normal
distribution when N is sufficiently large.

Theorem 5.1. Suppose that Assumptions (a) through (e) are satisfied, t is
an interior point of [0, 1], and there are constants Ay > 0 and ag >0 such that
limy e N2 298 = 2o, limpe N7 (X1 07) AV4 = gy and lim,—. Nn™9/8 = 0.

i
Then, as n— oo, [(t; w**) is asymptotically normal in the sense that

(N;Ll/4)1/2 [,LAL(t; W) — /J(t)] — N(/'Lob(t), Gﬁ(t)) in distribution, (5.16)
where

b(t) = —f (D) (5.17)

and

1
ou(t) = [m

The conclusions in (5.16) to (5.18) imply that, in general, the asymptotic

1/2
£ ) cz<r>+aopg<r>} . (5.18)

distributions of B(t; w**) are affected by n, n; and the intra-subject correlations

of the data. |

Proof of Theorem 5.1 is given in Section 5.3.4.

A direct implication of Theorem 5.1 is that, by (5.18), the correlations of
the data may only affect the asymptotic variance term O'ﬁ (1) if ag > 0, which
holds if ¥, n? tends to infinity sufficiently fast. Since, by Assumption (d), we
have lim,_.. A =0, it follows from the condition lim,_.. N~ ( " nlz) A4 =q
that, for the special case that n; are bounded, i.e., n; <m for alli=1,... n
and some constant m > 0, the intra-subject correlation pg(f) does not play a

~

role in the asymptotic distribution of (N)ul/“)l/2 [l (r; w*) — u(r)], because

n
lim N~ (Z n,?> AVE<m? lim 2 =0.
i=1

n—yoo n—yoo

When n;, i=1, ..., n, are bounded, the probability that there are at least two
data points from the same subject in a shrinking neighborhood is zero.
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2. Asymptotic Mean Squared Errors

Risks of spline estimators are usually measured by their asymptotic mean
squared errors. We consider the mean squared error (MSE) given by

~ *% m ok 2
MSE [fi(t; w™)] :E{[/.L(t;w )— u(t)] } (5.19)
The next theorem gives the asymptotic expression of MSE [ﬁ(t; w**)]

Theorem 5.2. Suppose that Assumptions (a) to (e) are satisfied and t is
an interior point of [0, 1]. When n is sufficiently large, the MSE of (5.19) has
the following asymptotic expression

MSE[(t;w™)] = A*b* (1) +V(t)+op [Nfl ATVA 4 i (ni/N)z]
=1

1

+0,(n2L) +0,(n7") +0,(17), (5.20)
where b(t) is defined in (5.17) and

V= SN AR 0 + [21 <n,~/N)2] p).  (21)

Furthermore, it follows from (5.21) that the asymptotic variance V(t) is not
affected by the covariance function p(t) if limy_e [L1;(ni/N)*] =0, which
holds if and only if lim, . max;<;<, (ni/N) =0. [ |

Proof of Theorem 5.2 is given in Section 5.3.4.

Since the assumptions in Theorems 5.1 and 5.2 are quite general, the
above asymptotic properties provide theoretical justifications for the penal-
ized smoothing spline estimators to be used in most practical situations.

3. Remarks on Asymptotic Properties

A number of interesting special cases of Theorems 5.1 and 5.2 can be
derived under some specific but practical settings. These special cases lead to
different asymptotic properties of fi(z; w**). The following remarks illustrate
some of these useful special cases.

(a) Consistency and Convergence Rates:

Theorem 5.2 does not require any further rate condition on A other than
Assumption (d) and allows for any choice of nonrandom n;. Thus, under the
conditions of Theorem 5.2, [(t; w**) is a consistent estimator of w(z) in the
sense that MSE [fi(t; w**)] — 0 in probability as n — co.

By (5.21), the rate of V(¢) tending to zero depends on n, n;, i=1,...,n,
A and the intra-subject covariance p(¢). If A~'/4N~1 converges to zero in a
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rate slower than Y (n;/N)?, then the second term of the right side of (5.21)
becomes negligible, so that the effect of the intra-subject covariance p(z) dis-
appears from the asymptotic representation of MSE [ﬁ(t; w**)] This occurs,
when the n; are bounded, which is a case of practical interest. However, in
general, the contribution of the intra-subject covariance p(¢) is not negligible.
If n; — oo sufficiently fast as n — oo, which leads to the so-called dense longitu-
dinal data, then the second term of the right side of (5.21) may not be ignored
from V(¢). This occurs, for example, when n; = n® for some o > 0.

(b) Random Design Time Points and Other Weight Choices:

The derivations of Theorem 5.2, which relies on nonrandom design time
points and measurement uniform weight, w**, can be extended to random
design time points and other weight choices. Suppose that the design time
points #; are independent identically distributed with distribution function
F(-) and density f(-). For the measurement uniform weight w**, we would
require, as a modification of Assumption (d), the almost sure convergence of
A5/4Dy to 0 as n — o and consider the same equivalent kernel estimator
as defined in (5.9). For the subject uniform weight w* = (wf, ...,wj‘l)T with
wi = 1/(nn;), we would replace Fy and Dy in Assumption (a) by

1-LX

)

HM=_

My, and DN—tes[l(J]pl]]FN —F(t)

respectively, and, under the almost sure convergence of A5/4 Dy to 0 asn— oo,
consider the equivalent kernel estimator

i[ , Hltt,])Y}

Il M:

The asymptotic distributions and the asymptotic conditional mean squared
errors of these equivalent kernel estimators can be derived explicitly. However,
as noted by Nychka (1995, Section 7), because the exponential bound of (5.9)
may not be sharp enough to establish the asymptotic equivalence between
the smoothing spline and the equivalent kernel estimators, further research is
needed to develop the improved error bounds under these situations.

Suppose that the time design points #;; are nonrandom, w* = (w]k7 ...7wj;)
with wf = 1/(nn;) is used and Assumption (a) holds for Fy(¢) and Dy. By
Lemma 5.1, we can show that the variance of [i(t; w*) can be approximated
by

)33 K,;)QGi (f:fi/)Var(Yi/)}

i=1j=1
1

+( = ){(m) Gl<t7ti1j1)Gl<t7ti2j2)C0V(Y51/17Yizjz) :
i1, Jj1)#(i2, 2 i



136 PENALIZED SMOOTHING SPLINE METHODS

Unfortunately, the above two summations cannot be easily approximated by
some straightforward integrals without further assumptions on n;. Similarly,
we do not have an explicit asymptotic risk representation for fi(f; w) with a
general weight w.

4. Asymptotically Approxzimate Confidence Intervals

The asymptotic distribution of Theorem 5.1 is potentially useful for mak-
ing approximate inferences for p(¢) based on [(t; w**). In particular, if n, n;,
i=1,...,n, and A satisfy the conditions stated in Theorem 5.1 and there
are consistent estimators {b(r), 6,(t)} of {b(t), ou(¢)}, then an approximate
[100 x (1 — &)]% confidence interval for it(¢) can be given by

(B W) = AB(0) | £21 0N 2275600, (5.22)

where 0 < a < 1, Z, is the pth quantile of the standard normal distribution
N(0, 1). In theory, it is possible to construct the consistent estimators b(t) and
Oy (t) by substituting the unknown quantities of (5.17) and (5.18) with their
consistent estimators. But, in practice, b,(r) is difficult to estimate because,
by (5.17), it depends on the fourth derivative of u(¢). One possible approach
to circumvent the difficulty of estimating b(¢) is to select a small smoothing
parameter A so that the asymptotic bias b(t) is negligible. For the estimation
of 6,(t), one approach is to construct adequate smoothing estimators for the
variance and covariance processes 62(t) and p(t), respectively. But a practical
smoothing spline estimator for oy (r) is not yet available and requires further

research. When the bias adjustment term /'Li)\(t) is ignored and oy (f) is esti-
mated by the resampling-subject bootstrap procedure, the confidence interval
of (5.22) is the same as the one given in (5.7).

5.8.3  Green’s Function for Uniform Density

We now give a brief discussion of the Green’s function for the differential equa-
tion (5.8) with the uniform density on [0, 1]. The uniform density is an im-
portant and useful special case, because the Green’s function associated with
the uniform density gives an important linkage between the Green’s function
G (t,s) associated with the differential equation (5.8) and the equivalent ker-
nel function Hy (¢, s) in (5.9). The dominating term of Gy (¢, s) can be used to
establish Lemma 5.1.
Using direct calculation, it can be shown that, for the uniform density
f(t) =1jg,1(t), the Green’s function G5 (t,s) of (5.8) for 1 # s is the solution of
4
PRkl
ot

subject to the following conditions:

(a) GY(t,s) = GY(s,t) = GL(1—1,1—s);

Gy (t,5)+ G5 (t,5) =0, (5.23)
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(b)  (2V/9t")G{(0,1) = (9¥/3t")GY(1,1) = O for v = 2,3;

(c) (0V/9t")GY(t,s)|,_,- — (9¥/dt")GY (¢, )+ =0 forv =0,1,2
@)  (0°/98)GY(t,s)|_, —(9°/9)GY(t,s5)|_,, = A"

sS=t~ N

s=t

The following lemma gives a crucial technical result, which shows that the
equivalent kernel function HY(,s) of (5.10) is the dominating term of the

Green’s function GY (z, s).

Lemma 5.2. Suppose that Gi] (¢, ) is the Green’s function of the differen-
tial equation (5.23) with the uniform density f(t) = 1o 1(t). When A — 0, the
solution GY (1, 5) is given by

GY(t,s)=HY(t, s){1 +0[exp(—/r1/4/\/§)} } (5.24)
where HY (1, 5) is defined in (5.10). [ |

Proof of Lemma 5.2:

Because the proof involves tedious algebraic calculations, only the main
steps are sketched here, while some straightforward and tedious details are left
out. By the well-known result in differential equations, for example, Brauer
and Nohel (1973), a general solution G5 (, s) of (5.23) can be expressed as

Gi(t,s) = ) {[le sin(lfl/“é(t,s)/\/i)

1=1,3.5.7
+Cjpcos (A8 (1,5)/V2) ] xexp (2714600, 5)/V2) .
where j=1 or 2, when t <sort>s,
Sit,s) =Ci(t,s) =1—s, &(t,5)=0(1,5)=1+s,
&(t,5)=—Cs(t,s) =t —s and &(r,5)=—G(t,5) =t +s.

Now, the objective is to evaluate the relationships among the C;;’s. By
GY(t,5) = G (s,1) in the condition (a) of (5.23), we can obtain that

Ci1 = —Cas, C1p = Ca6, C13 = (o3, Cig = Cpg,

Ci5 = —Ca1, Ci6 =Cp, C17=Cy7 and Cig = Cos.

Furthermore, by G5 (1, 5) = G{ (1 —1,1—5), i.e., the condition (a) of (5.23), it
can be shown that

Ci3= {— cos (\/5171/4) C17 +sin (\/5171/4) Clg] exp ( - \/5171/4) (5.25)

and

Cis = {sin (\/5171/4> Ci7+cos (\/5)»71/4) Clg} exp(—\/ilfl/“). (5.26)
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Now we denote
AF=27124714 A =2712 274 (n/4) and A; =27'2A V44 (n/4).

Taking derivatives of G% (¢, s) with respect to ¢, we can derive from the condi-
tion (b) of (5.23) that

4 ) 8
Cii+Ci3—Cis—Cir= Y (-1t 'cy+ Y ¢y = 0, (5.27)
j=1 j=5
[cos (A") (Ci1 — C17) +sin (Af) (Cia+ Cis) | exp (— 2A])
+cos (A7) (Ci13 —Cis) —sin (A]) (Cla+Cr16) = 0 (5.28)

and

[sin(lg‘)(CU—C17)—|—Sin(/'l/2‘)(C12+Clg)]exp(—le*)
+sin (A;) (Ci3—Cis) —sin (A7) (Cla+Ci6) = 0. (5.29)

From the conditions (¢) and (d) of (5.23), we get
Ci1+Ci+Ci5—Cig=0 and Cj1—Ci2+Cis+Cie=—A;. (5.30)

Using (5.27) and (5.28), we can express Cjs through Cig as linear combi-
nations of Cy;, j=1,...,4, and get

Cis=—Cp =224 V4, Clg=Cpp—27320 714,
C17=2C11+C13+273/2171/4 and Clg:—2(C11+C13)+C14+273/2171/4.

Substituting Cis through Cjg with their corresponding linear combinations of
Cij, j=1,...,4, it can be derived from (5.25), (5.26), (5.27) and (5.28) that

2exp(—24{) Ciy + [exp (—2A) +cos (24])] Ci3
—sin (2A]) Cia+2""Af exp (—24]) =0, (5.31)

2exp(—211*)C11+ [Zexp(—ZﬂLl*)—Fsin(Z?Ll*)]CB
—[exp(—24{) —cos (2A])] Cla—2"'A{ exp(—2A1]) =0, (5.32)

{cos (Af) — [cos (A]) +2sin (A])] exp (—24]) } (Ci1 + C13)
—sin (A7) [1 —exp(—24{)] (C12+C1a) +27 ' A{ cos (A]) [1 —exp (—2A])]
—271Af sin (A) [1 +exp(—24])] =0 (5.33)
and
{ —sin(A5) + [sin (A3) +2sin (43)] exp (—2A{) } (Ci1 +C13)
—[sin (A3) +sin (A5) exp (= 24{)] (Ci2+ C14)
—27'2{ [sin (A3) —sin (A3)] [L +exp(—2A])] =0. (5.34)



ASYMPTOTIC PROPERTIES 139

Suppose first that A # 272 [(k+2"!) 7]~ and A # 272 (kw)~* for any positive
integer k. When A — 0, it can be derived from equations (5.31) to (5.34) that

cu=(=1) A eva) [ {1+0fexn (=274 /V2) ]} 1=1.2, (5.35)

and

cl,:0[&*1/4exp(—1*1/4/\f2)], 1=3,4. (5.36)

Finally, C;s through Cjg can be directly calculated by using (5.35) and (5.36),
so that

cy = 0[&*1/4exp(—r1/4/\f2)], 1=5,6, (5.37)
~pveva)){i+ofew (-2 V2) ]} (5.3)

Ci7

and

=327/ VD) [ {1+0[exp (=27 4/V) ]} (5.39)

Then (5.24) is obtained by substituting (5.35) through (5.39) into the general
expression of GY (1, s).

When A =272[(k+27") 7] *or 272 (km)~*, the same argument as above
shows that the coefficients in (5.35) through (5.39) also hold. This completes
the proof. |

5.3.4  Theoretical Derivations

We now give the technical derivations for the proofs of Lemma 5.1, Theo-
rems 5.1 and 5.2.

1. Deriwations for Lemma 5.1

Proof of Lemma 5.1:

A key step for the proof is to establish the relationship between the Green’s
function for uniform density GY (z, 5) in (5.23) and the general Green’s function
Gy (t,s) for (5.8). For this purpose, we first consider a transformation Q(z, s)
such that

0[e(r), 7(s)] ¥V (s) = Gy (1, ) £(5), (5.40)

where T(r) =y~ [3 f1/4(s)ds and y= [} f1/4(s)ds are defined in (5.9). Now,
define
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By the definition of y and ©(¢), it can be verified by straightforward calcula-
tion that g(¢) = ¢[t(r)] and ¢(u) is the solution of the following fourth-order
differential equation

3
(/) a0+ aw] +2 Lo d* D =ple @], G4
=1

subject to the boundary conditions that ¢(*)(0) = ¢(Y)(1) =0 for v =2, 3.

To simplify the notation of (5.41), let 2 and .# be the operators for differ-
entiation and identity, and let .# be the multiplication operator .#Zyg = ¢ g,
so that, (5.41) can be expressed as

(S + ) Lqw) = [t (W), (5.42)
where .Z and &/ are the composite operators defined by
3
Z=[A/Y)7'+7] and & =2 (Z ///¢@4’> Z
I=1

Let AY(u, v) be the kernel associated with the integral operator <. We can
verify by the induction argument in the proof of (A.1) of Nychka (1995) that,
when n is large, there are constants ¢ > 0 and ky > 0 such that

Av(u,v)’§K0WVexp(—a0/'L*1/4|u—v\), v>1,

where W is some positive constant such that W < 1. Because |A"(u, v)| <1 for
sufficiently small A, the integral operator .Z~!(.# 4+ .¢7)~! has the expansion

NI a) =g [ﬂ+ Y (_ﬂ)q. (5.43)

Thus, by interchanging the integration and summation signs, (5.43) implies
that

oo "1
Ou,v) =Gy a(u, v) + Zﬁ:l(—nv'/0 G;’M(u, s)AY (s, v)ds. (5.44)

Applying Lemma 4.2 of Nychka (1995) and Lemma A with u = 7(¢) and
v=1(s) to (5.44), there are positive constants oy, o, kj and k;*, such that,
uniformly for ¢,s € [0, 1],

‘Q(u7 V) —G%/?A(u, V)

<

o |
\/2:11(_1)v./() G%/V‘(”’ s)A) (s, v)ds
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oo 1 11/4
< */11/4< W")/ ex (— u—s|—oA 14 s—v)ds
< K v; , xp( — el s —v|

< wexp(—ag A u—vl)

< ewp|-ag A = it |20
s<u<t
< K exp(_ ag*rl/“\t_q). (5.45)
From (5.40), we also have that

s M (s
0(1.) = 64 u.9) = {610,968 500 2] 2 . (50

Then, equation (5.12) is a direct consequence of Lemma 5.2, equations (5.45),
(5.46) and (5.9). The exponential bounds of (5.13) can be obtained using the
same method.

For the proofs of equations (5.14) and (5.15), we can show from equations
(5.2) and (5.3) that

2
/01 Sy (tij, s) g(s)dFn(s) —|—7L/01 %Sl (tij, 5) g (s)ds = g(tij)- (5.47)

Now, let Z be the integral operator such that

/ Glt S (F FN)()

By equations (5.12) and (5.13) and the induction argument in the proof of Ny-
chka (1995), there are positive constants ki, ki* and «, such that, uniformly
fort,s€[0,1] and 0 < p <3,

@ (6ol )]0
oth *
- Kf(KT*DN171/4)‘/17(H+1)/4exp[_ 1A |] (5.48)

In addition, by Lemma 3.1 of Nychka (1995), a solution of (5.47) satisfies
Sa(t, i) = Gy (1, 1i5) + 2[5, (-, 1) ] (1)

and, when n is sufficiently large,

=

Sa(t 1)) =G (t, 1) + Y 2 [Ga (-, 1) ] (0). (5.49)

v=1

Taking Kk, > [k} kj*/(1 - KT*DN/'L’U“)], we can derive from equations (5.48)
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and (5.49) and condition (d) of Section 5.3.1 that, uniformly for ¢, s € [0, 1],

509 -Gae.9] < X |#°(GaC.0]0)

ooty [ _K*DyATY —1/4
i (s ) e (e

IN

IN

KA~ 2Dy exp(—alll/4 |t—s|>.

This completes the proof of equation (5.14). Again, equation (5.15) can be
shown by similar derivations, so the details are not repeated. |

2. Three Technical Lemmas

We now present three technical lemmas. The results of these lemmas are
used in the proofs of Theorems 5.1 and 5.2. Recall that the outcome process
Y(¢) has variance 62(¢) at time point ¢ and covariance pe(t, s) at time points
t # s, and the limit of p,(z, s) is denoted by pe(r) = limg_y; pe (2, 5).

Under the Green’s function Gy (,s) of Lemma 5.1, the next lemma gives
the dominating terms of the integrals

[ 6090w 10)ds wnd [ Gale,)pe ) £6)ds
as A tends to zero.

Lemma 5.3. If Assumptions (a) and (d) are satisfied, then, when A is
sufficiently small,

[ G900 16 ds = L A o] (550

and N
|| 61051 pelt,5)(5)ds = pel) [1+0(1)] (5.51)
hold for all t € [T, 1 — 1] with some T > 0. ]

Proof of Lemma 5.3:

By Lemma 5.1, we can show, using the properties of double exponential
distributions and straightforward algebra, that, for some positive constants k,
o and ¢, as A — 0,

‘/01 [G2(t, 5) — H2(1, )] 0*(s) £(5) ds

< ./0.1’G’l(t’s)_Hl(t’s)‘{’Gl(t’s)‘+’HA(ES)’}GZ(s)f(s)dS
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1
< / K2A, exp ( —a A4 —s\) o2(s) f(s)ds
Jo
— o (r) f(r). (5.52)

Similarly, denoting u = 7(t) and v = 7(s), we can show from (5.10) and the
properties of double exponential distributions that, for A sufficiently small,

./(;IH/%(fvs)(’z(S)f(S)ds = ./0.1 {H/ll]/y“(”’ v)rcr2 [t '(v)] {M}dv

Yflet )]
L34\ q—1/4 2
= — HAT o (t) [1+0(1)]. 5.53
5 O RO o] 659
Thus, (5.50) follows from (5.52) and (5.53). Then (5.51) can be shown by
similar calculations. |

The following lemma establishes a useful connection between the solution
g(1) of the differential equation (5.8) and the mean curve of interest p(t).

Lemma 5.4. If the mean curve u(t) satisfies Assumption (b) and g(t) is
a solution of (5.8), then g™ () — u® (1) uniformly fort€[0,1] as A —0. W

Proof of Lemma 5.4:

This lemma is a special case of Lemma 6.1 of Nychka (1995). We skip the
tedious details here to avoid repetition. |

Finally, the following lemma establishes the asymptotic normality of the
equivalent kernel estimator f(r; w**) defined in (5.11).

Lemma 5.5. Suppose that Assumptions (a) to (e) are satisfied, t is an
interior point of [0, 1], and there are positive constants Ay and ag such that,
as n— oo,

N1/219/8—>10, N7! (Zn?)ll/4—>ag and Nn~ %8 = 0.
i=1

Then [(t; w**) is asymptotically normal in the sense that, as n — oo,
(VA2 a6 wo) — ()] —>N(7tob(t), cﬁ(r)) in distribution, (5.54)
where b(t) is defined in (5.17) and o,(t) is defined in (5.18). [ |

Proof of Lemma 5.5:
By Assumptions (a) and (d), equations (5.9) and (5.10) and Lemma 5.4,
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we have that

_ 1) g () [1+o(1)]
—Ab(t) [14+0(A)]. (5.55)

To compute the variance of [(¢; w**), we consider

Var[fi(t; w™)] = Vi + Vo + V3,

where
n n;
Vi = NZ2Y Y [H(t,15) Var(Yy))],
i=1j=1
1 & : i
» = N2 Z Z Hl ! t’/l)HA (t tljz)COV(YUleljz)]
i=1j1#j=1

and, because the subjects are independent,
1 n
Vi = m Z Z [H/l (tv tiljl)Hll (t’ tizjz) COV(Yiljl ’ Yizjz)] =0.
i1#i=1]1,j2
Because Var( ,]) =02 (t,-j), we have that, by Assumption (a) and equa-

tion (5.53),

Vi = rlaf*/“(r)zv*r”“ o (1) [1+o(1)].

Similar to the derivation in (5.52), because Cov(Yijl, Y,~j2) = Ps¢ (tijl , tijz), it is
straightforward to compute that

L) 7]
< [ [[H(e,50) Ha(t,52)pels1,52) £(51) £(52)ds s [1+-0(1)]
- L) -5]p0nom)

The above equations and (5.18) imply that

%)

Var[i(t:w™)] = N"'A 4 on (1) [1+0(1)].

Finally, it can verified from Assumption (c¢) and equations (5.9) and (5.10)
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that @(r; w**) satisfies Lindeberg’s condition for double arrays of random vari-
ables. The results of the lemma follow from equation (5.55) and the central
limit theorem for double arrays (e.g., Serfling, 1980, Section 1.9.3). |

8. Proofs of Theorems 5.1 and 5.2

Given the technical results of Lemma 5.1 through Lemma 5.5, the asymp-
totic properties of the penalized spline estimator i (¢; w**) described in Theo-
rems 5.1 and 5.2 can be derived through straightforward calculations. We now
sketch the main steps for these proofs.

Proof of Theorem 5.1:
By Assumptions (a), (c) and (d) and Lemma 5.1, we have that, when n is
sufficiently large,

1nn,-

Hiw™) —u) =5 X )1 {[Sk (1,1)) — G (1, 1)) Yij} +o, [NT12A718].

i=1j=1

Then the asymptotic normality result of (5.16) is a direct consequence of
Lemma 5.5 and the above equation. ]

Proof of Theorem 5.2:
Using the variance-bias squared decomposition for (5.19), we have that

-~ Kk -~ Kk 2 n *k
MSE [fi(t; w*™)] = {E[y(t; W] —/.L(t)} +Var[fi(t w)]. (5.56)
Because Y}, ;, and Y}, ;, are independent when i # i,
Var [fi(t; w™)] = Vi + V5,

where

8 1 n n;
Vl = m Z‘I Z:l [S% (t, t,'j) Var(Y,-j)]
i=1j=

and .,
L
Vi=gr X L [Saltt) Sa(e np) Cov(¥ijy, i) ]
i=1ji#jp=1
Using Lemma 5.1 and the derivation of (5.51), we can show that, for suf-
ficiently large n,

Var[i(t;w™)] = ﬁN’l ATV FS3) 02 (1) [1+0p(1)]

+[Z (%)2—%] Pe(t) [1+0,(1)]. (5.57)

i=1
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For the bias term of (5.56), we consider that, for sufficiently large n,

l y [S;L(l‘, l‘,'j)‘u(l‘,'j)] —‘LL([). (558)
N==

M=

E[f ()]~ u(t) =

Then, by Lemma 5.5,

n n; 2
{% Y Y [Sa () p(s) —u(t)]} = 225%(1) [1 +0p(1)]. (5.59)

i=1j=1

The conclusion in equation (5.20) of Theorem 5.2 is then a direct consequence
of equations (5.56) to (5.59). |

5.4 Remarks and Literature Notes

This chapter presents a number of results for the estimation of the condi-
tional mean curve u(t) = E[Y(¢)|t] based on the penalized smoothing splines
with longitudinal sample {(Yij, t,-j) vi=1,..,nj=1, ...,ni}. The theoretical
results demonstrate that, although a penalized smoothing spline estimator
is obtained through a “global smoothing method,” it has natural connections
with a “local smoothing method” because it is asymptotically equivalent to
an equivalent kernel estimator. These theoretical implications have been cor-
roborated by the applications to the HSCT and NGHS studies in Section 5.2,
since the numerical results obtained by the penalized smoothing spline esti-
mators are similar to the results obtained by the local smoothing method in
Chapter 3 or the global smoothing method in Chapter 4.

The theoretical derivations of this chapter depend on different techniques
from the estimators in Chapters 4 and 5. As seen from the proofs of Theo-
rems 5.1 and 5.2, the crucial step for establishing the asymptotic equivalence
between the penalized smoothing spline estimator (5.3) and the equivalent
kernel estimator (5.11) relies on obtaining the approximate Green’s function
for the differential equation (5.8). Consequently, the asymptotic properties for
the penalized smoothing spline estimators are only established on a case-by-
case basis using the equivalent kernel approach. For general settings, explicit
forms of the Green’s functions of such differential equations may not be read-
ily available. Further research is needed to develop alternative approaches for
establishing the asymptotic properties of the penalized smoothing spline esti-
mators with longitudinal samples.

The results of this chapter are mainly adopted from Hoover et al. (1998)
and Chiang, Rice and Wu (2001). Theoretical derivations rely heavily on
the techniques described in Nychka (1995). Earlier results for the penal-
ized smoothing spline estimators in nonparametric regression with cross-
sectional i.i.d. data have been described in Silverman (1986), Eubank (1999),
Wahba (1975, 1990), Rice and Silverman (1991), Messer (1991), Messer and
Goldstein (1993) and Green and Silverman (1994). These are only a small
fraction of the publications in this area.
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Chapter 6

Smoothing with Time-Invariant
Covariates

The estimation and inference methods of Chapters 3 to 5 are mainly concerned
with evaluating the mean time curve E[Y(¢)] = u(r) without incorporating
the effects of potential covariates. In most practical situations, the scientific
interests of a longitudinal study are often focused on evaluating the effects of
time ¢ and a set of covariates X)) (r), =1, ..., k, which may or may not depend
on ¢, on the chosen time dependent outcome variable Y (¢). The objective of this
chapter is to present a series of methods for modeling and estimating the effects
of a set of time-invariant covariates on a real-valued longitudinal outcome
variable. Methods for the general case involving time-dependent covariates
are presented in Chapters 7 to 9.

6.1 Data Structure and Model Formulation
6.1.1 Data Structure

We assume throughout this chapter that, for each given ¢, Y (¢) is a real-valued,
continuous and time-dependent variable, and there is a set of k > 1 covariates

{X(l), ...,X<k)} which do not change with time ¢, so that the covariates are

given by a time-invariant (k+ 1) x 1 column vector X = (l,X“)7 ...,X(k>)T.

The observations for (Y(t)7 t, XT) are given by {(Y,~j7 tij, XlT) i=1,...,nj=
1,..., ni}. At the jth measurement time f;; of the ith subject, the ith sub-

ject’s observed covariates and outcome are X; = (1,Xi(1), ...,Xi<k))T and Y;j,
respectively, where X; have the same values at all the time points {t,-j L j=
1,..., ni}. Since the subjects are assumed to be independent, the measure-
ments {(Yij,tij, XIT) ri=1,...mj=1, ...,ni} are independent between dif-
ferent subjects, but are possibly correlated within the same subject. That
is, (YiljlvtilijiTl) and (YizjzvtizjzinTZ) are independent for any iy # i and
all (jl, jz). On the other hand, (Y,-jl,tijl,XiT) and (Y,-jz,tijz,XiT) are possibly
correlated for any j; # j» and all 1 <i<n.

149
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6.1.2 The Time-Varying Coefficient Model

Although the parametric and semiparametric models summarized in Chap-
ter 2 can be used to evaluate the relationship between Y () and {¢, X}, they
are only useful when this relationship belongs to a known parametric or semi-
parametric family. When there are no justifiable parametric or semiparametric
models available for the data, the resulting statistical inferences and conclu-
sions based on a misspecified model could be misleading. On the other hand,
the estimation and inference methods presented in Chapters 3 to 5 are only
appropriate for the sample {(Y,~j7 tij) i=1,...,nj=1, ...,ni} without co-
variates other than time. When covariates other than time are also involved,
unstructured nonparametric estimation of E [Y(t) |1, X] may require multivari-
ate smoothing estimators, which could be numerically unstable and difficult
to interpret in practice.

A promising alternative to the methods of Chapters 2 to 5 is to con-
sider regression models that are more flexible than the classical parametric
or semiparametric models and also have specific structures which can be eas-
ily interpreted in real applications. Hence, this leads to the term “structured
nonparametric model.” As a special case of nonparametric models with linear
structures, the varying-coefficient models have been studied by Hastie and
Tibshirani (1993) as an extension of the classical linear marginal models by
allowing the linear coeflicients to be nonparametric curves of another variable.
For the analysis of (Y(t), t, XT)7 Hoover et al. (1998) proposed to model the
conditional means of Y (f) given {r, X} by the time-varying coefficient model

Y(0) = X7 Bl1) +el0), (6.1)
where X = ( 7X<l> )T {X =1, k} are time-invariant covari-
ates, { Bit):1=0, k} are smooth coefﬁc1ent curves which are functions of
time 7, B(1) = (Bo( Bt )) , €(t) is a mean zero stochastic process for the

error term and X and 8( ) are independent.

The model (6.1) has simple and natural interpretations in real applications,
because, when a time point ¢ is fixed, the expression of (6.1) is a multivariate
linear marginal model with the continuous outcome variable ¥ (¢) and covariate
vector X. Thus, interpretations for the classical multivariate linear models
can be simply extended to the time-varying coefficient model (6.1) when ¢ is
fixed. When the time ¢ changes, the coefficients in B(r) also change with 7, so
that (Y (¢), 7, X") follows a multivariate linear model with different coefficients
{ﬁ,(t) :1=0,..., k} at different time points. Depending on the scientific nature
of the variables, it is usually reasonable in most biological applications to
assume that {[31([) :1=0, ...,k} satisfy some smoothness conditions. These
smoothness assumptions ensure that the effects of the covariates X on the
outcome variable Y (¢) do not change dramatically at any two adjacent time

points #; # h.
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6.1.3 A Useful Component-wise Representation

Since in most longitudinal studies, the subjects are randomly selected, it is
reasonable to assume that the observed covariates X; are random and the
(k+1) x (k+1) matrix E (XX") is nonsingular, so that E (XX has the unique
inverse |
T\~ ~1
E(XX") " =E_
Multiplying both sides of (6.1) with X and taking expectation, §(¢) can be
expressed as

B = (Exxr ) E[XY(1)]. (6.2)

Let e,41,741 be the (r+ 1,[+ l)th element of E;;(T Then (6.2) shows that, for
r=0,...,k,

Br(t) =E{ sz:,]er+l7l+lx(1):| Y(t)}. (6.3)

The equation (6.3) gives the expression of each component of B(¢) based on
the model (6.2) as the expectation of a function of the outcome variable Y ()
and the covariate matrix X.

Since E (XXT) is time-invariant, a simple estimator of £ (XXT) is the sam-
ple mean

~

n
Exxr =n" 'Y (XiXT). (6.4)
i=1

If EXXT is invertible, then a natural estimator of E;;T is (EXXT)717 so that
eri1,14+1 of (6.3) can be estimated by €., 41, where

~ —1
éri1141 = the (r+ 1,14 1)th element of (EXXT) . (6.5)

Substituting e.1 41 of ():;(:0 e,HJHX(l)) Y(t) with e,, nonparametric
smoothing estimators of B,(¢) can be constructed by applying the univari-
ate smoothing methods of Chapters 3 to 5 to the component-wise conditional
expectation of (Zf:o ?,HJHXU)) Y () given t. Specifically, if B,(¢), r=0, ..., k,
are smoothing estimators of fB,(¢) in (6.3), then the corresponding component-
wise smoothing estimator of B(r) is

~ ~

~ ~ T
B = (Bo(t), Bu(o), ... Be(o)) (6.6)

Note that, because the component-wise smoothing estimator B (¢) relies on
calculating the inverse of EXXT, it may be numerically unstable when EXXT is
nearly singular.

Another intuitive method for the estimation of B(¢) is to first obtain the
estimators E;)I(T and E [XY(1)] for E;)I(T and E [XY(r)], respectively, and then
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substitute Eg L, and E[XY(1)] in (6.2) with Egy, and E[XY (1)], so that B(r)
is estimated by _

B(t) = Egyr E[XY(1)]. (6.7)

Although E [XY ()] can be estimated by E [XY ()] with different smoothness

within each of its components, (6.7) suggests that the components of E(t)
are estimated by the linear combinations of the components of E;;(T and
E [XY()]. Thus, the difference between E () and E (¢) is the result of estimating
the different components of the right-side terms of (6.2).

The subtle difference between B(¢) and B(¢) can be seen by considering
the following special case of (6.2). Suppose that X = (I,X)T7 E(X)=1 and
Var(X) = 1. Then, equations (6.1) and (6.2) give that B(t) = (Bo(z), Bi (t))T,

= ;;fz and  E[XY(r)] = §°<’>+ﬁ1<t) |
U(t)+2ﬁ1(t)

The first component of E[XY(I)] is a consistent estimator of [Bo(t) + Bi(1)].
The second component of E [XY ()] is a consistent estimator of [By(r)+

2B1(t)]. Thus, B(r) is constructed by a linear combination of the consis-
tent smoothing estimators of [Bo(f) + Bi(t)] and [Bo(r) +2Bi(t)] with ran-
dom weights that depend on X;. When By(r) and Bi(r) satisfy different
smoothness conditions, larger mean squared errors may arise from estimat-
ing [Bo(t) + Bi(t)] and [Bo(r)+2Pi(¢)] than estimating fo(r) and B (¢) sepa-

rately. Thus, B(r) of (6.7) is in general less desirable than E(t) of (6.6). Similar
phenomena evidently hold for the general covariate vector X with k> 1.

6.2 Component-wise Kernel Estimators

Using (6.3) and the sample mean estimators ExxT and e,;1 741 given in (6.4)

and (6.5), we can estimate the coefficient curves B(r) = (Bo(t), ...7[3k(t))T by
the kernel smoothing method. This method, which estimates each of the com-
ponents in B(z) by a kernel estimator of E[(Zfzo E,HJHX(”) Y(t)], is moti-
vated by the intuition that, by estimating each component of B(z) separately,
different smoothing needs of the coefficient curves B,(¢), r =0, ..., k, can be
adapted by using different bandwidths.

6.2.1 Construction of Estimators through Least Squares

A component-wise kernel smoothing estimator of B,(t) can be constructed by
extending the univariate kernel approach of Section 3.1 to the mean curve of
(6.3) with a local least squares criterion based on (6.4), (6.5) and the longitu-
dinal observations. By (6.5), we can substitute e, ;41 of (6.3) with €., ;41
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and approximate (Zf:o eril,l+ lXi(l>) Y;; by a pseudo-observation

l]r = (Zer+l l+1X< )) Y

Here Y, can be viewed as an “observed value” for B, (ti j). Then, the kernel
smoothing method of Section 3.1, such as equations (3.5) and (3.6), can be
applied to the pseudo-sample

@, — @”:'—1P“,mj:1“”7m} with 0<r<k, (6.8)

r

so that E[(Zfzo?rﬂJﬂX(”) Y(t)] can be estimated by minimizing the
component-specific local score function

LrKr t hy, W Zn: Z {Wl [ ijr )]2Kr(t ;rtij>} (6.9)

i=1j=1

with respect to b,(r), where K,(-) is a kernel function, &, > 0 is a bandwidth,
w= (w17 ...,wn)T and w;, i=1,...,n, are the weights for the subjects. The

minimizer of (6.9) leads to the kernel estimator B\n K, (t; hy, w) of B,(t), which
is a linear statistic of Yi’;r, such that

Z:Z lzji IWlYt/rK [( tij)/h"]
X wik, o[t 1) /hr]

B"«,Kr (t; hy, w) = forall 0<r<k. (6.10)

The component-wise kernel estimator of B(t) = (Bo(t), ..., ﬁk(t))T is

~ ~ ~ T
BK(I;h, W) = (ﬁo’Ko(l‘;ho,W), ""ﬁk»Kk (l‘;hk, W)) s (611)

where K(-) = {Ko(-), ..., K(-)} is the collection of kernel functions and h =

(ho7 ...,hk) is the vector of bandwidths.

Similar to the kernel estimators in Section 3.1, the “subject uniform weight”
wi =1/(nn;) and the “measurement uniform welght” * =1/N are the two
commonly used weight choices in practice. When the subJect uniform weight
wi=1/(nn;), w* = (w*l‘7 ...7w:‘,)T, is used, the component-specific local score
function is

L.k, (t; hy, w") Z Z{(nn) Y7, br(t)]zKr(l‘;:ij>}, (6.12)

i=1j=1

Minimizing Ly, (#; hy, w*) with respect to b,(t), the kernel estimator of B.(r)

® w3 K- ) ]}
i:l”flzjzl K [(t—t)/he]

@m@mnﬁﬁz (6.13)
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and the kernel estimator EK (t;h, w*) is obtained by (6.11).

When the measurement uniform weight wi* = 1/N, w** = (w’f*, e, W
is used, the component specific local score function is

Ly, (13 by, W) = ZZ{ [, — (t)]zK,<t;rtij)}. (6.14)

i=1j=1

Minimizing Ly, (; hr, w**) with respect to b(t), the kernel estimator of B(t)
is

IZ [ ijr ((t_tij)/hr)]
i:leler[( —ti) /]

and the kernel estimator BK (t;h, w**) is again obtained by (6.11).
Similar to the univariate kernel smoothing estimators of Chapter 3, under-

B, (13 hyy w*) = (6.15)

smoothing or over-smoothing of the resulting estimator BK (t; h, w) is mainly
caused by unsuitable bandwidth choices, while the effect of the kernel func-
tions is rarely influential. Usual choices of kernel functions, such as the stan-
dard Gaussian kernel, the Epanechnikov kernel and other probability density
functions, normally give satisfactory results. Since the component-wise kernel
estimators in (6.11), (6.13) and (6.15) rely heavily on the time-invariant nature
of X and the sample mean estimator of E (X XT), different smoothing needs of
Br(t), r=0, ..., k, can be adjusted by selecting appropriate bandwidths #,.
The ch01ces of weighting schemes may also have profound influences on
the adequacy of the estimators. Ideally, it may be theoretically beneficial if
wi=1/(nn;) in (6.13) or wi* =N~ in (6.15) could be replaced by non-negative
weights w;, i =1, ..., n, which depend on the intra-subject correlations of the
data. However, without knowing the structures of the intra-correlations, the
natural choices wf =1/(nn;) and w;* =N~ appear to be reasonable in prac-
tice. It can be seen/\from the asymptotic results of Section 6.6 that neither
Bk, (t;h,, w*) nor Bk, (t;h,, w**) asymptotically dominates the other uni-
formly for all possible situations. The simulation study of Section 6.5 suggests
that the “subject uniform weight” wi = 1/(nn;) is practically preferable to the

“measurement uniform weight” wi* =1/N, since En K, (t; hy, w*) provides better
fits than B, k, (t; hy, w**) in many realistic situations. Because B, k, (t; hy, w**)
assigns the uniform weight N~! to all the measurement points, it is more
influenced by those subjects with large numbers of repeated measurements.

0.2.2 Cross-Validation Bandwidth Choices

Since the smoothing method is applied one at a time to the univariate compo-
nents of B (1) = (Bo(t), ..., ﬁk(t))T, the bandwidths may be selected subjectively
by examining the plots of the fitted curves and the pseudo-observations %, of
(6.8). But finding automatic bandwidths suggested by the data is still of both
theoretical and practical interest. The bandwidth vector h of (6.10) can be
selected by the two cross-validation approaches described below.
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1. Component-wise Cross-Validation Bandwidths

Given that Br, K, (t; hy, w) is simply a univariate kernel estimator for the
pseudo-observations %, for any 0 < r < k, the leave-one-subject-out cross-
validation (LSCV) method of Section 3.3 can be extended to %, to select
the component-wise bandwidth %,. Let %, ) be the pseudo-observations as
defined in (6.8) but with the ith subject’s pseudo-observations {
1, ...,n,} deleted, so that,

@r(ﬂ') = { i*jr = (Zer+l 1+1%, )Yvi*jr 1< <t # i}- (6.16)

Note that, by equations (6.4) and (6.5), the ith subject’s covariate vector X; is
still used in the computation of €., ;1. Ideally, in order to totally remove the

(=)

l_]r N

influence of the ith subject in %;

in Y* » with E(

, it may be tempting to replace the e, ;4

. +1> /41> Which is computed with the ith subject’s covariate vector
X; removed However, when the sample size n is sufficiently large, the values

of €y41,41 and Eﬁ;?_ 141 are approximately the same. Thus, for computational
simplicity, €, 1,741 is still used in the definition of 6?/,(7'.).
Let ﬁr(;{i) (t; hy, w) be the kernel estimator of (6.13) computed based on the

pseudo sample %; (=9 . Following the approach of Section 3.3, the LSCV score
of [3, &, (t: hy, w) based on Y7, and BrK (t; hr, w) can be defined by

2
LSCV, (hy, w) = ZZW,[ o= B (13 s w)} . (6.17)
i=1j=

The component-wise LSCV bandwidth ;. js., is the minimizer of LSCVk, (h,, w)
provided that it can be uniquely minimized over h,. The use of A, 4, can be

heuristically justified using the similar decomposition as in equation (3.17),
such that, by (6.17),

LSCVk, (h,, w)

= B w0 Ble)) 3 Yo [Be) =B )]

i=1j= i=1j=

+zzzw,[,j, (1)) B (1) = B, (1js v w) | (6.18)

i=1j=

The same heuristic arguments for the cross-validation score of (3.17) suggest
that, when n is large, the third term of the right side of (6.18) is approximately
zero, and the second term is approximately the average squared error (ASE)

ASE [Br,Kr(';hra w ] = Z Zw, {ﬁr(t,] Br,K,(l‘ij;hr, W)]27

i=1j=
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so that, the component-wise cross-validated bandwidth A, approximately

minimizes the average squared error ASE [B, K, (~; hy, w)]

2. Cross-Validation Bandwidth Vector

Another procedure for selecting the data-driven bandwidths, which is sug-
gested by Wu and Chiang (2000), is to compute a bandwidth vector h for

~ ~ ~ T
ﬁK(t;ha W) = (ﬁ07K0(t;h07 W)a "'aﬁk,Kk(t;hka W)) )

which minimizes the squared distance between the predicted and observed
values of Y (#) based on the model (6.1). Let BK (t h, w) be a kernel estimator

of B(t) = (Bo(t), ..., Belt )) computed using the pseudo-sample

{(Yl*ptl*ﬂxl*)l*#ls.]:L7”1*}7 (619)

which is the longitudinal sample with all the observations of the ith subject
deleted. Define

LSCVk (h; w) ZZW, [ g XTBK (t,-j;h, w)}2 (6.20)
i=1j=

to be the LSCV score for h = (ho, ...,hk)T. The cross-validated bandwidth
vector hygey = (thSCV, ...,hk_,LSCV)T is then defined to be the minimizer of
LSCVk (h; w), provided that LSCVk (h; w) can be uniquely minimized.

Similar justifications as in Section 3.3 can also be used to evaluate the
adequacy of the LSCV criterion in (6.20). In this case,

LSCVx (h; w)
ZZ;JZW,[ (T -X'B (t,] ] +,Z:1]Z: w; {XT[ t,] B\<7i>(tij;h, W)] }2
+2;Zw, [ = XT B (1) | {XT [B(e) ~ B (wshow)| ). (6.21)

The first term of the right side of (6.2 ) does not depend on the bandwidths,
while, because of the definition of [3 “)(t;h,w), the third term of (6.21) is

approximately zero. Denote by ASE [BK(, , w)] the average squared error of
XiTBK(t,‘j; h7 W), i.e

ASE B (+how)| = 3 Yo w (X [B(15) ~ Bilaihw)] )

The expectation of the second term of the right side of (6.21) is actually
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the expectation of ASE [Bf{w (-; h, w)] , which approximates the expectation of
ASE [ﬁK(, h, w)] when n is large. Thus, h;gcy is justifiable because it approx-

imately minimizes the average squared error ASE [B\K( h, w)]

3. A Combined Cross-Validation Approach

When the dimensionality of X; is high, ie., (k+ 1) is large, the search
for hygcy could be computationally intensive and numerically infeasible. The
amount of computation can escalate dramatically when the dimensionality
(k+1) is 3 or larger. In practice, it is usually easy to find a suitable range of
the bandwidths by examining the plots of the fitted curves. Within a given
range of h = (ho7 ...,hk), the value of hygcy can be approximated by com-
puting LSCVk(h; w) through a series of h = (hg, ...,hk) choices. Given that
the component-wise cross-validated bandwidth A, ., is computed based on
a univariate minimization of the LSCV score (6.17), a computationally fea-
sible approach is to combine the above two cross-validation procedures. In
this combined approach, the component-wise bandwidths (hoﬁlm,, s ISCV)T
from (6.17) are used as the initial values for h, and hygcy can be computed by
(6.20) through a grid search around the nearby values of (hwm, e, thm)T.
This combined cross-validation method for searching h;gcy could be compu-
tationally faster than a global search of hygcy based on the minimization of
LSCVk(h; w) in (6.20) alone.

6.3 Component-wise Penalized Smoothing Splines

Another smoothing method for the estimation of B(r) = (Bo(f), ..., Bk(t))T is
the roughness penalty approach based on the quantities of (6.3), (6.4) and
(6.5), which extends the method of Chapter 5 to the model (6.1). This ap-
proach leads to a class of penalized smoothing spline estimators for f(¢). We
describe here the estimators developed in Chiang, Rice and Wu (2001).

6.3.1 Estimators by Component-wise Roughness Penalty

Suppose that the design time points are contained in a compact set [a, b] and
B:(t) are twice differentiable for all 7 € [a, b]. Extending the score function
(5.1) to the pseudo-sample % of (6.8), a roughness penalized least squares
estimator, also known as penalized smoothing spline estimator, Br, RP (t; A, w)
of B,(¢) for any 0 < r <k is obtained by minimizing the following score function,
which is referred to as the penalized least squares criterion,

n o n

Jw(Bri A, RP) = ZZ{W, T — Br t,,)]2}+/l,RP[ﬁ,(-)], (6.22)

i=li=

where A, is a non-negative smoothing parameter, w = (wy, ..., w,)? with w;
being non-negative weights, and RP|[f,(-)] is a roughness penalizing function
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of Br(f) measuring the roughness or smoothness of the curve f,(r). In prac-
tice, RP[B,(-)] is unknown in advance, so that the choice of RP[B,(-)] is often
subjective.

By penalizing the integrated squares of the second derivatives of B,(z), a

penalized smoothing spline estimator E,7J(t; Ar, w) of B,(t), 0 <r <k, can be
obtained by minimizing

T (Brs Ar, B)) = ZZ{W,[,,, B (1)) +/l/ ds,  (6.23)

i=li=

where 4,, w and w; are defined in equation (6.22). Let A = (7[0, ...,lk)T be
the vector of smoothing parameters. The penalized least squares estimator of

B(r) = (Bo(t), ...7[3k(t))T based on (6.23) is
B](I; A, W) = (B\O,J(t; A{), W)7 ceey Bk,](t; lk, W))T. (624)

Similar to the component-wise kernel estimators of Section 6.2 or the pe-
nalized least squares estimators of Chapter 5, usual choices for w; include
wi=1/(nn;) and w* = 1/N. It follows from (6.23) that, when B/(s) is given, a
larger A, is associated with a larger penalty term A, ff B (s)]zds, which leads
to an over-smoothed penalized least squares estimator Erﬁs(l‘; Ar, w). On the
other hand, a smaller A, gives a smaller penalty term A, f: B/ (s)]zds, which
leads to a under-smoothed penalized least squares estimator 3,7 S(I; Ar, w).

The minimizer B,,J(t; A, w) of (6.23) is a cubic spline and a linear statis-
tic of ¥3,. This can be seen by considering the set of compactly supported
functions

Hap) = {g() : g and g’ are absolutely
continuous on [a, b], and [” [g”(s)]zds < oo}_

Setting the Gateaux derivative of Jy (Br; Ar, B”) to zero, B\n J(t; A, w) uniquely
minimizes (6.23) if and only if it satisfies the normal equation

Z Z {Wl [ ijr Bn (t A, W tl/ / ﬁ f QLr,W (s)ds7 (6.25)

i=1j=
for all g in a dense subset of 7, ;). The same argument as in Wahba (1975)
then shows that there is a symmetric function Sy, (z, s), which belongs to Ha,b)

when either ¢ or s is fixed, so that B\n J(t; Ary w) is a natural cubic spline esti-
mator given by

B\"J(t; A” W) = Zn: i [W’Sl t tl]) t/r] (6'26)

i=1j=1
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As discussed in Section 5.1, the explicit expression of S, (¢, s) is unknown, and

the theoretical properties of En J(t; Ar,y w) can be derived by approximating
Sy, (¢, s) with an equivalent kernel function, which has an explicit expression.

6.3.2 Estimators by Combined Roughness Penalty

In addition to the component-wise roughness penalized approach based on the
expression (6.3), an alternative method, which is described in Hoover et al.
(1998), is to use the expression (6.1) directly and minimize
n nj k 0) 2 k b 2
* ! !
Jo(B: A, B") = Z Z wi {Yij— {ZX, Bi (tij)] } —|—Z/'Ll / [B/'(s)]"ds (6.27)
1=0 =0 “a

i=1j=1

with respect to B(r) = (ﬁo(t), ...,ﬁk(t))T, where A;, I =0,...,k, are non-

negative smoothing parameters and A = (2{), e lk)T. The minimizer of
(6.27),

BJ* (t; 2, w) = (EO,J* (A, w), ..., Ek,]* (t; 2, w))T7 (6.28)

is then a smoothing spline estimator of B(¢) with fB; - (t; A, w) as the compo-
nent estimator of B;(z).

The penalized score functions, Ji,(Br:Ar,B)) of (6.23) and J;;(B;A,B") of
(6.27), use different squared errors and penalty terms. Thus, the estimators
BJ (t; A, w) and By (r; A, w) given in (6.24) and (6.28), respectively, may not
have the same numerical values. Computationally, J,, (ﬁr; A, B) ) is minimized
with respect to B.(¢) only, but minimizing J;,(8; A, B”) requires solving a lin-
ear system which involves all the components of B(¢) simultaneously. Conse-
quently, the computation involved in minimizing J,, (ﬁ,; A, B ) is much sim-
pler than that involved in minimizing J;, (B; A, B”). Because Br (t; Ar,w) has a
simple linear expression, its asymptotic properties can be developed by meth-
ods similar to that with cross-sectional i.i.d. data. Theoretical properties of
the spline estimators obtained by minimizing J;, ([3, A, [3”) have not been de-
veloped. Thus, the smoothing spline estimator E](t; A, w) of (6.24) has the
advantage of being computationally sAimple with known asymptotic properties
over the smoothing spline estimator - (t; A, w) of (6.28). On the other hand,
because B] (t; A, w) relies on the component-wise expression (6.3), it cannot

be applied to situations involving time-dependent covariates, while B\j* (t; A, w)
may be generally applied to situations with any covariates.

6.3.8 Cross-Validation Smoothing Parameters

The choice of smoothing parameter A, controls the size of the penalizing term
of Ju(Br; A, B)) and plays the key role for determining the appropriateness of

B\] (t; Ar, w). Unlike the kernel-based local smoothing method of Section 6.2,
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which only uses the local observations with time points #; in a neighbor-
hood around 7, the smoothing spline estimator Er_, 1(1‘; Ars w) is in principle a
global smoothing estimator, so that, an ideal choice of A, may depend on the
structures of the intra-subject correlations. But, SinceAthe correlation struc-
tures of the data are often completely unknown and By, (f; A, w) is asymp-
totically equivalent to an equivalent kernel estimator (see Section 6.7), the
cross-validation procedure of Section 6.2.2 can be similarly used for selecting
the smoothing parameters A = (AO, R lk)T.

1. Component-wise Cross-Validated Parameters

When the pseudo-observations %<7i> in (6.16) are used, the component-
wise cross-validation smoothing parameter A, for any 0 < r <k can be selected
by minimizing the cross-validation score

LSCVy (A, w) = ZZW, [ = — B\ >(r,,,/1,7w)}2 (6.29)
i=1j=

with respect to A,, where Br 7 (t, i A w) is the penalized smoothing spline

estimator computed using the pseudo-sample 67/,( ) in (6.16) and the penalized
least squares function (6.23). If LSCV, ](lr, w) can be uniquely minimized, the
minimizer A, s, of LSCV;, ](l,,w) is the component-wise leave-one-subject-
out cross-validated (LSCV) smoothing parameter. The use of A, s, can be
heuristically justified by the same derivations as in (6.18) and (6.19) that it
approxima/t\ely minimizes the average squared error of the penalized spline
estimator B ; (t; Ar, w).

2. Cross-Validated Parameter Vectors

When the squared error of EJ (t; A, w) based on the original model (6.1)
is considered, Chiang, Rice and Wu (2001) suggests to select the smoothing
parameters by the LSCV procedure which minimizes the cross-validation score
function

n n; k ~ . 2
LSCVy (2, w) = Y. Z{wi [Y,-/— Y X B (s M, W)} } (6.30)
i=1i=1 1=0 '

where Br 7 (t Ar,y w) is the smoothing spline estimator computed from (6.24)
using the sample (6.19), which is the remaining data with all the ob-
servations of the ith subject deleted. The cross-validation smoothing pa-
rameters Azscy = (107LSCV, .oy Mersev)! are defined to be the minimizer of
LSCV;(A, w), provided that LSCV;(A,w) can be uniquely minimized with re-
spect to A = (2{)7 ...,lk)T. Using the similar decomposition as in (6.21), the
cross-validated smoothing parameters Az gcy = (107 LSCVy -5 M, scv)! approxi-
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mately minimizes the average squared error of XlT E }70 (t; A, w) as a predictor
of Y,/

3. Combined Cross-Validated Parameters

Since the computation of A;gcy could be intensive for a large k when
LSCV;(A,w) is minimized directly with respect to A, the search for A;gcy
can be simplified by combining the univariate optimization algorithm of sep-
arately minimizing LSCV,J()»,, w) of (6.29) for each 0 < r <k with the algo-
rithm of minimizing LSCV; (A, w) of (6.30). In this combined approach, the first
step is to compute the component-wise cross-validated smoothing parameters
{ Ao, Iscvs - - - 77Lk,1scv} based on (6.29) as the initial values, and the second step is
to compute the combined cross-validated smoothing parameter vector which
minimizes LSCV; (A, w) in (6.30) over a grid value around {XOJSCW...,MJSCV}.
This combined cross-validation procedure, which uses {%,lscv,...,lk7lscv} as
the initial values, may speed up the computation for the approximate values
of Ascv = (Ao,zscvs- - Ausev)” -

6.4 Bootstrap Confidence Intervals

Since the numbers of repeated measurements n;, i = 1,..., n, are allowed to
be different and the possible intra-subject correlations of the data are often
completely unknown, the corresponding asymptotic distributions of the esti-
mators may involve bias and correlation terms which are difficult to estimate.
Statistical inferences based on the asymptotic distributions of the smoothing
estimators may be difficult to implement in practice. The confidence intervals
described in this section follow the same framework of resampling-subject
bootstrap described in Chapters 3 to 5. When the context is clear, we denote

by E,(t) any estimator of fB,(f) given in Sections 6.2 and 6.3.

Approximate Bootstrap Pointwise Confidence Intervals:

(a) Computing Bootstrap Estimators. Generate B independent bootstrap
samples using the resampling-subject bootstrap procedure of Section 3.4.1

and compute the B bootstrap estimators {Bfl(t), e AfB(t)} of B(t).
(b) Approximate Bootstrap Confidence Interval. Let Lf a/z(t) and

Ufa/z(t) be the [100 x (a/2)]th and [100 x (1 —a/2)]th, i.e., lower and up-

per [100 X (a/Z)]th, percentiles, respectively, calculated based on the above
B bootstrap estimators. The approximate [100 x (1 — a)]% bootstrap confi-
dence interval for B.(t) is given by

(20020, UL apt)). (6.31)

The normal approzimated bootstrap confidence interval for B,(t) is

Br(t) 21 app x5e(1:BY). (6.32)
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where Se(t; Bb) is the estimated standard deviation of Br(t) from the B boot-

r

strap estimators {Bf’l(l)7 ey AfB(t)}, such that,

sAe(t; Bf) = {ﬁi [A,{’S(t) - % y Ar}f;(t)] 2}1/2’ (6.33)

and z)_q3 is the [100 x (1 — &/2)]th percentile of the standard normal dis-
tribution. a

Similar to the procedures of Sections 4.2 and 5.1, the bootstrap confidence
intervals described above ignore the biases of the smoothing estimators. For
datasets with large n, the biases of the smoothing estimators are small, so
that ignoring the biases does not have a significant impact on the coverage
probabilities of the confidence intervals given in (6.31), (6.32) and (6.33).

6.5 R Implementation
6.5.1 The BMACS CD/ Data

The BMACS CD4 data has been described in Section 1.2. In Section 2.4.1,
we evaluated certain covariate effects on the post-infection CD4 percentage
using a linear mixed-effects model where the covariate effects are assumed to
be constant with time 7. In Sections 3.5.2 and 4.3.2, we used the unstructured
local smoothing method and spline-based smoothing method to estimate the
mean time curve of CD4 percentage after HIV infection without considering
other baseline covariates. Here, we use this dataset to illustrate how to fit a
flexible structured nonparametric model (6.1), in which the model coefficients
B(t) are allowed to vary with time ¢.

We consider evaluating the effects of three time-invariant covariates, pre-
HIV infection CD4 percentage, cigarette smoking, and age at HIV infection
on the mean CD4 percentage after HIV infection using the model (6.1). Let
t;j be the time (in years) of the jth measurement for the ith individual after
HIV infection, and Y;; be the ith individual’s CD4 percentage at time #;; post-
infection. For the covariates, let X(!) be the pre-infection CD4 percentage, X )
be the individual’s cigarettes smoking status (1 indicates a smoker, 0 indicates
a nonsmoker), and X©) be the ith individual’s age at HIV infection. To obtain
a better interpretation of our results, the covariates X(!) and X®) are centered
by subtracting their corresponding sample averages from the individual values.
The observed centered covariates for the ith subject are

xV = ith subject’s pre-infection CD4 percentage

— sample mean of pre-infection CD4 percentage, (6.34)

>
<
(%)
=
[

ith subject’s age at HIV infection

— sample mean of age at HIV infection.
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Figure 6.1 Covariate effects on post-infection CDj percentage using kernel esti-
mators. The solid curves in (A)-(D) show the kernel estimators Pk, (t; hr, w),
r=0,1,2,3, respectively, based on (6.13) using a standard Gaussian kernel and
h=15,r=0,1,2,3. The dashed curves indicate the corresponding 95% pointwise
bootstrap confidence intervals.

Consequently, the time-varying coeflicient model is

Yij = Bo (i) + Bi (1) X\ + Ba (1) X2+ Bs (1) XV + &5, (6.35)

where g;; is the mean zero error term at time #;;. Based on (6.34), (6.35) and the
computed sample means of pre-infection CD4 percentage and age at HIV infec-
tion, the baseline CD4 percentage curve Py(t) represents the mean time curve
of CD4 percentage for a nonsmoker with the sample average pre-infection CD4
of 42.9% and the average HIV infection age of 34.2 years, and f;(¢), i =1, 2, 3,
represent the effects of pre-infection CD4 percentage, cigarette smoking, and
age at infection, respectively, on the post-infection CD4 percentage.

Once we have the pseudo-samples for the baseline values and the three
covariates of interest, we can estimate the baseline mean curve and each of the
three covariate effects by the component-wise kernel smoothing method and
penalized smoothing splines in Sections 6.2 and 6.3. The following R commands
are used to compute the quantities in equations (6.4) and (6.5) and generate
the pseudo-samples as in (6.8):



164 SMOOTHING WITH TIME-INVARIANT COVARIATES

A. Baseline CD4 B. Pre-infection CD4
o Q ]
¥ -
v |
@
v
3 81 °
o k5
2 g R
3 |53
1] o
T o | [$)
24
B ]
o | e
- T T T T T T T 'T T T T T T T T
0 1 2 3 4 5 6 0 1 2 3 4 5 6
Years Years
C. Smoking D. Age
o o
« -
o |
” 0 |
€ £ °
2 k3]
o o
E o A E o A
2 3
o [SI:]
S 4
o B []
T —
T
o 0
a -4
! T T T T T T T ! T T T T T T T
0 1 2 3 4 5 6 0 1 2 3 4 5 6
Years Years

Figure 6.2 Covariate effects on post-infection CD/ percentage using smoothing spline
estimators. The solid curves in (A)-(D) show the smoothing spline estimators
B,J(t;lr, w), r=0,1,2,3, respectively, based on (6.23) using the smoothing param-
eters Arscy = (0.84,4.4,1.2,5.2)T for r=0,1,2,3. The dashed curves indicate the
corresponding 95% pointwise bootstrap confidence intervals.

Obtain the sample size, N=283 for BMACS

N <- length(unique (BMACS$ID))

Obtain the baseline covariate:

first observation per subject ID

Xi <- do.call("rbind", as.list(by(BMACS[,c("preCD4C", "Smoke",

"ageC")], BMACS$ID, head, n=1)))

Formula (6.4-6.5)

Xi <- as.matrix(cbind(1,Xi))

> EXX <- Reduce("+",

lapply(1:N, function(i) Xil[i,] J*% t(Xil[i,])))

> EstInv <- solve(EXX/N)

Obtain the four pseudo longitudinal samples

> eX <- data.frame(IDD=1:N,

eX1 = apply(t(t(Xi)*EstInv[1,]), 1, sum),

eX2 = apply(t(t(Xi)*EstInv[2,]), 1, sum),
1
1

** vV # % V R

\

H*

eX3 = apply(t(t(Xi)*EstInv[3,]), 1, sum),
eX4 = apply(t(t(Xi)*EstInv[4,]), 1, sum))
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> BMACS <- merge(BMACS, eX, by="IDD")
> BMACS$PseudoY <- with(BMACS, cbind(eX1, eX2, eX3, eX4)*CD4)

Figure 6.1 shows the estimated B,(r), r =0, 1,2, 3, based on (6.13) using
the standard Gaussian kernel and a subjective bandwidth choice of h, = 1.5,
r=0,1,2,3, by examining the estimated coefficient curves. The dashed lines
present the corresponding bootstrap percentile 95% pointwise confidence inter-
vals asin (6.31) for 59 equally spaced time points between 0.1 and 5.9 years. We
can also choose the bandwidth vectors based on cross-validation as described
in Section 6.2.2. With a quick grid search in the range of 0.5 to 3 for each
component of the bandwidth vector, the bandwidth h = (0.5, 2.5, 3.0, 2.0) has
the minimum LSCV score in (6.17). The kernel estimates with cross-validated
bandwidths are similar compared to the coeflicient curves with subjective
bandwidths in Figure 6.1.

Figure 6.2 shows the estimated B,(¢), r =0, 1,2,3, based on (6.24) us-
ing the penalized smoothing splines (6.23) with the subject uniform mea-
surement weight and the cross-validated smoothing parameters Ayscy =
(0.84,4.4,1.2,5.2)T. For the ease of computation, a series of grid values for
each A, in a small window around the cross-validated A, rscv (selected only for
the rth coefficient curve) are used for r =0, 1, 2, 3, instead of searching over
a 4-dimensional vector space in a wide range. The dashed lines represent the
corresponding bootstrap 95% pointwise confidence intervals as in (6.32) for
time points between 0.1 and 5.9 years.

Both Figures 6.1 and 6.2 show that the mean baseline CD4 percentage
decreases quickly after HIV infection but the rate of declining is slowing down
about 4 years post-infection. Consistent with the results from fitting a lin-
ear mixed-effects model in Section 2.4.1, neither smoking nor age at infection
show a significant effect on the post-infection CD4 percentage with wide 95%
confidence intervals covering the null effect. However, the pre-infection CD4
percentage seems to be positively associated with the post-infection CD4 per-
centage and its coefficient may be time-varying with a larger effect at the
beginning of HIV infection.

6.5.2 A Simulation Study

We demonstrate here the performance of the estimation methods in Sec-
tions 6.2 and 6.3 through a simulation study. The simulation design has the
data structure similar to the BMACS CD4 example. The simulated data
are generated based on the time-varying coefficient model (6.1) with time-
invariant covariates, X = (X M, x (2))T, where X(U is a binary random variable
having the Bernoulli distribution with p = 0.5, X® is a continuous random
variable having the normal distribution with mean 0 and standard deviation 4,
and X( and X® are independent. The three nonlinear time-varying coeffi-
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Figure 6.3 The solid curves show the true values of Bo(t), Bi(t) and Ba(t), respec-
tively. The corresponding dotted and dashed curves are the averages of the estimated
curves over 1000 simulated samples based on the kernel smoothing estimates with
the standard Gaussian kernel and the penalized smoothing spline estimates using the
cross-validated bandwidths and smoothing parameters, respectively.

cients B,(t), r=0, 1, 2, are given by

Bo(t) = 3.5+6.5sin(17/60),
Bi(r) = —02—1.6cos[(t—30)7/60], (6.36)
Ba(t) = 0.25-0.0074[(30—1)/10]".

Taking into account the common scenario in epidemiological studies that
the subjects may randomly miss some scheduled visits, the time points #;
can be generated from a set of pre-specified values. As shown in the real
data examples in Section 1.2.2; the number of repeated measurements for
each subject often range from 1 to 20, we consider here the “unbalanced”
design in the sense that the time points #; may not be the same for all the
subjects. Thus, in each simulated sample with n =400 subjects, we assume that
the subjects are scheduled to be observed at 31 equally spaced time design
points {0, 1,...,30}. However, at each given time point, a subject has 60%
probability to be randomly missing. This leads to unequal numbers of repeated
measurements n; for individual subjects. In addition, the random errors &; are
generated from the Gaussian process with zero mean and covariance function

0.0625 exp ( — ‘tiljl —Tliyj, ), if iy =ip;
0, if iy # iy

(6.37)

Cov(&ij,, €rjp) = {

The time-dependent responses Y;; are obtained by substituting #;, X;, &; with
the correlations (6.37), and the coefficient curves B,(z) of (6.36) into (6.1).
For each simulated sample {(Yij, tij, X,T) i=1,...,400;j =1, ...,n,-}, we
estimate the coefficient curves, B,.(r), r =0, 1,2, by applying the estimation
procedures to obtain the kernel smoothing estimators in (6.13) with the stan-
dard Gaussian kernel and the penalized smoothing spline estimators in (6.23)
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using the cross-validated bandwidths and smoothing parameters, respectively.
We repeat the simulation 1000 times. Figure 6.3 shows the true curves of
Bo(t), Bi(t), B2(t), and the averages of the estimated curves over all the sim-
ulated samples. These simulation results demonstrate that both estimation
approaches provide reasonably good estimators at least for the interior time
points of the time-varying coefficients. But, compared to the penalized smooth-
ing spline estimators, the kernel estimators have slightly larger bias near the
boundary.

6.6 Asymptotic Properties for Kernel Estimators

We derive in this section the asymptotic representations of the mean squared
errors and the mean integrated squared errors of B, (1; -, w) given in (6.10).
Special cases for the wf =1/(nn;) and wi* = 1/N weights are direct conse-

quences of the general asymptotic results for B, g, (t; hy, w).

6.6.1 Mean Squared Errors

Similar to the asymptotic setup of Section 3.6, we specify for mathematical
simplicity that the time points {tij ri=1,...,mj=1,..., n,~}7 are randomly
selected from a cumulative distribution function F(-) with density f(-). But
nj, i=1,...,n, are assumed to be nonrandom. This corresponds to random
designs in regression analysis. Designs with nonrandom #;; can be viewed as a
special case with F(-) having point mass at the given values of #;;.

Because, by the expression of (6.11), BK (t; h, w) is a R¥1-valued vector, its
distance from B(t) = (Bo(?), ..., ﬁk(t))T can be measured by different indices.
Suppose that the statistical objective is to evaluate the adequacy of one com-
ponent Bk, (t; hy, w) at a time point 7. A natural risk index for Bk, (t; hy, w)
at time point ¢ is the mean squared error defined by

MSE* By (15 by, w) | = E{ (B (1 ey w) Brm]z}. (6.38)

For the risk of the vector estimator Bk (t; h, w) at time point ¢, an obvious
choice is the linear combination of the component-wise mean squared errors,

st [Bsinon)] = B [Beloinw) — pio)] W [Be(rinow) - )]

- Zk%)WE{ [Br,K, (13 hr, w) — ﬁ,(;)r}, (6.39)

where W is a (k+1) x (k+ 1) diagonal matrix of weights with nonnegative
elements {Wo7 e, Wk}.

Similar to the situations in kernel regression estimators discllssed in Sec-
tion 3.6.1, the conditional moments of the kernel estimators B, g, (1‘;hr,w)7
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hence, the right-side terms of (6.38) and (6.39), may not exist, so that modi-
fications of the mean squared errors defined in (6.38) and (6.39) are used. It

follows from (6.10) that B"«,Kr (t; hr, w) can be written as

By k. (t: hyy w) = [ﬁ,{, (t; by, w)} iy ki, (£ e, W), (6.40)

where the right side terms are given by

iy, (5 By, ) ZZ[( ),j, (t;:”’)] (6.41)

and

Frk, (85 e, ) ZZ[( L (hf"’)} (6.42)

Similar to the derivation of (3.21), straightforward algebra using (6.40), (6.41)
and (6.42) shows that

[1 - dr,K, (t; hy, W)] {B\r,K, (t; hy, W) - Br(t)}
= [r@)]" [mK (t: hyy w) = Bo(0) Fr (1 B, w)} : (6.43)

where d,. g, (t; hy, w) =1- [ﬁ,K, (t; hy, w) /f(t)] For any interior point ¢ of the
support of f(-), it can be shown by the same method used in (3.37) and
(3.38) of Section 3.6 that dy.k, (t; hy, w) — 0 in probability as n — e and h, —
0. Then, applying direct algebra to (6.41), (6.42) and (6.43), the following
approximation holds in probability when the sample size n is sufficiently large,

[140,(1)] [B},G (t: by, w) — ﬁr(t)] = £ () Rk, (8 By W), (6.44)
where R,k (t; he, w) = ik, (13 By W) — B, (t) frx. (t; hry w).

Using the approximation give in (6.44), the local and global risks of
Bk, (~; hy, w) can be defined by the modified mean squared error,

MSE {B s w)] - E{ {ﬁ,, K (3, W)/ f(t)} 2} (6.45)

and the modified mean integrated squared error,
MISE By, (. w) | = / MSE (B, x; (s: by w)| m(s)ds,  (6.46)
respectively, where 7(s) is a known non-negative weight function supported

by a compact subset in the interior of the support of f(-). As in (3.40), the
assumption that m(-) has compact support within the support of f(-) is to



ASYMPTOTIC PROPERTIES FOR KERNEL ESTIMATORS 169

remove the boundary effects of the kernel estimators. Based on the definitions
of (6.45) and (6.46), the local and global risks of Bk (-; h, w) are measured by

~ k ~
MSE B (t:h,w)| = Y. W, MSE By, (15 by, w) | (6.47)
r=0
and )
MISE B (-sh, w)| = Y Wy MISE Bk, (. w)| (6.48)
r=0
respectively, where {Wg7 e Wk} are the known non-negative constants defined
in (6.39).

6.6.2  Asymptotic Assumptions

We make the following assumptions throughout this chapter for the asymptotic
properties of MSE [BK (t ;h, w)] and MISE [ﬁK( s h, w)] defined in (6.47) and
(6.48):

(a) For all t on the real line, f(t) is continuously differentiable and there
are non-negative constants py, r =0, ..., k, so that B(t) are (p,+2) times
continuously differentiable with respect to t.

(b) For allr,1=0,... k, E[\X(’)m and the (2+ 8)th moments of |?r+17l+1|
are finite for some 6 > 0.

(c) The variance and covariance of the error process €(t) satisfy

o%(t) =E[e*(t)] <o and pe(t) =lLmE [e(r)e(r')] < oo
t'—t
Furthermore, 6%(t) and pe(t) are continuous for all t on the real line.

(d) The kernel function K,(+) is a compactly supported (p,+2) th order kernel
which satisfies [u K, (u)du=0 for all 1 < j<p,+2, [K(u)du=1,

My 12 (Kr) = /u”’*zK,(u)du <o and R(K,)= /K,z(u)du < oo,

e e weight vector w = (wy, ..., wy satisfies w; > or a <i<n,
The weigh T satisfi 0 for all 1 <i
P(win) =1, X, (win?) =0(n") and X1, (Win;) — 0 as n— oo.

(f) The bandwidth h,. > 0 satisfies hy — 0, nhy — e and Y1, (wl2 ni)/h, —0 as

n— oo, d

Similar to the assumptions for the unstructured kernel estimation in Sec-
tion 3.6, we have that 62(t) > pe(t) in general, and the strict inequality be-
tween 0 (t) and pg(t) happens when g; includes an independent measurement
error, e.g., &; satisfies the white noise model &; = s(tij) + W;, where s(t) is a
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mean zero Gaussian stationary process and W; is an independent measurement
error. Conditions such as the compact support of K,(-) and the smoothness
conditions of f(¢), B,(t), 6%(t) and pe(t), are assumed for the simplicity of the
derivations and may be relaxed in practice. Analogous asymptotic results may
be derived when these conditions are modified or even weakened. For exam-
ple, noncompact support kernels, such as the standard Gaussian kernels, are
commonly used in practice and usually lead to satisfactory results.

6.6.8 Asymptotic Risk Representations

By (6.45), the mean squared error of B,,Kr(t;hhw) is defined through
the second moment of f’l(t)ﬁr,Kr(t;h,,w). The bias and variance of
f’l(t)I/?\r_,Kr (t; hy, w) are

B[B,, & (£ hr, w)] —E [f*l(t)ﬁr, & (£ hr, w)] (6.49)
and N
V[ﬁr,K,(t;h,, w)] — ()Var[ k(65 B, w)} (6.50)
respectively, and the mean squared error of (6.45) has the decomposition
MSE [E,K, (s by, w)} — B [E,K, (t: hy, w)} +V[§,,K, (t: hy, w)]. (6.51)

An important fact for deriving the asymptotic expression of B[En K, (t; hy, w)]
and V [[3,71(, (t; hy, w)] is that

~ ~1/2
ritir1 = eri1i41+ 0p(n /)-

For simplicity, the derivations of B[Enlﬂ (t; hy, w)] and V[Br,Kr (t; hy, w)] here
only involve the n'/? convergence rate of &, 1,1+1, but not the exact asymptotic
expression of (eArHJH — €r+1,l+1)-

The next theorem summarizes the asymptotic expressions of the bias,
variance, mean squared errors and mean integrated squared errors of the

component-wise kernel estimators of B(r) = (Bo(t),. .. ,ﬁk(t))T. Let

MmO (1) i Y {Brl ) Br, (2) { r Xry (ier+l,l+1Xl>2:| } — B (1),

r= 0r2 0

M) = MO0+ KZ €ril, 1+1X1>2]7

MPt) = MO0 +pe(t) KZ €ryl, 1+1X1>2]7

=0

ﬁrp,+2 B! (prt1) f(t
er(t) = M(Pr+2> (Kr) |: ([)r + 2(;') (pr + 1()3f(()):|

0x(t) = f(ORK)MM ().
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Theorem 6.1. Suppose that t is in the interior of the support of f(-) and
Assumptions (a) to (f) are satisfied. The following conclusions hold.

(a) When n is sufficiently large, the asymptotic bias and wvariance of
Brx, (t; hy, w) have the following expressions

B[Bor (11 w)| = 72000 +o (D) O (652)
and

1% {B,,K, (t; hr, w)]
= {hrl {Z (w%ni)] 02(1) + [

i=1

BB, (15 1y, w) | O(n ™) + O(n”"). (6.53)

(b) If, in additional to Assumptions (a) to (f), hy also satisfies

n
n'2hPrt? o0 and nZ(w%ni)/h,—wo as n— oo,
i=1

the right side terms in (6.52) and (6.53) reduce to, respectively,

B[B,,K, (t: hy, w)] — W2 0,,(1) [1+0(1)],

and
4 [Br,K, (3 1, w)] =h, ! {Z (wi n;)} 0, (t) [1+0(1)] + O(n /2 h0r+2).
i=1

(c) For sufficiently large n, the asymptotic expressions of MSE [En[(r (t; hy, w)] ,
MISE [En[(r (~; hy, w)] , MSE [BK (t; h, w)] and MISE [EK('; h, w)] are obtained

by substituting B[Br,Kr (z‘;hr7 w)] and V[ﬁr,Kr (t;h,, w)] in (6.51), (6.46),
(6.47) and (6.48) with the right-side terms of (6.52) and (6.53), respec-
tively. |

Proof of Theorem 6.1 is given in Section 6.6.6.

The next theorem, which is a consequence of Theorem 6.1, shows the the-
oretically optimalAbandWidth choices and the corresponding optimal mean
squared errors of Bk, (t; hy., w) when the numbers of repeated measurements
{ni i=1, ,n} are bounded. In practice, the asymptotic mean squared er-
rors under the case of {ni i=1, ,n} bounded and n tending to infinity
may be used to approximate the finite sample mean squared errors when
{ni i=1, ,n} are small relative to n.
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Theorem 6.2. Suppose that the assumptions of Theorem 6.1 are satisfied,
n; are bounded, i.e., nj < c for somec>1 and alli=1,... n, and

n
< Z (wl2 ni) <n! ¢y for some constants ¢y >0 and ¢y > 0.

The following asymptotic results hold:
(a) The optimal bandwidths hy,op(t) and by, op minimizing MSE [B\M(r (t; hy, W)]
and MISE [ﬁr’Kr<~; hy, w)] , respectively, for all h, >0, are given by

n 1/(2pr+5) 1/(2pr+5)
Q2r(t) ] 4
rol’t [,XI (W nj :| |:2(pr+2) Q%r(t) (65 )

and

n 1/(2pr+5) : 1/(2p/+5)
2 jer(S)TE(S)dS
ropt [; wi nj :| {2(Pr+2) [j Q%r(S)TE(S) ds] } . (6'55)

(b) The asymptotically optimal MSE and MISE corresponding to hy,op(t)
and hy.opt, Tespectively, are given by

MSE [/? & (5 hrop(8), W)}

n (2p,+4)/(2pr+5)
~ [ )]
i=1

x| @) L 04 )OI [ 0(1)] (6.56)

[er(t)] (2p,+4)/(2pr+5) [er(t):l 2/(2pr+5)

and

MISE Bk, (-5 ropr. )|

|:zn:( ) ):| (2pr+4)/(2pr+5) |:/ (2pr+4)/(2pr+5)
= w; n; Q2r :|

] 1/(2ps+5)

x { 02, (s) m(s)ds (6.57)

x [(2;), +4) GRS | (9 4 4) 1/(2’”5)} [1+0(1)].

(¢) The MSE [B\K(t;h,,m(t),w)] and MISE [ﬁK( opts W )] corresponding to
the theoretically optimal bandwidths

T T
hopt(t) = (hO,opf(t)a B hk,opt(")) and hopt = (hO,oph [EEX} hr,opt)

are obtained by substituting MSE [Br,Kr (t; hy, w)] and MISE [EnKr<'§hr7 w)]
in (6.47) and (6.48) with the right side of (6.56) and (6.57). [ |

Proof of Theorem 6.2 is given in Section 6.6.6.
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0.6.4 Remarks and Implications

The results of Theorems 6.1 and 6.2 lead to a few immediate consequences.

1. Consistency

The estimator B\n K, (t; hy, w) is asymptotically consistent (or simply con-
sistent) for B,(r) if MSE [En[(r (t;he,w)] = 0 as n — oo. It immediately fol-
lows from Theorem 6.1 that EnKr (t; hy, w) is consistent if and only if A, — 0
and h ' YL, (w?n;) — 0 as n — eo. The intra-subject correlations of the data

have no effect on the asymptotic expressions of the bias B[Br, K, (t;h,, w)]
But, depending on the values of Y} , (wl2 ni) when n is sufficiently large, the
intra-subject correlations may influence the values of the asymptotic variance

V(B (13 by w)].

2. Theoretically Optimal Bandwidths

It is important to note that, since MSE [B\n](r (t; Ry ope(t), w)] measures the

risk of the estimator EnKr (t;h,,op,(t),w) at a given time point ¢, the opti-
mal bandwidth A4, .y (t) depends on ¢. In other words, the theoretically opti-
mal bandwidths, which minimize the dominating term of (6.56), are possibly
different at different time points. On the other hand, the theoretically opti-
mal bandwidth ;. op, which minimizes the dominating term of (6.57) does
not depend on any specific time point. Thus, depending on the objectives of
the longitudinal analysis, the theoretically local optimal bandwidth A, ()
and the theoretically global optimal bandwidth £, ,,; are possibly different.
In real applications, the statistical objective is usually to estimate the coeffi-
cient curve f,(¢) for ¢ over a range of interest, so that the global risk measure
MISE [Br,Kr(ﬁ hy, w)] and its corresponding optimal bandwidth A, ., are usu-
ally more relevant.

3. Practical Bandwidths

The explicit expressions of the optimal bandwidths Ay, o (f) and hy. opr given
in (6.54) and (6.55) are still not ready for practical use, because they depend
on the derivatives of the unknown coefficient curves. Although, in principle,
it is possible to estimate these unknown quantities and compute these band-
widths by plugging in the estimated quantities into the expressions of (6.54)
and (6.55), these approaches do not generally work well in practice, because
the derivatives of the coefficient curves are difficult to estimate. Thus, the ex-
pressions of (6.54) and (6.55) can only be used as a theoretical guideline for the
convergence rates of Ay, op; (1) and ;. opr as functions of n and {ni i=1,..., n}7
while the exact values of hy. oy (f) and hyop are generally not available and
difficult to estimate. The resampling subject cross-validation procedures of
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Section 6.2.2 remain to be the most useful approach for selecting the band-
widths in practice.

6.6.5 Useful Special Cases

The results of Theorems 6.1 and 6.2 are derived for the general weight choices
w= (w17 ...7w,1)T. Different expressions of MSE and MISE may be derived
based on Theorems 6.1 and 6.2 when the specific form of w is provided. Since
the subject uniform weight w* = (1/(nny), ..., 1/(n nn))T and the measurement
uniform weight w** = (1/N, ..., 1 /N)T are the two most commonly used weight
choices in practice, this section presents some direct consequences of Theorems
6.1 and 6.2 for these two weight choices.

1. Subject Uniform Weight
For the weight choice wi = 1/(nn;), it follows that

Y [(wi)n] = ¥ ()

=1

so that the following two corollaries are direct consequences of Theorems 6.1
and 6.2. First, the following corollary shows the convergence rates for the bias
and variance terms of B, g, (t; hy, w*).

Corollary 6.1. Suppose that t is an interior point of the support of f(-),
the weight vector w* = (w’f, el w:‘,)T, wi= 1/(nn,~), is used, and Assumptions
(a)-(d) and (f) are satisfied. When n is sufficiently large, B[B\r,Kr (t; hey w*)],
V[EKK, (t;h,, w*)], MSE [En[(r (t;h,7 w*)] and MISE [B,,K, (t;h,, w*)] are given
by the corresponding terms in Theorem 6.1 by substituting Y1, (le ni) with

i [1/ (i) "

The next corollary shows that, under the theoretically optimal bandwidth

choices, the optimal convergence rate for the MSE and MISE of Br, K, (t; hy, w*)

iS[ n_ 1(}12}’1) 1]*(2Pr+4)/(2ﬂr+5).

Corollary 6.2. Under the assumptions of Theorem 6.2, the pointwise op-
timal bandwidth hy.op(t) and the global optimal bandwidth hy. .y for the weight
wi = 1/(nn;) are given by (6.54) and (6.55), respectively, with Y}, (w?n;)

substituted by Y1, (n n) L The optimal MSE [ﬁnKr(t,hwp,( ), *)] and
MISE [ﬁrK,( ropts W¥)| are given by (6.56) and (6.57), respectively, with
© o (wing) substituted by Yi_, (n*n; )71. [ |

In Corollary 6.2, n;, i =1,...,n, are assumed to be bounded, i.e., n; <
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¢ for some constant ¢ > 0. Consequently, n~'¢c; < Y%, (i12n,~)71 <nle¢, for
some Sonstants c1 >0 and ¢ > 0. ThAis implies that the best rate for both
MSE [ﬁ,ﬁK, (t; hr,opi (1), w*)] and MISE [ﬁnKr('; hr,opts w*)] converging to zero is
n(zpr+4)/<2pr+5) .

2. Measurement Uniform Weight

i
lowing two corollaries are direct consequences of Theorems 6.1 and 6.2 by
substituting Y7, (w?n;) with 1/N.

For the weight choice wi* = 1/N, we have YI , (w**)zni =1/N. The fol-

Corollary 6.3. Suppose that t is an interior point of the sup-
port of f(-), the weight vector w** = (w’l‘*7...7w,’;*)T with wi* = 1/N is
used, and Assumptions (a)-(d) and (f) are satisfied. When n is suffi-
ciently large, B[Br_,Kr(z‘;h,7 w**)], V[B\nK,(I;h,, w**)], MSE[B\r_,Kr(z‘;h,7 w**)]
and MISE [En[(r (t; hy, w**)] are given by the corresponding terms in Theorem
6.1 by substituting Y1, (wizni) with 1/N. |

As a consequence of Theorem 6.2, the next corollary shows that the optimal
convergence rate for the MSE and MISE of B, g, (t; hy, w**) is N~ (@prt4)/(2pr+5)

Corollary 6.4. Under the assumptions of Theorem 6.2, the pointwise op-
timal bandwidth hy.op(t) and the global optimal hy.op for the weight wi* =1/N
are given by (6.54) and (6.55), respectively, with ¥}, (w?ni) substituted by
1/N. The optimal MSE [B\V7Kr (t; B ope (1), w**)] and MISE [E,7K,(~; hropt, w**)]
corresponding to hyop(t) and hyop are given by (6.46) and (6.47), respec-
tively, with ¥, (w?n;) substituted by 1/N. |

If the numbers of repeated measurements n;, i = 1,...,n, are bounded,
then N/n is bounded, so that, by Corollary 6.4, the optimal rate for both
MSE [BM(, (t; By ope (1), w**)] and MISE [ﬁr,K, ( R opts w**)] converging to zero is
n@rrt4)/(2prt3) More generally, the convergence rates of MSE [[3,71(, (t; hy, w)]
and MISE [ﬁ,,K,(-;hhw)] depend on whether and how n;, i =0,...,n, con-
verge to infinity relative to n — oo. In practice, it is usually unknown that
whether or how n; converge to infinity as n — oo, so that any bandwidth choices
purely minimizing the asymptotic expressions of MSE [ﬁr,K, (t;hr,w)] and
MISE [Br K,(~; hy, w)] may not be preferable. In contrast, the cross-validation
bandwidths of Section 6.2.2 and the bootstrap inference procedures of Sec-
tion 6.4 only rely on the available data, which do not depend on the potentially
unrealistic assumptions.
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0.6.6 Theoretical Derivations

We provide here the proofs of Theorems 6.1 and 6.2.

1. Proof of Theorem 6.1:
Following equations (6.1), (6.3), (6.4), (6.5) and (6.8), we have that

k k
Kj,Z{ {Zer+llz+1X ]1311 tu} [Z +rl+1X ]Sija

=0 hL=0

and the obvious identity

B0 = y [x X (z erinnn X)) (0] | (6.58)

11=0 hL=0

holds for all ¥ =0, ..., k. By Assumption (b), the definition of &, , 1, equation
(6.3) and the fact that

71/2)

erinit1 = eririy1+0p (”
imply that
k

E(Yj|uj=5) = ZE{ [Zer+llz+1X ]}ﬁll()

11=0 -

= B(s)+0(n" 1/2).
It then follows from (6.36), (6.40), (6.45) and the change of variables that,
when 7 is sufficiently large,

B {Enlﬂ (t; hr, w)]

= i B L el =) - 0] & (5) soras

i=1j=1"
= ) / (B (t = hyu) — B ()] £ (¢ — hyu) Ko () du+ O (n /2.
The asymptotic expression of (6.52) follows from Assumption (d) and the
Taylor expansions of B,(t —hyu) and f(t —hyu) at B,(t) and f(r), respectively.
To derive the asymptotic expression of V [B\, K, (t; hy, W)] , it is useful to first
consider the decomposition

[ffl (t)R,.x, (t; hy, w)} g Aﬁ”(r) +4% (1) +Aﬁ3>(t)7

where, with Zj-(t) =w; [Y, — B:(1)], the Al (1), 1=1,2,3, are defined by

r

AV = - Z Z [ i1 ( h:ijﬂ,

i=1j=

BT oo (S5

=1 j1#j=1

2>

S

P
-~

=
I
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and

O =200 8 Y Bl Zusrlo () i (2],

iW#ip j1,J2=1

Using (6.1), (6.2) and straightforward computation, it follows that

k
Z2,(0) = wi[&n(0)])? +2wd &) [2 aﬂ,mxﬁ”} &j

=0
: O] ?
2 ~ 2
+wy [E eri1,141%; ] £,
1=0

where

Gijr(t) = Zk: { [Z et X ] By, (f:/)} =B (1)

11=0 =0
Since X; and ¢&; are independent, it follows from (6.58) and the definition of
M (¢) that
k
E{gijr(t) {Z ?r+1,1+1X,-(l>] & (tij) |tij = S} =0,
1=0

E{ (&) |17 = S}
= {5 [ (5 k) )] -0

- s{[Ef (g meo] -]

—ZB,(t)E{ f [ (): ereti X2 ) By (fu)]

=0 I
+B7 (1) +o(1)
= M7 (s)+B2(s) = 2B+(1) Bo(s) + BE(1) +o(1)

1ij ZS}

l,'jzs}

and

k 2
. !
E{ {Z er+l,l+1Xl‘< )} 8i2j

=0

t,-j_s} o2 Hzemmxwr}[1+0<1)].

=0

The above equations lead to the expectations of the right-side terms of Z; /r( )
given t;; = .

To compute the expectations of Ag”(t), [=1,2,3, it then follows that
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Ji Z wi /E[Z?jr(t)ltij = 5] K?(t;—rs) £(s)ds (6.59)

Il
—
=

S
\
—

-~
=
Pt

|

=

=

=
e
'M: |
1=
=

~1

4 { / {M@ () + B2(5) — 2B.(1) Bi(s) + B2(1)

€r+1,1+1X<l)>2] }Krz(t;rs)f(s)ds [1 +0(1)]}

— ! {Z (w,?ni)} I OREK) MY (1) [1+0(1)].

EAP 0] = [ 02) - X (2 | P 0 [1+00)]  0.00)

i=1 i=1
and
E[AP0) = {B[Bk, (11 w) | + 0l )}
When n is sufficiently large, the asymptotic expression of (6.49) follows
from equations (6.59), (6.60), (6.61) and

(6.61)

V[Br,Kr(t;hr7W):|
3 o~
= Y EAD )] =B [Bok, (1 w)|
=1
— E[AY0)]+E[AP (1) +B{B}K, (: Ay, W)] O(n12) +0(nY).

The rest of the results in Theorem 6.1 then follow as direct consequences of
the above expectation and variance expressions. |

2. Proof of Theorem 6.2

Because ny, ..., n, are assumed to be bounded below by a constant ¢ > 1
and the assumption that n='¢; < Y (wl2 n,-) <n !¢, holds, there is a constant

c3 > 0 such that
n
w =Y ()
i=1

If n'/Crr5) 5 0 as n — oo, it follows from (6.62) that, as n — oo,

<n les. (6.62)

n(2]7r+4)/(2]7r+5) h%l’r+4 Q%r (t) N 0

)
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n(2prt4)/(2prt5) h,’l {i" (sz n,)] 02,(1) > h;ln 1/(2pr+5) 1Q2 (1) =

i=1
and

n<2pr+4)/<2pr+5)

-3 ()| )

noia

< @/ @ortS) =1 1 ‘Mﬁz) (,)’ -0

)

so that, Theorem 6.1 implies that, as n — oo,
n@Prt0/CretS) MSE (B, . (15 hy, w)] — oo. (6.63)

If n'/@Prt5) . — o0 as n — oo, similar calculations as above then show that, as
n— oo,

=

nrrt )/ QertS) 2ot 2 (1) s 0o p2Prt4)/QprtS) 1 {Z )] 02, ()
i=1

and
n<2pr+4)/ 2Pr+5

et

—0,

so that, (6.63) still holds.

It then suffices to consider the case that h, = n~1/(2prt5) ¢, for some ¢,
which does not converge to either 0 or e when n — oo. Since, by (6.62) and
the inequality

W20t/ (2prt5) {nl . zn: (le n,)] < =1/ (@prt5) C;I =o(1),
i=1

equations (6.47), (6.48) and (6.49) imply that
2P/ 2prtS) g [11, & (1 1y w)]

= PR () +c,tn {Z (w,?n,-)] 0, (1) 4+ 0(1). (6.64)

i=1

Setting the derivative of the right side of (6.64) to zero, MSE [Br.,Kr (t; hy, w)]
is uniquely minimized by

epes) [ n }1/(217#5) { QZr(t) ]1/(2pr+5)
cn=n' Z w? n;) Y EEIN ,
= (2pr+4)01,(0)
which shows that the theoretically optimal bandwidth A,y (t) is given by
(6.54). The asymptotically optimal MSE [B;.k, (t; hr.op(t), w)] of (6.56) is ob-
tained by substituting the bandwidth &, of (6.48) and (6.49) with A,y (f) in
(6.50).

Repeating similar derivations as above for MISE [Br K, ( hy, w)] , the expres-
sion of the asymptotically optimal bandwidth A, ,, can be obtained as (6.51)
and the asymptotically optimal MISE [[3, Kr( ropts W )] is given as (6.53). The
asymptotically optimal MSE [BK(t,hop,( ),w)] and MISE [ﬁK( opts W) ] are
direct consequences of equations (6.43), (6.44), (6.52) and (6.53). ]

9
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6.7 Asymptotic Properties for Smoothing Splines

We present in this section the asymptotic properties of the component-wise
penalized smoothing spline estimator ﬁ,J(t; Ars w) of (6.26) in Section 6.3.1

with the measurement uniform weight w** = (1/N, ..., 1/N)T and t € [a, b].
Without loss of generality, we assume that a =0 and b = 1. Extension to
general [a, b] can be obtained using the affine transformation u = (t —a)/(b—a)
for t € [a, b].

6.7.1  Assumptions and Equivalent Kernel Functions

1. Asymptotic Assumptions

We assume the following technical assumptions for Er_, J (t; Ars w) throughout
the section, which extend the assumptions of Section 5.3.1 to the time-varying
coefficient model (6.1):

(a) The time design points {tij i=1,...,nj=1, n,} satisfy Assumptwn
(a) of Section 5.3.1 with the same F() () w(t), Dy and f)(t) for
v=1,2.

(b) The coefficient curves By(t), r=0, ..., k, are four times differentiable and
satisfy the boundary conditions ﬁ,<v>(0) = ﬁ,<v>(1) =0 for v=2,3. The fourth
derivatives ﬁr(4) (t), r=0,...,k, are Lipschitz continuous in the sense that

2r

B (s1)— Bt (Sz)’ <cirlsi—s

for all s1,s2 € [0, 1] and some positive constants c1, and ¢,
(c) There exists a positive constant 8§ >0 such that E|[|e(t)
E(Xr4+5) <o forallr=0,..., k.

(d) The smoothing parameters A,, r=0, ... k, satisfy Assumption (d) of Sec-
tion 5.8.1. Specifically, A, — 0, Nlrl/4 — oo and lf5/4DN —0 asn—> oo,
(e) Same as Assumption (e) of Section 5.3.1, we define o*(t) = E[€?(1)]
and pe(t) =limy_, E[e(1)€(t')]. Both 62(t) and pe(t) are continuous, and
6% (t) > pe(t), where the strict inequality holds if £(t) includes an indepen-
dent measurement error. a

‘2+6] < oo and

2. Equivalent Kernel Estimator

We now extend the equivalent kernel framework of Section 5.3 to approxi-
mate the unknown weight function S (t,s) of (6.26). The goal is to derive an
explicit equivalent kernel function which can be used in place of Sy (¢, s), so

that the asymptotic properties of En J(t; Ar, w**) can be established through
the equivalent kernel estimator. From the expressions of (6.3), (6.8) and (6.26),
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the analogous differential equation of (5.8) under the current context is

e () + () gr(0) = FO B(1),  1€(0,1], (6.65)

with gV")(0) = g (1) = 0 for v =2, 3. Then, any solution g(t) of (6.65) is
associated with a Green’s function Gy, (¢, s) which satisfies

= [ 61, 9)B6) ) s
We can then define
Hy, (t,s) = Hy 4 [D(0), T(s) TN () 17 (s) (6.66)

to be the equivalent kernel of Sy (z,s), where

7=‘/0'1f”4(S)ds7 r(r):ﬂ/o"f‘/‘%s)ds

and HY (t,5) is the equivalent kernel for the uniform density which has the
expression

4174 4174 4174
HY (t,s) = (2rﬁ> {sin( :/z ’t—s’)—kcos( r\/i ‘t—s’)}
4174
xexp(— d ‘t—s‘). (6.67)

Substituting Sy, (t, tij) in (6.26) by the equivalent kernel H, (t, tij), our equiv-
alent kernel estimator of f,(¢) with the uniform weight w* =1/N is

Br(t: W) = Z {le (t, 1)) ,j,} (6.68)

=z~
u[\/]:

The next lemma shows that H) (z,s) is the dominating term of Gy (¢, s) and
can be used to approximate S (z,s).

Lemma 6.1. Assume that Assumptions (a) and (d) are satisfied. When n
is sufficiently large, there are positive constants Q, 0, K| and Ky so that

|Gy, (8, 5) —Hy, (1,5)] < wxrexp(—aid /Hr—s]), (6.69)
\j,vv Gy, (t,9)] < kA VT exp(—ann, M i—s]),  (6.70)
1S5, (t,8) = Gy, (1,5)| < szfl/zDNexp(_alx;1/4|t_s|) (6.71)
aatvaxr(f ) < wA VT Dyexp(—aa, Mt i—s|) (6.72)
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hold uniformly for t,s € [0,1] and 0 <v < 3. |

Proof of Lemma 6.1 is given in Section 6.7.3.

As discussed in Section 5.3.1, Hy (¢, s) is not the only equivalent kernel that
could be considered. Our presentation of approximating Sy (z, s) with Hy (z, s)
is based on the theoretical derivation of Chiang, Rice and Wu (2001).

6.7.2  Asymptotic Distributions and Mean Squared Errors

We now summarize the main results of this section. Derivations of the theo-
retical results are deferred to Section 6.7.3.
1. Asymptotic Distributions

We first introduce a number of quantities to be used in the asymptotic
expressions. Define, for each r=0,...,k, 1 €[0,1] and t; #1, € [0, 1]

U = foﬂ(eH»l X ™),

(m) = X o B (1) B (12) E(XCV XD UZ) | = Bi(1) B (12),
Doy = MO0+t en,

(1‘17t2) = Mr<0>(t1,l‘2)+Pe(t1,tz)€rr7

M (r)= (0 (t,t) and m? (1) = M (t,t). The following theorem shows that
asymptotically By.;(t; A, w**) has a normal distribution when N is sufficiently
large.

Theorem 6.1. Suppose that Assumptions (a) through (e) are satisfied, t is
an interior point of [0, 1], and there are constants Ao >0 and ag > 0, such that

limyse N2 2778 = 2,0, limy o [N71 (X2 22) A7) = ag and lim, o Nn=9/8 =
0. Then, as n — oo, [3,,]([; Ar, w**) is asymptotically normal in the sense that

(VA (B 2ew) ~ B0)] = N (Robe). 20)). (6.73)

in distribution, where
bi(t) = —f () B (1) (6.74)

and

1/2
(1) = [(4%@) 340 MY ) +a0M,<2>(t)] . (6.75)

In general, the asymptotic distributions of [?,71(& Ar, w**) are affected by n, n;
and the intra-subject correlations. |



ASYMPTOTIC PROPERTIES FOR SMOOTHING SPLINES 183

The correlations affect the asymptotic variance term t2(¢) if ag is strictly
positive, that is, ?:1”,2 tends to infinity sufficiently fast. In the interesting
case that n; are bounded, the probability that there are at least two data
points from the same subject in a shrinking neighborhood tends to be zero,
hence, the intra-subject correlation does not play a role for the asymptotic
distributions.

2. Asymptotic Mean Squared Errors

Unlike the simple regression model without covariates in Chapter 5, the
risks of the penalized smoothing spline estimator S, J(t; Ary w**) cannot be
directly measured by their asymptotic mean squared errors (MSE). This is

because Yljr involves the inverse of the estimator of E (XXT)7 so that the first

and second moments, hence the MSE, of Er_, J(t; Ary w**) may not exist. An
alternative measure of the risks that has been used in the literature is the
MSE conditioning on the observed covariates (e.g., Fan, 1992; Ruppert and
Wand, 1994; and Fan and Gijbels, 1996). Denoting by

%EZ{X17"'7X"}

the set of observed covariates, we measure the risk of En J(t; A, w**) by the
following MSE conditioning on 2,

MSE (B (15 2, w™) | 2] = E{ [Bes (.20, w™") = B1(0)] 2‘ 2} (676)

More generally, we measure the risk of E] (t; l,w**) by
MSEp By (13 2w | 2] = f {pMSE[Boa(es 2ow) | 23]}, (677)
r=0
where p = (po, ...,pk)T, pr > 0, are known weights. The next theorem gives
the asymptotic representation of the MSE in (6.76).
Theorem 6.2. Suppose that Assumptions (a) through (e) are satisfied and

t is an interior point of [0,1]. When n is sufficiently large,
MSE By (1 A w™)| 2] = AZ0E0)+V,00) (6.78)
npN2
+o l:NllrlM-l- o ]
b ,:Zi (N)
+0p(n 20 + 0y (n") 4+ 0p(R2),

where b,(t) is defined in (6.70) and

V(1) = (4\%)1\1*1A;”“f*”“(r)Mﬁ”(r)+ {Z‘i (%ﬂ MP @),  (6.79)
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Furthermore, im0 V(1) = 0 if and only if limy,_e max;<;j<p (ni/N) =0. N
Proof of Theorem 6.2 is given in Section 6.7.3.

3. Remarks on Asymptotic Properties

The above asymptotic results can lead to a number of interesting special
cases and practical implications.

Consistency and Convergence Rates:

Similar to the situations described in Section 5.3.2, we note that, unlike
Theorem 6.1, Theorem 6.2 does not require any further convergence rate condi-
tion on A, other than Assumption (d) and allows for any choice of non-random
n;. Thus, under the conditions of Theorem 6.2, B\,,J(t; A, w**) is a consistent
estimator of B,(¢) in the sense that

MSE By (15 2, w™)

%1} — 0 in probability, as n — oo.

The rate of V,(r) — 0 depends on n, n;, i =1,...,n, A, and the intra-subject
correlations. If lf1/4 N~! converges to zero in a rate slower than ¥, (n,-/N)27
then the second term of the right side of (6.79) becomes negligible, so that the
effect of the intra—s/l\lbject correlations disappears from the asymptotic repre-
sentation of MSE [ﬁ,;](t; Ary w**)|3£”n] As a special case of practical interest,
this occurs when the n; are bounded. In general, the contributions of the
intra-subject correlations are not negligible. If, under the situation of dense
longitudinal data, n; — oo sufficiently fast as n — oo, the second term of the
right side of (6.79) may not be ignored from V,(¢). This occurs, for example,
when n; = n® for some o > 0.

Random Design Time Points and Other Weight Choices:

Similar to the situations in Section 5.3.2, for the purpose of extending
the derivations of Theorem 6.2 to random designs and other weight choices,
we assume that #; are independent identically distributed with distribution
function F(-) and density f(-). For the measurement uniform weight w!* =1/N,

we require the almost sure convergence A, 5/ 4DN — 0 as n — o and consider
the equivalent kernel estimator (6.68). For the subject uniform weight w} =
1/(nn;), we replace Fy(t) and Dy in Assumption (a) by

M=

Filt) =,

1

n;
Y (nni)fll[,l.jg,] and Dy = sup |Fy(r)—F(1)|,
1j=1 t€(0,1]

: —5/4
respectively, and, under the almost sure convergence A, / Dy — 0 as n— oo,
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consider the equivalent kernel estimator

B,J 15 A, W) ZZ [ nn;) H,l (1 t,])Yl’;r}

i=1j=

Further investigation is still needed to develop the explicit asymptotic dis-
tributions and the asymptotic conditional MSEs of these equivalent kernel
estimators.

When the time design points f;; are nonrandom, the subject measurement
weight w! =1/(nn;) is used and Assumption (a) holds for Fy(r) and D},. Using
the approach of Lemma 6.1, we can show that the variance of Br, ](t; Ar, w*)
conditioning on Z;, can be approximated by

n n 1 5
— ) Gy (&t Var(er>]
i:Ij:Z:I |:(nnl> ( ]) J
1
+ |:<27> Gkr (t7tiljl) Glr (t7ti2j2)
(i1, 71)#(i2, J2) =iy Ny
XCOV( iyjir 12]21‘ X117X12>:|

but it is difficult to approximate the two summations above by some straight-
forward integrals without further assumptions on n;. For t}/l\e same reason, we
do not have an explicit asymptotic risk representation for . J(t; Ary w) with a
general weight vector w.

0.7.83 Theoretical Derivations

We outline here the main derivations used in the theoretical results of this
section. Since many of the derivations are straightforward extensions of the
methods presented in Section 5.3, we skip some tedious details to avoid repe-
tition and only refer to the relevant steps in Section 5.3.

1. Green’s Function for Uniform Density

The derivations here are analogous to their counterparts in Section 5.3.3.
These results establish an important linkage between the Green’s function
Gy, (t, s) and the equivalent kernel Hj, (t, s). For the special case of the uniform
density f(t) = ljg,j(t), the following equations and lemma are the same as
equation (5.23) and Lemma 5.2 by substituting their A with A,. The Green’s
function G% (,5) of (6.65) is the solution of

Ar 54GU (t,5) +G/1 (t,5) =0, for t # s, (6.80)

subject to the following conditions:

(@  GY(t,s) =G5 (s,1) =G5 (1—1,1—5);
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b)  (9V/91") G5 (0,1) = (9¥/01") G (1,1) =0 for v =2,3;

c) (0¥ /or") G% (t,5) ’S:t, —(2v/ar") G% (t,5) ‘s:ﬁ =0forv=0,1,2;
d)  (0°/9r)GE (1,9)],_,-—(0°/9r)GF (1,9)| s =2

Lemma 6.2. Suppose that G% (Ls) 1s the Green’s function of the differ-
ential equation (6.65) with f(t) =1y 1)(t). When A, — 0, the solution G% (1,5)
of (6.80) is given by

GY (1,5) = HY (1, 5) {1 +0[exp(—/1;1/4/f2)] } (6.81)
where H}[fr (t,5) is defined in (6.67). ]

Proof of Lemma 6.2 follows exactly the same steps in the proof of Lemma
5.2 by substituting A with A,; hence, it is omitted.

2. Green’s Function for General Cases

Based on the explicit expression of the Green’s function Gf{r (t, s) for the
uniform density f(¢) = 1|, ], we can derive the explicit expression of the equiva-
lent kernel function Hj, (t, s) by establishing the relationship between Gf{r (t, s)
and the Green’s function Gy, (t, s) for a general continuous density function
S(¢). This relationship is established through the inequalities (6.69) to (6.72)
of Lemma 6.1.

Proof of Lemma 6.1:

The inequalities (6.69) to (6.72) can be established using the same steps
as the proof of Lemma 5.1 in Section 5.3.4. All the derivations in the proof of
Lemma 5.1 remain valid by substituting {1, u(¢)} with {A,, B-(r)}. We omit
the derivations here to avoid repetition. |

8. Three Technical Lemmas

The following three technical lemmas are analogous to Lemmas 5.3, 5.4
and 5.5. The proofs of these lemmas are not exactly the same as the ones in
Chapter 5, although they share similarities.

Lemma 6.3. Assume that Assumptions (a) and (d) are satisfied, then,
when A, is sufficiently small,

' (1) _ (1
/0 G5 (1, 5) M (s) f(s)ds—(
and

750 MO )] (6.52)

/01 Gy, (1,5) M) (1,5) f(s)ds = M (1) [1 +0(1)] (6.83)



ASYMPTOTIC PROPERTIES FOR SMOOTHING SPLINES 187
hold for all t € [T, 1 — 1] with some T > 0. [ ]

Proof of Lemma 6.3:

By Lemma 6.1, the properties of double exponential distributions and
straightforward algebra, we can show that, for some positive constants k,
a and c,

JRCA R ARy

0

< [ 16 0:5) ~ B 15) [1G, 1 5) [, 1 5) ] ) 51 s
< /01 oy R exp(—alf1/4|t—S|> ‘Mﬁl)(s) fls)ds

o C‘Mr(l)(t)‘ F(0),  as A —0. (6.84)

Similarly, denoting u =I'(¢) and v =T(s), we can show from (6.67) and the
properties of double exponential distributions that, for A, sufficiently small,

1
/0 H%r (1,5) Mr(l)(s)f(s)ds

/01 [ )| w0 0] {%}d

1 —3/4 1/4 5 (1)
= — A My 1+o0(1 6.85
L0 () [1+0(1). (659
Thus, (6.82) follows from (6.84) and (6.85), and (6.83) can be shown by similar
calculations. |

Lemma 6.4. Assume that B.(t) satisfies Assumption (a) and g.(t) is a
solution of (6.61), then g£4) (1) = [3,<4)(t) uniformly fort €10,1] as A, —0. W

Proof of Lemma 6.4:
This lemma is a special case of Lemma 6.1 of Nychka (1995) and is the
same as Lemma 5.4 by substituting p(¢) with B.(¢). ]

Lemma 6.5. Consider the pseudo-equivalent kernel estimator

Py !

Bl (r:w B Z Z {H/l (r:135) {Z (er+1,l+1Xi< )) Yij] }
i=1j=1 =0

If the assumptions in Theorem 6.1 are satisfied, then B,* (t; w**) s asymptot-

ically mormal in the sense that (6.73) holds with By;(t; Ar, w™) replaced by

B (1 w™). n
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Proof of Lemma 6.5:
Define U;, = ):LO (e,HJHXi(l)) and Z;j, = U;Y;j. It then follows from (6.1)
that
E(Zijr) = E Ui X{ B(1ij)] = Br(1is)-
By Assumptions (a) and (d), (6.65), (6.66), (6.69), (6.74) and Lemma 6.4, we
have

E[B: (1:w™)] = Bi(r)
= /01 G, (t, s) Br(s) f(s)ds — By(t) +/01 [le (t, s) -Gy, (t, s)] Br(s) f(s)ds
+ /0 1H,1r (¢, ) Br(s) d[Fn(s) — F(s)]

A8 (1) [1+0(R)]
= —Ab(1) [1+0(A)]. (6.86)

For the variance of B (t; w**), we consider

Var [Er* (l‘; W**)] =Vi+Vu+Vu,

where
|
v, = _2;zl[H;r(t,;,.,)Var(z,,,)],
i=1j=
1 n
Vi = 5 X ¥ [Hy (n) H, (1) Cov(Zij o Zir) |
i=1j1#j>

and, because the subjects are independent,
1
Vir = N2 Z Z [le (tvtiljl)le (tvtizjz)cov(ziljlrvZizjzr)} =0.
i1#i j1,J2
Because U;r and ¢g;; are independent, we have
Var(Z,-j,) = Var{Uir [X,T ﬁ (l‘,'j)] } + Var(Ui, 8,'/') = Mr(l) (l‘,'j)7

hence, by Assumption (a) and (6.85),
1

4v2

Similar to the derivation in (6.84), because

Vi FAONT A MDY (0 [140(1)).

Cov(Zijy 1, Zijy )
= COV{U,‘,« [X,Tﬁ (tijl)] , Uiy [X,Tﬁ (tijz)] } —|—COV(U,‘r Eijy» Ui, 8,']‘2)

= M (tijy» tijy),
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it is straightforward to compute that

5 () 3]

VII:[
=1

The above equations and (6.75) imply that
Var[ﬁ,* (r;w**)} =N 420 [1+0(1)].

Finally, we can check from Assumption (d), (6.66) and (6.67) that B (¢; w**)
satisfies the Lindeberg’s condition for double arrays of random variables. The
lemma follows from (6.86) and the central limit theorem for double arrays
(e.g., Serfling, 1980, Section 1.9.3). |

4. Proofs of Main Theorems
Equipped with the above technical results, we can now derive the results

of Theorems 6.1 and 6.2.

Proof of Theorem 6.11: R Z
By U;, = Zlf:o (er+l,l+1Xi( )) and Uj, = Zlf:o (ng,IHX,'( )), Assumptions (a),
(c) and (d) and Lemma 6.1, we have that, when n is sufficiently large,

~ 1

~ 1 N
B B (w7") =+ 3 3 [t (10) (@ — U 1] = 0,07 17)
i=1j=1
and
~ —~ 1 n n; N
B(rw™) =B (tw™) = 5 XY {5 (1) =G (0.1)] O ¥y}
i=1j=1
= op(Nfl/zlfl/S).
Then (6.73) follows from Lemma 6.5 and the above equalities. ]

Proof of Theorem 6.2:
Using the variance-bias squared decomposition, we have

MSE[Bso: Arw)| 23] = LE[Bs: 20 w)| 23]~ Bil0)}

+Var [Br,f (5 A, W)

3&”] (6.87)
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where, because ¥;,j, and Y¥;,, are independent when ij # i, we have

Var [B\,,](t; A, w**)

| =vi+vi
with
=N X (83 () O3 Var(vy) |,
Vi = N2 X Ky [Sn (1 153) S3, (1 11) D2 Cov (¥ Vi) .

Using Lemma 6.1 and the derivation of (6.83), we can show that, for sufficiently
large n,

] = NG e 10,0

+[Z (%)2_%\!} Pe(t) e [1+0,(1)]. (6.88)

=1

Var [Enl (t; A, w**)

For the conditional bias term of (6.87), we consider that, when n is suffi-
ciently large,

E{Enl(ﬂ A, W**) %z] _ﬁr(t)
- %ﬁfﬁ&ﬁﬁﬂwmm@ﬂJWMﬂﬁmﬂH (6.89)
l n n; ~ n71/2
+E{Ni21]1 (S, (t, 1) Un X[ ﬁ(r,])]} B(t)+0,(n"13).

By similar quadratic expansions as V;* and V}j;, Lemma 6.1 and the weak law
of large numbers, we can show that, when n is sufficiently large,

{3 ZZ%%MM%ﬂWH4WﬂWWWHZ (6:90)

etz [ o

NG
and, furthermore, by Lemma 6.3,
2
{ Z Z [Sl (t, 1)) [UirXiTﬁ(t,-j)H —ﬁr(t)} =A2bi(t) [1+0p(1)]. (6.91)
i=1j=

The conclusion of the theorem (6.78) is then a direct consequence of (6.87)
through (6.91). |
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6.8 Remarks and Literature Notes

The data structure and model presented in this chapter are the simplest case
of the structured nonparametric models to be investigated in this book. Under
this data structure, we assume that the covariates do not change with time,
and only the outcome variable is time-dependent and repeatedly measured.
Although the assumption of time-invariant covariates may be overly simpli-
fied in practice, it sets the stage for developing modeling strategies to meet
the challenges with other more complex longitudinal data. The model that
we have considered in this chapter is a special case of the “time-varying co-
efficient models.” The appealing feature of this model is that the relationship
between the time-invariant covariates and the outcome at a given time is de-
scribed through a linear model, while the linear coefficients are nonparametric
smooth functions of time. This modeling approach simultaneously retains the
interpretable covariate effects and provides the flexibility by allowing the co-
variate effects to change with time. Useful variations of the varying coefficient
models, such as the single-index varying coefficient model (Luo, Zhu and Zhu,
2016), are also widely used in various applications.

We summarize in this chapter a component-wise smoothing method for
estimating the time-varying coefficients. Such a component-wise smoothing is
possible because, based on the special feature of time-invariant covariates, the
coefficient curves can be written as the conditional means of the products of
the time-dependent outcome with a time-invariant matrix of the transformed
covariates. The major advantage of this component-wise smoothing method
is that different smoothing parameters can be used for different coeflicient
curves. This is particularly appealing when the coefficient curves satisfy dif-
ferent smoothing conditions, because the potentially different smoothing needs
can be accommodated.

Through some straightforward modifications of the smoothing methods
described in Chapters 3 to 5, both the local and global smoothing meth-
ods can be used for component-wise estimation of the coefficient curves. The
results of this chapter are adopted from Wu and Chiang (2000), which de-
scribes the component-wise kernel estimation method, and Chiang, Rice and
Wu (2001), which describes the component-wise smoothing spline estimation
method. The asymptotic properties established in this chapter provide some
useful theoretical justifications for the component-wise kernel and smoothing
spline estimators. In order to focus on the estimation methods, we omit from
the presentation a number of useful and interesting inference methods for the
time-varying coefficient models, such as the confidence bands of Wu, Yu and
Yuan (2000), the goodness-of-fit tests and empirical likelihood methods of Xue
and Zhu (2007) and Xu and Zhu (2008, 2013).



Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com


http://taylorandfrancis.com

Chapter 7

The One-Step Local Smoothing
Methods

This chapter is concerned with the time-varying coefficient models with time-
varying covariates. Unlike the special case in Chapter 6, where the covariates
are time-invariant, the covariate effects described in this chapter are instanta-
neous in the sense that the model only describes the relationship between the
covariates and the outcome at the same time. Despite this simplification, the
time-varying coefficient models discussed in this chapter can be widely applied
in practical longitudinal studies, because these models have the simple inter-
pretation as being linear models at a specific given time point. The changing
coefficient values at different time points allow the models to vary over time,
which adds flexibility to the models. The coefficient curves of the models can
be estimated by a number of different approaches, each with its own advan-
tages and disadvantages. The estimation methods presented in this chapter
are based on a one-step local least squares approach, which has the advantage
of being conceptually simple. Additional local and global estimation methods
for the same models and data structure are presented in Chapters 8 and 9.

7.1 Data Structure and Model Interpretations
7.1.1 Data Structure

In most longitudinal studies, both the outcome variables and the covariates
are likely to be time-varying and repeatedly measured. Under this general

setting, the random variables at each time point ¢ are (Y(t), t, X7 (z‘))7 where

Y () is a real-valued outcome variable and X(¢) = (1,X(1)(z‘)7 ...,X<k)(t))T is

the (k+1) column covariate vector. The corresponding longitudinal observa-
tions for (Y(t),t7 XT(t)) are given by {(Y,~j7 tijs XITJ) i=1,...,nj=1, ...7n,~}7
where the subjects are assumed to be independent, #; is the jth visit time of
the ith subject, and ¥;; and X;; are the ith subject’s outcome and covariates
observed at time f;;, respectively. The statistical objective is to evaluate the
effects of time ¢ and the covariates X)(¢), [ =1, ..., k, on the outcome Y (r).
Using the framework of conditional means, the effects of time ¢ and covariates
X(t) on Y (t) can be described through E[Y(¢)|, X(¢)]. However, as discussed

193
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in Chapters 3 to 5, complete nonparametric estimation of E[¥ (¢)|1, X(¢)] with-
out assuming any modeling structures could be computationally infeasible and
scientifically uninterpretable. In this chapter, we describe the formulation and
interpretations of a class of popular structural nonparametric models for lon-
gitudinal data, the time-varying coefficient models, and present a number of
smoothing estimation procedures of the coefficient curves based on local least
squares.

7.1.2  Model Formulation

Using the linear model structure at each time point ¢, a simple and practical
choice of the “structured nonparametric models” for the instantaneous rela-
tionship between X(7) and Y (¢) suggested by Hoover et al. (1998) is to use the
time-varying coefficient model

Y(1)=X"(r)B(t) +&(t), (7.1)

where the coefficient curves B(r) = (Bo(2), ---, Bk(t))T describe the baseline
time-trend By(r) and the covariate effects {Bi(z), ..., Bx()} as functions of 1,
€(1) is a mean zero stochastic process with variance and covariance functions

{ o2(t) = Varle(r)],
p(s,t) = Covle(s), €(t)], when s#t,

and &(¢) and X(7) are independent. Note that the covariance function p (s, f)
may not equal the variance function 62(t) when s = t, which may happen, for
example, when the error term g(¢) is the sum of a mean zero stochastic process
and an independent mean zero measurement error. In general, we can assume
that

p(t,1) =limp(s,1) < o*(r),
where the equality sign holds if there is no independent measurement error
for Y(¢). To ensure the identifiability of B(¢), we assume that, when X(¢) is
random,
E[X(1)X"(1)] = Exxr (1) (7.2)
exists and invertible, so that its inverse E;;(T (1) exists. The nonrandom co-
variates can be incorporated as a special case of (7.2).

Since the mean of €(¢) is assumed to be zero, it is easily seen from (7.1)
that the conditional mean of Y (¢) given X() is

E[Y(t)|e, X ()] =X (1) B(¢).

Furthermore, it follows from (7.1) and (7.2) that §(¢) uniquely minimizes the
second moment of €(¢), that is,

E{[Y(t)—XT(t)ﬁ(t)]z} - alilnlf(.)E{[Y(t)—XT(t)b(t)]2}, (7.3)
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and has the expression
B(1) =Egsr E[X(1)Y(1)]. (7.4)

When all the covariates are time-invariant, i.e., X(#) = X, (7.4) reduces to the
expression of B(r) given in (6.2), and the estimation and inferences for B(r)
can be proceeded using the componentwise smoothing methods of Chapter 6.
But, when some of the components in X(#) are time-dependent, the coefficient
curves () given in (7.4) cannot be estimated by the methods of Chapter 6.

The objective of this chapter is to present a class of local least squares
smoothing methods for the estimation of B(z), which are described in Hoover
et al. (1998), Wu, Chiang and Hoover (1998) and Wu, Yu and Chiang (2000).
These estimation methods are motivated by the expressions of (7.3) and (7.4).
Algorithms and R code for the estimation and inference procedures are pre-
sented in the applications to the NGHS and BMACS data.

7.1.3 Model Interpretations

The structural assumptions of (7.1) suggest that the time-varying coefficient
model is, on one hand, a flexible nonparametric model and, on the other, a
restricted linear model at each time point ¢. Interpretations of the model on
time-trends and instantaneous covariate effects can be seen from the following
four aspects.

1. Changing Covariate Effects

When ¢ is fixed, (7.1) is a linear model with B(¢) being the coefficients
describing the linear effects of X(¢) on the mean of Y (¢). Because of the linear
structure, the coefficients in B(¢) have the same interpretations as a usual
linear model in the sense that they describe the instantaneous linear effects of
the covariates X(¢) on the outcome Y () at any time point 7. Due to the time-
varying nature of f(¢), these linear effects may change with the time points.
Thus, the model (7.1) is “local” in terms of the time point 7 with “structural
restrictions” in terms of the covariates X(¢). Since X(*)(r) = 1 and the &(r) has
zero mean, Bo(r) is the mean value of ¥ (r) when the values of X()(z), ..., X0 (¢)
are zero, which represents the baseline time-trend, while, for 1 <1 <k, B;(¢)
represents the average change of Y (¢) at time ¢ caused by one unit change of
X (), which describe the covariate effect of X (r).

2. Local Linear Structure

Although the coefficients B(z) change with ¢, the linear model structure
is preserved by (7.1). It is certainly possible in some applications that the
model structure also changes with ¢, such as, changing from a linear model
to a nonlinear model as t changes. But, such generalizations are outside the
framework of this book, which require additional research beyond the current
literature.
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3. Flexible Temporal Patterns

The model (7.1) is flexible in terms of its temporal patterns, because the co-
efficient curves f(t), I =0, ..., k, are usually only subject to minimal smooth-
ness assumptions as functions of . The nonparametric assumptions for f;(¢),
[=0,...,k, reflect the desire to preserve the flexibility of the temporal pat-
terns because, in real applications, it is usually unknown how the models, i.e.,
the coefficients, change with time. When more information is available, it is
possible to consider parametric families for f8;(¢), =0, ..., k, so that, paramet-
ric sub-families of (7.1) may be investigated. Some sub-families of (7.1) lead
to the parametric marginal models, such as the linear or nonlinear marginal
models, which are already extensively studied in the literature.

4. Instantaneous Associations

The covariate effects on the outcome are “instantaneous” in the sense that
(7.1) only includes the associations between X(¢) and Y (¢) at the same time
point z. The purpose of making the instantaneous association assumption on
(7.1) is to reduce the computational complexity, so that the model can be
parsimonious and practical at the same time. In many practical situations,
the instantaneous association assumption can be reasonably justified because
the current or most recent values of the covariates are most important on the
outcome values. However, the model (7.1) does not allow “time lagging” or
“cumulative” effects, which could be a potential concern in some longitudinal
studies. Here the “time lagging” effects refer to the effects of the covariates
or outcomes at earlier time points on the outcome at a later time point, and
the “cumulative” effects refer to the influence of the cumulative or integrated
values of the covariates over a time interval on the outcome at a later time
point. Substantial further research is needed to better understand the potential
approaches to adequately model and analyze “time lagging” and “cumulative”
effects. The methods covered in this book do not sufficiently address these
issues.

7.1.4 Remarks on Estimation Methods

Similar to other regression models, the model (7.1) and its nonparametric
estimation methods presented in this chapter have their own advantages and
disadvantages, which can be seen from the real applications and theoretical
developments of this chapter. Details of these advantages and disadvantages
are discussed in later sections. The following remarks give an overview of some
important features of the model and estimation procedures of this chapter.

1. Impacts of Correlation Structures

Since the main objective is to estimate the time-varying effects of X(¢)
on the mean structure of Y (¢), our estimation methods to be presented in
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the next section do not use the potential correlations of (Yi iy bijs X,T/) at two
different visit times. This is mainly due to the fact that, in situations where
the numbers of repeated measurements are not drastically different among
different subjects, the asymptotic biases of our smoothing estimators of f(r)
are not affected by the correlation structures of the data (Section 7.7). The
numbers of repeated measurements and the correlation structures may, in gen-
eral, affect the asymptotic variances of our smoothing estimators of B(r). As
shown in Chapters 3 to 5, since the correlation structures of the data are of-
ten completely unknown in practice, developing a smoothing estimator based
on the estimated correlations of the data is generally unrealistic. Thus, the
smoothing estimators of () presented in this chapter are practical and have
appropriate theoretical properties, although they may not have the smallest
asymptotic variances. In some situations, the scientific objectives are best
achieved by evaluating the relationships between the outcome values at differ-
ent time points, so that the statistical interest is to evaluate the correlation
structures conditioning on the covariates. Statistical models and estimation
procedures related to the correlation structures of the data are discussed in
Chapters 12 to 15.

2. Issues with Missing Data

In practice, the subjects may not be all observed at the same time points, so
that the numbers of repeated measurements and the observation times are pos-
sibly different among subjects. In this sense, we do not assume that there are
“missing data” in the longitudinal observations {(Yij, tij, X,T/) i=1,...,nj=
1,..., ni}. If, for some reason, a subject has missing observations at a sched-
uled visit, the would be observations of the subject at this specific visit time are
equivalent to data missing completely at random, and consequently are ignored
in the computation of the smoothing estimators. The estimation methods of
this chapter, however, could be biased if some of the subjects have missing
observations due to reasons other than “missing completely at random,” such
as not having observations because the subject’s outcomes or covariates are
“undesirable.” Nonparametric regression models with data “not missing com-
pletely at random” may not be identifiable, and their estimation and inference
methods require further investigation.

8. Outcome-Dependent Covariates

Similar to parametric models for data with time-varying covariates, an im-
portant assumption for the model (7.1) is that the values of the time-varying
components in X(#) do not depend on the values of the outcome variable at
time points prior to f. This situation does not appear in the model and estima-
tion methods of Chapter 6, because the covariates there are all time-invariant.
If X(r) is time-varying and “outcome-dependent” in the sense that the value
of X(#) depends on the values of Y (s) for some s < ¢, then the nonparametric
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smoothing estimators of B(¢) developed in this chapter are likely to be biased,
because the relationships between X(¢) and Y (s) for s <t are not included in
(7.1). Useful models and estimation methods for several simple situations with
outcome-dependent time-varying covariates are discussed in Chapter 10.

4. Componentwise Smoothness

Because B(t) is a (k4 1) column vector of curves, it is possible that the
different component curves in f(¢) satisfy different smoothness conditions,
so that their estimators require different smoothing parameters. However, the
componentwise estimation approach of Chapter 6 cannot be directly extended
to the current model (7.1) because the covariates are time-varying. In Section
7.2, we introduce the popular local least squares approach suggested by Hoover
et al. (1998) and Wu, Chiang and Hoover (1998), which relies on using one
smoothing parameter to estimate all the component curves of (). Thus this
approach may only be used when all the component curves of B(z) satisfy
similar smoothness conditions. Because it depends on the intuitive idea of
local linear fitting, this approach is computationally simple and can be used
as an exploratory tool to gain some useful insight into the covariate effects.

To further refine the smoothing needs of different covariate curves, we in-
troduce in Chapter 8 the two-step smoothing method proposed by Fan and
Zhang (2000), which has the capability to select different smoothing parame-
ters for different coefficient curves. This estimation approach depends on first
obtaining some “raw estimates” from a preliminary parametric estimation pro-
cedure and then smoothing these “raw estimates” for each of the component
curves. A further estimation method (discussed in Chapter 9) is based on
the global fitting through basis approximation, which is also able to provide
different smoothing needs for different coefficient curves. These different esti-
mation approaches all have their advantages and disadvantages under different
situations, and are all useful in practice.

5. Model Checking

An important question for modeling the relationship between Y ()
and {r,X(¢)} is whether the model (7.1) is appropriate for the dataset
{(Yij,tij,XiTj) i=1,...,mj=1, ...7n,~}. This question can be answered, at
least partially, by a model checking procedure comparing the fitness of (7.1)
with a more general alternative. Since model checking requires different sta-
tistical procedures, this topic is beyond the scope of this chapter, and some
comparisons of the model (7.1) with a number of alternatives are deferred to
Chapter 9. The focus of this chapter is based on the premise that the rela-
tionship between Y () and X() is already appropriately described in (7.1).
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7.2 Smoothing Based on Local Least Squares Criteria
7.2.1 General Formulation

The equation (7.3) suggests that f(¢) can be intuitively estimated by a local
least squares method using the measurements observed within a neighborhood
of . Assume that, for each I and some integer p >0, B;(¢) is p times differ-
entiable and its pth derivative is continuous. Approximating f3; (ti j) by a pth

order polynomial
p

Bi(tij) ~ Z [blr(f) (fij—f)r] (7.5)

r=0

for all [ =0,...,k, a local polynomial estimator of B(r) = (Bo(r), ...,ﬁk(t))T
based on a kernel neighborhood is

~ -~ ~ T
bO(t): (bOU(t)7~”7bk0(t)) ’ (76)
where {glr(t) 1=0,...,k;r=0, ...,p} minimizes the local least squares score
function
L, K(t; h, w)
n n; 2 t' . —t
= EEw{n-p {0 [S o0 60|} k(B @)
= = h
i=1j=1
w= (wl7 ...,wn)T w; are the non-negative weights satisfying ¥, (w, ,) =1,

K(-) is a kernel function, usually chosen to be a probability density functlon,
and h > 0 is a bandwidth. For any r =1,...,p, (r) by, (t) is the local polynomial
estimator of the rth derivative ﬁl ) (¢) of By(¢). Inreal applications the choices

of {p, h,K(-),w} in (7.7) lead to different smoothing estimators bo(t) of B(r).
Among these choices, the most influential one is the bandwidth A.

Notice that (7.7) is a naive local least-square criterion which attempts to
use one bandwidth # for simultaneously computing all the local polynomial
estimators by and (r')b,,( ), r=1,..., p. Although (7.6) has the limitation
of using a single bandwidth, the resulting estimators are still useful as a pre-
liminary step for the estimation of B(r). In particular, the naive local least
squares criterion (7.7) may be modified by a few simple steps to obtain im-
proved estimators that allow for componentwise specific bandwidths and other
improvements over bg(¢) given in (7.6). The following sections discuss some
useful special cases of the estimators by(f) and their modifications.

Similar to the smoothing estimators for longitudinal data in the previous
chapters (e.g., Section 3.1), the subject uniform weight wi =1/(nn;) and the
measurement uniform weight wi* =1/N are often used in practice. Theoreti-
cally, the choice of w* = 1/N may produce inconsistent estimators when some
n; are much larger than the others, while the estimators based on w} =1/(nn;)
are always consistent regardless the choices of n;. Details of these theoretical
properties are discussed in Section 7.5.
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7.2.2  Least Squares Kernel Estimators

The simplest special case of (7.6) is the least squares kernel estimator, also
referred to as the local constant fit, which is obtained by minimizing the score
function (7.7) with p = 0. Using the matrix representation

Y; = (Ya, ---,Ymi)T7 bo(t) = (boo(t), ---,bko(t))T7
1 Xi(ll) T Xi<1k) K 0 cee 0
oxd o xY 0 Ky - 0
X;= and K;(z)
1 Xi(nl,-) ... Xi<n]j) 0 - 0 Ky

with Kij = K [(t;j —t)/h], the score function (7.7) with p =0 reduces to

LO,K(f§h7W) = ZZW,{Y”_Z[l_(jl>bzo(t)]}2K(tijh—t)7

i=1j=

= ZW,’ [Y,’—X,‘bo([)]TK,'(l) [Y,‘ —X,’bo(l)] . (7.8)
i=1

If the matrix ):f’:lw,-XiTKi(t)X,- is invertible, i.e., [):f‘:lw,-XiTKi(t)X,-rl

uniquely exists, then (7.8) can be uniquely minimized and its minimizer gives
the following kernel estimator

BEK (1: h, w) [ZW,X K,(1) X ] [ZW,X K()Y} (7.9)

of B(t) = (Bo(t), .., Bk(t))T. For the special case of k=0, i.e., the model incor-
porates no covariate other than time 7, (7.1) reduces to the simple case (3.1)
with Bo(t) = u(r) =E[Y (¢)|¢], and (7.9) is the kernel estimator defined in (3.4).

In the expansion (7.5), the estimator EI%SK (t; h, w) uses only the first con-
stant term, so_ that it is equivalent to a “local constant estimator.” The main
advantage of BI%SK (t; h, w) over its more general alternatives of (7.6) with p > 1
is its computational simplicity. A potential drawback for the kernel or local
constant estimation approach, as demonstrated by Fan and Gijbels (1996) for
the case of cross—sectionali.i.d. data, is its potential bias near the boundary
of the time points. But, ﬁéSK (t; h, w) is still very competitive in most appli-
cations, when the main interest for the estimation B(¢) is not at ¢ near the
boundary of its support.

7.2.8 Least Squares Local Linear Estimators

An automatic procedure to reduce the potential boundary bias associated with
the kernel estimators is to use a local polynomial estimator based on (7.5) and
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(7.6) with p > 1. But, a high-order local polynomial fit, such as p > 2, can
be impractical in some applications because it is computationally intensive.
The simplest practical approach that provides immediate improvement on
boundary bias over the kernel estimators (7.9) is to use a local linear fit that
minimizes (7.7) with p = 1. Following equation (7.7), the local linear score
function becomes

Ly K(l‘;h W) (710)
n k

Y=Y {Xi(jl> [bm(f) +bu (1) (1 _t)} }}2K(tijh_t>'

Jj=1 =0

The minimizer of Ly g (t; h, w) can be derived by setting the derivatives of right
side of (7.10) with respect to

{(blo(t),b“(t))T =0, k}

to zero, which leads to a set of normal equations. Assuming that the normal
equations have a unique solution, the minimizer

{(,0 bt .l:O,...,k}

of (7.10) is the solution of the normal equations.
To simplify the notation, it is easier to formulate the minimizer of (7.10)

with respect to {(blo(t), bll(t))T :1=0, ...7k} using the following matrices
and vectors:

i / i l
N i IZ?:1W1X1(1>Xi(;)Kij . IZ?:IWIX:S)X;;) (1ij — 1) Kij
Ir= 2
lzj 1W,X >X( 7) (t,'j—t)K,'j Zl lzj 1W,X )X<r> (t,'j—t) K,'j

T
(ZZWz Yz] ijs ZZWz ij tz] Yz]&]) s

i=1j= i=1j=
N, = (Nor, ..., Ng), N=(N},...,N])", M=(MJ,...,M])T,

T T
bi(r) = (bio(t), bun (1)) and  b(t) = (bo(1),...,bi(r))
for r=0,...,k and [ =0, ..., k, where Kj; = K[(tij —t)/h] is given in (7.8).
Setting the partial derivatives of LLK(I; h, w) of (7.10) with respect to bj(t)
and by (f) to zero, the minimizer of (7.10), if exists, satisfies the following
normal equation

b

Nb(r) =M, (7.11)

where b(t) = (bo(1), ..., b(t))" and by(t) = (bo(t), b (1)) for 1=0, ... k. If
the matrix N is invertible at 7, i.e., N~! exists, then the solution of (7.11) exists
and is uniquely given by

~

b(t)=N"'M. (7.12)
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For each [ =0, ..., k, the least squares local linear estimator B[L% (t; h, w) of
Bi(¢) has the expression

BiR (15, w) = €141 b(0), (7.13)

where e, is the 2(k+ 1) column vector with 1 at its gth place and zero else-
where.

Explicit expressions of the higher-order least squares local polynomial es-
timators can be, in principle, derived by setting the derivatives of the score
function (7.7) with any p > 2 to zero. Although some results in the literature,
such as Fan and Gijbels (1996), have shown that higher-order local polyno-
mial estimators with p > 2 may have some theoretical advantages over the
kernel estimators or local linear estimators, these higher-order local polyno-
mial estimators are rarely used in practice, because they are more difficult
to compute. The theoretical advantages of the higher-order local polynomial
estimators over the kernel estimators or the local linear estimators depend on
the smoothness assumptions of the coefficient curves B(¢), which are usually
unknown in practice. Details of the general higher-order estimators based on
(7.6) and (7.7) are not discussed in this book, since a local linear fitting is suf-
ficiently satisfactory in almost all the biomedical studies that have appeared
in the literature.

7.2.4  Smoothing with Centered Covariates

In some situations, modifications of the estimation methods in Sections 7.2.2
and 7.2.3 are needed in order to provide better scientific interpretations of the
results. We discuss here a useful modification based on centered covariates.

1. Centered Covariates

The baseline coefficient curve By(¢) of the model (7.1) is generally inter-
preted as the mean value of Y(r) at time 7, when all the covariates X(z),
[=1,...,k, are zero. It is often the case that some of the covariates cannot
have values at zero, so that the baseline coefficient curve fy(¢) does not have a
meaningful interpretation. Under such situations, the model (7.1) and the lo-
cal least squares estimators (7.6) may not have useful scientific interpretations.
This drawback has been noticed by Wu, Yu and Chiang (2000), which, as a
remedy, has proposed to use a covariate centered modification of the model
(7.1), so that the baseline coefficient can be interpreted as the conditional
mean of Y () when the centered covariates are set to zero. We present here
the covariate centered time-varying coefficient model and the corresponding
smoothing estimators studied by Wu, Yu and Chiang (2000).

Forany [ =1,... k, let

ey () =E[XD ()] and zU(t) =XV (1) — iy (1)

be the mean curve of X)(r) and the centered version of the time-varying
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covariate X()(¢) (Z©) = X(©) = 1), respectively. The covariate centered time-
varying coefficient model is

Y(t)=2Z(t)" B*(r) + &(r), (7.14)

where Z(r) = (1, zZW(), ..., z" (t))T is the vector of centered covariates and

B*(t) = (B; (@), Bi(), ..., Bk(t))T is the vector of coefficient curves. Compared
with the original time-varying coefficient model (7.1), the relationship between
the baseline coefficient curves Bo(t) and B (¢) is given by

k
Bo (1) = Bo(t) + ) by (1) B (1), (7.15)

=1
which represents the mean of Y (¢), when X!)(¢), I =1, ..., k, have values at
their means py () (1), i.e., ZW(t), 1=1,...,k, are set to zero. Other coefficient

curves of (7.1) and (7.14) remain the same. Thus, {B;(t), ..., B(t)} have the
same interpretations in both (7.1) and (7.14).

2. Plug-In Estimation with Local Least Squares Criterion

A simple “plug-in” estimation approach based on the local least squares
score function (7.7) is to first obtain the estimates of {Bo(t), ..., B(t)} and
{py) (), ..., lyw ()} and then estimate B (¢) by plugging in the correspond-
ing curve estimates into (7.15). Under the framework of kernel estimators, if
X (1) is a time-dependent covariate, a centered version of Xl.(j”
mated by

can be esti-
(1 D~
2 =x{ iy (1), (7.16)

where, based on the kernel function &(-) and bandwidth ¥, fy (4;) is the
kernel estimator of ) (¢) at t =t;; such that

X DX il — 1) /)
X {wikl(r =)/ %}
For the special case of time-invariant covariates, covariate centering can be
simply achieved by substituting i) (¢) of (7.16) with the sample mean. Specif-
ically, if X(!)(r) = X" is time-invariant, then Xi(jl) :Xim forall j=1,...,n;, and
Z,.U) can be estimated by Z.(l) :Xim — X0, where X() = ! Z?:lXim is the sam-
ple mean of {X;l) i=1, ,n} If the kernel estimation method is used, Wu,

Yu and Chiang (2000) suggest that a direct estimation approach based on
(7.8), (7.15) and (7.17) is to estimate {Bo(¢), ..., Bk(t)} by

B, B ),

ﬁx(l) (t) =

(7.17)
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which are the corresponding components of ELSK (¢) given in (7.9), and then
estimate S () by

G (1) BEK (1), (7.18)

M»

BiLSK (1) = BESK (1) +

=1

so that the resulting estimator of B*(¢r) = (B§(t), Bi (1), ..., Bk(t))T is

B = (B0, B0, B ) (7.19)

We can see that the estimators in (7.18) and (7.19) depend on the kernel
estimators of both {Bo (1), ..., Bx(¢)} and {pyq)(t), ..., tyw (1) }-

3. Covariate-Centered Kernel Estimation

As an alternative to the direct least squares kernel estimators (7.19), a
two-step covariate-centered kernel estimation method suggested by Wu, Yu
and Chiang (2000) is to extend the local least squares score function (7.8) to

the model (7.14). Let Zl =(1, ijl), ey Z.(j]f))T be the estimator of the centered

covariate vector Z;; = (17 Zl(j ) . .,Zi(j@)T and

Z _( 117"'72in,')T

be the estimator of the n; x (k+ 1) centered covariate matrix. Substituting
the X;(¢) of (7.8) by Z;, the two-step covariate centered kernel estimator is

obtained by minimizing
k 2
~ tii—t
Wl{ ij Z Zz'(]l‘>b10(t)]} K(]T>7
=0

LE;,K(t;h’ W) ==

™=

™= u[\/]:

Il
-

wi [Y,‘—Z,‘bo(l)]TKi(l‘) {Yi—Zibo(Z‘)} s (7.20)

with respect to bo(t) = (boo(t), - - -, beo(1)) " Tf [Ly wi ZI Ki(t) Zy] is invertible
and its inverse is [ZE‘: | Wi ZT K() Z] 71, the two-step covariate centered kernel

estimator of B*(t) = (B (t),Bi (1), ..., ﬁk(t))T uniquely exists and is given by

*LSK(t h, w) _ ( *LSK<I h, ) *LSK(I h, w) *LSK(I h, W))T
_ [fw,-z{K,mz,} [fwizf K,-(t)Y,}, (7.21)
i=1 i=1

where K;(7) and Y; are defined as in (7.8).
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4. Multiple Bandwidths and Kernels

The estimators mentioned above, both with and without covariate cen-
tering, rely on a single pair of bandwidth and kernel function {h,K(:)} to
estimate all k+ 1 coefficient curves In some practical situations, the coeffi-
cient curves {Bo(t), Bi(t), (1)} or {B;(t) )., Be(t)} may belong to
different smoothness famlhes so that an estlmator Which uses different pairs
of bandwidth and kernel function {h,K(-)} for different components of B(r)
or B*(¢) is generally preferred.

As an example of this approach based on the estimators given in (7.9)
and (7.21), a straightforward modification of the above smoothing estimation
procedures is to use a linear combination of the form

LSK (t;h, w) ZeHlﬁLSK t; by, w) (7.22)

for the estimation of B(¢) = {Bo(r) ..., B(r)} and
Bl (15 b, w) Ze,ﬂﬁ (t; hy, w) (7.23)
for the estimation of B*(r) = {BO el [3k(t)}7 where, with kernel

K(-) and bandwidth for each 0 < z g k7 K() = (Ko(-), ..., K(-))", h =
(ho, ...,hk)T7 ep is the [(k+1) x 1] vector with 1 at its pth place and zero
elsewhere. In (7.22) and (7.23), BESX (1;h, w) and BgESX (t;h, w) may use dif-
ferent pairs of bandwidth and kernel function to estimate different components

of B(z) or B*(¢). As a general methodology, the idea of (7.22) and (7.23) may
be applied to other smoothing estimators as well.

5. Some Additional Remarks

The large sample properties of both E*LSK(I) of (7.19) and B};LSK (t;h,w)
of (7.21) have been studied by Wu, Yu and Chiang (2000). These asymptotic
results, which are presented in Section 7.5, suggest that both B*LSK () and
BI’QLSK (t; h, w) are useful in practice, and neither E*LSK () nor E}LSK (t; h, w) is
uniformly superior to the other. In particular, when all the covariates are time-
invariant, E +LSK (¢) and B “LSK (t h, w) are asymptotically equivalent. However,
when X ()(¢) for [ > 1 changes significantly with , B;: BiLSK (t; h, w), which requires
centering the time-varying X ) (r) first, could be theoretically and practically
superior to E*LSK (). We discuss more details on the comparisons between
these two kernel estimators in Section 7.5.

After a covariate is centered, the baseline coefficient curve of the model
is changed, but the interpretations of the other coefficient curves, namely
{[31 (t)y.ees Bk(t)}, remain the same. Thus, the decision on whether a covariate
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should be centered or not primarily depends on the biological interpretations of
the corresponding baseline coefficient curves By(z) or B (f). Clearly, smoothing
methods other than the approaches in (7.18) and (7.21) may also be applied
to the estimation of $*(¢). But, because of the computational complications
associated with covariate centering, statistical properties for local smoothing
estimators other than (7.21) have not been systematically investigated in the
literature.

7.2.5 Cross-Validation Bandwidth Choice

Following the approach of Chapter 6, we present here the leave-one-subject-
out cross-validation (LSCV) procedure to select the bandwidths for the es-

timators (7.9), (7.13), (7.21), (7.22) and (7.23). Let h = (ho, ..., )" be the
bandwidths, B(r; h, w) be a smoothing estimator of B(r) = (Bo(¢), ..., ﬁk(t))T
or (B; (1), Bi(2), ..., Bk(t))T based on h, and E<’i> (t;h, w) be an estimator com-
puted using the same method as B (t; h, w) but with the ith subject’s measure-
ments deleted. The LSCV score for E(t; h, w) is

LSCV (h, w) ZZW, [ i —XEBC) (15, W)]z, (7.24)
i=1j=

which measures the predictive error of E(l; h, w) for the model (7.1). The
LSCV bandwidth vector hyscy is the minimizer of the cross-validation score
LSCV (h, w) provided that the right side of (7.24) can be uniquely minimized.
An automatic search of the global minima of (7.24) usually requires a sophisti-
cated optimization software. In practice, particularly when the dimensionality
(k+1) of h is high, it is often reasonable to use a bandwidth vector whose
cross-validation score LSCV (h, w) is close to the global minima.

The reasons for using the LSCV score (7.24) are the same as the LSCV
scores in Chapters 3 to 6. First, by deleting the subjects one at a time, the cor-
relation structure of the remaining data and the measurements of the deleted
subject is preserved. Second, since in real applications the correlation struc-
tures of the data are often completely unknown and difficult to estimate, the
LSCV score (7.24) is a widely acceptable choice because it does not require
any specific assumptions on the intra-subject correlations, hence, can be im-
plemented in all practical situations. Third, when the number of subjects is
sufficiently large, minimizing (7.24) leads to a bandwidth vector that approx-
imately minimizes the following average squared error

ASE[B ZZW,{ ' |Bly) ﬁ(tij;h,w)]}z. (7.25)

The last assertion follows heuristically from the decomposition

LSCV(h,w) = ii{ l[u Xil;ﬁ(fij)r}
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+2i_iljil{wi [Yij —Xi§ﬁ(tij)]
<[5 (B0 -5 )|}
+ Z Z {wi [X,T (ﬁ(;,-j) — B (521, w))]z}. (7.26)

i=1j=1

Here, (7.25) and the definition of B(’i) (t; h, w) imply that the third term at

~

the right side of (7.26) is approximately the same as ASE [[3 (-; h, w)] Because
the first term at the right side of (7.26) does not depend on the bandwidth
and the second term is approxiAmately zero, hygcy approximately minimizes
the average squared error ASE [B (~; h, w)] .

7.3 Pointwise and Simultaneous Confidence Bands

Since the asymptotic distributions for the smoothing estimators of () given
in Section 7.2 have only been developed for a few special cases based on kernel
smoothing, asymptotically approximate inferences for B(z) are not generally
available beyond these special cases. Even for the special cases where the
asymptotic distributions are available, the corresponding approximate infer-
ences require the “plug-in” approach by substituting the unknown quantities
in the asymptotic biases and variances with their smoothing estimates. Thus,
similar to the situations in Section 6.4, a more practical inference approach is
to consider the resampling-subject bootstrap procedure. We describe here the
bootstrap approximate pointwise and simultaneous inferences for (¢).

7.8.1 Pointwise Confidence Intervals by Bootstrap

Let B\(t) = (B\O(I), ey Ek(t))T be an estimator of B(¢) constructed based on

any of the methods in Section 7.2, and A = (ao, ...,ak)T be a known (k+ 1)
column vector. Then,

~ k ~
ATE[B(1)] = Y aE[Bi(1)]
=0

-~

is a linear combination of the components of E [B (t)] The resampling-subject
bootstrap procedure constructs an approximate [100 x (1— oc)]% pointwise

~

percentile interval for AT E [[3 (t)] using the following steps.

Approximate Bootstrap Pointwise Confidence Intervals:

(a) Computing Bootstrap Estimators. Generate B independent bootstrap
samples using the resampling-subject bootstrap procedure of Section 3.4.1
and compute the B bootstrap estimators {BP(t), ..., Bo(t)} of B(r).
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(b) Approximate Bootstrap Confidence Intervals. Calculate L} a/z(t)
and Uf a/z(t)7 the lower and upper [100 X ((X/Z)] th percentiles, respectively,

~

of the B bootstrap estimators AT B°(t). The approzimate [100 x (1 — o)]%

~

bootstrap confidence interval for ATE[ﬁ (t)] based on percentiles is

(Lﬁ,a/z(t% Uf[;,a/2(t)>' (7.27)
The normal approximated bootstrap confidence interval for ATE[B(t)] 18

ATB(r)izl,a/zxfe(t;ATB”), (7.28)

~

where sAe(t;AT ﬁb) 1s the estimated standard deviation of the B bootstrap
estimates {AT Bl (1), ..., AT B5(t)} which is given by

o(ia"B) = {5 X 47 B0 - 5 L7 B0 2}1/27 (7.20)

and zy_q /5 s the [100 x (1 — a/2)]th percentile of the standard normal dis-
tribution. O

The pointwise confidence intervals given in (7.27) and (7.28) are only ap-
proximate intervals for AT E[B(r)], because they do not contain bias correc-

tions. When the asymptotic bias of () is small, the coverage probabilities

~

of (7.27) and (7.28) containing AT B(t) are close to [100 x (1 — )]%. Since
the asymptotic bias of a smoothing estimator is often difficult to be accu-
rately estimated in practice, the “plug-in” approach for correcting the unknown
asymptotic bias may not lead to better coverage probabilities over the simple
variability bands given in (7.27) and (7.28).

Pointwise confidence intervals for a single component of (¢) can be con-
structed by selecting the corresponding component of A to be 1 and 0 else-
where. In particular, the pointwise resampling-subject bootstrap confidence
interval for B,(r), 0 <r <k, can be computed by (7.27) or (7.28) with A be-
ing the (k+ 1) column vector having 1 at its (r+ 1)th place and 0 elsewhere.
Pointwise confidence intervals for the difference of two component curves of
B(t) can be similarly constructed by taking the corresponding elements of A
to be 1 and —1 and 0 elsewhere. For example, the pointwise bootstrap confi-
dence interval for [By, (t) — By, (t)] can be computed by (7.27) or (7.28) with A
being the (k+ 1) column vector having 1 and -1 at its (r{ + 1)th and (r, + 1)th
places, respectively, and 0 elsewhere. Other special cases of (7.27) and (7.28)
can be similarly constructed by choosing the appropriate vector A.
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7.3.2  Simultaneous Confidence Bands

9

We now describe the “bridging-the-gap” simultaneous confidence bands for
ATB(1) = X5 _oa Bi(t) over t € [a, b], where [a, b] is any given interval in 7.
The first step is to select a type of p01ntW1se confidence intervals based on the
estimator ﬁ( )= (ﬁo( ), - ﬁk( )) of Section 7.2. In general, let 14 4/»(¢) and
Uy q/2(t) be the lower and upper bounds, respectively, of a [100 x (1 —a)]%
pointwise confidence interval for A” B(¢) based on B(¢), so that the correspond-
ing interval is given by

(I, ay2(1), ua,qp(1))- (7.30)
A simple choice for (7.30) is to use the resampling-subject bootstrap confidence
intervals given in (7.27) and (7.28).

The next step is to construct a set of confidence intervals which cover
ATB(t) over a grid of time points in [a, b] € 7 with at least [100 x (1 —a)]%
of the coverage probability. Thus, we partition [a, b] into M equally spaced
intervals with grid points

a=§& <---<&yp1=>b, suchthat {1 —&=(b—a)/Mfor j=1,....M

The integer M is usually chosen subjectively with the intent that the re-
sulting confidence bands are not too wide. Given {&,---,&y11}, a set of
approximate [100 x (1 —a)]% simultaneous confidence mtervals for ATB(E)),
j=1,...,M+1, is then the collection of intervals

{(LA,a/Z(éj)7 Urap(&j)):j=1,....,M+ 1}7 (7.31)
which satisfies the inequality
1im PLy apa(&) SATB(E) S Usap(§) forall j=1,....M+1]21-a

A simple choice of (7.31) is based on the Bonferroni adjustment of the point-
wise confidence interval of (7.30), such that

(LA7a/2 (&), UA,a/2(5j)> (lA a/p+1) (87) A, a1 (51)) (7.32)
To bridge the gaps between the grid points {éj j=1,...,M+1 }, we rely

on some smoothness conditions for AT B(¢). Given the values of AT B(&;) and
AT B(&;11), the linear interpolation for ¢ € [£;,&;,1] is

)0 = [0 ) [P )] r

By (7.31) and (7.33), a simultaneous confidence band for the linear interpola-
tion (ATB)(I) (t) over t € [a, b] is

(L2 U ). (7.34)
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where L51> /2( ) is the linear interpolation of {LA7O,/2 (éj),LA’a/z(éjH)} and

U;{L/z( ) is the linear interpolation {UAJZ/Q(&]-), Up,a/2 (&41) }- If the deriva-
tive of AT B(t) with respect to ¢ is bounded, such that
sup ’(ATﬁ)/(t)’ <c¢, for a known constant ¢; > 0, (7.35)
te€la,b)

then it follows that

4780~ (47B) 0] < 201 |

M(§j+1—t)(t—€j)}
b—a ’

for all t € [£;, €41, and an approximate [100 X (1 — a)]% simultaneous confi-
dence band for AT B(¢) is

<L(1) (t)—ch[ (§J+1 G éj)}

A,0)2 —a
1 G —1)(t—6))
Uf“;/z(t)#rzcl[ R ) (7.36)
If the second derivative of AT B(¢) with respect to ¢ is bounded, such that
sup ’(ATﬁ)”(t)’ <c¢p, for a known constant ¢; >0, (7.37)
te€la,b)

then

)

2 b

for all t € [£}, &j+1], and an approximate [100 X (1 — a)]% simultaneous confi-
dence band is given by

(Lm 02 {M(C‘m —1)(t @)} |

A7) - (7)) < 2 [ME =)

A,0)2 b—a

2 [MiE =00 8)])

Uy, (0 + (7.38)
When AT B(t) satisfy smoothness conditions other than (7.35) and (7.37),
simultaneous confidence bands for AT B(¢) can be similarly constructed using
the linear interpolation bands of (7.34) and the inequalities obtained from
the smoothness conditions. The smoothness conditions defined through the
derivatives as (7.35) and (7.37) are easy to interpret in real applications.

7.4 R Implementation
7.4.1 The NGHS BP Data

The NGHS data has been described in Section 1.2. In Section 5.2.2, we have
analyzed the time-trends of body mass index (BMI) for the 1213 African
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American girls and 1166 Caucasian girls, who were followed from ages 9 or
10 years to 18 or 19 years. Since the objective of this study is to investigate
the patterns of cardiovascular risk factors, an important outcome variable is
the subject’s systolic blood pressure (SBP). Although the children’s blood
pressure generally increases with age and height, the longitudinal relationship
between the time-trends of blood pressure and the covariates of interests may
not follow a certain parametric family.

1. Estimation with the Time-Varying Coefficient Model

The structured nonparametric model (7.1) appears to be a natural option
for an exploratory analysis. In this analysis, we evaluate the potential covariate
effects of race, height and BMI on the time-trends of SBP using the time-
varying coefficient model (7.1). For the ith NGHS participant, we denote by
t;j the age in years at the jth study visit, ¥;; the SBP level at f;; during the

study, &; the error term at #;, X, ( ) the indicator variable for race (X xW =1 for

African American, Xl-( ) — 0 for Caucasmn), l-(j) and Xi(j) the height and BMI

at #;;. The model (7.1) can be written as

Y;; —ﬁo(l‘u) + B (l‘l]) +ﬁ2(tu) ,~<j~2>+ﬁ3 (t,'j) Xi<j3>+8ij. (7.39)

Instead of using the actual height and BMI values, we use in the above
model the age-adjusted height and BMI percentiles for X(?) (tij) and X<3)(t,~j)7
respectively, which are computed by subtracting 50% from the individual’s
height and BMI percentiles obtained from the U.S. Center for Disease Control
and Prevention (CDC) Growth Charts (https://www.cdc.gov/growthcharts/).
Consequently, Bo(t) represents the baseline SBP curve, i.e., the mean time
curve of SBP for a Caucasian girl with a median height and a median BMI
level, and B;(r), 1 =1, 2, 3, represent the effects of race, height and BMI, respec-
tively, on the individual’s SBP during the adolescence years. This definition
of X (1;;) and X®)(;;) leads to meaningful clinical interpretations for the
model (7.1). Hence, there is no need to consider further “covariate centering”
as described in Section 7.2.4.

To obtain the local least squares smoothing estimates for the coefficient
curves as described in Section 7.2, we need to select a kernel function K(-),
an order of polynomial p and a bandwidth A. The bandwidth £ is the most
important parameter to determine the smoothness of the fitted curves. The
resulting local polynomial estimators are the weighted least squares solution
of (7.7), which may be obtained by simply applying the R function 1m(). For
a given t, we set the design matrix for Im() to include {X(” :1=0,1, ...,k}7
where X() has p components,

(XX (i =1), o X (1 =1)"},

and set the weight argument to include w;K[(f;; —)/h]. Then we can take


https://www.cdc.gov/growthcharts/
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the (21+1)th, [=0,1, ..., k, components of the coeflicient estimates to obtain
bo() = (Zoo(t), ...,Zko(t))T in (7.6). Alternatively, we may also use the algo-
rithm in Section 7.2.3 to compute the matrices N and M, and solve equation
(7.11) to get the local linear estimators.

For the NGHS SBP data, we estimate the model coefficients {f;(¢) : [ =
0,1,2, 3} using a local linear fit with the Epanechnikov kernel and a subjective
bandwidth & = 3.5 by using the following R commands:

> library(npmlda)

# Obtain a grid of time

> Age.grid <- seq(9, 19, by=0.5)

# Call function Locallm.Beta() for local least squares fits for
# baseline and 3 covariate effects at Age.grid

> Beta <- with(NGHS, Locallm.Beta(Age.grid, AGE, X1=Black,

X2=HTPCTc, X3=BMIPCTc, SBP, Bndwdth=3.5, Weight=1/ni))

Figure 7.1 displays the estimated coefficient curves for the covariates be-
tween 9 to 19 years of age for the NGHS girls and their 95% pointwise con-
fidence intervals computed based on the resampling-subject bootstrap proce-
dure of Section 7.3.1 with 1000 bootstrap replications. The subject uniform
weight wi = 1/(nn;) discussed in Section 7.2.1 is used. The fitted curves with
the LSCV cross-validated bandwidth & = 1.6 are slightly undersmoothed but
suggest very similar time-trends for the baseline and coefficient curves.

Remarkably, these coefficient curves in Figure 7.1 suggest very interesting
baseline growth pattern and time-varying covariate effects on the time-varying
SBP patterns of adolescent girls. As expected, the estimated baseline coeffi-
cient curve shows that the mean SBP for Caucasian girls with the median
height and the median BMI increases with age during adolescent years. The
effect of race, which changes with time, suggests that the African American
girls tend to have higher mean SBP levels than the Caucasian girls. However,
this racial difference is not statistically significant at younger ages but be-
comes more significant at later adolescent years. The lower panels of Figure 7.1
show the estimated coefficient curves for the two time-dependent covariates,
height and BMI percentiles. The effect of height percentile on SBP is positive,
suggesting that the SBP levels of adolescent girls tend to increase with height
percentile and the influence of height percentile is larger for girls with younger
ages and declines with age. Finally, the BMI percentile is also positively asso-
ciated with SBP level, and its effect is larger at older ages compared to that
at early adolescent years.

2. Estimation with the Linear Mized-Effects Model

We see from Figure 7.1 that the above structured nonparametric results
based on the model (7.39) suggest that the relationship between the mean of
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Figure 7.1 Covariate effects on systolic blood pressures of NGHS girls using local
linear estimators. The solid curves in (A)-(D) show the estimated coefficient curves
AlLf{L (t; h, w*), 1=0,1,2,3, respectively, based on (7.13) using a Epanechnikov kernel
and a bandwidth h=3.5. The dashed curves indicate the corresponding bootstrap 95%
pointwise confidence intervals.

SBP Y(r) and the girls’ age 1, race X1 height percentile X(®)(¢) and BMI per-
centile X®)(r) may be approximately described by a parametric linear mixed-
effects model described in Section 2.1. We examine this possibility by fitting
the data to the following second-order linear mixed-effects model

;i = oapi+ogx Agefj + o X Xl.(l) + 03 X X,.<j2> + 0y X Xl.(j3)

+ots x Age§ x X\ + o x Ages; x X, (7.40)
+a7 x Agej; % Xi(j3> +eij,

where, for convenience and clinical interpretations, Age;; is the girls’ centered
age computed by subtracting the starting age of 9 years from the girl’s actual
age at the jth visit, and, Xi(l), Xi(j2> and Xi(j3> are the girl’s race, height percentile
and BMI percentile as defined in (7.39). In (7.40), the time-varying covariate
effects are described by the coefficients {a5, O, a7} for the interaction terms

(1) (2) 3)
{Agefj XX Agefj XX, Agefj x X }
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The parameter estimates and their inferences of (7.40) can be computed
using the following R code:

> NGHS.fit <- lme (SBP~AGEc+Race+Race:AGEc+HTPCTc+HTPCTc:AGEc
+ BMIPCTc + BMIPCTc:AGEc, random="1|ID, data=NGHS)
> summary (NGHS.fit)

Linear mixed-effects model fit by REML

Fixed effects:
Value Std.Error DF t-value p-value

(Intercept) 100.12814 0.21507240 16938 465.5555 0.0000
AGEc 0.87370 0.02517459 16938 34.7055 0.0000
Race 0.30588 0.30215527 2374 1.0123 0.3115
HTPCTc 0.04558 0.00478288 16938 9.5290 0.0000
BMIPCTc 0.08750 0.00439813 16938 19.8955 0.0000
AGEc:Race 0.07878 0.03540669 16938 2.2251 0.0261
AGEc:HTPCTc -0.00131 0.00065129 16938 -2.0166 0.0438
AGEc:BMIPCTc 0.00252 0.00062072 16938 4.0556 0.0001

The output above shows that the baseline SBP increases with age because
both 0 = 100.128 and a; = 0.874 are statistically significantly larger than
zero. There are significant positive associations of race, height percentile and
BMI percentile with SBP over time. Furthermore, the significant interaction
terms indicate that the covariate effects on SBP are varying with time. Hence,
these results from the linear mixed-effects model (7.40) are consistent with
those obtained from the time-varying coefficient model (7.39).

Since the cardiovascular risk factors track from childhood to adulthood,
this example suggests that the time-varying coefficient models are useful ap-
proaches to explore the racial differences and correlates in blood pressures
or other risk factors in this type of longitudinal studies. The findings could
provide rationales for future interventions to reduce the excess cardiovascular
mortality, as discussed in Daniels et al. (1998).

7.4.2 The BMACS CDJ Data

The BMACS CD4 data has been described in Section 1.2 and analyzed in
several previous chapters. In this analysis, we consider using the local least
squares smoothing method to estimate the effects of three time-invariant co-
variates, pre-HIV infection CD4 percentage, cigarette smoking, and age at
HIV infection, on the mean CD4 percentage after the infection using the time-
varying coefficient model (7.1). In comparison with the componentwise local
method in Chapter 6, the estimators in Section 7.2 can be applied to more
general models that also allow for time-dependent covariates.
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Figure 7.2 Covariate effects on post-infection CD/ percentage using local lmear es-
timators. The solid curves in (A)-(D) show the estimated coefficient curves Pi(t),
1=0,1,2,3, respectively, based on (7.6) using the Epanechnikov kernel and the cross-
validated bandwidth h =1.8. The dashed curves indicate the corresponding bootstrap
95% pointwise confidence intervals.

Figure 7.2 displays the estimated coefficient curves from 0.1 to 5.9 years
post-HIV infection for the BMACS CD4 data, where the continuous covariates
of pre-infection CD4 percentage and age at HIV infection are first centered by
subtracting their corresponding sample averages, 42.9% and 34.2 years, from
the individual values, respectively. The four coefficients { Bi(t) : 1 =0, ...73}
are obtained from a local linear estimator with the Epanechnikov kernel, sub-
ject uniform weight wi = 1/(nn;), and the LSCV cross-validated bandwidth
h = 1.8. Their 95% pointwise confidence intervals are computed using the
resampling-subject bootstrap with 1000 bootstrap replications.

The results for the baseline and covariate effects from the local least squares
estimates, shown in Figure 7.2, are very similar to the findings obtained from
the componentwise methods in Figures 6.1 and 6.2. They all suggest that
the mean baseline CD4 percentage decreases quickly after HIV infection, the
pre-infection CD4 percentage is positively associated with post-infection CD4
percentage but this effect is declining with time since HIV infection. However,
neither smoking nor age at infection has a significant association with the
post-infection CD4 percentage.
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7.5 Asymptotic Properties for Kernel Estimators

This section summarizes the asymptotic properties of the local least squares
kernel estimators for the time-varying coefficient model (7.1). These smooth-
ing estimators are representatives of the one-step smoothing methods for
(7.1), and their asymptotic properties give an overview on how the smooth-
ing method works in practice. By minimizing the local—sqtlares score function
(7.8), the expression of the least squares kernel estimator BI%SK (t; h, w) of B(r)
in (7.1) is given by (7.9). The asymptotic risks of B\I%SK (t; h, w) are expressed
using the mean squared errors.

The main results of this section have two interesting features, which distin-
guish the asymptotic risk of ﬁIIESK (t; h, w) from its counterpart of the Nadaraya-
Watson kernel estimators in nonparametric regression with cross-sectional
ii.d. data. First, the asymptotic bias of the kernel estimator ﬁIIESK (t;h, w)
is affected by the smoothness of the time-varying covariates X(r) as well as
the smoothness of B(r) and the underlying design density of 7. Second, the
asymptotic variance of EI%SK (t; h, w) is influenced by the intra-subject corre-
lation of the data and the numbers of repeated measurements n;, as well as
the variance of the error term &(¢). Thus, as a consequence, the convergence
rates of EI%SK (t; h, w) in general depend on the number of subjects n and the
numbers of repeated measurements n;. In contrast, the convergence rates of
the kernel estimators in nonparametric regression with cross-sectional i.i.d.
data only depend on the sample size n.

7.5.1 Asymptotic Assumptions

The estimation methods of Section 7.2 can accommodate both fixed and ran-
dom time points. We make the following technical assumptions for the asymp-
totic properties of I%SK (t; h, w) throughout this chapter:

(a) The time points {tij j=1,...,n5i=1, 7n} are chosen independently
according to some design distribution Fr and design density fr.
(b) Foralli=1,....;n, j=1,....,n;, and r,1 =0, ...k,

o2(t) = E[eX1)],
pe(t) = lims ,oE [e(r+8)e(r)], (7.41)
élr(t) = E(X;/l) Xi<jr>|t,'j = l‘).

(c) Foralll,r=0,...,k, &,(t) is Lipschitz continuous with order oy, i.e.,

| (51) = &ir(52)] < co sy — 52|

for s1 and sy in the support of fr(t) and some co >0, and B;(t) and fr(t)
are Lipschitz continuous, respectively, with orders oy >0 and o > 0.
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(d) The variance curve 62(t) and the limiting covariance curve pe(t) are con-

. ()4
tinuous, and E[(Xij ) ] < oo

(e) The kernel function K(-) is non-negative, has compact support on the real
line, integrates to one and has finite second moment, that is, there are

constants c; < ¢z, such that,

Ku)>0ifci<u<cy, Ku)=0ifu<cy oru>cy, (7.42)
[K(u)du=1 and [K*(u)du < o. .
(f) The bandwidth satisfies h — 0 and nh — o0 as n — oo. O

Similar to the assumptions in Section 6.6.2, pe(f) in general does not nec-
essarily equal 62(t), and, when the error term &(¢) includes an independent
measurement error, 62(¢) > pg(t). These assumptions are comparable to the
regularity conditions commonly used in nonparametric regression with cross-
sectional i.i.d. data (e.g., Hdrdle, 1990), and are sufficiently general to be satis-
fied in many interesting practical situations. Theoretically, these assumptions
can be further modified or weakened in various ways so that more desirable
asymptotic properties of the kernel estimator BI%SK (t; h, w) may be obtained.

7.5.2  Mean Squared Errors

The risk of B\I%SK (t;h,w) or any other smoothing estimator of B(¢) in Sec-
tion 7.2 depends on the choice of loss functions. Let W;, [ =0, ..., k, be non-
negative constants, and W = diag(Wp, ..., W) be the (k+1) x (k+1) ma-
trix with diagonal elements {Wg7 e Wk} and zero elsewhere. The local mean

squared error of ELSK () with weights W at time ¢ is
MSEy [BEX (11, w)]
_ E{ {AI%SKO; o w) —ﬁ(f)rw [AI%SK(I;M w) —B(t)] } (7.43)

Similar to the situation of Section 6.6, the mean squared error (7.43) may
not exist in general. Since this minor technical problem does not have real
implications about the practical value of an estimator, we use the following

slightly modified version of (7.43) for AI%SK (t;h,w).

1. Approximation for [B\I%SK(I; h, W) —ﬁ(t)]

Let
Ry(1) = Z (wi/h) {XZT Ki(t) [Yi—X; B(1)] }7 (7.44)

i=1

where w= (wy, ..., w,)T is the weights used in (7.9). The objective is to express
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the risks of EI%SK (t; h, w) through the second moment of R, (t). By straightfor-
ward algebra, which is given in the following, we have the approximation

D) = [1+o,,(1)][ LK (1 h, w) — p(r)}
= fr'(0) Egr (1) Ru(t), (7.45)

where fr(t) is the density function of #; given in Assumption (a), Exxr(t) =
E[X(1)XT(#)]. To derive (7.45), we first obtain from (7.9) that

BESK (151, w) — B (1)
n -1 n
— {Z w; X[ K,-(r)x,} { Y wiXTKi(r) [Yi— X,-ﬁ(t)]}

i=1

[g wi /) KT K, )X,]lﬁwu). (7.46)

Then, multiplying Y-, (wi/h) XI K;(r) X; to both sides of (7.46), we have

{Zl (wi/h) X Kq(1) xi] [A,QSK (t;h,w) — B (t)] — Ru(0). (7.47)
By the definition of K;(¢) in Section 7.2.2, we have
B| Y (/mx Ki0%] = ¥ o (T E0] %} (a9

i=1 i=1

To compute E [K;(t)], we note that, by Assumptions (a) and (c),

BR(U) ) = JIRCE) ] ras
= ./K(u)fT(t — hu)du
= fr(t) [1+o,(1)]. (7.49)
It follows from (7.46), Assumptions (a) through (f), and ¥, (win;) = 1 that

[i (wi/H) XT A1) X } FrO)Eger 0 [1+op(D],  (750)

i=1
and, by the law of large numbers,
[Z (W,‘/h) XlT K;(r) X,':| = fT(t) Exxr (t) [1 +0p(1)] . (7.51)
i=1

The approximation of (7.45) then follows directly from equations (7.47) and
(7.51).
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2. Approximated Mean Squared Errors

To avoid the technical inconvenience that might arise because of the
nonexistence of the mean squared errors, we describe the asymptotic risk
of BESK (1;h,w) through the mean squared error of D(r) in (7.45), which is

referred to as the modified mean squared error for AI%SK (t; h, w),

MSE3y [BEX (1; h, w) iZ {M,, E[R, ,(t)ﬁwr(t)]} (7.52)

where R,,;() is the /th element of the k+ 1 column vector R, (¢) and M;,(t) is
the (I, r)th element of the (k4 1) x (k+ 1) matrix

M(t) = f7 (1) [Expr ()] WE 11 (1),

Similar to the usual mean squared errors, MSE{;V[AI%SK (t; h, w)] of (7.52)
is formed by two components, the square of the expectation of D() and the

variance-covariance matrix of D(f). The modified bias of B\IIESK (t;h,w) is de-
fined to be the expectation of D(t) given by

B [BE (1h,w)] = E[D(1)] = f7 ' (1) Elr E[RW(1)].  (7.53)

The modified variance-covariance matrix of ELSK () is defined to be the
variance-covariance matrix of D(r) given by

Cov* [AI%SK (t; h, w)]
= Cov[D(1)] (7.54)
T
= [ O Eg 0] CovRun)] £ () Exkr 0]

We similarly define the modified mean squared error of a component es-
timator of B(¢). For a given component BI%SIK (t; h, w) for some 0 <1 <k, its
corresponding approximation component is D;(f), so that its modified bias and
variance are given by

B*[ LSK(t h,w)] =E[Dy(t)] and V*[ LSK(t h, w)} =Var[D,(1)], (7.55)

respectively. Since the weight W defined in (7.43) is a diagonal matrix
with diagonal elements {Wg7 ...,Wk}, the modified mean squared error of

EI%SK (t; h, w) has the following variance-bias squared decomposition
MSEy [BEX (1: 1, w)]

ZW,{B* BLSK (1 hy w } ZW,V* BLSK(1:h,w)].  (7.56)
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Taking W; =1 for any 0 <! <k and W, =0 for all r # /, the modified mean
squared error for the component estimator BI%SIK (t; h, w) is given by

MSE* [BEF ()] = (B (BEE ()]} v B (hw)]. (757

We derive in the next section the asymptotic representations of the bias and
variance terms in the right side of (7.56) and (7.57).

7.5.8 Asymptotic Risk Representations

We present here only the asymptotic risks for the kernel estimator BLSK (t) of
(7.9) with the w!* = 1/N weight

BEX (1w = (BEK (how™). oo BEE (1w ))T.

The asymptotic risks of BI%SK (t h, w) with weight w # w** can be derived as a
straightforward extension from that of ﬁLSK (t; h, w).

1. Expressions of Asymptotic Mean Squared Errors

We first state and prove a general result for the mean squared risk of the
kernel estimator ﬁLSK (t; h, w).

Theorem 7.1. When the number of subjects n is large, t is an interior
point of the support of fr and Assumptions (a) through (f) are satisfied, the
following conclusions hold:

(a) The asymptotic bias of ﬁLSK (t; h, w**) is given by

B* [BEK (1:h,w™)| = f 1 (0) Exgkr (1) (Bo(t), ..., B(0)) " [1+0(1)], (7.58)
where, for 1 =0, ..., k,

B(t)=Yr,[ [Br(t — hu) — Be(t)] &, (t — hut) fr (t — hu) K (u) du,
B [BESX (1, w)] = (B [BEX (11 w) ). ... BE [BESK (12, W**)])T.

(b) The asymptotic variance term V* [BI%SK (t;h, w)] is

ZW Vv [BEK (15, w)] (7.59)

- 5o s ]
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where, with the matriz M(t) defined in (7.52),

{Zl(f) = pe(t) X o Xm0 [Mi,1,(1) &1,1, (1)],
() = (72(’)):;(1:02[;2:0[lelz(f)glllz(t)]

(c) The asymptotic mean squared error MSEy [BI%SK(I; h, w**)] , which is ob-
tained by substituting (7.58) and (7.59) into (7.56), is given by

ZW;B,[ BEK (13, w™) ] + [Z(%ﬂ ROZi)  (T.60)

50wz o[£ (2)]

Furthermore, MSEy [EI%SK (t; h, w**)] — 0 if and only if maxi<i<y (n,-Nfl) —
0 as n— oo. ]

Proof of Theorem 7.1 is given at the end of this section.

The general asymptotic bias expression of (7.58) leads to different special
cases under different smoothness assumptions for &,(¢), B;(t), fr(t), 6>(¢) and
Pe(t). A commonly used smoothness condition in the literature is to assume
that the nonparametric curves of interest are twice differentiable. Although
it is usually impractical to validate whether the unknown curves in a practi-
cal situation are twice differentiable, asymptotic results developed under the
twice differentiability assumption is often used as a general guideline to evalu-
ate the appropriateness of the smoothinAg estimators. The next theorem gives
the asymptotic mean squared error of BI%SK (t; h, w**) under a special case of
Assumptions (c) and (d).

Theorem 7.2. Suppose that Assumptions (a) through (f) are satisfied,
and, in addition, B;(t), fr(t) and &, (t) are twice continuously differentiable.

When n is sufficiently large, the modified bias ofBLSK (t h, w**) has the asymp-
totic expression

B [BESK (1 h,w™)] = £ (0) Ehr (012 (bo(0), ... bu(0) " +0(h?),  (7.61)

where

Zzz{ﬁr”() ( (bifig()[/“”““)d”}}v

r=0a=0b=0

and the asymptotic repression for the modified variance V* [BI%SK (t;h, w**)]
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is given in (7.59). The asymptotic representation of MSEW[ LSK(t h, w**)]
which is obtained by substituting the right-hand sides of (7.59) and (7. 60) into
(7.52), is given by

MSEy [BEX (11, w™)]

= 0 Y ey ()] A0z 0
=0

i=1

+f;—(}’l) [/Kz(u)du} Zy(t )+0[h4+ ﬁ +i (?\;)2] (7.62)

where bj(t) is the (14 1)th component of EXXT( ) (bo(2), ...,bk(t))T, Further-
more, BI%S (t; h, w**) is consistent, i.e., MSEy [ﬁéSK (t; h, w**)] —0 asn— oo,

when Y (niN’l)2 — 0, which holds if and only if max;<j<p (niN’l) — 0 as
n— oo, |

Proof of Theorem 7.2 is given at the end of this section.

2. Remarks on the Asymptotic Results

The theoretical results of Theorems 7.1 and 7.2 lead to a number of in-
teresting special cases, which can guide the practical use of the least squares
kernel estimator BLSK (t h, w**) These asymptotic results have the following
implications:

Consistency: In general, ﬁLSK (t h, w**) is not necessarily a consistent

estimator of B(¢) in the sense that MSE}, I%SK (t; h, w™)] converges to 0 when
N converges to infinity but the sizes of n;, i =1, ..., n and n are unspecified.
For example, if n; =m for all i=1,...,n and m converges to infinity but n
stays bounded, then, since N~2 ):?Zlni2 =n"! is bounded away from zero for
sufficiently large N, MSE, [B\I%SK (t; h, w**)] does not converge to zero as N goes
to infinity. a

Bounded Repeated Measurements: If n; are bounded, i.e., n; < ¢ for
some integer ¢ > 1 and all i=1,...,n, and n is sufficiently large, then the
asymptotic variance term in (7.59) is dominated by the second term of the
right side of (7.59). Then, if we minimize the dominating terms of the asymp-
totic MSE, [AI%SK (t; h, w**)]7 the optimal bandwidth is hop, ( ’1/5) Sub-
stituting hop into (7.60), the mean squared error MSE, [ BLSK (t hopt, W *)] is
of the order N*/3. a

Effects of Correlations: It is seen from (7.60) that the asymptotic effects

of the intra-subject correlations on MSEV*V[AI%SK (t; h, w**)] are only included
in Z; () in the variance term (7.59). Without this extra term, the asymptotic
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mean squared errors of ﬁLSK (t h, w**) would be the same as kernel estimators
with cross-sectional i.i.d. data. The effects of the intra-subject correlations
depends on the limiting values, pe(r), of the covariances of g () and &(s)
as s — t. This is caused by the local averaging nature of kernel methods.
Specifically, the estimators tend to ignore the measurements at time points #;
which are outside a shrinking neighborhood of ¢. Since the bandwidths shrink
to zero, any correlation between &(¢) and &(s), ¢t # s, is ignored when n is
sufficiently large. This local nature makes the least squares kernel estimators
useful under the current setting, since, in practice, we may only be aware of
the presence of the intra-subject correlations but have very little knowledge
about the specific correlation structures. By using a local smoothing method,
we essentially choose to ignore the correlation structures. These asymptotic
results provide some qualitative insight for the adequacy of the estimation
procedures. a

3. Theoretical Derivations

We provide here the proofs of Theorems 7.1 and 7.2.

1. Proof of Theorem 7.1:

Following the approximation of (7 ( 45),A1t suffices to study the asymptotic
representations of E[ w(t)] and E[ 10

)R, ()] for I,r=0,..., k. Define
k

ain(t) = 3 {7 [Buiy) = )]+ ) ).

It can be verified by direct computation from the definition of R,,(r) in (7.46)

that
—lij
,2 Elamn(52) oo
and, since E [a,-jl(t)’tij = S] = 2r=0 { [Br )] glr( )}

E[Ra(t)] = (Nh)*lii/E[aiﬂ(t)‘tij:s]K(t_TS>fT(S)ds

i=1j=1
= B(1). (7.64)
Thus the asymptotic bias expression (7.58) follows from equations (7.53),
(7.63) and (7.64).

To derive the asymptotic variance expression (7.59), we consider the fol-
lowing decomposition

Rui(t) R (1) = Apt +Apa +Ajya
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where
I \2 & & 2 (T —1ij
A = (ﬂ) ;];aul at/r K( n )7
! t—ti t—t
Alr2 = ( ) Z al]l Ur K( hl/)K( /’l”>7
i=1j#j

t—t; t—tyy
Alr3 = ( ) ZZ“UI al/j/r K( h ]>K( hlj>.
i j,

'/

By direct calculations with the change of variables, it is straightforward to
verify that

ii (M, (1) E (Ai1)] = (%)ﬁ(f) {/Kz(u)du] Z(t)+o(N"'hh).

Using the Cauchy-Schwarz inequality, we can show that

k

Z i [M;(1)E(A12)] (Zn - > 1) Z(t )+0(N2 i;ﬁ)

1=0r=0 i=1
Finally, we can verify directly that

k k

ZVVI ﬁwl Z Z [er(t)E<Alr1 +Alr2)]7

1=0r=0
which implies that the asymptotic expression (7.59) holds.

To show the last assertion in (c), we suppose ):fr 0 [M;,(1) & ()] >0. Then
MSEy [BIQSK(t; h, w**)] — 0 if and only if N—2 Yo 1n — 0 as n — oo. It is easy
to see that Y/ (mN~ 1)2 — 0 implies maxj<;<, (n;N~') — 0. It suffices to
show that max;<j<, (niN’l) — 0 implies Y7, (niN’l)2 — 0. Assume now that
maxj <<y (niN’l) — 0. Then, for any € > 0, max;<;<, (niN’l) < (g/2) for suf-
ficiently large n. Let 1 =kg <k <---<kjy=n be positive integers such that
(€/2) <Ti'y 1( N <efori=1,...,m=1,and ", (mN~') <e. Then,
forall I=1,...,m, Zl S (n, 1)2 < €2. Since N = 25:1”:'7 we must have
m < (2/€), and, consequently, Y7 (n,N 1)2 < 2¢. Since € can be arbitrarily

small, this inequality implies that lim,—e Y1, (niN’l)2 = 0. This completes
the proof of Theorem 7.1. |

2. Proof of Theorem 7.2:

Because the modified variance V* [EI%SK (t;h,w™)] is the same as (7.59)
in Theorem 7.1, we only need to consider the asymptotic bias term
B*[BEX (t; h, w*)] given in (7.58). The smoothness assumption of fy(t), fr(t)
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and &,(¢) in Assumption (¢) and the compact support assumption of K(u) in
Assumption (e) and (7.42) suggest that the functions B.(r — hu), &, (t — hu)
and fr(t —hu) in the integral of B;(¢) can be approximated by the following
Taylor expansions

Bilt—hu)—Bi(t) = —Bl()hu+(1/2)B(t) i +ri(h),  (7.65)
Enlt—hu)—&,(5) = —&,(0)hu+(1/2) )R +ra(h),  (T.66)
Frlt—hu)—fr(t) = —fr@)hu+(1/2) FORE+ k), (7.67)

for ¢; <u < ¢, with the constants ¢; and ¢, given in Assumption (e), where
ri(h), 1 =1,2,3, are functions of & such that r;(h)/h* — 0 as h — 0. The right
side of (7.61) is then obtained by substituting B,(t — hu) — B,(¢), &, (t — hu)
and fr(t —hu) of (7.58) with the corresponding terms at the right side of
(7.65), (7.66) and (7.67). The asymptotic expression of the mean squared error

MSEy [EI%SK (t; h, w**)] given at the right side of (7.62) is obtained by substi-
tuting B* [BEK (1 h, w**)] and V* [BESK (1; h, w™*)] of (7.56) with the right side
terms of (7.61) and (7.59), respectively. Since # — 0 and Nh — o ag N — oo,
the last assertion of the theorem, that is MSE{;V[AI%SK (t; h, w**)] — 0 if and
only if max;<<, (niN’l) — 0 as n — oo follows from Theorem 7.1. |

7.5.4  Asymptotic Distributions

We now derive the asymptotic distributions of the least squares kernel esti-
mator I%SK (t; h, w**) at a fixed time point #y > 0. As an alternative to the
resampling-subject bootstrap confidence bands of Section 7.3, the asymptot-
ically normal distributions derived in this section can be used to construct
asymptotically approximate confidence intervals for (). These intervals can
then be used in conjunction with the method of Section 7.3.2 to construct
simultaneous confidence bands for B(¢) with ¢ inside a given interval (a, b).

1. Asymptotic Normality

In addition to Assumptions (a) through (f), we assume the stronger con-
ditions that

Bi(1), fr(t), &:(r) have continuous second derivatives at fy
foralll,r=0,...,k;

E [|8(t)|2+6] and E [|Xi(jl)|4+6] are finite for all 1 <i<n,
1<j<n;, 0<1<k t€.7(fr) and some & > 0;

h=N"Y3hy for some constant hy > 0;

lim, e N5 ¥ n? = A for some 0 < A < oo,

and denote, for all I, r =0, ..., k,

w(K) = /uzK(u)du7 w(K) = ./Kz(u)du,

(7.68)
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biw) = BY. { 1K) [BL(10) & (1) i (10) + BL(10) e (1) i (10)

c=0
+(1/2) B (10) &clt0) fr ()]}, for 1=0,... & (7.69)
Bto) = f7'(to) Exyr(to) (bolto), ... bi(t0)) ", (7.70)
Dy (1) = 07(10)&r(to) fr(10) pa(K) + Aho e (i0) &ir(t0) f7(10),  (7.71)
Doo(to) Doi(to) -+ Dox(to)
D(r) = : : : : ;
Dyo(to) Dri(to) -+ Du(to)
D*(to) = fy(t0) Exyr(10)D(10) Exyr (10)- (7.72)

The next theorem shows the asymptotic normality of AI%SK (t; h, w**) at 1.

Theorem 7.3. Suppose that Assumptions (a) to (f) and (7.68) are satis-
fied. When n is sufficiently large, I%SK (to; h, w**) has asymptotically a multi-
variate normal distribution, such that

(V)72 [ BE (103 b, w™) = Bt0) | > N (Blto), D" (1) (7.73)

in distribution as n — oo, where B(ty) and D*(ty) are defined in (7.70) and
(7.72), respectively. |

Proof of Theorem 7.3:
This theorem is a special case of Theorem 7.4 at the end of this section. B

2. Remarks on Asymptotic Normality

A direct implication of Theorem 7.3 is that, to ensure good asymp-
totic properties of BI%SK (to; h, w**), the numbers of repeated measurements
{ni =1, ,n} must be small relative to the overall sample size N. It was

shown in Theorem 7.2 that BI%SK (to; h, w**) is a consistent estimator of B (to) if
and only if Y n? = 0(N?), which is equivalent to max; <;<, (n;/N) =o(1). The-
orem 7.3 assumes a somewhat stronger condition, Y%, n? = O(N(’/ %), which en-
sures AI%SK (to; h, w**) to have an attainable convergence rate of N “2/5 1t Y ”12
converges to infinity faster than N3, it can be shown with a slight modifica-
tion of the proof of Theorem 7.3 that the attainable rate for AI%SK (to; h, w**)
is slower than N~2/°.

Another important assumption in this section is that #y is an interior point
of the support . ( fT). It is well known in cross-sectional i.i.d. data case that
kernel estimators suffer from increased biases at the boundary of the design
intervals. Methods for improving the theoretical and practical performance
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of kernel estimators have been extensively studied in the literature, such as

Rice (1984), Hall and Wehrly (1991) and Miiller (1993). Here, it is natural

to expect AI%SK (to; h, w**) to have a relatively larger bias when 7y is near the

boundary of Y(fT). The asymptotic properties of BI%SK (to; h, w**) for #p near
the boundary of .7 ( fT) have not been explicitly derived. Possible modifica-
tions to improve the boundary asymptotic properties of ﬁIIESK (to; h, w**) are
still not well understood and warrant further investigation.

8. Theoretical Derivations

Before giving the proof of Theorem 7.3, we state and prove a technical
lemma. These results are then used to prove a general asymptotic normality
result of EI%SK (t; h, w**) for ¢ at a set of distinct time points within the support
& (fr). By (7.44) and the approximation (7.45), the asymptotic distributions
of B\I%SK (t; h, w**) can be investigated through the asymptotic distributions of
Ry (). Let s = (s17 ...,sj), J > 1, be a set of distinct interior points within
the support . ( fT) and

Ry (s) = (RLc(s1), ..., REou(s)) " (7.74)

It suffices to study the asymptotic distribution of R, (s). We first state and
prove the technical lemma for R,«(s).

Lemma 7.1. Suppose that Assumptions (a) through (f) and (7.68) are
satisfied, Ry (s) is defined in (7.74), and élr(sl,sz) and pe (sl,sz) are con-
tinuous for any s; # sy in R>. When n is sufficiently large, the asymptotically
approzimated bias and variance of Ry (s) are given by

E[(Nh)l/zliw**(s)] = b(s)+o,(1), (7.75)
Cov[(Nh)'2R(s)] = D(s)+op(1),
respectively, where

b(s) = (bo(s1), s bil(s1),--os bo(ss), s bi(sn)) (7.76)
D(Sl,sl) D(Sl,S])

D(s) = : : : ;
D(S],Sl) D(S],S])
Doo(s1,82) - Do(s1,s2)

D(S17S2) = 5

Dio(s1,52) -+ Dii(s1, 52)
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o2 (s1) & (s1) fr(s1) w2 (K)

Dy, (s1,8) = +A o pe(s1) & (s1, 52) f7(s1), if sy = sy, (7.77)
Ahope(st, 52) Er(s1, 82) fr(s1) fr(s2), if s1 # s,
Sir(s1,52) = E[Xi(jll)Xi(er)|fij1 =51,tij, = sz}
and by(s), [ =0, ..., k, defined in (7.69). -

Proof of Lemma 7.1: R
We note first that the /th element of R, (s) at a single time point s €
Y(fT) is given by (7.63). For any i=1,...,nand [ =0, ...k, let

i) = 1 [a 6 (512)]. (7.78)

where a;j;(s) is defined in (7.63). Substituting the corresponding term in (7.63)
by (7.78), Ry(s) can be written as a sum of independent vectors
R n
Ry (s) = (NR) 'Y Ais), (7.79)
i=1

where A;(s) is a J(k+ 1) column vector such that

Ai(s) = (Wio(s1), - Wie(s1), - Wio(ss), -, Winls)

Since the design time points are assumed to be independent, i.e., Assump-
tion (a), direct calculation using the definition of &,(¢) in (7.41) and the change
of variables show that

El[yu(s)] = i/E[aiﬂ(s)Pij—v]K(s;V)fT(v)dv

k
= njh ;}/ (Br(s — hu) — By(s)] & (s — hu) fr (s — hu) K (u) du.

Then, by (7.79) and (7.68), and taking the Taylor expansions on the right side
of the above equation, we have that

E[(Nh)'2Ry(s)] = b(s) +o(1).
To compute the covariance of (Nh)'/2R,(s), we note first that
Cov [ﬁw**z(ﬁ% ﬁw**r(SZ)] :E[Ew**l(sl)ﬁw**r(SZ)] _E[iéw**l(sl)] E[Ew**r(SZ)]a

and, by (7.79), it is sufficient to compute the right side terms of the following
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equation
£ [(Nh)l/zi)": vils) [(Nh)l/zlil vl | (7.50)
= (Nh {ZIE Vit (s1) Wir(52) +”;2E Vil Sl)‘lfzzr(sz)]}

For the first term of the right side of (7.80), we consider the further decom-
position

y- S1 —1ij 8y — tij
Vil yir(2) Z Jan(sn)ai(s2) K 7 LG h D] sy
S1— ;i Sy — ;s
+ Z [aijll(sl)aijzr(sz)[(< ! p ’/1)K< 2 ; ”2)].
W #i

Using (7.68), the change of variables and the fact that &(-) is a mean zero
stochastic process independent of X;;, we can show by direct calculation that,
as n— oo,

Eajji(s1)aijr(s2) |tij = V]

k
= X {[Bev) = Bels)] [Be) — Be(s2)] E X (x) X

=0

=)

a

+62(V)E[Xl.(jl>X.. =

X {181 (v) = By (51)] [Bes () = Bes ()]
<E[X X X X |y = v}

— 0%(se)E(se), ifv—se, c=1,2.

Then, it follows from the above equation that

(£ oo (252 (252} a5
= ji_"il/E[aiﬂ(sl)aijr(sz)|t,~j:v]K<S1h_v>K<S2
B { niho?(s1) &, (s1) frsi) [ [K*(u)du] +o(nih), if s; =2,
N o(n,‘h)7 if 51 # 7.

h—v> Sr(v)dv

Similarly, direct calculation then shows that, as n — o, vi — 51 and vy — s,

Elaiji(s1) aijyr(s2)|tijy = vi,tij, = va]
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k

= Y {[Betva) = Bels1)] [Belo2) — Bels2)]

c=0

(1) (@) y() y
<E X)X, X5 X0 |ty = v, by = va) }

pe(vi, v)E [X.@X( )

;{mm = Bey(5)] [Bes (v2) = B (52)]

<E xS X0 X0 X2 g, = vi, g, =] }

Pe(st, $2) & (s1,52),  if 51 # 52,
Pe(s1) &ir(s1,81), if 51 =57,

Lij, = V1, lij, —V2]

and the expectation of the second term of the right side of (7.82) is
S| — ;) 53— 1;j
E{ Y [af) sn)af) sk (2 - w k(2 ) ”2)” (7.83)
J1#J2
= {//E a;; sl) Uz (52 ’tm Vi, tij, = v2

#D2
xK(sl ;W)K(S2;W)fT(vl)fT(vQ)dvldvz}

W2 ni (ni— 1) pe(s1, 82) fr(s1) fr(s2) & (s1, 52)

+0[h2n,~ (ni—l)], if 51 # 52,
h* ni(ni = 1) pe(s1) f7(s1) Gir(s1, 51)
+0[h2ni (n,'—l)], if §1 = $7.
Combining (7.81), (7.82) and (7.83), it follows that, when n is sufficiently large,
(Nh)~" Y Ewi(s1) Wir(s52)] (7.84)
i=1
02(s1) & (s1) fr(s)) [ [ K*(u)du] +o[hN~' (X1 n? — N)]
_ FhNTH(EL 17 = N) pe(s1) Gir(s1, 1) 7 (s1), if 51 =52,
XL n? —N) pe(si, s2) & (s1, 82) fr(s1) fr(s2)
+0[hN’1(Z?:1ni2—N)], if 51 # $3.

Since h =N~/ hy and limy,_yo N~ 0/5 Y nl2 = A, it is easy to see that, as n — oo,
n n
-1 (Zn?—N) = N0/5 (anZ —N) ho — A hy.
i=1 i=1
Next, we define

k

Mi(h, )= Y / (B (s — hue) — By(s)] En(s — hue) fr(s — hue) K () i,

r=0*
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so that E [y;(s)| = nihM;(h, s), and it directly follows that

VB Y Ewi(s1) Viar(52)]

i1#i=1

v Sa(o) | | (068) " v ()

i=1

= )Y Evn ()] E [ (52)]

i1 i =1

VR Y By ()] x (VR) Y E v (52)]

i=1 i=1
n

Z [l’l,‘1 hM[(h, sl)niz hM,- (h, S2)]
i1 #ip=1

SR Y [h My 51)] x (nh) Y [k M, 52)]

i=1 i=1

- [; (i ;_1”) —NZ} M (1) My (h, s2)
— Nk [N2 Zl @ ;11@) = 1} M (h,51) M, (h, 2)
(NR)N" (Zl ng) My (i, 1) My (. 52)

(Nh)N N~ M, (h, s1) M, (h, s2) Ao(1) (by Assumption (b))
-~ 0, (7.85)

- (Nh)!

since M;(h, s1) — 0, M, (h, s2) = 0 and, by Assumption (a),
N=45My (h, 51) My (h, 52) = o(N ).

Now, by (7.68) and the calculations given in (7.81), (7.84) and (7.85), we
have shown that, for any interior points s; and s, in the support of f and
I,r=0,...k

Cov| (V)2 Ryt (1), (VD)2 Ry (52)] = Diglst, 52) + (1),

This implies the assertion of the lemma. |
The technical results of Lemma 7.1 lead to the following asymptotic nor-

mality result for BLSK (s h, w**), which covers the asymptotic normality result
of Theorem 7.3 as a special case.

Theorem 7.4. Under the assumptions of Lemma 7.1, ﬁLSK (s h, w**) has
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asymptotically a multivariate normal distribution, such that, as n — oo,

(Nh)'/? [B}%SK (s; b, W) — B(s)} — N(B(s), D*(s)) in distribution, (7.86)

where, for ri,rm=1,...,J,
B(s) = (B(s1),-...B(ss)",
B(s) = [fr(5)] " Eglr(s) (bo(s), ..., bu(s))",
D*(s1,s1) -+ D*(sy,sy)
D*(s) = : : : ;
D*(Sfa Sl) D*(SJ7SJ)
D*(sr,5,) = ffl (Srl)ffl (Srz) E)Z)I(T (Srl)D(Srl ) Srz)E)Z)l(T (Srz)
and b;(s) and D(sy, s2) are defined in Lemma 7.1. [ ]

Proof of Theorem 7.4:

By the assumptions of Lemma 7.1, we can directly verify that R, (s)
satisfies the conditions of the Cramer-Wold theorem (cf. Theorem of Section
1.5.2, Serfling (1980)) and the Lindeberg’s condition (cf. Theorem A of Section
1.9.2, Serfling (1980)). Thus,

(NB)'2Ry+(s) = N(b(s), D(s)) in distribution

as n — 0. The theorem then follows from (7.46) and the limiting distribution
of (Nh)'/2 R, (s). [

7.5.5 Asymptotic Pointwise Confidence Intervals

We establish a procedure for constructing approximate confidence intervals
based on the asymptotic normal distributions established above. These infer-
ence procedures, which depend on the “plug-in” estimates of the derivatives
in (7.68), may not be as practical as the bootstrap procedures described in
Section 7.3. The objective here is to demonstrate that such an inference pro-
cedure is at least theoretically possible for the time-varying coeflicient models
(7.1) or (7.14), although their practical values appear to be somewhat limited.

1. Formulation of Confidence Intervals

The asymptotic normality of Theorem 7.3 suggests that we can construct
an approximate [100 x (1 — a)]th pointwise confidence interval of A” B (1) for
any known (k+ 1) column vector A. The resulting lower and upper bounds,
Lg [BI%SK (to; h, w**)] and Uy [AI%SK (to; h, w**)], respectively, of this asymptoti-
cally approximate confidence interval should satisfy

lim P{La [BEX (103 hw™)] < AT B(19) < Ua[BE (103 h, w*)] } =1—a (7.87)
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and are given by

(AT BESK (t9: b, w*) — (N 1)~V 2 AT B(zo)]
12

(7.88)

+Z4)5 (NR) "2 [AT D" (19) A] 7,
where Zg /> is the [100 x(l—a/ 2)] percentile of the standard normal distri-
bution, B(ty) is defined in (7.70) and D*(z) is defined in (7.72). In particular,
taking A = (0,...,0,1,0,...,0)" to be the vector with 1 at its (/4 1)th place
and 0 elsewhere, (7.88) gives the approximate [100 x (1 — ¢)]% confidence in-
terval of f(tg) for any 0 <1 <k.

Because the bias and variance-covariance terms, B(ty) and D*(#), depend
on the unknown functions, the lower and upper bounds given in (7.88) cannot
be used directly in practice. If we have consistent estimators B(o) and D* (1o)
for B(7p) and D*(¢), respectively, then a “plug-in” asymptotically approximate
[100 x (1 — &)]% confidence interval for AT B(ty) is

(ZalBE (02 ). Do [BES (10 . w°)] )

with the lower and upper bounds given by

T BLSK (40 . w*™) — ~1/24TB
[AT B (t0: b, w™) — (N )~ 1/2AT B(10)] " (7.89)

+Zysy (NB) V2 [ATD*(19)A] 7,

which is constructed by substituting B(zo) and D*(z9) in (7.88) by B(1o) and
D*(fy). A class of kernel-type consistent estimators of B(zp) and D*(z)) are
given below.

2. Approximate Error Bars

In practice, it is usually difficult to estimate the asymptotic bias term
because B(#y) involves the derivatives of the unknown functions. A simple
alternative to the approximate confidence interval (7.89) of A B(to) is to ignore
the bias term and use the “plug-in” approximate error bar

(Za B (s 1 w)). D B (10w

with the lower and upper bounds given by

1/2

AT BESK (03 hy w™) £ 242 (NR)™1/% [AT D* (1) A] (7.90)

The asymptotic normality (7.73) suggest that, theoretically, when the band-
width satisfies h = O(N’I/S)7 the bias of B\I%SK (to; h, w**) is negligible. Thus, the
above error bar has approximately [100 x (1— oc)]% probability covering the
true value of AT B(19) if a “small” bandwidth in the sense that h=o(N~'/%) is
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used. Although the bandwidth choice h = O(N’l/ 5) leads to a slower conver-

gence rate for B\I%SK (to; h, w**) than the attainable rate of N~2/3, the error bar
of (7.90) has the advantage of being computationally simple, since no estima-
tor of B(#) is needed. Thus, in practice, (7.90) can be used as an approximate
pointwise confidence interval. a

3. Estimation of Asymptotic Bias and Variance

Following the definitions of (7.69) through (7.72), B(fy) and D*(¢y) depend

on the unknown functions fr (o), f7(to), B;(to), B (t0), &1+(t0), &/,(t0), Pe(to)
and 62 (fy). We present a class of intuitive kernel smoothers for the estimation

of these quantities, which can be used in (7.69) through (7.72) to construct
consistent estimators B(fy) and D* (1) for the approximate confidence interval
(7.89) or the approximate error bar (7.90). The construction of B(fy) and
D*(fy) can be proceeded by the following four steps:

(1) Estimation of fr(ty) and &, (5). In addition to Assumption (e), we as-
sume that the kernel functions K(u) used here are twice continuously dif-
ferentiable with respect to u. If h(s o) and hy, o) are bandwidths satisfying
limy e f(.,0) = 0 and lim, e N h(. ) = o0, then fr (o) and &, (tp) can be esti-
mated by

fT(to;h( 0) = [Nh(so)]~ Xn:il <t°f;’)f> (7.91)

and
2 ~ -1
Eir(tos g, 0) = [Nhgy,.0)fr(toihg,.0)]

<y I[Xiy)Xi(jr)K(m t”)], (7.92)

<§1rs )

respectively. Let Exxr (fo) be the (k+ 1) (k4 1) matrix whose (I, r)th ele-
ment is 6,,(1‘0, (10 )) Suppose that EXXT (fo) is invertible. Then, Exxr (fo)

and EXXT

(2) Estimation of Derivatives. Let fT (1‘0)7 ﬁ, (to) and élr (t0),d=1,2,be
the dth derivatives of fr(t), B,(to) and &, (to), respectively. Let h(s, 4), h(g, a)
and h, 4 be the corresponding bandwidths for the estimators of fr (t0),
Br(t9) and & (to), which satisfy limy b g) =0 and lim, e NE 5 = oo.
Then, following the kernel derivative estimators with cross-sectional i.i.d.
data, e.g., Hirdle (1990, Chapter 3), de (t0), ﬁ,d (fo) and ‘51;-1 (to) can be es-

timated by the corresponding dth derivatives fT (to, ) [3, (to, ﬁnd))

and glr (to, (§Ir7d)) OffT (tO, f.d ) Br (to, ) and 6[,(1‘0, h(nl,,d)) at time
to, where B, (to; h(ﬁ,,d)) is the rth component of BLSK (to, h, w**).

(o) can be estimated by Exxr (fo) and EXXT (t0), respectively.
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(3) Estimation of Variances and Covariances. For the estimation of vari-
ance 62(ty) and covariance pg(fp), we use smoothing estimators based on
the residuals

a(lij;/’l) ZY,'/'—XT LSK(I,'/';/L W**). (7.93)

Let h(s) be a bandwidth satisfying limy—.h(s) = 0 and limy . Nh(g) =
The variance 62(fy) can be simply estimated by

az(m;h(c,>>:[ 33 [ (S)] o

fT(tO’ :| i=1j= o)

The estimation of pe(tfp) is usually more difficult than the estima-
tion of o2(fy). Since pe(si, s2) = E[si(sl)s,(m)] for s1 # 5o and pe(fo) =
limg_, Pe(s, 10), we can estimate pe(fo) by smoothing [8, (t,jl,h) & (t,jz, h)]

for ji # j, when n;, i=1, ..., n, are large, that is
n n; - A . fo—tij) fo~tijp
~ =1 L #jp=1 [gi(tifl’h)gi(tijz’h)K( hip) )K( o) >]
Pe (t0: hip)) = 01y \ g (Tt ’
12]1#12 1[ ( hp) ) ( hp) )]

(7.95)

where A, satisfies limy—e0 1p) = 0 and limy—yeo N 1) = o0
(4) Plug-in Bias and Variance Estimators. Finally, we obtain the kernel
estimator B(fy) by substituting de (t0), ﬁtd (fo) and é;j) (t0), d=0,1,2, of
(7.69) and (7.70) with £ (103 h(s.q))s B (103 hp.a)) and & (13 b, a))
and obtain D*(tg) by substituting f7(fo), &,(t0), 6% (to) and pe(to) of (7.71)
and (7 72) with fT (l(), ) &1,(1‘0, (&,,0) )7 o2 ([0; h(c)) and ﬁg ([0; h(m). O

An important requirement for the above plug-in estimation to work well is
that the sample size n and the numbers of repeated measurements {nl, e nn}
must be large. For example, in the estimation of variances and covariances
in step (3), since P (to;h<p>) is obtained by smoothing the adjacent resid-
uals for each subject, it only works well asymptotically when the numbers
of repeated measurements n;, i = 1,...,n, are large, so that one can actu-
ally smooth [& (tij,; h) €(tij,; h)] in the vicinity of 7. When there is no mea-
surement error for { ri=1,..mj=1, ...,ni}, that is, 62(ty) = pe(to),
62 (to; h(c)) is practically a better estimator of pg(fo) than pg (to;h<p)). But
when {Yij i=1,...,mj=1, ...,ni} are subject to measurement errors and
{ni:i=1,...,n} are small, we have that 62(19) > pe(to) and both 62 (1o; h(s))
and P (fo; h(p)) are subject to large biases for the estimation of pg (). It can be
seen from (7.94) and (7.95) that the adequacy of 62 (fo; h(g)) and P (fo; h(p))

also depends on the bandwidth & of BLSK (t h, w**)



236 THE ONE-STEP LOCAL SMOOTHING METHODS
4. Consistency of Bias and Variance Estimators

An important requirement for the appropriateness of the asymptotically
approximate confidence intervals (7.89) and error bars (7.90) is that the esti-
mators B(fp) and D* (1) are consistent for B(fy) and D*(fy). When B(zy) and
D* (1) are chosen by the plug-in estimators, the consistency of B(f) and D* (1o)
requires that the estimators of the unknown functions fr (1), f7(t0), B} (to),

(1), &1-(t0), &/ (t0), pe(to) and 62 (ty) are also consistent.

The next lemma shows the consistency of the kernel estimators for the un-
known functions fr (o), f7(t0), B/ (t0), By (o), &i-(t0), &/, (t0), pe(to) and &*(10)
given above. The asymptotic consistency of the plug-in bias and variance es-
timators B(fp) and D*(fy) directly follows from the consistency of the kernel
estimators of these components. This lemma suggests that, despite their prac-
tical drawbacks of computational complexity, the plug-in type asymptotically
approximate pointwise confidence intervals of (7.89) and (7.90) can be indeed
constructed in practice.

Lemma 7.2. Suppose that Assumptions (a) through (f) and (7.68) are
satisfied and K(u) is continuously twice differentiable with a compact support

on the real line. The following consistency results hold:
(a) Iflimy ool q) =0 and limy . NH{ )l = 00 for d =0, 1,2, then

A0 hira) = £ (0),
&Um sa) = Bw),
élr (l();/’l(m”d)) — élr(l‘(])7 l,}’=O7...7k7

in probability as n — oo.
(b) If lim,_e hey =10 and limy o Nh() = oo, then 0?2 (to; h<6)) — o2%(ty) and
Pe (to; h(p)) — pe(to) in probability as n — . [ |

Proof of Lemma 7.2:
Because the derivations for all the estimators involve many tedious

and repetitive computations, we only sketch the proofs for f}l)(to;hg’l)),

E,,(to; h(mr-,O) and pg (to; h(p)). The consistency of other estimators can be sim-
ilarly derived with tedious but straightforward calculations.

(a) Consistency of fT (to, f, 0)):
Since the subjects are independent, direct calculation, integration by parts

and the change of variables show that, as n — oo,

—0

1 ) 18 0)| = | 500 [ 0= 7)1 )]
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and
Var[ T (l‘(), f, 1))] :Nilh(ff%)f]“(to) {/ [K'(u)]zdu}—FO(Nlh(f%U) — 0.

Thus, the above hmlts imply that hm,HmE{ [fT (to, (F1 ) fT ( )] }=o.
Consequently, fT (to, (f.1 ) — fT (to) in probability as n — eo, which shows
the consistency of fT (to, h(.f_’O)).

(b) Consistency of E,,(rg; h@ﬁo):
First, let us denote

Ve (103 hny,,0) = (N, 0)) ii[ j (fO_ﬂ

h(nlrv )
Using the same method as in the proof of Lemma 7.1, it can be verified by
direct calculations that fr (to; (&1,0) ) — f(t) in probability as n — e. Then,
by the definition of é,r(to, (1,0 ) given in (7.92), it suffices to show that

Vg (l‘(), (&,,0) ) — glr(IO)fT (l‘()) in probability as n — oo.
By direct calculations, it can be verified that, as n — o,

E[Ve (103 hy,, >)]
n n; . to —
- Nh n.0) -1 Z {/ { ) fij _s} K(hz)&rj))f(s)dS}

i=1j=1
= & (to) f(to)

and

Var[Vn (10, hg,,.0)]

o= (25 ]
(5[}”7)

— 0.

The above two limits imply that E [’\7& (tos hee,,.0)) — & (t0) f(1 )] — 0 holds as
n — oo, which further implies that Vg (fo; h hig,.0 0)) = & (to) f(to) in probability

as n — oo. This shows the consistency of 6,,(1‘0, (51”0).

(c) Consistency of Pe (1‘0; h(p))5
We first define

Blohs) = (Enn) 0
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F 5 [t () ()

i= 1]175‘/2 1 <p> p)
and
Vi(toshpy) = (ZnZ_N>lh i i [K(to_t"”)K(to_”fz)]
’ P - 1 N
P i=1 ®) i=1ji#j=1 hp) hp)

By the definition of pe (fo; h )) in (7.95), it follows that

Pe (105 () = Vi (103 1y ) / Vi (05 Frp) ) -

It then suffices to show that V, (to, h(p)) = f7(t0) and P (10: h(p)) — Pe(t0) f7 (10)
in probability as n — eo.

For the consistency of V; (to; h<p>), we can show by direct calculations as
those in the proof of Lemma 7.1 that, as n — oo,

1
(B, () s i

and
Cov ¥ (10: 1 p))]:(lfln%_zv) h;)[/Kz }fT t9)+o(1) = 0.

Thus, we have that, asn — oo, E [V; (to; h(p)) — 12 (1‘0)]2 — 0, which implies that
9;; (to; h(p)) — f2(to) in probabil/i\ty.
To show the consistency of v, (to; h(p)), we define the pseudo-residual

&(tij) = Yi; — XJ; B (1))
(fo, (Z

-1
L)

n
UL fo—tij fo — tij
XZ Z {81 tl/l 8: fzjz)K( 0h< ]1>K( Oh( n)]'

i= l]lyéjz 1 P) P)

and

By Theorem 7.1 and similar calculations in the consistency of 9;; (to; h(p)), we
can verify that there are constants a; > 0 and a; > 0 such that, as n — oo,
& (tijl ; h) & (tijz; h) —& (tijl ) & (tijz)

sup -0

tij, Elto—ar,to-+a1], tij, €lto—az,10-+az]
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k()
K
( hp) hp)

is bounded in probability when n is sufficiently large. Thus,

in probability, and

(ii‘in,?—N> i i Y

i=1j1#ja

[Vp (03 g ) = Vip (103 By |
< sup ’a(tijl;h)a(tijz;h) —gi(’ijl)gi(’ijz)‘

lijIE[l() aip, o al] tijze[t() as,to aZ]
( ljl) ( ljz)’

n n n;
(L-n) iy 8
i= i=1j1#jh=
— 0 in probability as n — oo.
It suffices to show that vp (to, <p>) — pe(to fT (o) in probability as n — oo.
Similar calculations as in (b) shows that, as n — oo, E[vp (to,h<p>)] —

pg(l‘())fT(l()) and Var[vp (l(), ))] — 0. Thus, Vp (lo;/’l(p)) — pg(l‘())f%(lo) in
probability as n — co. This completes the proof. |

7.6 Remarks and Literature Notes

The methods presented in this chapter focus on the time-varying coefficient
model (7.1) using a series of local smoothing methods. This model has a wide
range of applications in longitudinal studies. The main advantages of this
model are: (i) its simple interpretation as a standard multiple linear model
for the outcome variable Y (¢) and the covariate vector X(¢) at each fixed time
point #; (ii) its flexibility of allowing the coefficients () to be unknown curves
of ¢, which leads to different linear models at different time points. Among
different smoothing estimation methods, this chapter focuses on two main
kernel-type smoothing methods, the one-step least squares kernel smoothing
method and the covariate centered kernel smoothing method. In practice,
both smoothing methods, with or without covariate centering, have their ad-
vantages and disadvantages. The theoretical developments, however, are only
focused on the kernel smoothing method without covariate centering.
Appropriate confidence intervals of the smoothing estimators can be com-
puted using the resampling-subject bootstrap method. These confidence in-
tervals have been shown in the previous chapters to have appropriate coverage
probabilities, and such a bootstrap approach has the potential to preserve the
unknown correlation structures of the data. On the other hand, the asymptot-
ically approximate confidence intervals rely on the asymptotic distributions of
the smoothing estimators, which have to be developed on a case-by-case basis.
Even if the asymptotic distributions of the smoothing estimators are available,
the asymptotic biases and variances still have to be estimated in order to com-
pute the lower and upper bounds of the approximated confidence intervals.
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In many situations, however, it is not easy to obtain accurate estimates for
the asymptotic biases and variances. Since the resampling-subject bootstrap
confidence intervals are entirely data-driven and do not depend on the bias
and variance estimates, it is practically a more convenient inference procedure
than the asymptotically approximate inference methods.

Results for the least squares kernel smoothing method without covariate
centering are based on Hoover et al. (1998) and Wu, Chiang and Hoover
(1998). Methods for the kernel smoothing method with covariate centering
are based on Wu, Yu and Chiang (2000).



Chapter 8

The Two-Step Local Smoothing
Methods

We describe in this chapter a class of two-step local smoothing methods for
the estimation of the coefficient curves B(¢) in the time-varying coefficient
model (7.1). This class of estimators is based on the simple idea that the
coefficient curves B(¢) can be first estimated by the least squares method
at a sequence of isolated time points, and then these isolated estimates can
be treated as pseudo-observations and smoothed over to produce the final
smoothed estimator of B(¢r). Compared with the one-step local smoothing
methods in Chapter 7, this class of methods have two major advantages. First,
the two-step smoothing methods of this chapter can naturally incorporate dif-
ferent bandwidths for different components of §(¢), which provides some addi-
tional flexibility for adjusting the possibly different smoothing needs in fB(z).
Second, since the two-step smoothing methods only depend on the existing
estimation methods, they are computationally simple, and their bandwidths
can be easily selected by modifying the cross-validation procedures with the
classical cross-sectional i.i.d. data. The idea of two-step smoothing can be
generalized to other structured nonparametric models constructed from some
local parametric or semiparametric models when ¢ is fixed, such as the time-
varying transformation models of Chapters 13 and 14, in which the two-step
estimation approach is the only available option in the literature.

8.1 Overview and Justifications

The local least squares smoothing estimators of Chapter 7 may be impractical
in many longitudinal settings, because it is often difficult to decide whether
the bandwidth and kernel function (hl7 Kl) of the component curve estimator

~

B (t; K;, h[) are appropriate for f;(¢). This is due to the lack of direct obser-
vations of B;(¢), that is, the approximate shape of B;(¢) cannot be directly
detected from the data {(I’ij,tij7XiTj)T i=1,...,nj=1, ...,ni}. If we can
construct some “pseudo-observations” of f§(¢), then appropriate smoothing es-
timators can be constructed specifically for each B;(¢), I =1, ..., k, so that the
final estimator of B(r) has appropriate smoothness for each of its components.

241
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This intuitive estimation method is described in Fan and Zhang (2000) as the

“two-step estimation” for functional linear models.
1. The Two-Step Estimation Procedure

In order to describe the “raw estimates” step of Fan and Zhang’s procedure,
we first redefine the design time points. Let

T={tj:j=1,....J} (8.1)
be the distinct time points among the time points {t,-j ci=1,...,mj =
1,..., ni} previously defined in Section 7.1.1. For each given time ¢; in T,

let .#; be the collection of all the subjects observed at ¢;, that is,
5”]-:{1': 1 <i<n;tjj» =t; for some 1§j*§ni}, (8.2)
and, m; be the number of subjects observed at time design point ¢;, i.e.,
mj={#of i:ie .7} (8.3)

Then, the Fan and Zhang two-step estimation procedure for the time-varying
coefficient model (7.1) is given as follows.

The Two-Step Estimation Procedure:

(a) Raw Estimators. Compute the raw estimates E[RAW(tj) of Bi(t) using the
subjects in & for all the distinct design time points {tj eT:j=1, ...,J}
andl=0,... k.

(b) Smoothing Estimators. Estimate each coefficient curve Bi(t) for any
t in the time range 7 by a kernel or local polynomial smoothing estimator

based on BZRAW(tj) forallt;eT, j=1,...,J. a

Although Fan and Zhang (2000) uses the local polynomial estimators to
illustrate their method, other smoothing methods such as splines may also be
used. To ensure existence of the raw estimates in a real situation, the following
time-point binning strategy is often used.

~

Time-Point Binning. Computation of the raw estimators BIRAW(tj) at t;
for any 1 < j <J requires m; defined in (8.3) to be sufficiently large, so that
there are enough subjects observed at ¢;. In practice, particularly for a sparse
longitudinal study, i.e., study with relatively small numbers of repeated mea-
surements over time, the numbers of subjects with observations at some design
time points in T given in (8.1) may be small. Consequently, the raw estimates
at these design time points may not be computable. In such situations, a use-
ful approach is to round off or group some of the adjacent design time points
into small bins and compute the raw estimates within each bin. In biological
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studies, the time scale is often rounded off to an acceptable precision. Thus,
“time-point binning” may have already been used at the data collection stage.
Of course, “time-point binning” may only make practical sense when both the
raw and smoothing estimators are interpretable. Typically, “time-point bin-
ning” is used when the number of design time points J is large and the #;’s are
spread around the intended time range 7.

2. Justifications of the Two-Step Estimation Procedure

There are a number of practical advantages associated with the Fan and
Zhang two-step estimation method:

(a) Visualization of the Raw Estimates. Since only the local observa-
tions at each of the “design time points” in TAare used in the first step for
computing the raw estimates, we can treat {BIRAW(tj) j=1, ...7]} as the
“pseudo-observations” of f;(¢) for t varying within its range 7. The plots
and visualization of these “pseudo-observations” { E[RAW(tj) cj=1,...,J}
can be used to guide the appropriate smoothness choices for the estimation
of (7).

(b) Componentwise Smoothing. Since the raw estimators are usually not
smooth in the sense that BIRAW(tj) and B\ZRAW(I j+1) at two adjacent design
time points ¢; and ¢;;1 may vary significantly, the smoothing step is aimed
at reducing the variability of the raw estimates, so that an appropriately
smoothing estimator specifically for fB;(r) can be constructed for all the
time points 7. This smoothing step is crucial since it allows us to pool
information from neighboring time points to improve the raw estimators
and leads to smoothing estimates for the underlying smooth coefficient
functions for r € 7. If we ignore the smoothing step and simply estimate
Bi(t) by linear interpolation of the raw estimates at the design time points
T, the resulting estimate of f;(z) could be spiky because of the variability
of the raw estimates.

(c) Computational Simplicity. Both the raw and smoothing estimates can
be easily computed using the existing computational methods and software
packages. For a given design time point 7, the model (7.1) is a linear model,

so that the raw estimates {Bémw(tj), ey A,fAW(tj)} can be computed by
the standard statistical software packages for least squares estimation. The
smoothing estimators of f;(t) based on the pseudo-observations {BfAY (1) :
j=1 ...,J} for any 0 <[ <k can be easily computed using any existing
smoothing technique and software package. In addition, the existing well-
developed smoothing parameter selectors, such as the bandwidth selectors,
can be easily adopted in the smoothing step.

(d) Simple Interpretations of the Estimates. A useful by-product of
the scatter plots of the raw estimates is the intuitive interpretations of the
coefficient functions. At each design time point ¢;, the covariate effects are
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simply characterized by the linear model coefficients {ﬁo(tj), ...,ﬁk(tj)},

which are estimated by { BBQAW (t)s ey A,fAW (tj)}. The coefficient functions
{Bo(t), ..., B(t)}, which have values close to {Bo(;), ..., B(t;)} when 7 is
close to ¢}, are naturally estimated by borrowing information from the raw
estimates at the design time points within some neighborhood of ¢. a

8.2 Raw Estimators

For the first step of the two-step estimation procedure, we give the expressions
of the least squares parameter estimators at a fixed time point in T. These
estimates are used as the pseudo-observations for the second step where the
smoothing estimators of B(¢) are constructed.

8.2.1 General Expression and Properties

For a given t; in the design time points T, we can collect all the outcomes
Y;j« and covariates X+ from the subjects in .#;, and denote by {{(j, X]} the
corresponding response vector and design matrix. Following the time-varying
coefficient model (7.1), the observations {Y;,X;} collected at time ¢; follow
the standard linear model

Y; =X7 B(t)) +¢, (8.4)

where €} is the vector of random error for the subjects in ., and the distri-
bution of any element of ¢; is the same as the distribution of &(¢;) in (7.1). It
then follows from the definitions of the models (7.1) and (8.4) that

{E(Ej) =0 (8.5)

Cov(e;) = Gz(tj)lmj,
where 62(t;) is the variance of £(t;) and L, is the (m; x m;) identity matrix.

We note three issues related to the use of the local linear model (8.4):

(a) Since the measurements from the subjects not in .#; are not included in

{SNK s X j}, this approach is equivalent to assuming that the subjects without
measurements at ¢; are missing completely at random.

(b) When the “time-point binning” approach is used, a subject’s observation
time #;;+ is grouped into one of the design time points ¢;, hence, is treated as
tj, if t;j= is not in T but stays within a small neighborhood of ¢;. By using the
model (8.4) with time-point binning, the differences between the subject’s
observations at f;;+ and ¢; are assumed to be small, and, therefore, ignored.
Thus, the estimation results based on (8.4) and time-point binning may
be slightly biased, but the size of bias can be reduced by using small time
bins. In practice, it is preferable to use the time bins as small as possible
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provided that the raw estimates from (8.4) exist and there are meaningful
interpretations for the raw and smoothing estimates. Time-point binning
may affect the asymptotic properties of the smoothing estimators. But this
issue has not been investigated in the literature.

(c) An implicit assumption of (8.4) is that each subject is observed at most
once at a given design time point. This assumption, which eliminates the
possibility of repeated measurements from the same subject at any ¢; € T,
is a practical one for most biomedical studies. If a subject has two or more
observations at time points within a very small neighborhood of ¢;, then it
is reasonable to use the averages at these time points. a

Suppose that the design matrix Xj is of rank (k+1). If we denote by
()Nij )2;)71 the inverse of ()~(j )NKJT), the standard least squares estimator of B(z;)
based on {?j, )~(j} is obtained by minimizing

Li[B)] = [¥V; =X] B(t))] " [V, ~X] B (1)) (8.6)
with respect to B(t;), and has the expression
B (1) = (X;X]) ' X, Y, (8.7)

In standard linear regression models, the biases and variances of the least
squares estimators are usually computed by conditioning on the observed co-
variates or assuming that the covariates are fixed and nonrandom. For the
sample {(Y,-j,t,-j,XiTj)T ri=1,...,nmj=1, ...,ni}, let

2={(t;,X};):j=1,..,Jii=1,....nj=1.n} (8.8)

be the observed time design points and covariates. Direct calculation based on
(8.5), (8.6) and (8.7) shows that, conditioning on 2, the mean and covariance

~

matrix of BRAW (¢;) are

{ E[B*)|2] = B()), (8.9)

~

Cov[B*Y (1)) 2] = &%) (X;XT) .

The first equation of (8.9) indicates that, under the approximation of time-
point binning, B*W (#;) is approximately an unbiased estimator of f(t;). Since
each subject is assumed to be observed at most once at ¢;, the second equation

of (8.9) shows that the covariance matrix of ERAW(tj) depends on the number
of subjects m; in .%;. The variation of the raw estimate BRAW (¢;) is small if
m; is large. Since m; may not increase with n, the variation of B4V (t;) is not

necessarily smaller when the sample size n increases.
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8.2.2 Component Expressions and Properties

Components of the raw estimator BRAW (tj) can be expressed explicitly. For
any [=0,1,....k let BFW(z;) be the (I + 1)th component of Bf4W (z;). Then,
by (8.7), BF4W(#;) has the expression

N i~ -
WY (1) = el (X5XT) T XY, (8.10)

where e; ;41 is a (k+ 1)-dimensional unit vector with 1 at its /th entry and 0
eAlseWhere. By the conditional mean and the condAitional covariance matrix of
BRAW (1;) given in (8.9), the mean and variance of W (¢;) conditioning on the
covariate set & are

{ E[BF()2] = Bty

. I (8.11)
Var[BfY (i)|2] = efi140107() (X XE) e

In particular, the variance of BZRAW (tj) conditioning on Z is the (I+1)th diag-
) S o7\ 1
onal element of 6%(r;) (X; XJT) . ~
The correlation structure of the data affects the covariance of BfAV(-) at
different design time points. Let {tj, tpe 1 j# j*} be any design time points in
T of (8.1). The covariance of BfAW(¢;) and B (¢;+) conditioning on 2 is

Cov[B™ (1)), B (1)| 2]
T <. XV Ix <T (X .xXT\!
= pltj, 1) el (X5X5) XMy X5 (XGX)  ernprn, (8.12)

where p(s, 1) is the covariance function defined in (7.1) and M;;+ is a matrix
with entries 0 or 1, such that, its (a, b)th entry is 1, if the ath entry of ?j
and the bth entry of Y j+ are from the same subject, and 0 otherwise. Since
some subjects may have observations at only one of the time points #; or #;
for j # j*, the purpose of M;;+ is to make sure that only the subjects who
have been observed at both ¢; and ¢+ are used for computing the conditional

covariance Cov [AZRAW (), AZRAW (tj+)

@]. When j = j*, Mj; is an identity matrix.

8.2.83 Variance and Covariance Estimators

The variances and covariances of the raw estimate BRAW(tj) given in (8.9),
(8.11) and (8.12) depend on the unknown variance o?(t;) and covariance
p(tj, tj+) for tj # tj. Following the well-known residual-based approaches in
linear models, these two quantities can be easily estimated based on the resid-
uals from the least squares fit of the model (8.4). To compute the residuals

of ERAW(tj) in (8.7) from the local model (8.4), let L,; be the m; x m; identity

matrix and |

P =X7 (X;X]) X}, (8.13)
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so that )N(jT BRAW(IJ-) =P; {(j. It follows from (8.4) that the residuals from the
least squares fit is R
¢j= (L, —P))Y,. (8.14)

Let tr (%%T-*) be the trace of ?j?;, i.e., the sum of the diagonal elements
of ?jgjj*, for any j, j* =1,...,J. Conditioning on the covariate set &, the

. ~ 2T
expectation of tr GJ ej*) is

E[tr(ej )’9]—&[(1,”] P)ML. (L, —P) ] v(t), 1;0), (8.15)

where y(t;,1j) = 0%(t;) if j = j*, and y(t;, t;+) = p(t;, t;+) if j # j*. If the trace
[ (L, — P;) ML, (L, —P;)"] #0, it follows from (8.15) that

V1) = E[i (618, )| 2] [ex[ (1, ~ ) ME. (1, )],

~ AT
Substituting E [tr (Ej Ej*>

] of the above equation with the observed trace

. S~ . .
of residuals tr (ej ej*), a natural estimator of y(t;, t+) is

~ =~ T
Titjs 1) = tr(€5¢5: ) /[ (T = Pj) M7 (T, =) ]. (8.16)

In particular, when j = j*, estimation of the variance 6?(¢;) requires the
local sample size to be larger than the number of parameters in the model
(8.4), i.e., m; > k+ 1. The specific estimators of 62(t;) and p(t;,;+) are

~ =~ AP
Gz(tj) }/(t],t])—tr(e]ej*>/(mj—k—1), if j=J*,
p(t]7t] ) ’}/(t]at] ) lff#‘]*

(8.17)

The estimators of

~

Cov[ﬁRAw(tj)\@], Var[ (t/)\@] and Cov[ﬁlRAW( ti), B, (/)

7]

are obtained by substituting 62(¢;) and p(t;, t+) in (8.9), (8.11) and (8.12) with
their corresponding estimators 62(¢;) and p(t;,#;+) in (8.17). These variance
and covariance estimators are useful for deriving the statistical properties of
the final smoothing estimators of B(z).

8.3 Refining the Raw Estimates by Smoothing

When the local sample size m; is sufficient large at the design time point ¢;, the
raw estimates described above are asymptotically unbiased and have the same
theoretical properties as with the standard linear models. These estimates are
not suitable for practical use and need to be refined by a smoothing step.
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8.3.1 Rationales for Refining by Smoothing

There are four reasons to refine the raw estimates through an appropriate
smoothing procedure:

(a) Since the raw estimates are obtained at each of the design time points
{tj j=1, ...,J}, they are generally not smooth from one time point to
the next. In addition to the temporal trends across the time points, the
variations of the raw estimates between different time points are in part
caused by the random errors.

(b) The raw estimates are generally not efficient for any design time point
tj, because the information across different time points is ignored and only
the subjects observed within a neighborhood of ¢; are used. Given that the
observations from a nearby time point ¢+ may provide useful information
about the value of B(z;), more efficient estimators of B(f;) may be obtained
by utilizing the observations from neighboring design time points.

(c) Tt is possible that there are not enough subjects observed at some design
time points, so that the raw estimates at these time points are missing.
In such cases, it is natural to use the raw estimates from the neighboring
design time points to estimate the coefficient curves at the time points with
missing raw estimates.

(d) Since the statistical objective is to estimate the coefficient curves B(t),
raw estimates from the design time points do not give direct estimates
of B(¢) when r € 7 is not a design time point, i.e., 7 ¢ T. A smoothing
step using the raw estimates near ¢ is a natural approach to construct an
estimator of B(z). O

8.3.2  The Smoothing Estimation Step

Following Chapters 3 to 5, several smoothing methods can be applied to the
raw estimates to obtain a smoothing estimator El(t) of Bi(r), 0 <1<k, for all
t within the time range 7. Using {B\IRAW(tj) :0<I1<k; j=1,...,J} as the
pseudo-observations, the smoothing estimators are linear functions of these
raw estimates.

1. Ezpression of the Smoothing Estimators

Suppose that f;(¢) is (p+ 1)-times differentiable. A linear estimator of the
gth derivative ﬁl<q> (¢) of By(r) for any 0 < g < p+1 is given by the form

—~ J —~
B =Y wig(tj, 1) BFY (1), (8.18)
j=1

where wy 4(t;,t) are the weights constructed by various smoothing methods,
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such as, splines and local polynomials. Setting ¢ =0, the smoothing estimator
of B(¢) from (8.18) is

Bi(r) = ZWI o(tj, ) BEY (1)). (8.19)

In most real applications, we are concerned with the estimation of (), rather
than its derivatives. Only in rare situations, such as estimating the changes
or curvatures of f§;(¢), the derivative estimates B;q) (1) are required. For prac-
tical purposes, we focus on the smoothing estimators of f(¢), although the
derivative estimates of (8.18) are presented as a theoretical possibility.

2. The Two-Step Local Polynomial Estimators

For a specific estimator, the choice of weights w; 4(¢;,1) in (8.18) has to
be selected. The only two-step smoothing method that has been systemat-
ically studied in the literature is the local polynomial fitting by Fan and
Zhang (2000). For any 7; € T and r € 7, let {h, K(-)} be the bandwidth and
kernel function, Kj(¢) = K(¢t/h)/h, and

C; = (Litj—t,..., (p_t)P)T?j 1,
c = (C,0,....0), (8.20)
W, = Ky(tj—1t),W = diag(Wi,...,W)).

The pth order local polynomial estimator of ﬁl(q) (1), 0< g < p+1, is derived
from (8.18) with the weights

~1
Wl,q(tjat) :q!€;+l,p+1 (CTWC) CiWj, (8.21)
and has the expression
J
—1 -~
Z { glel s i (CTWEC) ' C;w)] ﬁlRAW(r,)}. (8.22)

The pth order local polynomial estimator of f;(¢) is E[(O) (1).

Taking p =1 and C; = (1,1; —t)T in (8.21), the local linear estimator of
Bi(¢) is derived from (8.19) with the weights

—1
wio(tj, 1) =el ,(C"WC) ™ C;Wj, (8.23)

and has the expression

J ~
BE() )= X { el (C"We) W] B (1) ). (8.24)

j=1
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Although it is possible to use higher-order local polynomial estimators with
p > 2, the local linear estimators (8.24) are most commonly used in practice.
This is mostly due to the fact that the additional structural complicity of
higher-order local polynomials often does not translate into better fits with
real data.

The local polynomial estimators (8.22) and (8.24) are obtained by treating

{B\IRAW (tj)): 0<I<k; j=1, ...,J} as the pseudo-observations and minimizing

p

U (PN 2 tji—t
Liplt) = zl{ () = X (g (1) (= 1)) } k(%) (8.25)

q=0

with respect to by, (t), where different bandwidth 4 and kernel K(-) may be
used for each f;(¢). If Elq(t) for ¢ =0, ..., p uniquely minimize (8.25), then
Dbio(t) = E[(O) (t) is the two-step pth order local polynomial estimator of f;(¢)

given in (8.22), and, for ¢ > 1, (q!)glq(t) = Bl(q)(t) is the local polynomial
estimator of the gth derivative of f;(r) with respect to r.

8. The Two-Step Kernel Estimators

The special case of local constant fitting leads to the kernel smoothing
estimator of Bj(¢), which is obtained by minimizing

Li(r) = il (B @) —bu(o)] k(20 (8.26)

with respect to b;(¢). The resulting two-step kernel smoothing estimator of

Bi(r) is

o= L os (Ol ST e

Jj=1

which corresponds to (8.25) with p =0.

4. Some Remarks on the Smoothing Step

A major advantage of using the two-step smoothing estimators in (8.18),
(8.19), (8.22), (8.24) and (8.27) is their computational simplicity, because the
existing computing software for cross-sectional i.i.d. data can be readily used.
The raw estimates can be computed by the standard software for linear models.
The smoothing estimates at the second step can be computed using the stan-
dard smoothing software for nonparametric regression. The entire procedure
does not depend on the correlation structures of the observations over time.
This is possible because the statistical objective is to estimate the unknown
coefficient curves at any time point ¢ € .7, while the correlation structures of
(7.1) at different time points are not estimated.
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8.3.8 Bandwidth Choices

Component curve bandwidths can be selected using the usual cross-validation
method in nonparametric regression by deleting the raw estimates one design
time point at a time. The main idea is to find a reasonable bandwidth such
that the resulting smoothing estimator ﬁl<0> (¢) has appropriate smoothness for
the pseudo-observations {ﬁlRAW(tj) 0<I<kj=1, ...,J}.

Let [?l(oﬁj)(t; hy) be any estimator of f;(¢) given in (8.22), (8.24) or (8.27)
computed using the bandwidth #; kernel K;(-) and the pseudo-observations
of raw estimates with the one at the time design point ¢; deleted, that is,
{ﬁ 0<I<kj £ 1<j< J} The leave-one-time-point-out cross-
vahdatlon (LTCV) score is defined by

~

~ . 2
LTCV,(h) = Z[ ,("**f)(tj;h,)] . (8.28)

The cross-validated bandwidth h; ;rcy is the minimizer of LTCV;(h;) with re-
spect to h;, provided that the unique minimizer of (8.28) exists Heuristically,
LTCV;(h;) measures the predictive error of ﬁ (t], hy) for BRAW (¢)).

In contrast to the leave-one-subject-out cross-validation (LSCV) of Sec-
tion 7.2.5 for the one-step local smoothing estimators, the LTCV (8.28) is
specific for each component curve f;(¢) and can provide different smooth-
ing needs for different 0 < < k. The LTCV bandwidth vector from (8.28) is
h;7cy = (hO, LTCV s -5 Mg, LTCV)T. However, because the raw estimates BIRAW (tj)
and BIRAW (tj+) for any j# j* are possibly correlated, the approximate relation-
ship linking the ASE in (7.25) with the LSCV in (7.26) may not necessarily
hold for the LTCV score (8.28). Practical properties of the cross-validated
bandwidths hyrcy have to be investigated through simulation studies.

8.4 Pointwise and Simultaneous Confidence Bands

Approximate inferences for (¢) based on the asymptotic distributions under
general assumptions of {n, ni:i=1,..., n} and {mj j=1, ...7J} are still not
available for th